WorldWideScience

Sample records for west valley low-level

  1. Low-Level Legacy Waste Processing Experience at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Valenti, P.J.; Rowell, L.E.; Kurasch, D.H.; Moore, H.R.

    2006-01-01

    This paper presents detailed results and lessons learned from the very challenging and highly successful 2005 low level radioactive waste sorting, packaging, and shipping campaign that removed over 95% of the available inventory of 350,000 ft 3 of legacy low level waste at the West Valley Demonstration Project near West Valley, New York. First some programmatic perspective and site history is provided to provide pertinent context for DOE's waste disposal mandates at the site. This is followed by a detailed description of the waste types, the storage locations, the containers, and the varied sorting and packaging facilities used to accomplish the campaign. The overall sorting and packaging protocols for this inventory of wastes are defined. This is followed by detailed sorting data and results concluding with lessons learned. (authors)

  2. Environmental assessment for the treatment of Class A low-level radioactive waste and mixed low-level waste generated by the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    1995-11-01

    The U.S. Department of Energy (DOE) is currently evaluating low-level radioactive waste management alternatives at the West Valley Demonstration Project (WVDP) located on the Western New York Nuclear Service Center (WNYNSC) near West Valley, New York. The WVDP's mission is to vitrify high-level radioactive waste resulting from commercial fuel reprocessing operations that took place at the WNYNSC from 1966 to 1972. During the process of high-level waste vitrification, low-level radioactive waste (LLW) and mixed low-level waste (MILLW) will result and must be properly managed. It is estimated that the WVDP's LLW storage facilities will be filled to capacity in 1996. In order to provide sufficient safe storage of LLW until disposal options become available and partially fulfill requirements under the Federal Facilities Compliance Act (FFCA), the DOE is proposing to use U.S. Nuclear Regulatory Commission-licensed and permitted commercial facilities in Oak Ridge, Tennessee; Clive, Utah; and Houston, Texas to treat (volume-reduce) a limited amount of Class A LLW and MLLW generated from the WVDP. Alternatives for ultimate disposal of the West Valley LLW are currently being evaluated in an environmental impact statement. This proposed action is for a limited quantity of waste, over a limited period of time, and for treatment only; this proposal does not include disposal. The proposed action consists of sorting, repacking, and loading waste at the WVDP; transporting the waste for commercial treatment; and returning the residual waste to the WVDP for interim storage. For the purposes of this assessment, environmental impacts were quantified for a five-year operating period (1996 - 2001). Alternatives to the proposed action include no action, construction of additional on-site storage facilities, construction of a treatment facility at the WVDP comparable to commercial treatment, and off-site disposal at a commercial or DOE facility

  3. West Valley Demonstration Project low-level and transuranic waste assay and methodology

    International Nuclear Information System (INIS)

    McVay, C.W.

    1987-03-01

    In the decontamination and decommissioning of the West Valley Nuclear Facility, waste materials are being removed and packaged in a variety of waste containers which require classification in accordance with USNRC 10 CFR 61 and DOE 5820.2 criteria. Low-Level and Transuranic waste assay systems have been developed to efficiently assay and classify the waste packages. The waste is assayed by segmented gamma scanning, passive neutron techniques, dose rate conversion, and/or radiochemical laboratory analysis. The systems are capable of handling all the waste forms currently packaged as part of the Project. The above systems produce a list of nuclides present with their concentrations and determines the classification of the waste packages based on criteria outlined in DOE Order 5820.2 and USNRC 10 CFR 61.55. 9 refs., 12 figs., 8 tabs

  4. West Valley Demonstration Project, West Valley, New York: Annual report

    International Nuclear Information System (INIS)

    1989-01-01

    Under the West Valley Demonstration Project Act, Public Law 96-368, liquid high-level radioactive waste stored at the Western New York Nuclear Services Center, West Valley, New York, that resulted from spent nuclear fuel reprocessing operations conducted between 1966 and 1972, is to be solidified in borosilicate glass and transported to a federal repository for geologic disposal. A major milestone was reached in May 1988 when the Project began reducing the volume of the liquid high-level waste. By the end of 1988, approximately 15 percent of the initial inventory had been processed into two waste streams. The decontaminated low-level liquid waste is being solidified in cement. The high-level waste stream is being stored in an underground tank pending its incorporation into borosilicate glass. Four tests of the waste glass melter system were completed. These tests confirmed equipment operability, control system reliability, and provided samples of waste glass for durability testing. In mid-1988, the Department validated an integrated cost and schedule plan for activities required to complete the production of the waste borosilicate glass. Design of the radioactive Vitrification Facility continued

  5. Regulatory analysis and lessons learned from the LLRW [low-level radioactive waste] disposal area at West Valley, New York: Final report

    International Nuclear Information System (INIS)

    1986-12-01

    The New York State Energy Research and Development Authority has sponsored a project to develop an integrated set of site management plans for the West Valley low-level radioactive waste (LLRW) disposal area. The plans were directed to upgrade the disposal area so that passive custodial care and monitoring activities would be sufficient to protect public health and safety and the environment. Tasks 5 and 6, Regulatory Analysis and Lessons Learned, are the subject of this report. The regulatory analysis identified areas of inconsistencies between the historic site operations and the current state and federal LLRW disposal regulations and guidelines. The lessons learned task identified the causes of the disposal problems at West Valley, discussed the lessons learned, and described the responses developed by the NRC and industry to the lessons learned. 85 refs., 6 figs., 19 tabs

  6. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    International Nuclear Information System (INIS)

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied. The terminal waste form processes considered were: borosilicate glass, low-alkali glass, marbles-in-lead matrix, and crystallinolecular potential and molecular dynamics calculations of the effect are yet to be completed. Cous oxide was also investigated. The reaction is first order in nitrite ion, second order in hydrogen ion, and between zero and first order in hydroxylamine monosulfonate, depending on the concentration

  7. High-level waste characterization at West Valley: Progress report for the period 1982-1985

    International Nuclear Information System (INIS)

    Rykken, L.E.

    1986-01-01

    This is a report on the work that was carried out at West Valley under the Waste Characterization Program. This Program covered a number of tasks in support of the design of facilities for the pretreatment and final encapsulation of the high level waste stored at West Valley. In particular, necessary physical, chemical, and radiological characterization of high-level reprocessing waste stored in two vaulted underground tanks was carried out over the period 1982 to 1985. 21 refs., 77 figs., 28 tabs

  8. Evaluation of low-level radioactive waste characterization and classification programs of the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Taie, K.R.

    1994-01-01

    The West Valley Demonstration Project (WVDP) is preparing to upgrade their low-level radioactive waste (LLW) characterization and classification program. This thesis describes a survey study of three other DOE sites conducted in support of this effort. The LLW characterization/classification programs of Oak Ridge National Laboratory, Savannah River Site, and Idaho National Engineering Laboratory were critically evaluated. The evaluation was accomplished through tours of each site facility and personnel interviews. Comparative evaluation of the individual characterization/classification programs suggests the WVDP should purchase a real-time radiography unit and a passive/active neutron detection system, make additional mechanical modifications to the segmented gamma spectroscopy assay system, provide a separate building to house characterization equipment and perform assays away from waste storage, develop and document a new LLW characterization/classification methodology, and make use of the supercompactor owned by WVDP

  9. West Valley high-level nuclear waste glass development: a statistically designed mixture study

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Bowen, W.M.; Lokken, R.O.; Wald, J.W.; Bunnell, L.R.; Strachan, D.M.

    1984-10-01

    The first full-scale conversion of high-level commercial nuclear wastes to glass in the United States will be conducted at West Valley, New York, by West Valley Nuclear Services Company, Inc. (WVNS), for the US Department of Energy. Pacific Northwest Laboratory (PNL) is supporting WVNS in the design of the glass-making process and the chemical formulation of the glass. This report describes the statistically designed study performed by PNL to develop the glass composition recommended for use at West Valley. The recommended glass contains 28 wt% waste, as limited by process requirements. The waste loading and the silica content (45 wt%) are similar to those in previously developed waste glasses; however, the new formulation contains more calcium and less boron. A series of tests verified that the increased calcium results in improved chemical durability and does not adversely affect the other modeled properties. The optimization study assessed the effects of seven oxide components on glass properties. Over 100 melts combining the seven components into a wide variety of statistically chosen compositions were tested. Viscosity, electrical conductivity, thermal expansion, crystallinity, and chemical durability were measured and empirically modeled as a function of the glass composition. The mathematical models were then used to predict the optimum formulation. This glass was tested and adjusted to arrive at the final composition recommended for use at West Valley. 56 references, 49 figures, 18 tables.

  10. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Vance, R.F. [West Valley Nuclear Services Co., Inc., NY (United States)

    1995-02-01

    The West Valley Demonstration Project was established by Public Law 96-368, the {open_quotes}West Valley Demonstration Project Act, {close_quotes} on October 1, l980. Under this act, Congress directed the Department of Energy to carry out a high level radioactive waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The purpose of this project is to demonstrate solidification techniques which can be used for preparing high level radioactive waste for disposal. In addition to developing this technology, the West Valley Demonstration Project Act directs the Department of Energy to: (1) develop containers suitable for permanent disposal of the high level waste; (2) transport the solidified high level waste to a Federal repository; (3) dispose of low level and transuranic waste produced under the project; and (4) decontaminate and decommission the facilities and materials associated with project activities and the storage tanks originally used to store the liquid high level radioactive waste. The process of vitrification will be used to solidify the high level radioactive liquid wastes into borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems which are used in the vitrification process.

  11. West Valley low-level radioactive waste site revisited: Microbiological analysis of leachates

    Energy Technology Data Exchange (ETDEWEB)

    Gillow, J.B.; Francis, A.J.

    1990-10-01

    The abundance and types of microorganisms in leachate samples from the West Valley low-level radioactive waste disposal site were enumerated. This study was undertaken in support of the study conducted by Ecology and Environment, Inc., to assess the extent of radioactive gas emissions from the site. Total aerobic and anaerobic bacteria were enumerated as colony forming units (CFU) by dilution agar plate technique, and denitrifiers, sulfate-reducers and methanogens by the most probable number technique (MPN). Of the three trenches 3, 9, and 11 sampled, trench 11 contained the most number of organisms in the leachate. Concentrations of carbon-14 and tritium were highest in trench 11 leachate. Populations of aerobes and anaerobes in trench 9 leachate were one order of magnitude less than in trench 11 leachate while the methanogens were three orders of magnitude greater than in trench 11 leachate. The methane content from trench 9 was high due to the presence of a large number of methanogens; the gas in this trench also contained the most radioactivity. Trench 3 leachate contained the least number of microorganisms. Comparison of microbial populations in leachates sampled from trenches 3 and 9 during October 1978 and 1989 showed differences in the total number of microbial types. Variations in populations of the different types of organisms in the leachate reflect the changing nutrient conditions in the trenches. 14 refs., 3 figs., 4 tabs.

  12. West Valley low-level radioactive waste site revisited: Microbiological analysis of leachates

    International Nuclear Information System (INIS)

    Gillow, J.B.; Francis, A.J.

    1990-10-01

    The abundance and types of microorganisms in leachate samples from the West Valley low-level radioactive waste disposal site were enumerated. This study was undertaken in support of the study conducted by Ecology and Environment, Inc., to assess the extent of radioactive gas emissions from the site. Total aerobic and anaerobic bacteria were enumerated as colony forming units (CFU) by dilution agar plate technique, and denitrifiers, sulfate-reducers and methanogens by the most probable number technique (MPN). Of the three trenches 3, 9, and 11 sampled, trench 11 contained the most number of organisms in the leachate. Concentrations of carbon-14 and tritium were highest in trench 11 leachate. Populations of aerobes and anaerobes in trench 9 leachate were one order of magnitude less than in trench 11 leachate while the methanogens were three orders of magnitude greater than in trench 11 leachate. The methane content from trench 9 was high due to the presence of a large number of methanogens; the gas in this trench also contained the most radioactivity. Trench 3 leachate contained the least number of microorganisms. Comparison of microbial populations in leachates sampled from trenches 3 and 9 during October 1978 and 1989 showed differences in the total number of microbial types. Variations in populations of the different types of organisms in the leachate reflect the changing nutrient conditions in the trenches. 14 refs., 3 figs., 4 tabs

  13. Preliminary design of a biological treatment facility for trench water from a low-level radioactive waste disposal area at West Valley, New York

    Energy Technology Data Exchange (ETDEWEB)

    Rosten, R.; Malkumus, D. [Pacific Nuclear, Inc. (United States); Sonntag, T. [New York State Energy Research and Development Authority, NY (United States); Sundquist, J. [Ecology and Environment, Inc. (United States)

    1993-03-01

    The New York State Energy Research and Development Authority (NYSERDA) owns and manages a State-Licensed Low-Level Radioactive Waste Disposal Area (SDA) at West Valley, New York. Water has migrated into the burial trenches at the SDA and collected there, becoming contaminated with radionuclides and organic compounds. The US Environmental Protection Agency issued an order to NYSERDA to reduce the levels of water in the trenches. A treatability study of the contaminated trench water (leachate) was performed and determined the best available technology to treat the leachate and discharge the effluent. This paper describes the preliminary design of the treatment facility that incorporates the bases developed in the leachate treatability study.

  14. Vitrification facility at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project's vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project's background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing

  15. Radiation safety at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Hoffman, R.L.

    1997-01-01

    This is a report on the Radiation Safety Program at the West Valley Demonstration Project (WVDP). This Program covers a number of activities that support high-level waste solidification, stabilization of facilities, and decontamination and decommissioning activities at the Project. The conduct of the Program provides confidence that all occupational radiation exposures received during operational tasks at the Project are within limits, standards, and program requirements, and are as low as reasonably achievable

  16. Ground-water hydrology and subsurface migration of radioisotopes at a low-level solid radioactive-waste disposal site, West Valley, New York

    International Nuclear Information System (INIS)

    Prudic, D.E.; Randall, A.D.

    1979-01-01

    Burial trenches for disposal of solid radioactive waste at West Valley, NY, are excavated in till that has very low hydraulic conductivity (about 5 x 10 -8 centimeters per second). Fractures and root tubes with chemically oxidized and/or reduced soil in their walls extend 3 to 4.5 meters below natural land surface. Preliminary simulations of pressure heads with a digital model suggest that hydraulic conductivity is an order of magnitude greater in the fractured till near land surface than at greater depth. Hydraulic gradients are predominantly downward, even beneath small valleys. The upper part of a body of underlying lacustrine silt is unsaturated; in the lower, saturated part, slow lateral flow may occur. In the older trenches, water began to build up in 1971, overflowed briefly in 1975, and was pumped out in 1975--76. Water levels rose abruptly during major rainstorms in mid-1975, indicating rapid infiltration through cracks in the cover material. The new trenches have maintained low, stable water levels, perhaps because of thicker, more compact cover and less waste settlement; pressure heads near these trenches are low, locally approaching zero, perhaps because of slight infiltration and limited near-surface storage. Peak tritium concentrations in test-hole cores (generally 10 -5 to 10 -3 microcuries per milliliter) were found within 3 meters of land surface and are attributed to surface contamination. Concentrations declined rapidly with depth within the fractured till; secondary peaks found at about 9 meters in three holes are attributed to lateral migration from trenches. Other radioisotopes were detected only near land surface. Samples from the walls of shallow fractures revealed no accumulation of radioisotopes

  17. Ground-water hydrology and subsurface migration of radioisotopes at a low-level solid radioactive-waste disposal site, West Valley, New York

    International Nuclear Information System (INIS)

    Prudic, D.E.; Randall, A.D.

    1977-07-01

    Burial trenches for disposal of solid radioactive waste at West Valley, N.Y. are excavated in till that has very low hydraulic conductivity (about 5 x 10 -8 centimeters per second). Fractures and root tubes with chemically oxidized and(or) reduced soil in their walls extend 3 to 4.5 meters below natural land surface. Preliminary simulations of pressure heads with a digital model suggest that hydraulic conductivity is an order of magnitude greater in the fractured till near land surface than at greater depth. Hydraulic gradients are predominantly downward, even beneath small valleys. The upper part of a body of underlying lacustrine silt is unsaturated; in the lower, saturated part, slow lateral flow may occur. In the older trenches, water began to build up in 1971, overflowed briefly in 1975, and was pumped out in 1975--76. Water levels rose abruptly during major rainstorms in mid-1975, indicating rapid infiltration through cracks in the cover material. The new trenches have maintained low, stable water levels, perhaps because of thicker, more compact cover and less waste settlement; pressure heads near these trenches are low, locally approaching zero, perhaps because of slight infiltration and limited near-surface storage. Peak tritium concentrations in test-hole cores (generally 10 -5 to 10 -3 microcuries per milliliter) were found within 3 meters of land surface and are attributed to surface contamination. Concentrations declined rapidly with depth within the fractured till; secondary peaks found at about 9 meters in three holes are attributed to lateral migration from trenches. Other radioisotopes were detected only near land surface. Samples from the walls of shallow fractures revealed no accumulation of radioisotopes

  18. Bench-scale treatability testing of biological, UV oxidation, distillation, and ion-exchange treatment of trench water from a low-level radioactive waste disposal area at West Valley, New York

    Energy Technology Data Exchange (ETDEWEB)

    Sundquist, J.A.; Gillings, J.C. [Ecology and Environment, Inc. (United States); Sonntag, T.L. [New York State Energy Research and Development Authority (United States); Denault, R.P. [Pacific Nuclear, Inc. (United States)

    1993-03-01

    Ecology and Environment, Inc. (E and E), under subcontract to Pacific Nuclear Services (PNS), conducted for the New York State Energy Research and Development Authority (NYSERDA) treatability tests to support the selection and design of a treatment system for leachate from Trench 14 of the West Valley State-Licensed, Low-Level Radioactive Waste Disposal Area (SDA). In this paper E and E presents and discusses the treatability test results and provides recommendations for the design of the full-scale treatment system.

