WorldWideScience

Sample records for western coal fly

  1. Impact of co-combustion of petroleum coke and coal on fly ash quality: Case study of a Western Kentucky power plant

    International Nuclear Information System (INIS)

    Hower, James C.; Thomas, Gerald A.; Mardon, Sarah M.; Trimble, Alan S.

    2005-01-01

    Petroleum coke has been used as a supplement or replacement for coal in pulverized-fuel combustion. At a 444-MW western Kentucky power station, the combustion of nearly 60% petroleum coke with moderate- to high-sulfur Illinois Basin coal produces fly ash with nearly 50% uncombusted petroleum coke and large amounts of V and Ni when compared to fly ash from strictly pulverized coal burns. Partitioning of the V and Ni, known from other studies to be concentrated in petroleum coke, was noted. However, the distribution of V and Ni does not directly correspond to the amount of uncombusted petroleum coke in the fly ash. Vanadium and Ni are preferentially associated with the finer, higher surface area fly ash fractions captured at lower flue gas temperatures. The presence of uncombusted petroleum coke in the fly ash doubles the amount of ash to be disposed, makes the fly ash unmarketable because of the high C content, and would lead to higher than typical (compared to other fly ashes in the region) concentrations of V and Ni in the fly ash even if the petroleum coke C could be beneficiated from the fly ash. Further studies of co-combustion ashes are necessary in order to understand their behavior in disposal

  2. Clay formation and metal fixation during weathering of coal fly ash

    International Nuclear Information System (INIS)

    Zevenbergen, C.; Bradley, J.P.; Reeuwijk, L.P. Van; Shyam, A.K.; Hjelmar, O.; Comans, R.N.J.

    1999-01-01

    The enormous and worldwide production of coal fly ash cannot be durably isolated from the weathering cycle, and the weathering characteristics of fly ash must be known to understand the long-term environmental impact. The authors studied the weathering of two coal fly ashes and compared them with published data from weathered volcanic ash, it's closest natural analogue. Both types of ash contain abundant aluminosilicate glass, which alters to noncrystalline clay. However, this study reveals that the kinetics of coal fly ash weathering are more rapid than those of volcanic ash because the higher pH of fresh coal fly ash promotes rapid dissolution of the glass. After about 10 years of weathering, the noncrystalline clay content of coal fly ash is higher than that of 250-year-old volcanic ash. The observed rapid clay formation together with heavy metal fixation imply that the long-term environmental impact of coal fly ash disposal may be less severe and the benefits more pronounced than predicted from previous studies on unweathered ash. Their findings suggest that isolating coal fly ash from the weathering cycle may be counterproductive because, in the long-term under conditions of free drainage, fly ash is converted into fertile soil capable of supporting agriculture

  3. Micostructural and mechanical properties of geopolymers synthesised from three coal fly ashes from South Africa

    CSIR Research Space (South Africa)

    Dludlu, MK

    2017-01-01

    Full Text Available In this study, coal fly ashes (CFAs) from three different boiler sites in South Africa, Eskom (E coal fly ash), George Mukhari Academic Hospital (GMH coal fly ash), and KarboChem (KBC coal fly ash), were used to produce geopolymers. The coal fly...

  4. Radioactivity of coals and fly ashes

    International Nuclear Information System (INIS)

    Papastefanou, C.

    2008-01-01

    The level and the behavior of the naturally occurring primordial radionuclides 238 U, 226 Ra, 210 Pb, 232 Th, 228 Ra and 40 K in coals and fly ashes are described. The activity concentrations of the examined coals and originated from coal mines in Greece ranged from 117 to 435 Bq x kg -1 for 238 U, from 44 to 255 Bq x kg -1 for 226 Ra, from 59 to 205 Bq x kg -1 for 210 Pb, from 9 to 41 Bq x kg -1 for 228 Ra and from 59 to 227 Bq x kg -1 for 40 K. These levels are comparable to those appeared in coals of different countries worldwide. The activity concentrations of the examined fly ashes and produced in coal-fired power plants in Greece ranged from 263 to 950 Bq x kg -1 for 238 U, from 142 to 605 Bq x kg -1 for 226 Ra, from 133 to 428 Bq x kg -1 for 210 Pb, from 27 to 68 Bq x kg -1 for 228 Ra and from 204 to 382 Bq x kg -1 for 40 K. The results showed that there is an enrichment of the radionuclides in fly ash relative to the input coal during the combustion process. The enrichment factors (EF) ranged from 0.60 to 0.76 for 238 U, from 0.69 to 1.07 for 226 Ra, from 0.57 to 0.75 for 210 Pb, from 0.86 to 1.11 for 228 Ra and from 0.95 to 1.10 for 40 K. (author)

  5. Competitive edge of western coal

    International Nuclear Information System (INIS)

    Keith, R.D.

    1990-01-01

    This paper expresses views on the competitive advantages of one of the nation's most remarkable energy resources--Western coal. It covers utilization of Western coal, and its advantages. The Arkansas Power and Light Company and its demand for coal are also covered

  6. Effect of coal blending on the leaching characteristics of arsenic and selenium in fly ash from fluidized bed coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, F.; Yamada, N.; Sato, A.; Ninomiya, Yoshihiko [Chubu Univ., Aichi (Japan). Dept. of Applied Chemistry; Zhang, L. [Monash Univ., Clayton, VIC (Australia). Dept. of Chemical Engineering

    2013-07-01

    The capture ability of fly ash to arsenic (As) and selenium (Se) was investigated through the combustion of two single bituminous coals A and B and their mixture (blending ratio of 1:1, wt/wt) in a lab-scale fluidized bed reactor. The leaching characteristics of As and Se in corresponding fly ash were also conducted according to Japanese Industrial Standard (JIS). Speciation of As and Se during fly ash leaching test were predicted from the perspective of thermodynamic equilibrium. The results indicate that, combustion of coal B, containing abundant calcium, possesses a higher capture ability of As and Se than that of coal A through possible chemical reaction between As/Se with CaO. Leaching behavior of As and Se from fly ash is strongly dependent on the pH of the leachate. Free calcium in fly ash generates an alkaline leachate during leaching test and subsequently reduces As and Se leaching, which cause the leaching ratio of As and Se in fly ash derived from the combustion of coal B was much lower, relative to that in coal A. Combustion of blending coal promotes the overall capture ability of the fly ash to As/Se and reduces their leaching from fly ash through the synergy of free CaO between this two kind of fly ash.

  7. Norm in coal, fly ash and cement

    International Nuclear Information System (INIS)

    Kant, K.; Upadhyay, S.B.; Sharma, G.S.

    2006-01-01

    Coal is technologically important materials being used for power generation and its cinder (fly ash) is used in manufacturing of bricks, sheets, cement, land filling etc. 222 Rn (radon) and its daughters are the most important radioactive and potentially hazardous elements, which are released in the environment from the naturally occurring radioactive material (NORM) present in coal, fly ash and cement. Thus it is very important to carry out radioactivity measurements in coal, fly ash and cement from the health and hygiene point of view. Samples of coal and fly ash from different thermal power stations in northern India and various fly ash using establishments and commercially available cement samples (O.P.C. and P.P.C.) were collected and analyzed for radon concentration and exhalation rates. For the measurements, alpha sensitive LR-115 type II plastic track detectors were used. The radon concentration varied from 147 Bq/m 3 to 443 Bq/m 3 , the radium concentration varied from 1.5 to 4.5 Bq/kg and radon exhalation rate varied from 11.8 mBq.kg -1 .h -1 to 35.7 mBq.kg -1 .h -1 for mass exhalation rate and from 104.5 mBq.m -2 .h -1 to 314.8 mBq.m -2 .h -1 for surface exhalation rate in coal samples. The radon concentration varied from 214 Bq/m 3 to 590 Bq/m 3 , the radium concentration varied from 1.0 to 2.7 Bq/kg and radon exhalation rate varied from 7.8 mBq.kg -1 .h -1 to 21.6 mBq.kg -1 .h -1 for mass exhalation rate and from 138 mBq m -2 h -1 to 380.6 mBq.m -2 .h -1 for surface exhalation rate in fly ash samples. The radon concentration varied from 157.62 Bq/m 3 to 1810.48 Bq/m 3 , the radium concentration varied from 0.76 Bq/kg to 8.73 Bq/kg and radon exhalation rate varied from 6.07 mBq.kg -1 .hr -1 to 69.81 mBq.kg -1 .hr -1 for mass exhalation rate and from 107.10 mBq.m -2 .hr -1 to 1230.21 mBq.m -2 .hr -1 for surface exhalation rate in different cement samples. The values were found higher in P.P.C. samples than in O.P.C. samples. (authors)

  8. Differential pulmonary inflammation and in vitro cytotoxicity of size-fractionated fly ash particles from pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    M. Ian Gilmour; Silvia O' Connor; Colin A.J. Dick; C. Andrew Miller; William P. Linak [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States). National Health and Environmental Effects Research Laboratory

    2004-03-01

    Exposure to airborne particulate matter (PM) has been associated with adverse health effects in humans. Pulmonary inflammatory responses were examined in CD1 mice after intratracheal instillation of 25 or 100 {mu}g of ultrafine ({lt}0.2 {mu}m), fine ({lt}2.5 {mu}m), and coarse ({gt}2.5 {mu}m) coal fly ash from a combusted Montana subbituminous coal, and of fine and coarse fractions from a combusted western Kentucky bituminous coal. After 18 hr, the lungs were lavaged and the bronchoalveolar fluid was assessed for cellular influx, biochemical markers, and pro-inflammatory cytokines. The responses were compared with saline and endotoxin as negative and positive controls, respectively. On an equal mass basis, the ultrafine particles from combusted Montana coal induced a higher degree of neutrophil inflammation and cytokine levels than did the fine or coarse PM. The western Kentucky fine PM caused a moderate degree of inflammation and protein levels in bronchoalveolar fluid that were higher than the Montana fine PM. Coarse PM did not produce any significant effects. In vitro experiments with rat alveolar macrophages showed that of the particles tested, only the Montana ultrafine displayed significant cytotoxicity. It is concluded that fly ash toxicity is inversely related with particle size and is associated with increased sulfur and trace element content. 42 refs., 5 figs., 3 tabs.

  9. Analysis of radioactivity in coal, cinders, fly ash and discharges from the stack

    International Nuclear Information System (INIS)

    Meide, A.

    1985-01-01

    Gamma measurements of coal samples originating from several supplying countries proved that the South African coal has about double U-238 and Ra-226 concentration and about treble Th-232 concentration compared to coal from the other countries. Gamma measurements of coal, cinders and fly ash samples from five coal-fueled plants indicate somewhat higher concentrations of Th-232 in cinders and U-238 and Th-232 in fly ashes than those described in literature. The ratio Po-210/Pb-210 was about 2 for fly ash particulates <35μ. A positive correlation between ash percentage and radioactivity of coal might be assumed. (EG)

  10. CO2 uptake capacity of coal fly ash

    DEFF Research Database (Denmark)

    Mazzella, Alessandro; Errico, Massimiliano; Spiga, Daniela

    2016-01-01

    Coal ashes are normally considered as a waste obtained by the coal combustion in thermal power plants. Their utilization inside the site where are produced represents an important example of sustainable process integration. The present study was performed to evaluate the application of a gas......-solid carbonation treatment on coal fly ash in order to assess the potential of the process in terms of sequestration of CO2 as well as its influence on the leaching behavior of metals and soluble salts. Laboratory tests, performed under different pressure and temperature conditions, showed that in the pressure......% corresponding to a maximum carbonation efficiency of 74%, estimated on the basis of the initial CaO content. The high degree of ash carbonation achieved in the present research, which was conducted under mild conditions, without add of water and without stirring, showed the potential use of coal fly ash in CO2...

  11. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.

    Science.gov (United States)

    He, Jingfeng; Duan, Chenlong; Lei, Mingzhe; Zhu, Xuemei

    2016-01-01

    The secondary release of mercury from coal fly ash is a negative by-product from coal-fired power plants, and requires effective control to reduce environmental pollution. Analysing particle size distribution and composition of the coal fly ash produced by different mercury removing technologies indicates that the particles are generally less than 0.5 mm in size and are composed mainly of SiO2, Al2O3, and Fe2O3. The relationships between mercury concentration in the coal fly ash, its particle size, and loss of ignition were studied using different mercury removing approaches. The research indicates that the coal fly ash's mercury levels are significantly higher after injecting activated carbon or brominating activated carbon when compared to regular cooperating-pollution control technology. This is particularly true for particle size ranges of >0.125, 0.075-0.125, and 0.05-0.075 mm. Leaching experiments revealed the secondary release of mercury in discarded coal fly ash. The concentration of mercury in the coal fly ash increases as the quantity of injecting activated carbon or brominating activated carbon increases. The leached concentrations of mercury increase as the particle size of the coal fly ash increases. Therefore, the secondary release of mercury can be controlled by adding suitable activated carbon or brominating activated carbon when disposing of coal fly ash. Adding CaBr2 before coal combustion in the boiler also helps control the secondary release of mercury, by increasing the Hg(2+) concentration in the leachate. This work provides a theoretical foundation for controlling and removing mercury in coal fly ash disposal.

  12. Coal combustion by-product quality at two stoker boilers: Coal source vs. fly ash collection system design

    Energy Technology Data Exchange (ETDEWEB)

    Mardon, Sarah M. [Kentucky Department for Environmental Protection, Division of Water, Frankfort, KY 40601 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); O' Keefe, Jennifer M.K. [Morehead State University, Department of Physical Sciences, Morehead, KY 40351 (United States); Marks, Maria N. [Environmental Consulting Services, Lexington, KY 40508 (United States); Hedges, Daniel H. [University of Kentucky, Department of Earth and Environmental Sciences, Lexington, KY 40506 (United States)

    2008-09-15

    Fly ashes from two stoker boilers burning Pennsylvanian Eastern Kentucky high volatile A bituminous coal blends were examined for their petrology and chemistry. The source coals have similar trace element contents. One of the ash collection systems was retrofitted with a baghouse (fabric filter) system, collecting a finer fly ash at a cooler flue gas temperature than the plant that has not been reconfigured. The baghouse ash has a markedly higher trace element content than the coarser fly ash from the other plant. The enhanced trace element content is most notable in the As concentration, reaching nearly 9000 ppm (ash basis) for one of the collection units. Differences in the ash chemistry are not due to any substantial differences in the coal source, even though the coal sources were from different counties and from different coal beds, but rather to the improved pollution control system in the steam plant with the higher trace element contents. (author)

  13. Study on surface morphology and physicochemical properties of raw and activated South African coal and coal fly ash

    Science.gov (United States)

    Mishra, S. B.; Langwenya, S. P.; Mamba, B. B.; Balakrishnan, M.

    South African coal and coal fly ash were selected as the raw materials to be used for study of their morphology and physicochemical properties and their respective activated carbons for adsorption applications. Coal and fly ash were individually steam activated at a temperature range of 550-1000 °C for 1 h in a muffle furnace using cylindrical stainless steel containers. Scanning electron micrographs revealed a change in surface morphology with more mineral matter available on the surface of the coal particles due to increased devolatilization. However, in the case of fly ash, the macerals coalesced to form agglomerates and the presence of unburnt carbon constituted pores of diameter between 50 and 100 nm. The BET surface area of coal improved significantly from 5.31 to 52.12 m 2/g whereas in case of fly ash the surface area of the raw sample which was originally 0.59 m 2/g and upon activation increased only up to 2.04 m 2/g. The chemical composition of the fly ash confirmed that silica was the major component which was approximately 60% by weight fraction. The impact of this study was to highlight the importance of using raw materials such as coal and a waste product, in the form of coal ash, in order to produce affordable activated carbon that can be used in drinking water treatment. This would therefore ensure that the quality of water supplied to communities for drinking is not contaminated especially by toxic organic compounds.

  14. Hazards from radioactivity of fly ash of Greek coal power plants (CPP)

    International Nuclear Information System (INIS)

    Papastefanou, C.; Charalambous, S.

    1980-01-01

    Fly ash and fine dispersion releases from coal combustion in Greek coal power plants were studied. Concentrations in the fly ash up to 20 pCi/g and 10 pCi/g were measured for 238 U and 226 Ra respectively (not in secular equilibrium). Risk from the fly ash derives from its escape in particulate form or fine dispersion and from its use as a substitute for cement in concrete. The new data indicate that coal power plants discharge relatively larger quantities of radioactive material into the atmosphere than nuclear power plants of comparable size, during normal operation. (H.K.)

  15. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): An introduction of occupational health hazards

    International Nuclear Information System (INIS)

    Oliveira, Marcos L.S.; Marostega, Fabiane; Taffarel, Silvio R.; Saikia, Binoy K.; Waanders, Frans B.; DaBoit, Kátia; Baruah, Bimala P.

    2014-01-01

    Coal derived nano-particles has been received much concern recently around the world for their adverse effects on human health and the environment during their utilization. In this investigation the mineral matter present in some industrially important Indian coals and their ash samples are addressed. Coal and fly ash samples from the coal-based captive power plant in Meghalaya (India) were collected for different characterization and nano-mineralogy studies. An integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS analysis, and Mössbauer spectroscopy were used to know their extent of risks to the human health when present in coal and fly ash. The study has revealed that the coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals in lesser quantities were found to be present in the coal fly ash. Fly ash carbons were present as chars. Indian coal fly ash also found to contain nanominerals and ultrafine particles. The coal-fired power plants are observed to be the largest anthropogenic source of Hg emitted to the atmosphere and expected to increase its production in near future years. The Multi Walled Carbon Nano-Tubes (MWCNTs) are detected in our fly ashes, which contains residual carbonaceous matter responsible for the Hg capture/encapsulation. This detailed investigation on the inter-relationship between the minerals present in the samples and their ash components will also be useful for fulfilling the clean coal technology principles. - Highlights: • We research changes in the level of ultrafine and nanoparticles about coal–ash quality. • Increasing dates will increase human health quality in this Indian coal area. • Welfare effects depend on ex-ante or ex-post assumptions about

  16. Phase transformations in synthesis technologies and sorption properties of zeolites from coal fly ash

    Directory of Open Access Journals (Sweden)

    О. Б. Котова

    2016-08-01

    Full Text Available Coal fly ash is generated in the course of combustion of coal at thermal power plants. Environmental problems increase sharply without disposing that industrial waste. Technologies were tested of hydrothermal synthesis of zeolites from fly ash forming during combustion of coal at thermal power plants of the Pechora coal basin and dependences were identified of the experiment conditions on physical and chemical properties of the end product. It is demonstrated that synthesizing zeolites from fly ash is the first stage of forming ceramic materials (ceramic membranes, which defines the fundamental character (importance of that area of studies. It was for the first time that sorption and structural characteristics and cation-exchange properties of fly ash from the Pechora basin coals were studied with respect to, Ba2+ and Sr2+.

  17. Hierarchical zeolites from class F coal fly ash

    Science.gov (United States)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  18. Medical screening after a coal fly ash spill in Roane County, Tennessee.

    Science.gov (United States)

    Nichols, Gregory P; Cragle, Donna L; Benitez, John G

    2014-08-01

    To assess the health of community residents following a coal fly ash spill at the Tennessee Valley Authority Kingston Fossil Plant in Harriman, Tennessee, on December 22, 2008. A uniform health assessment was developed by epidemiologists at Oak Ridge Associated Universities and medical toxicologists at Vanderbilt University Medical Center. Residents who believed that their health may have been affected by the coal fly ash spill were invited to participate in the medical screening program. Among the 214 individuals who participated in the screening program, the most commonly reported symptoms were related to upper airway irritation. No evidence of heavy metal toxicity was found. This is the first report, to our knowledge, regarding the comprehensive health evaluation of a community after a coal fly ash spill. Because this evaluation was voluntary, the majority of residents screened represented those with a high percentage of symptoms and concerns about the potential for toxic exposure. Based on known toxicity of the constituents present in the coal fly ash, health complaints did not appear to be related to the fly ash. This screening model could be used to assess immediate or baseline toxicity concerns after other disasters.

  19. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH

    Energy Technology Data Exchange (ETDEWEB)

    Komonweeraket, Kanokwan [Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706 (United States); Cetin, Bora, E-mail: bora.cetin@sdsmt.edu [College of Engineering, University of Georgia, Athens, GA 30602 (United States); Benson, Craig H., E-mail: chbenson@wisc.edu [Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706 (United States); Aydilek, Ahmet H., E-mail: aydilek@umd.edu [Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742 (United States); Edil, Tuncer B., E-mail: edil@engr.wisc.edu [Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706 (United States)

    2015-04-15

    Highlights: • The impact of pH on the leaching of elements and metals from fly ash mixed soils. • Generally Ca, Cd, Mg, and Sr follows a cationic leaching pattern. • The leaching of As and Se shows an oxyanionic leaching pattern. • The leaching behavior of elements does not change based on material type. • Different fly ash types show different abilities in immobilizing trace elements. - Abstract: Leaching behaviors of Arsenic (As), Barium (Ba), Calcium (Ca), Cadmium (Cd), Magnesium (Mg), Selenium (Se), and Strontium (Sr) from soil alone, coal fly ash alone, and soil-coal fly ash mixtures, were studied at a pH range of 2–14 via pH-dependent leaching tests. Seven different types of soils and coal fly ashes were tested. Results of this study indicated that Ca, Cd, Mg, and Sr showed cationic leaching pattern while As and Se generally follows an oxyanionic leaching pattern. On the other hand, leaching of Ba presented amphoteric-like leaching pattern but less pH-dependent. In spite of different types and composition of soil and coal fly ash investigated, the study reveals the similarity in leaching behavior as a function of pH for a given element from soil, coal fly ash, and soil-coal fly ash mixtures. The similarity is most likely due to similar controlling mechanisms (e.g., solubility, sorption, and solid-solution formation) and similar controlling factors (e.g., leachate pH and redox conditions). This offers the opportunity to transfer knowledge of coal fly ash that has been extensively characterized and studied to soil stabilized with coal fly ash. It is speculated that unburned carbon in off-specification coal fly ashes may provide sorption sites for Cd resulting in a reduction in concentration of these elements in leachate from soil-coal fly ash mixture. Class C fly ash provides sufficient CaO to initiate the pozzolanic reaction yielding hydrated cement products that oxyanions, including As and Se, can be incorporated into.

  20. Natural radioactivity of coal and fly ash at the Nikola Tesla B TPP

    Directory of Open Access Journals (Sweden)

    Kisić Dragica M.

    2013-01-01

    Full Text Available Serbian thermal power plants (TPPs produce siliceous fly ash from lignite in the quantity of approximately 6 million tons per year. The potential market for the use of fly ash is operational, but for the time being, only used by cement producers. Fly ash radioactivity could be one of the major points of concern when larger use of fly ash is planned, particularly in the Serbian construction industry. Radioactivity measurements have been conducted regularly for decades. This paper presents the results of a ten-year fly ash radioactivity measurements at the Nikola Tesla B TPP located in Obrenovac. In addition, the paper compares the natural radionuclides coal content data combusted by the Nikola Tesla B TPP boilers coming from the Kolubara Basin and ash created during coal combustion. Fly ash created in the Nikola Tesla TPPs boilers is characterised by the increased concentration of the natural radionuclides content compared to coal. This is the so-called technologically enhanced natural radioactivity (Technologically Enhanced Occurring Radioactive Material - TENORM of industrial waste, whereas the average specific activities: 232Th in coal amount to 25.2 Bq/kg, and in fly ash and coal 84.2 Bq/kg and 238U 38.3 Bq/kg, respectively. Following the obtained natural radionuclides content results it may be concluded that the Nikola Tesla B TPP ash may be disposed into the environment. Ash may be used also in the construction industry (civil engineering. In building construction applications, ash share as the additive to other building materials depends from its physical and chemical characteristics, as well as from the radionuclides activity: 266Ra, 232Th and 40K. Unlike the thermal power plants regularly (once a year testing the specific natural radionuclides activity in the combusted coal and boiler fly ash, Electric Power Industry of Serbia has not performed large-scale investigations of the natural radionuclides content in coal within the Kolubara

  1. Bioextraction of copper and zinc from fly ash from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wilczok, T; Cwalina, B; Chrostowska, D

    1986-02-01

    Results are evaluated of investigations carried out by the Institute of Chemistry and Physics of the Silesia Medical Academy in Sosnowiec into feasibility of bacterial leaching for utilization of fly ash from combustion of black coal. Fly ash separated by electrostatic precipitators in the Dolna Odra power plant fired with black coal was used. Copper content in the fly ash on the average was 0.012%, that of zinc was 0.025%. When Thiobacillus ferroxidans, Thiobacillus thiooxidans and bacteria separated from fly ash were used leaching efficiency after 21 days ranged from 69 to 87% in the case of copper and from 48 to 72% in the case of zinc. Origin of bacteria separated from fly ash was unclear. Autochthonous bacteria in the fly ash being leached increased efficiency of bacterial leaching. Effects of autochthonous bacteria were similar to those of the bacterial culture of Thiobacillus ferroxidans and Thiobacillus thiooxidans. Investigation results were shown in a table and 2 diagrams. 19 references.

  2. The impacts of coal refuse/fly ash bulk bends on water quality and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Stewar, B.R.; Daniels, W.L. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-09-01

    There is considerable interest in the beneficial reuse of coal fly ash as a soil amendment on coal refuse piles. One method of application would be to blend the coal refuse and the fly ash before deposition in a refuse pile. A field experiment was initiated to measure the effects of bulk blending fly ash with coal refuse on water quality and plant growth parameters. Fly ash (class F) from three sources were used in the experiment. Two of the fly ashes were acidic and the third was alkaline. Trenches were excavated in a coal refuse pile to a depth of 2 m and the refuse was blended with fly ash and then returned to the trench. In other plots the ash was applied as a surface amendment. A treatment of a bulk blend of 5% (w/w) rock phosphate was also included in the experiment. Large volume lysimeters were installed in some trenches to collect the leachates. The fly ash treatments appear to improve the quality of the leachates when compared to the leachates from the untreated plots. The fly ash amended treatments have lower leachate concentrations of Fe and Al. Initially the fly ash treatments showed high levels of leachate B, however those levels have decreased with time. Millet (Setaria italica) yields from the first year of the experiment were highest n the alkaline fly ash and rock phosphate blended plots. In the second growing season, the two bulk blends with alkaline fly ash had the highest yields. In the third growing season all treatments had higher yield levels than the untreated control plots. The positive effects of the fly ash on leachate quality were attributed to the alkalinity of the ash, and the increase in yield was attributed to the increases in water holding capacity due to fly ash treatments.

  3. The geochemistry and bioreactivity of fly-ash from coal-burning power stations

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T.; Wlodarczyk, A.; Koshy, L.; Brown, P.; Longyi, S.; BeruBe, K. [Cardiff University, Cardiff (United Kingdom). School of Earth & Ocean Science

    2009-07-01

    Fly-ash is a byproduct of the combustion of coal in power stations for the generation of electricity. The fly-ash forms from the melting of incombustible minerals found naturally in the coal. The very high coal combustion temperatures result in the formation of microscopic glass particles from which minerals such as quartz, haematite and mullite can later recrystallize. In addition to these minerals, the glassy fly-ash contains a number of leachable metals. Mullite is a well-known material in the ceramics industry and a known respiratory hazard. Macroscopically mullite can be found in a large range of morphologies; however microscopic crystals appear to favour a fibrous habit. Fly-ash is a recognized bioreactive material in rat lung, generating hydroxyl radicals, releasing iron, and causing DNA damage. However, the mechanisms of the bioreactivity are still unclear and the relative contributions of the minerals and leachable metals to that toxicity are not well known.

  4. Recovery of iron oxide from coal fly ash

    Science.gov (United States)

    Dobbins, Michael S.; Murtha, Marlyn J.

    1983-05-31

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  5. Radon induced radiological impact of coal, fly ash and cement samples

    International Nuclear Information System (INIS)

    Kant, K.; Chauhan, R.P.; Sharma, G.S.; Chakravarti, S.K.

    2001-01-01

    Coal and its by-product fly ash are technologically important materials being used for power generation and in the manufacture of bricks, sheets, cement, land-filling, etc., respectively. Increased interest in measuring radon concentration in coal, fly ash and cement is due to its health hazards and environmental pollution. As the presence of radon in the environment (indoor and outdoor), soil, ground water, oil and gas deposits contributes the largest fraction of the natural radiation dose to populations, tracking its concentration is thus of paramount importance for radiological protection. Samples of coal and fly ash were collected from different thermal power stations in northern India and cement samples from National Council for Cement and Building Materials, Ballabgarh (Haryana), India and were analysed for radon concentration. For the measurement, alpha sensitive LR-115 type II plastic track detectors were used. Based upon the available data, the annual effective dose and the lifetime fatality risk factors have been calculated. The radon concentration from coal samples varied from 433 ± 28 Bqm -3 to 2086 ± 28 Bqm -3 . The radon concentration from fly ash samples varied from 748 ± 28 Bqm -3 to 1417 ± 111 Bqm -3 and from 158 Bqm -3 to 1810 Bqm -3 in cement samples, with an average of 624 ± 169 Bqm -3 . (author)

  6. Microwave radiation improves biodiesel yields from waste cooking oil in the presence of modified coal fly ash

    Directory of Open Access Journals (Sweden)

    Yulin Xiang

    2017-11-01

    Full Text Available This paper studied the effects of using modified coal fly ash as a catalyst to convert waste cooking oil (WCO into biodiesel under microwave-strengthened action. Coal fly ash was modified with sodium sulphate and sodium hydroxide, and the obtained catalyst was characterized using FT-IR and X-ray diffraction (XRD. The experimental results showed that the modified coal fly ash catalyst improved biodiesel yields under the microwave-assisted system, and the maximum biodiesel yield from waste cooking oil reached 94.91% at a molar ratio of methanol to WCO of 9.67:1 with 3.99% wt% of modified coal fly ash catalyst (based on oil weight at a 66.20 °C reaction temperature. The reusability of the modified coal fly ash catalyst was excellent, and the conversion yield remained greater than 90% after the catalyst was reused 8 times. The produced biodiesel met the main parameters of the ASTM D-6751 and EN14214 standards. Keywords: Biodiesel, Modified coal fly ash, Microwave assisted system, Waste cooking oil

  7. Characterization and environmental evaluation of Atikokan coal fly ash for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Yeheyis, M.B.; Shang, J.Q.; Yanful, E.K. [Western Ontario Univ., London, ON (Canada). Dept. of Civil and Environmental Engineering

    2008-09-15

    Coal fly ash from thermal power generating stations has become a valuable byproduct in various commercial and environmental applications due to its cementitious, alkaline, and pozzolanic properties. It is used as a raw material in cement production, and also as a replacement for cement in concrete production. This study provided physical, chemical, and mineralogical characterizations of fresh and landfilled coal fly ash from a thermal generation station in Ontario. Fly ash behaviour under various environmental conditions was examined. Tests were conducted to characterize fly ash acid neutralization capacity and heavy metal sorption capacity. The study showed that fresh and landfilled fly ash samples showed significant variations in morphology, mineralogy, and chemical composition. X-ray diffraction studies demonstrated that weathering of the fly ash caused the formation of secondary minerals. The study also showed that the heavy metals from both fresh and landfilled fly ash samples were below leachate criteria set by the provincial government. It was concluded that both fresh and landfilled fly ash are suitable for various environmental and engineering applications. 55 refs., 5 tabs., 11 figs.

  8. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    Science.gov (United States)

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  9. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kostova, I.J.; Hower, J.C.; Mastalerz, M.; Vassilev, S.V. [University of Kentucky, Lexington, KY (United States). Center of Applied Energy Research

    2011-01-15

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture.

  10. Preparation of sintered foam materials by alkali-activated coal fly ash.

    Science.gov (United States)

    Zhao, Yelong; Ye, Junwei; Lu, Xiaobin; Liu, Mangang; Lin, Yuan; Gong, Weitao; Ning, Guiling

    2010-02-15

    Coal fly ash from coal fired power stations is a potential raw material for the production of ceramic tiles, bricks and blocks. Previous works have demonstrated that coal fly ash consists mainly of glassy spheres that are relatively resistant to reaction. An objective of this research was to investigate the effect of alkali on the preparation process of the foam material. Moreover, the influence of foam dosage on the water absorption, apparent density and compressive strength was evaluated. The experimental results showed that homogenous microstructures of interconnected pores could be obtained by adding 13 wt.% foaming agent at 1050 degrees C, leading to foams presenting water absorption, apparent density and compressive strength values of about 126.5%, 0.414 g/cm(3), 6.76 MPa, respectively.

  11. Elemental composition of coal fly ash: Malta coal power station in the Mpumalanga province in South Africa case study using nuclear and related analytical techniques

    International Nuclear Information System (INIS)

    Eze, Ch.P.; Fatoba, O.; Madzivire, G.; Petrik, L.F.; Ostrovnaya, T.M.; Frontas'eva, M.V.; Nechaev, A.N.

    2013-01-01

    Epithermal neutron activation analysis along with ICP-OES, LA ICP-MS, and XRF were used to determine the elemental composition of coal fly ash from the Malta coal power station in the Mpumalanga province of South Africa. A total of 54 major, trace and rare-earth elements were obtained by the four analytical techniques. The results were compared and the discrepancies discussed to show the merits and drawbacks of each of the techniques. It was shown that the elemental content of this particular coal fly ash is of the same order as the NIST standard reference material Coal Fly Ash 1633b

  12. Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste

    Directory of Open Access Journals (Sweden)

    Cieślik Ewelina

    2018-01-01

    Full Text Available One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.

  13. Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste

    Science.gov (United States)

    Cieślik, Ewelina; Konieczny, Tomasz; Bobik, Bartłomiej

    2018-01-01

    One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction) were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.

  14. Application of dry separative methods for decreasing content the residues unburned coal and separation Fe from black coal flies ash

    Directory of Open Access Journals (Sweden)

    František Kaľavský

    2008-06-01

    Full Text Available Main obstacle using of fly ashes in building, that is its main consumer, is the residue of unburned coal; it is expressed of loss onignition - LOI. In present, the valid STN and EU standard limits the content of LOI to 3 – 5 %, in national conditions maximum 7 %.Application of processing technologies also has to assure utilization of fly ash that provides a possibility of complex utilizationof individual products obtained by modification.By means of corona separation, based on different conductivity of individual fly ash elements, it is possible to separate unburnedcoal particles. The fly ash sample from black coal burning in melting boiler that was deposited on fly ash deposit, content of LOIof dielectric particle 6,45 % at 61 % weight yield was achieved. In the samples taken from dry taking of fly ash the non-conductingproduct contained 7,72 % of LOI at 73 % of weight yield.

  15. Mineralogical, Microstructural and Thermal Characterization of Coal Fly Ash Produced from Kazakhstani Power Plants

    Science.gov (United States)

    Tauanov, Z.; Abylgazina, L.; Spitas, C.; Itskos, G.; Inglezakis, V.

    2017-09-01

    Coal fly ash (CFA) is a waste by-product of coal combustion. Kazakhstan has vast coal deposits and is major consumer of coal and hence produces huge amounts of CFA annually. The government aims to recycle and effectively utilize this waste by-product. Thus, a detailed study of the physical and chemical properties of material is required as the data available in literature is either outdated or not applicable for recently produced CFA samples. The full mineralogical, microstructural and thermal characterization of three types of coal fly ash (CFA) produced in two large Kazakhstani power plants is reported in this work. The properties of CFAs were compared between samples as well as with published values.

  16. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes.

    Science.gov (United States)

    Taggart, Ross K; Hower, James C; Dwyer, Gary S; Hsu-Kim, Heileen

    2016-06-07

    Rare earth elements (REEs) are critical and strategic materials in the defense, energy, electronics, and automotive industries. The reclamation of REEs from coal combustion fly ash has been proposed as a way to supplement REE mining. However, the typical REE contents in coal fly ash, particularly in the United States, have not been comprehensively documented or compared among the major types of coal feedstocks that determine fly ash composition. The objective of this study was to characterize a broad selection of U.S. fly ashes of varied geological origin in order to rank their potential for REE recovery. The total and nitric acid-extractable REE content for more than 100 ash samples were correlated with characteristics such as the major element content and coal basin to elucidate trends in REE enrichment. Average total REE content (defined as the sum of the lanthanides, yttrium, and scandium) for ashes derived from Appalachian sources was 591 mg kg(-1) and significantly greater than in ashes from Illinois and Powder River basin coals (403 and 337 mg kg(-1), respectively). The fraction of critical REEs (Nd, Eu, Tb, Dy, Y, and Er) in the fly ashes was 34-38% of the total and considerably higher than in conventional ores (typically less than 15%). Powder River Basin ashes had the highest extractable REE content, with 70% of the total REE recovered by heated nitric acid digestion. This is likely due to the higher calcium content of Powder River Basin ashes, which enhances their solubility in nitric acid. Sc, Nd, and Dy were the major contributors to the total REE value in fly ash, based on their contents and recent market prices. Overall, this study shows that coal fly ash production could provide a substantial domestic supply of REEs, but the feasibility of recovery depends on the development of extraction technologies that could be tailored to the major mineral content and origins of the feed coal for the ash.

  17. Coal Fly Ash Ceramics: Preparation, Characterization, and Use in the Hydrolysis of Sucrose

    Directory of Open Access Journals (Sweden)

    Ricardo Pires dos Santos

    2014-01-01

    Full Text Available Coal ash is a byproduct of mineral coal combustion in thermal power plants. This residue is responsible for many environmental problems because it pollutes soil, water, and air. Thus, it is important to find ways to reuse it. In this study, coal fly ash, obtained from the Presidente Médici Thermal Power Plant, was utilized in the preparation of ceramic supports for the immobilization of the enzyme invertase and subsequent hydrolysis of sucrose. Coal fly ash supports were prepared at several compaction pressures (63.66–318.30 MPa and sintered at 1200°C for 4 h. Mineralogical composition (by X-ray diffraction and surface area were studied. The ceramic prepared with 318.30 MPa presented the highest surface area (35 m2/g and amount of immobilized enzyme per g of support (76.6 mg/g. In assays involving sucrose inversion, it showed a high degree of hydrolysis (around 81% even after nine reuses and 30 days’ storage. Therefore, coal fly ash ceramics were demonstrated to be a promising biotechnological alternative as an immobilization support for the hydrolysis of sucrose.

  18. Exploring evaluation to influence the quality of pulverized coal fly ash. Co-firing of biomass in a pulverized coal plant or mixing of biomass ashes with pulverized coal fly ash; Verkennende evaluatie kwaliteitsbeinvloeding poederkoolvliegas. Bijstoken van biomassa in een poederkoolcentrale of bijmenging van biomassa-assen met poederkoolvliegas

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sloot, H.A.; Cnubben, P.A.J.P [ECN Schoon Fossiel, Petten (Netherlands)

    2000-08-01

    In this literature survey the consequences of co-firing of biomass and mixing of biomass ash with coal fly ash on the coal fly ash quality is evaluated. Biomass ash considered in this context is produced by gasification, pyrolysis or combustion in a fluidized bed. The irregular shape of biomass ash obtained from gasification, pyrolysis or combustion has a negative influence on the water demand in concrete applications of the coal fly ash resulting from mixing biomass ash and coal fly ash. In case of co-firing, high concentrations of elements capable of lowering the ash melting point (e.g., Ca and Mg) may lead to more ash agglomeration. This leads to a less favourable particle size distribution of the coal fly ash, which has a negative impact on the water demand in cement bound applications. Gasification, pyrolysis and combustion may lead to significant unburnt carbon levels (>10%). The unburnt carbon generally absorbs water and thus has a negative influence on the water demand in cement-bound applications. The contribution of biomass ash to the composition of coal fly ash will not be significantly different, whether the biomass is co-fired or whether the biomass ash is mixed off-line with coal fly ash. The limit values for Cl, SO4 and soluble salts can form a limitation for the use of coal fly ash containing biomass for cement-bound applications. As side effects of biomass co-firing, the level of constituents such as Na, K, Ca and Mg may lead to slagging and fouling of the boiler. In addition, a higher emission of flue gas contaminants As, Hg, F, Cl and Br may be anticipated in case more contaminated biomass streams are applied. This may also lead to a higher contamination level of gypsum produced from flue gas cleaning residues. Relatively clean biomass streams (clean wood, cacao shells, etc.) will hardly lead to critical levels of elements from a leaching point of view. More contaminated streams, such as sewage sludge, used and preserved wood, petcoke and RDF

  19. Synthesis of zeolite from coal fly ashes with different silica-alumina composition

    Energy Technology Data Exchange (ETDEWEB)

    Miki Inada; Yukari Eguchi; Naoya Enomoto; Junichi Hojo [Kyushu University, Fukuoka (Japan). Department of Chemistry and Biochemistry, Graduate School of Engineering

    2005-02-01

    Coal fly ashes can be converted into zeolites by hydrothermal alkaline treatment. This study focuses on the effect of Si/Al molar ratio of the fly ash source on the type of formed zeolite, which also is affected by the alkaline condition. The fly ashes were mixed with an aqueous NaOH solution and hydrothermally treated at about 100{degree}C. Zeolite Na-P1 and/or hydroxy-sodalite appeared after the treatment. Zeolite Na-P1 predominantly formed from silica-rich fly ash at a low-NaOH concentration. The cation exchange capacity of the product with a large content of zeolite Na-P1 reached a value of 300 meq/100 g. The type of the product was controlled by addition of aerosil silica or alumina. It was found that silica addition effectively enhances the formation of zeolite Na-P1, even at a high-NaOH concentration. These results were discussed on the basis of a formation mechanism of zeolite from coal fly ash through dissolution-precipitation process. 10 refs., 6 figs., 1 tab.

  20. Hazards from radioactivity of fly ash of Greek coal power plants (CPP)

    International Nuclear Information System (INIS)

    Papastefanou, C.; Charalambous, C.

    1980-01-01

    Fly ash and fine dispersion releases by coal combustion in Greek coal power plants are radioactive. Concentrations in the fly ash up to 20 pCi/g and 10 pCi/g were measured for 238 U and 226 Ra respectively (not in secular equilibrium). The radioactivity of fly ash deduces risks in two ways: a) from the escaping fly ash in particulate form or fine dispersion and b) from using fly ash as substitute for cement in concrete. In a room of dimensions 10 x 10x4 m 3 the concentration of Radon in the air will be about 10 -9 μCi/cm 3 . For the above estimation a concrete porosity of 5% and a wall thickness of 20 cm was used. The estimated concentration of Radon was about two orders of magnitude lower than that of the MPC of Radon in the air, which is about 10 -9 μCi/cm 3 . It is pointed out that if a 25% porosity were used, the Radon concentration will be an order of magnitude higher. (U.K.)

  1. Feasibility of coal fly ash based bricks and roof tiles as construction materials: a review

    Directory of Open Access Journals (Sweden)

    Akhtar M.N.

    2017-01-01

    Full Text Available The aim of present study is to investigate about the potential use of coal fly ash along with other natural and solid wastes for the production of coal fly ash based bricks and roof tiles. The study is based on the comprehensive reviews available from the previous experimental data on coal fly ash based bricks and roof tiles. The study intendeds to provide the essential technical information and data for the use of fly ash mix with other solid wastes and reveal their suitability as construction materials. It has been found that samples were non-hazardous in nature and vigorously used as an additional construction materials and their compositions are perfectly fit to make the strong composite material for bricks and tiles. The three past studies have been demonstrated that, fly ash based bricks and roof tiles provides a sustainable supplement to the traditional clay bricks and roof tiles, that not only increases the efficiency of traditional bricks and roof tiles but also helps significantly to reduce the environmental issues associated with the disposal of these waste materials. In addition to this study highlights the potential use of fly ash for producing sustainable construction materials.

  2. Influence of the co-firing on the leaching of trace pollutants from coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Maria Izquierdo; Natalia Moreno; Oriol Font; Xavier Querol; Esther Alvarez; Diano Antenucci; Henk Nugteren; Yolanda Luna; Constantino Fernandez-Pereira [Institute of Earth Sciences ' Jaume Almera' (CSIC), Barcelona (Spain)

    2008-08-15

    The (co)-firing of low-cost alternative fuels is expected to increase in the forthcoming years in the EU because of the economic and environmental benefits provided by this technology. This study deals with the impact of the different coal/waste fuel ratio of the feed blend on the mineralogy, the chemical composition and especially on the leaching properties of fly ash. Different blends of coal, petroleum coke, sewage sludge, wood pellets, coal tailings and other minor biomass fuels were tested in PCC (pulverised coal combustion) and FBC (fluidized bed combustion) power plants. The co-firing of the studied blends did not drastically modify the mineralogy, bulk composition or the overall leaching of the fly ash obtained. This suggests that the co-firing process using the alternative fuels studied does not entail significant limitations in the re-use or management strategies of fly ash. 34 refs., 4 figs., 3 tabs.

  3. Determination of 30 elements in coal and fly ash by thermal and epithermal neutron-activation analysis

    International Nuclear Information System (INIS)

    Rowe, J.J.; Steinnes, E.

    1977-01-01

    Thirty elements are determined in coal and fly ash by instrumental neutron-activation analysis using both thermal and epithermal irradiation. Gamma-ray spectra were recorded 7 and 20 days after the irradiations. The procedure is applicable to the routine analysis of coals and fly ash. Epithermal irradiation was found preferable for the determination of Ni, Zn, As, Se, Br, Rb, Sr, Mo, Sb, Cs, Ba, Sm, Tb, Hf, Ta, W, Th and U, whereas thermal irradiation was best for Sc, Cr, Fe, Co, La, Ce, Nd, Eu, Yb and Lu. Results for SRM 1632 (coal) and SRM 1633 (fly ash) agree with those of other investigators. (author)

  4. Levels and patterns of polycyclic aromatic hydrocarbons in fly ash generated in Coal-fired power plant

    International Nuclear Information System (INIS)

    Ajmal, P.Y.; Sahu, S.K.; Pandit, G.G.; Shukla, V.K.; Puranik, V.D.

    2005-01-01

    The burning of pulverized coal to produce energy for generation of electricity in thermal power plants results in huge quantity of coal ash of varying properties. Because of the increase in electricity production, the amount of ash produced will increase proportionally. A large percentage of coal fly ash is comprised of relatively inert materials, such as silica and other trace and toxic elements. The coal ash also contain organic constituents of potential environmental concern. So far, very few studies on characterization of organic constituents in fly ash have been reported in the literature. In the present study, the fly ashes generated from the power stations are investigated regarding the distribution of 14 PAHs. The total amount of PAHs in the fly ash samples varied between 45.8 ng/g and 257.7 ng/g. Lower molecular weight (MW) PAHs, were found to be predominant in the fly ash samples. The concentration of Benzo(a)pyrene, which is the most potent carcinogenic PAH was found to vary between 0.8 ng/g to 6.3 ng/g with a mean concentration of 2.5 ng/g. (author)

  5. Modified coal fly ash as low cost adsorbent for removal reactive dyes from batik industry

    Directory of Open Access Journals (Sweden)

    Taufiq Agus

    2018-01-01

    Full Text Available The removal of reactive dyes on modified coal fly ash has been investigated during a series of batch adsorption experiments. Physical characteristics of modified coal fly ash was characterized by Brunauer Emmett Teller (BET surface area analysis, X-ray powder diffraction (XRD, Fourier transform infrared spectrophotometer (FT-IR, and scanning electron microscope (SEM. The effects of operational parameters such as initial dye concentration (50–200 mg/L, solution pH (4–10 and adsorbent dosage (50–200 mg/L were studied. The adsorption experiments indicated that modified coal fly ash was effective in removing of Remazol Blue. The percentage removal of dyes increased while the modified fly ash dosage increased. The percentage removal of dyes increased with decreased initial concentration of the dye and also increased with amount of adsorbent used. The optimum of removal of dyes was found to be 94% at initial dye concentration 50 g/mL, modified fly ash dosage 250 g/mL, and pH of 2.0.

  6. Glass Ceramics Composites Fabricated from Coal Fly Ash and Waste Glass

    International Nuclear Information System (INIS)

    Angjusheva, B.; Jovanov, V.; Srebrenkoska, V.; Fidancevska, E.

    2014-01-01

    Great quantities of coal ash are produced in thermal power plants which present a double problem to the society: economical and environmental. This waste is a result of burning of coal at temperatures between 1100-14500C. Fly ash available as fine powder presents a source of important oxides SiO2, Al2O3, Fe2O3, MgO, Na2O, but also consist of small amount of ecologically hazardous oxides such as Cr2O3, NiO, MnO. The combination of the fly ash with waste glass under controlled sintering procedure gave bulk glass-ceramics composite material. The principle of this procedure is presented as a multi barrier concept. Many researches have been conducted the investigations for utilization of fly ash as starting material for various glass–ceramics production. Using waste glass ecologically hazardous components are fixed at the molecular level in the silicate phase and the fabricated new glass-ceramic composites possess significantly higher mechanical properties. The aim of this investigation was to fabricate dense glass ceramic composites using fly ash and waste glass with the potential for its utilization as building material

  7. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    Science.gov (United States)

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  8. Fate of the naturally occurring radioactive materials during treatment of acid mine drainage with coal fly ash and aluminium hydroxide.

    Science.gov (United States)

    Madzivire, Godfrey; Maleka, Peane P; Vadapalli, Viswanath R K; Gitari, Wilson M; Lindsay, Robert; Petrik, Leslie F

    2014-01-15

    Mining of coal is very extensive and coal is mainly used to produce electricity. Coal power stations generate huge amounts of coal fly ash of which a small amount is used in the construction industry. Mining exposes pyrite containing rocks to H2O and O2. This results in the oxidation of FeS2 to form H2SO4. The acidic water, often termed acid mine drainage (AMD), causes dissolution of potentially toxic elements such as, Fe, Al, Mn and naturally occurring radioactive materials such as U and Th from the associated bedrock. This results in an outflow of AMD with high concentrations of sulphate ions, Fe, Al, Mn and naturally occurring radioactive materials. Treatment of AMD with coal fly ash has shown that good quality water can be produced which is suitable for irrigation purposes. Most of the potentially toxic elements (Fe, Al, Mn, etc) and substantial amounts of sulphate ions are removed during treatment with coal fly ash. This research endeavours to establish the fate of the radioactive materials in mine water with coal fly ash containing radioactive materials. It was established that coal fly ash treatment method was capable of removing radioactive materials from mine water to within the target water quality range for drinking water standards. The alpha and beta radioactivity of the mine water was reduced by 88% and 75% respectively. The reduced radioactivity in the mine water was due to greater than 90% removal of U and Th radioactive materials from the mine water after treatment with coal fly ash as ThO2 and UO2. No radioisotopes were found to leach from the coal fly ash into the mine water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The use of coal fines fly ash for the improvement of soils in hydrophobic grounds

    International Nuclear Information System (INIS)

    Janssen-Mommen, J.P.M.; Bestebroer, S.I.

    1992-01-01

    New NO x reducing combustion techniques result in a different physical and morphological quality of fly ash, which makes the use of fly ash less attractive for the building and road construction industries. Attention is paid to the possibility of using low-NO x fly ash for the improvement of the properties of hydrophobic agricultural land. Such an application also depends on the environmental impacts of the leaching of elements to the ground water and the accumulation of hazardous compounds in crops. A literature study of hydrophobic grounds was carried out. Also attention is paid to the legal aspects. No juridical constraints could be found in the Dutch legislation concerning the use of fly ash from coal powder, although it seems that the use of such fly ash is not in agreement with the tenor of possibly to be applied legislation. However, a small-scale investigation was carried out to gain insight into the environmental impacts. The uptake in lettuce and the leaching of the elements As, B, Mo and Se was studied by means of lysimeters. Hydrophobic soils with 5%, 10% and 15% coal fines fly ash were used. Also an experiment with the use of coal gasification slags was performed

  10. Air oxidation of aqueous sodium sulfide solutions with coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, D; Chaudhuri, S K [Southern Illinois University, Carbondale, IL (United States). Dept. of Mining Engineering

    1999-02-01

    The paper investigated the potential of coal fly ash as a catalyst in the air oxidation of aqueous sodium sulfide (Na{sub 2}S) solutions in the temperature range of 303-333 K. The rate of oxidation was found to be independent of the initial concentration of Na{sub 2}S in the range of 5.80 x 10{sup -2} - 28.45 x 10{sup -2} kmol/m{sup 3}. The effects of fly ash loading, source of fly ash, speed of agitation, air flow rate, fly ash particle size were also studied. Experimental results suggested a film-diffusion controlled reaction mechanism. The deactivation of the catalytic effect of fly ash was found to be less than 31% even after five repeated uses.

  11. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health.

    Science.gov (United States)

    Herndon, J Marvin

    2015-08-11

    The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1) Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2) Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA) filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test) and identical variances (F-test); and (2) the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

  12. Trace elements of coal, coal ashes and fly ashes by activation analysis with shor-lived nuclides

    International Nuclear Information System (INIS)

    Boeck, H.; Sarac, I.; Grass, F.

    1981-01-01

    On irradiation with neutrons, some of the interesting trace elements in coal, coal ash and fly ash produce short-lived nuclides which may be determined - together with some of the matrix elements - by activation analysis. This enables the characterization of samples. To find out the distribution of elements in the gaseous or aerosol exhaust of fossil-fired power plants, the authors simulated the combustion in a quartz apparatus containing a cold trap, using the combustion temperature (780 deg C) employed for the standard ash determination. High Se values were found in the cold trap deposits of black coal from Poland. Halogens were also found in the deposits. (authors)

  13. Evaluation and Treatment of Coal Fly Ash for Adsorption Application

    Directory of Open Access Journals (Sweden)

    Samson Oluwaseyi BADA

    Full Text Available Many researchers had investigated fly ash as an adsorbent for the uptake of organic compounds from petrochemical waste effluents. The availability, inexpensive and its adsorption characteristic had made it an alternative media for the removal of organic compounds from aqueous solution. The physical property of South African Coal Fly Ash (SACFA was investigated to determine its adsorption capability and how it can be improved. Chemical treatment using 1M HCl solution in the ratio of (1 g fly ash to (2 ml of acid was used and compared with untreated heat-treated samples. The chemically treated fly ash has a higher specific surface area of 5.4116 m2/g than the heat-treated fly ash with 2.9969 m2/g. More attention had to be given to the utilization of SACFA for the treatment of wastewaters containing organic compounds through the application of Liquid phase adsorption process that was considered as an inexpensive and environmentally friendly technology.

  14. The bonding of heavy metals on nitric acid-etched coal fly ashes functionalized with 2-mercaptoethanol or thioglycolic acid

    International Nuclear Information System (INIS)

    Muñoz, M.I.; Aller, A.J.; Littlejohn, D.

    2014-01-01

    Coal fly ash is a waste by-product of the coal fire industry, which generates many environmental problems. Alternative uses of this material would provide efficient solutions for this by-product. In this work, nitric acid-etched coal fly ash labelled with 2-mercaptoethanol or thioglycolic acid was assessed for retention of Al(III), As(III), Cu(II), Cd(II), Fe(III), Mn(II), Hg(II), Ni(II), Pb(II) and Zn(II) ions. The bonding characteristics between the organic compounds with the solid support, as well as with the metal ions, were evaluated using various surface analytical techniques. Visualization of the organically-functionalized coal fly ash particle was possible using scanning electron microscopy (SEM), while the elemental composition of the functionalized material, before and after retention of the metal ions, was obtained by energy dispersive (ED)-X ray spectrometry (XRS) and electrothermal atomic absorption spectrometry (ETAAS). Fourier transform infrared (FT-IR) spectrometry and Raman spectrometry were used to obtain information about the functional groups. It was found that some metal(oid) ions (As, Ni, Pb, Zn) were coordinated through the mercaptan group, while other metal(oid)s (Al, Cd, Cu, Fe, Hg, Mn) were apparently bonded to oxygen atoms. A low-cost and effective solid phase retention system for extraction of heavy metals from aqueous solutions was thus developed. - Graphical abstract: Nitric acid-etched coal fly ash labelled with 2-mercaptoethanol or thioglycolic acid was intended for the retention of heavy metals. The bonding characteristics between the organic compounds with the solid support, as well as with the metal ions, were evaluated using surface analytical techniques. - Highlights: • Coal fly ashes were organically-functionalized. • Organically-functionalized coal fly ashes were spectrometrically characterized. • Organically-functionalized coal fly ashes can be used as an effective solid sorbent for metal(oid)s. • This retention

  15. Uranium trace and alpha activity characterization of coal and fly ash using particle track etch technique

    International Nuclear Information System (INIS)

    Chakravarti, S.K.

    1991-01-01

    Uranium is extensively found in carbonaceous components of sedimentary rocks and is considered to be accumulated in coals during the coalification process through the geological times. Burning of coal is mainly responsible for a manifold increase in the concentration of radioactive nuclides in atmosphere precipitates. Fly ash being an incombustible residue and formed from 90% of the inorganic material in coal, escapes into the atmosphere and constitutes a potential hazard. Also its use as one of the pozzolanic materials in the products of concrete, bricks etc and filling of ground cavities is even more hazardous because of the wall radioactivity, besides emission and diffusion of radon. This paper reports a simple method called Particle Track Etch (PTE) technique, for trace determination of uranium content in coal and fly ash samples by making use of low cost and versatile plastic detectors known as Solid State Nuclear Track Detectors (SSNTDs). Total alpha activity has also been estimated using these SSNTDs. The values of uranium concentration in coal samples are found to range from 1.1 to 3.6 ppm (uniform component) and 33 to 46 ppm (non-uniform part) whereas in fly ash, it varies from 8 to 11 ppm (uniform) and 55 to 71 ppm in non-uniform range. It is also observed that the alpha activity is a function of uranium concentration for most of the natural samples of coal studied except for mixtures of fly ash samples where relationship is found to be on higher side. (author). 13 refs., 2 tabs., 1 fig

  16. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health

    Directory of Open Access Journals (Sweden)

    J. Marvin Herndon

    2015-08-01

    Full Text Available The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1 Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2 Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1 the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test and identical variances (F-test; and (2 the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

  17. Characterization of coal fly ash components by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Ctvrtnickova, Tereza; Mateo, Mari-Paz; Yanez, Armando; Nicolas, Gines

    2009-01-01

    The high sensitivity of laser-induced breakdown spectroscopy (LIBS) for the detection of most of the fly ash components enables the analysis of these residues produced during the combustion of coal. Fly ash consists of oxides (SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO...) and unburnt carbon which is the major determinant of combustion efficiency in coal fired boilers. For example, an excessive amount of residual carbon dispersed in the fly ash means a significant loss of energy (Styszko et al., 2004). Standard methods employed for the analysis of fly ash make not possible a control of boiler in real time. LIBS technique can significantly reduce the time of analysis, in some cases even an online detection can be performed. For this reason, some studies have been addressed in order to demonstrate the capability of the laser-induced breakdown spectroscopy technique for the detection of carbon content in high pressure conditions typical of thermal power plants (Noda et al., 2002) and for the monitoring of unburnt carbon for the boiler control in real time (Kurihara et al., 2003). In particular, the content of unburnt carbon is a valuable indicator for the control of fly ash quality and for the boiler combustion. Depending on this unburnt carbon content, fly ash can be disposed as an industrial waste or as a raw material for the production of concrete in the construction sector. In this study, analyses were performed on specimens of various forms of preparation. Pressed pellets were prepared with two different binders. Presented results concern the nature and amount of the binder used to pelletize the powder, and the laser-induced breakdown spectroscopy parameters and procedure required to draw calibration curves of elements from the fly ash. Analysis 'on tape' was performed in order to establish the experimental conditions for the future 'online analysis'.

  18. Technical note: Vetiver can grow on coal fly ash without DNA damage.

    Science.gov (United States)

    Chakraborty, Rajarshi; Mukherjee, Anita

    2011-02-01

    Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to open lands or ash ponds located near power plants and this has lain to waste thousands of hectares all over the world. Wind and leaching are often the causes of off-site contamination from fly ash dumpsites. Vetiver (Vetiveria zizanioides) grown on fly ash for three months showed massive, mesh-like growth of roots which could have a phytostabilizing effect. The plant achieved this without any damage to its nuclear DNA as shown by comet assay done on the root nuclei, which implies the long-term survival of the plant on the remediation site. Also, when Vetiver is used for phytoremediation of coal fly ash, its shoots can be safely grazed by animals as very little of heavy metals in fly ash were found to be translocated to the shoots. These features make planting of Vetiver a practical and environmentally compatible method for restoration of fly ash dumpsites. Lack of DNA damage in Vetiver has been compared to that in a sensitive plant i.e. Allium cepa. Our results suggested that apart from traditional end-points viz. growth parameters like root length, shoot length and dry weight, comet assay could also be included in a battery of tests for initial, rapid and effective selection of plants for restoration and phytoremediation of polluted sites.

  19. Adsorption of anionic dyes from aqueous solutions onto coal fly ash and zeolite synthesized from coal fly ash

    International Nuclear Information System (INIS)

    Carvalho, Terezinha Elizabeth Mendes de

    2010-01-01

    Coal fly ash, a waste generated in coal-fired electric power plant, was used to synthesize zeolite by hydrothermal treatment with NaOH solution. The fly ash (CL-2) and this synthesized zeolite (ZM-2) that was characterized as hydroxy-sodalite were used as adsorbents for anionic dyes indigo carmine (IC), and reactive orange 16 (RO16) from aqueous solutions. Effects of contact time, initial dye concentration, pH, adsorbent mass, and temperature were evaluated in the adsorption processes. The kinetics studies indicated that the adsorption followed the pseudo-second order kinetics and that surface adsorption and intraparticle diffusion were involved in the adsorption mechanism. The thermodynamics parameters demonstrated that the adsorption was spontaneous for all adsorption processes. The enthalpy data confirmed the endothermic nature for all adsorption processes except for IC/ZM-2 system which was exothermic. The entropy data showed an increased disorder at the solid/solution interface during the adsorption for all systems except for IC/ZM-2 whose negative entropy value indicated a decreased disorder at the interface. The adsorption isotherms were closely fitted to the Langmuir linear equation. The maximum adsorption capacities were 1.48 mg/g for the IC/CL-2 system; 1.13 mg/g for IC/ZM-2; 0.96 mg/g for RO16/CL-2, and 1.14 mg/g for RO16/ZM-2 at room temperature. The desorption study carried out with water, with acid aqueous solutions, and with an alkali aqueous solution showed to be inefficient both for recovering the dyes and regenerating the adsorbents. (author)

  20. Design and implementation of a field pilot study on using coal fly ash to prevent oxidation of reactive mine tailings

    International Nuclear Information System (INIS)

    Wang, H.L.; Shang, J.Q.; Xu, Y.Q.; Yanful, E.K.

    2009-01-01

    This paper reported on a pilot scale study that investigated the feasibility of using coal fly ash in mine tailings management and acid mine drainage (AMD) treatment at Goldcorp's Musselwhite Mine site in northern Ontario. The principles and key aspects of the fly ash application in mine tailings management were described. Fly ash from the Atikokan coal-fired power generating plant was added to the Musselwhite tailings as a mixture as well as intermediate and top layers. The physical, chemical and hydrogeological effects of the two approaches were monitored. The paper provided details of the design, implementation, monitoring, sampling and testing over 2 years. The objectives were to evaluate the optimum mass ratio of coal fly ash and mine tailings, effectiveness in reducing the infiltration of precipitation, and projected long-term durability and performance on tailings oxidation prevention. The pilot study was designed based on the principles of cementitious materials formation and secondary mineral formation by the reactions of coal fly ash and water/AMD. Calcium oxide, aluminum oxide, silicon oxide, and ferric oxide are major components of coal fly ash. The preliminary test results revealed that water did not accumulate and cracks did not form on top of 4 tanks. The settlements of the mixing approaches were lower than that of the stratified approach and the temperature distributions in the 4 tanks were comparable. 9 refs., 3 tabs., 11 figs.

  1. Coal fly ash based carbons for SO2 removal from flue gases.

    Science.gov (United States)

    Rubio, B; Izquierdo, M T

    2010-07-01

    Two different coal fly ashes coming from the burning of two coals of different rank have been used as a precursor for the preparation of steam activated carbons. The performance of these activated carbons in the SO(2) removal was evaluated at flue gas conditions (100 degrees C, 1000 ppmv SO(2), 5% O(2), 6% H(2)O). Different techniques were used to determine the physical and chemical characteristics of the samples in order to explain the differences found in their behaviour. A superior SO(2) removal capacity was shown by the activated carbon obtained using the fly ash coming from a sub-bituminous-lignite blend. Experimental results indicated that the presence of higher amount of certain metallic oxides (Ca, Fe) in the carbon-rich fraction of this fly ash probably has promoted a deeper gasification in the activation with steam. A more suitable surface chemistry and textural properties have been obtained in this case which explains the higher efficiency shown by this sample in the SO(2) removal. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Hydrothermal conversion of South African coal fly ash into pure phase Zeolite Na-P1

    CSIR Research Space (South Africa)

    Gitari, MW

    2016-08-01

    Full Text Available South African coal combustion power utilities generate huge amounts of coal fly ash that can be beneficiated into zeolitic products. This chapter reports on the optimization of the presynthesis and synthesis conditions for a pure-phase zeolite Na-P1...

  3. Analysis of polynuclear aromatic hydrocarbons from coal fly ash

    International Nuclear Information System (INIS)

    Purushothama, S.; Pan, W.-P.; Riley, J.T.; Lloyd, W.G.

    1998-01-01

    The objective of this work is to compare various extraction and quantification techniques for the determination of adsorbed polynuclear aromatic hydrocarbons (PAHs) on coal ash. Aliquots of a 'clean' fly ash from coal combustion doped with four PAHs have been extracted, using three solvents, three methods and three GC/MS programs. Factorial analysis shows solvent to extert the greatest primary effect: CH 2 Cl 2 > toluene much-gt o-xylene. Highest recoveries were obtained using the reflux slurry extraction procedure with CH 2 Cl 2 and a relatively fast (20 degree C/min) temperature ramp to 310 degree C. With both CH 2 Cl 2 and toluene solvents, ultrasonic assisted extraction affords the best repeatability

  4. Rheology of fly ashes from coal and biomass co-combustion

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming

    2010-01-01

    The presence of large amounts of alkali metals, chlorine and sulphur in most biomass fuels - compared to coal - can create serious ash-related problems such as deposition, agglomeration and/or corrosion. This paper discusses the viscosity characteristics of fly ash from the co-combustion of various...... coal/biomass blends in a pilot scale pf-boiler. The produced data provide information on the melting of the ash and its flow characteristics, as a function of temperature, which may be used to modify the temperature profile of the boiler in order to avoid slagging. Straw co-firing lowers the ash...... viscosity leading to higher stickiness of the ash particles. Wood co-firing has only minor effects, due to the composition of wood ash and the low percentage of wood in the coal/biomass blend....

  5. Mutagenicity and genotoxicity of coal fly ash water leachate.

    Science.gov (United States)

    Chakraborty, Rajarshi; Mukherjee, Anita

    2009-03-01

    Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to storage or ash ponds located near power stations. This has lain to waste thousands of hectares of land all over the world. Since leaching is often the cause of off-site contamination and pathway of introduction into the human environment, a study on the genotoxic effects of fly ash leachate is essential. Leachate prepared from the fly ash sample was analyzed for metal content, and tested for mutagenicity and genotoxicity. Analyses of metals show predominance of the metals-sodium, silicon, potassium, calcium, magnesium, iron, manganese, zinc, and sulphate. The Ames Salmonella mutagenicity assay, a short-term bacterial reverse mutation assay, was conducted on two-tester strains of Salmonella typhimurium strains TA97a and TA102. For genotoxicity, the alkaline version of comet assay on fly ash leachate was carried in vitro on human blood cells and in vivo on Nicotiana plants. The leachate was directly mutagenic and induced significant (Ppercentage (%), tail length (mum), and olive tail moment (arbitrary units). Our results indicate that leachate from fly ash dumpsites has the genotoxic potential and may lead to adverse effects on vegetation and on the health of exposed human populations.