  19. Design of equipment used for high-level waste vitrification at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Vance, R.F.; Brill, B.A.; Carl, D.E.

    1997-06-01

    The equipment as designed, started, and operated for high-level radioactive waste vitrification at the West Valley Demonstration Project in western New York State is described. Equipment for the processes of melter feed make-up, vitrification, canister handling, and off-gas treatment are included. For each item of equipment the functional requirements, process description, and hardware descriptions are presented

  20. Immobilization and Waste Form Product Acceptance for Low Level and TRU Waste Forms

    International Nuclear Information System (INIS)

    Holtzscheiter, E.W.; Harbour, J.R.

    1998-05-01

    The Tanks Focus Area is supporting technology development in immobilization of both High Level (HLW) and Low Level (LLW) radioactive wastes. The HLW process development at Hanford and Idaho is patterned closely after that of the Savannah River (Defense Waste Processing Facility) and West Valley Sites (West Valley Demonstration Project). However, the development and options open to addressing Low Level Waste are diverse and often site specific. To start, it is important to understand the breadth of Low Level Wastes categories

  1. Design and operating features of the high-level waste vitrification system for the West Valley demonstration project

    International Nuclear Information System (INIS)

    Siemens, D.H.; Beary, M.M.; Barnes, S.M.; Berger, D.N.; Brouns, R.A.; Chapman, C.C.; Jones, R.M.; Peters, R.D.; Peterson, M.E.

    1986-03-01

    A liquid-fed joule-heated ceramic melter system is the reference process for immobilization of the high-level liquid waste in the US and several foreign countries. This system has been under development for over ten years at Pacific Northwest Laboratory and other national laboratories operated for the US Department of Energy. Pacific Northwest Laboratory contributed to this research through its Nuclear Waste Treatment Program and used applicable data to design and test melters and related systems using remote handling of simulated radioactive wastes. This report describes the equipment designed in support of the high-level waste vitrification program at West Valley, New York. Pacific Northwest Laboratory worked closely with West Valley Nuclear Services Company to design a liquid-fed ceramic melter, a liquid waste preparation and feed tank and pump, an off-gas treatment scrubber, and an enclosed turntable for positioning the waste canisters. Details of these designs are presented including the rationale for the design features and the alternatives considered

  2. West Valley Demonstration Project site environmental report calendar year 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  3. West Valley Demonstration Project site environmental report, calendar year 1999

    Energy Technology Data Exchange (ETDEWEB)

    None Available

    2000-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  4. West Valley Demonstration Project site environmental report, calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1997 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  5. Update on the status of the West Valley demonstration project

    International Nuclear Information System (INIS)

    Greeves, J.T.; Camper, L.W.; Orlando, D.A.; Glenn, C.J.; Buckley, J.T.; Giardina, P.A.

    2002-01-01

    From 1966 to 1972, under an Atomic Energy Commission (AEC) license, Nuclear Fuel Services (NFS) reprocessed 640 metric tons of spent fuel at its West Valley, New York, facility-, the only commercial spent fuel reprocessing plant in the U.S. The facility shut down in 1972, for modifications to increase its seismic stability and to expand its capacity. In 1976, without restarting the operation, NFS withdrew from the reprocessing business and returned control of the facilities to the site owner, the New York State Energy Research and Development Authority (NYSERDA). The reprocessing activities resulted in about 2.3 million liters (600,000 gallons) of liquid high-level waste (HLW) stored below ground in tanks, other radioactive wastes, and residual radioactive contamination. The West Valley site was licensed by AEC, and then the U.S. Nuclear Regulatory Commission (NRC), until 1981, when the license was suspended to execute the 1980 West Valley Demonstration Project (WVDP) Act. The WVDP Act outlines the responsibilities of the U.S. Department of Energy (DOE), NRC, and NYSERDA at the site, including the NRC's responsibility to develop decommissioning criteria for the site. The Commission published the final policy statement on decommissioning criteria for the WVDP at the West Valley site after considering comments from interested stakeholders. In that regard, the Commission prescribed the License Termination Rule (LTR) criteria for the WVDP at the West Valley site, reflecting the fact that the applicable decommissioning goal for the entire NRC-licensed site is compliance with the requirements of the LTR. This paper will describe the history of the site, provide an update of the status of the decommissioning of the site and an overview of the technical and policy issues facing Federal and State regulators and other stakeholders as they strive to complete the remediation of the site. (author)

  6. West Valley Reprocessing Plant. Safety analysis plant, supplement 18

    International Nuclear Information System (INIS)

    1975-01-01

    Supplement 18 contains the following additions to Appendix II--5.0 Geology and Seismology: Section 12 ''Seismic Investigations for Spent Fuel Reprocessing Facility at West Valley, New York,'' October 20, 1975, and Section 13 ''Earthquake Return Period Analysis at West Valley, New York, for Nuclear Fuel Services, Inc.'' November 5, 1975

  7. Views of West Valley area residents concerning the Nuclear Fuel Services facility at West Valley, New York

    International Nuclear Information System (INIS)

    Kamieniecki, S.; Milbrath, L.W.

    1978-06-01

    A number of major findings have emerged from this analysis. Although most people have heard or read about the Nuclear Fuel Services plant at West Valley, few exhibit a high level of knowledge about the issue area. A clear majority of residents living in the region are concerned about the presence of the facility. Many are particularly concerned about the health dangers that can result from radioactive contamination of the environment. People want to see something done about the facility, but do not know exactly what. When forced to choose one out of three possible alternatives, twice as many people preferred to ''completely remove the plant and restore the area'' than either of the two remaining alternatives. People who are concerned about the facility tend to favor removal of the plant and restoration of the area. Nearly three-fourths of West Valley area residents who believe that the plant did not employ enough people to significantly help the economy of the region favor removal of the facility and restoration of the area. The results of this study may help policymakers choose the most acceptable course of action

  8. Durability testing with West Valley borosilicate glass composition- Phase II

    International Nuclear Information System (INIS)

    Macedo, P.B.; Finger, S.M.; Barkatt, A.A.; Pegg, I.L.; Feng, X.; Freeborn, W.P.

    1988-06-01

    This report presents the research performed by the Catholic University of America Vitreous State Laboratory (VSL) during FY 1987 in support of the West Valley Demonstration Project (WVDP) nuclear waste vitrification process. A principal objective of this work is the optimization of the glass composition be used for the vitrification of the liquid high-level waste generated at West Valley during nuclear fuel reprocessing. This report discusses (1) the experimental investigations to optimize the reference glass composition (the current leading candidates are WVCM-50 and ATM-10) for the WVDP vitrification process; (2) the systematic experimental investigation performed to determine the effects of compositional variations in WVCM-50 and WV-205 reference glasses on their viscosity and durability (including initial results of long-term leach tests of WVCM-50 under repository conditions); (3) the development of short-time and predictive leach tests; (4) the development of a process model for the West Valley vitrification process which predicts the range of glass compositions which may be encountered during normal operations and the effects of deviations in process control parameters; and (5) the development of product models for predicting the durability and viscosity of nuclear waste glasses

  9. Evaluation of process alternatives for solidification of the West Valley high-level liquid wastes

    International Nuclear Information System (INIS)

    Holton, L.K.; Larson, D.E.

    1982-01-01

    The Department of Energy (DOE) established the West Valley Solidification Project (WVSP) in 1980. The project purpose is to demonstrate removal and solidification of the high-level liquid wastes (HLLW) presently stored in tanks at the Western New York Nuclear Service Center (WNYNSC), West Valley, New York. As part of this effort, the Pacific Northwest Laboratory (PNL) conducted a study to evaluate process alternatives for solidifcation of the WNYNSC wastes. Two process approaches for waste handling before solidification, together with solidification processes for four terminal and four interim waste forms, were considered. The first waste-handling approach, designated the salt/sludge separation process, involves separating the bulk of the nonradioactive nuclear waste constituents from the radioactive waste constituents, and the second waste-handling approach, designated the combined-waste process, involves no waste segregation prior to solidification. The processes were evaluated on the bases of their (1) readiness for plant startup by 1987, (2) relative technical merits, and (3) process cost. The study has shown that, based on these criteria, the salt/sludge separation process with a borosilicate glass waste form is preferred when producing a terminal waste form. It was also concluded that if an interim waste form is to be used, the preferred approach would be the combined waste process with a fused-salt waste form

  10. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2005-09-30

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

  11. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004

    International Nuclear Information System (INIS)

    2005-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004

  12. Geomorphic and erosion studies at the Western New York Nuclear Service Center, West Valley, New York

    International Nuclear Information System (INIS)

    Boothroyd, J.C.; Timson, B.S.; Dana, R.H. Jr.

    1979-12-01

    This report is one in a series of related reports presenting the results of a study to evaluate the containment capability of a low-level, solid radioactive waste-burial ground at West valley, NY. This project is the first portion of a detailed geomorphic and erosion study of the reach of Buttermilk Creek adjacent to the waste-burial site. Buttermilk Creek valley is being actively modified by fluvial transport, lateral channel scour, and landsliding. High surface runoff rates create highly variable but enhanced stream flows that result in coarse-gravel sediment transport within the active channel. The active channel morphology indicates that braided stream processes are common in Buttermilk, leading to active channel down-cutting and lateral migration. Where lateral migration of the active channel has undercut valley wall slopes, large-scale landsliding enhances valley wall retreat. A major site of historical and recent slide activity lies adjacent to the low-level burial trenches. Initial, post-glacial Buttermilk Creek incision began before 9920 +- 240 B.P., the age of the oldest dated fluvial terrace. Future evolution of the system is expected to proceed by Buttermilk valley lowering, tributary and landslide widening, and stream capture

  13. Preconceptual design study for solidifying high-level waste: West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Hill, O.F.

    1981-04-01

    This report presents a preconceptual design study for processing radioactive high-level liquid waste presently stored in underground tanks at Western New York Nuclear Service Center (WNYNSC) near West Valley, New York, and for incorporating the radionculides in that waste into a solid. The high-level liquid waste accumulated from the operation of a chemical reprocessing plant by the Nuclear Fuel Services, Inc. from 1966 to 1972. The high-level liquid waste consists of approximately 560,000 gallons of alkaline waste from Purex process operations and 12,000 gallons of acidic (nitric acid) waste from one campaign of processing thoria fuels by a modified Thorex process (during this campaign thorium was left in the waste). The alkaline waste contains approximately 30 million curies and the acidic waste contains approximately 2.5 million curies. The reference process described in this report is concerned only with chemically processing the high-level liquid waste to remove radionuclides from the alkaline supernate and converting the radionuclide-containing nonsalt components in the waste into a borosilicate glass

  14. West Virginia State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The West Virginia State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in West Virginia. The profile is the result of a survey of NRC licensees in West Virginia. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in West Virginia

  15. Rod consolidation at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1986-12-01

    A rod consolidation demonstration with irradiated pressurized water reactor fuel was recently conducted by personnel from Nuclear Assurance Corporation and West Valley Nuclear Services Company at the West Valley Demonstration Project in West Valley, New York. The rod consolidation demonstration involved pulling all of the fuel rods from six fuel Assemblies. In general, the rod pulling proceeded smoothly. The highest compaction ratio attained was 1:8:1. Among the total of 1074 fuel rods were some known degraded rods (they had collapsed cladding, a result of in-reactor fuel densification), but no rods were broken or dropped during the demonstration. One aim was to gather information on the effect of rod consolidation operations on the integrity of the fuel rods during subsequent handling and storage. Another goal was to collect information on the condition and handling of intact, damaged, and failed fuel that has been in storage for an extended period. 9 refs., 8 figs., 1 tab

  16. West Valley facility spent fuel handling, storage, and shipping experience

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1990-11-01

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs

  17. West Valley Demonstration Project annual report to Congress

    International Nuclear Information System (INIS)

    1990-01-01

    By the end of the fiscal year, the West Valley Demonstration Project had processed 757,000 litres of liquid high-level waste, removing most of the radioactive constituents by ion exchange. The radioactive ion exchange material is being stored in an underground tank pending its incorporation, along with sludge still in the tank, into borosilicate glass. The decontaminated salt solution was solidified into a cement low-level waste form which has been reviewed and endorsed by the Nuclear Regulatory Commission. Five tests of the waste glass melter system were completed. A Notice of Intent was published to prepare a joint federal/state Environmental Impact Statement. Design of the Vitrification Facility, a major milestone, was completed and construction of the facility enclosure has begun. A Department of Energy Tiger Team and Technical Safety Appraisal of the Project found no undue risks to worker or public health and safety or the environment

  18. Testing of the West Valley Vitrification Facility transfer cart control system

    International Nuclear Information System (INIS)

    Halliwell, J.W.; Bradley, E.C.

    1995-01-01

    Oak Ridge National Laboratory (ORNL) has designed and tested the control system for the West Valley Demonstration Project Vitrification Facility transfer cart. The transfer cart will transfer canisters of vitrified high-level waste remotely within the Vitrification Facility. The control system operates the cart under battery power by wireless control. The equipment includes cart-mounted control electronics, battery charger, control pendants, engineer's console, and facility antennas. Testing was performed in several phases of development: (1) prototype equipment was built and tested during design, (2) board-level testing was then performed at ORNL during fabrication, and (3) system-level testing was then performed by ORNL at the fabrication subcontractor's facility for the completed cart system. These tests verified (1) the performance of the cart relative to design requirements and (2) operation of various built-in cart features. The final phase of testing is planned to be conducted during installation at the West Valley Vitrification Facility

  19. Cleanup criteria for the West Valley demonstration project

    International Nuclear Information System (INIS)

    Parrott, J.D.

    1999-01-01

    The US Nuclear Regulatory Commission (NRC) is prescribing decontamination and decommissioning (cleanup) criteria for the West Valley Demonstration Project and the West Valley, New York, site. The site is contaminated with various forms of residual radioactive contamination and contains a wide variety of radioactive waste. The NRC is planning to issue cleanup criteria for public comment in Fall 1999. Due to the complexity of the site, and the newness of NRC's cleanup criteria policy, applying NRC's cleanup criteria to this site will be an original regulatory undertaking. (author)

  20. Decontamination and decommissioning of the West Valley Reprocessing Plant

    International Nuclear Information System (INIS)

    Daugherty, H.F.; Keel, R.

    1986-11-01

    This report presents the decontamination and decommissioning (D and D) activities at the West Valley Nuclear Fuel Reprocessing Plant through September 1, 1986. The topics addressed are: D and D of areas for reuse by the Liquid Waste Treatment System (LWTS); D and D of areas for reuse as High Level Waste (HLW) canister storage; and technologies developed in D and D work

  1. An overview of the West Valley demonstration project

    International Nuclear Information System (INIS)

    Hannum, W.H.; Boswell, M.B.; De Boer, T.K.; Duckworth, J.P.

    1984-01-01

    This session is titled ''DOE Special Waste Management Projects.'' West Valley and TMI are indeed special projects, in that they represent today's problems. They may well have been the two most visible symbols as to how nuclear wastes can poison the entire civilian nuclear power program. Each in its own way has been perceived as a major threat to the environment and to public health and safety; in both cases this threat has been perceived to be grossly more severe than it has been in fact. It is the Department of Energy' intent that both of these problems be made to disappear. This paper serves to introduce a series of paper describing the status of the West Valley Project. In the West Valley case substantial progress is being made and we believe we are well on the way toward transforming what has been a skeleton along the road to progress into positive and unmistakable evidence that high-level nuclear wastes such as those resulting from reprocessing can be managed, understood, and prepared for disposal by a straightforward adaptation and application of existing technologies. Further, we now have evidence that the costs of doing this are not exorbitant. Subsequent papers will describe waste characterization; the plans and designs for solidification; and the ancillary and supporting programs for handling effluents and wastes, for D and D to utilize existing facilities, and environmental support. In this paper we describe the history of this plant and the wastes being used in the demonstration; the legislation and intent of the Project; the accomplishments to date; and the projected schedule and costs

  2. 1982 environmental-monitoring program report for the West Valley Demonstration Project site

    International Nuclear Information System (INIS)

    1983-05-01

    This report is prepared and submitted in accordance with the requirements of DOE Order 5484.1 and presents environmental monitoring program data collected at the West Valley Demonstration Project (WVDP) site from February 26, 1982, through December 31, 1982. The WVDP objective is to solidify approximately 600,000 gallons of high-level liquid radioactive waste stored at the former Nuclear Fuel Services reprocessing facility at West Valley, New York. Nuclear Fuel Services conducted an environmental monitoring program in accordance with Nuclear Regulatory Commission requirements which were appropriate for shutdown maintenance operations conducted at the site. That program was embraced by West Valley Nuclear Services Company (WVNS) at the time of transition (February 26, 1982) and will be modified to provide a comprehensive monitoring program in preparation for waste solidification operations scheduled for startup in June 1988. As such, the data presented in this report is considered preoperational in nature in accordance with DOE Order 5484.1, Chapter III, Paragraph 1. The environmental monitoring program planned for the operating phase of the project will be fully implemented by fiscal year 1985 and will provide at least two years of preoperational data prior to startup

  3. Comparison of the rotary calciner-metallic melter and the slurry-fed ceramic melter technologies for vitrifying West Valley high-level wastes

    International Nuclear Information System (INIS)

    Chapman, C.C.

    1983-01-01

    Two processes which are believed applicable and available for vitrification of West Valley's high-level (HLW) wastes were technically evaluated and compared. The rotary calciner-metallic melter (AVH) and the slurry-fed ceramic melter (SFCM) were evaluated under the following general categories: process flow sheet, remote operability, safety and environmental considerations, and estimated cost and schedules

  4. Operating experience during high-level waste vitrification at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Valenti, P.J.; Elliott, D.I.

    1999-01-01

    This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes

  5. Assessment of the feasibility of studying the potential health effects of the West Valley Solidification Project. Phase II

    International Nuclear Information System (INIS)

    Matanoski, G.M.

    The activities at West Valley involve potential exposure to ionizing radiation. The health effects from radiation are well known and the projected levels of exposure in this situation are so low as to pose no known health hazard in the community. In such a situation it is not reasonable to propose an expensive, comprehensive and physically invasive screening program for the public unless one could justify the benefits. This report describes a feasible population-based surveillance or disease monitoring system which could be implemented in the West Valley area in order to assess the relevance of any changes in incidence of disease which might be attributable to radiation. The proposed plan is both practical and inexpensive. It would anticipate any potential changes in the health status of the population and provide a means to objectively interpret such changes before major concerns develop

  6. WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002

    International Nuclear Information System (INIS)

    2003-01-01

    This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in the final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9) planning

  7. WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-12

    This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in the final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9

  8. Vitrification process equipment design for the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Chapman, C.C.; Drosjack, W.P.

    1988-10-01

    The vitrification process and equipment design is nearing completion for the West Valley Project. This report provides the basis and current status for the design of the major vessels and equipment within the West Valley Vitrification Plant. A review of the function and key design features of the equipment is also provided. The major subsystems described include the feed preparation and delivery systems, the melter, the canister handling systems, and the process off-gas system. 11 refs., 33 figs., 4 tabs

  9. Decontamination of the extraction sample aisle at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Vance, R.F.

    1986-09-01

    This report describes the decontamination and decommissioning (D and D) of the Extraction Sample Aisle (XSA) at the West Valley Demonstration Project. The XSA is one of several areas in the former reprocessing plant required for use in support of the solidification of high-level waste. The XSA contained three glove boxes which housed sample stations. It became radioactively contaminated during fuel reprocessing from 1966 to 1972. This report describes the work performed to accomplish the D and D objectives of removing existing piping and equipment and of reducing radiation and contamination levels, to As-Low-As-Reasonably-Achievable (ALARA) levels for the installation of new equipment. Also reported are pre- and post-radiological conditions, personnel exposure, radioactive waste volume collected, cost and schedule data, and lessons learned

  10. West Valley waste removal system study

    International Nuclear Information System (INIS)

    Janicek, G.P.

    1981-04-01

    This study addresses the specific task of removing high-level wastes from underground tanks at Western New York Nuclear Center and delivering them to an onsite waste solidification plant. It begins with a review of the design and construction features of the waste storage tanks pertinent to the waste removal task with particular emphasis on the unique and complex tank internals which severely complicate the task of removal. It follows with a review of tank cleaning techniques used and under study at both Hanford and Savannah River and previous studies proposing the use of these techniques at West Valley. It concludes from these reviews that existing techniques are not directly transferable to West Valley and that a new approach is required utilizing selected feature and attributes from existing methodology. The study also concludes, from an investigation of the constraints imposed by the processing facility, that waste removal will be intermittent, requiring batch transfer over the anticipated 3 years of processing operations. Based on these reviews and conclusions, the study proposes that the acid waste be processed first and that one of the 15,000-gallon acid tanks then be used for batch feeding the neutralized waste. The proposed system would employ commercially available pumping equipment to transfer the wastes from the batch tank to processing via existing process piping. A commercially available mixed-flow pump and eight turbine pumps would homogenize the neutralized waste in conjunction with eight custom-fabricated sluicers for periodic transfer to the batch tank

  11. Operational strategy for soil concentration predictions of strontium/yttrium-90 and cesium-137 in surface soil at the West Valley Demonstration Project site

    International Nuclear Information System (INIS)

    Myers, J.A.

    1995-01-01

    There are difficulties associated with the assessment of the interpretation of field measurements, determination of guideline protocols and control and disposal of low level radioactive contaminated soil in the environmental health physics field. Questions are raised among scientists and in public forums concerning the necessity and high costs of large area soil remediation versus the risks of low-dose radiation health effects. As a result, accurate soil activity assessments become imperative in decontamination situations. The West Valley Demonstration Project (WVDP), a US Department of Energy facility located in West Valley, New York is managed and operated by West Valley Nuclear Services Co., Inc. (WVNS). WVNS has identified contaminated on-site soil areas with a mixed variety of radionuclides (primarily fission product). Through the use of data obtained from a previous project performed during the summer of 1994 entitled ''Field Survey Correlation and Instrumentation Response for an In Situ Soil Measurement Program'' (Myers), the WVDP offers a unique research opportunity to investigate the possibility of soil concentration predictions based on exposure or count rate responses returned from a survey detector probe. In this study, correlations are developed between laboratory measured soil beta activity and survey probe response for the purposes of determining the optimal detector for field use and using these correlations to establish predictability of soil activity levels

  12. Technical safety appraisal of the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    1989-09-01

    This report presents the results of one in a series of Technical Safety Appraisals (TSAs) being conducted of DOE nuclear operations by the Assistant Secretary for Environment, Safety, and Health Office of Safety Appraisals TSAs are one of the ititiatives announced by the Secretary of Energy on September 18, 1985, to enhance the DOE environment, safety and health program. This report presents the results of a TSA of the West Valley Demonstration Project (WVDP). The appraisal was conducted by a team of exerts assembled by the DOE Office of Safety Appraisal and was conducted during onsite visits of June 26-30 and July 10-21, 1989. West Valley, about 30 miles south of Buffalo, New York is the location of the only commercial nuclear fuel reprocessing facility operated in the United States. Nuclear Fuels Services, Inc. (NFS) operated the plant from 1966 to 1972 and processed about 640 metric tons of spent reactor fuel. The reprocessing operation generated about 560,000 gallons of high-level radioactive waste, which was transferred into underground tanks for storage. In 1972 NFS closed the plant and subsequently decided not to reopen it

  13. Injection of radioactive waste by hydraulic fracturing at West Valley, New York. Volume 2. Text

    International Nuclear Information System (INIS)

    1978-05-01

    Results of a preliminary study are presented of the technical feasibility of radioactive waste disposal by hydraulic fracturing and injection into shale formations below the Nuclear Fuel Services Incorporated site at West Valley, New York. At this time there are approximately 600,000 gallons of high level neutralized Purex waste, including both the supernate (liquid) and sludge, and a further 12,000 gallons of acidic Thorex waste stored in tanks at the West Valley facilities. This study assesses the possibility of combining these wastes in a suitable grout mixture and then injecting them into deep shale formations beneath the West Valley site as a means of permanent disposal. The preliminary feasibility assessment results indicated that at the 850 to 1,250 feet horizons, horizontal fracturing and injection could be effectively achieved. However, a detailed safety analysis is required to establish the acceptability of the degree of isolation. The principal concerns regarding isolation are due to existing and possible future water supply developments within the area and the local effects of the buried valley. In addition, possible future natural gas developments are of concern. The definition of an exclusion zone may be appropriate to avoid problems with these developments. The buried valley may require the injections to be limited to the lower horizon depending on the results of further investigations

  14. Fulfilling information needs of environmental groups: the current West Valley experience

    International Nuclear Information System (INIS)

    Hoffman, W.D.

    1986-01-01

    This paper addresses the justification for environmental group communications and the options available in formatting such a dialogue. The West Valley program is explained including realized and potential project benefits. The environmental communications program in place at the West Valley Demonstration Project (WVDP) was instituted in the throes of a challenging scenario. The site had just been chosen by the US Department of Energy (DOE) to demonstrate the cleanup of high-level nuclear wastes with a relatively new technology. The former nuclear fuel reprocessing operator had maintained a closed door communications policy. Consequently, the initial reaction of environmental groups to the project was one of suspicion and fear. The WVDP information exchange involves regularly bringing persons to the site, many of whom are antinuclear and initially skeptical of the project. Many have indicated their early concern about the site has been alleviated; furthermore, they are impressed with the purpose of the project and its commitment to safety

  15. Fulfilling information needs of environmental groups: the current West Valley experience

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, W.D.

    1986-07-15

    This paper addresses the justification for environmental group communications and the options available in formatting such a dialogue. The West Valley program is explained including realized and potential project benefits. The environmental communications program in place at the West Valley Demonstration Project (WVDP) was instituted in the throes of a challenging scenario. The site had just been chosen by the US Department of Energy (DOE) to demonstrate the cleanup of high-level nuclear wastes with a relatively new technology. The former nuclear fuel reprocessing operator had maintained a closed door communications policy. Consequently, the initial reaction of environmental groups to the project was one of suspicion and fear. The WVDP information exchange involves regularly bringing persons to the site, many of whom are antinuclear and initially skeptical of the project. Many have indicated their early concern about the site has been alleviated; furthermore, they are impressed with the purpose of the project and its commitment to safety.

  16. Low-level waste cement solidification design, installation, and start-up

    International Nuclear Information System (INIS)

    Jezek, G.R.

    1988-08-01

    This report describes the design, installation, and start-up activities of the Cement Solidification System (CSS) at the West Valley Demonstration Project (WVDP), West Valley, New York. The CSS, designed to operate within an existing process cell, automatically and remotely solidifies low-level nuclear waste by mixing it with Portland Type I cement. The qualified waste form mixture is placed into square, 270-litre (71-gallon) metal drums. The drums have an integral polyethylene liner to protect the carbon-steel material from potential corrosion. The CSS produces drums at a continuous operation rate of four drums per hour. All system processing data is monitored by a computerized Data Acquisition System (DAS). 6 figs

  17. Overview of the West Valley Vitrification Facility transfer cart control system

    International Nuclear Information System (INIS)

    Bradley, E.C.; Rupple, F.R.

    1993-01-01

    Oak Ridge National Laboratory (ORNL) has designed the control system for the West Valley Demonstration Project Vitrification Facility transfer cart. The transfer cart will transfer canisters of vitrified high-level waste remotely within the Vitrification Facility. The control system will operate the cart under battery power by wireless control. The equipment includes cart mounted control electronics, battery charger, control pendants, engineer's console, and facility antennas

  18. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    Science.gov (United States)

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  19. Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs.

  20. Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact

    International Nuclear Information System (INIS)

    1992-01-01

    The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs

  1. Design, construction, and operation of the contact size reduction facility at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Frank, D.E.; Reeves, S.R.; Valenti, P.J.

    1988-05-01

    This paper describes the design, construction and initial operation of the Contact-Handled Size Reduction Facility (CSRF) at the West Valley Demonstration Project. The facility was constructed to size reduce contaminated tanks, piping, and other metallic scrap and package the scrap for disposal. In addition, the CSRF has the capability to decontaminate scrap prior to disposal. The anticipated result of decontaminating the scrap is to reduce waste classified as transuranic or low-level Class B and C to Class A or release for unrestricted use as nonradioactive equipment. 10 figs., 1 tab

  2. Decontamination of the Scrap Removal Room at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Bridenbaker, W.A.; Clemons, L.

    1987-02-01

    This report describes the decontamination and decommissioning (D and D) of the Scrap Removal Room (SRR) at the West Valley Demonstration Project (WVDP). The SRR is an area in the former reprocessing plant that is required for use in support of D and D for other plant areas. The SRR contained a 6.8 Mg (7.5-ton) crane for loading waste material into a shielded truck cask. It became radioactively contaminated during fuel reprocessing from 1966 to 1972. This report describes the work performed to accomplish the D and D objectives of removing existing piping and equipment and of reducing radiation and contamination levels, to As-Low-As-Reasonably-Achievable (ALARA) levels for the installation of new equipment. Also reported are pre- and post-radiological conditions, personnel exposure, radioactive waste volume collected, cost and schedule data, and lessons learned

  3. An overview of waste management systems at the West Valley demonstration project

    International Nuclear Information System (INIS)

    McIntosh, T.W.; Bixby, W.W.; Krauss, J.E.; Leap, D.R.

    1988-01-01

    In 1980, the United States Congress passed into law the West Valley Demonstration Project Act authorizing the Department of Energy (DOE) to conduct a nuclear waste management project at a former commercial nuclear fuel reprocessing facility located in West Valley, New York. The Project's main objective is to solidify approximately two million litres of high-level radioactive liquid waste into a form suitable for transport to a federal repository for final disposal. The majority of the liquid waste was produced as a by-product of the PUREX extraction process and is stored in an underground steel tank. A waste characterization program has shown that the neutralized waste has settled into two distinct layers: a clear alkaline liquid (supernatant) layer and a dense precipitate (sludge) layer. The principle radioactive elements in the waste are cesium 137 (supernatant) and strontium 90 (sludge). This paper describes the overall project strategy, the waste management systems, the present project engineering and construction status and the project schedule leading to radioactive operation

  4. West Valley Demonstration Project site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The West Valley Demonstration Project (WVDP), the site of a US Department of Energy environmental cleanup activity operated by West Valley Nuclear Services Co., Inc., (WVNS), is in the process of solidifying liquid high-level radioactive waste remaining at the site after commercial nuclear fuel reprocessing was discontinued. The Project is located in Western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1996 by environmental monitoring personnel. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. Appendix A is a summary of the site environmental monitoring schedule. Appendix B lists the environmental permits and regulations pertaining to the WVDP. Appendices C through F contain summaries of data obtained during 1996 and are intended for those interested in more detail than is provided in the main body of the report.

  5. Slurry feed variability in West Valley's melter feed tank and sampling system

    International Nuclear Information System (INIS)

    Fow, C.L.; Kurath, D.E.; Pulsipher, B.A.; Bauer, B.P.

    1989-04-01

    The present plan for disposal of high-level wastes at West Valley is to vitrify the wastes for disposal in deep geologic repository. The vitrification process involves mixing the high-level wastes with glass-forming chemicals and feeding the resulting slurry to a liquid-fed ceramic melter. Maintaining the quality of the glass product and proficient melter operation depends on the ability of the melter feed system to produce and maintain a homogeneous mixture of waste and glass-former materials. To investigate the mixing properties of the melter feed preparation system at West Valley, a statistically designed experiment was conducted using synthetic melter feed slurry over a range of concentrations. On the basis of the statistical data analysis, it was found that (1) a homogeneous slurry is produced in the melter feed tank, (2) the liquid-sampling system provides slurry samples that are statistically different from the slurry in the tank, and (3) analytical measurements are the major source of variability. A statistical quality control program for the analytical laboratory and a characterization test of the actual sampling system is recommended. 1 ref., 5 figs., 1 tab

  6. Public meeting: Western New York Nuclear Service Center options study. [Problem of West Valley plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    This document is a transcript of the meeting, with additional written comments. The main topic is the West Valley Processing Plant and how to dispose of it and its high-level wastes. Objective is to get public input on this topic. (DLC)

  7. West Valley Reprocessing Plant. Safety analysis report, supplement 21

    International Nuclear Information System (INIS)

    1976-01-01

    Supplement No. 21 contains responses to USNRC questions on quality assurance contained in USNRC letter to NFS dated January 22, 1976, revised pages for the safety analysis report, and Appendix IX ''Quality Assurance Manual--West Valley Construction Projects.''

  8. Hydrological functioning of West-African inland valleys explored with a critical zone model

    Science.gov (United States)

    Hector, B.; Cohard, J. M.; Séguis, L.; Peugeot, C.; Galle, S.

    2017-12-01

    In west Africa, recurrent floods are still a major issue, and hydropower has been recognized as an important development pathway. Furthermore, inland valleys carry an important agronomic potential, which could meet the necessary increase of the crop production associated with the strong demographic rates of the region. This can lead to land cover and subsequent hydrologic changes. However, the hydrological role of the inland valleys in the humid, hard rock-dominated Sudanian area is not yet well understood, specifically for streamflow (Q) generation processes. We address both the questions of the hydrological functioning of inland valleys in the Sudanian area of West-Africa and the impact of land cover changes on these systems through deterministic sensitivity experiments using a physically-based critical zone model (ParFlow-CLM) applied on a synthetic catchment which comprises an inland valley. The conceptual lithological/pedological model for the catchment includes the main features of such a hydrological elementary unit derived from the literature and from a previously published model based on data from a highly instrumented elementary catchment. Model forcings and parameters are based on data from the AMMA-CATCH observation service and multiple field experiments. We found yearly water budgets were much more sensitive to vegetation distribution than lithology features of the inland valley (presence of the low permeability layer commonly found below the inland valley and the hydrodynamic properties of upstream and lateral areas). Yearly evapotranspiration budget between a fully tree-covered and an herbaceous-covered catchment increases between 6 and 21% of the precipitation of the year (depending on the tested cases) which reduces considerably the yearly streamflow budgets ( 30%). On the other hand, the lithology distribution has clear impacts on the spatial distribution of water storage dynamics.