  6. Evaluation of radioactivity levels of coal, slag and fly ash samples used in Giresun province of Turkey

    International Nuclear Information System (INIS)

    Kara, A.; Chevik, U.; Damla, N.; Yeshilbag, Y.O.

    2010-01-01

    In present work natural radionuclides activities (236Ra, 232Th and 40K) of the different types of coal, slag and fly ash samples used in Giresun province (Eastern Black Sea region of Turkey) were measured by using gamma-ray spectrometry. These samples were collected as homogeneously and separately around Giresun province. The mean activity concentrations of 226Ra, 232Th and 40K radionuclides in coal, slag and fly ash samples were found as 107, 67 and 440 Bg.Kg - 1 for coal; 59, 25 and 268 Bg.kg - 1 for slag and 136, 60 and 417 Bg.kg - 1 for fly ash samples, respectively. To estimate health effect due to the aforementioned radionuclides, absorbed dose rates and annual effective doses have been calculated. These values were evaluated and compared with the internationally recommended values

  7. Coal Combustion Residual Beneficial Use Evaluation: Fly Ash Concrete and FGD Gypsum Wallboard

    Science.gov (United States)

    This page contains documents related to the evaluation of coal combustion residual beneficial use of fly ash concrete and FGD gypsum wallboard including the evaluation itself and the accompanying appendices

  8. Deposit formation in a full-scale pulverized wood-fired power plant with and without coal fly ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    2013-01-01

    Ash transformation and deposition in a pulverized wood-fired power plant boiler of 800 MWth were studied with and without the addition of coal fly ash. The transient ash deposition behavior was investigated by using an advanced deposit probe system at two different boiler locations with flue gas...... at the low-temperature location showed a slow initial build-up and a stable mass of deposits after approximately 1-5 h. The deposits collected during pulverized wood combustion contained a considerable amount of K2SO4, KCl, and KOH/K2CO3. With the addition of coal fly ash (~4 times of the mass flow of wood...... ash) to the boiler, these alkali species were effectively removed both in the fly ash and in the deposits, and a more frequent shedding of the deposits was observed. The results imply that coal fly ash can be an effective additive to reduce ash deposition and corrosion problems in a pulverized wood...

  9. Design and implementation of a field pilot study on using coal fly ash to prevent oxidation of reactive mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Shang, J.Q.; Xu, Y.Q.; Yanful, E.K. [Western Ontario Univ., London, ON (Canada). Dept. of Civil and Environmental Engineering; Hmidi, N. [Goldcorp Inc., Musselwhite Mine, Thunder Bay, ON (Canada)

    2009-07-01

    This paper reported on a pilot scale study that investigated the feasibility of using coal fly ash in mine tailings management and acid mine drainage (AMD) treatment at Goldcorp's Musselwhite Mine site in northern Ontario. The principles and key aspects of the fly ash application in mine tailings management were described. Fly ash from the Atikokan coal-fired power generating plant was added to the Musselwhite tailings as a mixture as well as intermediate and top layers. The physical, chemical and hydrogeological effects of the two approaches were monitored. The paper provided details of the design, implementation, monitoring, sampling and testing over 2 years. The objectives were to evaluate the optimum mass ratio of coal fly ash and mine tailings, effectiveness in reducing the infiltration of precipitation, and projected long-term durability and performance on tailings oxidation prevention. The pilot study was designed based on the principles of cementitious materials formation and secondary mineral formation by the reactions of coal fly ash and water/AMD. Calcium oxide, aluminum oxide, silicon oxide, and ferric oxide are major components of coal fly ash. The preliminary test results revealed that water did not accumulate and cracks did not form on top of 4 tanks. The settlements of the mixing approaches were lower than that of the stratified approach and the temperature distributions in the 4 tanks were comparable. 9 refs., 3 tabs., 11 figs.

  10. Influence of several experimental parameters on As and Se leaching from coal fly ash samples

    International Nuclear Information System (INIS)

    Otero-Rey, Jose R.; Mato-Fernandez, Maria J.; Moreda-Pineiro, Jorge; Alonso-Rodriguez, Elia; Muniategui-Lorenzo, Soledad; Lopez-Mahia, Purificacion; Prada-Rodriguez, Dario

    2005-01-01

    Coal fly ash leaching process for As and Se is studied. Environmental parameters such as pH, temperature, solid-liquid ratio, particle size and leaching time are taken into account in order to simulate As and Se leaching process for disposal coal fly ash. Analysis of reference materials was carried out by using of hydride generation coupled to atomic fluorescence spectrometry. Plackett-Burman experimental design is used to know the significative parameters, and Box-Behnken experimental design is used to refine the results obtained for these significative parameters. pH and temperature shown a hardly influence in leaching process. Furthermore, leaching time was also significative. According our results, it may be assumed that percentage of As and Se leaching in experimental conditions tested is relatively low for acidic fly ashes

  11. Reduction of metal leaching in brown coal fly ash using geopolymers

    International Nuclear Information System (INIS)

    Bankowski, P.; Zou, L.; Hodges, R.

    2004-01-01

    Current regulations classify fly ash as a prescribed waste and prohibit its disposal in regular landfill. Treatment of the fly ash can reduce the leach rate of metals, and allow it to be disposed in less prescribed landfill. A geopolymer matrix was investigated as a potential stabilisation method for brown coal fly ash. Precipitator fly ash was obtained from electrostatic precipitators and leached fly ash was collected from ash disposal ponds, and leaching tests were conducted on both types of geopolymer stabilised fly ashes. The ratio of fly ash to geopolymer was varied to determine the effects of different compositions on leaching rates. Fourteen metals and heavy metals were targeted during the leaching tests and the results indicate that a geopolymer is effective at reducing the leach rates of many metals from the fly ash, such as calcium, arsenic, selenium, strontium and barium. The major element leachate concentrations obtained from leached fly ash were in general lower than that of precipitator fly ash. Conversely, heavy metal leachate concentrations were lower in precipitator fly ash than leached pond fly ash. The maximum addition of fly ash to this geopolymer was found to be 60 wt% for fly ash obtained from the electrostatic precipitators and 70 wt% for fly ash obtained from ash disposal ponds. The formation of geopolymer in the presence of fly ash was studied using 29Si MAS-NMR and showed that a geopolymer matrix was formed. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) imaging showed the interaction of the fly ash with the geopolymer, which was related to the leachate data and also the maximum percentage fly ash addition

  12. Effects of inhaled coal fly ash on lung biochemistry and function in guinea pigs

    International Nuclear Information System (INIS)

    Kimmel, T.A.; Chen, L.C.; Ryan, I.; Gordon, I.; Amdur, M.O.

    1991-01-01

    The ultrafine fraction of particles produced during the combustion of coal are the most difficult to remove with control devices and are retained longest in the atmosphere. Combustion of a high-sulfur coal, such as Illinois No. 6, produces a significant quantity of sulfuric acid, most of which is absorbed to the surface of those particles smaller than 1 μm in diameter. Particles smaller than 0.05 μm in diameter, moreover, consist largely of sulfuric acid; since these particles penetrate to the deepest regions of the lung, exposure to coal fly ash can result in the administration of large doses of acid to the alveolar tissues. Using a combustion system that generates coal fly ash similar to that collected in flue gas, guinea pigs were exposed for 2 h to aerosols produced from Illinois No. 6 (mean aerodynamic diameter 0.2 μm) at concentrations of 5 and 20 mg/m 3 . The animals were lavaged at 24 h post-exposure and levels of dehydrogenase (LDH), β-glucuronidase (β-GC), and protein were compared to those of control animals. After 24 h, no changes in levels of LDH and β-GC were seen in the lavage fluid from both high-dose and low-dose animals. Slight, but statistically significant elevations in protein concentration were measured in the high-dose exposure group. The total cell number in the lavage fluid was also found exposure group. The total cell number in the lavage fluid was also found to be exchanged following both exposures. It was previously found that exposure to 5 mg/M 3 of Illinois No. 6 fly ash results in immediate reductions in pulmonary diffusing capacity (DLco), total lung capacity (TLC), and vital capacity, and that both DLco and TLC values are not completely restored to normal 96 h post-exposure. These results suggest that the alterations in pulmonary function resulting from exposure to acidic coal fly ash are not accompanied by major inflammatory changes in lavage fluid

  13. Direct Quantitative Analysis of Arsenic in Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Sri Hartuti

    2012-01-01

    Full Text Available A rapid, simple method based on graphite furnace atomic absorption spectrometry is described for the direct determination of arsenic in coal fly ash. Solid samples were directly introduced into the atomizer without preliminary treatment. The direct analysis method was not always free of spectral matrix interference, but the stabilization of arsenic by adding palladium nitrate (chemical modifier and the optimization of the parameters in the furnace program (temperature, rate of temperature increase, hold time, and argon gas flow gave good results for the total arsenic determination. The optimal furnace program was determined by analyzing different concentrations of a reference material (NIST1633b, which showed the best linearity for calibration. The optimized parameters for the furnace programs for the ashing and atomization steps were as follows: temperatures of 500–1200 and 2150°C, heating rates of 100 and 500°C s−1, hold times of 90 and 7 s, and medium then maximum and medium argon gas flows, respectively. The calibration plots were linear with a correlation coefficient of 0.9699. This method was validated using arsenic-containing raw coal samples in accordance with the requirements of the mass balance calculation; the distribution rate of As in the fly ashes ranged from 101 to 119%.

  14. Physical and Chemical Character of Fly Ash of Coal Fired Power Plant in Java

    Science.gov (United States)

    Triwulan; Priadana, K. A.; Ekaputri, J. J.; Bayuaji, R.

    2017-11-01

    Quality of fly ash is varying widely in the field, it depends on the combustion process and the quality of the basic ingredients, namely coal. It will affect the physical and mechanical properties of the concrete mixtures used. This study used 12 samples of fly ash. The physical and chemical properties and finesse modulus were analyzed. The fly ash was mixed with OPC (Ordinary Portland Cement) with the proportion of 20% fly ash and 80% OPC. The specimens were form with mortar dimension of 5cm x 5 cm. The test was affected by the correlation of fly ash fineness modulus to compressive strength, correlation density of fly ash to compressive strength, and correlation of carbon content to the compressive strength.

  15. Chemistry of the direct acid leach, calsinter, and pressure digestion-acid leach methods for the recovery of alumina from fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Kelmers, A.D.; Canon, R.M.; Egan, B.Z.; Felker, L.K.; Gilliam, T.M.; Jones, G.; Owen, G.D.; Seeley, F.G.; Watson, J.S.

    1982-08-01

    The chemistry of three methods for the recovery of alumina from fly ash is reviewed. Fly ashes are characterized with respect to both physical and chemical properties, and differences in ashes derived from eastern and western coals are identified. Aluminum solubilization from fly ashes is explained in terms of the solid phases present, which are related to the basic element content of the ash. The methods used yield high aluminum solubilization from both eastern and western fly ashes. (9 refs.)

  16. Zeolite Synthesized from Coal Fly Ash Produced by a Gasification Process for Ni2+ Removal from Water

    Directory of Open Access Journals (Sweden)

    Yixin Zhang

    2018-03-01

    Full Text Available There are increasing demands and great potential of coal gasification in China, but there is a lack of studies focused on the disposal and utilization of coal fly ash produced by the gasification process. In this study, a coal fly ash sample derived from a gasifier in Jincheng, China, was utilized as raw material for the synthesis of zeolite by alkali fusion followed by hydrothermal treatments. The effects of operation conditions on the cation exchange capacity (CEC of synthesized zeolite were investigated. The synthesized zeolite with the highest CEC (270.4 meq/100 g, with abundant zeolite X and small amount of zeolite A, was produced by 1.5 h alkali fusion under 550 °C with NaOH/coal fly ash ratio 1.2 g/g followed by 15 h hydrothermal treatment under 90 °C with liquid/solid ratio 5 mL/g and applied in Ni2+ removal from water. The removal rate and the adsorption capacity of Ni2+ from water by the synthesized zeolite were determined at the different pH, contact time, adsorbent dose and initial Ni2+ concentration. The experimental data of adsorption were interpreted in terms of Freundlich and Langmuir equations. The adsorption of Ni2+ by the synthesized zeolite was found to fit sufficient using the Langmuir isotherm. More than 90% of Ni2+ in water could be removed by synthesized zeolite under the proper conditions. We show that the coal fly ash produced by the gasification process has great potential to be used as an alternative and cheap source in the production of adsorbents.

  17. Removal of unburned carbon in fly ash produced in coal combustion process

    International Nuclear Information System (INIS)

    Velasquez V, Leonardo F; De La Cruz M, Javier F; Sanchez M, Jhon F

    2007-01-01

    The coal unburned in flying ashes obtained in the processes of coal combustion is the main disadvantage for its use in the industry of the construction. This material normally has a size of particle greater than the mineral material, therefore it is possible to be separated in a considerable percentage, obtaining double benefit: the reusability of unburned like fuel or precursor for the activated charcoal production and the use of the mineral material in the industry of the construction since the organic matter has retired him that disables its use. In this work it is experienced with a sifted technique of separation by for three obtained flying ash samples with different technology (travelling Grill, pneumatic injection and overturning grill), were made grain sized analyses with meshes of a diameter of particle greater to 0,589 mm, the short analyses were made to them next to the retained material in each mesh and the unburned percentage of removal was determined of. The technique was compared with other developing.

  18. Conversion of South African coal fly ash into high-purity ZSM-5 zeolite without additional source of silica or alumina and its application as a methanol-to-olefins catalyst

    CSIR Research Space (South Africa)

    Missengue, RNM

    2018-03-01

    Full Text Available Characteristics of ZSM-5 synthesized from H2SO4-treated coal fly ash and fused coal fly ash extracts are compared in this study. In the synthesis process, fused coal fly ash extract (without an additional silica source) was used in the synthesis...

  19. Phytoremediation of spoil coal dumps in Western Donbass (Ukraine)

    Science.gov (United States)

    Klimkina, Iryna; Kharytonov, Mykola; Wiche, Oliver; Heilmeier, Hermann

    2017-04-01

    At the moment, in Ukraine about 150 thousand hectares of fertile land are occupied by spoil dumps. Moreover, this figure increases every year. According to the technology used about 1500 m3 of adjacent stratum is dumped at the surface per every 1000 tons of coal mined. Apart from land amortization, waste dumps drastically change the natural landscape and pollute air, soil and water sources as the result of water and wind erosion, as well as self-ignition processes. A serious concern exists with respect to the Western Donbass coal mining region in Ukraine, where the coal extraction is made by the subsurface way and solid wastes are represented by both spoil dumps and wastes after coal processing. Sulphides, mostly pyrite (up to 4% of waste material), are widely distributed in the waste heaps freshly removed due to coal mining in Western Donbass.The oxidation of pyrite with the presence of oxygen and water is accompanied by a sharp drop in the pH from the surface layer to the spoil dumps(from 5.2-6.2 to 3.9-4.2 in soil substrates with chernozen and from 8.3-8.4 to 6.7-7.2 in soil substrates with red-brown clay, stabilizing in dump material in both cases at 2.9-3.2). Low pH generates the transformation of a number of toxic metals and other elementspresent in waste rock (e.g. Fe, Al, Mn, Zn, Mo, Co, As, Cd, Bi, Pb, U) into mobile forms. To stabilize and reduce metal mobility the most resistant plants that occur naturally in specified ecosystems can be used. On coal spoil dumpsin Western Donbas the dominant species are Bromopsis inermis, subdominant Artemisia austriaca; widespread are also Festucas pp., Lathyrus tuberosus, Inula sp., Calamagrostis epigeios, Lotus ucrainicus, and Vicias pp. Identification of plants tolerant to target metals is a key issue in phytotechnology for soil restoration. It is hypothesized that naturally occurring plants growing on coal spoil dumps can be candidates for phytostabilization, phytoextraction (phytoaccumulation) and phytomining

  20. Peabody Western Coal cuts costs with bottom-dump haulers

    Energy Technology Data Exchange (ETDEWEB)

    Perla, S.; Baecker, G.; Morgan, W. [Empire Machinery, Mesa, AZ (United States)

    1995-04-01

    A new hauling concept has been introduced at the Black Mesa and Kayenta coal mines of the Peabody Western Coal Co. in northern Arizona, USA. The article describes the switch from Caterpillar 992 wheel loaders with 136 t bottom-dump trucks to 272 t bottom-dump trucks. Cat 789 off-highway trucks were modified to pull bottom-dump trucks. Haulage costs per ton of coal and cost per ton-mile have fallen significantly since the introduction of the new large hauling method. 7 figs., 2 photos.

  1. Natural radioactivity level in coal and ash collected from Baoji coal-fired power plant

    International Nuclear Information System (INIS)

    Jia Xiaodan; Lu Xinwei

    2006-01-01

    Specific activities of natural radionuclides 226 Ra, 232 Th and 40 K were assessed in coal (3 samples), fly ash (17 samples) and bottom ash (6 samples) collected from Baoji coal-fired power plant. This paper analyzed the characteristics of 226 Ra, 232 Th and 40 K contents in bottom ash and fly ash, and studied the concentration factors of these radionuclides in ash in relation to those in coal. The level of natural radionuclides 226 Ra, 232 Th and 40 K of coal collected from Baoji coal-fired power plant are in the range of radionuclides contents of Chinese coal. The natural radioactivity level of fly ash collected from Baoji coal-fired power plant is close to Beijing and Shanghai coal-fired power plants. The paper farther assessed the possibility of fly ash of Baoji coal-fired power plant used as building materials according to the state standard. The results show that there are 29% samples exceeding the state limit when fly ash used as building materials. So the usage of fly ash in building material should be controlled. (authors)

  2. Trace elements and As speciation analysis of fly ash samples from an Indonesian coal power plant by means of neutron activation analysis and synchrotron based techniques

    International Nuclear Information System (INIS)

    Muhayatun Santoso; Diah Dwiana Lestiani; Endah Damastuti; Syukria Kurniawat; Bennett, J.W.; Juan Jose Leani; Mateusz Czyzycki; Alessandro Migliori; Germanos Karydas, Andreas

    2016-01-01

    The elemental characterization of coal fly ash samples is required to estimate the coal burning emissions into the environment and to assess the potential impact into the biosphere. Fly ash samples collected from a coal fired power plant in center Java, Indonesia were characterized by instrumental neutron activation analysis at two different facilities (BATAN, ANSTO) and synchrotron based techniques at Elettra Italy. Assessment of thirty (30) elements and an investigation of the potential toxicity of As species in coal fly ash were presented. The results obtained are discussed and compared with those reported from other regions of the world. (author)

  3. Floating cultivation of marine cyanobacteria using coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M.; Yoshida, E.; Takeyama, H.; Matsunaga, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan). Dept. of Biotetechnology

    2000-07-01

    The aim was to develop improved methodologies for bulk culturing of biotechnologically useful marine cyanobacteria in the open ocean. The viability of using coal fly ash (CFA) blocks as the support medium in a novel floating culture system for marine microalgae was investigated. The marine cyanobacterium Synechococcus sp. NKBC 040607 was found to adhere to floating CFA blocks in liquid culture medium. The marine cyanobacterium Synechococcus sp. NKBG 042902 weakly adhered to floating CFA blocks in BG-11 medium. Increasing the concentration of calcium ion in the culture medium enhanced adherence to CFA blocks.

  4. Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Tara J.; Foght, Julia M. [Department of Biological Sciences, University of Alberta, Edmonton, Alberta (Canada); Budwill, Karen [Carbon and Energy Management, Alberta Innovates-Technology Futures, 250 Karl Clark Road, Edmonton, Alberta (Canada)

    2010-05-01

    Coalbed methane is an unconventional fuel source associated with certain coal seams. Biogenic methane can comprise a significant portion of the gas found in coal seams, yet the role of microbes in methanogenesis in situ is uncertain. The purpose of this study was to detect and identify major bacterial and archaeal species associated with coal sampled from sub-bituminous methane-producing coal beds in western Canada, and to examine the potential for methane biogenesis from coal. Enrichment cultures of coal samples were established to determine how nutrient amendment influenced the microbial community and methane production in the laboratory. 16S rRNA gene clone libraries were constructed using DNA extracted and amplified from uncultured coal samples and from methanogenic coal enrichment cultures. Libraries were screened using restriction fragment length polymorphism, and representative clones were sequenced. Most (> 50%) of the bacterial sequences amplified from uncultured coal samples were affiliated with Proteobacteria that exhibit nitrate reduction, nitrogen fixation and/or hydrogen utilization activities, including Pseudomonas, Thauera and Acidovorax spp., whereas enrichment cultures were dominated by Bacteroidetes, Clostridia and/or Lactobacillales. Archaeal 16S rRNA genes could not be amplified from uncultured coal, suggesting that methanogens are present in coal below the detection levels of our methods. However, enrichment cultures established with coal inocula produced significant volumes of methane and the archaeal clone libraries were dominated by sequences closely affiliated with Methanosarcina spp. Enrichment cultures incubated with coal plus organic nutrients produced more methane than either nutrient or coal supplements alone, implying that competent methanogenic consortia exist in coal beds but that nutrient limitations restrict their activity in situ. This report adds to the scant literature on coal bed microbiology and suggests how microbes may be

  5. Waste Water Treatment-Bed of Coal Fly Ash for Dyes and Pigments Industry

    Directory of Open Access Journals (Sweden)

    Syed Farman Ali Shah

    2015-12-01

    Full Text Available The highly porous power plant waste ashes have been utilized to treat toxic effluent of a dyes manufacturing plant. An attempt has been made for the first time in Pakistan, to generate an effective and economically sound treatment facility for the toxic effluent of a dyes manufacturing plant. This is an indigenous bed which could replace expensive treatment facilities, such as reverse osmosis (RO, granulated activated carbon (GAC bed, etc. The treatment efficiency was improved by coupling coagulants with fly ash adsorbent bed. The ash was collected from coal fired boilers of power plant at Lakhra Power Generation Company, Jamshoro, Pakistan. The use of this ash resolved the disposal and environmental issues by treating wastewater of chemical, dyes and pigment industry. The treatment bed comprised of briquettes of coal fly ash coupled with commercial coagulant ferrous sulfate-lime reduced COD, color, turbidity and TSS of effluent remarkably. An adsorption capacity and chemical behavior of fly ash bed was also studied. In coagulation treatment, coagulant FeSO4-lime influenced reduction of COD, color, turbidity and TSS by 32%, 48%, 50% and 51%, respectively. The CFAB coupled with coagulant, resulted an excessive removal of color, TSS, COD, and turbidity by 88%, 92%, 67% and89%, respectively.

  6. Waste Water Treatment-Bed of Coal Fly Ash for Dyes and Pigments Industry

    International Nuclear Information System (INIS)

    Shah, S.F.A.; Aftab, A.; Soomro, N.; Nawaz, M.S.; Vafai, K.

    2015-01-01

    The highly porous power plant waste ashes have been utilized to treat toxic effluent of a dyes manufacturing plant. An attempt has been made for the first time in Pakistan, to generate an effective and economically sound treatment facility for the toxic effluent of a dyes manufacturing plant. This is an indigenous bed which could replace expensive treatment facilities, such as reverse osmosis (RO), granulated activated carbon (GAC) bed, etc. The treatment efficiency was improved by coupling coagulants with fly ash adsorbent bed. The ash was collected from coal fired boilers of power plant at Lakhra Power Generation Company, Jamshoro, Pakistan. The use of this ash resolved the disposal and environmental issues by treating wastewater of chemical, dyes and pigment industry. The treatment bed comprised of briquettes of coal fly ash coupled with commercial coagulant ferrous sulfate-lime reduced COD, color, turbidity and TSS of effluent remarkably. An adsorption capacity and chemical behavior of fly ash bed was also studied. In coagulation treatment, coagulant FeSO/sun 4/-lime influenced reduction of COD, color, turbidity and TSS by 32 percentage, 48 percentage, 50 percentage and 51 percentage, respectively. The CFAB coupled with coagulant, resulted an excessive removal of color, TSS, COD, and turbidity by 88 percentage, 92 percentage, 67 percentage and 89 percentage, respectively. (author)

  7. Revisiting platinum group elements of Late Permian coals from western Guizhou Province, SW China

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Liang [State Key Lab of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002 (China); Gao, Jianfeng [Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR (China)

    2008-08-05

    Twenty five coal samples from the Late Permian coal-bearing strata in Weining, Nayong, and Zhijin, western Guizhou Province, SW, China, were analyzed for platinum group elements (PGEs). The coal ashes were digested by the Carius tube technique and accurately measured by isotope dilution-inductively coupled plasma mass spectrometry (ID-ICP-MS) for all PGEs. The results are much lower than the previous reported values. Our study suggested that the previously reported PGE values are incorrect and may due to the polyatomic interferences in ICP-MS measurements. In our study, samples from the Weining coalfield have the lowest PGE contents (from 0.019 Ir to 0.42 ng/g Pd), which represent the PGE background value in coal in western Guizhou province. Some of the coals have Pt and Pd contents about 20-times higher than the background value, indicating PGEs are concentrated. We also reported new and reliable PGE data and background value of coal in western Guizhou province, SW, China, and suggested to rework the PGE background values of Chinese coals. (author)

  8. Mercury in coals and fly ashes from Republika and Bobov dol thermoelectric power plants

    Science.gov (United States)

    Kostova, I.; Vassileva, C.; Hower, J.; Mastalerz, Maria; Vassilev, S.; Nikolova, N.

    2011-01-01

    Feed coal and y ash samples were collected at Republika and Bobov Dol thermoelectric power plants (TPPs). The y ashes (FAs) were collected fromthree rows of the hot-side electrostatic precipitators (ESPs) array. Each sam- ple was wet-screened at 100, 200, 325 and 500 mesh. The coals and y ashes were characterized with regard to their petrological and chemical composition (including mercury content) and to their surface area properties. The calculated enrichment factor (EF) shows that the Hg concentrations in the bulk coal samples from Republika and Bobov Dol TPPs are 2.19 and 1.41, respectively. In some coal size fractions the EF can be up to 4 times higher than the Clarke value. The calculated EF for fly ashes shows that the Hg concentrations in the bulk samples studied are lower (between 0.03 and 0.32) than the Clarke value. The most enriched in Hg are the fly ashes from the 3rd ESP row of Republika TPP. The Hg distribution in bulk FAs taken from dierent rows of the electrostatic precipitators of both TPPs studied shows well established tendency of gradual increase in the Hg content from the 1st to the 2nd and 3rd ESP rows. The correlation between Hg content and surface area, mesopore and micropore volume of y ashes was also done in the present investigation.

  9. Investigation of the potential of coal combustion fly ash for mineral sequestration of CO2 by accelerated carbonation

    International Nuclear Information System (INIS)

    Ukwattage, N.L.; Ranjith, P.G.; Wang, S.H.

    2013-01-01

    Mineral carbonation of alkaline waste materials is being studied extensively for its potential as a way of reducing the increased level of CO 2 in the atmosphere. Carbonation converts CO 2 into minerals which are stable over geological time scales. This process occurs naturally but slowly, and needs to be accelerated to offset the present rate of emissions from power plants and other emission sources. The present study attempts to identify the potential of coal fly ash as a source for carbon storage (sequestration) through ex-situ accelerated mineral carbonation. In the study, two operational parameters that could affect the reaction process were tested to investigate their effect on mineralization. Coal fly ash was mixed with water to different water-to-solid ratios and samples were carbonated in a pressure vessel at different initial CO 2 pressures. Temperature was kept constant at 40 °C. According to the results, one ton of Hazelwood fly ash could sequester 7.66 kg of CO 2 . The pressure of CO 2 inside the vessel has an effect on the rate of CO 2 uptake and the water-to-solid ratio affects the weight gain after the carbonation of fly ash. The results confirm the possibility of the manipulation of process parameters in enhancing the carbonation reaction. - Highlights: ► Mineral sequestration CO 2 by of coal fly ash is a slow process under ambient conditions. ► It can be accelerated by manipulating the process parameters inside a reactor. ► Initial CO 2 pressure and water to solid mixing ratio inside the reactor are two of those operational parameters. ► According to the test results higher CO 2 initial pressure gives higher on rates of CO 2 sequestration. ► Water to fly ash mixing ratio effect on amount of CO 2 sequestered into fly ash

  10. Trace element toxicity in VA mycorrhizal cucumber grown on weathered coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Dosskey, M.G.; Adriano, D.C. (University of Georgia, Aiken, SC (United States). Savannah River Ecology Lab.)

    1993-11-01

    Mycorrhizal colonization is widely recognized as enhancing plant growth on severely disturbed sites. A greenhouse pot experiment was conducted to determine if inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi will enhance vegetation establishment on abandoned coal fly ash basinss, Spores of Glomus intraradices (Schenck and Smith) and Glomus etunicatum (Becker and Gerdemann) were added to weathered precipitator ash (EC-0.91 dSm[sup -1], pH 5.0) and to a pasteurized soils of the same pH (Grossarenic Paleudult, 92% sand, 1% organic matter). Some soil and ash were left unamended as non-mycorrhizal controls. Cucumber (Cucumis sativus L. cv. Poinsette 76) seeds were sown, watered regularly, and fertilized periodically with macronutrient solution. By 8 weeks all ash-grown plants exhibited smaller leaves with leaf margin curl and necrosis, and plant biomass was significantly less (0.75x) than soil-grown plants. Based on analysis of 18 elements in plant tissues, toxicity to B, Mn, or Zn could have caused growth suppression, confirming trace element problems for plant growth on fly ash. For plants grown on fly ash, G. etunicatum was the only fungus that colonized roots (20% of root length reduced from 67% on soil) and it suppressed plant growth to 0.80 x that of uninoculated ash-grown plants. Correspondingly, shoot Zn concentration in G. etunicatum-inoculated plants was 3.5 x higher than in uninoculated plants and at generally toxic levels (273 mg kg[sup -1]). Glomus etunicatum had no other significant effects on elemental concentrations. These results indicate that VAM colonization in acid, weathered fly ash suppressed plant growth by facilitating uptake of Zn to toxic levels, and implies a limitation to successful use of VAM for vegetation establishment on abandoned coal fly ash basins.

  11. Resource recovery from coal fly ash waste: an overview study

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V.; Matsuda, M.; Miyake, M. [Okayama University, Okayama (Japan). Graduate School of Environmental Science

    2008-02-15

    Coal fly ash (CFA) is a useful byproduct of the combustion of coal. It is composed primarily of almost perfectly spherical aluminosilicate glass particles. This spherical characteristic and other characteristics of CFA should be exploited, rather than simply using CFA as inert filler for construction. Unfortunately, the presence of carbon residues and high levels of heavy metals has so far limited the uses of CFA. Forced leaching methods have been used to improve the technical and environmentally friendly qualities of CFA, but these processes do not seem to be economically viable. Actually, CFA is a major source of Si and Al for the synthesis of industrial minerals. Potential novel uses of CFA, e.g., for the synthesis of ceramic materials, ceramic membrane filters, zeolites, and geopolymers, are reviewed in this article with the intention of exploring new areas that will

  12. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingen; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-07-15

    Highlights: • An environmental friendly vacuum reduction metallurgical process is proposed. • Rare and valuable metal germanium from coal fly ash is recycled. • Residues are not a hazardous material and can be further recycled. • A germanium recovery ratio of 94.64% is obtained in pilot scale experiments. - Abstract: The demand for germanium in the field of semiconductor, electronics, and optical devices is growing rapidly; however, the resources of germanium are scarce worldwide. As a secondary material, coal fly ash could be further recycled to retrieve germanium. Up to now, the conventional processes to recover germanium have two problems as follows: on the one hand, it is difficult to be satisfactory for its economic and environmental effect; on the other hand, the recovery ratio of germanium is not all that could be desired. In this paper, an environmentally-friendly vacuum reduction metallurgical process (VRMP) was proposed to recover germanium from coal fly ash. The results of the laboratory scale experiments indicated that the appropriate parameters were 1173 K and 10 Pa with 10 wt% coke addition for 40 min, and recovery ratio germanium was 93.96%. On the basis of above condition, the pilot scale experiments were utilized to assess the actual effect of VRMP for recovery of germanium with parameter of 1473 K, 1–10 Pa and heating time 40 min, the recovery ratio of germanium reached 94.64%. This process considerably enhances germanium recovery, meanwhile, eliminates much of the water usage and residue secondary pollution compared with other conventional processes.

  13. Surface chemical properties of novel high surface area solids synthesized from coal fly ash

    CSIR Research Space (South Africa)

    Pretorius, PJ

    2003-07-23

    Full Text Available The zeolite, Na-P1, was synthesized from fly ash samples originating from coal-fired power stations in South Africa by hydrothermal treatment of the raw ash with concentrated aqueous NaOH solutions. The zeolite was then further modified by acid...

  14. Recovery of gallium from coal fly ash by a dual reactive extraction process

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, B.; Pazos, C.; Coca, J. [University of Oviedo, Oviedo (Spain). Dept. of Chemical Engineering and Environmental Technology

    1997-08-01

    This paper describes the extraction of gallium from coal fly ash by leaching and extraction with commercial extractants Amerlite LA-2 and LIX-54N dissolved in kerosene. Leaching of gallium and other metals from the fly ash was carried out with 6 M hydrochloric acid. The leaching liquor is first contacted with Amerlite LA-2 which extracts the gallium and iron. The iron is then precipitated with sodium hydroxide, while gallium remains in solution. Gallium is extracted selectively from the base solution with LIX 54; the resulting stripped solution contains 83% of the gallium present in the leaching liquor.

  15. Adsorption of As, B, Cr, Mo and Se from coal fly ash leachate by Fe3 modified bentonite clay

    CSIR Research Space (South Africa)

    Vhahangwele, M

    2015-01-01

    Full Text Available Fly ash contains the potentially toxic elements As, B, Cr, Mo and Se which upon contact with water may be leached to contaminate surface and subsurface water bodies. This study aims to evaluate the adsorption of these elements from coal fly ash...

  16. Determination of Cd, Hg, Pb and Tl in coal and coal fly ash slurries using electrothermal vaporization inductively coupled plasma mass spectrometry and isotopic dilution

    Energy Technology Data Exchange (ETDEWEB)

    Maia, S.M.; Pozebon, D.; Curtius, A.J. [Univ. Federal de Santa Catarina, Florianopolis, SC (Brazil)

    2003-07-01

    A method has been investigated for the determination of Cd, Hg, Pb and Tl in coal and in coal fly ash, using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry and isotope dilution. The slurry, 25 mg ml{sup -1}, was prepared by mixing the powdered sample (less than or equal to 36 - 45 mm) with acid solutions (nitric acid for coal and nitric and hydrofluoric acids for coal fly ash) and submitting the mixture to an ultrasonic agitation, letting it stand afterwards in a water bath at 60{sup o}C for 2 h. An ultrasonic probe was used to homogenize the slurry in the autosampler cup just before its introduction into the graphite tube. The best conditions were determined regarding analyte sensitivity, furnace temperature program, amount of modifier, acid concentration, gas flow rate and particle size. For Hg, the pyrolysis stage was omitted and a low vaporization temperature was used (450 - 1000{sup o}C); the residual matrix was eliminated in the first step of the following cycle. The modifiers used were: Pd for Cd and Tl; Au, Ir or Pd for Hg; Ir or Pd for Pb. The accuracy of the method was checked by analyzing six certified coal reference materials (SARM 20, SARM 19, BCR No. 40, BCR No. 180, BCR No. 181 and NIST 1630a) and one certified coal fly ash (NIST 1633b). With one exception (Hg in BCR No. 180), the found concentrations were typically within 95% confidence interval of the certified values, or close enough to the recommended values, as long as the samples were ground to a small enough particle size. The limits of detection were typically around 0.08 {mu}g g{sup -1}, 0.03 {mu}g g{sup -1}, 1 {mu}g g{sup -1} and 0.02 {mu}g g{sup -1} for Cd, Hg, Pb and Tl, respectively. The precision was also adequate with relative standard deviations of usually < 5%.

  17. Mobility and contamination assessment of mercury in coal fly ash, atmospheric deposition, and soil collected from Tianjin, China.

    Science.gov (United States)

    Wei, Zheng; Wu, Guanghong; Su, Ruixian; Li, Congwei; Liang, Peiyu

    2011-09-01

    Samples of class F coal fly ash (levels I, II, and III), slag, coal, atmospheric deposition, and soils collected from Tianjin, China, were analyzed using U.S. Environmental Protection Agency (U.S. EPA) Method 3052 and a sequential extraction procedure, to investigate the pollution status and mobility of Hg. The results showed that total mercury (HgT) concentrations were higher in level I fly ash (0.304 µg/g) than in level II and level III fly ash and slag (0.142, 0.147, and 0.052 µg/g, respectively). Total Hg in the atmospheric deposition was higher during the heating season (0.264 µg/g) than the nonheating season (0.135 µg/g). Total Hg contents were higher in suburban area soils than in rural and agricultural areas. High HgT concentrations in suburban area soils may be a result of the deposition of Hg associated with particles emitted from coal-fired power plants. Mercury in fly ash primarily existed as elemental Hg, which accounted for 90.1, 85.3, and 90.6% of HgT in levels I, II, and III fly ash, respectively. Mercury in the deposition existed primarily as sulfide Hg, which accounted for 73.8% (heating season) and 74.1% (nonheating season) of HgT. However, Hg in soils existed primarily as sulfide Hg, organo-chelated Hg and elemental Hg, which accounted for 37.8 to 50.0%, 31.7 to 41.8%, and 13.0 to 23.9% of HgT, respectively. The percentage of elemental Hg in HgT occurred in the order fly ash > atmospheric deposition > soils, whereas organo-chelated Hg and sulfide Hg occurred in the opposite order. The present approach can provide a window for understanding and tracing the source of Hg in the environment in Tianjin and the risk associated with Hg bioaccessibility. Copyright © 2011 SETAC.

  18. Reclamation technology development for western Arkansas coal refuse waste materials

    International Nuclear Information System (INIS)

    King, J.R.; Veith, D.L.

    1994-01-01

    Coal mining has been an important industry in the Arkansas River Valley Major Land Resource Area (MLRA) of western Arkansas for more than 100 yr., most of it with little regard for environmental concerns. Almost 3,640 ha. of land affected by surface coal mines cover the seven-county area, with less than 1,200 ha. currently in various stages of operation or reclamation. Since only the active mining sites must now be reclaimed by law, the remaining 2,440 ha. of abandoned land remains at the mercy of natural forces. Little topsoil exists on these sites and the coal wastes are generally acidic with a pH in the 4.0-5.5 range. Revegetation attempts under these conditions generally require continued maintenance and retreatment until an acceptable cover is achieved. If and when an acceptable vegetative cover is established, the cost frequently approaches $7,400/ha. ($3,000/acre). In an effort to resolve these issues and provide some direction for stabilizing coal waste lands, the US Department of Agriculture through its Soil Conservation Service Plant Materials Center at Boonville, Arkansas, received a Congressional Pass through administered by the US Bureau of Mines, to support a 5-yr. revegetation study on the coal mine spoils of western Arkansas. This paper reports the results through the spring of 1994 on that portion of the study dealing with the establishment of blackberries as a cash crop on coal mine spoils

  19. Direct synthesis of carbon nanofibers from South African coal fly ash

    Science.gov (United States)

    Hintsho, Nomso; Shaikjee, Ahmed; Masenda, Hilary; Naidoo, Deena; Billing, Dave; Franklyn, Paul; Durbach, Shane

    2014-08-01

    Carbon nanofibers (CNFs), cylindrical nanostructures containing graphene, were synthesized directly from South African fly ash (a waste product formed during the combustion of coal). The CNFs (as well as other carbonaceous materials like carbon nanotubes (CNTs)) were produced by the catalytic chemical vapour deposition method (CCVD) in the presence of acetylene gas at temperatures ranging from 400°C to 700°C. The fly ash and its carbonaceous products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), laser Raman spectroscopy and Brunauer-Emmett-Teller (BET) surface area measurements. It was observed that as-received fly ash was capable of producing CNFs in high yield by CCVD, starting at a relatively low temperature of 400°C. Laser Raman spectra and TGA thermograms showed that the carbonaceous products which formed were mostly disordered. Small bundles of CNTs and CNFs observed by TEM and energy-dispersive spectroscopy (EDS) showed that the catalyst most likely responsible for CNF formation was iron in the form of cementite; X-ray diffraction (XRD) and Mössbauer spectroscopy confirmed these findings.

  20. Economic effects of western Federal land-use restrictions on U.S. coal markets

    Science.gov (United States)

    Watson, William Downing; Medlin, A.L.; Krohn, K.K.; Brookshire, D.S.; Bernknopf, R.L.

    1991-01-01

    Current regulations on land use in the Western United States affect access to surface minable coal resources. This U.S. Geological Survey study analyzes the long-term effects of Federal land-use restrictions on the national cost of meeting future coal demands. The analysis covers 45 years. The U.S. Bureau of Land Management has determined the environmental, aesthetic, and economic values of western Federal coal lands and has set aside certain areas from surface coal mining to protect other valued land uses, including agricultural, environmental, and aesthetic uses. Although there are benefits to preserving natural areas and to developing areas for other land uses, these restrictions produce long-term national and regional costs that have not been estimated previously. The Dynamic Coal Allocation Model integrates coal supply (coal resource tonnage and coal quality by mining cost for 60 coal supply regions) with coal demand (in 243 regions) for the entire United States. The model makes it possible to evaluate the regional economic impacts of coal supply restrictions wherever they might occur in the national coal market. The main factors that the economic methodology considers are (1) coal mining costs, (2) coal transportation costs, (3) coal flue gas desulfurization costs, (4) coal demand, (5) regulations to control sulfur dioxide discharges, and (6) specific reductions in coal availability occurring as a result of land-use restrictions. The modeling system combines these economic factors with coal deposit quantity and quality information--which is derived from the U.S. Geological Survey's National Coal Resources Data System and the U.S. Department of Energy's Demonstrated Reserve Base--to determine a balance between supply and demand so that coal is delivered at minimum cost.

  1. Mineralogy and microstructure of sintered lignite coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Marina Ilic; Christopher Cheeseman; Christopher Sollars; Jonathan Knight [Faculty of Technology and Metallurgy, Belgrade (Yugoslavia)

    2003-02-01

    Lignite coal fly ash from the 'Nikola Tesla' power plant in Yugoslavia has been characterised, milled, compacted and sintered to form monolithic ceramic materials. The effect of firing at temperatures between 1130 and 1190{sup o}C on the density, water accessible porosity, mineralogy and microstructure of sintered samples is reported. This class C fly ash has an initial average particle size of 82 {mu}m and contains siliceous glass together with the crystalline phases quartz, anorthite, gehlenite, hematite and mullite. Milling the ash to an average particle size of 5.6 m, compacting and firing at 1170{sup o}C for 1 h produces materials with densities similar to clay-based ceramics that exhibit low water absorption. Sintering reduces the amount of glass, quartz, gehlenite and anhydrite, but increases formation of anorthite, mullite, hematite and cristobalite. SEM confirms the formation of a dense ceramic at 1170{sup o}C and indicates that pyroplastic effects cause pore formation and bloating at 1190{sup o}C. 23 refs., 6 figs., 2 tabs.

  2. Experimental on fly ash recirculation with bottom feeding to improve the performance of a circulating fluidized bed boiler co-burning coal sludge

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lunbo; Xu, Guiling; Liu, Daoyin; Chen, Xiaoping; Zhao, Changsui [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    With the aim of reducing carbon content in fly ash, fly ash recirculation with bottom feeding (FARBF) technology was applied to a 75 t/h Circulating Fluidized Bed (CFB) boiler burning mixture of coal and coal sludge. And industrial experiments were carried out to investigate the influence of FARBF technology on the combustion performance and pollutant emission characteristics of the CFB boiler. Results show that as the recirculation rate of fly ash increases, the CFB dense bed temperature decreases while the furnace outlet temperature increases, and the temperature distribution in the furnace becomes uniform. Compared with the conditions without fly ash recirculation, the combustion efficiency increases from 92 to 95% when the recirculation rate increases to 8 t/h, and the desulfurization efficiency also increases significantly. As the recirculation rate increases, the emissions of NO and CO decrease, but the particulate emission increases. The present study indicates that FARBF technology can improve the combustion performance and desulfurization efficiency for the CFB boilers burning coal sludge, and this can bring large economical and environmental benefits in China.

  3. Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Shuang [State Key Laboratory of Environmental Criteria and Risk Assessment (China); Research Academy of Environmental Sciences, Beijing 100012 (China); Shu, Yun [Research Academy of Environmental Sciences, Beijing 100012 (China); Li, Songgeng, E-mail: sgli@ipe.ac.cn [State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Tian, Gang; Huang, Jiayu [Research Academy of Environmental Sciences, Beijing 100012 (China); Zhang, Fan, E-mail: zhangfan5188@vip.sina.com [Research Academy of Environmental Sciences, Beijing 100012 (China)

    2016-01-15

    Highlights: • Chlorine and fluorine are present mainly in an inorganic form on ash. • Correlations of carbon–oxygen complexes with mercury retention are established. • Concentrations of carbon–oxygen complexes on ash are related to coal type. • No effect of fluorine on mercury retention is observed. • Chlorine, fluorine and carbon in ash are enriched on surface. - Abstract: Fly ashes recovered from the particulate control devices at six pulverized coal boiler unites of China, are studied using an X-ray photoelectron spectroscopy (XPS) with a particular focus on the functionalities of fluorine (F), chlorine (Cl), carbon and oxygen on fly ash. It is found that the inorganic forms of F and Cl are predominant on the ash surface in comparison with their organics, and the proportion of organic Cl is relatively higher than that of organic F. Similar results are also obtained in the bulk by correlating the F and Cl contents with those of the unburnt carbon and other compositions in ash. Strong correlations of mercury retention with surface carbon–oxygen functional groups indicate that the C=O, OH/C−O and (O−C=O)−O on surface are of significant importance for mercury retention in fly ash. Their surface concentrations are related to coal type. The presence of Cl in fly ash helps with mercury retention. No obvious effect of F is observed.

  4. Evaluation of the CO2 sequestration capacity for coal fly ash using a flow-through column reactor under ambient conditions

    International Nuclear Information System (INIS)

    Jo, Ho Young; Ahn, Joon-Hoon; Jo, Hwanju

    2012-01-01

    Highlights: ► A conceptual in-situ mineral carbonation method using a coal ash pond is proposed. ► CO 2 uptake occurred by carbonation reaction of CO 2 with Ca 2+ ions from coal fly ash. ► The CO 2 sequestration capacity was affected by the solid dosage. ► Seawater can be used as a solvent for mineral carbonation of coal fly ash. - Abstract: An in-situ CO 2 sequestration method using coal ash ponds located in coastal regions is proposed. The CO 2 sequestration capacity of coal fly ash (CFA) by mineral carbonation was evaluated in a flow-through column reactor under various conditions (solid dosage: 100–330 g/L, CO 2 flow rate: 20–80 mL/min, solvent type: deionized (DI) water, 1 M NH 4 Cl solution, and seawater). The CO 2 sequestration tests were conducted on CFA slurries using flow-through column reactors to simulate more realistic flow-through conditions. The CO 2 sequestration capacity increased when the solid dosage was increased, whereas it was affected insignificantly by the CO 2 flow rate. A 1 M NH 4 Cl solution was the most effective solvent, but it was not significantly different from DI water or seawater. The CO 2 sequestration capacity of CFA under the flow-through conditions was approximately 0.019 g CO 2 /g CFA under the test conditions (solid dosage: 333 g/L, CO 2 flow rate: 40 mL/min, and solvent: seawater).

  5. Partial oxidation of methane to methanol over catalyst ZSM-5 from coal fly ash and rice husk ash

    Directory of Open Access Journals (Sweden)

    Mirda Yanti Fusia

    2017-01-01

    Full Text Available Methane is one of the greenhouse gases that can be converted into liquid fuels such as methanol to retain most of the energy of methane and produce a cleaner environment. The conversion of methane to methanol using ZMS-5 represents a breakthrough in the utilization of methane. However, material sources for zeolite synthesis as catalyst usually are pro-analysis grade materials, which are expensive. Therefore, in this research, coal fly ash and rice husk ash were used as raw materials for mesoporous ZSM-5 zeolite synthesis. First, coal fly ash and rice husk were subjected to pre-treatment to extract silicate (SiO44− and aluminate (AlO45− and impurities separation. The ZSM-5 zeolite was synthesized through hydrothermal treatment using two types of templates. After ZSM-5 was synthesized, it was modified with Cobalt through impregnation method. The catalytic activity of both ZSM-5 and Co/ZSM-5 zeolites as heterogeneous catalysts in partial oxidation of methane were preliminary tested and compared with that commercial one. The result showed that the zeolite catalyst ZSM-5 from fly ash coal and rice husk ash has the potential to be used as catalysts in the partial oxidation of methane to methanol.

  6. Impact of coal fly ash addition on ash transformation and deposition in a full-scale wood suspension-firing boiler

    DEFF Research Database (Denmark)

    Wu, Hao; Bashir, Muhammad Shafique; Jensen, Peter Arendt

    2013-01-01

    Ash transformation and deposition during pulverized wood combustion in a full-scale power plant boiler of 800 MWth were studied with and without the addition of coal fly ash. The transient ash deposition behavior was characterized by using an advanced deposit probe system at two boiler locations...... constant after a few hours. The formed deposits, especially those at the location with low flue gas temperatures, contained a considerable amount of K2SO4, KCl, and KOH/K2CO3. With the addition of a large amount (about 4 times of the mass flow of wood ash) of coal fly ash to the boiler, these alkali...

  7. Carbon-enriched coal fly ash as a precursor of activated carbons for SO2 removal.

    Science.gov (United States)

    Izquierdo, M T; Rubio, B

    2008-06-30

    Carbon-enriched coal fly ash was evaluated in this work as a low-cost adsorbent for SO2 removal from stack gases. The unburned carbon in coal fly ash was concentrated by mechanical sieving and vegetal oil agglomeration. The carbon concentrates were activated with steam at 900 degrees C in order to develop porosity onto the samples. The performance of these samples in the SO2 abatement was tested in the following conditions: 100 degrees C, 1000 ppmv SO2, 5% O2, 6% water vapor. A good SO2 removal capacity was shown by some of the studied samples that can be related to their textural properties. Cycles of SO2 adsorption/regeneration were carried out in order to evaluate the possibility of thermal regeneration and re-use of these carbons. Regeneration of the exhausted carbons was carried out at 400 degrees C of temperature and a flow of 25 ml/min of Ar. After each cycle, the SO2 removal capacity of the sample decreases.

  8. Water effects of the use of western coal for electrical production

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, E.A.

    1980-02-01

    Water may be a constraint on the expanded development of coal resources in the semi-arid western United States. Water allocation in the West has been determined by the appropriative rights doctrine which allows perpetual use of water sources by those who first claim it for beneficial purposes. This has had the effect of placing a dominative interest in water allocation in one economic sector: agriculture. New water sources are available to coal producers but political and economic problems must be overcome. Water is required by every phase of coal development. Mines use water for dust control and land reclamation. Coal slurry pipelines would use water as a transport medium. Steam electric power plants use water for cooling, cleaning, and in the boiler. Coal gasification plants would use water for cooling, cleaning, and as a material input. In addition to these direct uses of water by coal development, the people who build and operate the development demand water for domestic and recreational purposes. The quantity of water required for a given element of a coal development is site specific and dependent on many factors. The available literature cites a range of estimates of the amount of water required for each type of development. The width of this range seems related to the stage of development of the particular technology. Estimates of water requirements for various schemes to provide an average electrical load of 9 GWe to a load center 1000 miles from western mines are shown in Table 5.

  9. Gypsum amendment to soil can reduce selenium uptake by alfalfa grown in the presence of coal fly ash

    International Nuclear Information System (INIS)

    Arthur, M.A.; Rubin, G.; Woodbury, P.B.; Weinstein, L.H.

    1993-01-01

    Experiments in the field and greenhouse were conducted in the presence of coal fly ash to determine whether gypsum can reduce Se concentration in alfalfa (Medicago sativa L.). In the field experiment, conducted at a coal fly ash landfill, 11.2 t ha -1 gypsum was applied to soil as a top dressing to test the effect of gypsum in reducing selenium (Se) concentration in aboveground plant tissue. There were four treatment combinations of gypsum over a two year period, 1990, and 1991: (0, 0), (0, 11.2) (11.2, 0) and (11.2, 11.2). In 1991, the Se concentration was lower in alfalfa grown with gypsum, regardless of whether the gypsum was applied in both years or in only one year, indicating that the effect of gypsum application in the first year persisted into the second year. Since there was no increase in aboveground biomass with added gypsum, differences in Se concentration reflect a competitive interaction between S and Se. In the greenhouse experiment, 12 soil treatments were tested: three levels of fly ash (0, 10 and 20%) in combination with each of four levels of gypsum (0, 2.5, 5 and 7.5%). The Se concentration in alfalfa grown in 10% fly ash declined linearly with increasing gypsum dose, resulting in a reduction in Se concentration of 0.04 ± 0.02 μg g -1 for each 1% gypsum added for the first harvest and 0.06 ± 0.03 μg g -1 for each 1% gypsum added in the second harvest. Based on these results, gypsum may prove useful as a management tool to reduce the uptake of Se by plants growing on coal fly ash landfills

  10. The reaction of acid mine drainage with fly ash from coal combustion

    International Nuclear Information System (INIS)

    Kim, A.G.

    1999-01-01

    The placement of alkaline fly ash in abandoned, reclaimed or active surface coal mines is intended to reduce the amount of acid mine drainage (AMD) produced at such sites by neutralization, inhibition of acid forming bacteria, encapsulation of the pyrite or water diversion. A continuing concern with this application is the potential release of trace elements from the fly ash when it is placed in contact with AMD. To investigate the possible release of antimony, arsenic, barium, boron, cadmium, chromium, cobalt, copper, lead, nickel, selenium, and zinc from fly ash, a series of column leaching tests were conducted. A one kg fly ash sample, placed in a 5-cm by 1 m acrylic columns, was leached at a nominal rate of 250 mL/d for between 30 and 60 days. The leachant solutions were deionized water, and dilute solutions of sulfuric acid and ferric chloride. Leaching tests have been completed on 28 fly ash samples. leachate data, analyzed as the mass extracted with respect to the concentration in the solid, indicate that the release of trace elements is variable, with only barium and zinc extracted at greater than 50 pct of the amount present in the original sample. As a comparison, water quality changes have been monitored at three sites where fly ash grout was injected after reclamation to control AMD. When compared before and after grouting, small increases in pH and decreases in acidity at discharge points were observed. Concentrations of trace metals were found to be comparable in treated and untreated areas. When grouted and ungrouted areas were compared, the effect of the fly ash was shown to be localized in the areas of injection. These studies indicated that when fly ash is used as a reagent to control of AMD, the release of trace elements is relatively small

  11. Floating cultivation of marine cyanobacteria using coal fly ash.

    Science.gov (United States)

    Matsumoto, M; Yoshida, E; Takeyama, H; Matsunaga, T

    2000-01-01

    The aim of this study was to develop improved methodologies for bulk culturing of biotechnologically useful marine cyanobacteria in the open ocean. We have investigated the viability of using coal fly ash (CFA) blocks as the support medium in a novel floating culture system for marine micro-algae. The marine cyanobacterium Synechococcus sp. NKBG 040607 was found to adhere to floating CFA blocks in liquid culture medium. Maximum density of attached cells of 2.0 x 10(8) cells/cm2 was achieved using seawater. The marine cyanobacterium Synechococcus sp. NKBG 042902 weakly adhered to floating CFA blocks in BG-11 medium. Increasing the concentration of calcium ion in the culture medium enhanced adherence to CFA blocks.

  12. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash

    Directory of Open Access Journals (Sweden)

    Martin Ernesto Kalaw

    2016-07-01

    Full Text Available Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC, which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1 their technical properties are comparable if not better; (2 they can be produced from industrial wastes; and (3 within reasonable constraints, their production requires less energy and emits significantly less CO2. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA and coal bottom ash (CBA, and rice hull ash (RHA. The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF for elemental and X-ray diffraction (XRD for mineralogical composition. The raw materials’ thermal stability and loss on ignition (LOI were determined using thermogravimetric analysis (TGA and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR

  13. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash.

    Science.gov (United States)

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-07-15

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO₂. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials' thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning

  14. Determination of radioactive trace elements in ashes and fly-ashes from Brazilian coal-fired power plants

    International Nuclear Information System (INIS)

    Bellido, L.F.; de Castro Arezzo, B.

    1984-01-01

    The aim of this work was to apply a epithermal neutron activation technique to determine the uranium and thorium content in coal ashes and fly ashes from Brazilian coal-fired thermoelectric plants and to evaluate the contribution of these elements and their descendents to the environmental radioactivity. Brazil has adopted as short term policy the use of alcohol and coal as alternative sources of energy. With regard to coal, large deposits of this mineral are found in southern states but the serious problem of its utilization is the risk of environmental contamination which can reach dangerous levels because the industrial plants burn several million tons per year. Uranium and thorium contents, determined experimentally, are extrapolated for annual coal consumption and their amounts and the activity of the radium isotopes descendents released to the atmosphere are calculated. The significance of these values and problems in environmental pollution are discussed

  15. Photosynthetic pigment concentrations, gas exchange and vegetative growth for selected monocots and dicots treated with two contrasting coal fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Yunusa, I.A.M.; Burchett, M.D.; Manoharan, V.; DeSilva, D.L.; Eamus, D.; Skilbeck, C.G. [University of Technology Sydney, Sydney, NSW (Australia). Dept. of Environmental Science

    2009-07-15

    There is uncertainty as to the rates of coal fly ash needed for optimum physiological processes and growth. In the current study we tested the hyothesis that photosynthetic pigments concentrations and CO{sub 2} assimilation (A) are more sensitive than dry weights in plants grown on media amended with coal fly ash. We applied the Terrestrial Plant Growth Test (Guideline 208) protocols of the Organization for Economic Cooperation and Development (OECD) to monocots (barley (Hordeum vulgare) and ryegrass (Secale cereale)) and dicots (canola (Brasica napus), radish (Raphanus sativus), field peas (Pisum sativum), and lucerne (Medicago sativa)) on media amended with fly ashes derived from semi-bituminous (gray ash) or lignite (red ash) coals at rates of 0, 2.5, 5.0, 10, or 20 Mg ha(-1). The red ash had higher elemental concentrations and salinity than the gray ash. Fly ash addition had no significant effect on germination by any of the six species. At moderate rates ({<=}10 Mg ha{sup -1}) both ashes increased (P < 0.05) growth rates and concentrations of chlorophylls a and b, but reduced carotenoid concentrations. Addition of either ash increased A in radish and transpiration in barley. Growth rates and final dry weights were reduced for all of the six test species when addition rates exceeded 10 Mg ha{sup -1} for gray ash and 5 Mg ha{sup -1} for red ash. We concluded that plant dry weights, rather than pigment concentrations and/or instantaneous rates of photosynthesis, are more consistent for assessing subsequent growth in plants supplied with fly ash.

  16. Analytical applications of atomic spectroscopy, with particular reference to inductively coupled plasma emission analysis of coal and fly ash

    International Nuclear Information System (INIS)

    Pougnet, M.A.B.

    1983-08-01

    This thesis outlines the analytical applications of atomic emission and absorption spectroscopy to a variety of materials. Special attention was directed to the analysis of coal and coal ashes. A simple slurry sampling technique was developed and used to determine V, Ni, Co, Mo and Mn in the National Bureau of Standards Standard Reference Materials (NBS-SRM) coals 1632a and 1635 by furnace atomic absorption spectroscopy (FAAS). Coal and fly ash were analysed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The determination of B, Be, Li, C, K and other trace elements by ICP-AES was investigated. Analytical methods were developed for the analysis of coal, fly ash and water samples. Fusion with sodium carbonate and a digestion bomb dissolution method were compared for the determination of boron in a South African boron-rich mineral (Kornerupine). Eight elements were determined in 10 industrial water samples from a power plant. Ca, Mg, Si and B were determined by ICP-AES and V, Ni, Co and Mo by FAAS. Various problems encountered during the course of the work and interferences in ICP-AES analysis are discussed. Some recommendations concerning method development and routine analysis by this technique are suggested

  17. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  18. Nitration of benzo[a]pyrene adsorbed on coal fly ash particles by nitrogen dioxide: role of thermal activation.

    Science.gov (United States)

    Kristovich, Robert L; Dutta, Prabir K

    2005-09-15

    Nitration of benzo[a]pyrene (BaP) by nitrogen dioxide (NO2) adsorbed on the surface of thermally activated coal fly ash and model aluminosilicate particles led to the formation of nitrobenzo[a]pyrenes as verified by extraction and gas chromatography/mass spectrometry (GC/MS). In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was utilized to follow the nitration reaction on the surface of zeolite Y. Nitrobenzo[a]pyrene formation was observed along with the formation of nitrous acid and nitrate species. The formation of the BaP radical cation was also observed on thermally activated aluminosilicate particles by electron spin resonance (ESR) spectroscopy. On the basis of GC/MS, DRIFTS, and ESR spectroscopy results, a mechanism of nitration involving intermediate BaP radical cations generated on thermally activated aluminosilicate particles is proposed. These observations have led to the hypothesis that nitration of adsorbed polyaromatic hydrocarbons on coal fly ash by reaction with nitrogen oxides can occur in the smokestack, but with the aging of the fly ash particles, the extent of the nitration reaction will be diminished.

  19. Study on uranium leaching behavior from coal fly ash samples

    International Nuclear Information System (INIS)

    Police, S.; Maity, S.; Chaudhary, D.K.; Sahu, S.K.; Pandit, G.G.

    2017-01-01

    Leachability of trace and toxic metals from coal fly ash (FA) poses significant environmental problems especially ground and surface water contamination. In the present study, leachability of U using batch leaching tests (i.e., at various leachate pH values) and using TCLP was studied. Results of pH variation study indicate that, U has higher leachability in acidic medium as compared to slightly alkaline medium. The leachable U concentrations observed in pH variation study are well below the WHO safety limits. In TCLP leachates, the leachable U concentrations are found to be higher than that observed in pH variation study. (author)

  20. Measurement of radon activity, exhalation rate and radiation dose in fly ash and coal samples from NTPC, Badarpur, Delhi, India

    International Nuclear Information System (INIS)

    Gupta, Mamta; Verma, K.D.; Mahur, A.K.; Prasad, R.; Sonkawade, R.G.

    2013-01-01

    In the present study radon activities and exhalation rates from fly ash and coal samples from NTPC (National Thermal Power Corporation) situated at Badarpur, Delhi, India, have been measured. 'Sealed Can Technique' using LR-115 type II track detectors was employed. In fly ash samples, radon activity has been found to vary from 400.0 ± 34.7 to 483.9 ± 38.1Bqm -3 with an average value of 447.1 ± 36.6 Bqm -3 and in coal samples, radon activity has been found to vary from 504.0 ± 39.0 to 932.1 ± 52.9 Bqm -3 with an average value of 687.2 ± 45.2 Bqm -3 . Radon exhalation rate from coal is found to be higher than radon exhalation rate from its ash products, whereas the opposite is expected. Indoor inhalation exposure (radon) effective dose has also been estimated. (author)

  1. Characterization of humidity-controlling porous ceramics produced from coal fly ash and waste catalyst by co-sintering

    Science.gov (United States)

    Lin, Kae-Long; Ma, Chih-Ming; Lo, Kang-Wei; Cheng, Ta-Wui

    2018-04-01

    In this study, the following operating conditions were applied to develop humidity-controlling porous ceramic (HCPC) products: sintering temperatures of 800-1000 °C and percentages of coal fly ash in waste catalyst of 0%-40%. The HCPC samples then underwent a flexural strength test, to determine their quality according to the Chinese National Standards (CNS 3298). Their microstructures, crystal structures, and pore volume were determined in terms of equilibrium moisture content, water vapor adsorption/desorption, and hygroscopic sorption properties over 48 h. Nitrogen adsorption/desorption isotherms showed a hydrophobic behavior (type H3 isotherm). The water vapor adsorption/desorption and hygroscopic sorption properties satisfied the JIS A1470 intensity specification for building materials (>29 g/m2). At sintering temperatures of 950-1000 °C, HCPC samples for coal fly ash containing 20%-30% waste catalyst met the JIS A1470 intensity specifications for building materials (<29 g/m2).

  2. Organic geochemical investigation and coal-bed methane characteristics of the Guasare coals (Paso Diablo mine, western Venezuela)

    Science.gov (United States)

    Quintero, K.; Martinez, M.; Hackley, P.; Marquez, G.; Garban, G.; Esteves, I.; Escobar, M.

    2011-01-01

    The aim of this work was to carry out a geochemical study of channel samples collected from six coal beds in the Marcelina Formation (Zulia State, western Venezuela) and to determine experimentally the gas content of the coals from the Paso Diablo mine. Organic geochemical analyses by gas chromatography-mass spectrometry and isotopic analyses on-line in coalbed gas samples were performed. The results suggest that the Guasare coals were deposited in a continental environment under highly dysoxic and low salinity conditions. The non-detection of 18??(H)-oleanane does not preclude that the organic facies that gave rise to the coals were dominated by angiosperms. In addition, the presence of the sesquiterpenoid cadalene may indicate the subordinate contribution of gymnosperms (conifers) in the Paleocene Guasare mire. The average coalbed gas content obtained was 0.6 cm3/g. ??13C and D values indicate that thermogenic gas is prevalent in the studied coals. Copyright ?? Taylor & Francis Group, LLC.

  3. Identification of high molecular weight nitroaromatic compounds from coal fly ash

    International Nuclear Information System (INIS)

    Harris, W.R.; Okamoto, D.J.; Chess, E.K.; Wilson, B.W.

    1983-01-01

    A large sample of stack-collected coal fly ash was extracted with 60:40 nu/nu benzene:methanol to remove as much of the soluble organic material as possible. This solution was concentrated by gentle evaporation, and was then fractionated on a series of high performance liquid chromatography columns to generate samples suitable for probe mass spectrometric analysis. A series of nitrated derivatives of C 21 H 12 polycyclic aromatic hydrocarbon have been tentatively identified by low and high resolution mass spectrometry and gas chromatography. The series includes a mononitro, two dinitro isomers, and a trinitro derivative

  4. Distribution and occurrence of lithium in high-alumina-coal fly ash

    DEFF Research Database (Denmark)

    Hu, Pengpeng; Hou, Xinjuan; Zhang, Jianbo

    2018-01-01

    the generalized gradient approximation (GGA) method indicated that Li occurred in Q3(0Al) and Q3(1Al) structures by reacting with Q4(0Al) and Q4(1Al). Based on the experimental and simulation results, we propose extracting Li during the pre-desilication process by dissolving the glass phase.......High-alumina-coal fly ash (HAFA) with a high Li content is regarded as a potential resource for Li production. To support the development of Li recovery technology from HAFA, the distribution and modes of occurrence of Li in HAFA were investigated. HAFA was separated into magnetic particles, glass...

  5. The Impact of Coal Combustion Fly Ash Used as a Supplemental Cementitious Material on the Leaching of Constituents from Cements and Concretes

    Science.gov (United States)

    The objective of this report is to compare the leaching of portland cement-based materials that have been prepared with and without coal combustion fly ash to illustrate whether there is evidence that the use of fly ash in cement and concrete products may result in increased leac...

  6. Influence of a modification of the petcoke/coal ratio on the leachability of fly ash and slag produced from a large PCC power plant

    Energy Technology Data Exchange (ETDEWEB)

    Maria Izquierdo; Oriol Font; Natalia Moreno (and others) [CSIC, Barcelona (Spain). Institute of Earth Sciences ' Jaume Almera'

    2007-08-01

    Co-firing of coal with inexpensive secondary fuels such as petroleum coke is expected to increase in the near future in the EU given that it may provide certain economic and environmental benefits with respect to coal combustion. However, changes in the feed fuel composition of power plants may modify the bulk content and the speciation of a number of elements in fly ash and slag. Consequently, leachability of these byproducts also can be modified. This study is focused on identifying the changes in the environmental quality of co-fired fly ash and slag induced by a modification of the petcoke/coal ratio. Petcoke was found to increase the leachable content of V and Mo and to enhance the mobility of S and As. However, with the exception of these elements, the addition of this secondary fuel did not drastically modify the bulk composition or the overall leachability of the resulting fly ash and slag. 30 refs., 3 figs., 2 tabs.