  9. Design and operational considerations of United States commercial nea-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, Sandra M.

    1997-01-01

    Low-level radioactive waste disposal standards and techniques in the United States have evolved significantly since the early 1960's. Six commercial LLW disposal facilities(Barnwell, Richland, Ward Valley, Sierra Blanca, Wake County and Boyd County) operated and proposed between 1962 and 1997. This report summarizes each site's design and operational considerations for near-surface disposal of low-level radioactive waste. These new standards and mitigating efforts at closed facilities (Sheffield, Maxey Flats, Beatty and West Valley) have helped to ensure that the public has been safely protected from LLW. 15 refs

  10. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Vance, R.F.

    1991-12-01

    The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems

  11. Long-term management of liquid high-level radioactive wastes stored at the Western New York Nuclear Service Center, West Valley. Final environmental impact statement

    International Nuclear Information System (INIS)

    1982-06-01

    The statement assesses and compares environmental implications of possible alternatives for long-term management of the liquid high-level radioactive wastes stored in underground tanks at the Western New York Nuclear Service Center in West Valley, New York. Four basic alternatives, as well as options within these alternatives, have been considered in the EIS: (1) onsite processing to a terminal waste form for shipment and disposal in a federal repository (the preferred alternative); (2) onsite conversion to a solid interim form for shipment to a federal waste facility for later processing to a terminal form and shipment and subsequent disposal in a federal repository; (3) mixing the liquid wastes with cement and other additives, pouring it back into the existing tanks, and leaving onsite; and (4) no action (continued storage of the wastes in liquid form in the underground tanks at West Valley). Mitigative measures for environmental impacts have been considered for all alternatives. No significant stresses on supplies or irreversible and irretrievable resources are anticipated, and no scarce resource would be required

  12. Nocturnal Low-level Jet Evolution in a Broad Valley Observed by Dual Doppler Lidar

    Directory of Open Access Journals (Sweden)

    Thomas Damian

    2014-09-01

    Full Text Available The temporal evolution of a nocturnal low-level jet (LLJ in the 40km$40\\,\\text{km}$ broad Rhine Valley near Karlsruhe is studied, in the framework of a case study, with two heterodyne detection Doppler lidars using the new scan concept of “virtual towers”. For validation of this measuring technique, we performed comparative case studies with a tethered balloon and the highly instrumented 200m$200\\,\\text{m}$ KIT tower. The findings show capabilities of the virtual tower technique for wind measurements. Virtual towers can be placed at all locations within the range of Lidar measurements. Associated with nocturnal stable stratification, the LLJ, a wind speed maximum of about 9ms-1$9\\,\\text{m}\\,\\text{s}^{-1}$, develops at 100m$100\\,\\text{m}$ to 150m$150\\,\\text{m}$ agl, but the wind does not show the typical clockwise wind direction change that is reported in many other studies. This is attributed to the channeling effect occurring in broad valleys like the Rhine Valley when the boundary layer is stably stratified. Such channeling means a significant deviation of the wind direction from the Ekman spiral so that low-altitude winds turn into valley-parallel direction.

  13. Laboratory work in support of West Valley glass development

    International Nuclear Information System (INIS)

    Bunnell, L.R.

    1988-05-01

    Over the past six years, Pacific Northwest Laboratory (PNL) has conducted several studies in support of waste glass composition development and testing of glass compositions suitable for immobilizing the nuclear wastes stored at West Valley, New York. As a result of pilot-scale testing conducted by PNL, the glass composition was changed from that originally recommended in response to changes in the waste stream, and several processing-related problems were discovered. These problems were solved, or sufficiently addressed to determine their likely effect on the glass melting operations to be conducted at West Valley. This report describes the development of the waste glass composition, WV-205, and discusses solutions to processing problems such as foaming and insoluble sludges, as well as other issues such as effects of feed variations on processing of the resulting glass. An evaluation of the WV-205 glass from a repository perspective is included in the appendix to this report

  14. A West Valley Demonstration Project Milestone - Achieving Certification to Ship Waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    Jackson, J. P.; Pastor, R. S.

    2002-01-01

    The West Valley Demonstration Project (WVDP) has successfully pretreated and vitrified nearly all of the 600,000 gallons of liquid high-level radioactive waste that was generated at the site of the only commercial nuclear fuel reprocessing plant to have operated in the United States. Low-level waste (LLW) generated during the course of the cleanup effort now requires disposal. Currently the WVDP only ships Class A LLW for off-site disposal. It has been shipping Class A wastes to Envirocare of Utah, Inc. since 1997. However, the WVDP may also have a future need to ship Class B and Class C waste, which Envirocare is not currently authorized to accept. The Nevada Test Site (NTS), a U.S. Department of Energy (DOE) facility, can accept all three waste classifications. The WVDP set a goal to receive certification to begin shipping Class A wastes to NTS by 2001. Formal certification/approval was granted by the DOE Nevada Operations Office on July 12, 2001. This paper discusses how the WVDP contractor, West Valley Nuclear Services Company (WVNSCO), completed the activities required to achieve NTS certification in 2001 to ship waste to its facility. The information and lessons learned provided are significant because the WVDP is the only new generator receiving certification based on an NTS audit in January 2001 that resulted in no findings and only two observations--a rating that is unparalleled in the DOE Complex

  15. Statistical methods to monitor the West Valley off-gas system

    International Nuclear Information System (INIS)

    Eggett, D.L.

    1990-01-01

    This paper reports on the of-gas system for the ceramic melter operated at the West Valley Demonstration Project at West Valley, NY, monitored during melter operation. A one-at-a-time method of monitoring the parameters of the off-gas system is not statistically sound. Therefore, multivariate statistical methods appropriate for the monitoring of many correlated parameters will be used. Monitoring a large number of parameters increases the probability of a false out-of-control signal. If the parameters being monitored are statistically independent, the control limits can be easily adjusted to obtain the desired probability of a false out-of-control signal. The principal component (PC) scores have desirable statistical properties when the original variables are distributed as multivariate normals. Two statistics derived from the PC scores and used to form multivariate control charts are outlined and their distributional properties reviewed

  16. Preliminary analysis of West Valley Waste Removal System equipment development and mock demonstration facilities

    International Nuclear Information System (INIS)

    Janicek, G.P.

    1981-06-01

    This report defines seven areas requiring further investigation to develop and demonstrate a safe and viable West Valley Waste Removal System. These areas of endeavor are discussed in terms of their minimum facility requirements. It is concluded that utilizing separated specific facilities at different points in time is of a greater advantage than an exact duplication of the West Valley tanks. Savannah River Plant's full-scale, full-circle and half-circle tanks, and their twelfth scale model tank would all be useful to varying degrees but would require modifications. Hanford's proposed full-size mock tank would be useful, but is not seriously considered because its construction may not coincide with West Valley needs. Costs of modifying existing facilities and/or constructing new facilities are assessed in terms of their benefit to the equipment development and mock demonstration. Six facilities were identified for further analysis which would benefit development of waste removal equipment

  17. Y Chromosome analysis of prehistoric human populations in the West Liao River Valley, Northeast China.

    Science.gov (United States)

    Cui, Yinqiu; Li, Hongjie; Ning, Chao; Zhang, Ye; Chen, Lu; Zhao, Xin; Hagelberg, Erika; Zhou, Hui

    2013-09-30

    The West Liao River valley in Northeast China is an ecologically diverse region, populated in prehistory by human populations with a wide range of cultures and modes of subsistence. To help understand the human evolutionary history of this region, we performed Y chromosome analyses on ancient human remains from archaeological sites ranging in age from 6500 to 2700 BP. 47 of the 70 individuals provided reproducible results. They were assigned into five different Y sub-haplogroups using diagnostic single nucleotide polymorphisms, namely N1 (xN1a, N1c), N1c, C/C3e, O3a (O3a3) and O3a3c. We also used 17 Y short tandem repeat loci in the non-recombining portion of the Y chromosome. There appears to be significant genetic differences between populations of the West Liao River valley and adjacent cultural complexes in the prehistoric period, and these prehistoric populations were shown to carry similar haplotypes as present-day Northeast Asians, but at markedly different frequencies. Our results suggest that the prehistoric cultural transitions were associated with immigration from the Yellow River valley and the northern steppe into the West Liao River valley. They reveal the temporal continuity of Y chromosome lineages in populations of the West Liao River valley over 5000 years, with a concurrent increase in lineage diversity caused by an influx of immigrants from other populations.

  18. West Valley Reprocessing Plant. IE inspection report No. 75-8

    International Nuclear Information System (INIS)

    1975-01-01

    Results of an inspection of the West Valley Processing Plant on October 20-23, 1975 are reported. The inspection consisted of selective examinations of procedures and representative records, interviews with personnel, and observations by the inspector. No items of noncompliance were observed

  19. Case histories of West Valley spent fuel shipments: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    In 1983, NRC/FC initiated a study on institutional issues related to spent fuel shipments originating at the former spent fuel processing facility in West Valley, New York. FC staff viewed the shipment campaigns as a one-time opportunity to document the institutional issues that may arise with a substantial increase in spent fuel shipping activity. NRC subsequently contracted with the Aerospace Corporation for the West Valley Study. This report contains a detailed description of the events which took place prior to and during the spent fuel shipments. The report also contains a discussion of the shipment issues that arose, and presents general findings. Most of the institutional issues discussed in the report do not fall under NRC's transportation authority. The case histories provide a reference to agencies and other institutions that may be involved in future spent fuel shipping campaigns. 130 refs., 7 figs., 19 tabs.

  20. Case histories of West Valley spent fuel shipments: Final report

    International Nuclear Information System (INIS)

    1987-01-01

    In 1983, NRC/FC initiated a study on institutional issues related to spent fuel shipments originating at the former spent fuel processing facility in West Valley, New York. FC staff viewed the shipment campaigns as a one-time opportunity to document the institutional issues that may arise with a substantial increase in spent fuel shipping activity. NRC subsequently contracted with the Aerospace Corporation for the West Valley Study. This report contains a detailed description of the events which took place prior to and during the spent fuel shipments. The report also contains a discussion of the shipment issues that arose, and presents general findings. Most of the institutional issues discussed in the report do not fall under NRC's transportation authority. The case histories provide a reference to agencies and other institutions that may be involved in future spent fuel shipping campaigns. 130 refs., 7 figs., 19 tabs

  1. Hydrogeology and water quality of the West Valley Creek Basin, Chester County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Sloto, Ronald A.; Reif, Andrew G.

    1997-01-01

    The West Valley Creek Basin drains 20.9 square miles in the Piedmont Physiographic Province of southeastern Pennsylvania and is partly underlain by carbonate rocks that are highly productive aquifers. The basin is undergoing rapid urbanization that includes changes in land use and increases in demand for public water supply and wastewater disposal. Ground water is the sole source of supply in the basin.West Valley Creek flows southwest in a 1.5-mile-wide valley that is underlain by folded and faulted carbonate rocks and trends east-northeast, parallel to regional geologic structures. The valley is flanked by hills underlain by quartzite and gneiss to the north and by phyllite and schist to the south. Surface water and ground water flow from the hills toward the center of the valley. Ground water in the valley flows west-southwest parallel to the course of the stream. Seepage investigations identified losing reaches in the headwaters area where streams are underlain by carbonate rocks and gaining reaches downstream. Tributaries contribute about 75 percent of streamflow. The ground-water and surface-water divides do not coincide in the carbonate valley. The ground-water divide is about 0.5 miles west of the surface-water divide at the eastern edge of the carbonate valley. Underflow to the east is about 1.1 inches per year. Quarry dewatering operations at the western edge of the valley may act partly as an artificial basin boundary, preventing underflow to the west. Water budgets for 1990, a year of normal precipitation (45.8 inches), and 1991, a year of sub-normal precipitation (41.5 inches), were calculated. Streamflow was 14.61 inches in 1990 and 12.08 inches in 1991. Evapotranspiration was estimated to range from 50 to 60 percent of precipitation. Base flow was about 62 percent of streamflow in both years. Exportation by sewer systems was about 3 inches from the basin and, at times, equaled base flow during the dry autumn of 1991. Recharge was estimated to be 18

  2. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-09-27

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2011. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2011. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2011 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  3. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2M HILL • B& amp; W West Valley, LLC (CHBWV); Steiner, Alison F. [URS Professional Solutions (URSPS); Klenk, David P. [CH2M HILL • B& amp; W West Valley, LLC (CHBWV)

    2013-09-19

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2012. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2012. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2012 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  4. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2010

    International Nuclear Information System (INIS)

    2011-01-01

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2010. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2010. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations and directives, evaluation of data collected in 2010 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  5. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2MHILL • B& W West Valley, LLC (CHBWV); Steiner, Alison F. [CH2MHILL • B& W West Valley, LLC (CHBWV); Pendl, Michael P. [CH2MHILL • B& W West Valley, LLC (CHBWV)

    2014-09-16

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2013. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2013. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2013 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  6. Disposal of low-level and mixed low-level radioactive waste during 1990

    International Nuclear Information System (INIS)

    1993-08-01

    Isotopic inventories and other data are presented for low-level radioactive waste (LLW) and mixed LLW disposed (and occasionally stored) during calendar year 1990 at commercial disposal facilities and Department of Energy (DOE) sites. Detailed isotopic information is presented for the three commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. Less information is presented for the Envirocare disposal facility located near Clive, UT, and for LLW stored during 1990 at the West Valley site. DOE disposal information is included for the Savannah River Site (including the saltstone facility), Nevada Test Site, Los Alamos National Laboratory, Idaho National Engineering Laboratory, Hanford Site, Y-12 Site, and Oak Ridge National Laboratory. Summary information is presented about stored DOE LLW. Suggestions are made about improving LLW disposal data

  7. Environment, safety and health, management and organization compliance assessment, West Valley Demonstration Program, West Valley, New York

    International Nuclear Information System (INIS)

    1989-08-01

    An Environment, Safety and Health ''Tiger Team'' Assessment was conducted at the West Valley Demonstration Project. The Tiger Team was chartered to conduct an onsite, independent assessment of WVDP's environment, safety and health (ES ampersand H) programs to assure compliance with applicable Federal and State laws, regulations, and standards, and Department of Energy Orders. The objective is to provide to the Secretary of Energy the following information: current ES ampersand H compliance status of each facility; specific noncompliance items; ''root causes'' for noncompliance items; evaluation of the adequacy of ES ampersand H organization and resources (DOE and contractor) and needed modifications; and where warranted, recommendations for addressing identified problem areas

  8. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Environmental Services LLC (WVES) and URS Corporation

    2010-09-17

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2009. The report, prepared by the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2009. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program by the DOE ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2009 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  9. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-09-28

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2010. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2010. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations and directives, evaluation of data collected in 2010 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  10. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2009

    International Nuclear Information System (INIS)

    2010-01-01

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2009. The report, prepared by the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2009. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program by the DOE ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2009 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  11. River restoration strategies in channelized, low-gradient landscapes of West Tennessee, USA

    Science.gov (United States)

    Smith, D.P.; Diehl, T.H.; Turrini-Smith, L. A.; Maas-Baldwin, J.; Croyle, Z.

    2009-01-01

    West Tennessee has a complex history of watershed disturbance, including agricultural erosion, channelization, accelerated valley sedimentation, and the removal and reestablishment of beaver. Watershed management has evolved from fl oodplain drainage via pervasive channelization to include local drainage canal maintenance and local river restoration. Many unmaintained canals are undergoing excessive aggradation and complex channel evolution driven by upland erosion and low valley gradient. The locus of aggradation in fully occluded canals (valley plugs) moves up-valley as sediment continues to accumulate in the backwater behind the plug. Valley plugs that cause canal avulsion can lead to redevelopment of meandering channels in less disturbed areas of the fl oodplain, in a process of passive self-restoration. Some valley plugs have brought restored fl oodplain function, reoccupation of extant historic river channels, and formation of a "sediment shadow" that protects downstream reaches from excess sedimentation. Despite the presence of numerous opportunities, there is presently no mechanism for including valley plugs in mitigation projects. In 1997 a survey of 14 reference reach cross sections documented relations between drainage area and bankfull geometry of relatively unmodified streams in West Tennessee. Reassessment of seven of those sites in 2007 showed that one had been dammed by beaver and that two sites could not be analyzed further because of signifi cant vertical or lateral instability. In contrast to other regions of North America, the results suggest that stream channels in this region fl ood more frequently than once each year, and can remain out of banks for several weeks each year. ?? 2009 Geological Society of America.

  12. West Valley Demonstration Project facilities utilization plan for the existing facilities at the Western New York Nuclear Service Center

    International Nuclear Information System (INIS)

    Skillern, C.G.