  7. Alkaline coal fly ash amendments are recommended for improving rice-peanut crops

    Energy Technology Data Exchange (ETDEWEB)

    Swain, D.K.; Ghosh, B.C. [Agricultural and Food Engineering Department, Indi an Inst. of Technology, Kharagpur, West Bengal (India); Rautaray, S.K. [RRLRRS, Gerua Via-Hajo, Dist-Kamrup, Assam (India)

    2007-05-15

    A field experiment investigating amendments of organic material including farmyard manure, paper factory sludge and crop residues combined with fly ash, lime and chemical fertilizer in a rice-peanut cropping system was conducted during 1997-98 and 1998-99 at the Indian Institute of Technology, Kharagpur, India. The soil was an acid lateritic (Halustaf) sandy loam. For rice, an N:P:K level of 90:26.2:33.3 kg/ha was supplied through the organic materials and chemical fertilizer to all the treatments except control and fly ash alone. The required quantities of organic materials were added to supply 30 kg N/ha and the balance amount of N, P and K was supplied through chemical fertilizer. Amendment materials as per fertilization treatments were incorporated to individual plots 15 days before planting of rice during the rainy season. The residual effects were studied on the following peanut crop with application of N:P:K at 30:26.2:33.3 kg/ha through chemical fertilizer alone in all treatments, apart from the control. An application of fly ash at 10 t/ha in combination with chemical fertilizer and organic materials increased the grain yield of rice by 11% compared to chemical fertilizer alone. The residual effect of both lime and fly ash applications combined with direct application of chemical fertilizer increased peanut yields by 30% and 24%, respectively, compared to chemical fertilizer alone. Treatments with fly ash or lime increased P and K uptake in both the crops and oil content in peanut kernel compared to those without the amendments. Alkaline coal fly ash proved to be a better amendment than lime for improving productivity of an acid lateritic soil and enriching the soil with P and K.

  8. Reuse and recycling options for solid prescribed industrial wastes and brown coal fly ash

    OpenAIRE

    Seyoum Hailu, Tesfaye

    2017-01-01

    This dissertation presents the results of detailed investigation of the possible use of stabilised sludge and brown coal fly ash as raw material ingredients for road construction and manufacture of building bricks. The thesis is organised into seven chapters including a general introduction chapter. A literature review of solid waste management practices employed in Australia and some selected countries are discussed (chapter 1) together with waste generation from power station...

  9. Coal transport demand in Western Europe and Japan: Impacts of energy market liberalisation and climate policy

    International Nuclear Information System (INIS)

    Golombek, Rolf; Kittelsen, Sverre A.C.; Maestad, Ottar

    2005-12-01

    Western Europe and Japan are among the main importers of coal. Climate policies following the Kyoto agreement are creating pressure to substitute away from coal and turn to less emission intensive energy sources. At the same time, liberalizations of energy markets in Europe and Japan are likely to cause reduced electricity prices, which will boost the overall demand for electricity. This paper analyses the combined effect of electricity market liberalization and climate policies on the international coal trade. Using the numerical equilibrium model LIBEMOD, we find that while liberalization of electricity markets will imply a large increase in aggregate coal transport demand, the negative impact of climate policies may be even larger, in particular if Russia and Ukraine utilise their market power in the market for emission permits. If this market power is exploited, the total effect of liberalisation and climate policy - when including the impact of general economic growth - is a 20% reduction in aggregate coal transport between 2000 and 2010. Further, impacts differ markedly between Western Europe and Japan. A main difference is that liberalisation has a much more positive - and climate policies have a much stronger negative - impact on steam coal demand in Western Europe than in Japan

  10. Clean up fly ash from coal burning plants by new isolated fungi Fusarium oxysporum and Penicillium glabrum.

    Science.gov (United States)

    Ertit Taştan, Burcu

    2017-09-15

    In Turkey approximately 45 million tons of coals are burned in a year and 19.3 million tons of fly ash have emerged. The bioremediation of heavy metals or different elements from fly ash makes them bio-available. However, in previous studies, requiring of long operational time and failing to show tolerance to high pulp densities of fly ash of selected fungal species makes them impractical. In this work, bioremediation of fly ash by new isolated fungi Fusarium oxysporum and Penicillium glabrum were investigated in one step and two step bioremediation process. Ca, Si, Fe and S were found to be considerable amount in studied fly ashes by ED-XRF element analysis. The bioremediation yields of Mo (100%), S (64.36%) Ni (50%) and Cu (33.33%) by F. oxysporum were high. The remediated elements by P. glabrum in fly ash were Mo (100%), S (57.43%), Ni (25%), Si (24.66%), V (12.5%), Ti (5%) and Sr (3.2%). The isolation of high fly ash resistant fungi and reduction of the bioremediation time will allow the practical applications of the bioremediation technology when it is scaled up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Evaluation of the CO{sub 2} sequestration capacity for coal fly ash using a flow-through column reactor under ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Ho Young, E-mail: hyjo@korea.ac.kr [Department of Earth and Environmental Sciences, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Ahn, Joon-Hoon; Jo, Hwanju [Department of Earth and Environmental Sciences, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer A conceptual in-situ mineral carbonation method using a coal ash pond is proposed. Black-Right-Pointing-Pointer CO{sub 2} uptake occurred by carbonation reaction of CO{sub 2} with Ca{sup 2+} ions from coal fly ash. Black-Right-Pointing-Pointer The CO{sub 2} sequestration capacity was affected by the solid dosage. Black-Right-Pointing-Pointer Seawater can be used as a solvent for mineral carbonation of coal fly ash. - Abstract: An in-situ CO{sub 2} sequestration method using coal ash ponds located in coastal regions is proposed. The CO{sub 2} sequestration capacity of coal fly ash (CFA) by mineral carbonation was evaluated in a flow-through column reactor under various conditions (solid dosage: 100-330 g/L, CO{sub 2} flow rate: 20-80 mL/min, solvent type: deionized (DI) water, 1 M NH{sub 4}Cl solution, and seawater). The CO{sub 2} sequestration tests were conducted on CFA slurries using flow-through column reactors to simulate more realistic flow-through conditions. The CO{sub 2} sequestration capacity increased when the solid dosage was increased, whereas it was affected insignificantly by the CO{sub 2} flow rate. A 1 M NH{sub 4}Cl solution was the most effective solvent, but it was not significantly different from DI water or seawater. The CO{sub 2} sequestration capacity of CFA under the flow-through conditions was approximately 0.019 g CO{sub 2}/g CFA under the test conditions (solid dosage: 333 g/L, CO{sub 2} flow rate: 40 mL/min, and solvent: seawater).

  12. Adsorptive removal of organics from aqueous phase by acid-activated coal fly ash: preparation, adsorption, and Fenton regenerative valorization of "spent" adsorbent.

    Science.gov (United States)

    Wang, Nannan; Hao, Linlin; Chen, Jiaqing; Zhao, Qiang; Xu, Han

    2018-05-01

    Raw coal fly ash was activated to an adsorbent by sulfuric acid impregnation. The activation condition, the adsorption capacity, and the regenerative valorization of the adsorbent were studied. The results show that the optimal preparation conditions of the adsorbent are [H 2 SO 4 ] = 1 mol L -1 , activation time = 30 min, the ratio of coal fly ash to acid = 1:20 (g:mL), calcination temperature = 100 °C. The adsorption of p-nitrophenol on the adsorbent accords with the pseudo-second-order kinetic equation and the adsorption rate constant is 0.089 g mg -1  min -1 . The adsorption on this adsorbent can be considered enough after 35 min, when the corresponding adsorption capacity is 1.07 mg g -1 (85.6% of p-nitrophenol removal). Compared with raw coal fly ash, the adsorbent has a stable adsorption performance at low pH range (pH = 1-6) and the adsorption of p-nitrophenol is an exothermic process. Ninety minutes is required for the regenerative valorization of saturated adsorbent by Fenton process. The regenerative valorization for this saturated adsorbent can reach 89% under the optimal proposed conditions (30 °C, pH = 3, [H 2 O 2 ] = 5.0 mmol L -1 , [Fe 2+ ] = 5.5 mmol L -1 ). Within 15 experimental runs, the adsorbent has a better and better stability with the increase of experimental runs. Finally, the mechanism of activating coal fly ash is proposed, being verified by the results of the SEM and BET test.

  13. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  14. Size distribution of rare earth elements in coal ash

    Science.gov (United States)

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  15. Feasibility of eradicating Ceratitis spp. fruit flies from the Western Cape of South Africa by the sterile insect technique

    International Nuclear Information System (INIS)

    Barnes, Brian N.; Eyles, David K.

    2000-01-01

    Fruit production (deciduous fruit, table and wine grapes, and citrus) is a major export-based industry in the Western Cape, with more than 200,000 ha under cultivation. The gross value of these fruits (excluding wine) exceeds US$400 million per annum. Deciduous fruit and table grapes make up the major portion of the industry, with approximately 110,000 ha under production. The Western Cape is host to two species of fruit flies, the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and the Natal fruit fly, C. rosa Karsch. One or both of these species attack at least 19 species of fruits in this area. Both species have very similar life cycles and habits, and can cause enormous crop losses especially to fruits, but also to some vegetables. Both commercial and resource-limited farmers are affected by fruit flies. Control of fruit flies is currently based on ground applications of insecticides, either as full-cover foliar sprays or low-volume bait sprays. Control costs and crop losses for deciduous fruit and table grapes alone are estimated at US$4 million annually. South Africa is the only southern hemisphere deciduous fruit-exporting country that is not fruit fly-free or is not currently engaged in a project to eradicate fruit flies. Unless similar steps are taken, this situation is likely to threaten the competitiveness of the Western Cape's industry. The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture of the United Nations recently approved funding for the INFRUITEC Centre of the ARC-Fruit, Vine and Wine Research Institute in Stellenbosch to undertake a study to determine the feasibility of eradicating fruit flies from the Western Cape by the sterile insect technique (SIT). Most fruits in the Western Cape are produced in valley systems, and many valleys are isolated from one another to a greater or lesser extent. The Western Cape is itself well isolated from other areas with fruit fly hosts: by the ocean on the eastern, southern and

  16. Environmental evaluation for sustainable development of coal mining in Qijiang, Western China

    Energy Technology Data Exchange (ETDEWEB)

    Si, Hu; Bi, Haipu [College of Resource and Environment Science, Chongqing University, Chongqing 400030 (China); Key Lab for the Exploitation of Southwestern Resource and the Environment Disaster Control Engineering, the Ministry of Education, Chongqing University, Chongqing 400030 (China); Li, Xiaohong; Yang, Chunhe [Key Lab for the Exploitation of Southwestern Resource and the Environment Disaster Control Engineering, the Ministry of Education, Chongqing University, Chongqing 400030 (China)

    2010-03-01

    Environmental degradation associated with mining activities may seriously threaten the health of local people and the sustainable development of coal mining, which may need to be addressed by improved environmental evaluation system. Based on analyzing environmental pollution from coal mining and the increasing need for raw coal, this paper establishes an environmental evaluation system, covering environmental situation, resource protection and economic benefit, for sustainable development in coal mining. This paper proposes methods for calculating the weight of each index and the environmental sustainable capability taking into account the method of Analytic Hierarchy Process (AHP). Finally, the index system is used to evaluate the environmental sustainability of coal mining in the Qijiang area, Western China, which has demonstrated the validity of the index system. It may also be useful as a tool to assess the environmental impact of mining areas, as well as a measure to promote sustainable development in coal mining. (author)

  17. Dose assessment of natural radioactivity in fly ash and environmental materials from Morupule a coal-fired power station in Botswana

    International Nuclear Information System (INIS)

    Mudiwa, J

    2015-01-01

    This study has been undertaken to estimate the occupational and public radiation doses due to natural radioactivity at Morupule, a Coal-Fired Power Station and its environs. The radiation doses were reconstructed to include 60 year period from 1985 to 2045. Direct gamma ray spectroscopy was used to determine the natural radionuclides Th-232, U-238, and K-40 both qualitatively and quantitatively for fly ash, coal, soil and water (from the fly ash ponds) samples. The average activity concentrations for Th-232, U-238, and K-40 in fly ash samples were 64.54 Bq/kg, 49.37 Bq/kg and 40.08 Bq/kg respectively. In the case of coal, the corresponding average activity concentrations for Th-232, U-238, and K-40 were 27.43 Bq/kg, 18.10 Bq/kg and 17.38 Bq/kg respectively. For soil samples, the average activity concentrations for Th-232, U-238, and K-40 were 10.11 Bq/kg, 6.76 Bq/kg and 118.03 Bq/kg respectively. In water samples, the average activity concentrations for Th-232, U-238, and K-40 were 0.79 Bq/l, 0.32 Bq/l and 1.01 Bq/l respectively. These average activity concentrations were generally comparable to the average world activity concentrations in the case of coal samples, but were generally lower than the average world activity concentrations in the case of fly ash, soil and water samples. The average annual effective doses for the study area were estimated as 0.320 mSv, 0.126 mSv, 0.069 mSv and 0.003 mSv for fly ash, coal, soil and water samples respectively. Dose reconstruction modelling estimated the average fly ash annual effective doses for the years 1985, 1995, 2005, 2015, 2025, 2035 and 2045 to be 0.182 mSv, 0.459 mSv, 0.756 mSv, 0.320 mSv, 0.183 mSv, 0.137 mSv and 0.124 mSv respectively. The reconstructed average coal annual effective doses for similar years were 0.070 mSv, 0.182 mSv, 0.303 mSv, 0.126 mSv, 0.070 mSv, 0.060 mSv and 0.046 mSv respectively. The dose reconstruction modelling also estimated the average soil annual effective doses for the same years as

  18. Pb-free Radiation Shielding Glass Using Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Watcharin Rachniyom

    2015-12-01

    Full Text Available In this work, Pb-free shielding glass samples were prepared by the melt quenching technique using subbituminous fly ash (SFA composed of xBi2O3 : (60-xB2O3 : 10Na2O : 30SFA (where x = 10, 15, 20, 25, 30 and 35 by wt%. The samples were investigated for their physical and radiation shielding properties. The density and hardness were measured. The results showed that the density increased with the increase of Bi2O3 content. The highest value of hardness was observed for glass sample with 30 wt% of Bi2O3 concentration. The samples were investigated under 662 keV gamma ray and the results were compared with theoretical calculations. The values of the mass attenuation coefficient (μm, the atomic cross section (σe and the effective atomic number (Zeff were found to increase with an increase of the Bi2O3 concentration and were in good agreement with the theoretical calculations. The best results for the half-value layer (HVL were observed in the sample with 35 wt% of Bi2O3 concentration, better than the values of barite concrete. These results demonstrate the viability of using coal fly ash waste for radiation shielding glass without PbO in the glass matrices.

  19. Scenario-Based Analysis on Water Resources Implication of Coal Power in Western China

    Directory of Open Access Journals (Sweden)

    Jiahai Yuan

    2014-10-01

    Full Text Available Currently, 58% of coal-fired power generation capacity is located in eastern China, where the demand for electricity is strong. Serious air pollution in China, in eastern regions in particular, has compelled the Chinese government to impose a ban on the new construction of pulverized coal power plants in eastern regions. Meanwhile, rapid economic growth is thirsty for electric power supply. As a response, China planned to build large-scale coal power bases in six western provinces, including Inner Mongolia, Shanxi, Shaanxi, Xinjiang, Ningxia and Gansu. In this paper, the water resource implication of the coal power base planning is addressed. We find that, in a business-as-usual (BAU scenario, water consumption for coal power generation in these six provinces will increase from 1130 million m3 in 2012 to 2085 million m3 in 2020, experiencing nearly a double growth. Such a surge will exert great pressure on water supply and lead to serious water crisis in these already water-starved regions. A strong implication is that the Chinese Government must add water resource constraint as a critical point in its overall sustainable development plan, in addition to energy supply and environment protection. An integrated energy-water resource plan with regionalized environmental carrying capacity as constraints should be developed to settle this puzzle. Several measures are proposed to cope with it, including downsizing coal power in western regions, raising the technical threshold of new coal power plants and implementing retrofitting to the inefficient cooling system, and reengineering the generation process to waterless or recycled means.

  20. Environmental impact of coal utilization (from raw material to waste resources): Proceedings

    International Nuclear Information System (INIS)

    Sahu, K.C.

    1991-10-01

    The proceedings contains 27 papers presented at the conference on environmental impact of coal utilization from raw material to waste resources which was held at the Indian Institute of Technology, Bombay, during 14-15 January 1991. The conference was held as a follow-up of the research project to study the impact of coal utilization. The project was undertaken jointly by the Indian Institute of Technology, Bombay and the University of Western Ontario, Canada. The project was funded by the International Development Research Centre, Ottawa (Canada). The principle themes of the conference were : occurrence of trace elements in coal, fate of trace elements during combustion of coal, characterisation of fly ash and its properties and utilization, and environmental impact of ash disposal. (M.G.B.)

  1. Evaluation of the effects of coal fly ash amendments on the toxicity of a contaminated marine sediment

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, R.M.; Perron, M.M.; Friedman, C.L.; Suuberg, E.M.; Pennell, K.G.; Cantwell, M.G.; Pelletier, M.C.; Ho, K.T.; Serbst, J.R.; Ryba, S.A. [US EPA, Narragansett, RI (USA). Office for Research and Development

    2009-01-15

    Approaches for cleaning up contaminated sediments range from dredging to in situ treatment. In this study, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7-d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspected that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of postoxidation treatment to reduce nitrous oxide emissions. Relatively simple methods exist to remove ammonia from fly ash before use, and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. No evidence was seen of the release of the metals cadmium, copper, nickel, or lead from the fly ashes. A preliminary 28-d polychaete bioaccumulation study with one of the high-carbon fly ashes and a reference sediment was also performed. Although preliminary, no evidence was seen of adverse effects to worm growth or lipid content or of accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon content could represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments.

  2. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction

    Energy Technology Data Exchange (ETDEWEB)

    Grasby, S.E.; Sanei, H.; Beauchamp, B. [Geological Survey Canada Calgary, Calgary, AB (Canada)

    2011-02-15

    During the latest Permian extinction about 250 Myr ago, more than 90% of marine species went extinct, and biogeochemical cycles were disrupted globally. The cause of the disruption is unclear, but a link between the eruption of the Siberian Trap flood basalts and the extinction has been suggested on the basis of the rough coincidence of the two events. The flood basalt volcanism released CO{sub 2}. In addition, related thermal metamorphism of Siberian coal measures and organic-rich shales led to the emission of methane, which would have affected global climate and carbon cycling, according to model simulations. This scenario is supported by evidence for volcanic eruptions and gas release in the Siberian Tunguska Basin, but direct indicators of coal combustion have not been detected. Here we present analyses of terrestrial carbon in marine sediments that suggest a substantial amount of char was deposited in Permian aged rocks from the Canadian High Arctic immediately before the mass extinction. Based on the geochemistry and petrology of the char, we propose that the char was derived from the combustion of Siberian coal and organic-rich sediments by flood basalts, which was then dispersed globally. The char is remarkably similar to modern coal fly ash, which can create toxic aquatic conditions when released as slurries. We therefore speculate that the global distribution of ash could have created toxic marine conditions.

  3. Transformation of South African coal fly ash into ZSM-5 zeolite and its application as an MTO catalyst

    CSIR Research Space (South Africa)

    Missengue, RNM

    2017-01-01

    Full Text Available This study presents a way of using South African coal fly ash by extracting metals such as Al and Fe with concentrated sulphuric acid, and then using the solid residue as a feedstock for the synthesis of ZSM-5 zeolite. The percentage of aluminium...

  4. Comparison of H2S adsorption by two hydrogel composite (HBC) derived by Empty Fruit Bunch (EFB) biochar and Coal Fly Ash (CFA)

    Science.gov (United States)

    Meri, N. H.; Alias, A. B.; Talib, N.; Rashid, Z. A.; Ghani, W. A. W. A. K.

    2018-03-01

    This study are covered the adsorption performance of two adsorbent Empty Fruit Bunch Hydrogel Biochar Composite (EFB-HBC) and Coal Fly Ash Hydrogel Composite (CFA-HC) on hydrogen sulphide. The EFB biochar were produce by pyrolysed and heated from room temperature to 550˚C at 10˚C/min under the Nitrogen flow. Meanwhile, coal fly ash collected from a power plant located in Selangor, Malaysia. Both of the materials is a waste from different industries and became the precursor to our adsorbents. EFB biochar and coal fly ash has been synthesized to become hydrogel by polymerization process with acrylamide (AAm) as monomer, N,N’-methylene bisacry lamide (MBA) as cross linker and ammonium persulfate (APS) as initiator. In addition, because of the speciality of hydrogel itself, which is has high ability in storing water, the effect of H2O wetness on EFB-HBC and CFA-HC were investigate in adsorption of H2S. EFB-HBC gave a longest breakthrough time and highest adsorption capacity compared with CFA-HC in both condition (dry/wet). The result also indicated that, the increased the bed height, increased the adsorption capacity.

  5. Comparative study on the impact of coal and uranium mining, processing, and transportation in the western United States

    Energy Technology Data Exchange (ETDEWEB)

    Sandquist, G.M.

    1979-06-01

    A comparative study and quantitative assessment of the impacts, costs and benefits associated with the mining, processing and transportation of coal and uranium within the western states, specifically Arizona, California, Colorado, Montana, New Mexico, Oregon, Utah, Washington and Wyoming are presented. The western states possess 49% of the US reserve coal base, 67% of the total identified reserves and 82% of the hypothetical reserves. Western coal production has increased at an average annual rate of about 22% since 1970 and should become the major US coal supplier in the 1980's. The Colorado Plateau (in Arizona, Colorado, New Mexico and Utah) and the Wyoming Basin areas account for 72% of the $15/lb U/sub 3/O/sub 8/ resources, 76% of the $30/lb, and 75% of the $50/lb resources. It is apparent that the West will serve as the major supplier of domestic US coal and uranium fuels for at least the next several decades. Impacts considered are: environmental impacts, (land, water, air quality); health effects of coal and uranium mining, processing, and transportation; risks from transportation accidents; radiological impact of coal and uranium mining; social and economic impacts; and aesthetic impacts (land, air, noise, water, biota, and man-made objects). Economic benefits are discussed.

  6. Comparative study on the impact of coal and uranium mining, processing, and transportation in the western United States

    International Nuclear Information System (INIS)

    Sandquist, G.M.

    1979-06-01

    A comparative study and quantitative assessment of the impacts, costs and benefits associated with the mining, processing and transportation of coal and uranium within the western states, specifically Arizona, California, Colorado, Montana, New Mexico, Oregon, Utah, Washington and Wyoming are presented. The western states possess 49% of the US reserve coal base, 67% of the total identified reserves and 82% of the hypothetical reserves. Western coal production has increased at an average annual rate of about 22% since 1970 and should become the major US coal supplier in the 1980's. The Colorado Plateau (in Arizona, Colorado, New Mexico and Utah) and the Wyoming Basin areas account for 72% of the $15/lb U 3 O 8 resources, 76% of the $30/lb, and 75% of the $50/lb resources. It is apparent that the West will serve as the major supplier of domestic US coal and uranium fuels for at least the next several decades. Impacts considered are: environmental impacts, (land, water, air quality); health effects of coal and uranium mining, processing, and transportation; risks from transportation accidents; radiological impact of coal and uranium mining; social and economic impacts; and aesthetic impacts (land, air, noise, water, biota, and man-made objects). Economic benefits are discussed

  7. Biosynthesis of titanium dioxide nanoparticles using a probiotic from coal fly ash effluent

    International Nuclear Information System (INIS)

    Babitha, S; Korrapati, Purna Sai

    2013-01-01

    Graphical abstract: - Highlights: • Metal resistant probiotic species was isolated from coal fly ash effluent site. • Uniform sized anatase form of TiO 2 nanoparticles were synthesized using Propionibacterium jensenii. • Diffraction patterns confirmed the anatase – TiO 2 NPs with average size 2 nanoparticle incorporated wound dressing exhibits better wound healing. - Abstract: The synthesis of titanium dioxide nanoparticle (TiO 2 NP) has gained importance in the recent years owing to its wide range of potential biological applications. The present study demonstrates the synthesis of TiO 2 NPs by a metal resistant bacterium isolated from the coal fly ash effluent. This bacterial strain was identified on the basis of morphology and 16s rDNA gene sequence [KC545833]. The physico-chemical characterization of the synthesized nanoparticles is completely elucidated by energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmission and scanning electron microscopy (TEM, SEM). The crystalline nature of the nanoparticles was confirmed by X-RD pattern. Further, cell viability and haemolytic assays confirmed the biocompatible and non toxic nature of the NPs. The TiO 2 NPs was found to enhance the collagen stabilization and thereby enabling the preparation of collagen based biological wound dressing. The paper essentially provides scope for an easy bioprocess for the synthesis of TiO 2 NPs from the metal oxide enriched effluent sample for future biological applications

  8. Biosynthesis of titanium dioxide nanoparticles using a probiotic from coal fly ash effluent

    Energy Technology Data Exchange (ETDEWEB)

    Babitha, S; Korrapati, Purna Sai, E-mail: purnasaik.clri@gmail.com

    2013-11-15

    Graphical abstract: - Highlights: • Metal resistant probiotic species was isolated from coal fly ash effluent site. • Uniform sized anatase form of TiO{sub 2} nanoparticles were synthesized using Propionibacterium jensenii. • Diffraction patterns confirmed the anatase – TiO{sub 2} NPs with average size <80 nm. • TiO{sub 2} nanoparticle incorporated wound dressing exhibits better wound healing. - Abstract: The synthesis of titanium dioxide nanoparticle (TiO{sub 2} NP) has gained importance in the recent years owing to its wide range of potential biological applications. The present study demonstrates the synthesis of TiO{sub 2} NPs by a metal resistant bacterium isolated from the coal fly ash effluent. This bacterial strain was identified on the basis of morphology and 16s rDNA gene sequence [KC545833]. The physico-chemical characterization of the synthesized nanoparticles is completely elucidated by energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmission and scanning electron microscopy (TEM, SEM). The crystalline nature of the nanoparticles was confirmed by X-RD pattern. Further, cell viability and haemolytic assays confirmed the biocompatible and non toxic nature of the NPs. The TiO{sub 2} NPs was found to enhance the collagen stabilization and thereby enabling the preparation of collagen based biological wound dressing. The paper essentially provides scope for an easy bioprocess for the synthesis of TiO{sub 2} NPs from the metal oxide enriched effluent sample for future biological applications.

  9. Natural revegetation of coal fly ash in a highly saline disposal lagoon in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Chu, L.M. [Chinese University of Hong Kong, Hong Kong (China). Dept. of Biology

    2008-08-15

    Question: What is the relationship of the naturally colonizing vegetation and substrate characteristics in fly ash lagoons? Location: West lagoon, Deep Bay, a 13-ha coastal lagoon in Hong Kong in subtropical Southeast Asia. Methods: Vegetation establishment was examined in a coal fly ash lagoon two years after its abandonment to investigate the distribution of vegetation in relationship to the chemical properties of the fly ash in the lagoon. A greenhouse experiment assessed the limits imposed on plant growth in fly ash. Results: The fly ash was saline, slightly alkaline and very poor in organic matter and nitrogen. Ash from bare and vegetated areas differed significantly in their salinity and extractable concentrations of inorganic nitrogen and various metals. Bare ash had a significantly higher conductivity and extractable sodium, aluminum, manganese, potassium. and lead. In total 11 plant species that belonged to seven families were found growing on the fly ash: all species except the shrub Tamarix chinensis were herbaceous. Using discriminant analysis, the most important factors in distinguishing bare and vegetated ashes were conductivity and sodium. Cluster analysis of bare samples gave two distinct groups, one from the periphery of the lagoon, which had lower sodium, conductivity, organic carbon, potassium and copper, and the other from a second group that contained ashes from the central region of the lagoon. Results of the greenhouse experiment showed that the inhibition of plant growth was significantly correlated with the presence of soluble toxic elements in ash. Conclusion: Toxicity and salinity seem to be the major limiting factors to plant establishment in fly ash, and these factors must be ameliorated for the successful reclamation of these fly ash lagoons.

  10. Arsenic and mercury partitioning in fly ash at a Kentucky power plant

    Energy Technology Data Exchange (ETDEWEB)

    Tanaporn Sakulpitakphon; James C. Hower; Alan S. Trimble; William H. Schram; Gerald A. Thomas [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2003-08-01

    Coal and fly ash samples were collected from a 500-MW unit at a Kentucky power plant, with the objective of studying the distribution of arsenic, mercury, and other trace elements in fly ash. The coal feed was low-sulfur, high volatile A bituminous central West Virginia coal. The plant produced a relatively low-carbon fly ash. In contrast to power plants with high-mercury feed coal, the fly ashes from the lower-mercury feed coal had low mercury values, generally not exceeding 0.01 ppm Hg. Mercury capture by fly ash varies with both the amount and type of carbon and the collection temperature; mercury capture is more efficient at lower temperatures. Arsenic in the feed coal and in the flue gas is of concern to the utility, because of the potential for catalyst poisoning in the selective catalytic reduction system (in the planning stage at the time of the sampling). Arsenic is captured in the fly ash, increasing in concentration in the more-distant (from the boiler) reaches of the electrostatic precipitator system. 16 refs., 2 figs., 5 tabs.

  11. Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations

    International Nuclear Information System (INIS)

    Vassilev, S.V.; Vassileva, C.G.

    1997-01-01

    Contents, concentration trends, and modes of occurrence of 67 elements in coals, coal ashes, and combustion wastes at eleven Bulgarian thermoelectric power stations (TPS) were studied. A number of trace elements in coal and coal ash have concentrations greater than their respective worldwide average contents (Clarke values). Trace elements are concentrated mainly in the heavy accessory minerals and organic matter in coal. In decreasing order of significance, the trace elements in coal may occur as: element-organic compounds; impurities in the mineral matter; major components in the mineral matter; major and impurity components in the inorganic amorphous matter; and elements in the fluid constituent. A number of trace elements in the waste products, similar to coal ashes, exceed known Clarke contents. Trace elements are mainly enriched in non-magnetic, heavy and fine-grained fractions of fly ash. They are commonly present as impurities in the glass phases, and are included in the crystalline components. Their accessory crystalline phases, element-organic compounds, liquid and gas forms, are of subordinate importance. Some elements from the chalcophile, lithophile and siderophile groups may release into the atmosphere during coal burning. For others, the combustion process appears to be a powerful factor causing their relative enrichment in the fly ash and rarely in the bottom ash and slag. 65 refs., 1 fig., 11 tabs

  12. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes

    International Nuclear Information System (INIS)

    Alvarez-Ayuso, E.; Querol, X.; Plana, F.; Alastuey, A.; Moreno, N.; Izquierdo, M.; Font, O.; Moreno, T.; Diez, S.; Vazquez, E.; Barra, M.

    2008-01-01

    The synthesis of geopolymer matrixes from coal (co-)combustion fly ashes as the sole source of silica and alumina has been studied in order to assess both their capacity to immobilise the potentially toxic elements contained in these coal (co-)combustion by-products and their suitability to be used as cement replacements. The geopolymerisation process has been performed using (5, 8 and 12 M) NaOH solutions as activation media and different curing time (6-48 h) and temperature (40-80 o C) conditions. Synthesised geopolymers have been characterised with regard to their leaching behaviour, following the DIN 38414-S4 [DIN 38414-S4, Determination of leachability by water (S4), group S: sludge and sediments. German standard methods for the examination of water, waste water and sludge. Institut fuer Normung, Berlin, 1984] and NEN 7375 [NEN 7375, Leaching characteristics of moulded or monolithic building and waste materials. Determination of leaching of inorganic components with the diffusion test. Netherlands Normalisation Institute, Delft, 2004] procedures, and to their structural stability by means of compressive strength measurements. In addition, geopolymer mineralogy, morphology and structure have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. It was found that synthesised geopolymer matrixes were only effective in the chemical immobilisation of a number of elements of environmental concern contained in fly ashes, reducing (especially for Ba), or maintaining their leachable contents after the geopolymerisation process, but not for those elements present as oxyanions. Physical entrapment does not seem either to contribute in an important way, in general, to the immobilisation of oxyanions. The structural stability of synthesised geopolymers was mainly dependent on the glass content of fly ashes, attaining at the optimal activation conditions (12 M NaOH, 48 h, 80 o C

  13. Unburnt carbon from coal fly ashes as a precursor of activated carbon for nitric oxide removal.

    Science.gov (United States)

    Rubio, Begoña; Izquierdo, M Teresa; Mayoral, M Carmen; Bona, M Teresa; Andres, Jose M

    2007-05-08

    The aim of this work is to evaluate the characteristics of an activated carbon obtained from unburnt carbon in coal fly ashes to be used in the removal of NO. Carbon-rich fraction was obtained by mechanical sieving of fly ashes. The mineral matter was removed by conventional HCl and HF demineralization procedure. Activation was carried out with steam at 900 degrees C in order to develop porosity onto the sample. Characterization of samples was performed by several techniques with a main objective: to follow the mineral matter content, composition and distribution on the samples in order to better understand how to remove it from unburnt carbon in fly ashes. To study the use of this unburnt carbon as a precursor for the preparation of activated carbons for gas cleaning, the NO removal by ammonia using activated carbon as a catalyst at low temperature was performed. Results show a good performance of activated carbon in this reaction that is in relationship with BET surface area.

  14. Characterization of upgraded hydrogel biochar from blended rice husk with coal fly ash

    Science.gov (United States)

    Ahmad, Nurul Farhana; Alias, Azil Bahari; Talib, Norhayati; Rashid, Zulkifli Abd; Ghani, Wan Azlina Wan Ab Karim

    2017-12-01

    Rice husk biochar (RB) blended with coal fly ash (CFA) is used as a material to develop hydrogel for heavy metal removal. This combination, namely hydrogel rice husk biochar-coal fly ash (HRB-CFA) composite is synthesized by embedding the biochar into acrylamide (AAM) as monomer, with N,N'-Methylenebisacrylamide (MBA) as crosslinker and ammonium persulfate (APS) as initiator. While activated carbon (AC) remains an expensive material, HRB-CFA is attracting great interest for its use in the absorption of organic contaminants due to its low material cost and importance as renewable source for securing future energy supply in the environmental system. Although the CFA does not have the surface area as high as AC, certain metallic components that are naturally present in the CFA can play the catalytic role in the removal of heavy metal from wastewater. The percentage of heavy metal removal is depends on the parameters that influence the sorption process; the effect of pH solution, dosage of adsorbent, initial concentration of solution, and contact time. The aim of this study is to characterize HRB-CFA by performing several analyses such as the Brunauer-Emmett-Teller (BET), thermogravimetric (TGA) and field emission scanning electron microscopy (FESEM) methods. The results obtained revealed that the best hydrogel ratio is 0.5:0.5 of blended RB and CFA, as proven by BET surface area, pore volume and pore size of 3.5392 m2/g, 0.00849 cm3/g and 90.566 Å, and the surface morphology showed an increase in porosity size.

  15. Possibilities of utilization of fly ash from the black coal Power Engineering of the U. S. Steel Košice

    Directory of Open Access Journals (Sweden)

    Františka Michalíková

    2005-11-01

    Full Text Available The paper presents modes of a direct utilization of the fly ash by-product of the combustion of black power coal in the slag - bottom boilers of the Division Plant Power Engineering ( DP PE of the U. S. Steel Košice ( next USSK . The properties of fly ash limit its use in metallurgy and foundry industry. The fly ash is directly utilizable in the metallurgical industry as a component of powder cover mixtures and insulation inserts, heat insulation parts and exothermical mixtures. The most important components in the mixtures are light micro spheres – cenospheres and heavy micro spheres – plerospheres. The micro spheres significantly improve properties of the powder cover mixtures.

  16. Removal of Pb(II) from wastewater using Al2O3-NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash.

    Science.gov (United States)

    Zhu, Li; Ji, Jiayou; Wang, Shulin; Xu, Chenxi; Yang, Kun; Xu, Man

    2018-09-01

    Al 2 O 3 -NaA zeolite composite hollow fiber membranes were successfully fabricated via hydrothermal synthesis by using industrial solid waste coal fly ash and porous Al 2 O 3 hollow fiber supports. The as-synthesized Al 2 O 3 -NaA zeolite composite hollow fiber membranes were then characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The hollow fiber membranes were used to remove lead ions (Pb(II), 50 mg L -1 ) from synthetic wastewater with a removal efficiency of 99.9% at 0.1 MPa after 12 h of filtration. This study showed that the Al 2 O 3 -NaA zeolite composite hollow fiber membranes (the pore size of the membrane was about 0.41 nm in diameter) synthesized from coal fly ash could be efficiently used for treating low concentration Pb(II) wastewater. It recycled solid waste coal fly ash not only to solve its environment problems, but also can produce high-value Al 2 O 3 -NaA zeolite composite hollow fiber membranes for separation application in treating wastewater containing Pb(II). Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment.

    Science.gov (United States)

    Jedidi, Ilyes; Saïdi, Sami; Khemakhem, Sabeur; Larbot, André; Elloumi-Ammar, Najwa; Fourati, Amine; Charfi, Aboulhassan; Salah, Abdelhamid Ben; Amar, Raja Ben

    2009-12-15

    This work aims to develop a new mineral porous tubular membrane based on mineral coal fly ash. Finely ground mineral coal powder was calcinated at 700 degrees C for about 3 h. The elaboration of the mesoporous layer was performed by the slip-casting method using a suspension made of the mixture of fly-ash powder, water and polyvinyl alcohol (PVA). The obtained membrane was submitted to a thermal treatment which consists in drying at room temperature for 24 h then a sintering at 800 degrees C. SEM photographs indicated that the membrane surface was homogeneous and did not present any macrodefects (cracks, etc...). The average pore diameter of the active layer was 0.25 microm and the thickness was around 20 microm. The membrane permeability was 475 l/h m(2) bar. This membrane was applied to the treatment of the dying effluents generated by the washing baths in the textile industry. The performances in term of permeate flux and efficiency were determined and compared to those obtained using a commercial alumina microfiltration membrane. Almost the same stabilised permeate flux was obtained (about 100 l h(-1)m(-2)). The quality of permeate was almost the same with the two membranes: the COD and color removal was 75% and 90% respectively.

  18. Synthesis and characterization of zeolite from coal fly ash

    Science.gov (United States)

    Liu, Yong; Luo, Qiong; Wang, Guodong; Li, Xianlong; Na, Ping

    2018-05-01

    Fly ash (FA) from coal-based thermal power plant was used to synthesize zeolite in NaOH solution with hydrothermal method in this work. Firstly, the effects of calcination and acid treatment on the removal of impurities in fly ash were studied. Then based on the pretreated FA, the effects of alkali concentration, reaction temperature and Si/Al ratio on the synthesis of zeolite were studied in detail. The mineralogy, morphology, thermal behavior, infrared spectrum and specific surface for the synthetic sample were investigated. The results indicated that calcination at 750 °C for 1.5 h can basically remove unburned carbon from FA, and 4 M hydrochloric acid treatment of calcined FA at 90 °C for 2 h will reduce the quality of about 34.3%wt, which are mainly iron, calcium and sulfur elements. The concentration of NaOH, reaction temperature and Si/Al ratio have important effect on the synthesis of zeolite. In this study, 0.5 M NaOH cannot obtain any zeolite. High temperature is beneficial to zeolite synthesis from FA, but easily lead to a variety of zeolites. The synthetic sample contains three kinds of zeolites such as zeolite P, sodalite and zeolite X, when the reaction conditions are 2 M NaOH and 120 °C for 24 h. In this research, quartz always exists in the synthetic sample, but will reduce with the increase of temperature. The synthetic zeolite has the specific surface area of about 42 m2 g‑1 and better thermal stability.

  19. Application of paste technology to mitigate the dust emissions from handling of fly and bottom ash at coal fired power plant : CGTEE in Candiota, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva Marques, M.E. [Golder Associates Peru, Lima (Peru); Lima, H. [Golder Associates Brazil, Sao Paulo (Brazil); Mandl, B.; Francoeur, R.; Palkovits, F. [Golder Paste Technology Ltd., Mississauga, ON (Canada); Blois, R. [Companhia de Geracao Termica de Energia Electrica, Porto Alegre (Brazil)

    2010-07-01

    This paper discussed a method developed to reduce dust emissions generated in a fly ash handling procedure used at a thermal power plant located in the south of Brazil. The fly ash is collected in dry form at several locations in the plant and pneumatically conveyed to storage silos, where it is moistened with water in a mixer, loaded into dump trucks and deposited in a disposal area near a surface coal mine. The new solution created low density fly ash slurry in localized mixing tanks within the power plant. The low density slurry is pumped to an ash conditioning plant where the slurry is then mixed with the bottom ash, dewatered, and densified. The densified slurry is then pumped to an adjacent coal mine disposal site in order to be used as backfill in mined areas. The proposed method will significantly reduce dust emissions both inside and outside the plant, and will substantially reduce truck traffic at the mine. The method will reduce the environmental impacts associated with fly ash dust emissions in the region. 8 figs.

  20. Radon exhalation of cementitious materials made with coal fly ash: Part 2 - testing hardened cement-fly ash pastes

    International Nuclear Information System (INIS)

    Kovler, K.; Perevalov, A.; Levit, A.; Steiner, V.; Metzger, L.A.

    2005-01-01

    Increased interest in measuring radionuclides and radon concentrations in fly ash (FA), cement and other components of building products is due to the concern about health hazards of naturally occurring radioactive materials (NORM). The paper focuses on studying the influence of FA on radon exhalation rate (radon flux) from cementitious materials. In the previous part of the paper the state of the art was presented, and the experiments for testing raw materials, Portland cement and coal fly ash, were described. Since the cement and FA have the most critical role in the radon release process relative to other concrete constituents (sand and gravel), and their contribution is dominant in the overall radium content of concrete, tests were carried out on cement paste specimens with different FA contents, 0-60% by weight of the binder (cement+FA). It is found that the dosage of FA in cement paste has a limited influence on radon exhalation rate, if the hardened material is relatively dense. The radon flux of cement-FA pastes is lower than that of pure cement paste: it is about ∼3 mBq m -2 s -1 for cement-FA pastes with FA content as high as 960 kg m -3

  1. Impact of Coal Fly Ash Addition on Combustion Aerosols (PM2.5) from Full-Scale Suspension-Firing of Pulverized Wood

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Wu, Hao; Frandsen, Flemming

    2014-01-01

    The formation of combustion aerosols was studied in an 800 MWth suspension-fired power plant boiler, during combustion of pulverized wood pellets with and without addition of coal fly ash as alkali capture additive. The aerosol particles were sampled and characterized by a low-pressure cascade im...

  2. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland - Upper Silesian Industrial Region

    International Nuclear Information System (INIS)

    Smolka-Danielowska, Danuta

    2010-01-01

    The subject of the study covered volatile ashes created during hard coal burning process in ash furnaces, in power plants operating in the Upper Silesian Industrial Region, Southern Poland. Coal-fired power plants are furnished with dust extracting devices, electro precipitators, with 99-99.6% combustion gas extracting efficiency. Activity concentrations ofTh-232, Ra-226, K-40, Ac-228, U-235 and U-238 were measured with gamma-ray spectrometer. Concentrations of selected rare soil elements (La, Ce, Nd, Sm, Y, Gd, Th, U) were analysed by means of instrumental neutron activation analysis (INAA). Mineral phases of individual ash particles were identified with the use of scanning electron microscope equipped with EDS attachment. Laser granulometric analyses were executed with the use of Analyssette analyser. The activity of the investigated fly-ash samples is several times higher than that of the bituminous coal samples; in the coal, the activities are: 226Ra - 85.4 Bq kg -1 , 40 K-689 Bq kg -1 , 232Th - 100.8 Bq kg -1 , 235U-13.5 Bq kg -1 , 238U-50 Bq kg -1 and 228Ac - 82.4 Bq kg -1 .

  3. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland - Upper Silesian Industrial Region.

    Science.gov (United States)

    Smolka-Danielowska, Danuta

    2010-11-01

    The subject of the study covered volatile ashes created during hard coal burning process in ash furnaces, in power plants operating in the Upper Silesian Industrial Region, Southern Poland. Coal-fired power plants are furnished with dust extracting devices, electro precipitators, with 99-99.6% combustion gas extracting efficiency. Activity concentrations ofTh-232, Ra-226, K-40, Ac-228, U-235 and U-238 were measured with gamma-ray spectrometer. Concentrations of selected rare soil elements (La, Ce, Nd, Sm, Y, Gd, Th, U) were analysed by means of instrumental neutron activation analysis (INAA). Mineral phases of individual ash particles were identified with the use of scanning electron microscope equipped with EDS attachment. Laser granulometric analyses were executed with the use of Analyssette analyser. The activity of the investigated fly-ash samples is several times higher than that of the bituminous coal samples; in the coal, the activities are: 226Ra - 85.4 Bq kg(-1), 40 K-689 Bq kg(-1), 232Th - 100.8 Bq kg(-1), 235U-13.5 Bq kg(-1), 238U-50 Bq kg(-1) and 228Ac - 82.4 Bq kg(-1).

  4. Proceedings of the workshop on radioactivity associated with coal use

    International Nuclear Information System (INIS)

    1981-12-01

    A workshop on radioactivity in coal use was held on September 15 through 17, 1981, under the auspices of the US Department of Energy, Office of Environmental Programs, and the Los Alamos National Laboratory. The purpose of the workshop was to identify research issues associated with radioactivity resulting from the use of coal for electric power generation. The concensus of the 10 scientists participating in the workshop was that a moderate to strong need exists for research in solubility of fly ash in different fluids and for determination of radioactivity in construction materials. Several additional research issues were identified but were given a lower priority. Summaries of each presentation are included. Titles are: some effects of coal combustion on the radiation environment; radionuclides in western coal at Mound; low-level radiation in coals utilized and ashes produced at New York State electric utilities; radioactivity from coal use - where are the problems; chemistry of radionuclides in coal preparation; uranium daughters in natural atmospheric aerosols and coal-fired power plant emissions; possible contributions of coal extraction and utilization to radioactivity contributions in drinking water; and impact on water quality from radionuclides in coal. One paper has been abstracted separately for inclusion in the Energy Data Base

  5. Fly ashes from coal and petroleum coke combustion: current and innovative potential applications.

    Science.gov (United States)

    González, Aixa; Navia, Rodrigo; Moreno, Natalia

    2009-12-01

    Coal fly ashes (CFA) are generated in large amounts worldwide. Current combustion technologies allow the burning of fuels with high sulfur content such as petroleum coke, generating non-CFA, such as petroleum coke fly ash (PCFA), mainly from fluidized bed combustion processes. The disposal of CFA and PCFA fly ashes can have severe impacts in the environment such as a potential groundwater contamination by the leaching of heavy metals and/or particulate matter emissions; making it necessary to treat or reuse them. At present CFA are utilized in several applications fields such as cement and concrete production, agriculture and soil stabilization. However, their reuse is restricted by the quality parameters of the end-product or requirements defined by the production process. Therefore, secondary material markets can use a limited amount of CFA, which implies the necessity of new markets for the unused CFA. Some potential future utilization options reviewed herein are zeolite synthesis and valuable metals extraction. In comparison to CFA, PCFA are characterized by a high Ca content, suggesting a possible use as neutralizers of acid wastewaters from mining operations, opening a new potential application area for PCFA that could solve contamination problems in emergent and mining countries such as Chile. However, this potential application may be limited by PCFA heavy metals leaching, mainly V and Ni, which are present in PCFA in high concentrations.

  6. Sorptive removal of cesium-137 and strontium-90 from water by unconventional sorbents. 2. Usage of coal fly ash

    International Nuclear Information System (INIS)

    Apak, R.; Atun, G.; Gueclue, K.; Tuetem, E.

    1996-01-01

    It has been shown that coal fly ash is a good adsorbent for both radionuclides of 137 Cs and 90 Sr. Radiocesium adsorption is maximal around the neutral region whereas radiostrontium adsorption increases with pH, especially above pH 8. Cesium retention sharply drops with ionic strength while strontium adsorption increases sharply and steadily at low and moderate concentrations of the inert electrolyte, respectively. The suggested mechanisms of radionuclide retention by fly ash is specific adsorption of Cs + and irreversible ion-exchange uptake of Sr 2+ . The isotherm of adsorption is a Langmuir approximation of the B.E.T. multi-layered sorption. Acid pretreatment of fly ash, though not increasing radionuclide sorption capacity, may be useful in preventing the leach-out of other contaminants from the sorbent into water during the adsorption process. (author)

  7. Separation and chemical characterization of finely-sized fly-ash particles

    International Nuclear Information System (INIS)

    Campbell, J.A.; Laul, J.C.; Nielson, K.K.; Smith, R.D.

    1978-01-01

    The concentrations of 43 major, minor, and trace elements were measured by x-ray fluorescence, atomic absorption, and instrumental neutron activation for nine well-defined size fractions, with mass median diameters of 0.5 μ to 50 μm, of fly ash from a western coal-fired steam plant. There was generally good agreement in concentrations of elements analyzed by more than one technique. Concentration profiles as a function of mean particle size were established for various elements. Based on the concentration profiles, the elements can be divided into three distinct groups. One group consists primarily of the volatile elements or elements partially volatilized during coal combustion (examples include As, Se, Zn, Ga, etc.), and their concentrations decrease with increasing particle size. A second group, which shows a minor or direct dependence on particle size, as in the case of Si, is apparently associated primarily with the fly-ash matrix. The last group of elements, which includes Ca, Sr, Y, and the rare earths, shows small changes in their concentration profiles with a maximum in concentration at approximately 5 μm. 6 tables, 6 figures

  8. Composition and morphology of stack emissions from coal and oil fuelled boilers

    International Nuclear Information System (INIS)

    Obrusnik, I.; Starkova, B.; Blazek, J.

    1989-01-01

    Instrumental neutron activation analysis (INAA) together with scanning electron microscopy (SEM) were used in the study of fly ash from large electric power and heating plants. Two basic kinds of fly ash originating from brown coal or heavy oil combustion can be characterized both by morphology and trace element composition. The avarage composition and determination limits obtained by INAA for coal fly ash were compared with those obtained for heavy oil. Coal fly ash showed much higher concentrations of many elements in comparison with oil fly ash. (author) 21 refs.; 3 figs.; 4 tabs

  9. Physical, chemical and mineralogical properties of fly ash

    International Nuclear Information System (INIS)

    Khairul Nizar Ismail; Kamaruddin Hussin; Mohd Sobri Idris

    2007-01-01

    Fly ash is the finely divided mineral residue resulting from the combustion of coal in electric generating plants. Fly ash consists of inorganic, incombustible matter present in the coal that has been fused during combustion into a glassy, amorphous structure. Fly ash particles are generally spherical in shape and range in size from 2 μm to 10 μm. They consist mostly of silicon dioxide (SiO 2 ), aluminium oxide (Al 2 O 3 ) and iron oxide (Fe 2 O 3 ). Fly ash like soil contains trace concentrations of the following heavy metals: nickel, vanadium, cadmium, barium, chromium, copper, molybdenum, zinc and lead. The chemical compositions of the sample have been examined and the fly ash are of ASTM C618 Class F. (Author)

  10. Application of mine water leaching protocol on coal fly ash to assess leaching characteristics for suitability as a mine backfill material.

    Science.gov (United States)

    Madzivire, Godfrey; Ramasenya, Koena; Tlowana, Supi; Coetzee, Henk; Vadapalli, Viswanath R K

    2018-04-16

    Over the years, coal mining in the Mpumalanga Province of South Africa has negatively affected the environment by causing pollution of water resources, land subsidence and spontaneous coal combustion. Previous studies show that in-situ treatment of acid mine drainage (AMD) using coal fly ash (CFA) from local power stations was possible and sludge recovered out of such treatment can be used to backfill mines. In this article, the authors have attempted to understand the leaching characteristics of CFA when placed underground as a backfill material using the mine water leaching protocol (MWLP). The results show that the migration of contaminants between the coal fly ash and the AMD in the mine voids depends on the pH and quality of the mine water. While backfilling mine voids with CFA can neutralize and scavenge between 50% and 95% of certain environmentally sensitive elements from AMD such as Fe, Al, Zn, Cu, Ni, Co and Mn. At this moment, it is also important to point out that certain scavenged/removed contaminants from the AMD during initial phases of backfilling can be remobilized by the influx of acidic water into the mine voids. It has therefore been concluded that, while CFA can be used to backfill mine voids, the influx of fresh acidic mine water should be avoided to minimize the remobilization of trapped contaminants such as Fe, Al, Mn and As. However, the pozzolanic material resulting from the CFA-AMD interaction could prevent such influx.

  11. Sorptive removal of cesium-137 and strontium-90 from water by unconventional sorbents. 2. Usage of coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Apak, R.; Atun, G.; Gueclue, K.; Tuetem, E. [Istanbul Univ. (Turkey). Faculty of Engineering

    1996-05-01

    It has been shown that coal fly ash is a good adsorbent for both radionuclides of {sup 137}Cs and {sup 90}Sr. Radiocesium adsorption is maximal around the neutral region whereas radiostrontium adsorption increases with pH, especially above pH 8. Cesium retention sharply drops with ionic strength while strontium adsorption increases sharply and steadily at low and moderate concentrations of the inert electrolyte, respectively. The suggested mechanisms of radionuclide retention by fly ash is specific adsorption of Cs{sup +} and irreversible ion-exchange uptake of Sr{sup 2+}. The isotherm of adsorption is a Langmuir approximation of the B.E.T. multi-layered sorption. Acid pretreatment of fly ash, though not increasing radionuclide sorption capacity, may be useful in preventing the leach-out of other contaminants from the sorbent into water during the adsorption process. (author).

  12. Technical report on NEDO-conducted Western US steam coal (for power generation and boiler) survey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    The New Energy and Industrial Technology Development Organization (NEDO) conducted studies covering Wyoming, Utah, Colorado, New Mexico, and North Dakota, all in the West. Illinois and Gulf-Texas are also included. The bituminous coal of Utah and Colorado is given the highest priority as coal to be exported to Japan. It is feared, however, that the price of the bituminous coal from these areas may soar if demand increases. As for sub-bituminous coal, its price is far more stable because its reserves are basically limitless. The sub-bituminous coal, however, is not expected to be imported to Japan in the very near future because it is low in calorific power and fails to meet the conditions prerequisite to Japan's boiler fuel. Illinois can receive large orders but its coal contains more sulfur than the Western coal and a longer distance has to be covered for its transportation. As for transportation to the West Cost, freight cars are available and the port capacity can be enlarged dependent on the magnitude of demand for coal. Loading a deep draft bulk ship off shore with coarse coal slurry by pipeline is an attractive scheme. (NEDO)

  13. Technical report on NEDO-conducted Western US steam coal (for power generation and boiler) survey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    The New Energy and Industrial Technology Development Organization (NEDO) conducted studies covering Wyoming, Utah, Colorado, New Mexico, and North Dakota, all in the West. Illinois and Gulf-Texas are also included. The bituminous coal of Utah and Colorado is given the highest priority as coal to be exported to Japan. It is feared, however, that the price of the bituminous coal from these areas may soar if demand increases. As for sub-bituminous coal, its price is far more stable because its reserves are basically limitless. The sub-bituminous coal, however, is not expected to be imported to Japan in the very near future because it is low in calorific power and fails to meet the conditions prerequisite to Japan's boiler fuel. Illinois can receive large orders but its coal contains more sulfur than the Western coal and a longer distance has to be covered for its transportation. As for transportation to the West Cost, freight cars are available and the port capacity can be enlarged dependent on the magnitude of demand for coal. Loading a deep draft bulk ship off shore with coarse coal slurry by pipeline is an attractive scheme. (NEDO)

  14. Immersion freezing induced by different kinds of coal fly ash: Comparing particle generation methods and measurement techniques

    Science.gov (United States)

    Grawe, Sarah; Augustin-Bauditz, Stefanie; Clemen, Hans-Christian; Eriksen-Hammer, Stine; Lubitz, Jasmin; Schneider, Johannes; Stratmann, Frank; Wex, Heike

    2017-04-01

    To date, a lot of effort has been put into the identification and characterization of atmospheric ice nucleating particles (INPs), which may influence both weather and climate. The majority of studies focuses on INPs from natural origin such as biological particles or mineral dust particles (Hoose and Möhler 2012, Murray et al. 2012). Combustion ashes, being possible sources of anthropogenic INPs, have rarely been investigated in the past. Ash particles may be emitted into the atmosphere either by the action of wind from ash deposits on the ground (bottom ash), or during the combustion process (fly ash). Two recent studies (Umo et al., 2015; Grawe et al., 2016) identified fly ash from coal combustion as the most efficient of the investigated samples (including also bottom ashes from wood and coal combustion). These results motivate the here presented study in which we investigated the immersion freezing behavior of four coal fly ash samples taken from the filters of different coal-fired power plants in Germany. A combination of two instruments was used to capture the temperature range from 0 °C to the homogeneous freezing limit at around -38 °C. Firstly, the new Leipzig Ice Nucleation Array (LINA) was used, where droplets from an ash-water suspension are pipetted onto a cooled plate. Secondly, we used the Leipzig Aerosol Cloud Interaction Simulator (LACIS; Hartmann et al., 2011), a laminar flow tube in which every droplet contains a single size-segregated ash particle. Here, it was possible to study the effect of different kinds of particle generation, i.e., atomization of an ash-water suspension, and aerosolization of dry ash material. The composition of the ash particles was investigated by means of single particle aerosol mass spectrometry and particles were sampled on filters for environmental scanning electron microscope analysis. Our measurements show that all four fly ash samples feature a similar immersion freezing behavior (ice fractions vary by a

  15. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    Energy Technology Data Exchange (ETDEWEB)

    Dyartanti, Endah Retno; Jumari, Arif, E-mail: arifjumari@yahoo.com; Nur, Adrian; Purwanto, Agus [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO{sub 4}) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO{sub 4} and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.

  16. Quality characteristics of Greek fly ashes and potential uses

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Grammelis, P.; Kakaras, E. [Institute for Solid Fuels Technology and Applications, Ptolemais (Greece); Karangelos, D.; Anagnostakis, M.; Hinis, E. [Nuclear Engineering Section, Mechanical Engineering Department, National Technical University of Athens, Athens (Greece)

    2007-01-15

    The main characteristics of fly ash from Greek coal-fired boilers are presented in this paper in relation to its exploitation potential. Both fuel and fly ash samples were collected and analyzed according to the ASTM Standards. Apart from the typical analyses (proximate, ultimate, ash analysis and calorific value), an ICP-AES spectrometer was used for the analysis of heavy metals in the ash. Experimental measurements in order to determine the radioactivity content of raw fuel and the fly ash were carried out as well. A representative fly ash sample from Ptolemais power plant was evaluated and tested as filler in Self-Compacting Concrete (SCC). Ashes from the Greek brown coal are classified in type C, most of the fly ash being produced in Ptolemais of Northern Greece, while the rest in Megalopolis. Ptolemais fly ash is rich in calcium compounds, while Megalopolis fly ash contains more pyrite. Increased heavy metal concentrations are observed in the fly ash samples of Greek coal. Greek fly ash appears to have not only pozzolanic but also hydraulic behaviour. Furthermore, Greek fly ash, depending on its origin, may have relatively high natural radioactivity content, reaching in the case of Megalopolis fly ash 1 kBq kg{sup -1} of {sup 226}Ra. The laboratory results showed that fly ashes can be a competitive substitute to conventional limestone filler material in SCC. Fly ash is mostly used in Greece in cement industry replacing cement clinker and aiming to the production of special types of Portland cements. However, a more aggressive utilisation strategy should be developed, since low quantities of the total produced fly ash are currently further utilised. (author)

  17. Copper and cadmium adsorption on pellets made from fired coal fly ash

    International Nuclear Information System (INIS)

    Papandreou, A.; Stournaras, C.J.; Panias, D.

    2007-01-01

    Studies on the utilization of low cost adsorbents for removal of heavy metals from wastewaters are gaining attention. Fired coal fly ash, a solid by-product that is produced in power plants worldwide in million of tonnes, has attracted researchers' interest. In this work, fly ash was shaped into pellets that have diameter in-between 3-8 mm, high relative porosity and very good mechanical strength. The pellets were used in adsorption experiments for the removal of copper and cadmium ions from aqueous solutions. The effect of agitation rate, equilibration time, pH of solution and initial metal concentration were studied. The adsorption of both cations follows pseudo-second order kinetics reaching equilibrium after an equilibration time of 72 h. The experimental results for copper and cadmium adsorption fit well to a Langmuirian type isotherm. The calculated adsorption capacities of pellets for copper and cadmium were 20.92 and 18.98 mg/g, respectively. Desorption experiments were performed in several extraction media. The results showed that both metals were desorbed substantially from pellets under acidic solutions. For this reason, metal saturated pellets were encapsulated in concrete blocks synthesized from cement and raw pulverized fly ash in order to avoid metal desorption. The heavy metals immobilization after encapsulation in concrete blocks was tested through desorption tests in several aqueous media. The results showed that after 2 months in acidic media with pH 2.88 and 4.98 neither copper nor cadmium were desorbed thus indicating excellent stabilization of heavy metals in the concrete matrix. As a conclusion, the results showed that fly ash shaped into pellets could be considered as a potential adsorbent for the removal of copper and cadmium from wastewaters. Moreover, the paper proposes an efficient and simple stabilization process of the utilized adsorbents thus guarantying their safe disposal in industrial landfills and eliminating the risk of pollution

  18. Acidolysis of coal fly ash by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Torma, A.E.; Singh, A.K. (EG and G Idaho Inc., Idaho Falls, ID (United States). Center for Biological Processing Technology)

    1993-12-01

    The kinetics of aluminium extraction were investigated, using as-received and calcined fly ash samples and a pure culture of [ital Aspergillus niger]. This fungus metabolized sucrose to citric and oxalic acids, which were involved in the acidolysis of fly ash. Aluminium extraction from as-received fly ash was only 5-8%, whereas from calcined fly ash it was up to 93.5%. The order of reaction and the overall reaction rate constant were determined by the van't Hoff technique with respect to the concentration of calcined fly ash. A linearized form of a modified Monod expression was applied to the experimental data to assess the kinetic constants for the acidolysis process. Statistically designed experiments were carried out with calcined fly ash and synthetic solutions containing citric and oxalic acids to determine the optimum leaching conditions. The acidolysis reaction mechanism is discussed. 28 refs., 6 figs., 3 tabs.

  19. Distributional Fate of Elements during the Synthesis of Zeolites from South African Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Pieter W. Du Plessis

    2014-04-01

    Full Text Available The synthesis of zeolites from South African coal fly ash has been deemed a viable solution to the growing economical strain caused by the disposal of ash in the country. Two synthesis routes have been studied thus far namely the 2-step method and the fusion assisted process. Fly ash contains several elements originating from coal which is incorporated in the ash during combustion. It is vital to determine the final destination of these elements in order to unveil optimization opportunities for scale-up purposes. The aim of this study was to perform a material balance study on both synthesis routes to determine the distributional fate of these elements during the synthesis of zeolites. Zeolites were first synthesized by means of the two synthesis routes. The composition of all raw materials and products were determined after which an overall and elemental balance were performed. Results indicated that in the 2-step method almost all elements were concentrated in the solid zeolite product while during the fusion assisted route the elements mostly report to the solid waste. Toxic elements such as Pb, Hg, Al, As and Nb were found in both the supernatant waste and washing water resulting from each synthesis route. It has also been seen that large quantities of Si and Al are wasted in the supernatant waste. It is highly recommended that the opportunity to recycle this liquid waste be investigated for scale-up purposes. Results also indicate that efficiency whereby Si and Al are extracted from fused ash is exceptionally poor and should be optimized.

  20. Predicted coal production trends in Kentucky: The results of available coal resources, coal quality demands, and regulatory factors

    International Nuclear Information System (INIS)

    Watson, W.D.

    1993-01-01

    Many factors affect the viability of regional coal production markets including (1) coal quality and recoverable tonnage, (2) coal mining cost, (3) the regional and time varying patterns of coal demand growth, (4) regulations and other institutional constraints that affect coal demand and utilization, and (5) the regional array of coal transport modes and rates. This analysis integrates these factors into an assessment of coal production prospects (separately) for eastern and western Kentucky coal producing counties for the decade of the 90's. The integration indicates that eastern Kentucky coal production will peak and begin to decline by the end of the decade whereas western Kentucky coal production will continue to grow. No single factor explains these trends. There is plenty of available minable coal. The combination of changes in environmental regulations, some increase in coal mining costs, and the mining-out of low sulfur reserves are the main factors that account for the production trends

  1. Ash transformation during co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    2007-01-01

    Co-firing straw with coal in pulverized fuel boilers can cause problems related to fly ash utilization, deposit formation, corrosion and SCR catalyst deactivation due to the high contents of Cl and K in the ash. To investigate the interaction between coal and straw ash and the effect of coal...... quality on fly ash and deposit properties, straw was co-fired with three kinds of coal in an entrained flow reactor. The compositions of the produced ashes were compared to the available literature data to find suitable scaling parameters that can be used to predict the composition of ash from straw...... and coal co-firing. Reasonable agreement in fly ash compositions regarding total K and fraction of water soluble K was obtained between co-firing in an entrained flow reactor and full-scale plants. Capture of potassium and subsequent release of HCl can be achieved by sulphation with SO2 and more...

  2. Fly ash dynamics in soil-water systems

    International Nuclear Information System (INIS)

    Sharma, S.; Fulekar, M.H.; Jayalakshmi, C.P.

    1989-01-01

    Studies regarding the effluents and coal ashes (or fly ash) resulting from coal burning are numerous, but their disposal and interactions with the soil and water systems and their detailed environmental impact assessment with concrete status reports on a global scale are scanty. Fly ash dynamics in soil and water systems are reviewed. After detailing the physical composition of fly ash, physicochemical changes in soil properties due to fly ash amendment are summarized. Areas covered include texture and bulk density, moisture retention, change in chemical equilibria, and effects of fly ash on soil microorganisms. Plant growth in amended soils is discussed, as well as plant uptake and accumulation of trace elements. In order to analyze the effect of fly ash on the physicochemical properties of water, several factors must be considered, including surface morphology of fly ash, pH of the ash sluice water, pH adjustments, leachability and solubility, and suspended ash and settling. The dynamics of fly ash in water systems is important due to pollution of groundwater resources from toxic components such as trace metals. Other factors summarized are bioaccumulation and biomagnification, human health effects of contaminants, and the impact of radionuclides in fly ash. Future research needs should focus on reduction of the environmental impact of fly ash and increasing utilization of fly ash as a soil amendment. 110 refs., 2 figs., 10 tabs

  3. An appraisal of the potential use of fly ash for reclaiming coal mine spoil.

    Science.gov (United States)

    Ram, Lal C; Masto, Reginald E

    2010-01-01

    Growing dependence on coal-fired power plants for electrical generation in many countries presents ongoing environmental challenges. Burning pulverized coal in thermal power plants (TPPs) generates large amounts of fly ash (FA) that must be disposed of or otherwise handled, in an environmentally-sound manner. A possible option for dealing with fly ash is to use it as an amendment for mine spoil or other damaged soil. It has been demonstrated through studies in India and other countries that FA alone or in combination with organic or inorganic materials can be used in a productive manner for reclamation of mine spoil. The characteristics of FA, including silt-sized particles, lighter materials with low bulk density (BD), higher water holding capacity, favorable pH and significant concentrations of many essential plant nutrients, make it a potentially favorable amendment for mine spoil reclamation. Studies have indicated that the application of FA has improved the physical, chemical and biological qualities of soil to which it is applied. The release of trace metals and soluble salts from FA could be a major limitation to its application. This is particularly true of fresh, un-weathered FA or acidic FA, although perhaps not a concern for weathered/pond ash or alkaline FA. Some potential contaminants, especially metals and other salt ions, could be immobilized and rendered biologically inert by the addition of certain inorganic and organic amendments. However, in view of the variability in the characteristics of FAs that are associated with location, feed coal, combustion conditions and other factors, the suitability of a particular FA for a specific soil/mine spoil needs to be critically evaluated before it is applied in order to maximize favorable results and eliminate unexpected consequences. FA generated in India tends to be mostly alkaline, with lower levels of trace elements than are often found in FAs from other countries. The concentrations of potential

  4. Pilot plant development of a new catalytic process for improved electrostatic separation of fly ash in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Olivares del Valle, J.; Martinez, L.S.; Baum, B.M.; Galeano, V.C. [Universidad de Sevilla (Spain)

    1995-12-31

    The design and operation of pulverized-coal-fired power plants (PCFPP) are usually regarded as fuel range in terms of sulphur and ash contents. These units may give severe environmental problems of fly ash emissions as a result of lower SO{sub 3} contents in the flue gas (FG) because the electrical resistivity of the solid particles is correspondingly lower, with consequent adverse effects on electrostatic precipitator (ESP) efficiency. More stringent air pollution laws cause many power companies to burn lower sulphur coal under boilers in plants that formerly burned higher S coal or ran with abnormal operational conditions (only remediable by shutdown and repairs). This presentation of the GASOX process is a contribution to the improvement of existing technology for flue gas conditioning (FGC), which is defined as a control system for (ESP) efficiency in PCFPP.