    1986-05-01

    In 1980, Congress passed Public Law 96-368, the West Valley Demonstration Project (WVDP) Act. As a primary objective, the Act authorized the US Department of Energy (DOE) to solidify the high-level waste (HLW) stored at the Western New York Nuclear Service Center (WNYNSC) into a form suitable for transportation and disposal in a federal repository. This report will describe how WVDP proposes to use the existing WNYNSC Facilities in an efficient and technically effective manner to comply with Public Law 96-368. In support of the above cited law, the DOE has entered into a ''Cooperative agreement between the United States Department of Energy and the New York State Energy Research and Development Authority on the Western New York Nuclear Service Center at West Valley, New York.'' The state-owned areas turned over to the DOE for use are as follows: Process Plant, Waste Storage, Low-Level Waste Treatment Facility, Service Facilities, Plant Security, and Additional Facilities. The Facilities Utilization Plan (FUP) describes how the state-owned facilities will be utilized to complete the Project; it is divided into five sections as follows: Executive Summary - an overview; Introduction - the WVDP approach to utilizing the WNYNSC Facilities; WVDP Systems - a brief functional description of the system, list of equipment and components to be used and decontamination and decommissioning (D and D) support; WVDP Support Facilities; and Caveats that could effect or change the potential usage of a particular area

  13. San Luis Valley - Taos Plateau Landscape-Level Cultural Heritage Values and Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wescott, Konstance L. [Argonne National Lab. (ANL), Argonne, IL (United States); Abplanalp, Jennifer M. [Argonne National Lab. (ANL), Argonne, IL (United States); Brown, Jeff [Bureau of Land Management, Monte Vista, CO (United States); Cantwell, Brian [Argonne National Lab. (ANL), Argonne, IL (United States); Dicks, Merrill [Bureau of Land Management, Taos, NM (United States); Fredericks, Brian [Bureau of Land Management, Monte Vista, CO (United States); Krall, Angie [US Forest Service, Creede, CO (United States); Rollins, Katherine E. [Argonne National Lab. (ANL), Argonne, IL (United States); Sullivan, Robert [Argonne National Lab. (ANL), Argonne, IL (United States); Valdez, Arnie [Univ. of New Mexico, Albuquerque, NM (United States); Verhaaren, Bruce [Argonne National Lab. (ANL), Argonne, IL (United States); Vieira, Joseph [Bureau of Land Management, Monte Vista, CO (United States); Walston, Lee [Argonne National Lab. (ANL), Argonne, IL (United States); Zvolanek, Emily A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    The San Luis Valley – Taos Plateau Landscape-Level Cultural Heritage Values and Risk Assessment (hereafter referred to as cultural assessment) is a BLM pilot project designed to see whether the Rapid Ecoregional Assessment (REA) framework (already established and implemented throughout many ecoregions in the West) can be applied to the cultural environment.

  14. West Valley Demonstration Project Annual Site Environmental Report (ASER) Calendar Year (2016)

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Alison F. [CH2M Hill BWXT West Valley, LLC, NY (United States); Pendl, Michael P. [CH2M Hill BWXT West Valley, LLC, NY (United States); Steiner, II, Robert E. [CH2M Hill BWXT West Valley, LLC, NY (United States); Fox, James R. [CH2M Hill BWXT West Valley, LLC, NY (United States); Hoch, Jerald J. [CH2M Hill BWXT West Valley, LLC, NY (United States); Williams, Janice D. [CH2M Hill BWXT West Valley, LLC, NY (United States); Wrotniak, Chester M. [CH2M Hill BWXT West Valley, LLC, NY (United States); Werchowski, Rebecca L. [CH2M Hill BWXT West Valley, LLC, NY (United States)

    2017-09-12

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2016. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2016. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2016 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  15. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2005

    International Nuclear Information System (INIS)

    West Valley Nuclear Services Company WVNSCO and URS Group, Inc.

    2006-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2005. The report summarizes calendar year (CY) 2005 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs

  16. Proceedings of the tenth annual DOE low-level waste management conference: Session 4: Waste treatment minimization

    International Nuclear Information System (INIS)

    1988-12-01

    This document contains eleven papers on various aspects of low-level radioactive waste management. Topics in this volume include: volume reduction plans; incentitives; and cost proposals; acid detoxification and reclamation; decontamination of lead; leach tests; West Valley demonstration project status report; and DOE's regional management strategies. Individual papers were processed separately for the data base

  17. Geohydrology and Water Quality of the Valley-Fill Aquifer System in the Upper Sixmile Creek and West Branch Owego Creek Valleys in the Town of Caroline, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2009-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Town of Caroline and Tompkins County Planning Department, began a study of the valley-fill aquifer system in upper Sixmile Creek and headwaters of West Branch Owego Creek valleys in the Town of Caroline, NY. The purpose of the study is to provide geohydrologic data to county and town planners as they develop a strategy to manage and protect their water resources. The first aquifer reach investigated in this series is in the Town of Caroline and includes the upper Sixmile Creek valley and part of West Branch Owego Creek valley. The portions of the valley-fill aquifer system that are comprised of saturated coarse-grained sediments including medium to coarse sand and sandy gravel form the major aquifers. Confined sand and gravel units form the major aquifers in the western and central portions of the upper Sixmile Creek valley, and an unconfined sand and gravel unit forms the major aquifer in the eastern portion of the upper Sixmile Creek valley and in the headwaters of the West Branch Owego Creek valley. The valley-fill deposits are thinnest near the edges of the valley where they pinch out along the till-mantled bedrock valley walls. The thickness of the valley fill in the deepest part of the valley, at the western end of the study area, is about 100 feet (ft); the thickness is greater than 165 ft on top of the Valley Heads Moraine in the central part of the valley. An estimated 750 people live over and rely on groundwater from the valley-fill aquifers in upper Sixmile Creek and West Branch Owego Creek valleys. Most groundwater withdrawn from the valley-fill aquifers is pumped from wells with open-ended 6-inch diameter casings; the remaining withdrawals are from shallow dug wells or cisterns that collect groundwater that discharges to springs (especially in the Brooktondale area). The valley-fill aquifers are the sources of water for about 200 households, several apartment complexes, two mobile home parks

  18. Stand development of trembling aspen in Canaan Valley, West Virginia

    Science.gov (United States)

    James S. Rentch; James T. Anderson

    2008-01-01

    In wetlands of Canaan Valley, West Virginia, trembling aspen occurs as a disjunct population well south of its primary natural range. Based on sample data from 15 stands, we found that aspen occurs as nearly monospecific stands or clones. Eight stands had median ages between 30 and 40 yrs, and we suggest that stand initiation was related to changes in land use after...

  19. West Valley Demonstration Project Annual Site Environmental Report Calendard Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2006-09-21

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2005. The report summarizes calendar year (CY) 2005 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs.

  20. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Environmental Services LLC (WVES) and URS - Washington Division

    2008-12-17

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2007. The report summarizes the calendar year (CY) 2007 environmental protection program at the WVDP. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment.

  1. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2007

    International Nuclear Information System (INIS)

    2008-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2007. The report summarizes the calendar year (CY) 2007 environmental protection program at the WVDP. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment

  2. West Valley Demonstration Project Annual Site Environmental Report (ASER) for Calendar Year 2015

    International Nuclear Information System (INIS)

    Rendall, John D.; Steiner, Alison F.; Pendl, Michael P.; Biedermann, Charles A.; Steiner II, Robert E.; Fox, James R.; Hoch, Jerald J.; Wrotniak, Chester M.; Werchowski, Rebecca L.

    2016-01-01

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2015. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2015. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2015 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  3. West Valley Demonstration Project Annual Site Environmental Report (ASER) for Calendar Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, Alison F. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Pendl, Michael P. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Biedermann, Charles A. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, II, Robert E. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Fox, James R. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Hoch, Jerald J. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Werchowski, Rebecca L. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States)

    2015-09-15

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2014. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2014. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2014 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  4. West Valley Demonstration Project Annual Site Environmental Report (ASER) for Calendar Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, Alison F. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Pendl, Michael P. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Biedermann, Charles A. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, II, Robert E. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Fox, James R. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Hoch, Jerald J. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Wrotniak, Chester M. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Werchowski, Rebecca L. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States)

    2016-09-15

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2015. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2015. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2015 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  5. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2006

    International Nuclear Information System (INIS)

    2007-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2006. The report summarizes calendar year (CY) 2006 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs that protect public health and safety and the environment

  6. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2007-09-27

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2006. The report summarizes calendar year (CY) 2006 environmental monitoring data so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs that protect public health and safety and the environment.

  7. Impact of valley fills on streamside salamanders in southern West Virginia

    Science.gov (United States)

    Wood, Petra Bohall; Williams, Jennifer M.

    2013-01-01

    Valley fills associated with mountaintop-removal mining bury stream headwaters and affect water quality and ecological function of reaches below fills. We quantified relative abundance of streamside salamanders in southern West Virginia during 2002 in three streams below valley fills (VFS) and in three reference streams (RS). We surveyed 36 10- × 2-m stream transects, once in summer and fall, paired by order and structure. Of 2,343 salamanders captured, 66.7% were from RS. Total salamanders (adults plus larvae) were more abundant in RS than VFS for first-order and second-order reaches. Adult salamanders had greater abundance in first-order reaches of RS than VFS. Larval salamanders were more abundant in second-order reaches of RS than VFS. No stream width or mesohabitat variables differed between VFS and RS. Only two cover variables differed. Silt cover, greater in VFS than RS first-order reaches, is a likely contributor to reduced abundance of salamanders in VFS. Second-order RS had more boulder cover than second-order VFS, which may have contributed to the higher total and larval salamander abundance in RS. Water chemistry assessments of our VFS and RS reported elevated levels of metal and ion concentrations in VFS, which can depress macroinvertebrate populations and likely affect salamander abundance. Valley fills appear to have significant negative effects on stream salamander abundance due to alterations in habitat structure, water quality and chemistry, and macroinvertebrate communities in streams below fills.

  8. Melton Valley liquid low-level radioactive waste storage tanks evaluation

    International Nuclear Information System (INIS)

    1995-06-01

    The Melton Valley Liquid Low-Level Radioactive Waste Storage Tanks (MVSTs) store the evaporator concentrates from the Liquid Low-Level Radioactive Waste (LLLW) System at the Oak Ridge National Laboratory (ORNL). The eight stainless steel tanks contain approximately 375,000 gallons of liquid and sludge waste. These are some of the newer, better-designed tanks in the LLLW System. They have been evaluated and found by the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation to comply with all Federal Facility Agreement requirements for double containment. The operations and maintenance aspects of the tanks were also reviewed by the Defense Nuclear Facilities Safety Board (DNFSB) in September 1994. This document also contains an assessment of the risk to the public and ORNL workers from a leak in one of the MVSTs. Two primary scenarios were investigated: (1) exposure of the public to radiation from drinking Clinch River water contaminated by leaked LLLW, and (2) exposure of on-site workers to radiation by inhaling air contaminated by leaked LLLW. The estimated frequency of a leak from one of the MVSTs is about 8 x 10 -4 events per year, or about once in 1200 years (with a 95% confidence level). If a leak were to occur, the dose to a worker from inhalation would be about 2.3 x 10 -1 mrem (with a 95% confidence level). The dose to a member of the public through the drinking water pathway is estimated to be about 7 x 10 -1 mrem (with a 95% confidence level). By comparison with EPA Safe Drinking Water regulations, the allowable lifetime radiation dose is about 300 mrem. Thus, a postulated LLLW leak from the MVSTs would not add appreciably to an individual's lifetime radiation dose

  9. Functional description of the West Valley Demonstration Project Vitrification Facility

    International Nuclear Information System (INIS)

    Borisch, R.R.; McMahon, C.L.

    1990-07-01

    The primary objective of the West Valley Demonstration Project (WVDP) is the solidification of approximately 2.1 million liters (560,000 gallons) of high-level radioactive waste (HLW) which resulted from the operation of a nuclear fuel reprocessing plant. Since the original plant was not built to accommodate the processing of waste beyond storage in underground tanks, HLW solidification by vitrification presented numerous engineering challenges. Existing facilities required redesign and conversion to meet their new purpose. Vitrification technology and systems needed to be created and then tested. Equipment modifications, identified from cold test results, were incorporated into the final equipment configuration to be used for radioactive (hot) operations. Cold operations have defined the correct sequence and optimal functioning of the equipment to be used for vitrification and have verified the process by which waste will be solidified into borosilicate glass

  10. Technical and administrative approach for the West Valley Demonstration Project Safety Program

    International Nuclear Information System (INIS)

    Newsom, P.C.; Roberts, C.J.; Yuchien Yuan; Marchetti, S.

    1987-06-01

    The principal objective of the West Valley Demonstration Project (WVDP) is to vitrify the 2.2 million liters of high-level radioactive waste (HLW) stored at the Western New York Nuclear Service Center (WNYNSC). This simple statement of purpose, however, does not convey a sense of the complexity of the undertaking. The vitrification task is not only complex in and of itself, but requires a myriad of other activities to be accomplished on an intricate and fast paced schedule in order to support it. The West Valley Demonstration Project Act (P.L 96-368), U.S. Department of Energy Order DOE-5481.1A, Idaho Operations Office Order ID-5481.1 and standard nuclear industry practice all require that proposed systems and operations involving hazards not routinely encountered by the general public be analyzed to identify potential hazards and consequences, and to assure that reasonable measures are taken to eliminate, control, or mitigate these potential consequences. Virtually every substantive aspect of the WVDP involves hazards beyond those routinely encountered and accepted by the general public. In order to assure the safety of the public and the workers at the WVDP, a system of hazard identification, categorization, analysis and review has been established. In parallel with this system, a procedure for developing the minimum design specifications and quality assurance requirements has been developed for Project systems, components, and structures which play a role in the safety of a specific major facility or the overall Project. 29 refs., 3 figs., 6 tabs

  11. Lessons learned at West Valley during facility decontamination for re-use (1982--1988)

    International Nuclear Information System (INIS)

    Tundo, D.; Gessner, R.F.; Lawrence, R.E.

    1988-11-01

    The primary mission of the West Valley Demonstration Project (WVDP) is to solidify a large volume of high-level liquid waste (2.3 million liters -- 600,000 gallons) produced during reprocessing plant operations and stored in underground tanks. This is to be accomplished through the maximum use of existing facilities. This required a significant effort to remove existing equipment and to decontaminate areas for installation of liquid and cement processing systems in a safe environment while maintaining exposure to workers as low as reasonably achievable. The reprocessing plant occupied a building of about 33,000 m 2 (350,000 ft 2 ). When the WVDP was initiated, approximately 6 percent of the plant area was in a non-contaminated condition where personnel could function without protective clothing or radiological controls. From 1982 to 1988, an additional 64 percent of the plant was cleaned up and much of this converted to low- and high-level waste processing areas. The high-level liquid and resulting low-level liquids are now being treated in these areas using an Integrated Radwaste Treatment System (IRTS). The Project has now focused attention on installation, qualification and operation of a vitrification system which will convert the remaining high-level waste into borosilicate glass logs. The stabilized waste will be sent to a Federal Repository for long-term storage. From 1982 to 1988, about 70 technical reports were dealing with specific tasks and cleanup efforts. This report provides an overview of the decontamination and decommissioning work done in that period. The report emphasizes lessons learned during that effort. Significant advances were made in: remote and contact decontamination technology; personnel protection and training; planning and procedures; and radiological controls. 62 refs., 35 figs., 5 tabs

  12. An aerial radiological survey of the West Valley Demonstration Project and surrounding area, West Valley, New York

    International Nuclear Information System (INIS)

    Berry, H.A.

    1991-09-01

    An aerial radiological survey of the West Valley Demonstration Project and the surrounding area was conducted from mid-August through early September 1984 by EG ampersand G Energy Measurements, Inc. for the United States Department of Energy. The radiological survey was part of the United States Department of Energy Comprehensive Integrated Remote Sensing (CIRS) program, which provides state-of-the-art remote sensing to support the needs of the various DOE facilities. The survey consisted of airborne measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. These measurements allowed an estimate of the distribution of isotopic concentrations in the area surrounding the project site. Results are reported as isopleths superimposed on aerial photographs of the area. Gamma ray energy spectra are also presented for the net man-made radionuclides. 8 refs., 16 figs., 9 tabs

  13. Selection of a reference process for treatment of the West Valley alkaline waste

    International Nuclear Information System (INIS)

    Holton, L.K.; Wise, B.M.; Bray, L.A.; Pope, J.M.; Carl, D.E.

    1984-08-01

    As part of the West Valley Demonstration Project (WVDP) the alkaline PUREX supernatant stored in Tank 8D2 will be partially decontaminated by the removal of radiocesium. Four processes for removal of radiocesium from the alkaline supernatant were studied through experimentation and engineering analysis to identify a reference approach for the WVDP. These processes included the use of a zeolite inorganic ion-exchanger (Linde Ionsiv IE-95), an organic ion exchange resin (Duolite CS-100), and two precipitation processes; one using sodium tetraphenylboron (NaTPB) and the other using phosphotungstic acid (PTA). Based upon process performance, safety and environmental considerations, process and equipment complexity and impacts to the waste vitrification system, the zeolite ion-exchange process has been selected by West Valley Nuclear Services, Inc., as the reference supernatant treatment process for the WVDP. This paper will summarize the technical basis for the selection of the zeolite ion-exchange process. 4 figures, 2 tables

  14. Topic I: Induced changes in hydrology at low-level radioactive waste repository sites: A section in Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings (Circular 1036)

    Science.gov (United States)

    Prudic, David E.; Dennehy, Kevin F.; Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    Engineering practices, including the excavation of trenches, placement of waste, nature of waste forms, backfilling procedures and materials, and trench-cover construction and materials at low-level radioactive-waste repository sites greatly affect the geohydrology of the sites. Engineering practices are dominant factors in eventual stability and isolation of the waste. The papers presented relating to Topic I were discussions of the hydrogeologic setting at existing low-level radioactive-waste repository sites and changes in the hydrology induced by site operations. Papers summarizing detailed studies presented at this workshop include those at sites near Sheffield, Ill.; Oak Ridge National Laboratory, Tenn.; West Valley, N.Y.; Maxey Flats, Ky.; Barnwell, S.C.; and Beatty, Nev. 

  15. West Valley Demonstration Project community relations plan FY 1990/91

    International Nuclear Information System (INIS)

    Damerow, M.W.

    1989-09-01

    The purpose of the Community Relations Plan is to fully inform the community about the West Valley Demonstration Project (WVDP) and provide opportunities for public input. A sound approach to community relations is essential to the creation and maintenance of public awareness and community support. The WVDP is a matter of considerable public interest because it deals with nuclear waste. The mission of the WVDP is to solve an existing environmental concern by solidifying high-level radioactive waste and transporting the solidified waste to a federal repository for permanent disposal. The public requires evidence of the continued commitment and demonstrated progress of the industry and government in carrying out the mission in order to sustain confidence that the WVDP is being managed well and will be discussed successfully completed. For this reason, a comprehensive communication plan is essential for the successful completion of the WVDP

  16. Tree culture of smallholder farmers practicing agroforestry in Gunung Salak Valley, West Java, Indonesia

    DEFF Research Database (Denmark)

    Rahman, Syed Ajijur; Sunderland, Terry; Roshetko, James M.

    2016-01-01

    This paper investigates the types of agroforestry system that exist in Gunung Salak Valley, West Java, Indonesia in order to characterize the differences in their basic structure and associated crop plant diversity. Data were collected through rapid rural appraisal, field observation and focus...

  17. Development of derived investigation levels for use in internal dosimetry at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Johnson, P.

    1991-01-01

    The objective was to determine if the routine intemal dosimetry program at the West Valley Demonstration Project is capable of meeting the performance objective of 1 mSv annual effective dose equivalent due to internal contamination. With the use of the computer code REMedy the annual effective dose equivalent is calculated. Some of the radionuclides of concern result in an annual effective dose equivalent that exceeds the performance objective. Although the results exceed the performance objective, in all but two cases they do not exceed the US DOE regulatory limits. In these instances the Th-232 and Am-241 were determined to exceed the committed dose equivalent limit to their limiting tissue. In order to document the potential missed dose for regulatory compliance, Sr-90 is used as an indicator for Th-232. For Am-241 an investigation as to whether or not the minimum detectable amount can be lowered is performed. The derived investigation levels as a result of this project are 4.9E3 Bq/lung count for Co-60, 2.2E4 Bq/lung count for Cs-137, 1.9 Bq/1 for Sr-90 and for radionuclides other than Sr-90 any value greater than or equal to three standard deviations above their net count is considered to require further investigation

  18. Decommissioning alternatives for the West Valley, New York, Fuel Reprocessing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Munson, L F; Nemec, J F; Koochi, A K

    1978-06-01

    The methodology and numerical values of NUREG-0278 were applied to four decommissioning alternatives for the West Valley Fuel Reprocessing Plant. The cost and impacts of the following four alternatives for the process building, fuel receiving and storage, waste tank farm, and auxiliary facilities were assessed: (1) layaway, (2) protective storage, (3) preparation for alternate nuclear use, and (4) dismantlement. The estimated costs are 5.7, 11, 19, and 31 million dollars, respectively. (DLC)

  19. Decommissioning alternatives for the West Valley, New York, Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Munson, L.F.; Nemec, J.F.; Koochi, A.K.

    1978-06-01

    The methodology and numerical values of NUREG-0278 were applied to four decommissioning alternatives for the West Valley Fuel Reprocessing Plant. The cost and impacts of the following four alternatives for the process building, fuel receiving and storage, waste tank farm, and auxiliary facilities were assessed: (1) layaway, (2) protective storage, (3) preparation for alternate nuclear use, and (4) dismantlement. The estimated costs are 5.7, 11, 19, and 31 million dollars, respectively

  20. Selection of a reference process for treatment of the West Valley alkaline waste

    International Nuclear Information System (INIS)

    Bray, L.A.; Holton, L.K.; Wise, B.M.; Carl, D.E.; Pope, J.M.

    1984-01-01

    As part of the West Valley Demonstration Project (WVDP) the alkaline PUREX supernatant stored in Tank 8D2 will be partially decontaminated by the removal of radiocesium. Four processes for removal of radiocesium from the alkaline supernatant were studied through experimentation and engineering analysis to identify a reference approach for the WVDP. These processes included the use of a zeolite inorganic ion-exchanger (Linde Ionsiv IE-95, Ionsiv is a trademark of Union Carbide Company), an organic ion exchange resin (Duolite CS-100, Duolite is a registered trademark of Diamond Shamrock Co) and two precipitation processes; one using sodium tetraphenylboron (NaTPB) and the other using phosphotungsthC acid (PTA). Based upon process performance, safety and environmental considerations, process and equipment complexity and impacts to the waste vitrification system, the zeolite ion-exchange process has been selected by West Valley Nuclear Services, Inc., as the reference supernatant treatment process for the WVDP. This paper summarizes the technical basis for the selection of the zeolite ion-exchange process

  1. Late Quaternary pollen records from the Lower Cobb Valley and adjacent areas, north-west Nelson, New Zealand

    International Nuclear Information System (INIS)

    Shulmeister, J.; McLea, W.L.; Singer, C.; McKay, R.M.; Hosie, C.

    2003-01-01

    Ten pollen records from the Cobb Valley and adjacent areas in North-West Nelson are described. Collectively they provide a vegetation record extending from the Last Glacial Maximum to the present day. During the Last Glacial Maximum the uplands of North-West Nelson were glaciated. By about 17,000 radiocarbon years BP ice had retreated some distance up the Cobb River Valley and a podocarp heath and tussockland vegetation covered non-glaciated areas. By 14,000 radiocarbon years BP, the valley floor and adjacent lower ridges were occupied by montane podocarp forest dominated by Phyllocladus and Halocarpus. Beech forest expanded into some sites as early as 13,000 yr BP but the modern beech cover was not established until the Holocene. Forest cover has fluctuated in response to disturbance over the Holocene, but the most significant recent change, which is related to clearing for pastoralism in the last two centuries, has had surprisingly little impact on the pollen records. (author). 40 refs., 11 figs., 1 tab

  2. Functions and Requirements for West Valley Demonstration Project Tank Lay-up

    International Nuclear Information System (INIS)

    Elmore, Monte R.; Henderson, Colin

    2002-01-01

    Documents completion of Milestone A.1-1, ''Issue Functions and Requirements for WVDP Tank Lay-Up,'' in Technical Task Plan TTP RL3-WT21A - ''Post-Retrieval and Pre-Closure HLW Tank Lay-Up.'' This task is a collaborative effort among Pacific Northwest National Laboratory, Jacobs Engineering Group Inc., and West Valley Nuclear Services (WVNS). Because of the site-specific nature of this task, the involvement of WVNS personnel is critical to the success of this task

  3. West Valley demonstration project: Implementation of the kerosene mitigation plan

    International Nuclear Information System (INIS)

    Blickwedehl, R.R.; Goodman, J.; Valenti, P.J.

    1987-05-01

    An aggressive program was implemented to mitigate the migration of radioactive kerosene believed to have originated from the West Valley NRC-Licensed Disposal Area (NDA) disposal trenches designated as SH-10 and SH-11 (Special Holes 10 and 11). This report provides a historical background of the events leading to the migration problem, the results of a detailed investigation to determine the location and source of the kerosene migration, the remediation plan to mitigate the migration, and the actions taken to successfully stabilize the kerosene. 7 refs., 19 figs., 1 tab

  4. Stabilization and disposal of Argonne-West low-level mixed wastes in ceramicrete waste forms

    International Nuclear Information System (INIS)

    Barber, D. B.; Singh, D.; Strain, R. V.; Tlustochowicz, M.; Wagh, A. S.

    1998-01-01

    The technology of room-temperature-setting phosphate ceramics or Ceramicretetrademark technology, developed at Argonne National Laboratory (ANL)-East is being used to treat and dispose of low-level mixed wastes through the Department of Energy complex. During the past year, Ceramicretetrademark technology was implemented for field application at ANL-West. Debris wastes were treated and stabilized: (a) Hg-contaminated low-level radioactive crushed light bulbs and (b) low-level radioactive Pb-lined gloves (part of the MWIR number s ign AW-W002 waste stream). In addition to hazardous metals, these wastes are contaminated with low-level fission products. Initially, bench-scale waste forms with simulated and actual waste streams were fabricated by acid-base reactions between mixtures of magnesium oxide powders and an acid phosphate solution, and the wastes. Size reduction of Pb-lined plastic glove waste was accomplished by cryofractionation. The Ceramicretetrademark process produces dense, hard ceramic waste forms. Toxicity Characteristic Leaching Procedure (TCLP) results showed excellent stabilization of both Hg and Pb in the waste forms. The principal advantage of this technology is that immobilization of contaminants is the result of both chemical stabilization and subsequent microencapsulation of the reaction products. Based on bench-scale studies, Ceramicretetrademark technology has been implemented in the fabrication of 5-gal waste forms at ANL-West. Approximately 35 kg of real waste has been treated. The TCLP is being conducted on the samples from the 5-gal waste forms. It is expected that because the waste forms pass the limits set by the EPAs Universal Treatment Standard, they will be sent to a radioactive-waste disposal facility

  5. Geotechnical analysis of soil samples from test trench at Western New York Nuclear Service Center, West Valley, New York

    International Nuclear Information System (INIS)

    Fickies, R.H.; Fakundiny, R.H.; Mosley, E.T.

    1979-04-01

    In July 1977, a deep research trench was excavated and soil samples collected at the Western New York Nuclear Services Center, West Valley, NY. The glacial till horizons sampled are considered to be representative of the till serving as a burial medium at the nearby low-level radioactive waste burial ground. A series of laboratory tests were conducted consisting of unit weight, moisture content, Atterberg limits, unconfined compression, dispersion, swell, permeability, and consolidation. These laboratory analyses and field observations indicate that the till exposed in the research trench is a generally dense mixture of silt and clay of low to medium plasticity, with minor amounts of fine to coarse sand and fine gravel. The till has a generally low coefficient of permeability in the range of 10 -7 cm/s horizontal and 10 -8 cm/s vertical. A network of vertical fractures exists in the upper 15 feet of weathered till which may allow some downward percolation of surface runoff. The test data indicates that the maximum depth to which these fractures could possibly penetrate is 50 feet

  6. Hydrogeologic framework and occurrence, movement, and chemical characterization of groundwater in Dixie Valley, west-central Nevada

    Science.gov (United States)

    Huntington, Jena M.; Garcia, C. Amanda; Rosen, Michael R.

    2014-01-01

    Dixie Valley, a primarily undeveloped basin in west-central Nevada, is being considered for groundwater exportation. Proposed pumping would occur from the basin-fill aquifer. In response to proposed exportation, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation and Churchill County, conducted a study to improve the understanding of groundwater resources in Dixie Valley. The objective of this report is to characterize the hydrogeologic framework, the occurrence and movement of groundwater, the general water quality of the basin-fill aquifer, and the potential mixing between basin-fill and geothermal aquifers in Dixie Valley. Various types of geologic, hydrologic, and geochemical data were compiled from previous studies and collected in support of this study. Hydrogeologic units in Dixie Valley were defined to characterize rocks and sediments with similar lithologies and hydraulic properties influencing groundwater flow. Hydraulic properties of the basin-fill deposits were characterized by transmissivity estimated from aquifer tests and specific-capacity tests. Groundwater-level measurements and hydrogeologic-unit data were combined to create a potentiometric surface map and to characterize groundwater occurrence and movement. Subsurface inflow from adjacent valleys into Dixie Valley through the basin-fill aquifer was evaluated using hydraulic gradients and Darcy flux computations. The chemical signature and groundwater quality of the Dixie Valley basin-fill aquifer, and potential mixing between basin-fill and geothermal aquifers, were evaluated using chemical data collected from wells and springs during the current study and from previous investigations. Dixie Valley is the terminus of the Dixie Valley flow system, which includes Pleasant, Jersey, Fairview, Stingaree, Cowkick, and Eastgate Valleys. The freshwater aquifer in the study area is composed of unconsolidated basin-fill deposits of Quaternary age. The basin-fill hydrogeologic unit

  7. Nuclear wastes at West Valley, New York

    International Nuclear Information System (INIS)

    Lester, R.K.; Rose, D.J.

    1977-01-01

    A two-tiered approach is proposed for separating questions of who manages nuclear wastes from who pays for the management. The proper role of the Federal government in the nuclear fuel cycle is explored in the historical context of the West Valley, New York reprocessing plant, which operated on a private basis from 1966 to 1972. The plant reprocessed 600 metric tons for fuel and produced 600,000 gallons of liquid high-level radioactive waste, most of which remains in a carbon steel tank waiting for the Nuclear Regulatory Commission or some other agency to assume responsibility for it. A review of the plant's purposes, operations, and shutdown illustrates the difficulties of establising policies and rules for managing the wastes. Future use of the site will dictate the extent of decontamination and decommissioning that is needed, while legal and political issues of responsibility will also affect the rules. The case is made for conducting the cleanup as an experiment, using a prudent, rational, resolute, and charitable approach to taking necessary risks. A step-by-step process of decision and rule-making is proposed as an acknowledgement of the fact that all the answers are not known. ERDA is felt to be the best-suited for management, with guidelines formulated by the NRC. Financial responsibility could be divided between the National Science Foundation and Federal and state governments

  8. Cement encapsulation of low-level waste liquids. Final report

    International Nuclear Information System (INIS)

    Baker, M.N.; Houston, H.M.

    1999-01-01

    Pretreatment of liquid high-level radioactive waste at the West Valley Demonstration Project (WVDP) was essential to ensuring the success of high-level waste (HLW) vitrification. By chemically separating the HLW from liquid waste, it was possible to achieve a significant reduction in the volume of HLW to be vitrified. In addition, pretreatment made it possible to remove sulfates, which posed several processing problems, from the HLW before vitrification took place

  9. Use to titanium-treated zeolite for plutonium, strontium, and cesium removal from West Valley alkaline wastes and sludge wash wastes

    International Nuclear Information System (INIS)

    Bray, L.A.; Hara, F.T.

    1993-01-01

    Zeolite (IONSIV IE-96) treated with a titanium (Ti) solution will extract traces of plutonium (Pu), strontium (Sr), and cesium (Cs) found in the West Valley Nuclear Services Co., Inc. (WVNS) alkaline supernatant and alkaline sludge water washes. Small ion exchange columns containing Ti-treated zeolite have been successfully tested at WVNS and Pacific Northwest Laboratory (PNL) for the removal of Pu. Full-scale ion exchange processing of sludge wash solution is now being developed at WVNS for use in FY 1992. Commercial manufacturing options for the production of the Ti-treated zeolite were investigated. The Ti-treated zeolite may have application at Hanford and at other U.S. Department of Energy (DOE) sites for the removal of low-level concentrations of Cs, Sr, and Pu from alkaline waste streams

  10. Low levels of nitryl chloride at ground level: nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia

    Science.gov (United States)

    Osthoff, Hans D.; Odame-Ankrah, Charles A.; Taha, Youssef M.; Tokarek, Travis W.; Schiller, Corinne L.; Haga, Donna; Jones, Keith; Vingarzan, Roxanne

    2018-05-01

    The nocturnal nitrogen oxides, which include the nitrate radical (NO3), dinitrogen pentoxide (N2O5), and its uptake product on chloride containing aerosol, nitryl chloride (ClNO2), can have profound impacts on the lifetime of NOx ( = NO + NO2), radical budgets, and next-day photochemical ozone (O3) production, yet their abundances and chemistry are only sparsely constrained by ambient air measurements. Here, we present a measurement data set collected at a routine monitoring site near the Abbotsford International Airport (YXX) located approximately 30 km from the Pacific Ocean in the Lower Fraser Valley (LFV) on the west coast of British Columbia. Measurements were made from 20 July to 4 August 2012 and included mixing ratios of ClNO2, N2O5, NO, NO2, total odd nitrogen (NOy), O3, photolysis frequencies, and size distribution and composition of non-refractory submicron aerosol (PM1). At night, O3 was rapidly and often completely removed by dry deposition and by titration with NO of anthropogenic origin and unsaturated biogenic hydrocarbons in a shallow nocturnal inversion surface layer. The low nocturnal O3 mixing ratios and presence of strong chemical sinks for NO3 limited the extent of nocturnal nitrogen oxide chemistry at ground level. Consequently, mixing ratios of N2O5 and ClNO2 were low ( formation of ClNO2 in the nocturnal residual layer aloft than at the surface and the breakup of the nocturnal boundary layer structure in the morning. When quantifiable, production of ClNO2 from N2O5 was efficient and likely occurred predominantly on unquantified supermicron-sized or refractory sea-salt-derived aerosol. After sunrise, production of Cl radicals from photolysis of ClNO2 was negligible compared to production of OH from the reaction of O(1D) + H2O except for a short period after sunrise.