  5. Adsorption of oxyanions of As, B, Cr, Mo and Se from coal fly ash leachates using Al3+/Fe3+modified bentonite clay

    CSIR Research Space (South Africa)

    Vhahangwele, M

    2013-01-01

    Full Text Available ponds. On disposal, coal fly ash leaches out toxic chemical species on contact with the aqueous media hence posing hazardous effects to the aquatic and terrestrial environment. Of prime concern are Oxyanionic species such as As, B, Cr, Mo and Se...

  6. Application and feasibility of coal fly ash and scrap tire fiber as wood wall insulation supplements in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Van de Lindt, J.W.; Carraro, J.A.H.; Heyliger, P.R.; Choi, C. [Colorado State University, Department of Civil and Environmental Engineering, Fort Collins, CO (United States)

    2008-08-15

    Each year, nearly 55% of the fly ash (FA) produced by coal burning power plants in the United States is disposed of in landfills and ash ponds, while the amount of recycled fiber from scrap tires that is beneficially used in end-user markets is virtually negligible. This paper presents the results of a study carried out to investigate whether it might be possible to increase the thermal efficiency of a light-frame residential structure through addition of a fly ash-scrap tire fiber composite to traditional fiberglass insulation in light-frame wood residential construction. This type of construction represents more than 80% of the building stock in North America. The results of this study suggest that the fly ash-scrap tire fiber composite provides a sustainable supplement to traditional insulation that not only increases the efficiency of traditional insulation but can also help significantly reduce the environmental issues associated with disposal of these waste products. (author)

  7. Application and feasibility of coal fly ash and scrap tire fiber as wood wall insulation supplements in residential buildings

    International Nuclear Information System (INIS)

    Van de Lindt, J.W.; Carraro, J.A.H.; Heyliger, P.R.; Choi, C.

    2008-01-01

    Each year, nearly 55% of the fly ash (FA) produced by coal burning power plants in the United States is disposed of in landfills and ash ponds, while the amount of recycled fiber from scrap tires that is beneficially used in end-user markets is virtually negligible. This paper presents the results of a study carried out to investigate whether it might be possible to increase the thermal efficiency of a light-frame residential structure through addition of a fly ash-scrap tire fiber composite to traditional fiberglass insulation in light-frame wood residential construction. This type of construction represents more than 80% of the building stock in North America. The results of this study suggest that the fly ash-scrap tire fiber composite provides a sustainable supplement to traditional insulation that not only increases the efficiency of traditional insulation but can also help significantly reduce the environmental issues associated with disposal of these waste products. (author)

  8. BRICKS WITH TOTAL REPLACEMENT OF CLAY BY FLY ASH MIXED WITH DIFFERENT MATERIALS

    OpenAIRE

    J.N Akhtar; J.Alam; M.N Akhtar

    2011-01-01

    Fly ash is a powdery substance obtained from the dust collectors in the Thermal power plants that use coal as fuel. From the cement point of view the mineralogy of Fly ash is important as it contains 80% - 90% of glass. The impurities in coal-mostly clays, shale’s, limestone & dolomite; they cannot be burned so they turn up as ash. The Fly ash of class C category was used as a raw material to total replacement of clay for making Fly ash bricks. In present study the effect of Fly ash with high...

  9. Fundamental study of low-NOx combustion fly ash utilization

    International Nuclear Information System (INIS)

    Suuberg, Eric M.; Hurt, Robert H.

    1998-01-01

    This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over fifty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives

  10. The relationship between bituminous coal quality and tectonic setting of the western part of upper Silesian coal Basin (USCB) of Poland

    International Nuclear Information System (INIS)

    Probierz, Krystian; Morga, Rafal

    1997-01-01

    Variation of quality parameters of coals occurring in selected geological structures in the western part of the Upper Silesian Coal Basin (USCB) was examined. It was ascertained that coals under research are characterised by high vitrinite content and medium rank (R o = 0.82 - 1.06%, V daf = 28.30 - 37.40%, RI = 19 - 89) and can be classified as para- and ortobituminous coals (ECE Geneva, 1993). Distribution of coal quality parameters was featured by different degree of concordance with spatial orientation of geological structures. In some cases (the Concordia over thrust, the anticline of Makoszowy fold) such concordance was revealed and it was proved that the structures were forming simultaneously with coalification process. In another two cases (the Klodnica fault, the Saara fault) concordance of this kind was not found. However, distribution of rank parameters allowed to reconstruct the sequence of the two processes, indicating that the faults formed after coalification. There were also cases (the Sosnica folds, the Ruda syncline) in which univocal relative timing of coalification and structure formation was not possible. The results obtained show, that presented method of analysis of spatial distribution of basic coal quality parameters within the deposit (above all R o , V daf , RI) can be used, similarly to optical anisotropy examination, for relative timing of geological structure formation and coalification process. It was confirmed, that knowledge of structure and geological history of a basin enables more precise prognosis of chemical - technological properties of coals. (Author)

  11. Native legume establishment on acidic coal mining overburden at Collie, Western Australia

    Energy Technology Data Exchange (ETDEWEB)

    Koch, J M; Bell, D T

    1985-12-01

    Nitrogen is often provided to impoverished overburden dumps through the establishment of legumes. Low indigenous soil nutrient levels, summer drought conditions and an acidic mining overburden represent major obstacles to successful rehabilitation of open-cut coal mining at Collie in southwest Western Australia. In this study, Acacia pulchella, a native Western Australian species often used in rehabilitation of mined lands, was shown to nodulate and grow in coal mining overburden with pH values less than 4.0 under glasshouse conditions. Plant growth (both top and root dry weight), nodule fresh weight, and nodulation success was best at pH near 5.0, a value only slightly lower than the typical soil pH of the native jarrah (Eucalyptus marginata) forest. Acetylene reduction rates were reduced by acidity and ranged from 8.2..mu..m C/sub 2/H/sub 4//g hr at pH 6.77 to 3.0..mu..m C/sub 2/H/sub 4//g hr at a pH of 3.98. Four additional plant species were found to occur and to nodulate on acid overburden material at Collie. 20 references.

  12. Zeolite formation from coal fly ash and its adsorption potential

    Energy Technology Data Exchange (ETDEWEB)

    Duangkamol Ruen-ngam; Doungmanee Rungsuk; Ronbanchob Apiratikul; Prasert Pavasant [Chulalongkorn University, Bangkok (Thailand). Department of Chemical Engineering

    2009-10-15

    The possibility in converting coal fly ash (CFA) to zeolite was evaluated. CFA samples from the local power plant in Prachinburi province, Thailand, were collected during a 3-month time span to account for the inconsistency of the CFA quality, and it was evident that the deviation of the quality of the raw material did not have significant effects on the synthesis. The zeolite product was found to be type X. The most suitable weight ratio of sodium hydroxide (NaOH) to CFA was approximately 2.25, because this gave reasonably high zeolite yield with good cation exchange capacity (CEC). The silica (Si)-to-aluminum (Al) molar ratio of 4.06 yielded the highest crystallinity level for zeolite X at 79% with a CEC of 240 meq/100 g and a surface area of 325 m{sup 2}/g. Optimal crystallization temperature and time were 90{sup o}C and 4 hr, respectively, which gave the highest CEC of approximately 305 meq/100 g. Yields obtained from all experiments were in the range of 50-72%. 29 refs., 5 tabs., 7 figs.

  13. Radiation dose resulting from the releases of fly ash in the environment

    International Nuclear Information System (INIS)

    Koester, H.W.; Leenhouts, H.P.; Frissel, M.J.

    1986-06-01

    The radiological consequences from radioactivity in the emissions of coal fired power stations are evaluated for the Dutch population until the year 2030. The energy scenario for the Netherlands with the highest coal input considers an input of 55 Tg coal per year in 2030. The fly ash production is then 5.3 Tg, while 0.03 Tg fly ash will be released into the atmosphere. The radiation doses which result from the radionuclides present in the fly ash were calculated. Several pathways were considered, contribution of most of them were insignificant. However, the inhalation of fly ash may cause and H eff of 4.0 E-7 Sv.a -1 . The contribution caused by the ingestion of milk contaminated via depositions of fly ash on grass and soil may reach 0.8 E-7 Sv.a -1 . The report contains numerous calculations, references and a parameter analysis. (Auth.)

  14. Transformations and affinities for sulfur of Chinese Shenmu coal ash in a pulverized coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.; Zhou, J.H.; Liu, J.Z.; Cao, X.Y.; Cen, K.F. [Zhejiang University, Hangzhou (China)

    2009-07-01

    The self-desulfurization efficiency of Shenmu coal with a high initial Ca/S molar ratio of 2.02 was measured in a 1,025 t/h pulverized coal-fired boiler. It increases from 29% to 32% when the power capacity decreases from 100% to 70%. About 60% of the mineral matter and calcium element fed into the furnace is retained in the fly ash, while less than 10% is retained in the bottom ash. About 70% of the sulfur element fed into the furnace is emitted as SO{sub 2} in the flue gas, while less than 10% is retained in the fly ash and less than 1% is retained in the bottom ash. The mineralogical compositions of feed coal, fly ash, and bottom ash were obtained by X-ray diffraction analysis. It is found that the initial amorphous phase content is 91.17% and the initial CaCO{sub 3} phase content is 2.07% in Shenmu coal. The vitreous phase and sulfation product CaSO{sub 4} contents are, respectively, 70.47% and 3.36% in the fly ash obtained at full capacity, while the retained CaCO{sub 3} and CaO contents are, respectively, 4.73% and 2.15%. However, the vitreous phase content is only 25.68% and no CaSO{sub 4} is detected in the bottom ash obtained at full capacity. When the power capacity decreases from 100% to 70%, the vitreous phase content in fly ash decreases from 70.47% to 67.41% and that in bottom ash increases from 25.68% to 28.10%.

  15. Identification of host fruit volatiles from domestic apple (Malus domestica), native black hawthorn (Crataegus douglasii) and introduced ornamental hawthorn (C. monogyna) attractive to Rhagoletis pomonella flies from the western United States.

    Science.gov (United States)

    Cha, Dong H; Yee, Wee L; Goughnour, Robert B; Sim, Sheina B; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E

    2012-03-01

    The apple maggot fly, Rhagoletis pomonella, infests apple (Malus domestica) and hawthorn species (most notably the downy hawthorn, Crataegus mollis) in the eastern USA. Evidence suggests that the fly was introduced into the western USA sometime in the last 60 years. In addition to apple, R. pomonella also infests two species of hawthorns in the western USA as major hosts: the native black hawthorn (C. douglasii) and the introduced ornamental English hawthorn, C. monogyna. Apple and downy hawthorn-origin flies in the eastern USA use volatile blends emitted from the surface of their respective ripening fruit to find and discriminate among host trees. To test whether the same is true for western flies, we used coupled gas chromatography and electroantennographic detection (GC-EAD) and developed a 7-component apple fruit blend for western apple-origin flies, an 8-component black hawthorn fruit blend for flies infesting C. douglasii, and a 9-component ornamental hawthorn blend for flies from C. monogyna. Crataegus douglasii and C. monogyna-origin flies showed similar levels of upwind directed flight to their respective natal synthetic fruit blends in flight tunnel assays compared to whole fruit adsorbent extracts, indicating that the blends contain all the behaviorally relevant fruit volatiles to induce maximal response levels. The black and ornamental hawthorn blends shared four compounds in common including 3-methylbutan-1-ol, which appears to be a key volatile for R. pomonella populations in the eastern, southern, and western USA that show a preference for fruit from different Crataegus species. However, the blends also differed from one another and from domesticated apple in several respects that make it possible that western R. pomonella flies behaviorally discriminate among fruit volatiles and form ecologically differentiated host races, as is the case for eastern apple and hawthorn flies.

  16. Volcanic ash in feed coal and its influence on coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O' Connor, J.T.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the

  17. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China

    Science.gov (United States)

    Dai, S.; Zhao, L.; Peng, S.; Chou, C.-L.; Wang, X.; Zhang, Y.; Li, D.; Sun, Y.

    2010-01-01

    The fly ash from the Jungar Power Plant, Inner Mongolia, China, is unique because it is highly enriched in alumina (Al2O3>50%). The fly ash mainly consists of amorphous glass and mullite and trace amounts of corundum, quartz, char, calcite, K-feldspar, clay minerals, and Fe-bearing minerals. The mullite content in fly ash is as high as 37.4% because of high boehmite and kaolinite contents in feed coal. Corundum is a characteristic mineral formed during the combustion of boehmite-rich coal.Samples from the economizer were sieved into six size fractions (500 mesh) and separated into magnetic, mullite+corundum+quartz (MCQ) and glass phases for mineralogical and chemical analysis. The corundum content increases but amorphous glass decreases with decreasing particle size. Fractions of small particle sizes are relatively high in mullite, probably because mullite was formed from fine clay mineral particles under high-temperature combustion condition. Similarly, fine corundum crystals formed in the boiler from boehmite in feed coal. The magnetic phase consists of hematite, magnetite, magnesioferrite, and MgFeAlO4 crystals. The MCQ phase is composed of 89% mullite, 6.1% corundum, 4.5% quartz, and 0.5% K-feldspar.Overall, the fly ash from the power plant is significantly enriched in Al2O3 with an average of 51.9%, but poor in SiO2, Fe2O3, CaO, MgO, Na2O, P2O5, and As. Arsenic, TiO2, Th, Al2O3, Bi, La, Ga, Ni, and V are high in mullite, and the magnetic matter is enriched in Fe2O3, CaO, MnO, TiO2, Cs, Co, As, Cd, Ba, Ni, Sb, MgO, Zn, and V. The remaining elements are high in the glass fraction. The concentration of K2O, Na2O, P2O5, Nb, Cr, Ta, U, W, Rb, and Ni do not clearly vary with particle size, while SiO2 and Hg decrease and the remaining elements clearly increase with decreasing particle size. ?? 2009 Elsevier B.V.

  18. Utilization of coal-biomass fly ash in reactive barriers for treating acid mine drainage

    International Nuclear Information System (INIS)

    Penney, K.; Mohammedelhassan, E.; Catalan, L.J.

    2009-01-01

    Coal- and biomass-derived fly ash (CBFA) was used as a reactive barrier system for treating acid mine drainage. Two reactive barriers were investigated, notably a flow-through reactive barrier with minimum disruption to the existing flow regime, and a low-permeability barrier for the construction of containment dams. A synthetic acid mine drainage system was prepared in a laboratory. Kinetic column tests were conducted to analyze the effects of acid mine drainage flow on the hydraulic conductivity and leachate composition for mixtures of mine tailings and CBFA. The tests demonstrated that a mixture of the CBFA of between 10 to 50 per cent with mine tailings increased the pH and decreased the dissolved concentrations of heavy metals in acid mine drainage. Mineral precipitation caused large reductions in hydraulic conductivity in relation to the cumulative amounts of acid mine drainage flowing through the columns. It was concluded that the number of progressive pore volumes of acid mine drainage required for achieving reductions in hydraulic conductivity is inversely related to the fly ash content of the column packs. 13 refs., 4 tabs., 7 figs.

  19. Arsenic removal from water using a novel amorphous adsorbent developed from coal fly ash.

    Science.gov (United States)

    Zhang, Kaihua; Zhang, Dongxue; Zhang, Kai

    2016-01-01

    A novel effective adsorbent of alumina/silica oxide hydrate (ASOH) for arsenic removal was developed through simple chemical reactions using coal fly ash. The iron-modified ASOH with enhancing adsorption activity was further developed from raw fly ash based on the in situ technique. The adsorbents were characterized by X-ray diffraction, Fourier transform infrared spectrometry, scanning electron micrograph, laser particle size and Brunauer-Emmet-Teller surface area. The results show that the adsorbents are in amorphous and porous structure, the surface areas of which are 8-12 times that of the raw ash. The acidic hydrothermal treatment acts an important role in the formation of the amorphous structure of ASOH rather than zeolite crystal. A series of adsorption experiments for arsenic on them were studied. ASOH can achieve a high removal efficiency for arsenic of 96.4% from water, which is more than 2.5 times that of the raw ash. Iron-modified ASOH can enhance the removal efficiency to reach 99.8% due to the in situ loading of iron (Fe). The condition of synthesis pH = 2-4 is better for iron-modified ASOH to adsorb arsenic from water.

  20. Nuclear methods in coal research

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1980-01-01

    Nuclear methods, particularly neutron activation analysis (NAA) provide useful information about elemental constituents in coal and fly ash, but often other techniques are required to supplement NAA data. Spark source mass spectrometry and atomic absorption have been studied as methods for determination of certain elements in coal that are not easily measured by NAA. In work concerned with the chemical speciation of elements in fly ash, a number of analytical techniques have been used; these include NAA, chemical etching and separation, optical and electron microscopy and x-ray diffraction

  1. Seasonal distributions of the western cherry fruit fly (Diptera: Tephritidae) among host and nonhost fruit trees.

    Science.gov (United States)

    Yee, Wee L

    2014-01-01

    Seasonal distributions of the western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), in sweet cherry (Prunus avium (L.) L.) (major host), black hawthorn (occasional developmental host) (Crataegus douglasii Lindley), and other trees were determined in a ponderosa pine ecosystem in Washington state, USA. The hypothesis that most fly dispersal from cherry trees occurs after fruit senesce or drop was tested, with emphasis on movement to black hawthorn trees. Sweet cherry fruit developed earlier than black hawthorn, bitter cherry (common host), choke cherry, and apple fruit. Flies were usually captured first in sweet cherry trees but were caught in bitter cherry and other trees throughout the season. Peak fly capture periods in sweet cherry began around the same time or slightly earlier than in other trees. However, peak fly capture periods in black hawthorn and other nonsweet cherry trees continued after peak periods in sweet cherry ended, or relative fly numbers within sweet cherry declined more quickly than those within other trees. Larvae were reared from sweet and bitter cherry but not black hawthorn fruit. Results provide partial support for the hypothesis in that although R. indifferens commonly disperses from sweet cherry trees with fruit, it could disperse more, or more flies are retained in nonsweet cherry trees after than before sweet cherries drop. This could allow opportunities for the flies to use other fruit for larval development. Although R. indifferens infestation in black hawthorn was not detected, early season fly dispersal to this and other trees and fly presence in bitter cherry could make fly management in sweet cherry difficult. Published by Oxford University Press on behalf of the Entomological Society of America 2014. This work is written by a US Government employee and is in the public domain in the US.

  2. Reclamation of the Domtar/Canada brick quarry using coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, P J

    1991-03-20

    Two power plants in the Toronto area required disposal sites for coal fly ash in the late 1970s. A local brick quarry was recognized as a potential disposal site, since a 10-hectare area of the quarry was no longer in production and was required to be filled for reclamation. Ontario Hydro and the brick company joined together to obtain approval for the landfilling project. The preliminary site investigations included an examination of the impact of the project on local residents and the environment in terms of traffic volumes, noise levels, road dirt, airborne dust, and contamination of surface water and groundwater. Ontario Environmental Assessment Board hearings were held, with evidence presented from concerned parties. The findings from the hearings indicated that the project would have little effect on nearby residents and would improve the local environment by reclaiming usable land. Filling of the quarry began in December 1981 and continued for 5 years, after which a total of over 680,000 tonnes of fly ash was deposited. After completion, the ash was covered with a seal layer consisting of at least 1 m of clay or till compacted to structural fill standards with a 1 m thick protective cover layer to protect the seal layer from desiccation cracking and frost heave. Material is currently being stockpiled at the site to increase the thickness of the protective layer in order to make the site self-managing. Monitoring of surface water and groundwater is still ongoing and will continue for many years. 17 refs., 24 figs., 7 tabs.

  3. Evaluation of the mechanical properties of class-F fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.; Prezzi, M. [Purdue University, West Lafayette, IN (United States)

    2008-07-01

    Coal-burning power plants in the United States (US) generate more than 70 million tons of fly ash as a by-product annually. Recycling large volumes of fly ash in geotechnical applications may offer an attractive alternative to the disposal problem as most of it is currently dumped in ponds or landfills. Class-F fly ash, resulting from burning of bituminous or anthracite coals, is the most common type of fly ash in the US. In the present study, the mechanical characteristics (compaction response, compressibility, and shear strength) of class-F fly ash were investigated by performing various laboratory tests (compaction test, one-dimensional compression test, direct shear test and consolidated-drained triaxial compression test) on fly ash samples collected from three power plants in the state of Indiana (US). Test results have shown that despite some morphological differences, class-F fly ash exhibits mechanical properties that are, in general, comparable to those observed in natural sandy soils.

  4. Analysis and Prevention of Geo-Environmental Hazards with High-Intensive Coal Mining: A Case Study in China’s Western Eco-Environment Frangible Area

    Directory of Open Access Journals (Sweden)

    Qiang Sun

    2017-06-01

    Full Text Available This study seeks to address the problems of major geo-environmental hazards caused by high-intensive coal mining in China’s western eco-environment frangible area including strong mining pressure, surface subsidence, soil and water loss, and land desertification. Using the high-intensive mining at the Xiao-jihan Coal Mine, this paper investigates the compaction characteristics of aeolian sand-based backfilling materials, and then the evolution of water-conducting fractures and surface deformation laws with different backfill material’s compression ratios (BMCRs by using physical simulation and numerical simulation analysis methods. This study presents the technical system of water-preserved and environmental protection with rapid-backfilling methods in China’s western eco-environment frangible area. The backfill coal mining technique and application prospects are assessed and discussed. The results will be helpful for coordinated development of coal resources exploitation and environmental protection in China’s western eco-environment frangible area.

  5. Release of microspherolites and metals extraction from energetical fly ashes by Bacillus isolates

    Directory of Open Access Journals (Sweden)

    Štyriaková Iveta

    2000-09-01

    Full Text Available The amorphous secondary silicate mineral components formed in the process of coal combustion dominate in the composition of energy fly-ash. Depending on the composition of coal concentrate, this secondary raw material source also contains the industrially interesting components, e.g. titanium (eventually iron and aluminium and can be considered as a non-metallic material suitable for the construction industry.The main secondary mineral components of the energy fly-ash formed during the coal combustion were studied using SEM (scanning electronic microscope. They can be divided into four groups:1. Amorphous spherical alumocilicate particles in allotriomorphic aluminosilicate grains – they represent a main mineral component of fly-ash, which is formed from the accompanying rocks of coal containing silicate minerals,2. Quartz – which formed a substantial component of accompanying rocks of coal or accompanying accessory mineral of coal together with kaolinite and mica, was transformed into tridymite at the temperature exceeding 870°C and into cristobalite at the temperature exceeding 1470°C. The spherical particles are products of reaction between cristobalite and aluminosilicate, which is a frequent phenomenon occurring during the formation of volcanic rocks. These particles form together a main amorphous phase of fly-ash.3. Mullite – represents a secondary component of fly-ash, which is formed from accompanying clay minerals of coal (kaolinite, mica together with cristobalite under the effect of temperature exceeding 1150°C,4. Non-combusted residue – consists of organic substance, represents a non-combusted ratio of coal as a secondary component of fly-ash.Heterotrophic bacteria of Bacillus genus are capable to remove 66 % of titanium and 33 % of iron from non-deposited fly-ash from Opatovice after 35 days of leaching of samples. The content of solid phase in fly-ash influences the extraction of elements, mainly iron and titatnium, because

  6. Briquetting fly ash from power plants for use as a charge in production of FeSiAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sosnowski, R.; Jastrzebski, R.; Podbiol, S.; Mendecki, K.

    1983-02-01

    The paper discusses waste product utilization of fly ash from black coal combustion for production of alloys consisting of iron, silicon and aluminium under laboratory conditions. Proportion of fly ash and coal reducing agent was 60% and 40%, grain size distribution of fly ash and coal ranged from 0 to 0.4 mm. Coal pitch and waste products from the cellulose industry were used as binders (resin soap, waste sulfite liquor etc.). Briquetting pressure was 400 kG/cm/sup 2/. Fly ash briquets were stabilized 168 h long and dried from 0.5 h to 1.0 h at 373 to 523 C. Effects of briquet composition, binders, briquetting pressure, stabilizing and drying on physical and mechanical properties of fly ash briquets are analyzed. The results of analyses are shown in 4 diagrams. Shatter test was used for determining briquet properties. The test shows that fly ash briquets with coal pitch, resin soap and waste sulfite liquor used as binders are characterized by compression strength not lower than 245 x 10/sup 4/ Pa and produce less than 5% fines in the shatter test. The tested fly ash briquets are a suitable charge for metallurgy. Effects of fly ash utilization on environmental protection are discussed. (8 refs.)

  7. Fly ashes from Polish power plants and combined heat and power plants and conditions of their application for carbon dioxide utilization

    Energy Technology Data Exchange (ETDEWEB)

    Uliasz-Bochenczyk, A.; Mokrzycki, E. [Polish Academy of Science, Krakow (Poland). Mineral & Energy Economic Research Institute

    2006-09-15

    Poland has large resources of hard coal and brown coal. Therefore power industry is mostly based on these two original energy carriers. The power plants producing heat and electrical energy create combustion byproducts. These products include: fly ashes, slags, carbon dioxide and other gaseous compounds. In year 2003 fly ashes emission from hard coal combustion in Poland reached 37 000 tons and over 15 000 tons from brown coal combustion. Fly ashes are widely used in the economy. They are used in building materials industry, in road building and geotechnics. CO{sub 2} emission in Poland in 2003 originating from hard coal combustion was almost 91 million tons and from brown coal combustion-almost 58 million tons. High emissions of CO{sub 2} originating from power engineering processes of coal combustion are deleterious to the natural environment, contributing to the greenhouse effect. Presently there are carried out studies aimed at limiting CO{sub 2} emission coming from industrial processes. Fly ash properties are determined by qualitative characteristics of combusted coal, its chemical composition and combustion technology. Chemical composition of Polish fly ashes is very diversified. Fly ashes with high calcium oxide content can be used for carbon dioxide fixation. Fly ash carbonation is a complicated process however safe for natural environment. Polish fly ashes coming from power engineering, conditions of their use for the carbon dioxide utilization as well as their quantitative and qualitative characteristics are the subjects of this paper.

  8. Western Coal, Boom or Bust? Grades 9-11. Interdisciplinary Student/Teacher Materials in Energy, the Environment, and the Economy.

    Science.gov (United States)

    Day, John; Weeden, Kenneth P.

    This unit uses energy choices to raise questions about the energy option of coal available to the nation along with attendant advantages and disadvantages of this option. The unit introduces locations of coal deposits in the U.S. and their types. Emphasis is on relatively unexploited deposits in the western United States. Comparisons are made…

  9. Formation and utilization of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Vargyai, J

    1974-01-01

    General problems of slag and fly ash formation and utilization are discussed. The ever-increasing energy demand, and the comeback of coal as an energy carrier in power plants call for efficient solutions to the problem of slag and fly ash. Slag and fly ash are used for concrete in which they partly replace cement. Other possible uses are the amelioration of acid soils, fireclay manufacture, road construction, and tiles. It is possible to recover metals, such as vanadium, iron, aluminum, and radioactive materials from certain types of fly ash and slag. The utilization of fly ash is essential also with respect to the abatement of entrainment from dumps.

  10. Characterization of Transient Receptor Potential Vanilloid-1 (TRPV1) Variant Activation by Coal Fly Ash Particles and Associations with Altered Transient Receptor Potential Ankyrin-1 (TRPA1) Expression and Asthma.

    Science.gov (United States)

    Deering-Rice, Cassandra E; Stockmann, Chris; Romero, Erin G; Lu, Zhenyu; Shapiro, Darien; Stone, Bryan L; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A; Ward, Robert M; Veranth, John M; Reilly, Christopher A

    2016-11-25

    Transient receptor potential (TRP) channels are activated by environmental particulate materials. We hypothesized that polymorphic variants of transient receptor potential vanilloid-1 (TRPV1) would be uniquely responsive to insoluble coal fly ash compared with the prototypical soluble agonist capsaicin. Furthermore, these changes would manifest as differences in lung cell responses to these agonists and perhaps correlate with changes in asthma symptom control. The TRPV1-I315M and -T469I variants were more responsive to capsaicin and coal fly ash. The I585V variant was less responsive to coal fly ash particles due to reduced translation of protein and an apparent role for Ile-585 in activation by particles. In HEK-293 cells, I585V had an inhibitory effect on wild-type TRPV1 expression, activation, and internalization/agonist-induced desensitization. In normal human bronchial epithelial cells, IL-8 secretion in response to coal fly ash treatment was reduced for cells heterozygous for TRPV1-I585V. Finally, both the I315M and I585V variants were associated with worse asthma symptom control with the effects of I315M manifesting in mild asthma and those of the I585V variant manifesting in severe, steroid-insensitive individuals. This effect may be due in part to increased transient receptor potential ankyrin-1 (TRPA1) expression by lung epithelial cells expressing the TRPV1-I585V variant. These findings suggest that specific molecular interactions control TRPV1 activation by particles, differential activation, and desensitization of TRPV1 by particles and/or other agonists, and cellular changes in the expression of TRPA1 as a result of I585V expression could contribute to variations in asthma symptom control. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Analysis of radionuclides in airborne effluents from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, G.; Chatterjee, B.; Hoetzl, H.; Winkler, R.

    1982-01-01

    In order to assess the level of radioactivity emitted by coal-fired power plants in detail, specific activities of several radionuclides have been measured in samples from a coal-fired and a brown coal-fired plant in the Federal Republic of Germany. Samples measured included coal, brown coal, bottom ash, collected fly ash from the various electrostatic precipitator stages and sieve fractions of collected fly ash as well as samples of escaping fly ash taken from the exhaust stream, all taken simultaneously on three operating days. Nuclides measured were U-238, U-234, Th-232, Th-230, Th-228, Ra-226, Pb-210, Po-210 and K-40. Methods applied included (i) direct gamma spectrometry, (ii) radiochemical separation with subsequent alpha spectrometry and (iii) direct alpha spectrometry. Methods are described and discussed. Finally, annual emission rates of airborne radionuclides are calculated for both plants.

  12. Analysis of radionuclides in airborne effluents from coal-fired power plants

    International Nuclear Information System (INIS)

    Rosner, G.; Chatterjee, B.; Hoetzl, H.; Winkler, R.

    1982-01-01

    In order to assess the level of radioactivity emitted by coal-fired power plants in detail, specific activities of several radionuclides have been measured in samples from a coal-fired and a brown coal-fired plant in the Federal Republic of Germany. Samples measured included coal, brown coal, bottom ash, collected fly ash from the various electrostatic precipitator stages and sieve fractions of collected fly ash as well as samples of escaping fly ash taken from the exhaust stream, all taken simultaneously on three operating days. Nuclides measured were U-238, U-234, Th-232, Th-230, Th-228, Ra-226, Pb-210, Po-210 and K-40. Methods applied included (i) direct gamma spectrometry, (ii) radiochemical separation with subsequent alpha spectrometry and (iii) direct alpha spectrometry. Methods are described and discussed. Finally, annual emission rates of airborne radionuclides are calculated for both plants. (orig.)

  13. Thermal expansion of slag and fly ash from coal gasification in IGCC power plant

    Energy Technology Data Exchange (ETDEWEB)

    M. Aineto; A. Acosta; J.M.A. Rincon; M. Romero [University of Castilla La Mancha, Ciudad Real (Spain). Laboratory of Applied Mineralogy

    2006-11-15

    Integrated gasification in combined cycle (IGCC) is an electrical power generation system which is characterized to be a clean coal technology different than conventional process in combustible treatment. IGCC process gives rise to inorganic solid wastes in the form of vitreous slag and fly ashes with singular thermal properties. The gasification of the fuel takes place at high temperature and pressure in reducing atmosphere. Under that conditions, gases such as H{sub 2}, N{sub 2} or CO, which are the main components of the gas mixture in the gasifier, show a high solubility in the melt and during the cooling remain enclosed in the vitreous slag. When these wastes are afterward thermal treated in oxidizing conditions, two phenomena occur. The development of a crystalline phase by devitrification of the glassy matrix and the releasing of the enclosed gas, which starts at temperatures nearly to the softening point. At higher temperatures the bubbles with increasing kinetic energy tend to ascend with difficulty through the viscous liquid phase and promotes an expansive reaction, giving rise to a foam glass-ceramic product. This paper has been focused on the study of thermal expansion in slag and fly ash samples from the ELCOGAS IGCC power plant located in Puertollano (Spain). 18 refs., 11 figs., 1 tab.

  14. Methane emissions abatement by multi-ion-exchanged zeolite A prepared from both commercial-grade zeolite and coal fly ash.

    Science.gov (United States)

    Hui, K S; Chao, C Y H

    2008-10-01

    The performance of multimetal-(Cu, Cr, Zn, Ni, and Co)-ion-exchanged zeolite A prepared from both a commercial-grade sample and one produced from coal fly ash in methane emissions abatement was evaluated in this study. The ion-exchange process was used to load the metal ions in zeolite A samples. The methane conversion efficiency by the samples was studied under various parameters including the amount of metal loading (7.3-19.4 wt%), reaction temperature (25-500 degrees C), space velocity (8400-41 900 h(-1)), and methane concentration (0.5-3.2 vol %). At 500 degrees C, the original commercial-grade zeolite A catalyzed 3% of the methane only, whereas the addition of different percentages of metals in the sample enhanced the methane conversion efficiency by 40-85%. Greater methane conversion was observed by increasing the percentage of metals added to the zeolite even though the BET surface area of the zeolite consequently decreased. Higher percentage methane conversion over the multi-ion-exchanged samples was observed at lower space velocities indicating the importance of the mass diffusion of reactants and products in the zeolite. Compared to the multi-ion-exchanged zeolite A prepared from the commercial-grade zeolite, the one produced from coal fly ash demonstrated similar performances in methane emissions abatement, showing the potential use of this low cost recycled material in gaseous pollutant treatment.

  15. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    In this literature report is provided a status for the present knowledge level on ash properties when co-firing coal and biomass. The fly ash formed in boilers using co-firing of coal and straw do have a large influence on ash deposit formation, boiler corrosion, fly ash utilization and operation...

  16. Leaching and soil/groundwater transport of contaminants from coal combustion residues

    International Nuclear Information System (INIS)

    Hjelmar, O.; Hansen, E.A.; Larsen, F.; Thomassen, H.

    1992-01-01

    In this project the results of accelerated laboratory leaching tests on coal fly ash and flue gas desulfurization (FGD) products from the spray dryer absorption process (SDA) were evaluated by comparison to the results of large scale lysimeter leaching tests on the same residues. The mobility of chromium and molybdenum - two of the kev contaminants of coal combustion residue leachates - in various typical soil types was investigated by batch and column methods in the laboratory. Some of the results were confirmed by field observations at an old coal fly ash disposal site and by a lysimeter attenuation test with coal fly ash leachate on a clayed till. A large number of groundwater transport models and geochemical models were reviewed, and two of the models (Gove-Stollenwerk and CHMTRNS) were modified and adjusted and used to simulate column attenuation tests performed in the laboratory. One of the models (Grove-Stollenwerk) was used to illustrate a recommended method of environmental impact assessment, using lysimeter leaching data and laboratory column attenuation data to describe the emission and migration of Mo from a coal fly ash disposal site

  17. Temporal and spatial variations in fly ash quality

    Science.gov (United States)

    Hower, J.C.; Trimble, A.S.; Eble, C.F.

    2001-01-01

    Fly ash quality, both as the amount of petrographically distinguishable carbons and in chemistry, varies in both time and space. Temporal variations are a function of a number of variables. Variables can include variations in the coal blend organic petrography, mineralogy, and chemistry; variations in the pulverization of the coal, both as a function of the coal's Hardgrove grindability index and as a function of the maintenance and settings of the pulverizers; and variations in the operating conditions of the boiler, including changes in the pollution control system. Spatial variation, as an instantaneous measure of fly ash characteristics, should not involve changes in the first two sets of variables listed above. Spatial variations are a function of the gas flow within the boiler and ducts, certain flow conditions leading to a tendency for segregation of the less-dense carbons in one portion of the gas stream. Caution must be applied in sampling fly ash. Samples from a single bin, or series of bins, m ay not be representative of the whole fly ash, providing a biased view of the nature of the material. Further, it is generally not possible to be certain about variation until the analysis of the ash is complete. ?? 2001 Elsevier Science B.V. All rights reserved.

  18. Mercury release from fly ashes and hydrated fly ash cement pastes

    Science.gov (United States)

    Du, Wen; Zhang, Chao-yang; Kong, Xiang-ming; Zhuo, Yu-qun; Zhu, Zhen-wu

    2018-04-01

    The large-scale usage of fly ash in cement and concrete introduces mercury (Hg) into concrete structures and a risk of secondary emission of Hg from the structures during long-term service was evaluated. Three fly ashes were collected from coal-fired power plants and three blend cements were prepared by mixing Ordinary Portland cement (OPC) with the same amount of fly ash. The releasing behaviors of Hg0 from the fly ash and the powdered hydrated cement pastes (HCP) were measured by a self-developed Hg measurement system, where an air-blowing part and Hg collection part were involved. The Hg release of fly ashes at room temperature varied from 25.84 to 39.69 ng/g fly ash during 90-days period of air-blowing experiment. In contrast, the Hg release of the HCPs were in a range of 8.51-18.48 ng/g HCP. It is found that the Hg release ratios of HCPs were almost the same as those of the pure fly ashes, suggesting that the hydration products of the HCP have little immobilization effect on Hg0. Increasing temperature and moisture content markedly promote the Hg release.

  19. Atmospheric emission of mercury due to combustion of steam coal and domestic coal in China

    Science.gov (United States)

    Wang, Shaobin; Luo, Kunli

    2017-08-01

    To study the mercury emission due to the combustion of steam coal and domestic coal in China, we analyzed the mercury contents of coal, fly ash, bottom ash and sluicing water in thermal power plants, steam boilers as well as domestic coal-stoves, in Shaanxi, Shanxi, Shandong and Yunnan Provinces. This study conduct an estimate of the Hg emission rates from steam coal and domestic coal combustion based on the method of mass distribution ratio of fly ash and bottom ash. The results show that the Hg emission rate of coal combustion in thermal power plants is about 50.21% (electrostatic precipitators + wet flue gas desulfurization), and that in heating boilers is about 67.23%, and 92.28% in industrial boilers without flue gas desulphurisation equipment. Furthermore, Hg emission rate is 83.61% due to domestic coal combustion in coal-stoves. The Hg emission amount into the atmosphere from power and heat generation, industrial boilers, domestic coal-stoves and spontaneous combustion of coal gangue is roughly estimated to be 133 ± 4, 100 ± 17, 11 ± 0.1 and 47 ± 26 tons in China in 2014, respectively, and the total Hg emission amount from this paper is estimated at 292 tons. The trends of Hg emission in China from 1991 to 2014 show an accelerating growth after 2002. The proportion of mercury emission due to thermal power, heating generation and industrial energy utilization continuously increased. The atmospheric emission of mercury due to combustion of steam coal, domestic coal and coal gangue accounts nearly 50% in total anthropogenic Hg emissions in China, indicating one of the largest sources of Hg emission in China which should draw more public and scientific attention in the future.

  20. Analysis of Content of Selected Critical Elements in Fly Ash

    Directory of Open Access Journals (Sweden)

    Makowska Dorota

    2016-03-01

    Full Text Available Pursuant to the new mineral policy of the European Union, searching for new sources of raw materials is required. Coal fly ash has long been considered as a potential source of a number of critical elements. Therefore, it is important to monitor the contents of the critical elements in fly ash from coal combustion. The paper presents the results of examinations of the contents of selected elements, i.e. beryllium, cobalt, chromium and germanium in fly ash from Polish power plants. The results of the conducted investigations indicate that the examined ash samples from bituminous coal combustion cannot be treated as a potential source of the analysed critical elements. The content of these elements in ash, though slightly higher than their average content in the sedimentary rocks, is, however, not high enough to make their recovery technologically and economically justified at this moment.

  1. Paradise (and Herrin) lost: Marginal depositional settings of the Herrin and Paradise coals, Western Kentucky coalfield

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, J.M.K.; Shultz, M.G.; Rimmer, S.M. [University of Kentucky, Department of Earth and Environmental Sciences, Lexington, KY 40506 (United States); Hower, J.C. [University of Kentucky, Center for Applied Energy Research, 2540 Research Park Dr., Lexington, KY 40511 (United States); Popp, J.T. [Alliance Coal, Lexington, KY 40503 (United States)

    2008-08-05

    This is the fourth installment in a series of papers on the Asturian (Westphalian D) disrupted mire margins, termed the ''ragged edge'' in previous papers, and limestone distributions in the Herrin-Baker coal interval in the Western Kentucky extension of the Illinois Basin. New data, indicating in-situ peat development and marine influence, collected from the first in-mine exposure of this interval are presented. Borehole data from the region are examined in the context of ''ragged edge'' exposures and a carbonate platform depositional model for this portion of the Illinois Basin is presented. This shows that deposition of the sequence was influenced both by the underlying sediments and by a marine transgression. The former influence is seen in variations in coal and limestone thickness over sandstone-filled channels versus over shale bayfill deposits. The latter is marked by the progressive upwards loss of coal benches (i.e., the bottom bench of both coals is the most extensive and the Herrin coal is more extensive than the overlying Paradise coal) and by marine partings in both coals. Further, the brecciated margins seen in both coal seams are similar to brecciated peats encountered along the Everglades margins of Southwest Florida. Overall coal distributions are similar to both those along the Everglades margins and those along a transect from the Belize coast to Ambergis Caye. (author)

  2. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    International Nuclear Information System (INIS)

    Ivan Diaz-Loya, E.; Allouche, Erez N.; Eklund, Sven; Joshi, Anupam R.; Kupwade-Patil, Kunal

    2012-01-01

    Highlights: ► Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. ► Means of stabilizing the incinerator ash for use in construction applications. ► Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. ► Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA’s Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson’s ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg

  3. An overview of the western Maryland coal combustion by-products/acid mine drainage initiative, Part 1 of 3

    International Nuclear Information System (INIS)

    Petzrick, P.; Rafalko, L.G.; Lyons, C.

    1996-01-01

    The western Maryland coal combustion by-products (CCB)/acid mine drainage (AMD) initiative (the Initiative) is a public-private partnership exploring the use of CCBs to eliminate AMD from Maryland's abandoned coal mines. This dynamic partnership will sponsor a series of large scale experiments and demonstrations addressing the engineering problems that characterize the beneficial application of CCBs to prevent acid formation on a scale that is consistent with the large quantity of these materials that will be produced by power plants in or near western Maryland. The initial demonstration is the filling and sealing of a small hand dug mine (the Frazee Mine) under approximately ninety feet of overburden on Winding Ridge near Friendsville, Maryland. A second demonstration is being planned for the Kempton mine complex. Subsequent demonstrations will focus on reducing the cost of materials handling and mine injection and solving the engineering problems characteristic of filling abandoned mines in Maryland. The Initiative is the flagship activity in Maryland's overall Ash Utilization Program, the goal of which is to promote beneficial use of all coal combustion by-products

  4. Natural radioactivity product from coal burning in PLTU Pacitan

    International Nuclear Information System (INIS)

    Sukirno; Sri Murniasih; Rosidi; Sutanto WW

    2016-01-01

    Monitoring of radioactivity in the coal-fired power plant has been carried out in the CAST-NAA laboratory at 2015. Monitoring includes analysis of soil, water, fly ash, bottom ash and coal. The basic purpose of this work is the investigation of natural radionuclide contents in coal and the actual product samples in the Pacitan power plant as a first step to estimate the radioactive in the vicinity. This paper presents the results of the analysis of radioactivity in samples of coal, fly ash and bottom ash as well as environment samples of soil and water. Ra-226, Th-232, K-40, U-235, U-238, and Pb-210 Natural radionuclides are determined by gamma spectrometry with HPGe detector. Natural radionuclide in fine grain coal, bottom ash and fly ash have concentrations range (162.182 to 0.057) Bq/kg. Radioactivity contained in soil ranges (0.041 to 169.34) Bq/kg, whereas in water ranges (0.003 to 0.045) Bq/L. According Perka BAPETEN. No. 7 of 2013. On Boundary Value Environmental Radioactivity, the results of measurement analysis contained water around the power plant Pacitan still below the limit values allowed by BAPETEN. (author)

  5. Characteristic fly-ash particles from oil-shale combustion found in lake sediments

    International Nuclear Information System (INIS)

    Alliksaar, T.; Hoerstedt, P.; Renberg, I.

    1998-01-01

    Fly-ash particles accumulate in sediments and can be used to assess spatial distribution and temporal trends of atmospheric deposition of pollutants derived from high temperature combustion of fossil fuels. Previous work has concerned fly-ash derived from oil and coal. Oil-shale is the main fossil fuel used in Estonia and a major source of atmospheric pollution in the Baltic states. To assess if oil-shale power plants produce specific fly-ash particles scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were used to compare fly-ash particles from oil-shale combustion with particles from oil and coal combustion. Two types were analysed, large black (10-30μm) and small glassy (< 5 μm) spheroidal particles. Although article morphology to some extent is indicative of the fuel burnt, morphological characters are not sufficient to differentiate between particles of different origin. However, the results indicate that with EDX analysis the fly-ash from oil-shale can be distinguished form oil and coal derived particles in environmental samples. Concentrations of large black and small glassy spheroidal fly-ash particles in a sediment core from an Estonian lake showed similar trends to oil-shale combustion statistics from Estonian power plants. 27 refs., 6 figs., 2 tabs

  6. Material and structural characterization of alkali activated low-calcium brown coal fly ash.

    Science.gov (United States)

    Skvára, Frantisek; Kopecký, Lubomír; Smilauer, Vít; Bittnar, Zdenek

    2009-09-15

    The waste low-calcium Czech brown coal fly ash represents a considerable environmental burden due to the quantities produced and the potentially high content of leachable heavy metals. The heterogeneous microstucture of the geopolymer M(n) [-(Si-O)(z)-Al-O](n).wH(2)O, that forms during the alkaline activation, was examined by means of microcalorimetry, XRD, TGA, DSC, MIP, FTIR, NMR MAS ((29)Si, (27)Al, (23)Na), ESEM, EDS, and EBSD. The leaching of heavy metals and the evolution of compressive strength were also monitored. The analysis of raw fly ash identified a number of different morphologies, unequal distribution of elements, Fe-rich rim, high internal porosity, and minor crystalline phases of mullite and quartz. Microcalorimetry revealed exothermic reactions with dependence on the activator alkalinity. The activation energy of the geopolymerization process was determined as 86.2kJ/mol. The X-ray diffraction analysis revealed no additional crystalline phases associated with geopolymer formation. Over several weeks, the (29)Si NMR spectrum testified a high degree of polymerization and Al penetration into the SiO(4) tetrahedra. The (23)Na NMR MAS spectrum hypothesized that sodium is bound in the form of Na(H(2)O)(n) rather than Na(+), thus causing efflorescence in a moisture-gradient environment. As and Cr(6+) are weakly bonded in the geopolymer matrix, while excellent immobilization of Zn(2+), Cu(2+), Cd(2+), and Cr(3+) are reported.

  7. Influence of relative trophic position and carbon source on selenium bioaccumulation in turtles from a coal fly-ash spill site

    International Nuclear Information System (INIS)

    Van Dyke, James U.; Hopkins, William A.; Jackson, Brian P.

    2013-01-01

    Selenium (Se) is a bioaccumulative constituent of coal fly-ash that can disrupt reproduction of oviparous wildlife. In food webs, the greatest enrichment of Se occurs at the lowest trophic levels, making it readily bioavailable to higher consumers. However, subsequent enrichment at higher trophic levels is less pronounced, leading to mixed tendencies for Se to biomagnify. We used stable isotopes ( 15 N and 13 C) in claws to infer relative trophic positions and relative carbon sources, respectively, of seven turtle species near the site of a recently-remediated coal fly-ash spill. We then tested whether Se concentrations differed with relative trophic position or relative carbon source. We did not observe a strong relationship between δ 15 N and Se concentration. Instead, selenium concentrations decreased with increasing δ 13 C among species. Therefore, in an assemblage of closely-related aquatic vertebrates, relative carbon source was a better predictor of Se bioaccumulation than was relative trophic position. -- Highlights: •Stable isotope results showed trophic separation among turtle species. •Selenium concentrations did not biomagnify with relative trophic position. •Selenium concentrations decreased with increasing δ 13 C among species. •Carbon source influenced Se bioaccumulation in an assemblage of related vertebrates. -- Stable isotope differences indicate that claw selenium concentrations differ among relative carbon sources, and not among relative trophic positions, in an assemblage of aquatic turtles

  8. Characterization of North American lignite fly ashes. II. XRD Mineralogy

    International Nuclear Information System (INIS)

    McCarthy, G.J.; Johansen, D.M.; Thedchanamoorthy, A.; Steinwand, S.J.; Swanson, K.D.

    1988-01-01

    X-ray powder diffraction has been used to determine the crystalline phase mineralogy in samples of fly ash from each of the lignite mining areas of North America. The characteristic phases of North Dakota lignite fly ashes were periclase, lime, merwinite and the sulfate phases anhydrite, thenardite and a sodalite-structure phase. Mullite was absent in these low-Al/sub 2/O/sub 3/ ashes. Montana lignite ash mineralogy had characteristics of ND lignite and MT subbituminous coal fly ashes; mullite and C/sub 3/A were present and the alkali sulfates were absent. Texas and Louisiana lignite fly ashes had the characteristic mineralogy of bituminous coal fly ash: quartz, mullite, ferrite-spinel (magnetite) and minor hematite. Even though their analytical CaO contents were 7-14%, all but one lacked crystalline CaO-containing phases. Lignite fly ashes from Saskatchewan were generally the least crystalline of those studied and had a mineralogy consisting of quartz, mullite, ferrite spinel and periclase. Quantitative XRD data were obtained. The position of the diffuse scattering maximum in the x-ray diffractograms was indicative of the glass composition of the lignite fly ash

  9. Determination of coalbed methane potential and gas adsorption capacity in Western Kentucky coals

    Science.gov (United States)

    Mardon, S.M.; Takacs, K.G.; Hower, J.C.; Eble, C.F.; Mastalerz, Maria

    2006-01-01

    The Illinois Basin has not been developed for Coalbed Methane (CBM) production. It is imperative to determine both gas content and other parameters for the Kentucky portion of the Illinois Basin if exploration is to progress and production is to occur in this area. This research is part of a larger project being conducted by the Kentucky Geological Survey to evaluate the CBM production of Pennsylvanian-age western Kentucky coals in Ohio, Webster, and Union counties using methane adsorption isotherms, direct gas desorption measurements, and chemical analyses of coal and gas. This research will investigate relationships between CBM potential and petrographic, surface area, pore size, and gas adsorption isotherm analyses of the coals. Maceral and reflectance analyses are being conducted at the Center for Applied Energy Research. At the Indiana Geological Survey, the surface area and pore size of the coals will be analyzed using a Micrometrics ASAP 2020, and the CO2 isotherm analyses will be conducted using a volumetric adsorption apparatus in a water temperature bath. The aforementioned analyses will be used to determine site specific correlations for the Kentucky part of the Illinois Basin. The data collected will be compared with previous work in the Illinois Basin and will be correlated with data and structural features in the basin. Gas composition and carbon and hydrogen isotopic data suggest mostly thermogenic origin of coalbed gas in coals from Webster and Union Counties, Kentucky, in contrast to the dominantly biogenic character of coalbed gas in Ohio County, Kentucky.

  10. Coal combustion by-products: A survey of use and disposal provisions

    International Nuclear Information System (INIS)

    Jagiella, D.M.

    1993-01-01

    Over 50% of all electricity in the United States is generated by the combustion of coal. Currently, coal fired power plants produce approximately 85 million to 100 million tons of coal combustion byproducts each year. The generation of these byproducts is expected to increase to 120 million tons by the year 2000, an increase of about 72% over 1984 levels. There are four basic types of byproducts produced by coal combustion - fly as, bottom ash, boiler slag, and flue gas desulfurization sludge (FGD), and are useful as engineering materials in a variety of applications. Fly ash represents nearly 75% of all ash wastes generated in the United States. Fly ash is a powder like substance with bonding properties. The properties of fly ash depend on the type of boiler utilized. The collected fly ash can be used to partially replace cement in concrete or the clay tit bricks or as part of nine reclamation. The technology for use of fly ash in cement concrete and road bases is well developed and has been practical for many years. The United States Environmental Protection Agency (USEPA) has recognized the applications of fly ash and promulgated a federal procurement guideline for the use of fly ash in cement and concrete. Although fly ash is the second most widely used waste product, much opportunity remains to expand the use of this product, In 1984, 80% of all fly ash was not recycled but rather disposed of, Ash particles that do not escape in flue gas as fly ash become bottom ash or boiler slag. Bottom ash and boiler slag settles on the bottom of the power plant's boiler. Bottom ash is a sand like substance which has some bonding capability. Depending on the type of boiler, tile bottom ash may be open-quotes dry bottom ashclose quotes or open-quotes wet bottom ashclose quotes, Wet bottom ash falls in a molten state into water

  11. Coal fly ash as a source of iron in atmospheric dust.

    Science.gov (United States)

    Chen, Haihan; Laskin, Alexander; Baltrusaitis, Jonas; Gorski, Christopher A; Scherer, Michelle M; Grassian, Vicki H

    2012-02-21

    Anthropogenic coal fly ash (FA) aerosol may represent a significant source of bioavailable iron in the open ocean. Few measurements have been made that compare the solubility of atmospheric iron from anthropogenic aerosols and other sources. We report here an investigation of iron dissolution for three FA samples in acidic aqueous solutions and compare the solubilities with that of Arizona test dust (AZTD), a reference material for mineral dust. The effects of pH, simulated cloud processing, and solar radiation on iron solubility have been explored. Similar to previously reported results on mineral dust, iron in aluminosilicate phases provides the predominant component of dissolved iron. Iron solubility of FA is substantially higher than of the crystalline minerals comprising AZTD. Simulated atmospheric processing elevates iron solubility due to significant changes in the morphology of aluminosilicate glass, a dominant material in FA particles. Iron is continuously released into the aqueous solution as FA particles break up into smaller fragments. These results suggest that the assessment of dissolved atmospheric iron deposition fluxes and their effect on the biogeochemistry at the ocean surface should be constrained by the source, environmental pH, iron speciation, and solar radiation.

  12. Fly ash aggregates. Vliegaskunstgrind

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A study has been carried out into artificial aggregates made from fly ash, 'fly ash aggregates'. Attention has been drawn to the production of fly ash aggregates in the Netherlands as a way to obviate the need of disposal of fly ash. Typical process steps for the manufacturing of fly ash aggregates are the agglomeration and the bonding of fly ash particles. Agglomeration techniques are subdivided into agitation and compaction, bonding methods into sintering, hydrothermal and 'cold' bonding. In sintering no bonding agent is used. The fly ash particles are more or less welded together. Sintering in general is performed at a temperature higher than 900 deg C. In hydrothermal processes lime reacts with fly ash to a crystalline hydrate at temperatures between 100 and 250 deg C at saturated steam pressure. As a lime source not only lime as such, but also portland cement can be used. Cold bonding processes rely on reaction of fly ash with lime or cement at temperatures between 0 and 100 deg C. The pozzolanic properties of fly ash are used. Where cement is applied, this bonding agent itself contributes also to the strength development of the artificial aggregate. Besides the use of lime and cement, several processes are known which make use of lime containing wastes such as spray dry absorption desulfurization residues or fluid bed coal combustion residues. (In Dutch)

  13. Species structure of sand fly (Diptera: Psychodidae fauna in the Brazilian western Amazon

    Directory of Open Access Journals (Sweden)

    Luiz Herman Soares Gil

    2009-11-01

    Full Text Available We surveyed areas of the state of Rondônia in western Amazon for phlebotomine, which are potential vectors of leishmaniasis. A total of 5,998 specimens were captured, resulting in the identification of 48 species within the Lutzomyia (99.98% and Brumptomyia (0.02% genera. The predominant species was Lutzomyia davisi, followed by Lutzomyia umbratilis, Lutzomyia llanosmartinsi, Lutzomyia c. carrerai, Lutzomyia dendrophyla, Lutzomyia nevesi and Lutzomyia whitmani. All sand flies identified as vectors for cutaneous leishmaniasis in Brazil, i.e., Lu. davisi, Lu. umbratilis, Lu. c. carrerai and Lu. whitmani, were found in the surveyed areas.

  14. Risk zones of human Leishmaniases in the Western Mediterranean basin: correlations between vector sand flies, bioclimatology and phytosociology.

    Science.gov (United States)

    Rispail, Philippe; Dereure, Jacques; Jarry, Daniel

    2002-06-01

    Correspondence analysis was applied to sand fly sampling in 865 stations from the Western Mediterranean basin. The position of each of 24 species was determined with respect to the bioclimatic belts. Thus, the multidimensional analyses manifest clear correlations between bioclimatic belts and their expression in the area, the phytosociological groupings, and vector species of visceral and cutaneous leishmaniases. The transfer of these data to usual maps allows to delimit the geographical distribution of these diseases in the Western Mediterranean basin and contributes to the determination, in a rational manner, of the high risk zones.

  15. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  16. Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Belyaeva, O.N.; Haynes, R.J. [University of Queensland, St Lucia, Qld. (Australia)

    2009-11-15

    Increasing proportions of coal fly ash were co-composted with municipal green waste to produce manufactured soil for landscaping use. Only the 100% green waste treatment reached a thermophilic composting phase ({ge} 50{sup o}C) which lasted for 6 days. The 25% and 50% ash treatments reached 36-38{sup o}C over the same period while little or no self-heating occurred in the 75% and 100% ash treatments. Composted green waste had a low bulk density and high total and macro-porosity. Addition of 25% ash to green waste resulted in a 75% increase in available water holding capacity. As the proportions of added ash in the composts increased, the organic C, soluble C, microbial biomass C, basal respiration and activities of beta-glucosidase, L-asparaginase, alkali phosphatase and arylsulphatase enzymes in the composted products all decreased. It could be concluded that addition of fly ash to green waste at a proportion higher than 25% did not improve the quality parameters of manufactured soil.

  17. Low-level radiation in coals utilized and ashes produced at New York State electric utilities

    International Nuclear Information System (INIS)

    Hornibrook, C.

    1981-01-01

    Eight coal-fired power plants in New York State were sampled for coal, fly ash and bottom ash. Samples were analyzed for uranium 238, uranium 235, uranium 234, thorium 232, thorium 230, radium 226, lead 210, polonium 210, radon 222. The leachate of six fly ash samples was analyzed for all of the above except radon 222. Some data on fly ash analysis are included

  18. Plant growth and trace-element uptake on acidic coal refuse amended with lime or fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Jastrow, J.D. (Argonne National Lab., IL); Zimmerman, C.A.; Dvorak, A.J.; Hinchman, R.R.

    1981-04-01

    Two commonly used revegetation species, Kentucky 31 tall fescue (Festuca arundinacea Schreb.) and Lincoln smooth brome (Bromus inermis Leyss.), were grown for 60 days in pots containing coarse coal mine refuse (referred to as gob, pH = 3.5) amended with either lime or alkaline powerplant fly ash. Both species were also grown in pots containing a silt loam surface soil as a control. Morphological growth parameters were measured over time; dry weights and shoot/root ratios were determined at harvest. Concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V, and Zn in the plant shoots were determined by atomic absorption spectrophotometry. Plant growth of both species was not as good on either lime- or fly ash-amended gob as it was on surface soil; however, more vigorous growth occurred on lime-amended gob than on fly ash-amended gob. Significant differences (rho < 0.05) in the tissue concentrations of Cd, Co, Fe, Hg, Mn, Pb, V, and Zn were found among the plants grown on the three substrates. Except for Hg and Pb, these elements were higher in plants grown on at least one of the amended-gob substrates than in plants grown on surface soil. Significant substrate differences were not observed for Al, As, Cr, Cu, Ni, and Se. The tissue concentrations of some elements - notably Al, Cu, Fe, Mn, V, and Zn - were high enough in plants from one or more of the substrates to either approach or exceed concentrations which have been reported to be associated with toxic effects in some plant species.

  19. Composites Based on Fly Ash and Clay

    International Nuclear Information System (INIS)

    Fidancevska, E.; Jovanov, V.; Angusheva, B.; Srebrenkoska, V.

    2014-01-01

    Fly ash is a waste generated from the coal combustion during the production of electricity in the thermal power plants. It presents industrial by-product containing Technologically Enhanced Natural Occurring Radioactive Materials (TENORM) with the great potential for valorisation. Fly ash is successfully utilized in cement and concrete industry, also in ceramics industry as component for manufacturing bricks and tiles, and recently there are many investigations for production of glass-ceramics from fly ash. Although the utilization of fly ash in construction and civil engineering is dominant, the development of new alternative application for its further exploitation into new products is needed. This work presents the possibility for fly ash utilization for fabricating dense composites based on clay and fly ash with the potential to be used in construction industry

  20. Micro-scale grain-size analysis and magnetic properties of coal-fired power plant fly ash and its relevance for environmental magnetic pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Blaha, U.; Sapkota, B.; Appel, E.; Stanjek, H.; Rosler, W. [University of Tubingen, Tubingen (Germany). Inst. of Geoscience

    2008-11-15

    Two fly ash samples from a black coal-fired power plant (Bexbach, Germany) were investigated for their magnetic properties, particle structure, grain-size distribution and chemical composition. Grain-size distribution was determined on bulk samples and on magnetic extracts. Magnetic susceptibility of different grain-size fractions was analyzed with respect to the according amount of fractions, high- and low-temperature dependence of magnetic susceptibility and thermal demagnetization of IRM identified magnetite and hematite as magnetic phases. Magnetic spherules were quantitatively extracted from bulk fly ash samples and examined using SEM/EDX analysis. Particle morphology and grain-size analysis on the magnetically extracted material were studied. Individual spherule types were identified and internal structures of selected polished particles were investigated by SEM and EDX analyses. Main element contents of the internal structures which consist of 'magnetite' crystals and 'glassy' matrix were systematically determined and statistically assessed. The chemical data of the micro-scale structures in the magnetic spherules were compared with XRF data from bulk material, revealing the relative element distribution in composed magnetic spherules. Comparison of the bulk sample grain-size (0.5-300 {mu}m) and grain-size spectra from magnetic extracts (1-186.5 {mu}m) shows that strongly magnetic particles mainly occur in the fine fractions of < 63 {mu}m. This study comprises a comprehensive characterization of coal-fired power plant fly ash, using magnetic, chemical, and microscopic methods. The results can serve as reference data for a variety of environmental magnetic studies.

  1. Parameters influencing the variation in mercury emissions from an Alberta power plant burning high inertinite coal over thirty-eight weeks period

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, F.; Reyes, J. [Environmental Studies, Geological Survey of Canada-Calgary, 3303-33rd Street N.W., Calgary, Alberta (Canada T2L 2A7); Schulz, J.; Hollman, D. [EPCOR 10065 Jasper Ave Edmonton, Alberta (Canada T5J 3B1); Rose, D. [Air Pollution Prevention Directorate Environment Canada, 315 St-Joseph Blvd Hull, Quebec (Canada K1A 0H3)

    2006-01-03

    Feed coals and fly ashes from a coal-fired power station burning Alberta subbituminous coal were examined for a period of thirty-eight weeks to determine the variation in emitted mercury. Feed coal samples were analyzed for proximate, calorific value and Hg content, while fly ash samples were examined for C and Hg contents. The maceral content of the feed coal was also determined. The emitted mercury was calculated and compared to mercury emitted from the stack according to a mass-balance calculation from a previous study for the same station. Mercury contents ranged from 0.029 to 0.066 mg/kg for feed coal, and from 0.069 to 0.112 mg/kg for fly ash. The carbon/char in fly ash was separated into reactive (vitrinitic/bimacerate) and less reactive (inertinitic) chars using ZnBr{sub 2} at specific gravities of 1.7, 2.0, and 2.25 to 2.4. The result shows that there is a positive correlation between the carbon and mercury content of the fly ash. The reactive char particles in the fly ash may be responsible for the capture mercury in fly ash. The percentage of estimated captured mercury by fly ash increases with increasing carbon content (%) in fly ash. The percentage of emitted mercury for the period of 38 weeks is estimated to be within the range of 49% to 76% of the total input of mercury. (author)

  2. Technical progress review of extraction of uranium from fly ash

    International Nuclear Information System (INIS)

    Gao Renxi; Gao Junning; Wu Qingming; Chen Gang; Wan Hongjin; Zhang Ziyue

    2014-01-01

    The increasing of fly ash in coal-fired power plants at home and abroad year by year and the potential impacts to the environment attracted media attention. Although the extraction of uranium from the fly ash in coal-fired power plants had optional process from technique aspect and sufficient preliminary researches, but considering the low grade of the uranium in fly ash and particularity of the mineral composition, it is easy to have a high cost of extraction. As a consequence, it is not included in the development plan of uranium mining and metallurgy. The present applications of fly ash are only building materials, building roads and pit valley backfill, the resource utilization rate was low and was still in its early stages of development and application. In view of this, the research advances and the latest development trends of extraction of uranium from fly ash at home and abroad were introduced from the technical aspect, and the beneficial analyzes of the prospect and advices to this industry were given. (authors)

  3. Selective leaching of coal and coal combustion solid residues

    Energy Technology Data Exchange (ETDEWEB)

    O`Keefe, C.A. [University of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center

    1996-12-31

    Selective leaching of coal and fly ash were carried out in order to predict the potential for environmental impact as well as other properties related to the aqueous solubility of inorganic constituents. Chemical fractionation can help to identify the distribution of major, minor, and trace constituents. 35 refs., 10 tabs.

  4. Investigations of the emission of radionuclides from coal fired power plants

    International Nuclear Information System (INIS)

    Chatterjee, B.; Hoetzl, H.; Rosner, G.; Winkler, R.

    1980-02-01

    Samples of coal, brown coal, bottom ash, collected fly ash and 4 sieve fractions of collected fly ash from various electrostatic filter stages as well as samples of escaping fly ash, all taken simultaneously on 3 operating-days, have been investigated. In samples from coal through fly ash sieve fractions U-238, Th-232, Ra-226, Pb-210 and K-40 have been determined by γ-spectrometry, Po-210 by chemical separation with subsequent α-spectrometry. In escaping fly ash samples, which are available in small amounts only (ca. 1 g or less), after chemical separation U-238, U-234, Th-232, Th-230, Th-228 and Po-210 were determined by α-spectrometry and Pb-210 by low-level β-counting. Furthermore, Po-210 has been determined by direct α-spectrometry in several particle size fractions collected with a cascade impactor from the exhaust stream. The analytical procedures, which partially had to be developed for the purposes of the present study, are presented shortly. Specific activities of escaping fly ash are in good agreement with specific activities of the fly ash collected from the last electrostatic precipitator stage, provided that, for the latter, the particle size distribution in escaping fly ash is taken into account. Using these specific activities annual air-borne radionuclide emissions are calculated. The resulting activity concentrations in ground level air are compared to values of natural radioactivity. (orig./HP) [de

  5. Partitioning of elements during coal combustion and leaching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wen-feng; Qin Yong; Song Dang-yu; Wang Jun-yi [China University of Mining & Technology, Xuzhou (China). School of Resources and Earth Science

    2009-04-15

    The mineral component and content of sulfur and 42 major and trace elements of the feed coal, fly and bottom ashes collected from Shizuishan coal-fired power plant, Ningxia, China were analyzed using AFS, INAA, ICP-MS, ICP-AES, XRD. Based on the coal combustion and leaching experiments, the partitioning of these elements during coal combustion and the leaching behavior of the 11 potentially hazardous elements, including As, Cd, Co, Cr, Hg, Mo, Ni, Pb, Se, Th and U were investigated. The results show that the distribution of elements in the fly and bottom ashes is controlled by their volatilities and modes of occurrence in the coal. The degree of volatilization of elements may be mainly associated with boiling/melting points of these elements and their compounds. The elements easily volatilized, organically bound or associated with sub-micrometer and nano minerals (e.g. Al and Na) tend to be enriched in the fine fractions of fly ash, and most elements do not vaporize which are approximately equally partitioned in the fly and bottom ashes. The emission rates of As, Cr, K, Mg, Mn, Mo, Pb, Sb, and Zn are notably influenced by the temperature ranging from 877 to 1300{sup o}C. The leaching behavior of elements depend significantly on their geochemical properties and modes of occurrence. The elements with a low degree of volatilization are not easily leached, while volatile elements easily leached under the acid conditions. Arsenic, B Br, Cd, Cu, Hg, Pb, S, Sb and Se show a higher emission rate during coal combustion, and the leached concentrations of Cd, Co, Mo, Ni and U in the acid media exceed their limited concentrations recommended in relevant environment quality standards for water, which will harm the environment. 32 refs., 4 figs., 4 tabs.

  6. Production of ceramics from coal fly ash

    Directory of Open Access Journals (Sweden)

    Angjusheva Biljana

    2012-01-01

    Full Text Available Dense ceramics are produced from fly ash from REK Bitola, Republic of Macedonia. Four types of fly ash from electro filters and one from the collected zone with particles < 0.063 mm were the subject of this research. Consolidation was achieved by pressing (P= 133 MPa and sintering (950, 1000, 1050 and 11000C and heating rates of 3 and 100/min. Densification was realized by liquid phase sintering and solid state reaction where diopside [Ca(Mg,Al(Si,Al2O6] was formed. Ceramics with optimal properties (porosity 2.96±0.5%, bending strength - 47.01±2 MPa, compressive strength - 170 ±5 MPa was produced at 1100ºC using the heating rate of 10ºC/min.

  7. Impact assessment of dredging to remove coal fly ash at the Tennessee Valley Authority Kingston Fossil plant using fathead minnow elutriate exposures.

    Science.gov (United States)

    Stanley, Jacob K; Kennedy, Alan J; Bednar, Anthony J; Chappell, Mark A; Seiter, Jennifer M; Averett, Daniel E; Steevens, Jeffery A

    2013-04-01

    On December 22, 2008, failure of an earthen containment structure resulted in the release of approximately 4.1 million m(3) of coal fly ash into the Emory River and the surrounding area from the Tennessee Valley Authority Kingston Fossil Plant near Kingston, Tennessee, USA. The purpose of the present study was to assess the potential of dredging activities performed to remove the fly ash from the river to result in increased risk to pelagic fish, with special consideration of mobilization of metals. Elutriates were created using two sources of fly ash by bubbling with air over 10 d. This elutriate preparation method was designed to represent worst-case conditions for oxidation, metal release, and dissolution. Larval and juvenile Pimephales promelas underwent 10-d exposures to these elutriates. Larval end points included survival and biomass, and juvenile end points included survival, length, biomass, liver somatic index, and bioaccumulation. No significant toxicity was observed. Bioaccumulation of metals in juveniles was found to be primarily attributable to metals associated with particles in the gut. Results suggest little potential for toxicity to related fish species due to fly ash removal dredging activities given the extreme conditions represented by the elutriates in the present study. Copyright © 2013 SETAC.

  8. Speciation of arsenic and selenium during leaching of fly ash

    NARCIS (Netherlands)

    Hoek, E.E. van der

    1995-01-01

    The leaching (release) of large amounts of oxyanions, such as those of arsenic and selenium, is an major environmental problem when it comes to the disposal or use of coal fly ash. To predict environmentally safe conditions for the disposal or use of fly ash in, for example,

  9. Risk Zones of Human Leishmaniases in the Western Mediterranean Basin: Correlations between Vector Sand Flies, Bioclimatology and Phytosociology

    Directory of Open Access Journals (Sweden)

    Philippe Rispail

    2002-06-01

    Full Text Available Correspondence analysis was applied to sand fly sampling in 865 stations from the Western Mediterranean basin. The position of each of 24 species was determined with respect to the bioclimatic belts. Thus, the multidimensional analyses manifest clear correlations between bioclimatic belts and their expression in the area, the phytosociological groupings, and vector species of visceral and cutaneous leishmaniases. The transfer of these data to usual maps allows to delimit the geographical distribution of these diseases in the Western Mediterranean basin and contributes to the determination, in a rational manner, of the high risk zones.

  10. National Coal Quality Inventory (NACQI)

    Energy Technology Data Exchange (ETDEWEB)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  11. Distribution of trace elements in Western Canadian coal ashes

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, B I; Brown, J R; Fyfe, W S; Peirce, M; Winder, C G

    1981-01-01

    Concentrations of 52 minor elements in coal ash were determined using spark source mass spectroscopy. Hg levels in raw coal were investigated by cold vapour atomic absorption spectrophotometry. The concentration of elements are compared to other available data and to levels in the Earth's crust. F levels in coal ash exceed 500/sub g-1/ and may be greater than 1 wt% om raw coal. Approximately half the elements (B, S, Ni, Zn, Ga, Se, Sr, Y, Mo, Sn, Sb, I, Ba, Pr, Nd, Sm, Eu, Ho, Hf, Pt, Hg, Pb, Tl, Bi, U) investigated are enriched in the coal ash with respect to the Earth's crust. The ranges in minor element concentrations in coal ash and coal from different global regions are very similar.

  12. Adsorption characteristics of Cs"+ onto artificial zeolites synthesized from coal fly ash and diatomite

    International Nuclear Information System (INIS)

    Johan, Erni; Yoshida, Kohei; Itagaki, Yoshiteru; Aono, Hiromichi; Munthali, Moses Wazingwa; Matsue, Naoto

    2015-01-01

    The radioactive decontamination of water, soil and other materials requires cheap and effective adsorbents. Artificial zeolites synthesized from an industrial waste (coal fly ash: Na-P1 type zeolite) and a natural material (diatomite: mordenite type zeolite) have a high Cs"+ adsorptivity in the adsorption experiments using 0.1 g of the zeolite and 50 mL of up to 7.5 mM CsCl. The coexisting cation suppressed the Cs"+ adsorption onto the zeolites, and the effect of the suppression was in the order, K"+ > Na"+ > Ca"2"+ > Mg"2"+. A thermodynamic analysis proved that the Cs"+ adsorption onto the two zeolites was exothermic favoring a lower temperature. The artificial mordenite showed a greater Cs"+ adsorption strength, higher distribution coefficient and lower ΔG°, especially at low Cs"+ concentrations. Adsorption isotherm analysis by the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models showed a greater Cs"+ adsorption selectivity for the artificial mordenite even at a low pH. (author)

  13. Coal-water fuels - a clean coal solution for Eastern Europe

    International Nuclear Information System (INIS)

    Ljubicic, B.; Willson, W.; Bukurov, Z.; Cvijanovic, P.; Stajner, K.; Popovic, R.

    1993-01-01

    Eastern Europe currently faces great economic and environmental problems. Among these problems is energy provision. Coal reserves are large but cause pollution while oil and gas need to be used for export. Formal 'clean coal technologies' are simply too expensive to be implemented on a large scale in the current economic crisis. The promised western investment and technological help has simply not taken place, western Europe must help eastern Europe with coal technology. The cheapest such technology is coal-water fuel slurry. It can substitute for oil, but research has not been carried out because of low oil prices. Coal-water fuel is one of the best methods of exploiting low rank coal. Many eastern European low rank coals have a low sulfur content, and thus make a good basis for a clean fuel. Italy and Russia are involved in such a venture, the slurry being transported in a pipeline. This technology would enable Russia to exploit Arctic coal reserves, thus freeing oil and gas for export. In Serbia the exploitation of sub-Danube lignite deposits with dredging mining produced a slurry. This led to the use and development of hot water drying, which enabled the removal of many of the salts which cause problems in pulverized fuel combustion. The system is economic, the fuel safer to transport then oil, either by rail or in pipelines. Many eastern European oil facilities could switch. 24 refs

  14. Characterization of Candiota (South Brazil) coal and combustion by-product

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Marcal [Faculty of Chemistry, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga 6681 Predio 12B, 90619-900 Porto Alegre-RS (Brazil); Querol, Xavier [Institute of Earth Sciences ' Jaume Almera' , CSIC, c/Marti i Franques s/n, E-08028 Barcelona (Spain)

    2004-10-22

    Elemental composition and mineralogy of a high ash feed coal (ash: 49.7 wt.%), and its bottom and fly ash from a Brazilian power plant (Presidente Medici Power Plant or UTPM-446 MW) was determined using ICP-MS, ICP-AES, X-ray diffraction (XRD) and scanning electron micrography (SEM). Most trace elements in coal fall in the usual range determined for world coals. However, concentrations of some elements were higher than the expected for coals, including Cs, Rb and heavy rare earth elements (REEs). This might be due to the high content of detrital minerals of the studied coal, given that these elements are usually associated with clay minerals. Elements were classified into three groups based on the analysis of trace element concentrations in fly and bottom ashes, and enrichments or depletions of these concentrations in relation to the coal: Group I (volatile elements with subsequent condensation): As, B, Bi, Cd, Ga, Ge, Mo, Pb, S, Sb, Sn, Tl and Zn; Group II (no volatile elements enriched in bottom ash vs. fly ash): Ca, Fe, Mn, P, Ti and Zr; Group III (low volatile elements with no partitioning between fly and bottom ashes): Al, Ba, Be, Co, Cr, Cs, Hf, K, Li, Mg, Na, Ni, Rb, Sr, Th, U, W, Y and most of REE. The mass balance for trace elements obtained demonstrated that the volatile emission of the trace elements studied is very low. According to the leachable proportion obtained, the elements may be classified as follows: B (40-50%)>Mo>Cu>Ge=Li=Zn=As>, Ni, Sb, Tl, U>Ba, Cd, Sr, V (0.3-2%). For the other elements studied, the leachable fraction is in most cases <1% of the bulk content.

  15. Remediação de drenagem ácida de mina usando zeólitas sintetizadas a partir de cinzas leves de carvão Remediation of acid mine drainage using zeolites synthesized from coal fly ash

    Directory of Open Access Journals (Sweden)

    Denise Alves Fungaro

    2006-07-01

    Full Text Available Zeolitic material was synthesized from coal fly ashes (baghouse filter fly ash and cyclone filter fly ash by hydrothermal alkaline activation. The potential application of the zeolitic product for decontamination of waters from acid mine drainage was evaluated. The results showed that a dose of 30 g L-1 of zeolitic material allowed the water to reach acceptable quality levels after treatment. Both precipitation and cation-exchange processes accounted for the reduction in the pollutant concentration in the treated waters.

  16. Atlas of western surface-mined lands: coal, uranium, and phosphate

    International Nuclear Information System (INIS)

    Evans, A.K.; Uhleman, E.W.; Eby, P.A.

    1978-01-01

    The atlas contains available information on all coal, uranium, and phosphate surface mines in excess of 10 acres that were in operation prior to 1976 in the western 11 contiguous states plus North Dakota and South Dakota. It is assembled in a format that allows a systematic and comprehensive review of surface-mined lands so that appropriate areas can be selected for intensive biological assessment of natural and man-induced revegetation and refaunation. For each identified mine, the following information has been obtained wherever possible: geographic location and locating instructions, operator and surface and subsurface ownership, summary of the mining plan and methods, summary of the reclamation plan and methods, dates of operation, area affected by mining activities, reclamation history, where applicable, and current land use and vegetation conditions

  17. Assessing the potential for establishment of western cherry fruit fly using ecological niche modeling.

    Science.gov (United States)

    Kumar, Sunil; Neven, Lisa G; Yee, Wee L

    2014-06-01

    Sweet cherries, Prunus avium (L.) L., grown in the western United States are exported to many countries around the world. Some of these countries have enforced strict quarantine rules and trade restrictions owing to concerns about the potential establishment and subsequent spread of western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), a major quarantine pest of sweet cherry. We used 1) niche models (CLIMEX and MaxEnt) to map the climatic suitability, 2) North Carolina State University-Animal and Plant Health Inspection Service Plant Pest Forecasting System to examine chilling requirement, and 3) host distribution and availability to assess the potential for establishment of R. indifferens in areas of western North America where it currently does not exist and eight current or potential fresh sweet cherry markets: Colombia, India, Indonesia, Malaysia, Taiwan, Thailand, Venezuela, and Vietnam. Results from niche models conformed well to the current distribution of R. indifferens in western North America. MaxEnt and CLIMEX models had high performance and predicted climatic suitability in some of the countries (e.g., Andean range in Colombia and Venezuela, northern and northeastern India, central Taiwan, and parts of Vietnam). However, our results showed no potential for establishment of R. indifferens in Colombia, Indonesia, Malaysia, Taiwan, Thailand, Venezuela, and Vietnam when the optimal chilling requirement to break diapause (minimum temperature policy makers.

  18. Emerging trends in regional coal production

    International Nuclear Information System (INIS)

    Watson, W.D.

    1994-01-01

    At an average annual growth rate of 1.9%, the total national demand for coal will increase from 850 million short tons in 1985 to 2 billion short tons annually by the year 2030. A market simulation model (described in this paper) determines the regional pattern of coal production needed to meet these demands. Because compliance or low-sulfur coal resources are a low-cost option for meeting environmental regulations, they could be mined out substantially in the medium term. In the next 15 to 25 years, most of the Eastern compliance coal up to a mining cost of $40 per ton could be mined out and 4 billion short tons of Western compliance coal could be produced. By the year 2030, almost all Eastern low-sulfur coal could be mined out. Most Western compliance coal costing less than $20/ton could be mined out by 2030

  19. Main characteristics of the radioactive enrichment in ashes produced in coal-fired power stations

    International Nuclear Information System (INIS)

    Baeza, Antonio; Corbacho, Jose A.; Cancio, David; Robles, Beatriz; Mora, Juan C.

    2008-01-01

    Under contract with the Spain's 'Nuclear Safety Council', a study is being conducted of the nation's largest nominal output coal-fired power stations. Its purpose is to assess the radiological impact on workers and local populations due to this source of NORM activity. One of the aspects of particular interest is the study of the radioactive enrichment in the combustion wastes relative to the different coals used as fuel (usually local bituminous coal or lignite, or imported coal). These wastes consist of fly ash (mostly fine particles collected in electrostatic precipitators), and bottom ash (larger in size, and collected wet or dry in hoppers below the boilers). In general terms, the enrichment factors measured were between 2 and 18 for the radionuclides 40 K, 226 Ra, 232 Th, and 210 Po. The magnitude of this enrichment factor depended mainly on the ash content of each coal, and hence on the type of coal used as fuel and the specific operation cycle in the different power stations. For the radionuclides 40 K, 226 Ra, and 232 Th, the enrichment was relatively similar in value in the fly and bottom ashes produced by the different types of coal used in the power stations studied. For 210 Po, however, as was expected, the enrichment was much greater in the fly ash than in the bottom ash for each coal analyzed. (author)

  20. Effects of bluff-body burner and coal particle size on NOx emissions and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, L.S.; Cheng, J.F.; Zeng, H.C. [Huazhong University of Science and Technology, Wuhan (China). National Coal Combustion Lab.

    1999-12-01

    Investigations on air staging have been carried out using various coals with different degrees of fineness and a variety of burners with a 92.9 kw h{sup -1} tunnel furnace burning pulverized coal. It has been observed that using the bluff-body burner can reduce both the unburned carbon in fly ash and NOx emissions in the case of air staging. The experimental results show that air-staging combustion has a more remarkable effect on NOx reduction for higher-volatile coal than for lower-volatile coal. The results also show that there is a strong influence of coal particle size on NOx emissions and unburned carbon in the fly ash in the case of air staging. 13 refs., 12 figs., 2 tabs.

  1. Possibilities for stabilization of fly ash from REK 'Bitola' dump

    International Nuclear Information System (INIS)

    Petrushevska, Ljubica; Ivanovska, Pavlina; Ilievski, Zlatko; Peeva, Liljana

    2002-01-01

    The Coal Power Plants environmental problems, mainly, arise from deposited fly ash-solid particles which, under the influence of the wind, heavily pollute the atmospheric air. Prevention of the environmental problems, coming from spraying from the energetic dumps, is achieved with technical and biological stabilization of dumped fly ash. The choice of the stabilization means and methods depends on the physical-chemical properties of the ash. Therefore, the stabilization possibilities of REK 'Bitola' fly ash were investigated. (Original)

  2. Bacteria of Phlebotominae Sand Flies Collected in Western Iran

    Directory of Open Access Journals (Sweden)

    Somayeh Rafatbakhsh-Iran

    2015-08-01

    Full Text Available Microorganisms particularly bacteria presenting in insects such as Phlebotominae may play an important role in the epidemiology of human infectious disease. Nowadays, because of vector implications, the routine methods of controlling and spraying have no more beneficial effects on vectors and reservoirs. Little knows about the prevalence and diversity of sand fly bacteria. The main objective of this study was to determine the presence of bacteria of phlebotominae sand flies collected in Hamadan, west of Iran. This information is important in order to development of vector control strategies. The microbial flora of Phlebotomus papatasi and P. sergenti the main vector of Cutaneous Leishmaniasis in the old world, were investigated. We characterized 8 bacteria, including 5 Gram-negative bacteria: Acinetobacter lwoffii, Pseudomonas aeruginosa, Enterobacter cloacae, Edvardsiela sp. and Proteus mirabilis and Gram-positive bacteria: Bacillus subtilis, Staphylococcus saprophyticus and Micrococcus luteus. Our study provides some data on the microbiota diversity of field-collected sand flies for the first time in Hamadan. Our results indicate that there is a range of variation of aerobic bacteria inhabiting sand fly, which possibly reflect the ecological condition of the habitat where the fly breeds. Microbiota is increasingly regarded as an important factor for modulating vector competence in insect vectors. So, mirobiota can be effects on the biology of phlebotominae and their roles in the sandfly-Leishmania interaction. Further experiments are required to clearly delineate the vectorial role of sand flies. Because it is probable that in the future, factors such as environmental changes, migration and urbanization can ease the transmission of leishmaniasis in this area.

  3. Coal depositional models in some tertiary and cretaceous coal fields in the US western interior

    Energy Technology Data Exchange (ETDEWEB)

    Flores, R M

    1979-12-01

    Detailed stratigraphic and sedimentological studies of the Tertiary Tongue River Member of the Fort Union Formation in the Powder River Basin, Wyoming, and the Cretaceous Blackhawk Formation and Star Point Sandstone in the Wasatch Plateau, Utah, indicate that the depositional environments of coal played a major role in controlling coal thickness, lateral continuity, potential minability, and type of floor and roof rocks. The potentially minable, thick coal beds of the Tongue River Member were primarily formed in long-lived floodbasin backswamps of upper alluvial plain environment. Avulsion of meandering fluvial channels contributed to the erratic lateral extent of coals in this environment. Laterally extensive coals formed in floodbasin backswamps of a lower alluvial plain environment; however, interruption by overbank and crevasse-splay sedimentation produced highly split and merging coal beds. Lacustrine sedimentation common to the lower alluvial plain, similar to the lake-covered lower alluvial valley of the Atchafalaya River Basin, is related to a high-constructive delta. In contrast to these alluvial coals are the deltaic coal deposits of the Blackhawk Formation. The formation consists of three coal populations: upper delta plain, lower delta plain, and back-barrier. Coals of the lower delta plain are thick and laterally extensive, in contrast to those of the upper delta plain and back-barrier, which contain abundant, very thin and laterally discontinuous carbonaceous shale partings. The reworking of the delta-front sediments of the Star Point Sandstone suggests that the Blackhawk-Star Point delta was a high-destructive system. 1 figure, 1 table.

  4. Bioaccumulation of selenium from coal fly ash and associated environmental hazards in a freshwater fish community

    International Nuclear Information System (INIS)

    Besser, J.; Giesy, J.; Brown, R.; Herdt, T.; Dawson, G.

    1995-01-01

    Bioaccumulation of Se by fish from Pigeon River and Pigeon Lake, Michigan, which receive inputs of Se from a coal fly-ash disposal facility, was studied to assess potential hazards of Se toxicity to fish and wildlife. Se concentrations in fish from sites receiving Se inputs from fly ash disposal ponds were significantly greater than concentrations in fish from upstream sites, which were near normal background concentrations. Se bioaccumulation differed substantially among fish species, especially in the most contaminated site, where whole-body Se concentrations for the five species analyzed ranged from 1.4 to 3.8 microg/g (wet wt.). The top predator in the community, northern pike (Esox lucius), had Se concentrations less than those in likely prey species. Among lower-order consumers, Se concentrations were greater in limnetic species (spottail shiner, Notropis hudsonius, and yellow perch, Perca flavescens), than in benthic species (white sucker, Catostomus commersoni, and rock bass, Ambloplites rupestris). Se concentrations in tissues of fish from the lower Pigeon River and Pigeon Lake approached, but did not exceed lowest observable effect concentrations (LOAECs) for Se in tissues of sensitive fish species. However, Se concentrations in several fish species exceeded LOAECs for dietary Se exposure of sensitive species of birds and mammals, suggesting that consumption of fish in these areas may pose a hazard to piscivorous wildlife

  5. Geochemistry of Coal Ash in the Equatorial Wet Disposal System Environment

    OpenAIRE

    Kolay P. K.; Singh H.

    2013-01-01

    The coal utilization in thermal power plants in Malaysia has increased significantly which produces an enormous amount of coal combustion by-product (CCBP) or coal ash and poses severe disposal problem. As each coal ash is distinct, this study presents the geochemistry of the coal ash, in particular fly ash, produced from the combustion of local coal from Kuching Sarawak, Malaysia. The geochemical composition of the ash showed a high amount of silica, alumina, iron oxides and alkalies which w...

  6. Dips, ramps, and rolls- Evidence for paleotopographic and syn-depositional fault control on the Western Kentucky No. 4 coal bed, tradewater formation (Bolsovian) Illinois Basin

    Science.gov (United States)

    Greb, S.F.; Eble, C.F.; Williams, D.A.; Nelson, W.J.

    2001-01-01

    The Western Kentucky No. 4 coal is a high-volatile B to high-volatile C bituminous coal that has been heavily mined along the southern margin of the Western Kentucky Coal Field. The seam has a reputation for rolling floor elevation. Elongate trends of floor depressions are referred to as "dips" and "rolls" by miners. Some are relatively narrow and straight to slightly curvilinear in plan view, with generally symmetric to slightly asymmetric cross-sections. Others are broader and asymmetric in section, with sharp dips on one limb and gradual, ramp-like dips on the other. Some limbs change laterally from gradual dip, to sharp dip, to offset of the coal. Lateral changes in the rate of floor elevation dip are often associated with changes in coal thickness, and in underground mines, changes in floor elevation are sometimes associated with roof falls and haulage problems. In order to test if coal thickness changes within floor depressions were associated with changes in palynology, petrography and coal quality, the coal was sampled at a surface mine across a broad. ramp-like depression that showed down-dip coal thickening. Increment samples of coal from a thick (150 cm), down-ramp and thinner (127 cm), up-ramp position at one surface mine correlate well between sample sites (a distance of 60 m) except for a single increment. The anomalous increment (31 cm) in the lower-middle part of the thick coal bed contained 20% more Lycospora orbicula spores. The rolling floor elevations noted in the study mines are inferred to have been formed as a result of pre-peat paleotopographic depressions, syn-depositional faulting, fault-controlled pre-peat paleotopography, and from compaction beneath post-depositional channels and slumps. Although the association of thick coal with linear trends and inferred faults has been used in other basins to infer syn-depositional faulting, changes in palynology within increment samples of the seam along a structural ramp in this study provide

  7. Hepatic microsomal phospholipids in rats exposed intratracheally to coal fly ash

    International Nuclear Information System (INIS)

    Srivastava, P.K.; Chauhan, S.S.; Misra, U.K.

    1986-01-01

    The effects of intratracheal administration of fly ash (50 mg/kg body weight, daily for 7 days) on hepatic microsomal phospholipid metabolism has been studied in rats using various phospholipid precursors, viz NaH 2 32 PO 4 , (methyl- 14 C)-choline, and (methyl- 14 C)-methionine. Fly ash administration significantly increased microsomal phosphatidylcholine (PC), and lysophosphatidylcholine (LPC). The incorporation of NaH 2 32 PO 4 into total liver phospholipids, PC and Phosphatidyl ethanolamine (PE) was significantly increased in fly ash-treated rats as compared to the control. Fly ash administration also increased the incorporation of (methyl- 14 C)-choline into microsomal PC. Incorporation of (methyl- 14 C)-methionine into microsomal PC was not affected. Fly ash administration decreased the per cent distribution of arachidonic acid in PC and PE and increased that of oleic acid in PC and of linoleic acid in PE. (orig.)

  8. Removal of 2,4-dichlorophenol and pentachlorophenol from waters by sorption using coal fly ash from a Portuguese thermal power plant

    International Nuclear Information System (INIS)

    Estevinho, Berta N.; Martins, Isabel; Ratola, Nuno; Alves, Arminda; Santos, Lucia

    2007-01-01

    Chlorophenols are one of the most important groups of priority pollutants, due to their high toxicity, mutagenicity and carcinogenicity. Although activated carbon has been the preferred choice for the removal of such pollutants from wastewaters, the search for cheaper alternative sorbents became common in the last years. Fly ash, a by-product from coal burning power plants, has a surface composition that may enable the sorption of specific organic compounds. Therefore, this feasibility study presents the optimization of the operating parameters of a fixed-bed column containing fly ash particles, percolated by aqueous solutions of 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP) with concentrations of 1 and 100 μg/ml. Both chlorophenols were analysed by gas chromatography with electron capture detection (GC-ECD), after solid-phase microextraction (SPME), with limits of detection (LODs) of 7.28 μg/l for 2,4-DCP and 1.76 μg/l for PCP. Removal efficiencies above 99% were obtained for an initial concentration of 10 μg/ml of chlorophenols. Column saturation was achieved after 7 h of continuous operation for 2,4-DCP and 10 h for the PCP for feed levels of 10 μg/ml. Fly ash exhibited more affinity towards the sorption of PCP, in comparison to 2,4-DCP

  9. Coal fly ash-containing sprayed mortar for passive fire protection of steel sections

    Directory of Open Access Journals (Sweden)

    Vilches, L. F.

    2005-09-01

    Full Text Available The present article addresses the possible use of coal fly ash as the chief component of sprayed mortars to fireproof steel structures. A pilot wet-mix gunning rig was specifically designed and built to spray different pastes on to sheet steel and sections with different surface/volume ratios. After gunning, the specimens were placed in a furnace and subjected to standard fire resistance testing. Product fire resistance was calculated from the test results. The mortar used in this study, with a high fly ash content, was found to have acceptable mechanical properties as well as afire resistance potential comparable to those of commercial passive fire protection products.

    En este artículo se estudia el posible uso de las cenizas volantes procedentes de la combustión del carbón como constituyente principal de morteros que pueden ser proyectados sobre estructuras metálicas, para protegerlas contra el fuego. Con objeto de estudiar el proceso de proyección, se ha construido una planta piloto de gunitado por vía húmeda. La pasta se ha proyectado sobre placas metálicas y perfiles metálicos con diferentes relaciones superficie/volumen. Tras el gunitado, las probetas proyectadas se colocan en un horno y se someten a un programa de calentamiento según la norma de resistencia al fuego. A partir de los datos obtenidos se ha podido realizar una estimación de la resistencia al fuego del producto. Los resultados muestran que el material proyectado usado en este estudio, que contiene una alta proporción de cenizas volantes, tiene unas propiedades mecánicas aceptables y unas características potenciales de resistencia al fuego comparables a las de otros productos comerciales utilizados en la protección pasiva contra el fuego.

  10. Export market potential for Alaskan and Western US coals

    International Nuclear Information System (INIS)

    Sims, J.

    1992-01-01

    Major utilization trends may create opportunity for dramatic expansion of Alaska's coal exports from a huge ultra-low sulfur coal resource base. Markets are expected to open up in the Pacific Basin for sub-bituminous and bituminous steam coals from Alaska to include not only run-of-mine coals but also product streams from beneficiation technologies. Market considerations aside, deficiencies in physical infrastructure and an unresolved resource ownership issue are the principal impediments at this time to property development

  11. 6th Conference on Coal Utilization Technology; Dai 6 kai sekitan riyo gijutsu kaigi koenshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The paper compiled the papers presented in the 6th Conference on Coal Utilization Technology held in September 1996. With relation to the fluidized bed boiler, reported were Field operation test of Wakamatsu PFBC combined cycle power plant and Development of pressurized internally circulating fluidized bed combustion technology. Regarding the coal reformation, Development of advanced coal cleaning process, Coal preparation and coal cleaning in the dry process, etc. Concerning the combustion technology, Study of the O2/CO2 combustion technology, Development of pressurized coal partial combustor, etc. About the CWM, Development of low rank coals upgrading and their CWM producing technology, Technique of CWM distribution system, etc. Relating to the coal ash, Engineering characteristics of the improved soil by deep mixing method using coal ash, Employment of fluidized bed ash as a basecourse material, On-site verification trials using fly ash for reclamation behind bulkheads, Water permeabilities of pulverized fuel ash, Separation of unburned carbon from coal fly ash through froth flotation, Practical use technology of coal ash (POZ-O-TEC), etc

  12. Surface chemical characteristics of coal fly ash particles after interaction with seawater under natural deep sea conditions

    International Nuclear Information System (INIS)

    Brami, Y.; Shemesh, A.; Cohen, H.; Herut, B.

    1999-01-01

    The surface chemical characteristics of coal fly ash (CFA) before and after interaction with Mediterranean deep seawater was studied by X-ray photoelectron spectroscopy (XPS). Significantly lower values of Si, Ca, and S and higher values of Mg and Cl were found in the retrieved CFA as compared to fresh CFA. It is suggested that hydrolysis of the oxide matrixes results in an alkaline environment which rapidly leads to several chemical reactions. The two most important are (a) dissolution of the amorphous silicate and the calcium phases and (b) precipitation of Mg(OH) 2 -brucite. A depth profile of the retrieved CFA was measured by both line-shape analysis of the XPS spectra and by consecutive cycle of sputtering. The thickness of the brucite layer is estimated to be 1.3 nm

  13. Seventh symposium on coal mine drainage research. NCA/BCR coal conference and Expo IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Seventh Symposium on Coal Mine Drainage Research, sponsored by the National Coal Association and Bituminous Coal Research, Inc., was held at the Kentucky Fair and Exposition Center, Louisville, Kentucky, October 18-20, 1977. Seventeen papers from the proceedings have been entered individually into EDB and ERA. Topics covered include chemical reactions of pyrite oxidation and acid formation in spoil banks, abandoned mines, etc., formation of small acid lakes from the drainage and their neutralization by natural and other neutralization measures, trace elements in acid mine drainage, ground water contamination, limnology, effects of surface mined ground reclamation and neutralization, water purification and treatment, mining and coal preparation plant waste disposal, ash and fly ash disposal (to minimize leaching from the wastes), runoff from large coal storage stockpiles during storms (prevention of environmental effects by collection and neutralization by passing through an ash pond). (LTN)

  14. FUNDAMENTALS OF MERCURY SPECIATION AND CONTROL IN COAL-FIRED BOILERS

    Science.gov (United States)

    The report describes the progress of an experimental investigation of the speciation of mercury in simulated coal combustion flue gasses. The effects of flue gas parameters and coal fly ash on the oxidation of elemental mercury (Hgo) in the presence of hydrogen chloride (HCl) in ...

  15. Partitioning behaviour of natural radionuclides during combustion of coal in thermal power plants

    International Nuclear Information System (INIS)

    Sahu, S.K.; Tiwari, M.; Bhangare, R.C.; Ajmal, P.Y.; Pandit, G.G.

    2014-01-01

    All fossil fuels contain low levels of naturally occurring radioactive substances. The environmental impact of radionuclide-containing waste products from coal combustion is an important issue. These radionuclides vaporize in the hot portions of the coal combustor and then return to the solid phase in cooler downstream zones. Indian coal used in power plants generally has high ash yield (35-45%) and is of low quality. In the burning process of coal, minerals undergo thermal decomposition, fusion, disintegration, and agglomeration. A major portion of elements in the boiler enter into slag or bottom ash, and the rest of the inorganic materials find their way into the flue gas, in fly ash or vapor. Fly and bottom ash are significant sources of exposure to these radionuclides. In the present study, coal and ash samples collected from six thermal power stations were analyzed to determine their natural radioactivity content and the partitioning behavior of these radionuclides was carried out by tracing their activities in fly and bottom ashes. The partitioning of radionuclides is strongly dependent on the size of associated ash particle. Polonium-210 was mostly associated with the finest fraction and showed large variation with particle size whereas 232 Th showed least dependence on the particle size. The high activities of all radionuclides in fly ashes than that of bottom ashes thus may be due to strong affinity of the nuclides towards the finer particle fractions. All the radionuclide distribution favored small particle sizes

  16. Characterization of Fly and Bottom Ashes Mixtures Treated using Sodium Lauryl Sulphate and Polyvinyl Alcohol

    Science.gov (United States)

    Robert, C. G.; Ayob, A.; Zaki, M. F. Muhammad; Razali, M. E.; Lew, E. V.; Hong, P. Y.

    2018-03-01

    Malaysia promotes coal as an option for solid fuel in electric power generation. Demanding of electricity needs, therefore, has led to increase the coal consumption and thus producing more coal waste products. The disposal of coal waste ashes has been a main concern to power generation station due to the need of disposal sites and operational costs. This study investigates the composition of fly ash (FA) and bottom ash (BA) mixtures with difference component percentage treated with sodium lauryl sulphate (SLS) and polyvinyl alcohol (PVA) at 1.5 and 2.5 wt% solutions and examined in terms of specific gravity, pH, maximum dry density properties, and its surface morphology. Although the chemical composition of the SLS and PVA treated fly and bottom ashes studied in this current work is not altered extensively, significant changes could be observed in its physicochemical properties. Chemically treated fly and bottom ashes mixtures with SLS and PVA at 1.5 wt% solution exhibited specific gravity of 1.97 to 2.92 and high pH values within range of 9.28 to 10.52. The mixture of BA:FA=0:1 ratio depicting high maximum dry density of 1.35 to 1.56 g/cm3 in both SLS and PVA solutions at 1.5 and 2.5 wt%. Scanning electron microscopy image shows distinct surface morphologies of SLS-treated fly and bottom ashes mixture that the particles are packed closely, strongly bonded similar to popcorn shape due to the effect of active silanol groups acted on coal ashes surface with the presence of Al-O/Si-O/other oxides. These findings suggest that higher level of chemical interaction between the fly and bottom ashes particles, significantly enhances pozzolanic reactions such as shear strength, plasticity, cementing properties, and thus other engineering properties.

  17. Characterization of Fly and Bottom Ashes Mixtures Treated using Sodium Lauryl Sulphate and Polyvinyl Alcohol

    Directory of Open Access Journals (Sweden)

    Robert C.G.

    2018-01-01

    Full Text Available Malaysia promotes coal as an option for solid fuel in electric power generation. Demanding of electricity needs, therefore, has led to increase the coal consumption and thus producing more coal waste products. The disposal of coal waste ashes has been a main concern to power generation station due to the need of disposal sites and operational costs. This study investigates the composition of fly ash (FA and bottom ash (BA mixtures with difference component percentage treated with sodium lauryl sulphate (SLS and polyvinyl alcohol (PVA at 1.5 and 2.5 wt% solutions and examined in terms of specific gravity, pH, maximum dry density properties, and its surface morphology. Although the chemical composition of the SLS and PVA treated fly and bottom ashes studied in this current work is not altered extensively, significant changes could be observed in its physicochemical properties. Chemically treated fly and bottom ashes mixtures with SLS and PVA at 1.5 wt% solution exhibited specific gravity of 1.97 to 2.92 and high pH values within range of 9.28 to 10.52. The mixture of BA:FA=0:1 ratio depicting high maximum dry density of 1.35 to 1.56 g/cm3 in both SLS and PVA solutions at 1.5 and 2.5 wt%. Scanning electron microscopy image shows distinct surface morphologies of SLS-treated fly and bottom ashes mixture that the particles are packed closely, strongly bonded similar to popcorn shape due to the effect of active silanol groups acted on coal ashes surface with the presence of Al-O/Si-O/other oxides. These findings suggest that higher level of chemical interaction between the fly and bottom ashes particles, significantly enhances pozzolanic reactions such as shear strength, plasticity, cementing properties, and thus other engineering properties.

  18. Coal: the dinosaur wakes up

    International Nuclear Information System (INIS)

    Rousseau, Y.; Cosnard, D.

    2005-01-01

    In western countries, coal is considered as an industry of the past, but at the Earth's scale the situation is radically the opposite. Since three years, coal is the faster developing energy source, in particular thanks to China expansion and to the oil crisis which makes coal more competitive. This short paper presents the situation of coal mining in China: projects, working conditions and environmental impact. (J.S.)

  19. FLY ASH: AN ALTERNATIVE TO POWDERED ACTIVATED ...

    African Journals Online (AJOL)

    Preferred Customer

    The peaks observed at 1546 and 1511 cm−1 correspond to CO3. 2- group. Symmetric .... The values of RL reported in Table 5 obtained were less than one, indicating that the adsorption of eosin dye ... This work. Coal fly ash. Crystal Violet.

  20. Development of bricks with incorporation of coal ash and sludge from water treatment plant

    International Nuclear Information System (INIS)

    Silva, Mauro Valerio da

    2011-01-01

    Sludge from treatment water Brazilian plant station are, frequently, disposed and launched directly in the water bodies, causing a negative impact in the environment. Also, coal ashes is produced by burning of coal in coal-fired power stations and is the industrial solid waste most generated in southern Brazil: approximately 4 million tons/y. The efficient disposal of coal ashes is an issue due to its massive volume and harmful risks to the environment. The aim of this work was study the feasibility of incorporating these two industrial wastes in a mass used in the manufacture of ecological bricks. Samples of fly ashes from a cyclone filter from a coal-fired power plant located at Figueira County in Parana State, Brazil and waterworks sludge of Terra Preta County in Sao Paulo State, Brazil, were used in the study. Fly ash-sludge and fly ash-sludge-soil-cement bricks were molded and tested, according to the Brazilians Standards. The materials were characterized by physical-chemical analysis, X-ray diffraction, thermal analysis, morphological analysis, Fourier transform infrared spectroscopy and granulometric analysis. The results indicate that the waterworks sludge and coal ashes have potential to be used on manufacturing soil-cement pressed bricks according to the of Brazilians Standards NBR 10836/94. (author)

  1. Synthesis of Zeolite from Fly Ash and Removal of Heavy Metal Ions from Newly Synthesized Zeolite

    OpenAIRE

    Solanki, Parag; Gupta, Vikal; Kulshrestha, Ruchi

    2010-01-01

    Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. Characteristics of the various Fly ash samples were carried out. Coal proximate analysis was done. Batch experiment was carried out for the adsorption of some heavy metal ions on to synthesized Zeolite. The cost of synthesized zeolite was estimated to be almost one-fifth of that of commercial 13X zeolite available in the market.

  2. The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations.

    Science.gov (United States)

    Brown, Patrick; Jones, Tim; BéruBé, Kelly

    2011-12-01

    Coal fly ash (CFA) is a significant environmental pollutant that presents a respiratory hazard when airborne. Although previous studies have identified the mineral components of CFA, there is a paucity of information on the structural habits of these minerals. Samples from UK, Polish and Chinese power stations were studied to further our understanding of the factors that affect CFA geochemistry and mineralogy. ICP-MS, FE-SEM/EDX, XRD, and laser diffraction were used to study physicochemical characteristics. Analysis revealed important differences in the elemental compositions and particle size distributions of samples between sites. Microscopy of HF acid-etched CFA revealed the mullite present possesses a fibrous habit; fibres ranged in length between 1 and 10 μm. Respirable particles (<10 μm) were frequently observed to contain fibrous mullite. We propose that the biopersistence of these refractory fibres in the lung environment could be contributing towards chronic lung diseases seen in communities and individuals continually exposed to high levels of CFA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Nanometre-sized pores in coal: Variations between coal basins and coal origin

    Science.gov (United States)

    Sakurovs, Richard; Koval, Lukas; Grigore, Mihaela; Sokolava, Anna; Ruppert, Leslie F.; Melnichenko, Yuri B.

    2018-01-01

    We have used small angle neutron scattering (SANS) to investigate the differences in methane and hexane penetration in pores in bituminous coal samples from the U.S., Canada, South Africa, and China, and maceral concentrates from Australian coals. This work is an extension of previous work that showed consistent differences between the extent of penetration by methane into 10–20 nm size pores in inertinite in bituminous coals from Australia, North America and Poland.In this study we have confirmed that there are differences in the response of inertinite to methane and hexane penetration in coals sourced from different coal basins. Inertinite in Permian Australian coals generally has relatively high numbers of pores in the 2.5–250 nm size range and the pores are highly penetrable by methane and hexane; coals sourced from Western Canada had similar penetrability to these Australian coals. However, the penetrability of methane and hexane into inertinite from the Australian Illawarra Coal Measures (also Permian) is substantially less than that of the other Australian coals; there are about 80% fewer 12 nm pores in Illawarra inertinite compared to the other Australian coals examined. The inertinite in coals sourced from South Africa and China had accessibility intermediate between the Illawarra coals and the other Australian coals.The extent of hexane penetration was 10–20% less than CD4 penetration into the same coal and this difference was most pronounced in the 5–50 nm pore size range. Hexane and methane penetrability into the coals showed similar trends with inertinite content.The observed variations in inertinite porosity between coals from different coal regions and coal basins may explain why previous studies differ in their observations of the relationships between gas sorption behavior, permeability, porosity, and maceral composition. These variations are not simply a demarcation between Northern and Southern Hemisphere coals.

  4. Energetical fly ashes – separation and utilization of metallic valuable components

    Directory of Open Access Journals (Sweden)

    Michalíková Františka

    2000-12-01

    Full Text Available In the contribution, methods of separating metals – Fe, Al, Ge from energetic wastes – fly ashes are presented along with further possibilities of utilization of particular valuable components for industrial purposes.In the contribution, properties of energetic wastes are presented influencing the contents, separability, and utilizability of metal-bearing valuable components. From among physical properties these are grain size distribution and surface area. Chemical properties are characterized by elements contained in combusted coal whose content after combustion is increased 2 to 4 times, depending on the content of ash and combustible matters in original coal. Mineralogical properties of energetic wastes are determined by the combustion process conditions in the course of which mineral novelties are produced in concentrations suitable for separation.In the contribution, methods of separation and utilization of metals such as Fe, Al, Ge are described. From literature information on the processing of Fe component, as well as from results of experiments made at the Department of Mineral Processing and Environmental Protection, Technical University of Kosice follows that the highest concentration and mass yield of the component can be obtained from black coal fly ashes produced in smelting boilers. The content of Al in Slovak energetic wastes is lower than the 30 % Al2O3 limit that conditions an economic technological processing. Only in the case of black coal fly ash from TEKO Kosice and EVO Vojany was the Al2O3 content of 32.93 %. Therefore, in an indirect way – by separating the residues of uncombusted coal and magnetite Fe – the content of Al in fly ash was increased.For Ge, a principle of selective sizing has been utilized.A complex utilization of energetic wastes, that is the separation of metallic components, elimination of particular metals and the subsequent treatment of nonmetallic residue, should be an effective solution in various

  5. Risk Zones of Human Leishmaniases in the Western Mediterranean Basin: Correlations between Vector Sand Flies, Bioclimatology and Phytosociology

    OpenAIRE

    Philippe Rispail; Jacques Dereure; Daniel Jarry

    2002-01-01

    Correspondence analysis was applied to sand fly sampling in 865 stations from the Western Mediterranean basin. The position of each of 24 species was determined with respect to the bioclimatic belts. Thus, the multidimensional analyses manifest clear correlations between bioclimatic belts and their expression in the area, the phytosociological groupings, and vector species of visceral and cutaneous leishmaniases. The transfer of these data to usual maps allows to delimit the geographical dist...

  6. Zeolite from fly ash: synthesis and characterization

    Indian Academy of Sciences (India)

    Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. The synthesized zeolite was characterized using various techniques such as X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, BET method for surface area measurement etc.

  7. An determination of man-made γ-emitting radionuclides in coal fly ash and standard solution

    International Nuclear Information System (INIS)

    Xu Cuihua; Zhou Qiang

    2004-01-01

    We participated an international comparison on the determination of man-made γ-emitting radionuclides in coal fly ash and in standard solution organized by the Analytical Quality Control Service of the IAEA in 2002. The sample was dispensed in 100.0 ± 0.1 g aliquots in plastic container and was spiked with known amounts of certified standard γ-emitting radionuclides 54 Mn, 57 Co, 60 Co, 65 Zn, 88 Y, 134 Cs, 137 Cs and 241 Am. The determination of the anthropogenic )γ-emitting radionuclides in the test samples was carried out with an ORTEC gamma-ray spectrometry system coupled with a HPGe detector with resolution of 1.75 keV and relative efficiency of 55% for 137 Cs, located in a 10 cm thick lead container. The energy and efficiency calibration were with home-made volume calibration sources containing some of the radionuclides to be analyzed. The analysis procedure is described elsewhere. Table 1 lists the results of the determination and the comparisons with IAEA reference data and evaluation. Overall our results are agreeable in ±8.6% with the IAEA reference data, except for 60 Co. The differences for 60 Co was -10.8%. It may be caused by the 60 Co calibration source made with residual of quiet old standard solution. The difference for 241 Am is due to self-absorption in the fly ash sample. This bias was small for the solution sample. For standard solution sample, the results are agreeable within ±3.7% for all radionuclides except for 60 Co, being 12%. (authors)

  8. Determination of beta and gamma radioactivity on the coal

    International Nuclear Information System (INIS)

    Suhardi; Mulyono; Sutanto WW; Rosidi

    2013-01-01

    Radioactivity in coal, botton ash and fly ash. This determination was carried out to know each the radioactivity of β gross, γ gross on the coal, botton ash and fly ash, which accommodation of environment data the present in PLTU Paiton Probolinggo. Samples taken preparation and analysis based on the procedures of environmental radioactivity analysis. The radioactivity on the PLTU Paiton Probolinggo detected by beta gross Spectrometer with Geiger Muller (GM) and gamma Spectrometer with Ge(Li) detector. The result indicates that radioactivity concentration of beta and gamma gross are (95,57-308,26) Bq/kg and (1,374 - 31,677) Bq/kg respectively. (author)

  9. Synthesis of zeolite-P from coal fly ash derivative and its utilisation in mine-water remediation

    Directory of Open Access Journals (Sweden)

    Leslie F. Petrik

    2010-05-01

    Full Text Available Solid residues resulting from the active treatment of acid mine drainage with coal fly ash were successfully converted to zeolite-P under mild hydrothermal treatment conditions. Scanning electron microscopy showed that the zeolite-P product was highly crystalline. The product had a high cation exchange capacity (178.7 meq / 100 g and surface area (69.1 m2/g and has potential application in waste-water treatment. A mineralogical analysis of the final product identified zeolite-P, as well as mullite and quartz phases, which indicated incomplete dissolution of the fly ash feedstock during the ageing step. Further optimisation of the synthesis conditions would be required to attain complete utilisation of the feedstock. The zeolite-P was tested for decontamination potential of circumneutral mine water. High removal efficiency was observed in the first treatment, but varied for different contaminants. The synthesised zeolite-P exhibited a high efficiency for the removal of heavy metal cations, such as aluminium, iron, manganese, zinc, copper and nickel, from contaminated mine water, even with repeated use. For potassium, calcium, strontium and barium, the removal was only efficient in the first treatment and decreased rapidly with subsequent treatments, indicating preferential adsorption of the other metals. A continuous release of sodium was observed during decontamination experiments, which decreased with subsequent treatments, confirming that sodium was the main exchangeable charge-balancing cation present in the zeolite-P product.

  10. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  11. Microwave assisted aqua regia extraction of thallium from sediment and coal fly ash samples and interference free determination by continuum source ETAAS after cloud point extraction.

    Science.gov (United States)

    Meeravali, Noorbasha N; Madhavi, K; Kumar, Sunil Jai

    2013-01-30

    A simple cloud point extraction method is described for the separation and pre-concentration of thallium from the microwave assisted aqua regia extracts of sediment and coal fly ash samples. The method is based on the formation of extractable species of thallium and its interaction with hydrophobic solubilizing sites of Triton X-114 micelles in the presence of aqua regia and electrolyte NaCl. These interactions of micelles are used for extraction of thallium from a bulk aqueous phase into a small micelles-rich phase. The potential chloride interferences are eliminated effectively, which enabled interference free determination of thallium from aqua regia extracts using continuum source ETAAS. The parameters affecting the extraction process are optimized. Under the optimized conditions, pre-concentration factor and limit of detection are 40 and 0.2 ng g(-1), respectively. The recoveries are in the range of 95-102%. A characteristic mass, 13 pg was obtained. The accuracy of the method is verified by analyzing certified reference materials such as NIST 1633b coal fly ash, NIST 1944 marine sediment and GBW 07312 stream sediments. The results obtained are in good agreement with the certified values and method is also applied to real samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Coal fly ash utilization: Low temperature sintering of wall tiles

    International Nuclear Information System (INIS)

    Chandra, Navin; Sharma, Priya; Pashkov, G.L.; Voskresenskaya, E.N.; Amritphale, S.S.; Baghel, Narendra S.

    2008-01-01

    We present here a study of the sintering of fly ash and its mixture with low alkali pyrophyllite in the presence of sodium hexa meta phosphate (SHMP), a complex activator of sintering, for the purpose of wall tile manufacturing. The sintering of fly ash with SHMP in the temperature range 925-1050 deg. C produces tiles with low impact strength; however, the incremental addition of low alkali pyrophyllite improves impact strength. The impact strength of composites with ≥40% (w/w) pyrophyllite in the fly ash-pyrophyllite mix satisfies the acceptable limit (19.6 J/m) set by the Indian Standards Institute for wall tiles. Increasing the pyrophyllite content results in an increase in the apparent density of tiles, while shrinkage and water absorption decrease. The strength of fly ash tiles is attributed to the formation of a silicophosphate phase; in pyrophyllite rich tiles, it is attributed to the formation of a tridymite-structured T-AlPO 4 phase. Scanning electron micrographs show that the reinforcing rod shaped T-AlPO 4 crystals become more prominent as the pyrophyllite content increases in the sintered tiles

  13. Good news to use from the environmental front: coal combustion products as an environmental success story

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.N. [ISG Resources, Inc., Salt Lake City, UT (United States)

    2002-07-01

    ISG Resources in the USA's largest manager and marketer of coal combustion products, involved also in developing new technologies and applications for treatment and use of fly ash, bottom ash, boiler slag and FGD by-products. The paper, outlined in a series of 14 overheads, describes the USA's successes and initiatives so far in coal combustion products utilization. Further opportunities for the coal industry were discussed. The industry is encouraged to become involved now in carbon trading mechanisms for fly ash utilization displacing cement production.

  14. Fast and safe gas detection from underground coal fire by drone fly over

    International Nuclear Information System (INIS)

    Dunnington, Lucila; Nakagawa, Masami

    2017-01-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. - Graphical abstract: Concluding Figure for Gas Ratios: Plotted points and ranges of adjusted literature data. Stars represent bituminous and subbituminous coal types; Ovals represent lignite. - Highlights: • Recognize underground coal fire as a potential source of energy. • Developed a creative, safe, reliable and fast gas detection method. • Developed a concept of gas ratio measurement method that can provide more accurate description of underground burning coal resource.

  15. Weathering behaviour of overburden-coal ash blending in relation to overburden management for acid mine drainage prevention in coal surface mine

    International Nuclear Information System (INIS)

    Gautama, R.S.; Kusuma, G.J.; Lestari, I.; Anggana, R.P.

    2010-01-01

    Potentially acid forming (PAF) materials are encapsulated with non-acid forming materials (NAF) in order to prevent acid mine drainage (AMD) in surface coal mines. NAF compaction techniques with fly and bottom ashes from coal-fired power plants are used in mines with limited amounts of NAF materials. This study investigated the weathering behaviour of blended overburden and coal combustion ash in laboratory conditions. Free draining column leach tests were conducted on different blending schemes. The weathering process was simulated by spraying the samples with de-ionized water once per day. The leachates were then analyzed using X-ray diffraction and fluorescence analyses in order to identify the mineral composition of the samples over a 14 week period. Results of the study indicated that the weathering process plays a significant role in controlling infiltration rates, and may increase the capability of capping materials to prevent infiltration into PAF materials. Fly- and bottom-ash additions improved the performance of the encapsulation materials. 3 refs., 4 tabs., 2 figs.

  16. Coal in Canada

    International Nuclear Information System (INIS)

    Salaff, S.

    1991-01-01

    This article examines the potential market for coal-fired independent power projects in western Canada. The topics of the article include emissions issues, export potential for power produced, and financial and other assistance to independent power producers offered by British Columbia Hydro and coal mining companies in the region, including financing of projects and power distribution services including connecting to the USA grids

  17. Low back pain and low level flying

    NARCIS (Netherlands)

    J.C.F.M. Aghina

    1989-01-01

    textabstractLow level flying is a very good tactical possibility to carry out a mission unseen by a hostile radarsystem. Nowadays, Western Europe in general and the Federal Republic of Germany in particular, decreased . the permissions to low level flying in assigned regions. That's why the

  18. Microstructure Development and Transport Properties of Portland Cement-fly Ash Binary Systems : In view of service life predictions

    NARCIS (Netherlands)

    Yu, Z.

    2015-01-01

    Fly ash is a by-product of burning coal in electric power generating plants. It is commonly known that owing to its pozzolanic properties fly ash is widely used as a partial replacement for Portland cement in concrete. The use of fly ash in concrete not only reduces the landfill costs of fly ash,

  19. Development and testing of synthetic riprap constructed from coal combustion products (CCPs).

    Science.gov (United States)

    2014-07-01

    Even with an increase in the amount of coal combustion products (CCPs) used in concrete con-struction, soil stabilization, and other : applications, the coal power industry must dispose of a sig-nificant amount of fly ash and bottom ash. One potentia...

  20. Diversity of the bacterial and fungal microflora from the midgut and cuticle of phlebotomine sand flies collected in North-Western Iran.

    Directory of Open Access Journals (Sweden)

    Mohammad Akhoundi

    Full Text Available BACKGROUND: Phlebotomine sand flies are the vectors of the leishmaniases, parasitic diseases caused by Leishmania spp. Little is known about the prevalence and diversity of sand fly microflora colonizing the midgut or the cuticle. Particularly, there is little information on the fungal diversity. This information is important for development of vector control strategies. METHODOLOGY/PRINCIPAL FINDINGS: FIVE SAND FLY SPECIES: Phlebotomus papatasi, P. sergenti, P. kandelakii, P. perfiliewi and P. halepensis were caught in Bileh Savar and Kaleybar in North-Western Iran that are located in endemic foci of visceral leishmaniasis. A total of 35 specimens were processed. Bacterial and fungal strains were identified by routine microbiological methods. We characterized 39 fungal isolates from the cuticle and/or the midgut. They belong to six different genera including Penicillium (17 isolates, Aspergillus (14, Acremonium (5, Fusarium (1, Geotrichum (1 and Candida (1. We identified 33 Gram-negative bacteria: Serratia marcescens (9 isolates, Enterobacter cloacae (6, Pseudomonas fluorescens (6, Klebsiella ozaenae (4, Acinetobacter sp. (3, Escherichia coli (3, Asaia sp. (1 and Pantoea sp. (1 as well as Gram-positive bacteria Bacillus subtilis (5 and Micrococcus luteus (5 in 10 isolates. CONCLUSION/SIGNIFICANCE: Our study provides new data on the microbiotic diversity of field-collected sand flies and for the first time, evidence of the presence of Asaia sp. in sand flies. We have also found a link between physiological stages (unfed, fresh fed, semi gravid and gravid of sand flies and number of bacteria that they carry. Interestingly Pantoea sp. and Klebsiella ozaenae have been isolated in Old World sand fly species. The presence of latter species on sand fly cuticle and in the female midgut suggests a role for this arthropod in dissemination of these pathogenic bacteria in endemic areas. Further experiments are required to clearly delineate the vectorial

  1. Fast and safe gas detection from underground coal fire by drone fly over.

    Science.gov (United States)

    Dunnington, Lucila; Nakagawa, Masami

    2017-10-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Coal consumption and economic growth in China

    International Nuclear Information System (INIS)

    Li, Raymond; Leung, Guy C.K.

    2012-01-01

    The aim of this paper is to re-examine the relationship between coal consumption and real GDP of China with the use of panel data. This paper applies modern panel data techniques to help shed light on the importance of the heterogeneity among different regions within China. Empirical analyses are conducted for the full panel as well as three subgroups of the panel. The empirical results show that coal consumption and GDP are both I(1) and cointegrated in all regional groupings. Heterogeneity is found in the GDP equation of the full panel. The regional causality tests reveal that the coal consumption–GDP relationship is bidirectional in the Coastal and Central regions whereas causality is unidirectional from GDP to coal consumption in the Western region. Thus, energy conservation measures will not adversely affect the economic growth of the Western region but such measures will likely encumber the economy of the Coastal and Central regions, where most of the coal intensive industries are concentrated. - Highlights: ► We investigate the relationship between coal consumption and GDP in China. ► Panel data are used to account for the potential heterogeneity across different regions. ► Bidirectional causality is found in the Eastern and Central regions. ► Unidirectional causality from GDP to coal consumption is found in the Western region.

  3. Leaching of assimilable silicon species from fly ash

    International Nuclear Information System (INIS)

    Piekos, R.; Paslawska, S.

    1998-01-01

    The objective of this study was to investigate the leaching of assimilable silicon species from coal fly ash with distilled water, sea waterand synthetic sea water at various fly ash/water ratios, pHs and temperatures. At the 1 g/100 ml fly ash/water ratio, less than 1 mg Si was found in 11 of aqueous slurries over the pH range 4-8 after 2 h at ambient temperature. The leaching was most effective at pH 10.5. At the fly ash/waterratio indicated, the pH of the suspensions decreased from 10.4 to 8.4 after 5days. The pH of fly ash slurries in sea water varied only slightly over time as compared with that in distilled water. Generally, the leaching of assimilable silicon species with distilled water was more intense than that with the sea water. 27 refs., 6 figs., 3 tabs

  4. Flue gas desulfurization gypsum and fly ash

    International Nuclear Information System (INIS)

    1992-05-01

    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority's newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective

  5. Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants

    Science.gov (United States)

    Krylov, D. A.; Sidorova, G. P.

    2013-04-01

    This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.

  6. A Comparative study Of Catalityc Activity Of Heterogeneous Base Of Banana Stem Ash And Fly Ash On Production Of Biodiesel Byultrasonic

    Directory of Open Access Journals (Sweden)

    Marlinda

    2015-08-01

    Full Text Available Abstract The use of heterogeneous catalysts in the production of biodiesel provides many advantages due to heterogeneous catalysts can be easily separated from the product so that it can be reused. This research using heterogeneous catalysts derived from natural materials namely banana stem ash and coal fly ash containing alkali and alkaline earth elements. The preparation of catalyst from banana stem ash and coal fly ash used activator KOH 1.9 N and impregnation with KNO3 15 and then heated to a temperature of 550 0C for 3 hours. Results of preparation banana stem ash contains potassium of 36.52 and surface area of 41.901 m2g. This work presents the effect of ultrasonic assisted of waste cooking oil with methanol as solvent using banana stem ash and coal fly ash as catalyst. The diameter of catalyst particles of banana stem ash and coal fly ash varied at 50 100 150 200 and 250 mesh. The transesterification reaction was performed in the presence of ultrasonic operating frequency constant at 40 kHz methanol molar ratio to oil of 9 1 and reaction time of 30 minutes. The methyl ester biodiesel content of product was 93.26 of banana stems ash and 57 of coal fly ash respectively. The physical property was compared with the National Indonesia Standard SNI 2006 with a density viscosity cloud point flash point and cetane number.

  7. Coal resources availability in Botswana

    International Nuclear Information System (INIS)

    Modisi, M.P.

    1990-01-01

    This paper reports that Southern Africa, and Botswana in particular, is well-endowed with relatively large reserves of coal. The existence of coal in Botswana has been known since the end of the last century. Exploration activities by the Geological Survey and the private sector led to the discovery of major deposits and by the late 1960s reserves capable of supporting a mine at Morupule for the domestic market has been confirmed. The oil crises of 1973-74 and 1978-79 stimulated increased interest in coal exploration the world over and Botswana attracted several private sector companies looking for coal that could be traded on the international market. As a result vast resources and reserves of low to medium quality bituminous coal, suitable for the export market, were proved. Resources amounting to 21,680 million tonnes of in situ coal had been revealed by 1987. Reserves of possible economic exploitation are estimated at 10,180 million tonnes in two coal field areas, namely the Morupule Coal Field and the Mmamabula Coal Field. Since the collapse of oil prices and consequently coal prices in the mid-1980s, enthusiasm for coal exploration has plummeted and relatively little prospecting has taken place. The coal occurs within the Upper Carboniferous to Jurassic Karoo Supergroup which underlies some 60 percent of the country's land surface. The western part of the country is mantled by the Kalahari beds, a top layer of unconsolidated sands masking bedrock geology. Although coal seams have been intersected in boreholes in this western area, most exploration activity has taken place in the eastern part of the country where the Morupule and Mmamabula coal fields are located. It is in the east that most of the population is concentrated and infrastructure has been developed

  8. Trace elements in co-combustion of solid recovered fuel and coal

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Jappe Frandsen, Flemming

    2013-01-01

    Trace element partitioning in co-combustion of a bituminous coal and a solid recovered fuel (SRF) was studied in an entrained flow reactor. The experiments were carried out at conditions similar to pulverized coal combustion, with SRF shares of 7.9 wt.% (wet basis), 14.8 wt.% and 25.0 wt.......%. In addition, the effect of additives such as NaCl, PVC, ammonium sulphate, and kaolinite on trace element partitioning was investigated. The trace elements studied were As, Cd, Cr, Pb, Sb and Zn, since these elements were significantly enriched in SRF as compared to coal. During the experiments, bottom ash...... was collected in a chamber, large fly ash particles were collected by a cyclone with a cut-off diameter of ~2.5 μm, and the remaining fly ash particles were gathered in a filter. It was found that when coal was co-fired with SRF, the As, Cd, Pb, Sb and Zn content in filter ash/cyclone ash increased almost...

  9. Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor

    Science.gov (United States)

    Rollbuhler, R. J.; Kobak, J. A.

    1980-01-01

    The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.

  10. Synthesis of Zeolite from Coal Fly Ash: Its Application as Water Sorbent

    Directory of Open Access Journals (Sweden)

    Prasert Pavasant

    2010-03-01

    Full Text Available Coal fly ash (CFA was used as raw material for zeolite synthesis by fusion method. In detail, it was mixed with NaOH (with ratio of 2.25 and treated under various temperatures. Synthesized zeolite was characterized using various techniques i.e. X-rayfluorescence (XRF, X-ray diffraction (XRD, and BET surface area analysis. It was found that the surface area of synthesized zeolite were in the range of 49.407-69.136 m2/g depending on the preparing condition, compared to the surface area of CFA about 17.163 m2/g. In addition, according to the XRD result, it was proven that the form of zeolite was Sodium Aluminum Silicate Hydrate (1.08Na2O.Al2O3.1.68SiO2.1.8H2O. The synthesized zeolite was then applied as water sorbent to remove water from ethanol solution (95%. The testing results revealed that the optimal fusion temperature was 450.C, which provided maximum percentage of water removal from ethanol solution (from 95% ethanol to 99.25% ethanol. For comparison, commercial-grade molecular sieve was also tested and was found to increase ethanol concentration from 95% to 99.61%. Hence, it is concluded that our synthesized zeolite provides comparable performance to the commercial-grade molecular sieve.

  11. ICP-AES determination of rare earth elements in coal fly ash samples of thermal power stations: assessment of possible recovery and environmental impact of rare earth elements

    International Nuclear Information System (INIS)

    Premadas, A.; Mary, Thomas Anitha; Chakrapani, G.

    2013-01-01

    Accurate determination of rare earth elements (REEs) in ashes of thermal power plants is important in the current scenario due to its economic value, and the pollution caused if they are released in to the environment. Their toxicity to living organisms now gaining importance in international community, and some investigation shows it causes retardation in plant growth. In coal based thermal stations huge quantity of coal used annually as a fuel and lakhs of tones of waste is generated in the form of ashes. Therefore studies were carried out on three aspects - fairly rapid and accurate ICP-AES determination REEs in coal fly ash samples using addition technique, a preliminary acid leaching studies on coal received from three different fired thermal power stations using hydrochloric acid at pH 1 and 2, and quantify the REEs leached, and economic recovery of REEs using di-(2-ethylhexyl) phosphoric acid solvent extraction process or precipitation hydroxides using dilute ammonia solution. The standard addition method of REEs determination using rate and reproducible values, besides the analysis is fast compared to the ion exchange separation of REEs followed by the ICP-AES determination. (author)

  12. Environmental impact assessment of coal power plants in operation

    OpenAIRE

    Bartan Ayfer; Kucukali Serhat; Ar Irfan

    2017-01-01

    Coal power plants constitute an important component of the energy mix in many countries. However, coal power plants can cause several environmental risks such as: climate change and biodiversity loss. In this study, a tool has been proposed to calculate the environmental impact of a coal-fired thermal power plant in operation by using multi-criteria scoring and fuzzy logic method. We take into account the following environmental parameters in our tool: CO, SO2, NOx, particulate matter, fly as...

  13. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    The properties of the ash from co-firing of coal and straw have a large influence on boiler operation, flue gas cleaning equipment and appropriate utilization of the fly ash. A study on the fuel composition and local conditions influence on fly ash properties has been done by making entrained flo...

  14. Optimized Production of Coal Fly Ash Derived Synthetic Zeolites for Mercury Removal from Wastewater

    Science.gov (United States)

    Tauanov, Z.; Shah, D.; Itskos, G.; Inglezakis, V.