  11. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H. [Westinghouse Hanford Co., Richland, WA (United States); Serne, R.J.; Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.

  12. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    International Nuclear Information System (INIS)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H.; Serne, R.J.; Cantrell, K.J.

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied

  13. Experimental data developed to support the selection of a treatment process for West Valley alkaline supernatant

    Energy Technology Data Exchange (ETDEWEB)

    Bray, L.A.; Holton, L.K.; Myers, T.R.; Richardson, G.M.; Wise, B.M.

    1984-01-01

    At the request of West Valley Nuclear Services Co., Inc., the Pacific Northwest Laboratory (PNL) has studied alternative treatment processes for the alkaline PUREX waste presently being stored in Tank 8D2 at West Valley, New York. Five tasks were completed during FY 1983: (1) simulation and characterization of the alkaline supernatant and sludge from the tank. The radiochemical and chemical distributions between the aqueous and solid phase were determined, and the efficiency of washing sludge with water to remove ions such as Na/sup +/ and SO/sub 4//sup 2 -/ was investigated; (2) evaluation of a sodium tetraphenylboron (Na-TPB) precipitation process to recover cesium (Cs) and a sodium titanate (Na-TiA) sorption process to recover strontium (Sr) and plutonium (Pu) from the West Valley Alkaline supernatant. These processes were previously developed and tested at the US Department of Energy's Savannah River Plant; (3) evaluation of an organic cation-exchange resin (Duolite CS-100) to recover Cs and Pu from the alkaline supernatant followed by an organic macroreticular cation exchange resin (Amberlite IRC-718) to recover Sr; (4) evaluation of an inorganic ion exchanger (Linde Ionsiv IE-95) to recover Cs, Sr, and Pu from the alkaline supernatant; and (5) evaluation of Dowex-1,X8 organic anion exchange resin to recover technetium (Tc) from alkaline supernatant. The findings of these tasks are reported. 21 references, 36 figures, 34 tables.

  14. ENDOMETRIOSIS IN A COHORT OF WOMEN LIVING IN THE KANAWHA RIVER VALLEY IN WEST VIRGINIA: BLOOD LEVELS OF NON-DIOXIN-LIKE PCBs AND RELATIONSHIP WITH BMI AND AGE

    Science.gov (United States)

    Industrial activities, specifically from petroleum and chemical manufacturing facilities, in the Kanawha River Valley (KRV) of West Virginia have resulted in releases of dioxin and dioxin-like chemicals (DLCs). I Most of the dioxin found in this region has resulted from the produ...

  15. COHORT OF WOMEN LIVING IN OR NEAR A HIGHLY INDUSTRIALIZED AREA OF KANAWHA RIVER VALLEY IN WEST VIRGINIA: ENDOMETRIOSIS AND BLOOD LEVELS OF DIOXIN AND DIOXIN-LIKE CHEMICALS

    Science.gov (United States)

    Introduction Historical releases of dioxin and dioxin-like chemicals with subsequent impacts to environmental media in the Kanawha River Valley (KRV) of West Virginia have been well documented.' The bulk of dioxin found in this area appears to be derived from the production of 2,...

  16. Controls on valley spacing in landscapes subject to rapid base-level fall

    Science.gov (United States)

    McGuire, Luke; Pelletier, John D.

    2015-01-01

    What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage-network morphology in transient landscapes are relatively unknown. In this paper we exploit natural experiments in drainage network development in incised Plio-Quaternary alluvial fan surfaces in order to understand and quantify drainage network development in highly transient landscapes, i.e. initially unincised low-relief surfaces that experience a pulse of rapid base-level drop followed by relative base-level stasis. Parallel drainage networks formed on incised alluvial-fan surfaces tend to have a drainage spacing that is approximately proportional to the magnitude of the base-level drop. Numerical experiments suggest that this observed relationship between the magnitude of base-level drop and mean drainage spacing is the result of feedbacks among the depth of valley incision, mass wasting and nonlinear increases in the rate of colluvial sediment transport with slope gradient on steep valley side slopes that lead to increasingly wide valleys in cases of larger base-level drop. We identify a threshold magnitude of base-level drop above which side slopes lengthen sufficiently to promote increases in contributing area and fluvial incision rates that lead to branching and encourage drainage networks to transition from systems of first-order valleys to systems of higher-order, branching valleys. The headward growth of these branching tributaries prevents the development of adjacent, ephemeral drainages and promotes a higher mean valley spacing relative to cases in which tributaries do not form. Model results offer additional insights into the response of initially unincised landscapes to rapid base-level drop and provide a preliminary basis for understanding how varying amounts of base-level change influence valley network morphology.

  17. Aquatic habitats of Canaan Valley, West Virginia: Diversity and environmental threats

    Science.gov (United States)

    Snyder, C.D.; Young, J.A.; Stout, B. M.

    2006-01-01

    We conducted surveys of aquatic habitats during the spring and summer of 1995 in Canaan Valley, WV, to describe the diversity of aquatic habitats in the valley and identify issues that may threaten the viability of aquatic species. We assessed physical habitat and water chemistry of 126 ponds and 82 stream sites, and related habitat characteristics to landscape variables such as geology and terrain. Based on our analyses, we found two issues likely to affect the viability of aquatic populations in the valley. The first issue was acid rain and the extent to which it potentially limits the distribution of aquatic and semi-aquatic species, particularly in headwater portions of the watershed. We estimate that nearly 46%, or 56 kilometers of stream, had pH levels that would not support survival and reproduction of Salvelinuw fontinalis (brook trout), one of the most acid-tolerant fishes in the eastern US. The second issue was the influence of Castor canadensis (beaver) activity. In the Canaan Valley State Park portion of the valley, beaver have transformed 4.7 kilometers of stream (approximately 17% of the total) to pond habitat through their dam building. This has resulted in an increase in pond habitat, a decrease in stream habitat, and a fragmented stream network (i.e., beaver ponds dispersed among stream reaches). In addition, beaver have eliminated an undetermined amount of forested riparian area through their foraging activities. Depending on the perspective, beaver-mediated changes can be viewed as positive or negative. Increases in pond habitat may increase habitat heterogeneity with consequent increases in biological diversity. In contrast, flooding associated with beaver activity may eliminate lowland wetlands and associated species, create barriers to fish dispersal, and possibly contribute to low dissolved oxygen levels in the Blackwater River. We recommend that future management strategies for the wildlife refuge be viewed in the context of these two issues

  18. An rf communications system for the West Valley transfer cart

    International Nuclear Information System (INIS)

    Crutcher, R.I.; Moore, M.R.

    1993-01-01

    A prototype radio frequency communications system for digital data was designed and built by Oak Ridge National Laboratory for use in controlling the vitrification facility transfer cart at the West Valley Nuclear Services facility in New York. The communications system provides bidirectional wireless data transfer between the operator control station and the material transfer cart. The system was designed to operate in radiation fields of 10 4 R/h while withstanding a total integrated dose of 10 7 R of gamma radiation. Implementation of antenna spatial diversity, automatic gain control, and spectral processing improves operation in the reflective environment of the metal-lined reprocessing cells

  19. Why do global climate models struggle to represent low-level clouds in the West African summer monsoon?

    Science.gov (United States)

    Knippertz, Peter; Hannak, Lisa; Fink, Andreas H.; Kniffka, Anke; Pante, Gregor

    2017-04-01

    Climate models struggle to realistically represent the West African monsoon (WAM), which hinders reliable future projections and the development of adequate adaption measures. Low-level clouds over southern West Africa (5-10°N, 8°W-8°E) during July-September are an integral part of the WAM through their effect on the surface energy balance and precipitation, but their representation in climate models has so far received little attention. These clouds usually form during the night near the level of the nocturnal low-level jet ( 950 hPa), thicken and spread until the mid-morning ( 09 UTC), and then break up and rise in the course of the day, typically to about 850 hPa. The low thermal contrast to the surface and the frequent presence of obscuring higher-level clouds make detection of the low-level clouds from space rather challenging. Here we use 30 years of output from 18 models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) as well as 20 years of output from 8 models participating in the Year of Tropical Convection (YoTC) experiments to identify cloud biases and their causes. A great advantage of the YoTC dataset is the 6-hourly output frequency, which allows an analysis of the diurnal cycle, and the availability of temperature and moisture tendencies from parameterized processes such as convection, radiation and boundary-layer turbulence. A comparison to earlier analyses based on CMIP3 output reveals rather limited improvements with regard to the represenation of low-level cloud and winds. Compared to ERA-Interim re-analyses, which shows satisfactory agreement with surface observations, many of the CMIP5 and YoTC models still have large biases in low-level cloudiness of both signs and a tendency to too high elevation and too weak diurnal cycles. At the same time, these models tend to have too strong low-level jets, the impact of which is unclear due to concomitant effects on temperature and moisture advection as well as turbulent

  20. FINDING SOLUTIONS AT THE WEST VALLEY DEMONSTRATION PROJECT

    International Nuclear Information System (INIS)

    Drake, John L.; Gramling, James M.; Houston, Helene M.

    2003-01-01

    The United States Department of Energy Office of Environmental Management (DOE-EM) faces a number of sizeable challenges as it begins to transform its mission from managing risk to reducing and eliminating risk throughout the DOE Complex. One of the greatest challenges being addressed by DOE-EM as this transformation takes place is accelerating the deactivation and decommissioning of thousands of facilities within the DOE Complex that were once used to support nuclear-related programs and projects. These facilities are now unused and aging. Finding solutions to complete the cleanup of these aging facilities more safely, efficiently, and effectively while reducing costs is critical to successfully meeting DOE-EM's cleanup challenge. The Large-Scale Demonstration and Deployment Project (LSDDP) of Hot Cells at the West Valley Demonstration Project (WVDP) is a near-term project funded through the DOE's National Energy Technology Laboratory (DOE-NETL) for the specific purpose of identifying, evaluating, demonstrating, and deploying commercially available technologies that are capable of streamlining the cleanup of hot cells in unused facilities while improving worker safety. Two DOE project sites are participating in this LSDDP: the WVDP site in West Valley, New York and the Hanford River Corridor Project (RCP) site in Richland, Washington. The WVDP site serves as the host site for the project. Technologies considered for demonstration and potential deployment at both LSDDP sites are targeted for application in hot cells that require the use of remote and semi-remote techniques to conduct various cleanup-related activities because of high radiation or high contamination levels. These hot cells, the type of cleanup activities being conducted, and technologies selected for demonstration are the main topics discussed in this paper. The range of cleanup-related activities addressed include in-situ characterization, size-reduction, contamination control, decontamination, in

  1. Injection of radioactive waste by hydraulic fracturing at West Valley, New York. Volume 3. Appendices

    International Nuclear Information System (INIS)

    1978-05-01

    Ten appendices are included: log data, elastic constants for transversely isotropic elastic media by ultrasonic velocity measurement, fracture toughness anisotropy of West Valley shale, in-situ stress measurement techniques, stress measurement data, hydraulic fracturing measurements, enhancement of horizontal crack initiation by jetting, finite element programs for analysis of crack propagation and for groundwater flow analysis, and well data

  2. Utilization of the NFS West Valley Installation for spent fuel storage

    International Nuclear Information System (INIS)

    MacDonald, R.W.

    1978-04-01

    Several thousand MT of capacity of AFR storage will be required in the 1980's. The pool at NFS has capacity for an additional 60 MT of BWR fuel or 150 MT of PWR assemblies. Zircaloy-clad LWR fuel can be stored in pools for up to 100 years. Environmental effects are discussed. Expansion of the pool capacity for as much as 1000 MT more, either by using more compact storage racks or constructing a new pool or an independent pool, is considered. Some indication of the environmental impacts of expanded fuel storage capacity at West Valley is offered by experience at Barnwell

  3. Low levels of nitryl chloride at ground level: nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia

    Directory of Open Access Journals (Sweden)

    H. D. Osthoff

    2018-05-01

    Full Text Available The nocturnal nitrogen oxides, which include the nitrate radical (NO3, dinitrogen pentoxide (N2O5, and its uptake product on chloride containing aerosol, nitryl chloride (ClNO2, can have profound impacts on the lifetime of NOx ( =  NO + NO2, radical budgets, and next-day photochemical ozone (O3 production, yet their abundances and chemistry are only sparsely constrained by ambient air measurements.Here, we present a measurement data set collected at a routine monitoring site near the Abbotsford International Airport (YXX located approximately 30 km from the Pacific Ocean in the Lower Fraser Valley (LFV on the west coast of British Columbia. Measurements were made from 20 July to 4 August 2012 and included mixing ratios of ClNO2, N2O5, NO, NO2, total odd nitrogen (NOy, O3, photolysis frequencies, and size distribution and composition of non-refractory submicron aerosol (PM1.At night, O3 was rapidly and often completely removed by dry deposition and by titration with NO of anthropogenic origin and unsaturated biogenic hydrocarbons in a shallow nocturnal inversion surface layer. The low nocturnal O3 mixing ratios and presence of strong chemical sinks for NO3 limited the extent of nocturnal nitrogen oxide chemistry at ground level. Consequently, mixing ratios of N2O5 and ClNO2 were low ( <  30 and  <  100 parts-per-trillion by volume (pptv and median nocturnal peak values of 7.8 and 7.9 pptv, respectively. Mixing ratios of ClNO2 frequently peaked 1–2 h after sunrise rationalized by more efficient formation of ClNO2 in the nocturnal residual layer aloft than at the surface and the breakup of the nocturnal boundary layer structure in the morning. When quantifiable, production of ClNO2 from N2O5 was efficient and likely occurred predominantly on unquantified supermicron-sized or refractory sea-salt-derived aerosol. After sunrise, production of Cl radicals from photolysis of ClNO2 was negligible compared to production of OH

  4. Characterization of organics in leachates from low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Francis, A.J.; Iden, C.R.; Nine, B.; Chang, C.

    1979-01-01

    Low-level radioactive wastes generated by the nuclear industry, universities, research institutions, and hospitals are disposed of in shallow-land trenches and pits. In 1962 the first commercial disposal site was opened in Beatty, Nevada. Since then, the industry has grown to include three private companies operating six disposal areas located in sparsely populated areas: at Maxey Flats (Morehead), Kentucky; Beatty, Nevada; Sheffield, Illinois; Barnwell, South Carolina; West Valley, New York; and Richland, Washington. Although the facilities are operated by private industry, they are located on public land and are subject to federal and state regulation. Although inventories of the radioactive materials buried in the disposal sites are available, no specific records are kept on the kinds and quantities of organic wastes buried. In general, the organic wastes consist of contaminated paper, packing materials, clothing, plastics, ion-exchange resins, scintillation vials, solvents, chemicals, decontamination fluids, carcasses of experimental animals, and solidification agents. Radionuclides such as 14 C, 3 H, 90 Sr, 134 137 Cs, 60 Co, 241 Am, and 238 239 240 Pu have been identified in leachate samples collected from several trenches at Maxey Flats and West Valley. The purpose of this report is to identify some of the organic compounds present in high concentrations in trench leachates at the disposal sites in order to begin to evaluate their effect on radionuclide mobilization and contamination of the environment

  5. West Valley Reprocessing Plant. Safety analysis report, supplement 20

    International Nuclear Information System (INIS)

    1976-01-01

    Supplement 20 is comprised of changed pages for the SAR which reflect: (1) the change in design basis fuel fed to the process from a minimum of 180 days after reactor discharge to a minimum of 210 days and an effective 24 months after reactor discharge; (2) the design objective of NFS that the concentrations of radionuclides, other than tritium, will not exceed the concentration limits of 10 CFR 20, Appendix B, Table II, column 2, when measured at the discharge from NFS' lagoon system to the on-site waterway; (3) incorporation of modifications to fuel receiving and storage area; (4) an updating of the general information presented in Chapter 1.0; and (5) additional data from the new meteorological tower at West Valley and recent changes in demographic projections

  6. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2003

    International Nuclear Information System (INIS)

    2004-01-01

    This Annual Site Environmental Report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2003 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs. During 2003, cleanup of radioactive waste from the former nuclear fuels reprocessing plant that shut down operations in the 1970s was continued at the WVDP. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority. Work activities at the WVDP during 2003 included: (1) maintaining canisters of vitrified high-level waste in a shielded facility; (2) shipping low-level radioactive waste offsite for disposal; (3) shipping packaged spent nuclear fuel assemblies to Idaho National Engineering and Environmental Laboratory; (4) constructing a facility where large high-activity components can be safely size-reduced and packaged for disposal; (5) decontaminating the fuel storage pool and the cask unloading pool; (6) decontaminating the general purpose cell and the process mechanical cell (also referred to as the head end cells); (7) cleanup of waste in the plutonium purification cell (south) and extraction cell number 2 in the main plant; (8) planning for decontamination and dismantlement of the vitrification facility; (9) continuing preparation of the Decommissioning and/or Long-Term Stewardship Environmental Impact Statement; and (10) monitoring the environment and managing contaminated areas within the Project facility premises

  7. Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise

    Science.gov (United States)

    Tjallingii, Rik; Stattegger, Karl; Wetzel, Andreas; Van Phach, Phung

    2010-06-01

    The abrupt transition from fluvial to marine deposition of incised-valley-fill sediments retrieved from the southeast Vietnamese shelf, accurately records the postglacial transgression after 14 ka before present (BP). Valley-filling sediments consist of fluvial mud, whereas sedimentation after the transgression is characterized by shallow-marine carbonate sands. This change in sediment composition is accurately marked in high-resolution X-ray fluorescence (XRF) core scanning records. Rapid aggradation of fluvial sediments at the river mouth nearly completely filled the Mekong incised valley prior to flooding. However, accumulation rates strongly reduced in the valley after the river-mouth system flooded and stepped back. This also affected the sediment supply to deeper parts of the southeast Vietnamese shelf. Comparison of the Mekong valley-filling with the East Asian sea-level history of sub- and inter-tidal sediment records shows that the transgressive surface preserved in the incised-valley-fill records is a robust sea-level indicator. The valley was nearly completely filled with fluvial sediments between 13.0 and 9.5 ka BP when sea-level rose rather constantly with approximately 10 mm/yr, as indicated by the East Asian sea-level record. At shallower parts of the shelf, significant sediment reworking and the establishment of estuarine conditions at the final stage of infilling complicates accurate dating of the transgressive surface. Nevertheless, incised-valley-fill records and land-based drill sites indicate a vast and rapid flooding of the shelf from the location of the modern Vietnamese coastline to the Cambodian lowlands between 9.5 ka and 8.5 ka BP. Fast flooding of this part of the shelf is related with the low shelf gradient and a strong acceleration of the East Asian sea-level rise from 34 to 9 meter below modern sea level (mbsl) corresponding to the sea-level jump of melt water pulse (MWP) 1C.