    2017-09-01

    Coal fly ash (CFA) derived synthetic zeolites have become popular with recent advances and its ever-expanding range of applications, particularly as an adsorbent for water and gas purification and as a binder or additive in the construction industry and agriculture. Among these applications, perpetual interest has been in utilization of CFA derived synthetic zeolites for removal of heavy metals from wastewater. We herein focus on utilization of locally available CFA for efficient adsorption of mercury from wastewater. To this end, experimental conditions were investigated so that to produce synthetic zeolites from Kazakhstani CFAs with conversion into zeolite up to 78%, which has remarkably high magnetite content. In particular, the effect of synthesis reaction temperature, reaction time, and loading of adsorbent were systematically investigated and optimized. All produced synthetic zeolites and the respective CFAs were characterized using XRD, XRF, PSA and porosimetric instruments to obtain microstructural and mineralogical data. Furthermore, the synthesized zeolites were studied for the removal of mercury from aqueous solutions. A comparison of removal eficiency and its relationship to the physical and chemical properties of the synthetic zeolites were analyzed and interpreted.

  15. Chemical forms of the fluorine and carbon in fly ashes recovered from electrostatic precipitators of pulverized coal-fired plants

    Energy Technology Data Exchange (ETDEWEB)

    Naoto Tsubouchi; Hidekazu Hayashi; Akiyuki Kawashima; Masahide Sato; Noboru Suzuki; Yasuo Ohtsuka [Tohoku University, Sendai (Japan). Institute of Multidisciplinary Research for Advanced Materials

    2011-01-15

    The functionalities of the fluorine and carbon present in fly ashes formed in pulverized coal combustion have been studied with X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) techniques. The ash samples include 20-130 {mu}g/g-dry and 0.4-4.1 mass%-dry of fluorine and carbon elements, respectively, and these components are enriched at the outermost layer of the ash surface. The F consists of both inorganic and organic functionalities, and the proportion of the latter is as high as 84-98 mol%. The C has different types of surface oxygen species, such as carboxyl, lactone/acid anhydride and phenolic groups, and most of these groups decompose to CO{sub 2} or CO up to 700{sup o}C to yield carbon active sites. When the amount of the O-functional forms increases, the content of organic C-F forms tends to increase almost linearly. On the basis of the above results, it may be speculated as one possibility that the formation of covalent C-F bonds takes place mainly through secondary reactions between gaseous F-containing compounds (HF and/or F{sub 2}) in flue gas and carbon active sites produced below 700{sup o}C downstream of coal-fired boilers. 30 refs., 8 figs., 4 tabs.

  16. Ge extraction from gasification fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Oriol Font; Xavier Querol; Angel Lopez-Soler; Jose M. Chimenos; Ana I. Fernandez; Silvia Burgos; Francisco Garcia Pena [Institute of Earth Sciences ' Jaume Almera' , Barcelona (Spain)

    2005-08-01

    Water-soluble germanium species (GeS{sub 2}, GeS and hexagonal-GeO{sub 2}) are generated during coal gasification and retained in fly ash. This fact together with the high market value of this element and the relatively high contents in the fly ashes of the Puertollano Integrated Gasification in Combined Cycle (IGCC) plant directed our research towards the development of an extraction process for this element. Major objectives of this research was to find a low cost and environmentally suitable process. Several water based extraction tests were carried out using different Puertollano IGCC fly ash samples, under different temperatures, water/fly ash ratios, and extraction times. High Ge extraction yields (up to 84%) were obtained at room temperature (25{sup o}C) but also high proportions of other trace elements (impurities) were simultaneously extracted. Increasing the extraction temperature to 50, 90 and 150{sup o}C, Ge extraction yields were kept at similar levels, while reducing the content of impurities, the water/fly ash ratio and extraction time. The experimental data point out the influence of chloride, calcium and sulphide dissolutions on the Ge extraction. 16 refs., 9 figs., 6 tabs.

  17. Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States

    Science.gov (United States)

    Swanson, Sharon M.; Engle, Mark A.; Ruppert, Leslie F.; Affolter, Ronald H.; Jones, Kevin B.

    2013-01-01

    Samples of feed coal (FC), bottom ash (BA), economizer fly ash (EFA), and fly ash (FA) were collected from power plants in the Central Appalachian basin and Colorado Plateau to determine the partitioning of As, Cr, Hg, Pb, and Se in coal combustion products (CCPs). The Appalachian plant burns a high-sulfur (about 3.9 wt.%) bituminous coal from the Upper Pennsylvanian Pittsburgh coal bed and operates with electrostatic precipitators (ESPs), with flue gas temperatures of about 163 °C in the ESPs. At this plant, As, Pb, Hg, and Se have the greatest median concentrations in FA samples, compared to BA and EFA. A mass balance (not including the FGD process) suggests that the following percentages of trace elements are captured in FA: As (48%), Cr (58%), Pb (54%), Se (20%), and Hg (2%). The relatively high temperatures of the flue gas in the ESPs and low amounts of unburned C in FA (0.5% loss-on-ignition for FA) may have led to the low amount of Hg captured in FA. The Colorado Plateau plant burns a blend of three low-S (about 0.74 wt.%) bituminous coals from the Upper Cretaceous Fruitland Formation and operates with fabric filters (FFs). Flue gas temperatures in the baghouses are about 104 °C. The elements As, Cr, Pb, Hg, and Se have the greatest median concentrations in the fine-grained fly ash product (FAP) produced by cyclone separators, compared to the other CCPs at this plant. The median concentration of Hg in FA (0.0983 ppm) at the Colorado Plateau plant is significantly higher than that for the Appalachian plant (0.0315 ppm); this higher concentration is related to the efficiency of FFs in Hg capture, the relatively low temperatures of flue gas in the baghouses (particularly in downstream compartments), and the amount of unburned C in FA (0.29% loss-on-ignition for FA).

  18. Soot, organics and ultrafine ash from air- and oxy-fired coal combustion

    Science.gov (United States)

    This paper is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practically relevant s...

  19. Synthesis of zeolites Na-A and Na-X from tablet compressed and calcinated coal fly ash

    Science.gov (United States)

    Hu, Tao; Gao, Wenyan; Liu, Xin; Zhang, Yifu; Meng, Changgong

    2017-10-01

    Zeolites Na-A and Na-X are important synthetic zeolites widely used for separation and adsorption in industry. It is of great significance to develop energy-efficient routines that can synthesize zeolites Na-A and Na-X from low-cost raw materials. Coal fly ash (CFA) is the major residue from the combustion of coal and biomass containing more than 85% SiO2 and Al2O3, which can readily replace the conventionally used sodium silicate and aluminate for zeolite synthesis. We used Na2CO3 to replace the expensive NaOH used for the calcination of CFA and showed that tablet compression can enhance the contact with Na2CO3 for the activation of CFA through calcination for the synthesis of zeolites Na-A and Na-X under mild conditions. We optimized the control variables for zeolite synthesis and showed that phase-pure zeolite Na-A can be synthesized with CFA at reactant molar ratio, hydrothermal reaction temperature and reaction time of 1.3Na2O: 0.6Al2O3: 1SiO2: 38H2O at 80°C for 6 h, respectively, while phase-pure zeolite Na-X can be synthesized at 2.2Na2O: 0.2Al2O3: 1SiO2: 88H2O at 100°C for 8 h, respectively. The composition, morphology, specific surface area, vibration spectrum and thermogravimetry of synthesized Na-A and Na-X were further characterized.

  20. Coal fly ash-slag-based geopolymers: microstructure and metal leaching.

    Science.gov (United States)

    Izquierdo, Maria; Querol, Xavier; Davidovits, Joseph; Antenucci, Diano; Nugteren, Henk; Fernández-Pereira, Constantino

    2009-07-15

    This study deals with the use of fly ash as a starting material for geopolymeric matrices. The leachable concentrations of geopolymers were compared with those of the starting fly ash to evaluate the retention of potentially harmful elements within the geopolymer matrix. Geopolymer matrices give rise to a leaching scenario characterised by a highly alkaline environment, which inhibits the leaching of heavy metals but may enhance the mobilization of certain oxyanionic species. Thus, fly ash-based geopolymers were found to immobilize a number of trace pollutants such as Be, Bi, Cd, Co, Cr, Cu, Nb, Ni, Pb, Sn, Th, U, Y, Zr and rare earth elements. However, the leachable levels of elements occurring in their oxyanionic form such as As, B, Mo, Se, V and W were increased after geopolymerization. This suggests that an optimal dosage, synthesis and curing conditions are essential in order to obtain a long-term stable final product that ensures an efficient physical encapsulation.

  1. Coal fly ash-slag-based geopolymers: Microstructure and metal leaching

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Maria, E-mail: mariaizq@ija.csic.es [Institute of Earth Sciences ' Jaume Almera' -CSIC, Lluis Sole Sabaris s/n 08028 Barcelona (Spain); Querol, Xavier [Institute of Earth Sciences ' Jaume Almera' -CSIC, Lluis Sole Sabaris s/n 08028 Barcelona (Spain); Davidovits, Joseph [Cordi-Geopolymere, Espace Creatis, Z.A. Bois de la Chocque 02100 Saint-Quentin (France); Antenucci, Diano [Institut Scientifique de Service Public (ISSeP) 200, rue du Chera, B-4000 Liege (Belgium); Nugteren, Henk [Delft University of Technology, Faculty of Applied Sciences, DelftChemTech, Particle Technology Group, Julianalaan 136, 2628 BL Delft (Netherlands); Fernandez-Pereira, Constantino [University of Seville, School of Industrial Engineering, Department of Chemical and Environmental Engineering, Camino de los Descubrimientos s/n, 41092 Seville (Spain)

    2009-07-15

    This study deals with the use of fly ash as a starting material for geopolymeric matrices. The leachable concentrations of geopolymers were compared with those of the starting fly ash to evaluate the retention of potentially harmful elements within the geopolymer matrix. Geopolymer matrices give rise to a leaching scenario characterised by a highly alkaline environment, which inhibits the leaching of heavy metals but may enhance the mobilization of certain oxyanionic species. Thus, fly ash-based geopolymers were found to immobilise a number of trace pollutants such as Be, Bi, Cd, Co, Cr, Cu, Nb, Ni, Pb, Sn, Th, U, Y, Zr and rare earth elements. However, the leachable levels of elements occurring in their oxyanionic form such as As, B, Mo, Se, V and W were increased after geopolymerization. This suggests that an optimal dosage, synthesis and curing conditions are essential in order to obtain a long-term stable final product that ensures an efficient physical encapsulation.

  2. Coal fly ash-slag-based geopolymers: Microstructure and metal leaching

    International Nuclear Information System (INIS)

    Izquierdo, Maria; Querol, Xavier; Davidovits, Joseph; Antenucci, Diano; Nugteren, Henk; Fernandez-Pereira, Constantino

    2009-01-01

    This study deals with the use of fly ash as a starting material for geopolymeric matrices. The leachable concentrations of geopolymers were compared with those of the starting fly ash to evaluate the retention of potentially harmful elements within the geopolymer matrix. Geopolymer matrices give rise to a leaching scenario characterised by a highly alkaline environment, which inhibits the leaching of heavy metals but may enhance the mobilization of certain oxyanionic species. Thus, fly ash-based geopolymers were found to immobilise a number of trace pollutants such as Be, Bi, Cd, Co, Cr, Cu, Nb, Ni, Pb, Sn, Th, U, Y, Zr and rare earth elements. However, the leachable levels of elements occurring in their oxyanionic form such as As, B, Mo, Se, V and W were increased after geopolymerization. This suggests that an optimal dosage, synthesis and curing conditions are essential in order to obtain a long-term stable final product that ensures an efficient physical encapsulation.

  3. Ultrafine ash aerosols from coal combustion: Characterization and health effects

    Energy Technology Data Exchange (ETDEWEB)

    William P. Linak; Jong-Ik Yoo; Shirley J. Wasson; Weiyan Zhu; Jost O.L. Wendt; Frank E. Huggins; Yuanzhi Chen; Naresh Shah; Gerald P. Huffman; M. Ian Gilmour [US Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Laboratory

    2007-07-01

    Ultrafine coal fly-ash particles withdiameters less than 0.5 {mu}m typically comprise less than 1% of the total fly-ash mass. This paper reports research focused on both characterization and health effects of primary ultrafine coal ash aerosols alone. Ultrafine, fine, and coarse ash particles were segregated and collected from a coal burned in a 20 kW laboratory combustor and two additional coals burned in an externally heated drop tube furnace. Extracted samples from both combustors were characterized by transmission electron microscopy (TEM), wavelength dispersive X-ray fluorescence(WD-XRF) spectroscopy, Moessbauer spectroscopy, and X-ray absorption fine structure (XAFS) spectroscopy. Pulmonary inflammation was characterized by albumin concentrations in mouse lung lavage fluid after instillation of collected particles in saline solutions and a single direct inhalation exposure. Results indicate that coal ultrafine ash sometimes contains significant amounts of carbon, probably soot originating from coal tar volatiles, depending on coal type and combustion device. Surprisingly, XAFS results revealed the presence of chromium and thiophenic sulfur in the ultrafine ash particles. The instillation results suggested potential lung injury, the severity of which could be correlated with the carbon (soot) content of the ultrafines. This increased toxicity is consistent with theories in which the presence of carbon mediates transition metal (i.e., Fe) complexes, as revealed in this work by TEM and XAFS spectroscopy, promoting reactive oxygenspecies, oxidation-reduction cycling, and oxidative stress. 24 refs., 7 figs.

  4. Seasonal amounts of nutrients in Western cherry fruit fly (Diptera: Tephritidae) and their relation to nutrient availability on cherry plant surfaces.

    Science.gov (United States)

    Yee, Wee L; Chapman, Peter S

    2008-10-01

    Relatively little is known about the nutritional ecology of fruit flies in the genus Rhagoletis. In this study, nutrient amounts in male and female western cherry fruit fly, Rhagoletis indifferens Curran, and availability of nitrogen and sugar on surfaces of leaves, fruit, and extrafloral nectaries (EFNs) of sweet cherry trees, were determined from late May to late June 2005 and of sugar from EFNs from mid-May to late June 2007 in Washington state. Protein amounts in male and female flies did not differ over the season. Nitrogen was present on leaves, fruit, and EFNs during the sampling period, but amounts on leaves and fruit were lower in late May than the rest of the season. Sugar amounts in flies did not differ over the season. Sugar was present on leaf, fruit, and EFN surfaces all season, but amounts on all three were lower in late May than later in the season. Fructose and glucose were the predominant sugars on all plant surfaces, but sucrose was also present in nectar from EFNs. In outdoor and field cage experiments in 2004 and 2006, more flies survived when cherry branches with leaves and fruit were present than absent. Results suggest that R. indifferens maintains stable protein and sugar levels throughout the season because sufficient amounts of nutrients are found in cherry trees during this time and that increases in nutrient availability caused by ripening and damaged cherries later in the season do not result in increased amounts of nutrients in flies.

  5. Assessment of the radiation risk following from exploitation of Polish brown coals. Part 1. Brown coal in Polish industry; preparation of the method of determining the concentrations of main natural radioisotopes appearing in brown coal and its combustion products

    International Nuclear Information System (INIS)

    Jasinska, M.; Niewiadomski, T.; Schwabenthan, J.

    1982-01-01

    Poland is rich in deposits of brown coal applicable for large-scale industry. These deposits are estimated at about 13.5.10 9 tons. In the near future, one-half of the electric power produced in Poland will be generated by power plants using brown coal. As a result, the yearly burden of the environment in Poland will amount to about 15.10 6 tons of ashes and slag, and about 0.79.10 6 tons of fly ash emitted into the atmosphere. Concentrations of radioactive elements in wastes following from the use of brown coal may in some cases be as much as 12 times higher that occuring from combustion products of lignite coal. Distribution of these wastes to the environment affects the population, through inhalation of fly-ashes, consumption of radioactively contaminated products and through living in dwellings constructed of building materials produced using industrial wastes. In order to determine the concentrations of 226 Ra, 232 Th and 40 K in brown coal and in products of its combustion, the method of identifying these elements through gamma-spectrometry has been prepared. Concentrations of 210 Pb and 210 Po will be determined using the method of electrodeposition on metallic silver, which has been tested in the laboratory. (author)

  6. γ-ray activity in bituminous, subbituminous and lignite coals

    International Nuclear Information System (INIS)

    Barber, D.E.; Giorgio, H.R.

    1977-01-01

    Specimens of three different types of coal from four different geographical locations (Montana, North Dakota, Illinois and Pennsylvania) were examined by γ-ray spectrometry. Some samples were ashed in a muffle furnace. Other samples included pulverized coal, slag and fly ash from an electric power generating station. Activity from the 232 Th and 238 U series was present in all samples. Activity varied widely depending upon the source of the coal. The results indicate a need for additional examination of activity in coal to: (1) establish more precisely the relative environmental impact of coal-fired power stations compared with nuclear ones, (2) indicate the degree of sophistication required in environmental surveillance programs involving areas where both nuclear and coal-fired power stations are operational, and (3) determine the occupational exposure risks in mining operations. (author)

  7. Biological and chemical interactions excelerating the removal of impurities from fly ashes

    Directory of Open Access Journals (Sweden)

    Štyriaková Iveta

    2002-03-01

    Full Text Available The mesophilic bacteria were isolated from the deposit of fly ash in Chalmová (Slovakia and identified using the BBL identification system. Bacillus cereus was the dominant species in this deposit of aluminosilicate minerals. Under laboratory conditions , Bacillus cereus accelerated the extraction of major and trace impurities in fly ash during bioleaching processes. This process was dependent on bacterial adhesion and production of organic acids. The effect of organic acids produced by bacteria was detected especially in sites where impregnated metals were found in the aluminosilicate structure. Amorphous spherical aluminosilicate particles in allotriomorphic aluminosilicate grains represent a main mineral component of fly-ash in which also elements such as Fe, Ti, Mn, As are bound. The rate of mobilization of Al, Si and Ti from coal fly ash under biochemically relevant conditions in vitro was previously shown to depend on the quantity of the ash microspheres. The qualitative EDS analyse of leachates confirmed the extraction of toxic elements (As and Mn from the initial sample of fly ash.Heterotrophic bacteria of Bacillus genus are capable to remove impurities from deposited fly-ash. A long-term deposition of energy fly-ash causes chemical and mineralogical changes as a result of weathering processes. Depending on the composition of coal concentrate containing SiO2, Al2O3, Fe2O3, CaO, MgO and other oxides, fly ash can provide a useful preliminary batch for the preparation of glass-ceramics or zeolite after extracting of bacterially dissolved elements from it. The mobility of major impurities (Ca and Fe and heavy metals, caused by biochemical leaching of fly ash, suggests the possibility of the development of an alternative way of this raw material treatment. The advantage of bioleaching is relatively low cost and the subsequent low demand for energy compared with conventional technologies.

  8. Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke

    International Nuclear Information System (INIS)

    Sheng Guanghong; Li Qin; Zhai Jianping; Li Feihu

    2007-01-01

    Self-cementitious properties of fly ash from circulating fluidized bed combustion boiler co-firing coal and high-sulphur petroleum coke (CPFA) were investigated. CPFA was self-cementitious which was affected by its fineness and chemical compositions, especially the contents of SO 3 and free lime (f-CaO). Higher contents of SO 3 and f-CaO were beneficial to self-cementitious strength; the self-cementitious strength increases with a decrease of its 45 μm sieve residue. The expansive ratio of CPFA hardened paste was high because of generation of ettringite (AFt), which was influenced by its water to binder ratio (W/A), curing style and grinding of the ash. The paste cured in water had the highest expansive ratio, and grinding of CPFA was beneficial to its volume stability. The hydration products of CPFA detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM) were portlandite, gypsum, AFt and hydrated calcium silicate (C-S-H)

  9. High-performance self-compacting concrete with the use of coal burning waste

    Science.gov (United States)

    Bakhrakh, Anton; Solodov, Artyom; Naruts, Vitaly; Larsen, Oksana; Alimov, Lev; Voronin, Victor

    2017-10-01

    Today, thermal power plants are the main producers of energy in Russia. Most of thermal power plants use coal as fuel. The remaining waste of coal burning is ash, In Russia ash is usually kept at dumps. The amount of utilized ash is quite small, less than 13%. Meanwhile, each ash dump is a local ecological disaster. Ash dumps take a lot of place and destroy natural landscape. The use of fly ash in building materials can solve the problem of fly ash dumps in Russia. A lot of papers of scientists are devoted to the use of fly ash as filler in concrete. The main advantage of admixing fly ash in concrete is decrease of amount of used cement. This investigation was held to find out if it is possible to utilize fly ash by its use in high amounts in self-compacting concrete. During experiments three mixtures of SCC with different properties were obtained. The first one is experimental and shows the possibility of obtaining SCC with high compressive strength with 60% of fly ash from the mass of cement. Two other mixtures were optimized with the help of the math planning method to obtain high 7-day and 28-day high compressive strength.

  10. Mercury removal from coal combustion flue gas by fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Junyan [Chinese Academy of Sciences, Beijing (China). Research Center for Process Pollution Control; Chinese Academy of Sciences, Beijing (China). Graduate Univ.; Xu, Wenqing; Zhu, Tingyu; Jing, Pengfei [Chinese Academy of Sciences, Beijing (China). Research Center for Process Pollution Control

    2013-07-01

    The effect of physicochemical properties on the mercury adsorption performance of three fly ash samples has been investigated. The samples were tested for mercury adsorption using a fixed-bed with a simulated gas. X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy and other methods were used to characterize the samples. The results indicate that mercury adsorption on fly ash is mainly physisorption and chemisorption. Uncompleted burned carbon is an important factor for the improvement of mercury removal efficiency, especially, the C-M bond may improve the oxidation of mercury, which formed via the reaction of C and Ti, Si and other elements. The higher specific surface areas and smaller pore diameter are all beneficial for the high mercury removal efficiency. The presence of O{sub 2} plays a positive role on Hg adsorption of modified fly ash, while SO{sub 2} has double role of inhibition because of competitive adsorption and promotion to chemisorption. In addition, sample modified with FeCl{sub 3} has a great performance in Hg removal.

  11. Patterns and sources of particle-phase aliphatic and polycyclic aromatic hydrocarbons in urban and rural sites of western Greece

    Science.gov (United States)

    Kalaitzoglou, Maria; Terzi, Eleni; Samara, Constantini

    Particle-bound aliphatic and polycyclic aromatic hydrocarbons (AHs and PAHs, respectively) were determined in the ambient air of the Eordea basin, in western Greece, where intensive coal burning for power generation takes place. Thirteen PAHs, n-alkanes (C 14-C 35), hopanes, and isoprenoid hydrocarbons (pristane and phytane) were determined in the total suspended particles collected from the atmosphere of four sites within the basin receiving potential impacts from various sources, such as fly ash, coal mining, automobile traffic, domestic heating, and agricultural or refuse burning. The same organic species were also determined in the fly ash generated in power stations, and in particulate emissions from open burning of biomass (dry corn leaves) and refuse burning. Organic particle sources were resolved using concentration diagnostic ratios and factor analysis (FA). A multivariate statistical receptor model (Absolute Principal Component Analysis, APCA) was finally employed to estimate the contribution of identified sources to the measured concentrations of organic pollutants. Four major sources for ambient PAHs and AHs were identified displaying variable contribution in different sites: (a) fossil fuel combustion, (b) biogenic emissions, (c) refuse burning, and (d) oil residues. Fuel combustion was the major source of ambient PAHs and an important source of n-alkanes in the range C 21-C 28. Oil residues were found to be the major source of low molecular weight n-alkanes (particularly the C 14-C 16), and an important source of pristane, phytane and UCM. Biogenic sources were primarily responsible for the high molecular weight n-alkanes explaining almost the entire concentration levels of homologues >C 32. Biomass burning was particularly important for the C 23-C 26n-alkanes. Despite the vicinity of certain sampling sites to power stations, coal fly ash was not identifiable as a source for ambient PAHs and AHs.

  12. Study of radon exhalation and emanation rates from fly ash samples

    International Nuclear Information System (INIS)

    Raj Kumari; Jain, Ravinder; Kant, Krishan; Gupta, Nitin; Garg, Maneesha; Yadav, Mani Kant

    2013-01-01

    Fly ash, a by-product of burnt coal is technologically important material being used for manufacturing of bricks, sheets, cement, land filling etc. The increased interest in measuring radon exhalation and emanation rates in fly ash samples is due to its health hazards and environmental pollution and the same have been measured to assess the radiological impact of radon emanated from fly ash disposal sites. Samples of fly ash from different thermal power stations in northern India and National Council for Cement and Building Materials (NCB) were collected and analysed for the measurements. For the measurement, alpha sensitive LR-115 type II plastic track detectors were used. Gamma spectrometry and can technique was used for the measurements. The experimental data show that fly ash samples emanate radon in significant amount and this consequently, may result in increased radon levels in dwellings built by using fly ash bricks and excessive radiation exposure to workers residing in the surroundings of fly ash dumping sites. (author)

  13. Does leaching of naturally occurring radionuclides from roadway pavements stabilised with coal fly ash have negative impacts on groundwater quality and human health?

    Science.gov (United States)

    Almahayni, T; Vanhoudt, N

    2018-05-05

    We assessed the potential impact of using coal fly ash to stabilise roadway pavements on groundwater quality and human health. The leaching potential of naturally occurring radionuclides (NORs) typically present in the fly ash was assessed with the HYDRUS-1D code and data representative of a segment of the Wisconsin State Trunk Highway 60 as a case study. Our assessment suggests that the impact would be mainly from the chemical toxicity of uranium (U). In our particular case study, U concentration in the leachate exceeded the maximum contaminant level for this element (MCL = 30 μg L -1 ) in almost all the scenarios. In the groundwater, the MCL was only exceeded under conditions of high leaching and low dilution in the aquifer. The radiological toxicity from the consumption of the contaminated groundwater by a hypothetical adult, however, was at maximum 43% of the individual dose criterion (IDC = 0.1 mSv y -1 ). The results also highlight the need to consider site-specific conditions such as climate and hydrogeology when assessing the environmental impacts of utilising fly ash in roadway construction applications since they could have profound effects on the assessment findings. There is also a pressing need for reliable and representative data to support realistic assessments. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Federal coal lease readjustments: will reason prevail

    Energy Technology Data Exchange (ETDEWEB)

    Margolf, C W

    1988-01-01

    After 1920, when the US Congress passed the Mineral Lands Leasing Act (MLLA), coal owned by the Federal government could only be developed by leasing under the MLLA. Most Federally owned coal is in the west, where the Federal government enjoys a near monopoly in coal ownership and its development. In 1976, congress enacted the Federal Coal Leasing Amendments ACT (FCLAA), over President Ford's veto, in order to: increase rents and royalties on Federal coal leases; force lessees holding Federal coal leases not in production to open mines on the non-producing leases; and end 'speculation' in Federal coal leases. The book maintains that in passing the FCLAA, Congress did not understand the western coal industry, and neither did the Department of the Interior (DOI) in concluding that Congress had mandated that the FCLAA must be applied to pre-FCLAA leases, even those in production, when such leases are readjusted. In the resulting lawsuits, the western coal industry has not been explained to the Federal courts and the decisions regarding the applicability of the FCLAA upon readjustment of pre-FCLAA leases have consequently been wrong. The book examines the record to date and aims to demonstrate the validity of these conclusions. It also describes which actions the DOI should have taken to accomplish the objectives of congress set forth in the FCLAA, to readjust pre-FCLAA leases without litigation.

  15. Analysis of arsenic and some other elements in coal fly ash by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ohki, Akira; Nakajima, Tsunenori; Sakaguchi, Yuka; Iwashita, Akira; Takanashi, Hirokazu

    2005-01-01

    Surface characterization of coal fly ash (CFA) was carried out by use of X-ray photoelectron spectroscopy (XPS), especially focusing on the occurrence of As. A peak in the XPS spectrum of CFA was assigned to oxide forms of As(3d). The molar ratios of Al, As, Ca, Fe, and S normalized to Si were obtained from XPS analysis (MR-X). Also, the molar ratios of those elements were calculated from bulk analysis (total element concentration in CFA) (MR-B). The MR-X/MR-B ratio of As was much higher than those of other elements, suggesting that As is highly enriched on the surface of CFA. When eight CFA samples were analyzed, there was an approximate relationship between the MR-X values and MR-B values for As. The leaching of elements from CFA was examined by XPS analysis and by bulk analysis. The leaching tests using EDTA and HNO 3 resulted in a great decrease in the As(3d) peak area; the %leaching of As obtained by XPS analysis was almost equal to that by bulk analysis

  16. On the pollution of fly coal ashes issued from the thermal power plants

    International Nuclear Information System (INIS)

    Barca, F.; Drimer, D.; Georgescu, I.I.

    1992-01-01

    Coals in different steps of carbonization for the inorganic mass were investigated using UV-spectroscopy, Instrumental Neutron Activation Analysis and for Uranium the fission fragments track methods. It has been concluded that the toxic and radioactive elements are more concentrated in lower carbonized coals than in higher ones, i.e. pit coals. (Author)

  17. Electrofiltration of fly ashes extremely strong and special characteristics; Electrofiltracion de Cenizas de Alta Resistividad y Caracteristicas Especiales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The main objective of CARE project was to improve the utilization of electrostatic precipitator technology for control of particle emission to the atmosphere, specially from coal-fired power stations burning coal with fly ash characteristics exhibiting extremely strong particle cohesion. (Author)

  18. Health impacts of coal: facts and fallacies

    Energy Technology Data Exchange (ETDEWEB)

    Finkelman, R.B. [University of Texas, Dallas, TX (United States)

    2007-02-15

    Coal has contributed enormously to the advance of civilization by providing an abundant, inexpensive, and convenient source of energy. Concurrent with its contributions, coal has extracted a high cost in terms of environmental damage and human health impacts. Unfortunately, the links between coal use and human health are distorted by a great deal of ignorance and misinformation. This paper discusses the facts and fallacies of the direct health impacts caused by coal. These include health problems caused by arsenic, fluorine, mercury and selenium released in coal use in the residential sector. The trace element iodine however may help prevent iodine deficiency disorder. Lignite in the ground in some Balkan areas has been associated with a urinary tract cancer known as Balkan endemic nephropathy (BEN). Uncontrolled burning coal seams and coal waste piles contribute to global warming and to respiratory problems. The 10-fold enrichment of trace elements in fly ash and the fine particles released from power plants could present a health threat but where good pollution control technology and disposal practices are applied the health threat is probably minimal. Radioactivity levels in coal are thought to be too low to cause concern. 27 refs., 2 figs.

  19. Effect of mixes made of coal bottom ash and fly ash on the mechanical strength and porosity of Portland cement

    Directory of Open Access Journals (Sweden)

    Argiz, C.

    2013-03-01

    Full Text Available New additions to the cement are needed to achieve a more sustainable and durable construction material. Within this context, bottom ashes can be used as a main constituent of Portland cements when it is mixed in an optimized proportion with fly ashes. The mechanical characteristics of standarized mortars made of mixes of pulverized coal combustion bottom and fly ashes are studied. The mortars were made of ordinary Portland cement (CEM I 42.5 N and mixes of bottom ashes with fly ashes in similar proportions to those of CEM II/A-V, CEM II/B-V and CEM IV/A (V. Summing up, it can be said that the utilization of bottom ashes mixed with fly ashes in replacement levels from 0% to 100% do not affect significantively on the mechanical caracteristics of the mortars considered in the present study which had an addition maximum content of 35%.

    La utilización de nuevas adiciones en el cemento es necesaria con el fin de obtener un material más sostenible y durable. En este sentido, las cenizas de fondo o cenicero de las centrales termoeléctricas de carbón se podrían reciclar siendo empleadas como un componente principal de los cementos Portland. Se han estudiado las propiedades mecánicas de unos morteros normalizados elaborados con mezclas de cenizas volantes con cenizas de fondo fabricados con unos porcentajes similares a los correspondientes de los CEM II/A-V, CEM II/B-V y CEM IV/A (V. En conclusión, la utilización de mezclas de cenizas de fondo o cenicero con cenizas volantes sustituyendo a éstas últimas entre el 0% y el 100%, no influye significativamente en el comportamiento mecánico de los morteros estudiados en los que el contenido máximo de adición ha sido del 35%, si bien afecta a determinados aspectos microestructurales, como la cantidad y distribución de poros capilares.

  20. Phosphate removal from digested sludge supernatant using modified fly ash.

    Science.gov (United States)

    Xu, Ke; Deng, Tong; Liu, Juntan; Peng, Weigong

    2012-05-01

    The removal of phosphate in digested sludge supernatant by modified coal fly ash was investigated in this study. Modification of the fly ash by the addition of sulfuric acid could significantly enhance its immobilization ability. The experimental results also showed that adsorption of phosphate by the modified fly ash was rapid with the removal percentage of phosphate reaching an equilibrium of 98.62% in less than 5 minutes. The optimum pH for phosphate removal was 9 and the removal percentage increased with increasing adsorbent dosage. The effect of temperature on phosphate removal efficiency was not significant from 20 to 40 degrees C. X-ray diffraction and scanning electron microscope analyses showed that phosphate formed an amorphous precipitate with water-soluble calcium, aluminum, and iron ions in the modified fly ash.

  1. Assessment of elements in coal related to environmental concern

    International Nuclear Information System (INIS)

    Diah Dwiana Lestiani; Muhayatun Santoso; Natalia Adventini

    2010-01-01

    National energy consumption increases rapidly in line with the economic growth and population. Indonesian government plans to develop electrical power plant 10 000 MW program to anticipate this matter, first step of which is focused on coal power plant. In this study, coal combustion was assessed on its environmental impact. Determination of trace and toxic elements was applied by instrumental neutron activation analysis. Samples were irradiated in Rabbit System at GA Siwabessy, Serpong, in reactor with neutron flux ~10 13 n.cm -2 .s -1 , then counted using HPGe detector. The method was validated by analysis of standard reference material NIST SRM 1633b coal fly ash. The results showed that Al and Cr concentrations were 2.1 0±0.80 and 7.63±1.45 mg/kg, respectively, and other elements such as Al, Co, Cs, Ce, Fe, K, La, Mn, Na, Sc, Sm, Ti, and V were still in the range of those in other world coals. Comparison the elements in coal with the elements in fly ash and bottom ash for relative enrichment index, mass balance calculation and mass flow estimation using assumption was also carried out to estimate the total emission estimation related the environmental concerned elements. The total emission of As, Co and Cr were in the range of 0.84-2.28 kg/day or equivalent to 0.49-1.23 % of total elemental mass content in coal. This also indicated that these elements were captured 98-99 % before released to the environment. (author)

  2. Hydrothermal Synthesis of Zeolite from Coal Class F Fly Ash. Influence of Temperature

    Directory of Open Access Journals (Sweden)

    Goñi, S.

    2010-06-01

    Full Text Available The influence of temperature of alkaline hydrothermal treatment on the conversion in zeolite of Spanish coal low calcium-fly ash (ASTM class F is presented in this work. Zeolite Na-P1 gismondine type (Na6Al6Si10O32.12H2O was formed at the temperature of 100ºC, which transformed in zeolite; analcime-C type (Na(Si2AlO6H2O and sodalite (1.08 Na2O.Al2O3.1.68SiO2.1.8H2O at 200ºC together with traces of tobermorite-11Å (Ca5(OH2Si6O16.4H2O. At this temperature the 100% of the fly ash reaction was allowed. An equivalent study was carried out in water as reference. The zeolite conversion of the fly ash was characterized by X ray diffraction (XRD, FT infrared (FTIR spectroscopy, surface area (BET-N2 and thermal analyses.

    En este trabajo se presenta el papel que juega la temperatura durante el tratamiento hidrotermal en medio alcalino para convertir una ceniza volante de bajo contenido en cal (clase F, según la norma ASTM en zeolita. Durante este tratamiento a la temperatura de 100ºC se forma Zeolita Na-P1 tipo gismondina (Na6Al6Si10O32.12H2O; al elevar la temperatura a 200ºC, dicha zeolita se transforma en zeolita Analcima C (Na(Si2AlO6H2O y en fase sodalita (1.08 Na2O.Al2O3.1.68SiO2.1.8H2O junto con trazas de tobermorita-11Å (Ca5(OH2Si6O16.4H2O. A esta temperatura y en estas condiciones se ha conseguido un 100% de reacción. Un estudio equivalente se ha llevado a cabo empleando agua como medio de referencia. La conversión de ceniza volante en zeolita se ha caracterizado mediante técnicas, como difracción de Rayos X (DRX, espectroscopia

  3. Radiation exposure potential from coal-fired power plants in Romania

    International Nuclear Information System (INIS)

    Botezatu, E.; Grecea, C.; Botezatu, G.; Capitanu, O.; Peic, T.; Sandor, G.

    1996-01-01

    In the investigated power plants they burn brown coal, lignite and/or mixture of different kinds of coal: brown coal, lignite, pit coal, pitch coal, bituminous coal. The activity concentrations measured in the coal samples varied over two orders of magnitude. The natural radionuclide concentrations in fly ash are significantly higher than the corresponding Concentrations in the coal. The normalized discharged activities for the investigated power plants are much higher than those estimated in the UNSCEAR 1988 Report for typical old and modern plants. Firstly, accounting for this is the low ash retention efficiency of the particulate control devices of power stations, especially for the older ones, and secondly, the high ash content of the coal: 26-60%. The low quality of coal leads to the higher coal consumption; thus the combustion of up to 20.109 Kg of coal is required to produce 1 Gwa of electrical energy. As a result, the activities of radon-222 and of radon-220 released per Gwa have been assessed at 25 to 770 GBq. (author)

  4. Influences of volcanism on coal quality - Examples from the western United States

    International Nuclear Information System (INIS)

    Hildebrand, R.T.; Affolter, R.H.

    1986-01-01

    Several small Tertiary coal deposits in Idaho, Nevada, and Washington formed in fresh-water basins located near active continental (salic) volcanic centers. Metastable glassy material (tephra) ejected during volcanic eruptions was introduced into the coal-forming environment of these basins as ash falls. This tephra contributed to the high ash content of many of the coal beds, formed laterally persistent partings (''tonsteins'') in the coal, and constitutes a large part of the strata enclosing the deposits. In order to study the possible relationships between the presence of tephra and coal quality, chemical data for 65 coal samples from 12 of these deposits were compiled and statistically analyzed. The results indicate that, in addition to the high ash content, coal from Tertiary deposits containing appreciable amounts of tephra generally is enriched in many elements compared to 460 coal samples from 11 deposits of similar ages remote from volcanic activity

  5. Pengaruh Kombinasi Fly Ash dan Bottom Ash sebagai Bahan Substitusi pada Campuran Beton terhadap Sifat Mekanis

    OpenAIRE

    Yahya, Tengku Tantoni; Kurniawandy, Alex; Djauhari, Zulfikar

    2017-01-01

    Fly ash and bottom ash were waste that generated from the power plant burning coal process. Fly ash and bottom ash has the potential to be developed as a basic ingredient in concrete composites. This research aimed to obtain the properties of fresh concrete and hard concrete of the combined effect of fly ash and bottom ash as a substitute ingredient in composite concrete. This research has examined the influence of a combination of waste fly ash and bottom ash to the compressive strength of a...

  6. Self-scrubbing coal

    International Nuclear Information System (INIS)

    Kindig, J.K.

    1992-01-01

    More than 502 million tons - 65 percent of all coal shipped to utilities in 1990 - were above 1.2 pounds of sulfur dioxide per million Btu. Most of the coal, even though cleaned in conventional coal preparation plants, still does not meet the emission limitation the Clean Air Act Amendments mandate for the year 2000. To cope with this fact, most utilities plan to switch to low sulfur (western U.S. or Central Appalachian) coal or install scrubbers. Both solutions have serous drawbacks. Switching puts local miners out of work and weakens the economy in the utility's service territory. Scrubbing requires a major capital expenditure by the utility. Scrubbers also increase the operating complexity and costs of the generating station and produce yet another environmental problem, scrubber sludge. Employing three new cost-effective technologies developed by Customer Coals International (CCl), most non-compliance coals east of the Mississippi River can be brought into year-2000 compliance. The compliance approach employed, depends upon the characteristics of the raw coal. Three types of raw coal are differentiated, based upon the amount of organic sulfur in the coals and the ease (or difficultly) of liberating the pyrite. They are: Low organic sulfur content and pyrite that liberates easily. Moderate organic sulfur content and pyrite that liberates easily. High organic sulfur content or the pyrite liberates with difficulty. In this paper examples of each type of raw coal are presented below, and the compliance approach employed for each is described. The names of the beneficiated coal products produced from each type of raw coal give above are: Carefree Coal, Self-Scrubbing Coal and Dry-Scrubbing Coal

  7. Stabilization of Fly Ash Deposits through Selected Cereal Crops

    Directory of Open Access Journals (Sweden)

    Florica Morariu

    2012-10-01

    Full Text Available Fly ash, a waste product from burning coal in power plants, occupies important spaces and is a major harm forenvironment: water, air, soil and associated ecosystems. New deposits do not have available nutrients for plantgrowth. The study presents a process of stimulating growth of oats in deposits of fly ash, which eliminates listed.Phytostabilization of new deposit is fast after fertilization with sewage sludge-based compost in the presence/absence of native or modified volcanic tuff with grain species, Avena sativa L., and variety Lovrin 1. Experimentalstudies have shown the species adaptability to climatic conditions and a growth rate until the maturity correlated withtype of treatment of upper layers of fly ash deposit. Fly ash with sewage sludge compost treatment 50 t/hadetermined the growth with 75% of the amount of grains vs. the amount of grains harvested from untreated fly ash.Fly ash with sewage sludge compost mixed with modified indigenous volcanic tuff 2.5 t/ha treatment determined thegrowth with 80% vs. the amount of grains harvested from untreated fly ash. If oat straw harvested from fertilizedvariant without modified indigenous volcanic tuff increases in weight are 30% and for fertilized variant in thepresence of tuff increases in weight are 39.8% vs. quantities harvested from untreated fly ash.

  8. Assessment of the content of arsenic in solid by-products from coal combustion

    Directory of Open Access Journals (Sweden)

    Wierońska Faustyna

    2017-01-01

    Full Text Available The coal combustion processes constitute one of the major sources of heavy metals emission into the atmosphere. From the point of view of the reduction of the emission of heavy metals and the selection of the correct exhaust gas treatment system, it is important to monitor the amount of trace elements in the solid fuels and in the solid by-products from coal combustion. One of these highly toxic elements is arsenic. The average content of arsenic in Polish hard coals and lignites is 0 ÷ 40 mg/kg [1] and 5 ÷ 15 mg/kg [2], respectively. The world average content of arsenic in hard coals and lignites, is equal to 9.0 ± 0.8 and 7.4 ± 1.4 mg/kg [3], respectively. During coal combustion processes, a significant amount of arsenic enters the atmosphere through gases and fly ashes. The proportions in which those two forms of arsenic occur in exhaust gases depend on the conditions of combustion processes [4]. The aim of the research was to determine the content of arsenic in coal blends and by-products of their combustion (slag, fly ash, gypsum, filter cakes. The determination of the arsenic quantity was performed using the Atomic Absorption Spectrometry with the electrothermal atomization.

  9. Soil amendments promote vegetation establishment and control acidity in coal combustion waste

    Science.gov (United States)

    R.M. Danker; D.C. Adriano; Bon-Jun Koo; C.D. Barton

    2003-01-01

    The effects of adding various soil amendments and a pyrite oxidation inhibitor to aid in the establishment of vegetation and to reduce acid drainage (AD) from coal fly ash and coal reject (FA + CR*) were assessed in an outdoor mesocosm study. Preliminary greenhouse experiments and field observations at the U.S. Department of Energy's Savannah River Site (SRS)...

  10. Influence of Coal Quality on Combustion Performance

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der; Glarborg, Peter; Dam-Johansen, Kim

    1998-01-01

    mixing pattern on NO formation under these conditions. Emissions from the opposed fired plant with all combustion air introduced through the burners could only be qualitatively reproduced by the pilot furnace. Under single stage conditions the test rig provided higher NO levels. Carbon in ash levels did...... not show any correlation between the coals and the furnaces. An engineering, mathematical model has been developed describing radiation heat transfer and coal combustion in full scale furnaces. The model has been validated against measured temperatures and the amount of carbon in fly ash. The model...

  11. Trace element emissions from coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    Trace elements are emitted during coal combustion. The quantity, in general, depends on the physical and chemical properties of the element itself, the concentration of the element in the coal, the combustion conditions and the type of particulate control device used, and its collection efficiency as a function of particle size. Some trace elements become concentrated in certain particle streams following combustion such as bottom ash, fly ash, and flue gas particulate matter, while others do not. Various classification schemes have been developed to describe this partitioning behaviour. These classification schemes generally distinguish between: Class 1: elements that are approximately equally concentrated in the fly ash and bottom ash, or show little or no fine particle enrichment, examples include Mn, Be, Co and Cr; Class 2: elements that are enriched in the fly ash relative to bottom ash, or show increasing enrichment with decreasing particle size, examples include As, Cd, Pb and Sb; Class 3: elements which are emitted in the gas phase (primarily Hg (not discussed in this review), and in some cases, Se). Control of class 1 trace elements is directly related to control of total particulate matter emissions, while control of the class 2 elements depends on collection of fine particulates. Due to the variability in particulate control device efficiencies, emission rates of these elements can vary substantially. The volatility of class 3 elements means that particulate controls have only a limited impact on the emissions of these elements.

  12. Screening coal combustion fly ashes for application in geopolymers

    NARCIS (Netherlands)

    Valcke, S.L.A.; Pipilikaki, P.; Sarabér, A.J.; Fischer, H.R.; Nugteren, H.W.

    2013-01-01

    Driven by cost and sustainability, secondary resource materials such as fly ash, blast furnace slag, and bottom ash are increasingly used for alternative types of concrete binders, such as geopolymers. Because secondary resources may be highly variable from the perspective of geopolymers, it is

  13. Lake-sediment record of PAH, mercury, and fly-ash particle deposition near coal-fired power plants in Central Alberta, Canada.

    Science.gov (United States)

    Barst, Benjamin D; Ahad, Jason M E; Rose, Neil L; Jautzy, Josué J; Drevnick, Paul E; Gammon, Paul R; Sanei, Hamed; Savard, Martine M

    2017-12-01

    We report a historical record of atmospheric deposition in dated sediment cores from Hasse Lake, ideally located near both currently and previously operational coal-fired power plants in Central Alberta, Canada. Accumulation rates of spheroidal carbonaceous particles (SCPs), an unambiguous marker of high-temperature fossil-fuel combustion, in the early part of the sediment record (pre-1955) compared well with historical emissions from one of North America's earliest coal-fired power plants (Rossdale) located ∼43 km to the east in the city of Edmonton. Accumulation rates in the latter part of the record (post-1955) suggested inputs from the Wabamun region's plants situated ∼17-25 km to the west. Increasing accumulation rates of SCPs, polycyclic aromatic hydrocarbons (PAHs) and Hg coincided with the previously documented period of peak pollution in the Wabamun region during the late 1960s to early 1970s, although Hg deposition trends were also similar to those found in western North American lakes not directly affected by point sources. A noticeable reduction in contaminant inputs during the 1970s is attributed in part to technological improvements and stricter emission controls. The over one hundred-year historical record of coal-fired power plant emissions documented in Hasse Lake sediments has provided insight into the impact that both environmental regulations and changes in electricity output have had over time. This information is crucial to assessing the current and future role of coal in the world's energy supply. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  14. Environmental impacts of coal mine and thermal power plant to the surroundings of Barapukuria, Dinajpur, Bangladesh.

    Science.gov (United States)

    Hossain, Md Nazir; Paul, Shitangsu Kumar; Hasan, Md Muyeed

    2015-04-01

    The study was carried out to analyse the environmental impacts of coal mine and coal-based thermal power plant to the surrounding environment of Barapukuria, Dinajpur. The analyses of coal, water, soil and fly ash were carried out using standard sample testing methods. This study found that coal mining industry and coal-based thermal power plant have brought some environmental and socio-economic challenges to the adjacent areas such as soil, water and air pollution, subsidence of agricultural land and livelihood insecurity of inhabitants. The pH values, heavy metal, organic carbon and exchangeable cations of coal water treated in the farmland soil suggest that coal mining deteriorated the surrounding water and soil quality. The SO4(2-) concentration in water samples was beyond the range of World Health Organisation standard. Some physico-chemical properties such as pH, conductivity, moisture content, bulk density, unburned carbon content, specific gravity, water holding capacity, liquid and plastic limit were investigated on coal fly ash of Barapukuria thermal power plant. Air quality data provided by the Barapukuria Coal Mining Company Limited were contradictory with the result of interview with the miners and local inhabitants. However, coal potentially contributes to the development of economy of Bangladesh but coal mining deteriorates the environment by polluting air, water and soil. In general, this study includes comprehensive baseline data for decision makers to evaluate the feasibility of coal power industry at Barapukuria and the coalmine itself.

  15. Adsorption Kinetics of Fe and Mn with Using Fly Ash from PT Semen Baturaja in Acid Mine Drainage

    Directory of Open Access Journals (Sweden)

    Indah Purnamasari

    2017-11-01

    Full Text Available One used method to reduce heavy metal ions in acid mine drainage is to adsorb them by coal fly ash. This research aimed to study the isotherms equilibrium and the adsorpstion kinetics that fit with decreasing metals ion. Acid mine draigane and fly ash were charge into batch coloumn adsorption with specified comparison. Variables investigated were dactivated and activated fly ash, adsorption times (0, 20, 30, 40,50, and 60 minutes, adsorben weights (10, 20, 30, 40, 50, and 60 gram, and pH (1, 3, 5, 7, and 9. The results showed that fly ash can be used to reduce the levels of heavy metal ions Fe and Mn. Coal fly ash adsorption model of acid mine drainage fits to Freundlich adsorption isotherm in all condition. First order pseudo model kinetics is suitable for Fe and Mn adsorption processes. The value of adsorpsi rate constants vary around : Fe and Mn (deactivated fly ash 0.2388 min-1 with R2 = 0.4455 and 0.4173 min-1 with R2 = 0.9781, Fe and Mn (activated fly ash 0.5043 min-1 dengan R2 = 1 and  0.2027 min-1 with R2 = 0.8803.

  16. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    KAUST Repository

    Andersen, Myrrha E.

    2016-10-19

    Pulverized bituminous coal was burned in a 10. W externally heated entrained flow furnace under air-combustion and three oxy-combustion inlet oxygen conditions (28, 32, and 36%). Experiments were designed to produce flames with practically relevant stoichiometric ratios (SR. =1.2-1.4) and constant residence times (2.3. s). Size-classified fly ash samples were collected, and measurements focused on the soot, elemental carbon (EC), and organic carbon (OC) composition of the total and ultrafine (<0.6. μm) fly ash. Results indicate that although the total fly ash carbon, as measured by loss on ignition, was always acceptably low (<2%) with all three oxy-combustion conditions lower than air-combustion, the ultrafine fly ash for both air-fired and oxy-fired combustion conditions consists primarily of carbonaceous material (50-95%). Carbonaceous components on particles <0.6. μm measured by a thermal optical method showed that large fractions (52-93%) consisted of OC rather than EC, as expected. This observation was supported by thermogravimetric analysis indicating that for the air, 28% oxy, and 32% oxy conditions, 14-71% of this material may be OC volatilizing between 100. C and 550. C with the remaining 29-86% being EC/soot. However, for the 36% oxy condition, OC may comprise over 90% of the ultrafine carbon with a much smaller EC/soot contribution. These data were interpreted by considering the effects of oxy-combustion on flame attachment, ignition delay, and soot oxidation of a bituminous coal, and the effects of these processes on OC and EC emissions. Flame aerodynamics and inlet oxidant composition may influence emissions of organic hazardous air pollutants (HAPs) from a bituminous coal. During oxy-coal combustion, judicious control of inlet oxygen concentration and placement may be used to minimize organic HAP and soot emissions.

  17. Production of highly porous glass-ceramics from metallurgical slag, fly ash and waste glass

    OpenAIRE

    Mangutova Bianka V.; Fidancevska Emilija M.; Milosevski Milosav I.; Bossert Joerg H.

    2004-01-01

    Glass-ceramics composites were produced based on fly-ash obtained from coal power stations, metallurgical slag from ferronickel industry and waste glass from TV monitors, windows and flasks. Using 50% waste flask glass in combination with fly ash and 20% waste glass from TV screens in combination with slag, E-modulus and bending strength values of the designed systems are increased (system based on fly ash: E-modulus from 6 to 29 GPa, and bending strength from 9 to 75 MPa). The polyurethane f...

  18. Utilization options for fly ash, bottom ash, and slag in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Manz, O.E.

    1995-12-01

    Since 1967, at least six ash utilization symposiums have been held in the United States, with papers presented by several European authors on the utilization of coal by-products in Eastern Europe. There is currently over 80,000 megawatts of installed coal-fired capacity available in that region. Unfortunately, of the 117,778,000 tonnes of fly ash, bottom ash, and slag produced in Eastern Europe in 1989, only 13% was utilized. This paper outlines the research and levels and kinds of coal by-product utilization taking place in Eastern Europe since the late 1960s.

  19. Potential use of fly ash to soil treatment in the Morava region

    Science.gov (United States)

    Bulíková, Lucia; Kresta, František; Rochovanský, Martin

    2017-09-01

    Soil treatment by binders is a standard technology and leads to optimal utilization of excavated soils in road constructions. Soil treatment is controlled in the Czech Republic by EN 14227-15 and Technical Requirement TP 94. Soil treatment using fly ash has not been performed in the Czech Republic, although there is a sufficient normative base. Fly ash produced by burning of hard coal in the Moravian region was tested as a potential binder. Fly ash samples were mixed with loess loams (CI). Tested siliceous fly ash of class F (ASTM C618) did not showed hydraulic properties but it showed positive effect on reducing maximum dry density of mixtures, increasing the IBI value (Immediate bearing index) and decreasing tendency to volume changes when the amount of fly ash was increased. The results of laboratory tests demonstrate the possibility of using fly ashes as a binder for soil treatment.

  20. Effect of heat treatment on properties of steam cured fly ash–lime ...

    Indian Academy of Sciences (India)

    Unknown

    strength, bulk density and water absorption tendency of these compacts were measured and FTIR spectral ... the order of dehydration process and the associated activation energy. ... suggested that bulk substitution of coal fly ash for clay in.

  1. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  2. Mineralogical study of Brazilian fly ashes; origin, characteristics and quality

    International Nuclear Information System (INIS)

    Kihara, Y.

    1984-01-01

    Thirty-one fly ash samples from the five main Brazilian coal-powered thermoelectric plants were subjected to gravimetric chemical analysis, complexometry, flame photometry, X-ray diffractometry, thermodifferential and thermogravimetric analysis, transmitted and reflected light microscopy, electron microprobe analysis and transmited and scanning electron microscopy. (Author) [pt

  3. The largest US coal acquisition takes shape

    International Nuclear Information System (INIS)

    Carter, R.A.

    1998-01-01

    The midyear purchase of Arco's US coal properties for 1.14 billion dollars gave Arch coal, Inc. (ACI) a string of surface and underground mines stretching from Wyoming's Powder River Basin to the coalfields of central Utah. The transaction created a new entity, Arch Western Resources LLC. The article describes operations at Black Thunder and Coal Creek surface mines and SUFCO, Skyline, Dugout Canyon and West Elk longwall mines. 4 photos

  4. A Comparative study Of Catalityc Activity Of Heterogeneous Base Of Banana Stem Ash And Fly Ash On Production Of Biodiesel Byultrasonic

    OpenAIRE

    Marlinda; Ramli; Muh. Irwan

    2015-01-01

    Abstract The use of heterogeneous catalysts in the production of biodiesel provides many advantages due to heterogeneous catalysts can be easily separated from the product so that it can be reused. This research using heterogeneous catalysts derived from natural materials namely banana stem ash and coal fly ash containing alkali and alkaline earth elements. The preparation of catalyst from banana stem ash and coal fly ash used activator KOH 1.9 N and impregnation with KNO3 15 and then heated...

  5. Coal fly ash impairs airway antimicrobial peptides and increases bacterial growth.

    Science.gov (United States)

    Borcherding, Jennifer A; Chen, Haihan; Caraballo, Juan C; Baltrusaitis, Jonas; Pezzulo, Alejandro A; Zabner, Joseph; Grassian, Vicki H; Comellas, Alejandro P

    2013-01-01

    Air pollution is a risk factor for respiratory infections, and one of its main components is particulate matter (PM), which is comprised of a number of particles that contain iron, such as coal fly ash (CFA). Since free iron concentrations are extremely low in airway surface liquid (ASL), we hypothesize that CFA impairs antimicrobial peptides (AMP) function and can be a source of iron to bacteria. We tested this hypothesis in vivo by instilling mice with Pseudomonas aeruginosa (PA01) and CFA and determine the percentage of bacterial clearance. In addition, we tested bacterial clearance in cell culture by exposing primary human airway epithelial cells to PA01 and CFA and determining the AMP activity and bacterial growth in vitro. We report that CFA is a bioavailable source of iron for bacteria. We show that CFA interferes with bacterial clearance in vivo and in primary human airway epithelial cultures. Also, we demonstrate that CFA inhibits AMP activity in vitro, which we propose as a mechanism of our cell culture and in vivo results. Furthermore, PA01 uses CFA as an iron source with a direct correlation between CFA iron dissolution and bacterial growth. CFA concentrations used are very relevant to human daily exposures, thus posing a potential public health risk for susceptible subjects. Although CFA provides a source of bioavailable iron for bacteria, not all CFA particles have the same biological effects, and their propensity for iron dissolution is an important factor. CFA impairs lung innate immune mechanisms of bacterial clearance, specifically AMP activity. We expect that identifying the PM mechanisms of respiratory infections will translate into public health policies aimed at controlling, not only concentration of PM exposure, but physicochemical characteristics that will potentially cause respiratory infections in susceptible individuals and populations.

  6. Energy utilisation of biowaste - Sunflower-seed hulls for co-firing with coal

    Energy Technology Data Exchange (ETDEWEB)

    Raclavska, Helena; Juchelkova, Dagmar; Roubicek, Vaclav; Matysek, Dalibor [VSB-Technical University of Ostrava, 17. listopadu 15, CZ-70833 Ostrava (Czech Republic)

    2011-01-15

    Sunflower-seed hulls (SSH) represent a source of combustible biomass characterised by high contents of potassium and phosphorus and a low silica content. The relatively high net calorific value of 20 MJ/kg d.m. is mainly influenced by the lignin content. Potassium and phosphorus are very important elements in biomass combustion for fuel, influencing slagging and fouling problems. Mixtures with different ratios of brown coal and sunflower-seed hulls (0-22% SSH) were co-fired in the Olomouc power plant. The behaviour of elements in the fly ash and the bottom ash (SiO{sub 2}, Al{sub 2}O{sub 3}, K{sub 2}O, P{sub 2}O{sub 5}, Zn, Cu and Cd) varied in relation to the amount of SSH added to the coal. The fly ash from the co-firing of 20% SSH with coal had a high content of water-leachable sulphates and total dissolved solids. The utilisation of fly ash in civil engineering (land reclamation) should fulfil criteria established by the Council Decision 2003/33/EC for non-hazardous waste. To ensure that the required water-leachable sulphate concentrations are within regulatory limits the fuel may contain a maximum of 14% SSH. (author)

  7. Synthesis of monoclinic Celsian from Coal Fly Ash by using a one-step solid-state reaction process

    Energy Technology Data Exchange (ETDEWEB)

    Long-Gonzalez, D.; Lopez-Cuevas, J.; Gutierrez-Chavarria, C.A.; Pena, P.; Baudin, C.; Turrillas, X. [CINVESTAV, Coahuila (Mexico)

    2010-03-15

    Monoclinic (Celsian) and hexagonal (Hexacelsian) Ba1-xSrxAl{sub 2}Si2O8 solid solutions, where x=0, 0.25, 0.375, 0.5, 0.75 or 1, were synthesized by using Coal Fly Ash (CFA) as main raw material, employing a simple one-step solid-state reaction process involving thermal treatment for 5 h at 850-1300{sup o}C. Fully monoclinic Celsian was obtained at 1200{sup o} C/5 h, for SrO contents of 0.25 {<=} x {<=} 0.75. However, an optimum SrO level of 0.25 {<=} x {<=} 0.375 was recommended for the stabilization of Celsian. These synthesis conditions represent a significant improvement over the higher temperatures, longer times and/or multi-step processes needed to obtain fully monoclinic Celsian, when other raw materials are used for this purpose, according to previous literature. These results were attributed to the role of the chemical and phase constitution of CFA as well as to a likely mineralizing effect of CaO and TiO{sub 2} present in it, which enhanced the Hexacelsian to Celsian conversion.

  8. Use of analcime zeolite from mineral coal fly ash in adsorption of Cu"+"2 and Cd"+"2 in aqueous solutions

    International Nuclear Information System (INIS)

    Rocha Junior, C.A.F.; Santos, S.C.A.; Angelica, R.S.; Neves, R.F.; Souza, C.A.G.

    2011-01-01

    The use of zeolite for removing heavy metals from contaminated effluents over the years has been widespread due to its high cation exchange capacity in aqueous solutions. Thus this study aims to use analcime zeolite for removal of Cu"+"2 and Cd"+"2 from aqueous solutions at different concentrations, and the zeolitic material synthesized from coal fly ash generated in an alumina plant in northern Brazil . The use of zeolite analcime proved quite satisfactory, since this product has removed almost entirely Cu"+"2 and Cd"+"2 solutions with concentrations up to 200ppm, and demonstrated an average capacity for solutions of 400ppm, which shows good applicability of this material for the treatment of effluent contamination in the ranges studied. The adsorption models of Langmuir and Freundlich showed a good fit to experimental data generated in this work. (author)

  9. Utilization of coal fly ash in construction in relation to regulations within the framework of the Dutch Soil Protection Act

    International Nuclear Information System (INIS)

    van der Sloot, H.A.

    1991-01-01

    In 1987, the Dutch Government passed the Soil Protection Act. Within the framework of this act aiming at reduction of soil pollution by anthropogenic activities, a number of regulations will be enforced. One of these is the Regulation for Construction Materials, which is intended to control environmental impacts resulting from the utilization of industrial residues in construction. The regulation will apply to all conventional materials used in construction and raw materials derived from waste materials. For effective enforcement of this regulation by 1992, a full set of well documented procedures are needed to cover such aspects as sampling, storage, analysis of solids and liquids, leaching, and evaluation of test results. These procedures should ultimately be available as national (NEN), or preferably internationally (CEN, ISO), agreed standard protocols. A coherent program of projects has been started in 1990 in association with the Dutch Normalization Institute to generate these protocols and initiate the necessary research activities. As a result of the new regulations, initiatives have been taken to certify industrial residues for certain applications. The utilization of coal combustion residues in construction is governed by certificates. Thus, quality control at the utilities is an integral part of coal fly ash utilization and marketing. For public acceptance of utilization of these materials, quality control and certification is an essential element along with demonstrations of proper performance in practice

  10. Certification of trace element contents (As, Cd, Co, Cu, Fe, Mn, Hg, Na, Pb and Zn) in a fly ash obtained from the combustion of pulverised coal

    International Nuclear Information System (INIS)

    Griepink, B.; Colinet, E.; Guzzi, G.; Haemers, L.; Muntau, H.

    1983-01-01

    The element contents of As, Cd, Co, Cu, Fe, Mn, Hg, Na, Pb and Zn of a fly ash from pulverised coal are certified. The procedures and their results for the homogenisation, the contamination and homogeneity checks and the analytical campaign are reported. The certified mass fractions and indicative values for Cr, Ni, Th, V and water soluble sulphate are given. The work was carried out within the framework of the activities of the Community Bureau of Reference (BCR) of the Commission of the European Communities. (orig.) [de

  11. Investigation of the possibility of binding fly ash particles by elemental sulphur

    Directory of Open Access Journals (Sweden)

    Vidojković V.

    2006-01-01

    Full Text Available Thermal power plants in Serbia use lignite for electrical power production The secondary product of coal combustion is fly ash in the amount of 17%. Fly ash causes the pollution of air, water and soil, and also cause many human, especially lung diseases. Secondary sulphur is a product of crude oil refining. The aim of this study was to investigate the use of sulphur as a bonding material in ultra fine particle agglomeration (smaller than 63 μm in fly ash. The agglomeration should make the ash particles larger and heavy enough to fall without flying fractions. The experiments showed that during the homogenization of the ashes and sulphur from 150 to 170 °C in a reactor with intensive mixing, an amount of 15% sulphur was sufficient to bond particles and cause agglomeration without visible flying fractions.

  12. Peabody Western brings its old mines into new competitive era

    Energy Technology Data Exchange (ETDEWEB)

    Sprouls, M.W.

    1994-10-01

    Peabody Western Coal Co., manages four surface mines that mark Peabody's expansion from the Midwest to the West. The mines began operating between 1964 and 1973, before the surge of western coal mine start-ups brought about by the oil price shock of 1973 and 1974 and the subsequent investments in coal by American oil companies. Despite good demand for western low-sulfur coals, the prices are low due to production overcapacity that was built in the 1970s. The result is that older mines have had to be creative to reduce costs and retain customers amid stiff competition. The mining units - Black Mesa and Kayenta in Arizona, Big Sky in Montana and Seneca in Colorado - now must handle coal supply administration, financial analysis, engineering, environmental compliance, labor relations and community relations at their sites. Peabody Western's Flagstaff, Ariz., headquarters staff will be reduced by about 30 people, although many of them will be assigned to mining units. All four surface mines use draglines, and each supplies a primary customer, but the mines have as many differences as similarities. Altogether, the mines produce about 17 million tons annually and employ 1,100 people.

  13. Environmental impact assessment of coal fired thermal power stations

    International Nuclear Information System (INIS)

    Nambi, K.S.V.; Sadasivan, S.; Negi, B.S.; Meenakshy, V.

    1992-01-01

    Coal fly ash samples collected from various thermal power plants and one lignite ash sample were analysed for various elements such as As, Ca, Ce, Co, Cr, Cu, Eu, Fe, Hf, K, La, Lu, Mn, Na, Ni, Pb, Rb, Se, Si, Sb, Sc, Sm, Sr, Ti, V, Yb and Zn using energy dispersive X-ray fluorescence and instrumental neutron activation analysis methods. The two-step maximum leachability test was also performed on all fly ash samples. 13 refs, 9 tabs

  14. Relative population exposures from coal-fired and nuclear power plants in India

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, T.V.; Lalit, B.Y.; Mishra, U.C.

    1987-01-01

    Coal combustion for electric power generation results in dispersal of fly ash, and hence an additional radiation dose to the population living in the neighbourhood of the coal-fired power plants due to natural radioactivity present in coal. The radiation hazards of coal based and nuclear power plants operating in India are given. The dose commitments to the population living within an 88.5 km radius of the thermal and nuclear power plants in India have been computed using the method outlined in an ORNL report. The estimated dose rates for these two types of power plant were compared. The present study shows that the radiation dose from coal-fired and nuclear power plants are comparable.

  15. Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Radisav Vidic; Joseph Flora; Eric Borguet

    2008-12-31

    The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

  16. Selection experiments for the optimum combination of AMF-plant-substrate for the restoration of coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Li-ping Wang; Wei-wei Zhang; Guang-xia Guo; Kui-mei Qian; Xiao-pei Huang [China University of Mining & Technology, Xuzhou (China). School of Environment and Spatial Informatics

    2009-07-15

    A complex substrate consisting of fly ash, coal gangue and excess sludge was used as an experimental soil in pot culture experiments. Different soil compositions were tested by observing the growth of arbuscular mycorrhizal (AM) fungi inoculated white clover, rye grass or corn. The biomass of the host plants, the mycorrhizal colonization (MC) rate and the mycorrhizal dependency (MD) were measured. The research addresses the preferable AMF-plant-substrate combination appropriate for restoration of coal mines. We used two inoculation methods: single-inoculation with Glomus versiforme or Glomus mosseae and a dual inoculation with both G.v and G.m. The results show that G.m is the preferable fungi and that dual inoculation does not show advantages for the restoration of coal mines. White clover inoculated with AM fungi is the most suitable condition for restoration of coal mines. The best weight ratio of fly ash, coal gangue and excess sludge was found to be 20:60:20. The optimum treatment conditions of AMF-plant-activated-substrate are described. 10 refs., 2 figs., 4 tabs.

  17. Layer-by-Layer Assembly and Photocatalytic Activity of Titania Nanosheets on Coal Fly Ash Microspheres

    Directory of Open Access Journals (Sweden)

    Xing Cui

    2014-01-01

    Full Text Available In order to address the problem with titania distribution and recovery, series of Ti0.91O2/CFA photocatalysts (Ti0.91O2/CFA-n, n=2,4,6, and 8 were fabricated by assembling Ti0.91O2 nanosheets on coal fly ash (CFA microspheres via the layer-by-layer assembly (LBLA process and characterized by scanning electron microscopy (SEM, X-ray diffraction analysis (XRD, N2-sorption, and ultraviolet-visible absorption (UV-vis techniques. The SEM images and UV-vis spectra illustrated that Ti0.91O2 nanosheets were immobilized successfully on the CFA by the LBLA approach and changed the characteristics of CFA noticeably. The photocatalytic activity of Ti0.91O2/CFA was evaluated by the photodegradation of methylene blue (MB under UV irradiation. The results demonstrated that Ti0.91O2/CFA-6 showed the best photocatalytic activity among the series of Ti0.91O2/CFA irradiated for 60 min, with a decoloration rate above 43%. After photocatalysis, the Ti0.91O2/CFA could be easily separated and recycled from aqueous solution and Ti0.91O2 nanosheets were still anchored on the CFA.

  18. Impacts of heavy metals and radioactivity from coal combustion

    International Nuclear Information System (INIS)

    Goldman, M.

    1977-01-01

    Coal-fueled plants appear to have the potential for a slightly higher radiologic impact on the population than do nuclear-powered plants although in both cases the impact appears to be quite small. The additional impact from trace elements in and on respirable fly ash is of concern and should be factored into the total assessment of potential health consequences associated with a major increase in coal combustion. For some time the paucity of essential data will hamper realistic evaluations

  19. Importance of Campylobacter jejuni FliS and FliW in Flagella Biogenesis and Flagellin Secretion

    Directory of Open Access Journals (Sweden)

    Katarzyna A. Radomska

    2017-06-01

    Full Text Available Flagella-driven motility enables bacteria to reach their favorable niche within the host. The human foodborne pathogen Campylobacter jejuni produces two heavily glycosylated structural flagellins (FlaA and FlaB that form the flagellar filament. It also encodes the non-structural FlaC flagellin which is secreted through the flagellum and has been implicated in host cell invasion. The mechanisms that regulate C. jejuni flagellin biogenesis and guide the proteins to the export apparatus are different from those in most other enteropathogens and are not fully understood. This work demonstrates the importance of the putative flagellar protein FliS in C. jejuni flagella assembly. A constructed fliS knockout strain was non-motile, displayed reduced levels of FlaA/B and FlaC flagellin, and carried severely truncated flagella. Pull-down and Far Western blot assays showed direct interaction of FliS with all three C. jejuni flagellins (FlaA, FlaB, and FlaC. This is in contrast to, the sensor and regulator of intracellular flagellin levels, FliW, which bound to FlaA and FlaB but not to FlaC. The FliS protein but not FliW preferred binding to glycosylated C. jejuni flagellins rather than to their non-glycosylated recombinant counterparts. Mapping of the binding region of FliS and FliW using a set of flagellin fragments showed that the C-terminal subdomain of the flagellin was required for FliS binding, whereas the N-terminal subdomain was essential for FliW binding. The separate binding subdomains required for FliS and FliW, the different substrate specificity, and the differential preference for binding of glycosylated flagellins ensure optimal processing and assembly of the C. jejuni flagellins.

  20. Modes of Occurrence of Fluorine by Extraction and SEM Method in a Coal-Fired Power Plant from Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Guangmeng Wang

    2015-12-01

    Full Text Available In this study, an extraction method and environmental scanning electron microscopy (SEM are employed to reveal the changes in the occurrence mode of fluorine in a coal-fired power plant in Inner Mongolia, China. The different occurrence states of fluorine during coal combustion and emission show that fluorine in coal mainly assumes insoluble inorganic mineral forms. The results illustrate that the three typical occurrence modes in coal are CaF2, MgF2 and AlF3. The fluorine in fly ash can be captured by an electrostatic precipitator (EPS or a bag filter. In contrast, the gaseous fluorine content in flue gas is only in the range of several parts per million; thus, it cannot be used in this study. The occurrence mode of fluorine in bottom ash and slag is inorganic villiaumite (e.g., soluble NaF, KF and insoluble CaF2 which is difficult to break down even at high temperatures. The occurrence mode of fluorine with the highest content in fly ash is physically adsorbed fluorine along the direction of the flue gas flow. The insoluble inorganic mineral fluoride content in fly ash is also high, but the gradually increasing fluorine content in fly ash is mainly caused by physical adsorption. Fluorine in the coal-fired power plant discharges mostly as solid products; however, very little fluorine emitted into the environment as gas products (HF, SiF4 cannot be captured. The parameters used in this study may provide useful references in developing a monitoring and control system for fluorine in coal-fired power plants.

  1. Western Slope Colorado

    International Nuclear Information System (INIS)

    Epis, R.C.; Callender, J.F.

    1981-01-01

    A conference on the geology and geologic resources of the Western Slope of western Colorado and eastern Utah is presented. Fourteen papers from the conference have been abstracted and indexed for the Department of Energy's Energy Data Base. These papers covered such topics as uranium resources, oil shale deposits, coal resources, oil and gas resources, and geothermal resources of the area

  2. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  3. Pengaruh Penambahan Limbah Padat Abu Terbang Batubara(fly Ash) Terhadap Kekuatan Tekan Dan Porositas Genteng Tanah Liat Kabupaten Pringsewu

    OpenAIRE

    Febriyansyah, Puji; Tarkono,; Zulhanif,

    2013-01-01

    Fly ash, chemicallyis analumino-silicamineral containing Ca, K, and Na elements, fly ash has amoderate to high bonding capacity characteristic , and has acement-forming properties. In this study the authors use the industrial fly ash coal waste as an alternative mixture of tile manufacture. The tiles manufactured by mixing clay, sand, water and fly ash. Then smoothed with ekstuder machine and forming kuweh then aerate for 3 days, before do the dieing process . Tile dried for 4 days, then do f...

  4. Metallothionein response in earthworms Lampito mauritii (Kinberg) exposed to fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Maity, S.; Hattacharya, S.; Chaudhury, S. [Visva Bharati, Santini Ketan (India)

    2009-10-15

    Among pollutants, the coal fly ash occupies a significant position in industrial wastes. The fly ash matrix is a complex mixture of various organic (polyhalogenated compounds) and inorganic (Si, Al, Fe, As, Cd, Bi, Hg, etc.) chemicals. The application of fly ash for agricultural purposes and as landfills may lead to the contamination of the land with some of the toxic chemical compounds present in fly ash. Thus prior to the application of fly ash for developmental activities, it requires bio-monitoring and risk characterization. In order to achieve this objective adult Lampito mauritii were exposed to different proportions of fly ash in soil for 30 d and the concentrations of metallothionein in earthworm were assessed. The results revealed that up to 50% of fly ash amendment does not apparently harm the earthworm in respect of their survival and growth. A significant increase in tissue metallothionein level was recorded in L mauritii exposed to fly ash amended soil without tissue metal accumulation indicating that metallothionein is involved in scavenging of free radicals and reactive oxygen species metabolites. It is concluded that this biochemical response observed in L mauritii exposed to fly ash amended soil could be used in ecotoxicological field monitoring.

  5. Supplying Fe from molten coal ash to revive kelp community

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K.; Yamamoto, M.; Sadakata, M. [University of Tokyo, Tokyo (Japan)

    2006-02-15

    The phenomenon of a kelp-dominated community changing to a crust-dominated community, which is called 'barren-ground', is progressing in the world, and causing serious social problems in coastal areas. Among several suggested causes of 'barren-ground', we focused on the lack of Fe in seawater. Kelp needs more than 200 nM of Fe to keep its community. However there are the areas where the concentration of Fe is less than 1 nM, and the lack of Fe leads to the 'barren-ground.' Coal ash is one of the appropriate materials to compensate the lack of Fe for the kelp growth, because the coal ash is a waste from the coal combustion process and contains more than 5 wt% of Fe. The rate of Fe elution from coal fly ash to water can be increased by 20 times after melting in Ar atmosphere, because 39 wt% of the Fe(III) of coal fly ash was reduced to Fe(II). Additionally molten ash from the IGCC (integrated coal gasification combined cycle) furnace in a reducing atmosphere and one from a melting furnace pilot plant in an oxidizing atmosphere were examined. Each molten ash was classified into two groups; cooled rapidly with water and cooled slowly without water. The flux of Fe elution from rapidly cooled IGCC molten ash was the highest; 9.4 x 10{sup -6} g m{sup -2} d{sup -1}. It was noted that the coal ash melted in a reducing atmosphere could elute Fe effectively, and the dissolution of the molten ash itself controlled the rate of Fe elution in the case of rapidly cooled molten ash.

  6. Char characterization and DTF assays as tools to predict burnout of coal blends in power plants

    Energy Technology Data Exchange (ETDEWEB)

    C. Ulloa; A.G. Borrego; S. Helle; A.L. Gordon; X. Garcia [Universidad de Concepcion, Concepcion (Chile). Departamento de Ingenieria Quimica

    2005-02-01

    The aim of this study is to predict efficiency deviations in the combustion of coal blends in power plants. Combustion of blends, as compared to its single coals, shows that for some blends the behavior is non-additive in nature. Samples of coal feed and fly ashes from combustion of blends at two power plants, plus chars of the parent coals generated in a drop-tube furnace (DTF) at temperatures and heating rates similar to those found in the industrial boilers were used. Intrinsic kinetic parameters, burning profiles and petrographic characteristics of these chars correlated well with the burnout in power plants and DTF experiments. The blend combustion in a DTF reproduces both positive and negative burnout deviations from the expected weighted average. These burnout deviations have been previously attributed to parallel or parallel-series pathways of competition for oxygen. No deviations were found for blends of low rank coals of similar characteristics yielding chars close in morphology, optical texture and reactivity. Negative deviations were found for blends of coals differing moderately in rank and were interpreted as associated with long periods of competition. In this case, fly-ashes were enriched in material derived from the least reactive char, but also unburnt material attributed to the most reactive char was identified. Improved burnout compared to the weighted average was observed for blends of coals very different in rank, and interpreted as the result of a short interaction period, followed by a period where the less reactive char burns under conditions that are more favorable to its combustion. In this case, only unburned material from the least reactive char was identified in the fly-ashes. 20 refs., 9 figs., 5 tabs.

  7. Radiological impact assessment of coal and nuclear base power plants in India

    International Nuclear Information System (INIS)

    Ramachandran, T.V.

    2007-01-01

    Environmental problems concerned with the use of coal as a fuel in thermal power plants (TPS) is due to the production of fly ash. Coal contains tracers of primordial radionuclide and its burning is one of the sources of technologically enhanced exposure from natural radionuclides. When it is burnt in TPSs, the fly ash, emitted through the stack is enriched in radionuclide and so combustion of coal on a large scale for thermal power generation assumes importance. Many of these TPSs are located in thickly populated areas. Radioactivity content of the coal from the coalfields of eastern parts of the country is found to be higher than that of other coalfields. In India coal combustion accounts nearly 73% of the total installed capacity for power generation. A sample study was carried out by this center on coal and fly ash samples collected from more than 35 TPS spread all over the country with a total installed capacity of 10000 MW(e), for their-radioactivity content. Radiation doses to the population residing within 90 km radius of each TPS have been computed. Besides another set of 15 TPSs were studied for thermal pollution emission and trace element concentration. Operation of these TPSs has resulted in effective dose commitments from doses to bones, lungs and thyroid of 200 man-Sv.y -1 and from doses to the whole body, of 70 man-Sv.y -1 . Dose commitments to the population living within 90 km radius of the TPSs and NPPs in India have been computed and have been compared. Attempt is made to assess the inhalation dose from the radioactivity released from a typical 500 MW(e) TPS and its impact related to chemical pollutants. Impact in terms of Environmental Quality Index (EQI) due to conventional pollutions have been computed and compared with those due to the nuclear power plants (NPPs). Paper gives the summary of the study. (author)

  8. Radioactive implications from coal burning

    International Nuclear Information System (INIS)

    Papastefanou, C.; Manolopoulou, M.; Charalambous, S.

    1989-01-01

    Lignites burning in the Greek Coal Power Plants (CPP) contain naturally occurring radionuclides mainly arising from the uranium series. Radium-226 concentrations in lignites burning in the three Coal Power Plants of the 3.02 GW energy centre, the greatest in Greece (Valley of Ptolemais, North Greece), varied from about 30 to 132 Bq kg -1 (average 65.5 Bq kg -1 . About 1.3 % of 226 Ra is discharged to the environment in particulate form - fly ash - by the stacks of thermal power stations, burning coal at a rate 14.3 Mt (GH y) -1 . The collective effective dose equivalent (EDE) commitment to the population 44400 living in the region of these plants, due to inhalation was estimated to be 0.13 man Sv y -1 , that is an order of magnitude higher than that recommended for such a population. Doses from inhaled radon and radon progeny might cause an excess of 3-7 cancer deaths this year. (author)

  9. Installation of a digital, wireless, strong-motion network for monitoring seismic activity in a western Colorado coal mining region

    Energy Technology Data Exchange (ETDEWEB)

    Peter Swanson; Collin Stewart; Wendell Koontz [NIOSH, Spokane, WA (USA). Spokane Research Laboratory

    2007-01-15

    A seismic monitoring network has recently been installed in the North Fork Valley coal mining region of western Colorado as part of a NIOSH mine safety technology transfer project with two longwall coal mine operators. Data recorded with this network will be used to characterize mining related and natural seismic activity in the vicinity of the mines and examine potential hazards due to ground shaking near critical structures such as impoundment dams, reservoirs, and steep slopes. Ten triaxial strong-motion accelerometers have been installed on the surface to form the core of a network that covers approximately 250 square kilometers (100 sq. miles) of rugged canyon-mesa terrain. Spread-spectrum radio networks are used to telemeter continuous streams of seismic waveform data to a central location where they are converted to IP data streams and ported to the Internet for processing, archiving, and analysis. 4 refs.

  10. Demography of northern flying squirrels informs ecosystem management of western interior forests.

    Science.gov (United States)

    John F. Lehmkuhl; Keith D. Kistler; James S. Begley; John. Boulanger

    2006-01-01

    We studied northern flying squirrel (Glaucomys sabrinus) demography in the eastern Washington Cascade Range to test hypotheses about regional and local abundance patterns and to inform managers of the possible effects of fire and fuels management on flying squirrels. We quantified habitat characteristics and squirrel density, population trends, and...

  11. Relative radiation hazards of coal based and nuclear power plants

    International Nuclear Information System (INIS)

    Mishra, U.C.

    1983-04-01

    Coal, like most materials found in nature, contains trace quantities of naturally occurring radionuclides. However, low concentrations may become important if large quantities of coal are burnt in thermal power plants. Therefore a study was performed to determine the radioactivity in coal, in fly-ash and slag and assess the importance of radioactive emissions from thermal power plants. The results were compared to the radiological impact of nuclear power stations. Based on these data, theoretical estimates for the population living within 80km from power stations indicate that the collective dose commitments of coal-fired plants are one order of magnitude higher than those for BWR-type nuclear plants. Measurements taken in the vicinity of coal-fired plants were comparable to those for nuclear plants, i.e. within the range of variation of natural background radiation in India

  12. Physical and chemical characterization of 50 pulverized coal ashes with respect to partial cement replacement in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sloot, H A; Weijers, E G

    1986-04-01

    Physical and chemical characterization of 50 pulverized coal ashes from Dutch, Belgian and German installations has been carried out to identify the parameters that have to be kept under control, when pulverized coal ashes are to be used as partial cement replacement in concrete. For a good workability of fly ash/cement mortars the particle size and the carbon content are important. By performing a mortar flow test (Heagermann) upon delivery exterme ashes can be easily eliminated. The compressive strength is largely determined by the fineness of the ash (weight fraction below 20 micron). A direct effect of carbon content on strength development is not observed, but a reduction in mortar slow due to carbon leads to loss in strength, while the workability has to be adjusted. Size distribution measurement by optical methods is recommended as the relevant part of the ash size distribution cannot be properly assessed by sieve methods. The net contribution of fly ash to the compressive strength of a fly ash/cement (20/80) mortar exhibits a minimum at 14 days curing, which is common to all 50 ashes studied. Improvements in ash quality as obtained from pulverized-coal fired installations can be achieved by improvements in coal milling and optimizing ash collection. 6 figs., 4 tabs., 19 refs.

  13. Utilisation of different types of coal fly ash in the production of ceramic tiles

    OpenAIRE

    KocKal, N. U.

    2012-01-01

    The influence of varying proportions of different types of fly ash (used in place of feldspar) and different sintering temperatures on the sintered properties of ceramic tile bodies was evaluated. The results indicated that sintering ceramic tiles with a high fly ash content at a high temperature caused a decrease in the properties because of bloating. The ceramic samples containing a higher amount of fly ash that were sintered at low temperature exhibited lower water absorption, larger shrin...

  14. Origin of natural waters and gases within the Upper Carboniferous coal-bearing and autochthonous Miocene strata in South-Western part of the Upper Silesian Coal Basin, Poland

    International Nuclear Information System (INIS)

    Kotarba, Maciej J.; Pluta, Irena

    2009-01-01

    The molecular and stable isotope compositions of coalbed gases from the Upper Carboniferous strata and natural gases accumulated within the autochthonous Upper Miocene Skawina Formation of the Debowiec-Simoradz gas deposit were determined, as well as the chemical and stable isotope compositions of waters from the Skawina Formation and waters at the top of the Upper Carboniferous strata of the Kaczyce Ridge (the abandoned 'Morcinek' coal mine) in the South-Western part of the Upper Silesian Coal Basin. Two genetic types of natural gases within the Upper Carboniferous coal-bearing strata were identified: thermogenic (CH 4 , small amounts of higher gaseous hydrocarbons, and CO 2 ) and microbial (CH 4 , very small amounts of ethane, and CO 2 ). Thermogenic gases were generated during the bituminous stage of coalification and completed at the end of the Variscan orogeny. Degassing (desorption) of thermogenic gases began at the end of late Carboniferous until the late Miocene time-period and extended to the present-day. This process took place in the Upper Carboniferous strata up to a depth of about 550 m under the sealing Upper Miocene cover. A primary accumulation zone of indigenous, thermogenic gases is present below the degassing zone. Up to 200 m depth from the top of the Upper Carboniferous strata, within the weathered complex, an accumulation zone of secondary, microbial gas occurs. Waters within these strata are mainly of meteoric origin of the infiltration period just before the last sea transgression in the late Miocene and partly of marine origin having migrated from the Upper Miocene strata. Then, both methanogenic archaebacteria and their nutrients were transported by meteoric water into the near-surface Carboniferous strata where the generated microbial CH 4 saturated coal seams. Waters within the Miocene strata of the Debowiec-Simoradz and Zablocie are of marine origin, and natural gases accumulated within autochthonous Miocene strata of the Debowiec

  15. Experimental investigation on NO{sub x} emission and carbon burnout from a radially biased pulverized coal whirl burner

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Shan; Hui, Shi' en; Zhou, Qulan; Xu, Tongmo; Hu, Hongli [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Taisheng [Dongfang Boiler Group Co., Ltd., Zigong, Sichuan 643001 (China)

    2009-09-15

    Experiments have been performed on 1 MW pulverized coal (pc) furnace in order to investigate the characteristics of coal combustion and NO{sub x} emission from a new type of radially biased dual register whirl burner. The burner is characterized by a primary air pipe with a continuously changing cross-section and an impact ring. The mixture of pulverized coal and air inside the primary pipe is split into two streams, which are the outer pc rich annular jet and the inner pc lean annular jet respectively. Three Chinese coals, which are high rank bituminous coal, low rank bituminous coal and meager coal respectively, are used in the experiments. We examine the influences of various parameters such as the relative position of the over-fire air (OFA) nozzle, over-fire air ratio (19.1%), primary air ratio, inner secondary air ratio, outer secondary air ratio, inner secondary air swirling intensity, and outer secondary air swirling intensity on NO{sub x} formation and unburned carbon in fly ash. With the primary air ratio increasing from 13.4% to 23.4%, the value of the NO{sub x} emission of the SH coal decreases by 26.7% at first, and then increases by 21.7%. In contrast, the value of the carbon in fly ash (C{sub FA}) increases by 40.1% at first, and then decreases by 58.3%. According to the experimental results, the influence of each individual parameter on NO{sub x} formation and unburned carbon in fly ash agrees well with the existing literature. In this study, the influences of various combinations of these parameters are also examined, thus providing some reference for the design of the radial biased whirl burner, the configuration of the furnace and the distribution of the air. (author)

  16. Phenology and population dynamics of sand flies in a new focus of visceral leishmaniasis in Eastern Azarbaijan Province, North western of Iran.

    Science.gov (United States)

    Hazratian, Teimour; Rassi, Yavar; Oshaghi, Mohammad Ali; Yaghoobi-Ershadi, Mohammad Reza; Fallah, Esmael; Shirzadi, Mohammad Reza; Rafizadeh, Sina

    2011-08-01

    To investigate species composition, density, accumulated degree-day and diversity of sand flies during April to October 2010 in Azarshahr district, a new focus of visceral leishmaniasis in north western Iran. Sand flies were collected using sticky traps biweekly and were stored in 96% ethanol. All specimens were mounted in Puri's medium for species identification using valid keys of sandflies. The density was calculated by the formula: number of specimens/m(2) of sticky traps and number of specimens/number of traps. Degree-day was calculated as follows: (Maximum temperature + Minimum temperature)/2-Minimum threshold. Diversity indices of the collected sand flies within different villages were estimated by the Shannon-weaver formula ( H'=∑i=1sPilog(e)Pi). Totally 5 557 specimens comprising 16 Species (14 Phlebotomus, and 2 Sergentomyia) were indentified. The activity of the species extended from April to October. Common sand-flies in resting places were Phlebotomus papatasi, Phlebotomus sergenti and Phlebotomus mongolensis. The monthly average density was 37.6, 41.1, 40.23, 30.38 and 30.67 for Almalodash, Jaragil, Segaiesh, Amirdizaj and Germezgol villages, respectively. Accumulated degree-day from early January to late May was approximately 289 degree days. The minimum threshold temperature for calculating of accumulated degree-day was 17.32°. According on the Shannon-weaver (H'), diversity of sand flies within area study were estimated as 0.917, 1.867, 1.339, 1.673, and 1.562 in Almalodash, Jaragil, Segaiesh, Amirdizaj and Germezgol villages, respectively. This study is the first detailed research in terms of species composition, density, accumulated degree-day and diversity of sand flies in an endemic focus of visceral leishamaniasis in Azarshahr district. The population dynamics of sand flies in Azarshahr district were greatly affected by climatic factors. According to this study the highest activity of the collected sand fly species occurs at the teritary

  17. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report E : hardened mechanical properties and durability performance of HVFA concrete.

    Science.gov (United States)

    2012-10-01

    A rising concern in todays construction industry is environmental responsibility. : The addition of fly ash is a leading innovation in sustainable design of concrete. Fly ash, : a waste by-product of coal burning power plants, can be used to repla...

  18. Determination of anisotropy and multimorphology in fly ash based geopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M. Irfan, E-mail: mirfanwazir@gmail.com; Azizli, Khairun, E-mail: khairun-azizli@petronas.com.my; Sufian, Suriati, E-mail: suriati@petronas.com.my; Man, Zakaria, E-mail: zakaman@petronas.com.my; Siyal, Ahmer Ali, E-mail: ahmersiyal@gmail.com; Ullah, Hafeez, E-mail: Hafeez-wazir@yahoo.com [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Tronoh, Perak (Malaysia)

    2015-07-22

    In this study, Malaysian coal fly ash-based geopolymers were investigated for its morphology and chemical composition using scanning electron microscopy coupled with energy dispersive X-rays (SEM-EDX). Geopolymer was synthesized using sodium hydroxide as activator. SEM studies revealed multiphasous structure of the material, composed of geopolymeric gel, partially reacted fly ashparticles and selectively leached particles. EDX analysis confirmed the chemical composition of different regions. Infra red spectroscopic studies supported the SEM-EDX analysis by confirming presence of unreacted quartzite and mullite in geopolymers. It is concluded that geopolymers possese a non uniform chemistry through out the structure.

  19. UTILIZATION OF TORAY FLY ASH AS FILLER SUBSTITUTION IN THE HOT ROLLED SHEET-WEARING COURSE (HRS-WC MIXTURE

    Directory of Open Access Journals (Sweden)

    F. Candra

    2012-02-01

    Full Text Available In road construction materials, the utilization of fly ash as additive materials is limited and also small in quantity, while the disposal of fly ash is quite high. An abundance of fly ash can be found at PT Toray Company in Jakarta and Surabaya. Toray fly ash is disposed coal ash resulting from coal-fired electricity generating power plants. Toray fly ash in this research is used as substitute mineral filler in asphalt paving mixtures. Research on utilization of Toray fly ash as filler is conducted in the Hot Rolled Sheet – Wearing Course Mixture.  Filler content in the HRS –WC mixture is 9%. Variations of Toray fly ash in the mixture tested are 0%, 25%, 50%, 75%, 100% and the variations of asphalt content are 6%, 6.5%, 7%, 7.5%, 8%. Marshall test is  performed to determine the Optimum Asphalt Content  and Marshall Stability, Indirect Tensile Strength (ITS test and Tensile Strength Ratio (TSR to select the optimum Toray fly ash utilization in the mixture based on the moisture susceptibility of specimens. The research results show that in variations of 0%, 25%, 50%, 75% and 100% Toray fly ash in the HRS-WC Mixture, the Optimum Asphalt Contents are at 6.8%, 7.0%, 7.0%, 7.1% and 7.6%  and Marshall Stability values of the variations are 1649 kg, 1541 kg, 1568 kg, 1678 kg, 1718 kg respectively. TSR values in variations of Toray fly ash are 98.32%, 90.28%, 89.38%, 87.62%, 64.71% respectively, with Minimum TSR value required is 80%. Based on the overall parameters, the optimum Toray fly ash utilization in the HRS-WC Mixture recommended is 75% of Toray fly ash at 7.1% Optimum Asphalt Content.

  20. [Study on mercury re-emissions during fly ash utilization].

    Science.gov (United States)

    Meng, Yang; Wang, Shu-Xiao

    2012-09-01

    The amount of fly ash produced during coal combustion is around 400 million tons per year in China. About 65%-68% of fly ash is used in building material production, road construction, architecture and agriculture. Some of these utilization processes include high temperature procedures, which may lead to mercury re-emissions. In this study, experiments were designed to simulate the key process in cement production and steam-cured brick production. A temperature programmed desorption (TPD) method was used to study the mercury transformation in the major utilization processes. Mercury re-emission during the fly ash utilization in China was estimated based on the experimental results. It was found that mercury existed as HgCl2 (Hg2 Cl2), HgS and HgO in the fly ash. During the cement production process, more than 98% of the mercury in fly ash was re-emitted. In the steam-curing brick manufacturing process, the average mercury re-emission percentage was about 28%, which was dominated by the percentage of HgCl2 (Hg2 Cl2). It is estimated that the mercury re-emission during the fly ash utilization have increased from 4.07 t in 2002 to 9.18 t in 2008, of which cement industry contributes about 96.6%.

  1. Germanium content in Polish hard coals

    Directory of Open Access Journals (Sweden)

    Makowska Dorota

    2016-01-01

    Full Text Available Due to the policy of the European Union, it is necessary to search for new sources of scarce raw materials. One of these materials is germanium, listed as a critical element. This semi-metal is widely used in the electronics industry, for example in the production of semiconductors, fibre optics and solar cells. Coal and fly ash from its combustion and gasification for a long time have been considered as a potential source of many critical elements, particularly germanium. The paper presents the results of germanium content determination in the Polish hard coal. 23 coal samples of various coal ranks were analysed. The samples were collected from 15 mines of the Upper Silesian Coal Basin and from one mine of the Lublin Coal Basin. The determination of germanium content was performed with the use of Atomic Absorption Spectrometry with Electrothermal Atomization (GFAAS. The investigation showed that germanium content in the analysed samples was at least twice lower than the average content of this element in the hard coals analysed so far and was in the range of 0.08 ÷ 1.28 mg/kg. Moreover, the content of Ge in the ashes from the studied coals does not exceed 15 mg/kg, which is lower than the average value of Ge content in the coal ashes. The highest content of this element characterizes coals of the Lublin Coal Basin and young coals type 31 from the Vistula region. The results indicate a low utility of the analysed coal ashes as a source of the recovery of germanium. On the basis of the analyses, the lack of the relationship between the content of the element and the ash content in the tested coals was noted. For coals of the Upper Silesian Coal Basin, the relationship between the content of germanium in the ashes and the depth of the seam was observed.

  2. Groundwater impact studies at three Ontario Hydro coal ash landfills

    International Nuclear Information System (INIS)

    Johnston, H.M.; Vorauer, A.G.; Chan, H.T.

    1992-01-01

    Ontario Hydro has produced on the order of 21 million Mg of coal fly ash over the past 40 years, of which, 80% has gone to various landfill sites in the province of Ontario. Hydrogeologic investigations have been performed in the vicinity of three Ontario Hydro coal ash landfill sites to assess the environmental impact of fly ash landfilling on the local groundwater regime. Two of the waste management facilities are associated with thermal generating stations (Lambton TGS and Nanticoke TGS) and are founded on relatively impermeable clay deposits. The third site, Birchwood Park, is a former sand and gravel pit for which the landfill design did not incorporate the use of a liner material. The rates of groundwater flow through the overburden materials a the three sites vary from less than 1 cm/a at the Lambton TGS site, to between 3.45 cm/a and 115 cm/a at contaminant transport at these sites also varies from being controlled by molecular diffusion to advection. This paper discusses the migration rates of contaminants from fly ash leachate at each of the three sites with implications to landfill containment and design

  3. Utilization of Yatagan Power Plant Fly Ash in Production of Building Bricks

    Science.gov (United States)

    Önel, Öznur; Tanriverdi, Mehmet; Cicek, Tayfun

    2017-12-01

    Fly ash is a by-product of coal combustion, which accumulates in large quantities near the coal-fired power plants as waste material. Fly ash causes serious operational and environmental problems. In this study, fly ash from Yatağgan thermal power plant was used to produce light-weight building bricks. The study aimed to reduce the problems related to fly ash by creating a new area for their use. The optimum process parameters were determined for the production of real size bricks to be used in construction industry. The commercial size bricks (200 × 200 × 90-110 mm) were manufactured using pilot size equipment. Mechanical properties, thermal conductivity coefficients, freezing and thawing strengths, water absorption rates, and unit volume weights of the bricks were determined. Etringite (Ca6Al2 (SO4)3 (OH)12 25(H2O)) and Calcium Silicate Hydrate (2CaO.SiO2.4H2O) were identified as the binding phases in the real size brick samples after 2 days of pre-curing and 28 days curing at 50° C and 95% relative moisture. The water absorption rate was found to be 27.7 % in terms of mass. The mechanical and bending strength of the brick samples with unit volume weight of 1.29 g.cm-3 were determined as 6.75 MPa and 1,56 MPa respectively. The thermal conductivity of the fly ash bricks was measured in average as 0,340 W m-1 K-1. The fly ash sample produced was subjected to toxic leaching tests (Toxic Property Leaching Procedure (EPA-TCLP 1311), Single-step BATCH Test and Method-A Disintegration Procedure (ASTM)). The results of these tests suggested that the materials could be classified as non-hazardous wastes / materials.

  4. Preparation of steel slag porous sound-absorbing material using coal powder as pore former.

    Science.gov (United States)

    Sun, Peng; Guo, Zhancheng

    2015-10-01

    The aim of the study was to prepare a porous sound-absorbing material using steel slag and fly ash as the main raw material, with coal powder and sodium silicate used as a pore former and binder respectively. The influence of the experimental conditions such as the ratio of fly ash, sintering temperature, sintering time, and porosity regulation on the performance of the porous sound-absorbing material was investigated. The results showed that the specimens prepared by this method had high sound absorption performance and good mechanical properties, and the noise reduction coefficient and compressive strength could reach 0.50 and 6.5MPa, respectively. The compressive strength increased when the dosage of fly ash and sintering temperature were raised. The noise reduction coefficient decreased with increasing ratio of fly ash and reducing pore former, and first increased and then decreased with the increase of sintering temperature and time. The optimum preparation conditions for the porous sound-absorbing material were a proportion of fly ash of 50% (wt.%), percentage of coal powder of 30% (wt.%), sintering temperature of 1130°C, and sintering time of 6.0hr, which were determined by analyzing the properties of the sound-absorbing material. Copyright © 2015. Published by Elsevier B.V.

  5. Fluidized bed and pulverized coal combustion residues for secondary pavements

    International Nuclear Information System (INIS)

    Ghafoori, N.; Diawara, H.; Wang, L.

    2009-01-01

    The United States produced nearly 125 million tons of coal combustion products in 2006. These by-products include fly ash, flue gas desulphurization materials, bottom ash, boiler slag, and other power plant by-products. The expense associated with waste disposal, lack of disposal sites, and significant environmental damage linked with the disposal of coal combustion residues have encouraged innovative utilization strategies such as the fluidized bed combustion (FBC) unit. This paper presented the results of a laboratory investigation that examined the properties of composites developed with different proportions of pre-conditioned FBC spent bed, pulverized coal combustion fly ash, natural fine aggregate, and Portland cement. The purpose of the study was to examine the extent to which the by-product composites could replace currently used materials in secondary roads. The paper presented the research objectives and experimental programs, including matrix constituent and proportions; mixture proportions; and mixing, curing, sampling, and testing. The discussion of results centered around compressive strength and expansion by internal sulfate attack. It was concluded that with proper proportioning, by-products of pulverized and fluidized bed combustion promote binding of sand particles and provide adequate strength under various curing and moisture conditions 4 refs., 6 tabs.

  6. Coal: the dinosaur wakes up; Charbon: le dinosaure se reveille

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, Y.; Cosnard, D

    2005-10-01

    In western countries, coal is considered as an industry of the past, but at the Earth's scale the situation is radically the opposite. Since three years, coal is the faster developing energy source, in particular thanks to China expansion and to the oil crisis which makes coal more competitive. This short paper presents the situation of coal mining in China: projects, working conditions and environmental impact. (J.S.)

  7. The leachability of carbon-14-labelled 3,4-benzopyrene from coal ash into aqueous systems

    NARCIS (Netherlands)

    Besemer, A.C.; Kanij, J.

    1984-01-01

    The leachability of polycyclic aromatic hydrocarbons from coal ash into aqueous systems was studied. Carbon-14-labeled 3,4-Benzopyrene (BaP) was deposited on coal fly ash by adsorption from the liquid phase in quantities of about 10 ??g/g ash. After a thermal treatment in air at 120??C for 2 hours

  8. Performance of double-layer biofilter packed with coal fly ash ceramic granules in treating highly polluted river water.

    Science.gov (United States)

    Jing, Zhaoqian; Li, Yu-You; Cao, Shiwei; Liu, Yuyu

    2012-09-01

    To improve trickling filters' denitrification efficiency, a biofilter with a trickling upper layer and a submerged lower layer was developed and applied in treating highly polluted river water. It was packed with porous coal fly ash ceramic granules. Its start-up characteristics, influence of hydraulic loading rates (HLR), carbon/nitrogen (C/N) ratio and filter depth on pollutants removal were investigated. The results indicated this biofilter was started quickly in 16 days with river sediment as inoculum. Alternating nitrification and denitrification were achieved when water flowed downwards. COD and nitrogen were mainly removed in the upper layer and the lower layer, respectively. With HLR of 4.0-5.0m(3)/(m(2)d), chemical oxygen demand (COD), ammonium (NH(4)(+)-N) and total nitrogen (TN) in the effluent were below 50, 5 and 15 mg/L, respectively. This biofilter removed more than 80% of COD, 85% of NH(4)(+)-N and 60% of TN with C/N ratios ranging from 6 to 10. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Application of Coal Ash to Postmine Land for Prevention of Soil Erosion in Coal Mine in Indonesia: Utilization of Fly Ash and Bottom Ash

    Directory of Open Access Journals (Sweden)

    Shinji Matsumoto

    2016-01-01

    Full Text Available The increase in the number of coal-fired power plants with the increase in coal production and its consumption has caused the problem of the treatment of a large amount of coal ash in Indonesia. In the past studies, coal ash was applied to postmine land with the aim of improving soil conditions for plant growth; however, heavy rain in the tropical climate may cause soil erosion with the change in soil conditions. This study presents the effects of application of coal ash to postmine land on soil erosion by performing the artificial rainfall test as well as physical testing. The results indicate that the risk of soil erosion can be reduced significantly by applying the coal ash which consists of more than 85% of sand to topsoil in the postmine land at the mixing ratio of over 30%. Additionally, they reveal that not only fine fractions but also microporous structures in coal ash enhance water retention capacity by retaining water in the structure, leading to the prevention of soil erosion. Thus, the risk of soil erosion can be reduced by applying coal ash to topsoil in consideration of soil composition and microporous structure of coal ash.

  10. The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Patrick, E-mail: brownpd@cf.ac.uk [School of Earth and Ocean Sciences, Cardiff University, Park Place, CF10 3YE Cardiff (United Kingdom); School of Biosciences, Cardiff University, Museum Avenue, CF10 3US Cardiff (United Kingdom); Jones, Tim, E-mail: jonestp@cf.ac.uk [School of Earth and Ocean Sciences, Cardiff University, Park Place, CF10 3YE Cardiff (United Kingdom); BeruBe, Kelly, E-mail: berube@cf.ac.uk [School of Biosciences, Cardiff University, Museum Avenue, CF10 3US Cardiff (United Kingdom)

    2011-12-15

    Coal fly ash (CFA) is a significant environmental pollutant that presents a respiratory hazard when airborne. Although previous studies have identified the mineral components of CFA, there is a paucity of information on the structural habits of these minerals. Samples from UK, Polish and Chinese power stations were studied to further our understanding of the factors that affect CFA geochemistry and mineralogy. ICP-MS, FE-SEM/EDX, XRD, and laser diffraction were used to study physicochemical characteristics. Analysis revealed important differences in the elemental compositions and particle size distributions of samples between sites. Microscopy of HF acid-etched CFA revealed the mullite present possesses a fibrous habit; fibres ranged in length between 1 and 10 {mu}m. Respirable particles (<10 {mu}m) were frequently observed to contain fibrous mullite. We propose that the biopersistence of these refractory fibres in the lung environment could be contributing towards chronic lung diseases seen in communities and individuals continually exposed to high levels of CFA. - Highlights: > Chinese CFA had a greater crystalline mineral content and smaller particle size. > Mullite and quartz, two hazardous minerals, recrystallise from glass melt particles. > Mullite revealed a fibrous habit, with fibres 1-10 {mu}m in length and 0.5-1 {mu}m in width. - Chinese CFA possessed a greater crystalline mineral content and smaller particle size than UK and Polish CFA, the fibrous mullite prhiesent displayed a high aspect-ratio and thus is likely to be a respiratory hazard in vivo.

  11. The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations

    International Nuclear Information System (INIS)

    Brown, Patrick; Jones, Tim; BeruBe, Kelly

    2011-01-01

    Coal fly ash (CFA) is a significant environmental pollutant that presents a respiratory hazard when airborne. Although previous studies have identified the mineral components of CFA, there is a paucity of information on the structural habits of these minerals. Samples from UK, Polish and Chinese power stations were studied to further our understanding of the factors that affect CFA geochemistry and mineralogy. ICP-MS, FE-SEM/EDX, XRD, and laser diffraction were used to study physicochemical characteristics. Analysis revealed important differences in the elemental compositions and particle size distributions of samples between sites. Microscopy of HF acid-etched CFA revealed the mullite present possesses a fibrous habit; fibres ranged in length between 1 and 10 μm. Respirable particles (<10 μm) were frequently observed to contain fibrous mullite. We propose that the biopersistence of these refractory fibres in the lung environment could be contributing towards chronic lung diseases seen in communities and individuals continually exposed to high levels of CFA. - Highlights: → Chinese CFA had a greater crystalline mineral content and smaller particle size. → Mullite and quartz, two hazardous minerals, recrystallise from glass melt particles. → Mullite revealed a fibrous habit, with fibres 1-10 μm in length and 0.5-1 μm in width. - Chinese CFA possessed a greater crystalline mineral content and smaller particle size than UK and Polish CFA, the fibrous mullite prhiesent displayed a high aspect-ratio and thus is likely to be a respiratory hazard in vivo.

  12. Experimental Analysis of Fly Ash & Coir Fiber Mix Cement Concrete for Rigid Pavement

    OpenAIRE

    Er. Amit Kumar Ahirwar; Prof. Rajesh Joshi

    2015-01-01

    In India Thermal power plants which use pounded coal as a fuel, generates million tones of fly ash every year as a waste. Conservative clearance of this material which gets easily air-borne and constitutes a serious health hazards to the community, is an expensive operation. A part from this compacted fly ash can be used in embankments, road sub-bases and also for structural fills. The major drawbacks of such materials are their limited load carrying capacity and poor settlement c...

  13. Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas.

    Science.gov (United States)

    Yang, Jianping; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2014-12-16

    To remove Hg(0) in coal combustion flue gas and eliminate secondary mercury pollution of the spent catalyst, a new regenerable magnetic catalyst based on cobalt oxide loaded magnetospheres from fly ash (Co-MF) was developed. The catalyst, with an optimal loading of 5.8% cobalt species, attained approximately 95% Hg(0) removal efficiency at 150 °C under simulated flue gas atmosphere. O2 could enhance the Hg(0) removal activity of magnetospheres catalyst via the Mars-Maessen mechanism. SO2 displayed an inhibitive effect on Hg(0) removal capacity. NO with lower concentration could promote the Hg(0) removal efficiency. However, when increasing the NO concentration to 300 ppm, a slightly inhibitive effect of NO was observed. In the presence of 10 ppm of HCl, greater than 95.5% Hg(0) removal efficiency was attained, which was attributed to the formation of active chlorine species on the surface. H2O presented a seriously inhibitive effect on Hg(0) removal efficiency. Repeated oxidation-regeneration cycles demonstrated that the spent Co-MF catalyst could be regenerated effectively via thermally treated at 400 °C for 2 h.

  14. Characterization and Gravimetric Analysis of the Dissolved Quartz in the Conversion of Coal Fly Ash to Sodalite

    International Nuclear Information System (INIS)

    Mohd Hilmi Mohamed; Zainab Ramli

    2012-01-01

    Coal fly ash (CFA) is a waste product produced from the electrical power plant and hazardous towards the environment. However, the high composition of silica and alumina in the CFA makes it useful as raw materials in the zeolite synthesis. However, the presence of silica in the form of quartz in the CFA does not facilitate the transformation of CFA to zeolite at 100 degree Celsius and autogeneous pressure. In this study, CFA was converted to zeolites in various NaOH concentrations by microwave heating at various heating time. All synthesized product were characterized by X-ray diffraction (XRD), and gravimetric analysis. XRD has shown that quite pure sodalite in nano size has been formed as early as 15 minutes and increase with time. Prolong heating up to 45 minutes has reduced the content of quartz to ca 20 %. Gravimetric analysis performed on the liquor of the reaction showed that the dissolved silica decrease with increase of heating time indicating that most of the dissolved quartz is used up to form sodalite framework. Hence, quartz of CFA did help in enhancing the crystallinity of the formed sodalite after prolong heating. (author)

  15. Fly ash: An alternative to powdered activated carbon for the removal ...

    African Journals Online (AJOL)

    This paper reports the use of powdered activated carbon (PAC) and raw coal fly ash (RFA) in the removal of eosin dye from aqueous solution in batch processes. Operational parameters such as contact time, initial dye concentration, pH and temperature were investigated. Adsorption equilibrium was established in 120 min ...

  16. Removal of metallic ions from aqueous solutions by fluidized bed fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Rio, S.; Delebarre, A.; Hequet, V. [Ecole des Mines de Nantes, 44 - Nantes (France); Blondin, J. [Cerchar 62 - Mazingarbe (France)

    2001-07-01

    One of the main constraints deriving from the generation of power by coal combustion is to find some use for the fly ashes instead of disposing of them. Fly ashes from two fluidized bed power plants were tested to remove Pb{sup 2+}, Cu{sup 2+}, Cr (III), Ni{sup 2+}, Zn{sup 2+} and Cr (VI) from aqueous solutions. Experimental design methodology was used to study the removal and the leaching as a function of (i) the water pollutant content, (ii) the metal concentration in water, (iii) the pH of the solution and (iv) the addition of lime to fly ashes. The results show that the percentage of adsorbed ions was more important when they were in contact with silico-aluminous fly ashes than sulfo-calcic fly ashes, except in the case of the ion Ni{sup 2+}. The removal of metallic ions increases with increasing pH. The metallic canons removal accounting for the leaching test was higher when lime was added to silico-aluminous fly ashes during the adsorption. (authors)

  17. Influence of coal slurry particle composition on pipeline hydraulic transportation behavior

    Science.gov (United States)

    Li-an, Zhao; Ronghuan, Cai; Tieli, Wang

    2018-02-01

    Acting as a new type of energy transportation mode, the coal pipeline hydraulic transmission can reduce the energy transportation cost and the fly ash pollution of the conventional coal transportation. In this study, the effect of average velocity, particle size and pumping time on particle composition of coal particles during hydraulic conveying was investigated by ring tube test. Meanwhile, the effects of particle composition change on slurry viscosity, transmission resistance and critical sedimentation velocity were studied based on the experimental data. The experimental and theoretical analysis indicate that the alter of slurry particle composition can lead to the change of viscosity, resistance and critical velocity of slurry. Moreover, based on the previous studies, the critical velocity calculation model of coal slurry is proposed.

  18. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility.

    Science.gov (United States)

    Cao, Yan; Wang, Quan-Hai; Li, Jun; Cheng, Jen-Chieh; Chan, Chia-Chun; Cohron, Marten; Pan, Wei-Ping

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactorwas about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155 degrees C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155 degrees C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, attesting conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBr addition alone).

  19. PAH emissions from coal combustion and waste incineration.

    Science.gov (United States)

    Hsu, Wei Ting; Liu, Mei Chen; Hung, Pao Chen; Chang, Shu Hao; Chang, Moo Been

    2016-11-15

    The characteristics of PAHs that are emitted by a municipal waste incinerator (MWI) and coal-fired power plant are examined via intensive sampling. Results of flue gas sampling reveal the potential for PAH formation within the selective catalytic reduction (SCR) system of a coal-fired power plant. In the large-scale MWI, the removal efficiency of PAHs achieved with the pilot-scaled catalytic filter (CF) exceeds that achieved by activated carbon injection with a bag filter (ACI+BF) owing to the effective destruction of gas-phase contaminants by a catalyst. A significantly lower PAH concentration (1640ng/g) was measured in fly ash from a CF module than from an ACI+BF system (5650ng/g). Replacing the ACI+BF system with CF technology would significantly reduce the discharge factor (including emission and fly ash) of PAHs from 251.6 to 77.8mg/ton-waste. The emission factors of PAHs that are obtained using ACI+BF and the CF system in the MWI are 8.05 and 7.13mg/ton, respectively. However, the emission factor of MWI is significantly higher than that of coal-fired power plant (1.56mg/ton). From the perspective of total environmental management to reduce PAH emissions, replacing the original ACI+BF process with a CF system is expected to reduce environmental impact thereof. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Leaching Behavior of Selected Trace and Toxic Metals in Coal Fly Ash Samples Collected from Two Thermal Power Plants, India.

    Science.gov (United States)

    Sandeep, P; Sahu, S K; Kothai, P; Pandit, G G

    2016-09-01

    Studies on leaching behavior of metals associated with coal fly ash (FA) are of great concern because of possible contamination of the aquatic environment. In the present study, leaching behavior of metals (As, Se, Cr, Pb, V, Zn, etc.) in two different FA samples (FA1 and FA2) was investigated at various pH (2-12), temperatures of leachate solution and using TCLP. At pH 2, the highest leaching was observed for Fe (21.6 and 32.8 µg/g), whereas at pH 12, Arsenic was found to have the highest leaching (1.5 and 2.4 µg/g) in FA1 and FA2. Leachate solution temperature showed a positive effect on the metal's leachability. In TCLP, most of the metal's leachability was observed to be higher than that of batch leaching tests. The present study suggests that, leaching of As and Se from FA samples can moderately affect ground/surface water quality at the study locations.

  1. Study on Type C Coal Fly ash as an Additive to Molding Sand for Steel Casting

    Science.gov (United States)

    Palaniappan, Jayanthi

    2017-04-01

    Study of physio-chemical properties studies such as granulometric analysis, moisture, X ray fluorescence etc. were performed with Type C coal—combustion fly ash to investigate their potential as a distinct option for molding sand in foundry, thereby reducing the dependency on latter. Technological properties study such as compressive strength, tensile strength, permeability and compaction of various compositions of fly ash molding sand (10, 20 and 30 % fly ash substitute to chemically bonded sand) were performed and compared with silica molding sand. Steel casting production using this fly ash molding sand was done and the casting surface finish and typical casting parameters were assessed. It was noted that a good quality steel casting could be produced using type C fly ash molding sand, which effectively replaced 20 % of traditional molding sand and binders thereby providing greater financial profits to the foundry and an effective way of fly ash utilization (waste management).

  2. Fractionation of mercury stable isotopes during coal combustion and seawater flue gas desulfurization

    International Nuclear Information System (INIS)

    Huang, Shuyuan; Yuan, Dongxing; Lin, Haiying; Sun, Lumin; Lin, Shanshan

    2017-01-01

    In the current study, fractionation of mercury isotopes during coal combustion and seawater flue gas desulfurization (SFGD) in a coal-fired power plant using a SFGD system was investigated. Fourteen samples were collected from the power plant. The samples were pretreated with a combustion-trapping method and were analyzed with a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS). Compared with the raw coal, the bottom ash was enriched with lighter mercury isotopes with δ 202 Hg values ranging from −0.45 to −0.03‰. The fly ash was enriched with lighter mercury isotopes with δ 202 Hg values ranging from −1.49 to −0.73‰ for Chinese coal and from −1.47 to −0.62‰ for Indonesian coal. The δ 202 Hg of fresh seawater and desulfurized seawater was found to be −1.32 and −0.32‰ respectively. These δ 202 Hg values indicated that the desulfurized seawater was enriched with heavier mercury isotopes. Based upon the calculated results obtained from the mass balance equation, it was suggested that the stack emissions were enriched with lighter mercury isotopes. Mass independent fractionation was observed in most of the samples with a Δ 199 Hg/Δ 201 Hg ratio of approximately 0.96. The results help in improving the understanding of mercury isotope fractionation during coal combustion and SFGD, and are also useful in tracing the mercury emissions from coal fired power plants. - Highlights: • Spread of 1.5‰ was observed in δ 202 Hg values of raw coals and coal related samples. • The δ 202 Hg values were more negative in fly ash than those in the raw coal. • The flue gas had a significant Hg fractionation after desulfurization. • The stack emissions were enriched with lighter isotopes compared with the raw coal.

  3. Development and testing of synthetic RIPRAP constructed from coal combustion products.

    Science.gov (United States)

    2013-11-01

    Even with an increase in the amount of CCPs used in concrete construction, soil stabilization, and other applications, the coal power : industry must dispose of a significant amount of fly ash and bottom ash. One potential avenue for the material is ...

  4. Characterization of metals released from coal fly ash during dredging at the Kingston ash recovery project.

    Science.gov (United States)

    Bednar, A J; Averett, D E; Seiter, J M; Lafferty, B; Jones, W T; Hayes, C A; Chappell, M A; Clarke, J U; Steevens, J A

    2013-09-01

    A storage-pond dike failure occurred on December 22, 2008 at the Tennessee Valley Authority Kingston Fossil Plant resulting in the release of over 4million cubic meters (5million cubic yards) of fly ash. Approximately half of the released ash was deposited in the main channel of the Emory River, Tennessee, USA. Remediation efforts of the Emory River focused on hydraulic dredging, as well as mechanical excavation in targeted areas. However, agitation of the submerged fly ash during hydraulic dredging introduces river water into the fly ash material, which could promote dissolution and desorption of metals from the solid fly ash material. Furthermore, aeration of the dredge slurry could alter the redox state of metals in the fly ash material and thereby change their sorption, mobility, and toxicity properties. The research presented here focuses on the concentrations and speciation of metals during the fly ash recovery from the Emory River. Our results indicate that arsenite [As(III)] released from the fly ash material during dredging was slowly oxidized to arsenate [As(V)] in the slurry recovery system with subsequent removal through precipitation or sorption reactions with suspended fly ash material. Concentrations of other dissolved metals, including iron and manganese, also generally decreased in the ash recovery system prior to water discharge back to the river. Published by Elsevier Ltd.

  5. Temporal distribution and behaviour of sand flies (Diptera: Psychodidae) in a cutaneous leishmaniasis focus of the Kani Tribe settlements in the Western Ghats, India.

    Science.gov (United States)

    Srinivasan, R; Jambulingam, P; Kumar, N Pradeep; Selvakumar, M; Edwin, B; Kumar, T Dilip

    2015-08-01

    The temporal distribution of sand flies in relation to environmental factors was studied in the Kani tribe settlements located on the southernmost part of the Western Ghats, Kerala, India, between June 2012 and May 2013. This area is known for occurrence of cutaneous leishmaniasis (CL) cases. Employing hand-held aspirator, light trap and sticky-trap collection methods, a total of 7874 sand fly specimens, comprising 19 species was collected. Sergentomyia baghdadis was predominant species, followed by Phlebotomus argentipes. Sand fly abundance was significantly higher indoors (χ(2)=9241.8; p=0.0001) than outdoors. Mean density of P. argentipes in human dwellings, cattle sheds and outdoors was 7.2±2.9, 27.33±21.1 and 0.64±0.2 females/per man-hour (MHR), respectively. No sand fly species other than P. argentipes was obtained from cattle sheds. Although, sand fly populations were prevalent throughout the year, their abundance fluctuated with seasonal changes. Multiple regression analysis with backward elimination indicated that the increase in precipitation and relative humidity contributed to a significant positive association with the increase in sand fly abundance, while the increase in temperature showed no association. Fully engorged female sand flies tested for blood meal source showed multiple host-blood feeding. Analysis of resting populations of sand flies collected from human shelters indicated that the populations were found maximum on interior walls at 6-8 and >8 ft height, including ceiling during summer (F=83.7, df=6, p=0.001) and at the lower half of the wall at 0 and 0-2 ft height, during monsoon season (F=41.4, df=6, p=0.001). In cooler months, no preference to any height level (F=1.67, df=6, p=0.2) was observed. Proportion of females sand flies with Sella's classification of abdominal stages, namely full-fed, half-gravid and gravid females did not vary significantly (t=1.98, p=0.13827) indoors, confirming their endophilic behaviour. Risk of CL

  6. The comparative estimation of the radiation and chemical carcinogenic risk induced by the atmosphere contamination due to releases from coal-fired power plants

    International Nuclear Information System (INIS)

    Knizhnikov, V.A.; Komleva, V.A.; Shandala, N.K.

    1992-01-01

    In experiments with 1000 white mongrel mice which inhaled benzo (a) pyrene (BP) and fly coal ash for a long time, these agents increased significantly lung tumour incidence, with the latent period shortened. BP is found to be 10-1000 fold more carcinogenic then fly coal ash. The BP inhalation at a sanitary standard level (0.1 μg/100m 3 ) appeared to be equivalent, in murine risk, to the whole-body exposure to a total gamma dose of about 2 Sv. The coal ash inhalation in a concentration of 0.05 mg/m 3 caused the same risk as a dose of 0.05 Sv. (author)

  7. Determination of sulfur in coal and ash slurry by high-resolution continuum source electrothermal molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nakadi, Flávio V.; Rosa, Lilian R.; Veiga, Márcia A.M.S. da, E-mail: mamsveiga@ffclrp.usp.br

    2013-10-01

    We propose a procedure for the determination of sulfur in coal slurries by high resolution continuum source electrothermal molecular absorption spectrometry. The slurry, whose concentration is 1 mg mL{sup −1}, was prepared by mixing 50 mg of the sample with 5% v/v nitric acid and 0.04% m/v Triton X-100 and was homogenized manually. It sustained good stability. The determination was performed via CS molecular absorption at 257.592 nm, and the optimized vaporization temperature was 2500 °C. The accuracy of the method was ensured by analysis of certified reference materials SRM 1632b (trace elements in coal) and SRM 1633b (coal fly ash) from the National Institute of Standards and Technology, using external calibration with aqueous standards prepared in the same medium and used as slurry. We achieved good agreement with the certified reference materials within 95% confidence interval, LOD of 0.01% w/w, and RSD of 6%, which confirms the potential of the proposed method. - Highlights: • HR-CS ET MAS as a technique to determine sulfur in coal and ash • Utilization of (coal and coal fly ash) slurry as a sample preparation • Simple and fast method, which uses external calibration with aqueous standards without chemical modifier.

  8. Effect of fly ash characteristics on arsenic mobilization in the environment

    International Nuclear Information System (INIS)

    Bhumbla, D.K.; Singh, R.N.; Keefer, R.F.

    1993-01-01

    Coal combustion by products are a major source of arsenic mobilization in the environment. These by products have been successfully used in the reclamation of mine lands. However, there are concerns about the potential pollution problems from As by such use. A field experiment was established on a recently remined abandoned mine land where fly ashes from three different power plants were used for reclaiming mine soils. The experiment had seven treatments and 4 replications which were arranged in a randomized block design. The treatments consisted of 3 fly ashes at 2 rates each and a check treatment received lime. Arsenic content of the fly ashes varied between 53 and 220 mg/kg. Fly ashes also varied in the amounts of amorphous oxides of iron and neutralization potential. Arsenic concentrations were monitored in the vegetation, soil solutions, and soils. The results of this experiment showed that arsenic concentrations were higher in plants grown on plots receiving fly ash than in plants grown on plots receiving lime treatment. Arsenic concentrations in the plants, water, or soil were not governed by the arsenic content of fly ashes. Arsenic mobilization from the ashes was controlled by the chemical and morphological characteristics of the fly ashes and chemical transformations in the arsenic containing components in soil

  9. Synthesis of ZSM-5 zeolite from coal fly ash and rice husk: characterization and application for partial oxidation of methane to methanol

    Science.gov (United States)

    Krisnandi, Y. K.; Yanti, F. M.; Murti, S. D. S.

    2017-04-01

    Indonesian fly ash (SiO2/Al2O3 mole ratio = 3.59) was used together with rice husk (SiO2 92%) as raw material for mesoporous ZSM-5 zeolite synthesis. Prior being used, coal fly ash and rice husk were subjected to pre-treatment in order to extract silicate (SiO4 4-) and aluminate (AlO4 5-) and to remove the impurities. Then the ZSM-5 zeolite were synthesized through hydrothermal treatment using two types of templates (TPAOH and PDDA). The as-synthesized ZSM-5 was characterized using FTIR, XRD, SEM-EDX, and BET. The result of FTIR showed peaks at 1250-950 cm-1 (v asymetric T-O), 820-650 cm-1 (v symetric T-O), and at 650-500 cm-1 confirming the presence of the five number ring of the pentasil structure. The result of XRD showed the appearance of certain peaks in the position 2 theta between 7-9° and 22-25° indicative of ZSM-5 structure, but also showed the pattern of low intensity magnetite and hematite. The SEM image showed the rough surface of hexagonal crystals from ZSM-5 structure, indicative of mesoporosity in the structure. EDX result showed Si/Al ratio of 20, while surface area analysis gave SA of 43.16. The ZSM-5 zeolites then was modified with cobalt oxide through impregnation method. The catalytic activity as heterogeneous catalysts in partial oxidation of methane was tested. The result showed that hence the catalytic activity of ZSM-5 and Co/ZSM-5 from fly ash and rice husk were still inferior compared to the pro-analysis sourced-counterpart, they were potential to be used as catalyst in the partial oxidation of methane to methanol.

  10. The heterogeneous nature of mineral matter, fly-ash and deposits

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Pohl, J.H.; Devir, G.P.; Su, S. [R.A. Creelman and Associates, Epping, NSW (Australia)

    2000-07-01

    This paper reports on a series of slagging studies investigating the heterogeneous nature of mineral matter, fly ash and deposits, and how this heterogeneity affects deposition. The data come from low temperature ashing (LTA) of pulverised coal, fly ash from boilers, and deposits from pilot-scale furnaces and boilers. The paper presents optical and scanning electron (SEM) micrographs, electron microprobe analysis (EMPA) and energy dispersive x-ray analysis (EDXRA) of mineral matter, individual fly ash particles, and localised regions of deposits. During combustion, the included mineral matter is transformed into fly ash, melts and partially adheres to the char surface, and may form agglomerated masses. Excluded mineral matter has little chance of encountering another ash particle and agglomerating in the gas phase, but can react with other particles in the wall deposits. Certain fly ash particles adhere to the wall where they can combine with other fly ash particles. Analyses of molten regions of deposits have shown, so far, four mineral phase fields to be responsible for forming difficult deposits with melting points below deposit surface temperatures of 1200 to 1350{sup o}C. These mineral fields include iron cordierite, albite and its silica undersaturated equivalent nepheline, anorthite, and compounds with ratios of Ca to P of 2.3-2.5.

  11. Management and Development of the Western Resources Project

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown

    2009-03-09

    The purpose of this project was to manage the Western Resources Project, which included a comprehensive, basin-wide set of experiments investigating the impacts of coal bed methane (CBM; a.k.a. coal bed natural gas, CBNG) production on surface and groundwater in the Powder River Basin in Wyoming. This project included a number of participants including Apache Corporation, Conoco Phillips, Marathon, the Ucross Foundation, Stanford University, the University of Wyoming, Montana Bureau of Mines and Geology, and Western Research Institute.

  12. Differential growth and yield by canola (Brassica napus L.) and wheat (Triticum aestivum L.) arising from alterations in chemical properties of sandy soils due to additions of fly ash.

    Science.gov (United States)

    Yunusa, Isa A M; Manoharan, Veeragathipillai; Harris, Rob; Lawrie, Roy; Pal, Yash; Quiton, Jonathan T; Bell, Richard; Eamus, Derek

    2013-03-30

    There is a need for field trials on testing agronomic potential of coal fly ash to engender routine use of this technology. Two field trials were undertaken with alkaline and acidic fly ashes supplied at between 3 and 6 Mg ha⁻¹ to acidic soils and sown to wheat and canola at Richmond (Eastern Australia) and to wheat only at Merredin (Western Australia). Ash addition marginally (PAPSIM at Richmond over a 100-year period (1909-2008) predicted yield increases in 52% of years with addition of ash at 3.0 Mg ha⁻¹ compared with 24% of years with addition of ash at 6.0 Mg ha⁻¹. The simulated yield increases did not exceed 40% over the control with addition of 6 Mg ha⁻¹ ash, but was between 40% and 50% with an addition rate of 3 Mg ha⁻¹. We found no evidence of phytotoxicity in either crop in this unusually dry year and there is still a need for further field assessment in years with favourable rainfall to enable development of clear recommendations on fly ash rates for optimum yield benefits. © 2012 Society of Chemical Industry.

  13. Morphological and Strength Properties of Tanjung Bin Coal Ash Mixtures for Applied in Geotechnical Engineering Work

    OpenAIRE

    Awang, Abd. Rahim; Marto, Aminaton; Makhtar, Ahmad Maher

    2012-01-01

    In Malaysia, coal has been used as a raw material to generate electricity since 1988. In the past, most of the wastage of coal burning especially the bottom ash was not managed properly as it was dumped in the waste pond and accumulated drastically.This paper focuses on some properties of coal ash mixtures (fly  ash and bottom ash mixtures) from Tanjung Bin power plant. The characteristics studied were morphological properties, compaction behaviour and strength properties. Strength properties...

  14. Chemometric Study of Trace Elements in Hard Coals of the Upper Silesian Coal Basin, Poland

    Science.gov (United States)

    Rompalski, Przemysław; Cybulski, Krzysztof; Chećko, Jarosław

    2014-01-01

    The objective of the study was the analysis of trace elements contents in coals of the Upper Silesian Coal Basin (USCB), which may pose a potential threat to the environment when emitted from coal processing systems. Productive carbon overburden in central and southern zones of the USCB is composed mostly of insulating tertiary formations of a thickness from a few m to 1,100 m, and is represented by Miocene and Pliocene formations. In the data study the geological conditions of the coal seams of particular zones of the USCB were taken into account and the hierarchical clustering analysis was applied, which enabled the exploration of the dissimilarities between coal samples of various zones of the USCB in terms of basic physical and chemical parameters and trace elements contents. Coals of the northern and eastern zones of the USCB are characterized by high average Hg and low average Ba, Cr, and Ni contents, whereas coals of southern and western zones are unique due to high average concentrations of Ba, Co, Cu, Ni, and V. Coals of the central part of the USCB are characterized by the highest average concentration of Mn and the lowest average concentrations of As, Cd, Pb, V, and Zn. PMID:24967424

  15. Alkali-activated concrete with Serbian fly ash and its radiological impact.

    Science.gov (United States)

    Nuccetelli, Cristina; Trevisi, Rosabianca; Ignjatović, Ivan; Dragaš, Jelena

    2017-03-01

    The present paper reports the results of a study on different types of fly ash from Serbian coal burning power plants and their potential use as a binder in alkali-activated concrete (AAC) depending on their radiological and mechanical properties. Five AAC mixtures with different types of coal burning fly ash and one type of blast furnace slag were designed. Measurements of the activity concentrations of 40 K, 226 Ra and 232 Th were done both on concrete constituents (fly ash, blast furnace slag and aggregate) and on the five solid AAC samples. Experimental results were compared by using the activity concentration assessment tool for building materials - the activity concentration index I, as introduced by the EU Basic Safety Standards (CE, 2014). All five designed alkali-activated concretes comply with EU BSS screening requirements for indoor building materials. Finally, index I values were compared with the results of the application of a more accurate index - I(ρd), which accounts for thickness and density of building materials (Nuccetelli et al., 2015a). Considering the actual density and thickness of each concrete sample index - I(ρd) values are lower than index I values. As an appendix, a synthesis of main results concerning mechanical and chemical properties is provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Environmental and health problems in connection with coal use in Romanian power plants

    International Nuclear Information System (INIS)

    Matei, M.

    1995-01-01

    Emission limits to solid fuel fired boilers are to be applied in Romania from January 1998; total airborne coal dust in RENEL (Romanian Electricity Authority) power plants handling areas is regulated by National Work Protection Norms to 8 mg/m 3 air; and maximum levels of radiation are regulated by Romanian Radio protection Norms. The article discusses RENEL's recent measurements of CO, NO x and SO 2 emissions in flue gas of their coal-fired power plants. Assessments of airborne dust concentrations in different work places within RENEL's power plants have been made and have helped identify the must dangerous sites and the causes of high dust concentrations. Experimental work on dust collection facilities is under way. Results are presented of natural radioactive concentrations of 238 U, 236 Ra, 232 Th and 40 K as well as β-total activity of coal samples collected from different RENEL power plants. Work is in progress to improve performance of electrostatic precipitators for collecting fly ash and to improve fly ash disposal. 2 figs., 7 tabs

  17. Radiometric determination of {sup 226}, {sup 228}Ac and {sup 40}K in fly ashes and building materials

    Energy Technology Data Exchange (ETDEWEB)

    Harangozo, M; Toelgyessy, J; Lesny, J; Cik, G [Slovak Technical Univ., Bratislava (Slovakia). Fac. of Chemical Technology, Dept. of Environmental Science

    1996-12-31

    In this paper the activities of radium-226, actinium-228 and potassium-40 in fly ashes and building materials of Slovakia were determined. Different origin of coals combusted results in significant differences in specific activities of radium-226 and activities-228 of measured fly-ashes and building materials. The knowledge of the specific activity of selected nuclides contained in fly-ashes is, therefore, very important and in specific cases can indicate the possibilities of their further technological use. (J.K.) 1 tab., 3 refs.

  18. Dual inoculation with an Aarbuscular Mycorrhizal fungus and Rhizobium to facilitate the growth of alfalfa on coal mine substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wu, F.Y.; Bi, Y.L.; Wong, M.H. [China University of Mining & Technology, Beijing (China)

    2009-07-01

    A pot experiment was conducted to investigate the effects of Glomus mosseae and Rhizobium on Medicago sativa grown on three types of coal mine substrates, namely a mixture of coal wastes and sands (CS), coal wastes and fly ash (CF), and fly ash (FA). Inoculation with Rhizobium alone did not result in any growth response but G. mosseae alone displayed a significant effect on plant growth. G. mosseae markedly increased the survival rate of M. sativa in CS substrate. In CF and FA substrates the respective oven dry weights of M. sativa inoculated with G. mosseae were 1.8 and 5.1 times higher than those without inoculation. Based on nitrogen (N), phosphorus (P) and potassium (K) uptake and legume growth, the results also show that dual inoculation in CS and CF substrates elicited a synergistic effect. This indicates that inoculation with arbuscular mycorrhizal (AM) fungi may be a promising approach for revegetation of coal mine substrates.

  19. Comparison and Application of Two types of Filling Gel to Prevent Spontaneous Combustion at the Region where Top-Coal Caves above Entry

    Directory of Open Access Journals (Sweden)

    Wang Yuhuai

    2016-01-01

    Full Text Available Two types of gel were developed, by taking fly ash and foaming cement as aggregate, which is usually used as filling material at the region where top-coal caves above coal entry in the Jinggezhuang coal mine, and adding high molecular polymer and bio-gel as additive. Sweating rates of the two types of gel under various matching ratio and temperature were tested. And then sweating ratio and water retention ratio of the two gels were calculated, based on which, the optimized matching ratios, were determined. Viscosity indexes of the two-type gel under different ratios were tested. The optimized filling ratios of the two types of gel were determined according to the two indexes, water retention rate and the viscosity. The filling experiments were implemented and evaluated in site, the Jinggezhuang coal mine. The results show that the fly ash gel has a good achievement on preventing spontaneous combustion at the Region where Top-Coal Caves above entries. It is promising, economically and environmental friendly, and valuable in popularization in coal mines.

  20. The impact of Outer Western Carpathian nappe tectonics on the recent stress-strain state in the Upper Silesian Coal Basin (Moravosilesian Zone, Bohemian Massif)

    Czech Academy of Sciences Publication Activity Database

    Ptáček, Jiří; Grygar, R.; Koníček, Petr; Waclawik, P.

    2012-01-01

    Roč. 63, č. 1 (2012), s. 3-11 ISSN 1335-0552 R&D Projects: GA ČR GA105/08/1625 Institutional research plan: CEZ:AV0Z30860518 Keywords : Variscan orogeny * Upper Silesian Coal Basin * recent stress fields * Outer Western Carpathians * paleostress Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.143, year: 2012 http://versita.metapress.com/content/0326174t34663755/

  1. Possibilities of utilizing power plant fly ashes

    Directory of Open Access Journals (Sweden)

    Mezencevová Andrea

    2003-09-01

    Full Text Available The burning of fossil fuels in industrial power stations plays a significant role in the production of thermal and electrical energy. Modern thermal power plants are producing large amounts of solid waste, mainly fly ashes. The disposal of power plant waste is a large environmental problem at the present time. In this paper, possibilities of utilization of power plant fly ashes in industry, especially in civil engineering, are presented. The fly ash is a heterogeneous material with various physical, chemical and mineralogical properties, depending on the mineralogical composition of burned coal and on the used combustion technology. The utilization of fly ashes is determined of their properties. The fineness, specific surface area, particle shape, density, hardness, freeze-thaw resistance, etc. are decisive. The building trade is a branch of industry, which employs fly ash in large quantities for several decades.The best utilization of fluid fly ashes is mainly in the production of cement and concrete, due to the excellent pozzolanic and cementitious properties of this waste. In the concrete processing, the fly ash is utilized as a replacement of the fine aggregate (fine filler or a partial replacement for cement (active admixture. In addition to economic and ecological benefits, the use of fly ash in concrete improves its workability and durability, increases compressive and flexural strength, reduces segregation, bleeding, shrinkage, heat evolution and permeability and enhances sulfate resistance of concrete.The aim of current research is to search for new technologies for the fly ash utilization. The very interesting are biotechnological methods to recovery useful components of fly ashes and unconventional methods of modification of fly ash properties such as hydrothermal zeolitization and mechanochemical modification of its properties. Mechanochemistry deals with physico - chemical transformations and chemical reactions of solids induced by

  2. Waste glass as partial mineral precursor in alkali-activated slag/fly ash system

    NARCIS (Netherlands)

    Zhang, S.; Keulen, A.; Arbi, K.; Ye, G.

    2017-01-01

    The feasibility of a waste glass powder residue (GP) from glass recycling as partial mineral precursor to produce alkali-activated materials is investigated. GP served as powder coal fly ash (PCFA) replacement within a reference system composed of 50% PCFA and 50% ground granulated blast furnace

  3. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory

    2008-10-15

    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.

  4. Advanced Coal Wind Hybrid: Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

    2008-11-28

    Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW

  5. Radiological impact from airborne routine discharges of Coal-Fired power plant

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Rohyiza Baan; Kathiravale, Sivapalan

    2010-01-01

    Radioactivity exists everywhere in nature. We are exposed to intense and continuous natural radiation coming from the sun, cosmic radiation, telluric radiation and even to the internal radiation of our own body. The fly ash emitted from burning coal for electricity by a power plant carries into the surrounding environment 100 times more radiation than a nuclear power plant producing the same amount of energy. This paper presents the information of studies on the radiological impact from airborne routine discharge of coal-fired power plants. (author)

  6. Application of Paste Backfill in Underground Coal Fires

    Science.gov (United States)

    Masniyom, M.; Drebenstedt, C.

    2009-04-01

    Coal fires are known from different coalfields worldwide. China, India, USA, Australia, Indonesia and South Africa are the main countries affected by coal fires. The fires is thermally intensive and cause numerous sinkholes, large-scale subsidence, air pollution, global warming, loss of mining productivity and increasing safety risk. The Wuda Inner Mongolia coalfield has been selected as a possible test area for paste backfill. The traditional methods, executed by fire fighting teams, by covering the coalfire areas with soil, blasting burning coal outcrops and injecting water in the subsurface fire pockets are continuously improved and extended. Initiatives to introduce modern techniques, such as backfill placement at fracture and borehole, to cool down the burning coal and cut off the air supply. This study is to investigate backfill materials and techniques suited for underground coal fires. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special attention was paid to materials generated as by-products and other cheaply available materials e.g. fly ash from power plants. There is a good chance that one of the different material mixtures investigated can be used as a technically and economically viable backfill for underground coal fires.

  7. Disposal of low-level radioactive waste using high-calcium fly ash. Final report

    International Nuclear Information System (INIS)

    Cogburn, C.O.; Hodgson, L.M.; Ragland, R.C.

    1986-04-01

    The feasibility of using calcium-rich fly ash from coal-fired power plants in the disposal of low-level radioactive waste was examined. The proposed areas of use were: (1) fly-ash cement as a trench lining material; (2) fly ash as a backfill material; and (3) fly ash as a liquid waste solidifier. The physical properties of fly-ash cement were determined to be adequate for trench liner construction, with compressive strengths attaining greater than 3000 psi. Hydraulic conductivities were determined to be less than that for clay mineral deposits, and were on the order of 10 -7 cm/sec, with some observed values as low as 10 -9 cm/sec. Removal of radioisotopes from acidified solutions by fly ash was good for all elements tested except cesium. The removal of cesium by fly ash was similar to that of montmorillonite clay. The corrosive effects on metals in fly ash environments was determined to be slight, if not non-existent. Coatings at the fly-ash/metal interfaces were observed which appeared to inhibit or diminish corrosion. The study has indicated that high-calcium fly ash appears to offer considerable potential for improved retention of low-level radioactive wastes in shallow land disposal sites. Further tests are needed to determine optimum methods of use. 8 refs., 4 figs., 7 tabs

  8. A brief review on fly ash and its use in surface engineering

    Science.gov (United States)

    Bhajantri, Vishwanath; Krishna, Prasad; Jambagi, Sudhakar

    2018-04-01

    Fly ash is a by-product obtained from coal power plants. Over the past two decades, handling this industrial waste has been a great challenge for many developing countries. However, this menace can be used in many industrial applications viz., civil, automobile and aerospace applications. In civil industry, the fly ash has been used in concreate to enhance the porosity that increases the curing time of the concrete. The fly ash has been gaining importance these days as a feedstock material for many thermal spray processes. In automobile sector, the fly ash has been used as a thermal barrier coating in IC engines, whereas in aerospace industry, which demands lighter and stronger materials, the fly ash has been used as a reinforcement material. Hence, so far, fly ash has been used as an either single or a composite feed stock material in thermal spray processes. The fly ash with other materials like alumina, titania and red mud have been deposited using thermal spray processes. These coatings have exhibited higher wear, corrosion and erosion resistance as compared to the uncoated specimens. In this paper, a brief review on fly ash and its use, especially its use as a feed stock in thermal spray coating, is presented. Therefore, the use of fly ash has opened a new frontier of research in thermal spray coating area where economically viable coatings can be produced using industrial waste like fly ash.

  9. Radioactivity in coal, ashes and selected wastewaters from Canadian coal-fired steam electric generating stations

    International Nuclear Information System (INIS)

    1985-09-01

    Coal is known to contain naturally occurring radioactive elements and there has been speculation that as a results, coal-fuelled power generation stations may be significant emitters of these substances. In this report, the subject of radioactivity is introduced. The kinds of radioactive substances which occur naturally in coal formations, the nature of their emissions and the existing information on their behaviour and their effects on environmental organisms are also reviewed. The results of an examination of levels of alpha, beta and gamma radiaton levels, and the substances which produce them in coals, fly ashes, bottom ashes and related wastewaters at six Canadian coal-fuelled power stations are presented. Difficulties in studies of this nature and the potential effects of these releases on organisms in the adjacent aquatic environment are discussed. Existing and potential technologies for the removal of these substances from wastewaters are examined. In general the releases in wastewaters from the six stations were found to be lower than those known to cause short-term or acute biological effects. The potential for long-term effects from such low-level releases could not be accurately assessed because of the paucity of information. A number of recommendations for: improvements in further studies of this nature; the further examination of the fate of naturally occurring radionuclides in the environment; and the determination of the long-term effects of low levels of naturally occurring radioactive substances on aquatic organisms, are made

  10. The future of coal-fired generation

    Energy Technology Data Exchange (ETDEWEB)

    White, G. [Sherritt International Corp., Calgary, AB (Canada)

    2004-07-01

    The 3 features that will ensure coal's place as a primary energy source are its affordability, availability and its abundance. Coal reserves represent more than 200 years of supply. Graphs depicting coal consumption in North America, Central and South America, Western Europe, Easter Europe, Middle East, Africa, and Asia show that coal use is expected to grow 1.5 per cent annually. Asia is the greatest consumer of coal, while the consumption of coal in Eastern Europe is steadily declining. About half of the electricity supply in the United States will continue to be generated by coal and non-electrical utilization is also expected to grow. Emerging technologies that are promoting efficiency of coal utilization include combustion technology, clean coal technology, conversion technology and emissions technology. These technologies also address environmental concerns regarding coal combustion, such as removal of carbon dioxide through sequestration and reduction in nitrogen oxides, sulphur dioxide and particulates. Mercury mitigation technologies are also being developed. It was noted that the use of coal is mitigated by other available supply such as nuclear, natural gas and hydro which provide the base load generation. Renewable energy supply can meet up to 20 per cent of the base load, while coal can fill be gap between base load and peak loads. It was noted that the use of coal in direct industrial processes allows for synergies such as syngas for bitumen upgrading, coal as a chemical feedstock with electricity as a by-product, combined heat and power and cogeneration. tabs., figs.

  11. Effect of gamma radiation on the bioactivity of Peach fruit fly, Bactrocera zonata (Saunders) infesting mango, Mangifera indica L. in the North-Western part of Bangladesh

    International Nuclear Information System (INIS)

    Hossain, M. Aftab.; Wadud, M. A.; Khan, Shakil A.; Islam, M. Saidul.

    2007-01-01

    Effects of gamma radiation on the bioactivity of peach fruit fly, Bactrocera zonata (Saunders) infesting mango, Mangifera indica L. in the north-western parts of Bangladesh was evaluated. It was noted that the bioactivity of the fly decreased as eggs and larval age of the fly increased. The egg stage was observed to be more sensitive to radiation than the larval stage. The LD 50 value of gamma radiation was 2.2703, 3.6097, 7.5065 and 8.9729 Gy against 6, 12, 18 and 24 h old eggs respectively. No egg was hatched at dosages of 10, 15, 15 and 20 Gy for 6, 12, 18 and 24 h old, accordingly. The LD 50 value of gamma radiation was 26.7042, 41.3821, 65.5292, 111.1554, 170.1583 and 233.9226 Gy against 1, 2, 3, 4, 5 and 6 days old larvae respectively. No adult emerged in 40, 60, 100, 150, 225 and 350 Gy for 1, 2, 3, 4, 5 and 6 days old larvae accordingly.(author)

  12. Using locally available fly ash for modifying concrete properties

    International Nuclear Information System (INIS)

    Rizwan, S.A.; Toor, S.R.; Ahmad, H.

    2005-01-01

    This paper suggests the possible use of fly ash, a bye-product produced in our thermal power plants operating on coal as fuel for improvement of concrete quality. In the present investigation, locally available finely divided fly ash has been used for modification Presently, it is being used extensively in concrete in modem countries and is considered as waste material in general. Behavior of fly ash modified concrete in comparison to normal concrete having same mix proportions, aggregates, net water-cement ratio and similar curing conditions has been studied in short terms up to the age of 56 days during which the specimens were subjected to normal water curing method. Tests were carried out for compressive strength at 3, 7, 14,28 and 56 days, 24 hours % age water absorption at the age of 56 days and durability (resistance of concrete against N/2 solutions of both nitric acid and hydrochloric acid for one month) of concrete were also carried out at the age of 56 days. It was seen that the compressive strength of concrete modified with the available type of fly ash was less than the normal concrete. But so. far as the durability and % age water absorption are concerned, fly ash plays an important role here. 24 hours % age water absorption decreases with increase in fly ash content an admixture and as a cement replacement in concrete. But so far as durability is concerned, 20% replacement of fly ash with cement appears to be more effective than it is with 40%. The purpose of investigation was to introduce the use of fly ash in concretes to the Engineers and Architects in Pakistan. (author)

  13. Reduction of NOx and particulate emissions from coal-fired boilers by modification of coal nozzles and combustion tuning

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, B.; Talanker, A.; Mugenstein, A.; Shpon, G.; Vikhansky, A.; Elperin, T.; Bar-Ziv, E.; Bockelie, M.; Eddings, E.; Sarofim, A.F. [Israel Electric Corporation, Haifa (Israel). Engineering Division

    2001-07-01

    In the present paper two issues are discussed: the effect of the burner replacement on boiler performance and NOx emissions and the effect of the burner replacement on performance and efficiency of electrostatic precipitators (ESP). We also have experimented with different coal types and found the coals that together with combustion tuning met commonly accepted emission limits for NOx (less than 600 mg/dNm{sup 3}) and levels of carbon in fly ash (LOI) (approximately 5-6%) for existing boilers without low NOx burners. Our measurements were accompanied by computer simulations of the combustion of the combustion process in the boiler. Special attention was paid to detailed simulation of the flow and ignition in the near-burner zone. 7 refs., 12 figs., 5 tabs.

  14. Identification and quantification of radionuclides in coal ash. Final report

    International Nuclear Information System (INIS)

    Alleman, J.E.; Clikeman, F.M.; Skronski, T.

    1998-01-01

    One of the important environmental issues raised recently in regard to coal ash reuse for highway construction purposes (e.g., embankment development) is that of worker, and public, exposure to radiation which might possibly be emitted by these types of residues. This research project subsequently addressed the associated issue of radiation emission by coal ash residuals generated within the State of Indiana, covering both fly ash and bottom ash materials. Samples were obtained at sixteen different coal-fired power generating facilities within Indiana and subjected to quantitative analysis of their associated gamma-ray emission levels. After identifying the responsible radionuclides, a conservative approximation was then developed for the worst-case potential occupational exposure with construction employees working on this type of high-volume, coal ash embankment. In turn, these potential emissions levels were compared to those of other traditional construction materials and other common sources

  15. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    To study the influence of local conditions on the reaction between gaseous KCl and kaolin or coal fly ash experiments were done on CHECs electrically heated entrained flow reactor, which can simulate the local conditions in suspension fired boilers. The experimental results were compared with mod...

  16. Advanced char burnout models for the simulation of pulverized coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    T. Severin; S. Wirtz; V. Scherer [Ruhr-University, Bochum (Germany). Institute of Energy Plant Technology (LEAT)

    2005-07-01

    The numerical simulation of coal combustion processes is widely used as an efficient means to predict burner or system behaviour. In this paper an approach to improve CFD simulations of pulverized coal fired boilers with advanced coal combustion models is presented. In simple coal combustion models, first order Arrhenius rate equations are used for devolatilization and char burnout. The accuracy of such simple models is sufficient for the basic aspects of heat release. The prediction of carbon-in-ash is one aspect of special interest in the simulation of pulverized coal fired boilers. To determine the carbon-in-ash levels in the fly ash of coal fired furnaces, the char burnout model has to be more detailed. It was tested, in how far changing operating conditions affect the carbon-in-ash prediction of the simulation. To run several test cases in a short time, a simplified cellnet model was applied. To use a cellnet model for simulations of pulverized coal fired boilers, it was coupled with a Lagrangian particle model, used in CFD simulations, too. 18 refs., 5 figs., 5 tabs.

  17. Chemical mass balance source apportionment of TSP in a lignite-burning area of Western Macedonia, Greece

    Science.gov (United States)

    Samara, Constantini

    Total suspended particle mass concentrations (TSP) were determined in the Kozani-Ptolemais-Florina basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a 1-year period (November 2000-November 2001) at 10 receptor sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Particulate emissions were also collected from a variety of sources including fly ash, lignite dust, automobile traffic, domestic heating, and open-air burning of agricultural biomass and refuse, and analyzed for the same chemical components. Ambient and source chemical profiles were used for source identification and apportionment of TSP by employing a chemical mass balance (CMB) receptor model. Diesel burning in vehicular traffic and in the power plants for generator start up was found to be the major contributor to ambient TSP levels at all 10 sites. Other sources with significant contributions were domestic coal burning, vegetative burning (wood combustion and agricultural burns) and refuse open-air burning. Fly ash escaping the electrostatic precipitators of the power plants was a minor contributor to ambient TSP.

  18. Synergistic effect of fly ash in in-vessel composting of biomass and kitchen waste.

    Science.gov (United States)

    Manyapu, Vivek; Mandpe, Ashootosh; Kumar, Sunil

    2018-03-01

    The present study aims to utilize coal fly ash for its property to adsorb heavy metals and thus reducing the bioavailability of the metals for plant uptake. Fly ash was incorporated into the in-vessel composting system along with organic waste. The in-vessel composting experiments were conducted in ten plastic vessels of 15 L capacity comprising varying proportions of biomass waste, kitchen waste and fly ash. In this study, maximum degradation of organic matter was observed in Vessel 3 having k value of 0.550 d -1 . In vessel 10, 20% fly ash with a combination of 50% biomass waste and 30% kitchen waste along with the addition of 5% jaggery as an additive produced the best outcome with least organic matter (%C) loss and lowest value of rate constant (k). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Leaching behavior of coal combustion products and the environmental implication in road construction

    Science.gov (United States)

    2008-02-01

    The use of coal fly ash in road base and sub-base applications can provide better properties and performance, and is superior to it being otherwise disposed and becoming a possible environmental liability. Understanding the metal leaching behavior fo...

  20. Synthesis of a hierarchically structured zeolite-templated carbon starting from fly ash-derived zeolite X

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-05-01

    Full Text Available A hierarchically structured zeolite derived from coal fly ash was used as a hard templating agent for the synthesis of a templated carbonaceous material. The samples were characterized using XRD, SEM, TEM, TGA, EDS and BET. The resulting carbon had...

  1. Inorganic contaminants attenuation in acid mine drainage by fly ash and fly ash-ordinary Portland cement (OPC) blends : column experiments

    International Nuclear Information System (INIS)

    Gitari, W.M.; Petrik, L.F.; Etchebers, O.; Key, D.L.; Okujeni, C.

    2010-01-01

    The infiltration of acid mine drainage (AMD) material into mine voids is one of the environmental impacts of underground coal mining. In this study, the mitigation of AMD in a mine void was simulated in laboratory conditions. Various mixtures of fly ash, solid residues, and Portland cement were added to packed columns over a 6-month period. The fly ash additions generated near-neutral to alkaline pH levels, which in turn induced precipitation, co-precipitation, and adsorption contaminant attenuation mechanisms. A modelling study demonstrated that the precipitation of ferrihydrite, Al-hydroxides, Al-oxyhydroxysulphates, gypsum, ettringite, manganite, and rhodochrosite lowered contaminant levels. Results of the study indicated that the pH regime and acidity level of the AMD strongly influenced both the leaching of the toxic trace elements as well as the attenuation of the AMD. 3 refs., 2 figs.

  2. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash.

    Science.gov (United States)

    Diaz-Loya, E Ivan; Allouche, Erez N; Eklund, Sven; Joshi, Anupam R; Kupwade-Patil, Kunal

    2012-08-01

    Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5

  3. Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2013-02-01

    Full Text Available In the entrained-flow gasifiers used in integrated gasification combined cycle (IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter is entrained (as fly ash with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. To improve gasification availability through better design and operation of the gasification process, a better understanding of slag behavior and the characteristics of the slagging process is needed. Char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio all affect slagging behavior. Because coal has varying ash content and composition, different operating conditions are required to maintain the slag flow and limit problems downstream. In Part I, we review the main types and the operating conditions of entrained-flow gasifiers and coal properties used in IGCC plants; we identify and discuss the key coal ash properties and the operating conditions impacting slag behavior; finally, we summarize the coal quality criteria and the operating conditions in entrained-flow gasifiers. In Part II, we discuss the constitutive modeling related to the rheological studies of slag flow.

  4. Unburned Carbon from Samlaung Coal as Environmental Friendly Sorbent Material

    International Nuclear Information System (INIS)

    Zaw Naing; Tin Tin Aye; Nyunt Wynn; Kyaw Myo Naing

    2005-09-01

    The increasing role of coal as a source of energy in the 21st century will demand enviromental and cost-effective strategies for the use of carbonaceous waste products from coal combustion. The carbonaceous in fly ash, unburned carbon (UC), is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatization process while in the combustion, and therefore, only requires to be activated. This paper demonstrates the potential for converting UC from Samlaung coal to activated carbons. After heat activation at 970C, the UC sample was generated to activated carbons having microporous structure. This study concerns with adsorption behavior (decolourization and metal uptake) of UC from Samlaung coal. Batch tests and column tests were carried out. Adsorption isotherms has been obtained from these tests. Results show that the UC have equal or better adsorption capacity comparing with other activated carbons. It was found that heat treatment of Samlaung coal in the presence of air at 970C enhanced the adsorption capacity

  5. Characterization of bottom ashes from coal pulverized power plants to determine their potential use feasibility

    International Nuclear Information System (INIS)

    Menendez, E.; Alvaro, A. M.; Argiz, C.; Parra, J. L.; Moragues, A.

    2013-01-01

    The disposal of coal by products represents environmental and economical problems around the world. Therefore, the reuse and valorisation of this waste has become an important issue in the last decades. While high-value construction products containing fly ash were developed and its use is actually totally accepted as an addition to cement, the use of the bottom ash as supplementary cementitious material has not been allow. This paper examines the chemical and physical properties of fly ashes and bottom ashes from two different coal power plants in order to compare them and analyse the potential feasibility of bottom ash as cement replacement. The mechanical properties of cement mortars made with different percentages of both ashes were also study. The results obtained showed similar chemical composition of both kinds of ashes. The compressive strength values of mortars with 10 % and 25 % of cement replacement (at 28 days) were above the limits established in European standards and there were not significant differences between fly ash and bottom ash from both origins. (Author)

  6. Radioactivity levels in Indian coal and some technologically enhanced exposure to natural radiation environment of India

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Mishra, U.C.

    1988-01-01

    The summary of results of gamma-spectrometric measurements of natural radioactivity levels in coal from mines, coal, fly-ash, slag and soil samples from thermal power plants in India are presented. These constitute the sources of technologic ally enhanced exposures to natural radiation. Brief description of sampling and measurement procedure is given. Radiation dose to the population from coal fired power plants for electricity generation have been calculated using the model developed by UNSCEAR and ORNL reports with correction for local population density. (author). 13 refs., 7 tabs., 8 figs

  7. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    International Nuclear Information System (INIS)

    Lissianski, Vitali V.; Loc Ho; Maly, Peter M.; Zamansky, Vladimir M.

    2002-01-01

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The FFR can be retrofit to existing boilers and can be configured in several ways depending on the boiler, coal characteristics, and NO x control requirements. Fly ash generated by the technology will be a saleable byproduct for use in the cement and construction industries. FFR can also reduce NO x by 60%-70%, achieving an emissions level of 0.15 lb/10 6 Btu in many coal-fired boilers equipped with Low NO x Burners. Total process cost is expected to be one third to one half of that for Selective Catalytic Reduction (SCR). Activities during reporting period included design, manufacture, assembly, and shake down of the coal gasifier and pilot-scale testing of the efficiency of coal gasification products in FFR. Tests were performed in a 300 kW Boiler Simulator Facility. Several coals with different volatiles content were tested. Data suggested that incremental increase in the efficiency of NO x reduction due to the gasification was more significant for less reactive coals with low volatiles content. Experimental results also suggested that the efficiency of NO x reduction in FFR was higher when air was used as a transport media. Up to 14% increase in the efficiency of NO x reduction in comparison with that of basic reburning was achieved with air transport. Temperature and residence time in the gasification zone also affected the efficiency of NO x reduction

  8. TOXIC SUBSTANCES FROM COAL COMBUSTION-A COMPREHENSIVE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    C.L. Senior; F. Huggins; G.P. Huffman; N. Shah; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F. Sarofim; S. Swenson; J.S. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowski; J.J. Helble; R. Mamani-Paco; R. Sterling; G. Dunham; S. Miller

    2001-06-30

    UU focused on the behavior of trace metals in the combustion zone by studying vaporization from single coal particles. The coals were burned at 1700 K under a series of fuel-rich and oxygen-rich conditions. The data collected in this study will be applied to a model that accounts for the full equilibrium between carbon monoxide and carbon dioxide. The model also considers many other reactions taking place in the combustion zone, and involves the diffusion of gases into the particle and combustion products away from the particle. A comprehensive study has been conducted at UA to investigate the post-combustion partitioning of trace elements during large-scale combustion of pulverized coal combustion. For many coals, there are three distinct particle regions developed by three separate mechanisms: (1) a submicron fume, (2) a micron-sized fragmentation region, and (3) a bulk (>3 {micro}m) fly ash region. The controlling partitioning mechanisms for trace elements may be different in each of the three particle regions. A substantial majority of semi-volatile trace elements (e.g., As, Se, Sb, Cd, Zn, Pb) volatilize during combustion. The most common partitioning mechanism for semi-volatile elements is reaction with active fly ash surface sites. Experiments conducted under this program at UC focused on measuring mercury oxidation under cooling rates representative of the convective section of a coal-fired boiler to determine the extent of homogeneous mercury oxidation under these conditions. In fixed bed studies at EERC, five different test series were planned to evaluate the effects of temperature, mercury concentration, mercury species, stoichiometric ratio of combustion air, and ash source. Ash samples generated at UA and collected from full-scale power plants were evaluated. Extensive work was carried out at UK during this program to develop new methods for identification of mercury species in fly ash and sorbents. We demonstrated the usefulness of XAFS spectroscopy for

  9. Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coal-fired thermal power plants, Turkey.

    Science.gov (United States)

    Ozden, Banu; Guler, Erkan; Vaasma, Taavi; Horvath, Maria; Kiisk, Madis; Kovacs, Tibor

    2018-08-01

    Coal, residues and waste produced by the combustion of the coal contain naturally occurring radionuclides such as 238 U, 226 Ra, 210 Pb, 232 Th and 40 K and trace elements such as Cd, Cr, Pb, Ni and Zn. In this work, coal and its combustion residues collected from Yatagan and Yenikoy coal fired thermal power plants (CPPs) in Turkey were studied to determine the concentrations of natural radionuclides and trace elements, and their enrichments factors to better understand the radionuclide concentration processes within the combustion system. In addition, the utilization of coal fly ash as a secondary raw material in building industry was also studied in terms of radiological aspects. Fly ash samples were taken at different stages along the emission control system of the thermal power plants. Activity concentrations of naturally occurring radionuclides were determined with Canberra Broad Energy Germanium (BEGe) detector BE3830-P and ORTEC Soloist PIPS type semiconductor detector. The particle size distribution and trace elements contents were determined in various ash fractions by the laser scattering particle size distribution analyzer and inductively coupled plasma (ICP-OES). From the obtained data, natural radionuclides tend to condense on fly ash with and the activity concentrations increase as the temperature drop in CPPs. Measured 210 Pb and 210 Po concentration varied between 186 ± 20-1153 ± 44 Bq kg -1 , and 56 ± 5-1174 ± 45 Bq kg -1 , respectively. The highest 210 Pb and 210 Po activity concentrations were determined in fly ash taken from the temporary storage point as 1153 ± 44 Bq kg -1 and 1174 ± 45 Bq kg -1 , respectively. There were significant differences in the activity concentrations of some natural radionuclide and trace elements (Pb and Zn) contents in ash fractions among the sampling point inside both of the plants (ANOVA, p ash sample analysis showed an increase activity concentration and enrichment factors towards the

  10. Mercury emission, control and measurement from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering; Western Kentucky Univ., Bowling Green, KY (United States). Inst. for Combustion Science and Environmental Technology; Cao, Yan [Western Kentucky Univ., Bowling Green, KY (United States). Inst. for Combustion Science and Environmental Technology; Zhang, Kai [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering

    2013-07-01

    Coal-fired electric power generation accounts for 65% of U.S. emissions of sulfur dioxide (SO2), 22% of nitrogen oxides (NOx), and 37% of mercury (Hg). The proposed Clear Air Interstate Rule (CAIR) and Clean Air Mercury Rule (CAMR) will attempt to regulate these emissions using a cap-and-trade program to replace a number of existing regulatory requirements that will impact this industry over the next decade. Mercury emissions remain the largest source that has not yet been efficiently controlled, in part because this is one of the most expensive to control. Mercury is a toxic, persistent pollutant that accumulates in the food chain. During the coal combustion process, when both sampling and accurate measurements are challenging, we know that mercury is present in three species: elemental, oxidized and particulate. There are three basic types of mercury measurement methods: Ontario Hydro Method, mercury continuous emission monitoring systems (CEMS) and sorbent-based monitoring. Particulate mercury is best captured by electrostatic precipitators (ESP). Oxidized mercury is best captured in wet scrubbers. Elemental mercury is the most difficult to capture, but selective catalytic reduction units (SCRs) are able to convert elemental mercury to oxidized mercury allowing it to be captured by wet flue gas desulfurization (FGD). This works well for eastern coals with high chlorine contents, but this does not work well on the Wyoming Powder River Basin (PRB) coals. However, no good explanation for its mechanism, correlations of chlorine content in coal with SCR performance, and impacts of higher chlorine content in coal on FGD re-emission are available. The combination of SCR and FGD affords more than an 80% reduction in mercury emissions in the case of high chlorine content coals. The mercury emission results from different coal ranks, boilers, and the air pollution control device (APCD) in power plant will be discussed. Based on this UAEPA new regulation, most power plants

  11. Technologically enhanced natural radioactivity around the coal fired power plant

    International Nuclear Information System (INIS)

    Kovac, J.; Marovic, G.

    1997-01-01

    In some situations the exposure to natural radiation sources is enhanced as a result to technological developments. Burning of coal is one source of enhanced radiation exposure to naturally occurring elements, particularly radium, thorium and uranium. Most of the radioactive substances are concentrated in the ash and slag, which are heavy and drop to the bottom of a furnace. Lighter fly ash is carried up the chimney and into the atmosphere. The bottom ash and slag are usually deposited in a waste pile, from where some activity may leach into aquifers or be dispersed by wind.The main pathways through which the populations living around coal fired power plants are exposed to enhanced levels of natural radionuclides are inhalation and ingestion of the activity discharged into the Exosphere. For this reason, extensive investigations have been under way for several years in the coal fired power plant in Croatia, which uses an anthracite coal with a higher than usual uranium content. (authors)

  12. Char crystalline transformations during coal combustion and their implications for carbon burnout

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, R.H.

    1999-03-11

    Residual, or unburned carbon in fly ash affects many aspects of power plant performance and economy including boiler efficiency, electrostatic precipitator operation, and ash as a salable byproduct. There is a large concern in industry on the unburned carbon problem due to a variety of factors, including low-NOx combustion system and internationalization of the coal market. In recent work, it has been found that residual carbon extracted from fly ash is much less reactive than the laboratory chars on which the current kinetics are based. It has been suggested that thermal deactivation at the peak temperature in combustion is a likely phenomenon and that the structural ordering is one key mechanism. The general phenomenon of carbon thermal annealing is well known, but there is a critical need for more data on the temperature and time scale of interest to combustion. In addition, high resolution transmission electron microscopy (HRTEM) fringe imaging, which provides a wealth of information on the nature and degree of crystallinity in carbon materials such as coal chars, has become available. Motivated by these new developments, this University Coal Research project has been initiated with the following goals: to determine transient, high-temperature, thermal deactivation kinetics as a function of parent coal and temperature history; and to characterize the effect of this thermal treatment on carbon crystalline structure through high-resolution transmission electron microscopy and specialized, quantitative image analysis.

  13. Char crystalline transformations during coal combustion and their implications for carbon burnout

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, R.H.

    1999-07-07

    Residual, or unburned carbon in fly ash affects many aspects of power plant performance and economy including boiler efficiency, electrostatic precipitator operation, and ash as a salable byproduct. There is a large concern in industry on the unburned carbon problem due to a variety of factors, including low-NOx combustion system and internationalization of the coal market. In recent work, it has been found that residual carbon extracted from fly ash is much less reactive than the laboratory chars on which the current kinetics are based. It has been suggested that thermal deactivation at the peak temperature in combustion is a likely phenomenon and that the structural ordering is one key mechanism. The general phenomenon of carbon thermal annealing is well known, but there is a critical need for more data on the temperature and time scale of interest to combustion. In addition, high resolution transmission electron microscopy (HRTEM) fringe imaging, which provides a wealth of information on the nature and degree of crystallinity in carbon materials such as coal chars, has become available. Motivated by these new developments, this University Coal Research project has been initiated with the following goals: (1) To determine transient, high-temperature, thermal deactivation kinetics as a function of parent coal and temperature history. (2) To characterize the effect of the thermal treatment on carbon crystalline structure through high-resolution transmission electron microscopy and specialized, quantitative image analysis.

  14. Comparison of lime and fly ash as amendments to acidic coal mine refusej growth responses and trace-element uptake of two grasses

    Energy Technology Data Exchange (ETDEWEB)

    Jasrow, J. D.; Zimmerman, C. A.; Dvorak, A. J.; Hinchman, R. R.

    1979-10-01

    Two commonly used revegetation species, Kentucky 31 tall fescue (Festuca arundinacea Schreb.) and Lincoln smooth brome (Bromus inermis Leyss.) were grown for 60 days in pots containing coarse coal mine refuse (referred to as gob, pH = 3.5) that was amended with lime or alkaline fly ash. Both species were also grown in pots containing a silt-loam surface soil as a control. Morphological growth parameters were measured over time; dry weights and shoot:root ratios were determined at harvest. Concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V, and Zn in the plant shoots were determined by atomic absorption spectrophotometry. Plant growth of both species was not as good on either lime- or fly ash-amended gob as it was on surface soil. Although plant height and length of the longest lead were not significantly different (p > 0.10) at the end of the experiment for plants grown on the two amended-gob substrates, parameters giving an indication of plant vigor (i.e., number of leaves and stems, width of the longest lead, and biomass) were significantly greater (p < 0.01) for plants grown on lime-amended gob than for those grown on fly ash-amended gob. Significant (p < 0.05) differences in the tissue concentrations of Cd, Co, Fe, Hg, Mn, Pb, V, and Zn were found among the plants grown on the three substrates. Except for Hg and Pb, these elements were higher in plants grown on at least one of the amended-gob substrates than in plants grown on surface soil. Significant substrate differences were not observed for Al, As, Cr, Cu, Ni, and Se. The tissue concentrations of some elements - notably Al, Cu, Fe, Mn, V, and Zn - were high enough in plants from one or more of the substrates to either approach or exceed concentrations that have been reported to be associated with toxic effects in some plant species.

  15. Power station fly ash. A review of value-added utilization outside of the construction industry

    International Nuclear Information System (INIS)

    Iyer, R.S.; Scott, J.A.

    2001-01-01

    The disposal of fly ash from coal-fired power stations causes significant economic and environmental problems. A relatively small percentage of the material finds application as an ingredient in cement and other construction products, but the vast majority of material generated each year is held in ash dams or similar dumps. This unproductive use of land and the associated long-term financial burden of maintenance has led to realization that alternative uses for fly ash as a value-added product beyond incorporation in construction materials are needed. Utilization of fly ash in such areas as novel materials, waste management, recovery of metals and agriculture is reviewed in this article with the aim of looking at new areas that will expand the positive reuse of fly ash, thereby helping to reduce the environmental and economic impacts of disposal

  16. Classification of pulverized coal ash

    International Nuclear Information System (INIS)

    Van der Sloot, H.A.; Van der Hoek, E.E.; De Groot, G.J.; Comans, R.N.J.

    1992-09-01

    The leachability of fifty different pulverized coal ashes from utilities in the Netherlands, Federal Republic of Germany and Belgium has been studied. Five different ashes were analyzed according to the complete standard leaching test and the results were published earlier. The examination of a wide variety of ashes under a wide range of pH and Liquid to Solid ratio (LS) conditions creates the possibility of identifying systematic trends in fly ash leaching behaviour and to identify the mechanisms controlling release. 16 figs., 2 tabs., 3 app., 25 refs

  17. Experience in a 6.2 MW{sub e} pressurized fluidized bed gasifier with high ash Indian coals

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, G.; Rajasekaran, A.; Periyakaruppan, V.; Krishnamoorthy, S. [Bharat Heavy Electricals Ltd., Tiruchirappalli (India)

    2006-07-01

    Bharat Heavy Electrical Limited has installed a 165 tons/day air-blown pressurized fluidized bed gasifier (PFBG) as an add-on to their 6.2 MW IGCC demonstration plant and has operated it for more than 4000 hours. Improvements in the gasifier refractory lining, ash extraction and cooling devices, air distribution and temperature measuring devices were incorporated to improve the reliability and performance. Coal with 30-42% ash and high calorific value in the range of 15-20 MJ/kg was used during these operations with crushed coal of 1-4 mm as well as -6 mm coal with fines. Tests were conducted at gasifier pressure of 0.3-1.0 MPa, fluidized bed temperature of 980-1050{sup o}C and at various fluidized velocities and air to steam ratios. Once through carbon conversion efficiency of 90%, cold gas efficiency of 69% and dry gas calorific value of 4.4-4.6 MJ/Nm{sup 3} were obtained. About 15% char in fly ash (with 40% ash coal) was established by TGA. Seal pot system was added for recyling fly ash from the first cyclone to enhance carbon conversion, other parameters and to reduce the char in fly ash to acceptable level. Trends and correlations were established for constituents of gas, carbon conversion efficiency, cold gas efficiency, calorific value of gas and gas yield. BHEL is currently working with a partner to install a 125 MW IGCC plant. The paper elaborates the schematic and constructional details of the PFBG, operating experience and performance. 3 refs., 9 figs.

  18. Boron availability to plants from coal combustion by-products

    International Nuclear Information System (INIS)

    Kukier, U.; Sumner, M.E.

    1996-01-01

    Agronomic use of coal combustion by-products is often associated with boron (B) excess in amended soils and subsequently in plants. A greenhouse study with corn (Zea mays L.) as test plant was conducted to determine safe application rates of five fly ashes and one flue gas desulfurization gypsum (FDG). All by-products increased soil and corn tissue B concentration, in some cases above toxicity levels which are 5 mg hot water soluble B (hwsB)kg -1 soil and 100 mg B kg -1 in corn tissue. Acceptable application rates varied from 4 to 100 Mg ha -1 for different by-products. Leaching and weathering of a high B fly ash under ponding conditions decreased its B content and that of corn grown in fly ash amended soil, while leaching of the same fly ash under laboratory conditions increased fly ash B availability to corn in comparison to the fresh fly ash. Hot water soluble B in fly ash or FDG amended soil correlated very well with corn tissue B. Hot water soluble B in fly ash amended soil could be predicted based on soil pH and B solubility in ash at different pH values but not so in the case of FDG. Another greenhouse study was conducted to compare the influence of FDG and Ca(OH 2 ) on B concentration in spinach (Spinacia oleracea L.) leaves grown in soil amended with the high B fly ash. The Ca(OH) 2 significantly decreased tissue B content, while FDG did not affect B uptake from fly ash amended soil. 41 refs., 6 figs., 5 tabs

  19. Effect of reaction temperature on the PM10 features during coal combustion

    International Nuclear Information System (INIS)

    Sui, J.C.; Du, Y.G.; Liu, Q.C.

    2008-01-01

    Coal-fired power plants produce fine fly ash consisting of particulate matter (PM). Particulate matter less than 10 micrometers in aerodynamic diameter (PM 1 0) is of significant concern because of its adverse environmental and health impacts. This paper studied the effect of reaction temperature on particulate matter (PM 1 0) emission and its chemical composition. The emission characteristics and elemental partition of PM 1 0 from coal combustion were investigated in a drop tube furnace. The paper discussed the experimental apparatus and conditions as well as the coal properties and sample analysis. Liupanshui (LPS) bituminous coal from China was used for the study. The fuel composition of LPS coal and the composition of low temperature ash of Chinese LPS coal were described. The paper also presented the results of the study with reference to particle size distribution and emission characteristic of PM 1 0; elemental partition within PM 1 0; and effect of the reaction temperature on elemental partition within PM 1 0. The PM mass size distribution was found to be bimodal. 14 refs., 2 tabs., 6 figs

  20. Growth and elemental content of two tree species growing on abandoned coal fly ash basins

    International Nuclear Information System (INIS)

    Carlson, C.L.; Adriano, D.C.

    1991-01-01

    Differences in aboveground tissue concentrations of trace elements were assessed for sweetgum (Liquidambar styraciflua L.) and sycamore (Plantanus occidentalis L.) growing on two abandoned coal fly ash basins and a control soil. The wet basin (pH = 5.58) had originally received precipitator ash in an ash-water slurry, while the dry basin (pH = 8.26) had received both precipitator and bottom ash in dry form. In general, trees from the wet basin exhibited elevated trace element concentrations in comparison to the controls, while the dry basin trees exhibited reduced concentrations. On eof the most striking differenced in elemental concentrations among the ash basin and control trees was observed for Mn, with the control trees exhibiting concentrations orders of magnitude greater than the ash basin trees. Differences in foliar trace element concentrations among the sites can generally be explained by differences in substrate trace element concentrations and/or substrate pH. While trees from the wet ash basin generally had the highest trace element concentrations, these trees also attained the greatest height and diameter growth, suggesting that the elevated trace element concentrations in the wet basin substrate are not limiting the establishment of these two species. The greater height and diameter growth of the wet basin trees is presumably a result of the greater water-holding capacity of the substrate on this site. Differences in growth and tissue concentrations between sweetgum and sycamore highlight the importance of using more than one species when assessing metal toxicity or deficiency on a given substrate

  1. Exploitation Contradictions Concerning Multi-Energy Resources among Coal, Gas, Oil, and Uranium: A Case Study in the Ordos Basin (Western North China Craton and Southern Side of Yinshan Mountains

    Directory of Open Access Journals (Sweden)

    Xiaowei Feng

    2016-02-01

    Full Text Available The particular “rich coal, meager oil, and deficient gas” energy structure of China determines its high degree of dependence on coal resources. After over 100 years of high-intensity mining activities in Northeast China, East Region, and the Southern Region, coal mining in these areas is facing a series of serious problems, which force China’s energy exploitation map to be rewritten. New energy bases will move to the western and northern regions in the next few years. However, overlapping phenomena of multiple resources are frequently encountered. Previous exploitation mainly focused on coal mining, which destroys many mutualistic and accompanying resources, such as uranium, gas, and oil. Aiming at solving this unscientific development mode, this research presents a case study in the Ordos Basin, where uranium, coal, and gas/oil show a three-dimensional overlapping phenomenon along the vertical downward direction. The upper uranium and lower coal situation in this basin is remarkable; specifically, coal mining disturbs the overlaying aquifer, thus requiring the uranium to be leached first. The technical approach must be sufficiently reliable to avoid the leakage of radioactive elements in subsequent coal mining procedures. Hence, the unbalanced injection and extraction of uranium mining is used to completely eradicate the discharged emissions to the environment. The gas and oil are typically not extracted because of their deep occurrence strata and their overlapping phenomenon with coal seams. Use of the integrated coal and gas production method is recommended, and relevant fracturing methods to increase the gas migrating degree in the strata are also introduced. The results and recommendations in this study are applicable in some other areas with similarities.

  2. Analysis of trace elements in power plant and industrial incinerator fly ashes by instrumental neutron activation analysis (INAA)

    International Nuclear Information System (INIS)

    Al-Areqi, Wadeeah M.; Amran Abdul Majid; Sukiman Sarmani

    2008-01-01

    An elemental analysis of fly ash samples from Selangor and Perak coal-fired power plants and an industrial incinerator from Negeri Sembilan were carried out using instrumental neutron activation analysis (INAA). All samples were irradiated at the Malaysian Nuclear Agency laboratory PUSPATI Reactor for 6 hours and later counted at the Nuclear Science Program, UKM using an HPGe detector with a relative efficiency of 10% and resolution of 1.8 KeV (FWHM) at 1.33 MeV. International Atomic Energy Agency (IAEA) coal fly ash 1633a reference material (SRM) was used as a standard for quantitative analysis. A total of 11 elements (i.e. As, Ba, Ca, Ce, Cr, Co, Fe, Hf, Sc, Th and U) were determined in all three types of fly ashes. The concentration range of environmentally concern elements, As and Cr in the Selangor coal-fired power plant samples are 11.17 - 23.24 and 160.28 - 867.97 μg.g -1 respectively. The concentration range of radioactive elements U and Th are 4.79 - 10.29 and 14.6 - 61.29 μg.g -1 respectively, and the concentration range of Co, Hf, Fe, Sc, Ba, Ce, Ca are 11.88-83.61, 3.24 - 10.48, 30338 - 53885, 16.62 - 28.48, 178.97 - 8491, 127.41 - 217.2 and 10447 -20647 μg.g -1 respectively. The concentration range of As, Cr, U, Th in the Perak samples were found to be 22.16 - 48.38, 44.37 - 74.78, 4.18 - 6.85, 8.71 - 11.43 μg.g -1 respectively, whereas the concentration range of Co, Fe, Sc, Ba, Ce and Ca are 23.21 -29.66, 54621 - 71099, 30.9 - 31.77, 100.34 - 116.61 and 11533 -16423 μg.g -1 respectively. Differences exist in the elemental concentrations of both power plant fly ash samples due to the different feed coal and combustion temperature used. The concentration of Cr, Th and Ce in the Selangor fly ash samples was generally higher compared to the samples obtained from the Perak power plant. This study also shows that only As and Ca were detected in the Negeri Sembilan samples with the concentration ranging from 36.66 - 98.67 and 31709.10 - 45606 μg.g -1

  3. Influence of mechanical activation on the synthesis of Sr-Celsian employing a precursor mixture containing coal fly ash

    International Nuclear Information System (INIS)

    Lopez-Badillo, C. M.; Lopez-Cuevas, J.; Rodriguez-Galicia, J. L.; Gutierrez-Chavarria, C. A.; Pech-Canul, M. I.

    2013-01-01

    Strontium aluminosilicate, SrAl 2 Si 2 O 8 (SAS), was synthesized by a solid state reaction using coal fly ash (CFA) as main raw material. A precursor mixture of SrCO 3 , CFA and Al 2 O 3 was mechanically-activated for times of up to 12 h using an attrition mill, and subsequently sintered at temperatures of 900-1300 degree centigrade. The CFA and the mechanical activation were employed with the aim to promote the transformation from the hexagonal (Sr-Hexacelsian) into the monoclinic (Sr-Celsian) polymorphic form of SAS, since the latter phase is associated with better physical and mechanical properties but the former tends to be the first one to appear. The mean particle size, the crystallite size and the temperature at the end of the curve of weight loss (Tf) decreased, while the specific surface area and the degree of amorphization increased, with increasing milling time. Samples milled for at least 4 h and then sintered at 1100 degree centigrade achieved full transformation into Sr-Celsian. The same result was obtained for sintering temperatures higher than 1100 degree centigrade, independently of milling time. An increment in both the milling time and the sintering temperature allowed us to improve the densification and the mechanical properties of the synthesized materials. (Author)

  4. Development of bricks with incorporation of coal ash and sludge from water treatment plant; Desenvolvimento de tijolos com incorporacao de cinzas de carvao e lodo provenientes de estacao de tratamento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mauro Valerio da

    2011-07-01

    Sludge from treatment water Brazilian plant station are, frequently, disposed and launched directly in the water bodies, causing a negative impact in the environment. Also, coal ashes is produced by burning of coal in coal-fired power stations and is the industrial solid waste most generated in southern Brazil: approximately 4 million tons/y. The efficient disposal of coal ashes is an issue due to its massive volume and harmful risks to the environment. The aim of this work was study the feasibility of incorporating these two industrial wastes in a mass used in the manufacture of ecological bricks. Samples of fly ashes from a cyclone filter from a coal-fired power plant located at Figueira County in Parana State, Brazil and waterworks sludge of Terra Preta County in Sao Paulo State, Brazil, were used in the study. Fly ash-sludge and fly ash-sludge-soil-cement bricks were molded and tested, according to the Brazilians Standards. The materials were characterized by physical-chemical analysis, X-ray diffraction, thermal analysis, morphological analysis, Fourier transform infrared spectroscopy and granulometric analysis. The results indicate that the waterworks sludge and coal ashes have potential to be used on manufacturing soil-cement pressed bricks according to the of Brazilians Standards NBR 10836/94. (author)

  5. Comparison of adsorption of Cd(II and Pb(II ions on pure and chemically modified fly ashes

    Directory of Open Access Journals (Sweden)

    Sočo Eleonora

    2016-06-01

    Full Text Available The study investigates chemical modifications of coal fly ash (FA treated with HCl or NH4HCO3 or NaOH or Na2edta, based on the research conducted to examine the behaviour of Cd(II and Pb(II ions adsorbed from water solution on treated fly ash. In laboratory tests, the equilibrium and kinetics were examined applying various temperatures (293 - 333 K and pH (2 - 11 values. The maximum Cd(II and Pb(II ions adsorption capacity obtained at 293 K, pH 9 and mixing time 2 h from the Langmuir model can be grouped in the following order: FA-NaOH > FA-NH4HCO3 > FA > FA-Na2edta > FA-HCl. The morphology of fly ash grains was examined via small-angle X-ray scattering (SAXS and images of scanning electron microscope (SEM. The adsorption kinetics data were well fitted by a pseudo-second-order rate model but showed a very poor fit for the pseudofirst order model. The intra-particle model also revealed that there are two separate stages in the sorption process, i.e. the external diffusion and the inter-particle diffusion. Thermodynamics parameters such as free energy, enthalpy and entropy were also determined. A laboratory test demonstrated that the modified coal fly ash worked well for the Cd(II and Pb(II ion uptake from polluted waters.

  6. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  7. Toxicity of coal fly ash (CFA) and toxicological response of switchgrass in mycorrhiza-mediated CFA-soil admixtures.

    Science.gov (United States)

    Awoyemi, Olushola M; Dzantor, E Kudjo

    2017-10-01

    Increasing support for the use of Coal fly ash (CFA) in agriculture has necessitated a better understanding of the effects of the CFA in various cropping schemes. Experiments were conducted to assess mutagenic response of a mutant strain of Salmonella enterica serovar Typhimurium (TA100) to varying concentrations of CFA-water extracts, determine oxidative stress in switchgrass (Panicum virgatum L.) at varying levels of CFA-soil admixtures, and evaluate mycorrhiza-mediated modulation of oxidative stress responses of CFA-grown switchgrass. The TA100 exposed to 0%, 5%, 10%, 15%, 20% and 25% (w/v) CFA-water extracts elicited significant (p CFA-soil admixtures at 7.5% and 15% (w/w) significantly (p CFA/soil). Under the same conditions, activities of glutathione peroxidase (GPx) decreased by 75.9% and 66.9%. In contrast to the antioxidant enzyme activities, levels of malondialdehyde (MDA) an indicator of lipid peroxidation increased significantly (p CFA-soil admixtures with arbuscular mycorrhizal fungi (AMF), Rhizophaga clarus enhanced the activities of both SOD and GPx in the switchgrass, while it significantly (p CFA (at concentrations considered to be non-mutagenic against TA100) as soil amendment produced concentration-dependent oxidative stress responses in switchgrass; however, inoculation of the CFA-soil admixtures with AMF significantly modulated the oxidative stress responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Coal-water slurries containing petrochemicals to solve problems of air pollution by coal thermal power stations and boiler plants: An introductory review.

    Science.gov (United States)

    Dmitrienko, Margarita A; Strizhak, Pavel A

    2018-02-01

    This introductory study presents the analysis of the environmental, economic and energy performance indicators of burning high-potential coal water slurries containing petrochemicals (CWSP) instead of coal, fuel oil, and natural gas at typical thermal power stations (TPS) and a boiler plant. We focus on the most hazardous anthropogenic emissions of coal power industry: sulfur and nitrogen oxides. The research findings show that these emissions may be several times lower if coal and oil processing wastes are mixed with water as compared to the combustion of traditional pulverized coal, even of high grades. The study focuses on wastes, such as filter cakes, oil sludge, waste industrial oils, heavy coal-tar products, resins, etc., that are produced and stored in abundance. Their deep conversion is very rare due to low economic benefit. Effective ways are necessary to recover such industrial wastes. We present the cost assessment of the changes to the heat and power generation technologies that are required from typical power plants for switching from coal, fuel oil and natural gas to CWSPs based on coal and oil processing wastes. The corresponding technological changes pay off after a short time, ranging from several months to several years. The most promising components for CWSP production have been identified, which provide payback within a year. Among these are filter cakes (coal processing wastes), which are produced as a ready-made coal-water slurry fuel (a mixture of flocculants, water, and fine coal dust). These fuels have the least impact on the environment in terms of the emissions of sulfur and nitrogen oxides as well as fly ash. An important conclusion of the study is that using CWSPs based on filter cakes is worthwhile both as the main fuel for thermal power stations and boiler plants and as starting fuel. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The UP/SP merger could derail Western bituminous

    International Nuclear Information System (INIS)

    Vaninetti, J.; Leshock, J.C.

    1995-01-01

    The 3 billion dollars per year US Western bituminous coal industry annually produces more than 100 million tons of compliance coal to utility, industrial and export markets. About half of production is consumed locally, this sector has grown most in recent years. New markets are utilities in the Mid-west. The UP and SP railroads have profited accordingly. The merger may cause a change in the pricing strategies for the new company, leading to increased freight and coal prices. 1 fig., 1 tab

  10. New method for protecting mine roadways in thin coal seams by means of prefabricated yielding blocks

    Energy Technology Data Exchange (ETDEWEB)

    Peknik, J

    1983-05-01

    The use of concrete blocks for strata control in mine roadways driven in thin coal seams is evaluated. Two types of prefabricated blocks are used: BZT blocks made of reinforced concrete and yielding elements or popilbet blocks made of a mixture of fly ash (from coal power plants) and concrete. When the popilbet blocks were used no yielding elements were necessary. Mechanical properties of blocks made of reinforced concrete were controlled by yielding elements. Mechanical properties (compression strength) of the popilbet blocks were controlled by proportion of water, cement and fly ash. The BZT and the popilbet blocks were used for strata control in mine roadways in coal seams from 60 to 80 cm thick and dip angle from 5 to 18 degrees. Use of the BZT and the popilbet blocks reduced roadway deformation by about 50% in comparison to traditional strata control methods (timber cribbings, use of waste rock, etc.). Use of the blocks is explained. The BZT and the popilbet blocks were placed in a roadway wall. Height of the block wall equaled coal seam thickness. Yielding arched steel supports and timber liners were used for strata control in the roadway. The popilbet blocks were 50% less expensive than the BZT blocks. 9 references

  11. Atomic absorption spectrophotometry for the determination of metallic impurities in coal

    International Nuclear Information System (INIS)

    Silva, M.J.S.F. da.

    1983-06-01

    The Brazilian Energetic Alternative Program expects the reduction of our dependence on foreign energy sources, through replacing fuel oil by mineral coal. Its gasification by means of nuclear energy must be also considered. However, the intensive burning of coal leads to serious environmental problems. During its combustion the release, to atmosphere, of toxic elements such as As, Hg, Pb, Sb, Se, Cd, Zn and others is of great concern. Increase in atmospheric pollution will take place by burning increased amounts of coal. In addition, some of those elements are concentrated in fly ashes. The determination of impurities in coal is also important for the Figueiras Project in the Nuclebras Mineral Prospection Program. Hence, it is important to have reliable analytical methods which can monitor inorganic constituents at various stages of coal production and utilization. The atomic absorption spectrophotometry is a suitable analytical technique to determine pollutants in coal because it is sensitive, simple, economic and cover a large range of concentrations. The need of a previous treatment of the sample is overcome by using an acid attack (HNO 3 + HClO 4 + HF) which has proved to be rapid and efficient. (Author) [pt

  12. Mechanically activated fly ash as a high performance binder for civil engineering

    International Nuclear Information System (INIS)

    Rieger, D; Kullová, L; Čekalová, M; Novotný, P; Pola, M

    2017-01-01

    This study is aimed for investigation of fly ash binder with suitable properties for civil engineering needs. The fly ash from Czech brown coal power plant Prunerov II was used and mechanically activated to achieve suitable particle size for alkaline activation of hardening process. This process is driven by dissolution of aluminosilicate content of fly ash and by subsequent development of inorganic polymeric network called geopolymer. Hardening kinetics at 25 and 30 °C were measured by strain controlled small amplitude oscillatory rheometry with strain of 0.01 % and microstructure of hardened binder was evaluated by scanning electron microscopy. Strength development of hardened binder was investigated according to compressional and flexural strength for a period of 180 days. Our investigation finds out, that mechanically activated fly ash can be comparable to metakaolin geopolymers, according to setting time and mechanical parameters even at room temperature curing. Moreover, on the bases of long time strength development, achieved compressional strength of 134.5 after 180 days is comparable to performance of high grade Portland cement concretes. (paper)

  13. Economics of the coal industry east of the Mississippi, 1973-1982

    Science.gov (United States)

    Bhagwat, S.B.

    1987-01-01

    Government regulations on health, safety and environment have been poppular blamed for the declining productivity in U.S. coal mines since 1970. The stagnation in the coal industry east of the Mississippi is alleged to have been caused by this declining productivity and by the growth of cheaper and cleaner coal production west of the Mississippi. Economic evidence suggests, however, that productivity declines were more due to a relative lowering of labor costs in comparison with coal prices and due to work stoppages. The development of western coals fields was spurred by growth in local demand and had only a relatively small impact on coal production east of the Mississippi. Problems of the eastern coal industry are rooted mainly in slow economic growth in eastern U.S. which must be addressed in the long-term interests of the eastern coal industry. ?? 1987.

  14. Study of catalytic effects of mineral matter level on coal reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, Nestor J.; Klunder, Edgar B.; Krastman, Donald

    1981-03-01

    Coal liquefaction experiments using a 400-lb/day bubble-column reactor tested the catalytic effects of added mineral matter level on coal conversion, desulfurization, and distillate yields in continuous operation under recycle conditions, with specific emphasis on the use of a disposable pyrite catalyst indigenous to the feed coal. Western Kentucky No. 11 run-of-mine (ROM) and washed coals were used as feedstocks to determine the effects of levels of mineral matter, specifically iron compounds. Liquefaction reactivity as characterized by total distillate yield was lower for washed coal, which contained less mineral matter. Liquefaction reactivity was regained when pyrite concentrate was added as a disposable catalyst to the washed coal feed in sufficient quantity to match the feed iron concentration of the run-of-mine coal liquefaction test run.

  15. Full-scale ash deposition measurements at Avedøre Power Plant unit 2 during suspension-firing of wood with and without coal ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    The formation of deposits during suspension-firing of wood at Avedøre Power Plant unit 2 (AVV2) was studied by using an advanced deposit probe system. The tests were conducted both with and without coal ash addition, and at two different locations with flue gas temperatures of 1250-1300 oC and 750...... with a high flue gas temperature of 1250-1300 oC, although the addition of coal fly ash increased the differential deposit formation rate (DDF-rate) and the ash deposition propensity, the deposit removal frequency were considerably increased and the major shedding mechanism was changed from soot...... corrosion. At the location with a low flue gas temperature of 750-800 oC, the addition of coal fly ash reduced the ash deposition propensity and caused the formed deposits being easily removable. Moreover, the KCl and KOH/K2CO3 found in the low-temperature deposits without coal ash addition disappeared when...

  16. Suitability of leaching test methods for fly ash and slag: A review

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Tiwari

    2015-10-01

    Full Text Available Fly ash and slag leachate pollution can be of great environmental concern due to generation of these wastes in huge quantities from their respective industrial units, mainly coal-based thermal power plants and iron and steel plants. For simulation of natural leaching in laboratory, various leaching methods are available, but selection of a method that can exactly simulate the real-life scenario for accurate estimation of various pollutants is challenging; particularly, the heavy metals present and impact due to reuse or disposal of these wastes. For choosing the most suitable leaching method according to specific situation, one must primarily consider the chemical and physical properties of wastes, the composition of the source, age of waste disposal, and the climatic conditions of the disposal area. Since these factors may not be specified, a variety of leaching methods with relevant equipment have been proposed by researchers; that are based on their required information to particular conditions in absence of a prescribed protocol and non standardization of equipment. The present review is an attempt to investigate the suitable leaching method for coal fly ash and slag.

  17. Development of world coal reserves, their registration and their utilization

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, H

    1979-10-01

    This paper examines statistics on world coal production and world coal reserves with figures from 1860 to 1974 provided in tables and graphs. Eighty percent of the total world coal reserves (92% of world brown coal reserves) lie in the USA and USSR. The recent increase in total coal reserve estimates is due to exploration in western USA and in the USSR east of the Urals. Depth and thickness of the world's coal seams are shown in graphs and variations in coal quality are discussed. Problems associated with the anticipated substantial increase in coal production up to the year 2000 are considered. Encouraging higher coal production is the successful development of highly mechanized underground mining techniques and highly productive heavy surface mining equipment which allows excavation at increased depths. Surface mining is expected to make up 50% of total world mining operations in the near future. More complete deposit exploitation also contributes to higher coal production. Low international ship freight rates would facilitate future world coal trade. Obstacles are seen as: high, long term investments due to the fact that coal reserves lie far from populated and industrialized areas; opening new mines; transportation costs and infrastructure development.

  18. Creep life prediction of super heater coils used in coal based thermal power plants subjected to fly ash erosion and oxide scale formation

    Science.gov (United States)

    Srinivasan, P.; Kushwaha, Shashank

    2018-04-01

    Super heater coils of the coal based thermal power plants and subjected to severe operating conditions from both steam side and gas side. Formation of oxide scale due to prolonged service lead to temperature raise of the tube and erosion due to fly ash present in the combusted gases leads to tube thinning. Both these factors lead to creep rupture of the coils much before the designed service life. Failure of super heater coils during service of the boiler leads to power loss and huge monitory loss to the power plants. An attempt is made to model the creep damage caused to the super heater coils using heat transfer analysis tube thinning due to erosive wear of the tubes. Combined effects of these parameters are taken into consideration to predict the life of the super heater coils. This model may be used to estimate the life of the coils operating under the severe operating conditions to prevent the unexpected failure of the coils.

  19. Trace elements partitioning during coal combustion in fluidized bed under O{sub 2}/CO{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haixin; Zhao, Changsui; Liang, Cai; Duan, Lunbo; Chen, Huichao [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    Experiments were conducted to investigate the effects of temperature and O{sub 2}/CO{sub 2} atmosphere on trace elements (Cr, Mn, Co, Ni, Cd, Pb, Hg, As, Se) partitioning during combustion of Xuzhou bituminous coal in a 6 kWth fluidized bed. Inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) were used to determine trace elements contents in raw coal, bottom ash, fly ash and flue gas. The results indicate that with bed temperature increase, the relative enrichment of all the trace elements except Cr in bottom ash decreases suggesting that their volatility is enhanced. The relative enrichments of hardly volatile elements, like Cr and Mn in fly ash increase with bed temperature increase while those of partially volatile and highly volatile elements in fly ash are opposite. The relative enrichments of trace elements except Cr and Mn in fly ash are higher than those in bottom ash. Increasing bed temperature promotes elements like As, Se and Hg to migrate to vapor phase, Mn to migrate to fly ash and Cr to migrate to both bottom ash and fly ash. 21%O{sub 2}/79%CO{sub 2} atmosphere improves the volatility of Cr, Mn, Co, Se and their migration to fly ash, while restrains the volatility of As, Ni, Pb. It has little effect on the volatility of Hg but improves its migration to fly ash. Mass balance ratio was also calculated to observe trace elements distribution in bottom ash, fly ash and flue gas. There is no much difference in trace elements distribution between the two atmospheres. It can be seen that the trace elements proportion in fly ash is much greater, and more than 40% of Hg is distributed in the gas phase. Most of Hg and Se volatilize during combustion. The mass balance ratios are 87 {proportional_to} 129% which is considered acceptable.

  20. Coal combustion products: trash or treasure?

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T.

    2006-07-15

    Coal combustion by-products can be a valuable resource to various industries. The American Coal Ash Association (ACAA) collects data on production and uses of coal combustion products (CCPs). 122.5 million tons of CCPs were produced in 2004. The article discusses the results of the ACCA's 2004 survey. Fly ash is predominantly used as a substitute for Portland cement; bottom ash for structural fill, embankments and paved road cases. Synthetic gypsum from the FGD process is commonly used in wallboard. Plant owners are only likely to have a buyer for a portion of their CCPs. Although sale of hot water (from Antelope Valley Station) from condensers for use in a fish farm to raise tilapia proved unviable, the Great Plains Synfuels Plant which manufactures natural gas from lignite produces a wide range of products including anhydrous ammonia, phenol, krypton, carbon dioxide (for enhanced oil recovery), tar oils and liquid nitrogen. ACCA's goal is to educate people about CCPs and how to make them into useful products, and market them, in order to reduce waste disposal and enhance revenue. The article lists members of the ACCA. 2 photos., 1 tab.