  8. Groundwater-level change and evaluation of simulated water levels for irrigated areas in Lahontan Valley, Churchill County, west-central Nevada, 1992 to 2012

    Science.gov (United States)

    Smith, David W.; Buto, Susan G.; Welborn, Toby L.

    2016-09-14

    The acquisition and transfer of water rights to wetland areas of Lahontan Valley, Nevada, has caused concern over the potential effects on shallow aquifer water levels. In 1992, water levels in Lahontan Valley were measured to construct a water-table map of the shallow aquifer prior to the effects of water-right transfers mandated by the Fallon Paiute-Shoshone Tribal Settlement Act of 1990 (Public Law 101-618, 104 Stat. 3289). From 1992 to 2012, approximately 11,810 water-righted acres, or 34,356 acre-feet of water, were acquired and transferred to wetland areas of Lahontan Valley. This report documents changes in water levels measured during the period of water-right transfers and presents an evaluation of five groundwater-flow model scenarios that simulated water-level changes in Lahontan Valley in response to water-right transfers and a reduction in irrigation season length by 50 percent.Water levels measured in 98 wells from 2012 to 2013 were used to construct a water-table map. Water levels in 73 of the 98 wells were compared with water levels measured in 1992 and used to construct a water-level change map. Water-level changes in the 73 wells ranged from -16.2 to 4.1 feet over the 20-year period. Rises in water levels in Lahontan Valley may correspond to annual changes in available irrigation water, increased canal flows after the exceptionally dry and shortened irrigation season of 1992, and the increased conveyance of water rights transferred to Stillwater National Wildlife Refuge. Water-level declines generally occurred near the boundary of irrigated areas and may be associated with groundwater pumping, water-right transfers, and inactive surface-water storage reservoirs. The largest water-level declines were in the area near Carson Lake.Groundwater-level response to water-right transfers was evaluated by comparing simulated and observed water-level changes for periods representing water-right transfers and a shortened irrigation season in areas near Fallon

  9. Geologic and hydrologic research at the Western New York Nuclear Service Center, West Valley, New York. Final report, August 1982-December 1983

    International Nuclear Information System (INIS)

    Albanese, J.R.; Anderson, S.L.; Fakundiny, R.H.; Potter, S.M.; Rogers, W.B.; Whitbeck, L.F.; LaFleur, R.G.; Boothroyd, J.C.; Timson, B.S.

    1984-06-01

    This report is the last in a series by the New York State Geological Survey on studies funded by the US Nuclear Regulatory Commission. The report covers five important aspects of the geology and hydrology of the Western New York Nuclear Service Center, near West Valley, New York: geomorphology, stratigraphy, sedimentology, surface water, and radionuclide analyses. We reviewed past research on these subjects and present new data obtained in the final phase of NYSGS research at the site. Also presented are up-to-date summaries of the present knowledge of geomorphology and stratigraphy. The report contains a significant bibliography of previous West Valley studies. Appendices include a report on the Fall 1983 Drilling Project and the procedures used, history and prognosis of Cattaraugus Creek and tributaries down cutting, and bar modification and landslide processes of Buttermilk Valley. 100 references, 7 figures, 7 tables

  10. Information on the confinement capability of the facility disposal area at West Valley, New York

    International Nuclear Information System (INIS)

    Nicholson, T.J.; Hurt, R.D.

    1985-12-01

    This report summarizes the previous NRC research studies, NRC licensee source term data and recent DOE site investigations that deal with assessment of the radioactive waste inventory and confinement capability of the Facility Disposal Area (FDA) at West Valley, New York. The radioactive waste inventory for the FDA has a total radioactivity of about 135,000 curies (Ci) and is comprised of H-3 (9,500 Ci), Co-60 (64,000 Ci), SR-90/Y-90 (24,300 Ci), Cs-137/Ba-137m (24,400 Ci), and Pu-241 (13,300 Ci). These wastes are buried in the Lavery Till, a glacial till unit comprised of a clayey silt with very low hydraulic conductivity properties. Recent studies of a tributylphosphate-kerosene plume moving through the shallow ground-water flow system in the FDA indicate a need to better assess the fracture flow components of this system particularly the weathered and fractured Lavery Till unit. The analysis of the deeper ground-water flow system studied by the USGS and NYSGS staffs indicated relatively long pathways and travel times to the accessible environment. Mass wasting, endemic to the glacial-filled valley, contributed to the active slumping in the ravines surrounding the FDA and also need attention. 31 refs., 8 figs., 8 tabs

  11. Potential for a significant deep basin geothermal system in Tintic Valley, Utah

    Science.gov (United States)

    Hardwick, C.; Kirby, S.

    2014-12-01

    The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.

  12. Recent characterization activities of Midway Valley as a potential repository surface facility site

    International Nuclear Information System (INIS)

    Gibson, J.D.; Wesling, J.R.; Swan, F.H.; Bullard, T.F.

    1992-01-01

    Midway Valley, located at the eastern base of Yucca Mountain, Nye County, Nevada, has been identified as a possible location for the surface facilities of a potential high-level nuclear-waste repository. This structural and topographic valley is bounded by two north- trending, down-to-the-west normal faults: the Paintbrush Canyon fault on the east and the Bow Ridge fault on the west. Surface and near-surface geological data have been acquired from Midway Valley during the past three years with particular emphasis on evaluating the existence of Quaternary faults. A detailed (1:6000) surficial geological map has been prepared based on interpretation of new and existing aerial photographs, field mapping, soil pits, and trenches. No evidence was found that would indicate displacement of these surficial deposits along previously unrecognized faults. However, given the low rates of Quaternary faulting and the extensive areas that are covered by late Pleistocene to Holocene deposits south of Sever Wash, Quaternary faulting between known faults cannot be precluded based on surface evidence alone. Middle to late Pleistocene alluvial fan deposits (Unit Q3) exist at or near the surface throughout Midway Valley. Confidence is increased that the potential for surface fault rupture in Midway Valley can be assessed by excavations that expose the deposits and soils associated with Unit Q3 or older units (middle Pleistocene or earlier)

  13. Radiation transport in high-level waste form

    International Nuclear Information System (INIS)

    Arakali, V.S.; Barnes, S.M.

    1992-01-01

    The waste form selected for vitrifying high-level nuclear waste stored in underground tanks at West Valley, NY is borosilicate glass. The maximum radiation level at the surface of a canister filled with the high-level waste form is prescribed by repository design criteria for handling and disposition of the vitrified waste. This paper presents an evaluation of the radiation transport characteristics for the vitreous waste form expected to be produced at West Valley and the resulting neutron and gamma dose rates. The maximum gamma and neutron dose rates are estimated to be less than 7500 R/h and 10 mRem/h respectively at the surface of a West Valley canister filled with borosilicate waste glass

  14. Seismic investigation of the Nuclear Fuel Services, Inc., Reprocessing Plant at West Valley, New York

    International Nuclear Information System (INIS)

    Endebrock, E.G.; Bartholomew, R.J.; Bennett, J.G.; Brasier, R.I.; Corcoran, W.F.

    1978-03-01

    An investigation was undertaken to determine the earthquake level at which the Nuclear Fuel Service, Inc., Reprocessing Plant at West Valley, New York, could first experience a predefined structural failure. The effort was divided into tasks of evaluating soil-structure interaction, determining overall facility motion, and analyzing the substructures. The analysis included using two- and three-dimensional finite element computer codes. Shear wall failure, cell flexural failure (beam action), and foundation (pile) failure were identified as possible structural failure types. The cells that contain radioactive materials and that are required to confine such materials during an earthquake should remain intact up to 0.20 g's. At the same loading, the piles supporting the confinement cells could undergo displacements sufficient to cause fracture of piping between nonmonolithically connected cells

  15. Department of Energy treatment capabilities for greater-than-Class C low-level radioactive waste

    International Nuclear Information System (INIS)

    Morrell, D.K.; Fischer, D.K.

    1995-01-01

    This report provides brief profiles for 26 low-level and high-level waste treatment capabilities available at the Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest Laboratory (PNL), Rocky Flats Plant (RFP), Savannah River Site (SRS), and West Valley Demonstration Plant (WVDP). Six of the treatments have potential use for greater-than-Class C low-level waste (GTCC LLW). They include: (a) the glass ceramic process and (b) the Waste Experimental Reduction Facility incinerator at INEL; (c) the Super Compaction and Repackaging Facility and (d) microwave melting solidification at RFP; (e) the vitrification plant at SRS; and (f) the vitrification plant at WVDP. No individual treatment has the capability to treat all GTCC LLW streams. It is recommended that complete physical and chemical characterizations be performed for each GTCC waste stream, to permit using multiple treatments for GTCC LLW

  16. Decontamination of the Warm Aisles at the West Valley Demonstration Project. Final topical report, January 1985-February 1986

    International Nuclear Information System (INIS)

    Allen, J.C.

    1986-06-01

    The West Valley Demonstration Project is a DOE project to solidify in a glass form the 2,120 m 3 (560,000 gallons) of liquid high-level waste stored in two underground steel tanks at the site of the world's first commercial nuclear fuel reprocessing plant, West Valley, New York. One project objective is to utilize as much of the existing plant areas as practical for the installation of solidification support systems. Previously, Extraction Cell Three (XC3) and the Product Purification Cell (PPC) had been chosen as the location of the Liquid Waste Treatment System (LWTS). Subsequently, it was decided that areas of the Upper Warm Aisle (UWA) and the Lower Warm Aisle (LWA) which are located adjacent to the south wall of XC3 and PPC would also be needed for the installation of LWTS equipment. Shielded concrete niches which contained pumps and valve manifolds are located in the warm aisles. One pump niche and one valve manifold niche in the UWA and one pump niche in the LWA were identified as needed for the LWTS. Also, it was necessary to remove some equipment which was located outside the niches. Subsequently, decontamination plans were made and carried out to prepare these areas for modification and installation activities. Predecontamination survey activities began in January 1985, and decontamination operations were completed in February 1986. Decontamination efforts, results, and lessons learned are reported

  17. Interventions Against West Nile Virus, Rift Valley Fever Virus, and Crimean-Congo Hemorrhagic Fever Virus: Where Are We?

    NARCIS (Netherlands)

    Kortekaas, J.A.; Ergonul, O.; Moormann, R.J.M.

    2010-01-01

    ARBO-ZOONET is an international network financed by the European Commission's seventh framework program. The major goal of this initiative is capacity building for the control of emerging viral vector-borne zoonotic diseases, with a clear focus on West Nile virus, Rift Valley fever virus, and

  18. Soils, surficial geology, and geomorphology of the Bear Creek Valley Low-Level Waste Disposal Development and Demonstration Program site

    International Nuclear Information System (INIS)

    Lietzke, D.A.; Lee, S.Y.; Lambert, R.E.

    1988-04-01

    An intensive soil survey was conducted on the proposed Low-Level Waste Disposal Development and Demonstration Program site (LLWDDD) in Bear Creek Valley. Soils on the site were related to the underlying residuum and to the surficial colluvium and alluvium. Within any particular geologic formation, soils were subdivided based mostly on the degree of weathering, as reflected by saprolite weathering and morphologic features of the soils. Degree of weathering was related both to slope shape and gradient and to the joint-fracture system. Erosion classes were also used to make further subdivisions of any particular soil. Deep pits were dug in each of the major Conasauga Group formations (Pumpkin Valley, Rogersville, Maryville, and Nolichucky) for soil and saprolite characterization. Because of the widespread presence of alluvium and colluvium, which are potential sources of fill and final cover material, pits and trenches were dug to characterize the properties of these soils and to try to understand the past geomorphic history of the site. The results of the soil survey investigation indicated that the deeply weathered Pumpkin Valley residuum has good potential for the construction of tumuli or other types of belowground or aboveground burial of prepackaged compacted waste. 11 refs., 30 figs., 3 tabs

  19. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Mendiratta, O.P.; Ploetz, D.K.

    2000-01-01

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste processing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999

  20. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  1. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Environmental Services LLC (WVES) and URS - Washington Division

    2009-09-24

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2008. The report summarizes the calendar year (CY) 2008 environmental monitoring program data at the WVDP so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of the environment, continual improvement, prevention and/or minimization of pollution, public outreach, and stakeholder involvement. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2008 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  2. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2008

    International Nuclear Information System (INIS)

    2009-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2008. The report summarizes the calendar year (CY) 2008 environmental monitoring program data at the WVDP so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of the environment, continual improvement, prevention and/or minimization of pollution, public outreach, and stakeholder involvement. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2008 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  3. Supplement analysis 2 of environmental impacts resulting from modifications in the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    1998-01-01

    The West Valley Demonstration Project, located in western New York, has approximately 600,000 gallons of liquid high-level radioactive waste (HLW) in storage in underground tanks. While corrosion analysis has revealed that only limited tank degradation has taken place, the failure of these tanks could release HLW to the environment. Congress requires DOE to demonstrate the technology for removal and solidification of HLW. DOE issued the Final Environmental Impact Statement (FEIS) in 1982. The purpose of this second supplement analysis is to re-assess the 1982 Final Environmental Impact Statement's continued adequacy. This report provides the necessary and appropriate data for DOE to determine whether the environmental impacts presented by the ongoing refinements in the design, process, and operations of the Project are considered sufficiently bounded within the envelope of impacts presented in the FEIS and supporting documentation

  4. Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, S.M.

    1997-10-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country''s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today''s standards. This report summarizes each site''s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US

  5. The representation of low-level clouds during the West African monsoon in weather and climate models

    Science.gov (United States)

    Kniffka, Anke; Hannak, Lisa; Knippertz, Peter; Fink, Andreas

    2016-04-01

    The West African monsoon is one of the most important large-scale circulation features in the tropics and the associated seasonal rainfalls are crucial to rain-fed agriculture and water resources for hundreds of millions of people. However, numerical weather and climate models still struggle to realistically represent salient features of the monsoon across a wide range of scales. Recently it has been shown that substantial errors in radiation and clouds exist in the southern parts of West Africa (8°W-8°E, 5-10°N) during summer. This area is characterised by strong low-level jets associated with the formation of extensive ultra-low stratus clouds. Often persisting long after sunrise, these clouds have a substantial impact on the radiation budget at the surface and thus the diurnal evolution of the planetary boundary layer (PBL). Here we present some first results from a detailed analysis of the representation of these clouds and the associated PBL features across a range of weather and climate models. Recent climate model simulations for the period 1991-2010 run in the framework of the Year of Tropical Convection (YOTC) offer a great opportunity for this analysis. The models are those used for the latest Assessment Report of the Intergovernmental Panel on Climate Change, but for YOTC the model output has a much better temporal resolution, allowing to resolve the diurnal cycle, and includes diabatic terms, allowing to much better assess physical reasons for errors in low-level temperature, moisture and thus cloudiness. These more statistical climate model analyses are complemented by experiments using ICON (Icosahedral non-hydrostatic general circulation model), the new numerical weather prediction model of the German Weather Service and the Max Planck Institute for Meteorology. ICON allows testing sensitivities to model resolution and numerical schemes. These model simulations are validated against (re-)analysis data, satellite observations (e.g. CM SAF cloud and

  6. Final report, Task 3: possible uses of the Nuclear Fuel Services, Inc. reprocessing plant at West Valley, New York

    International Nuclear Information System (INIS)

    1978-01-01

    The West Valley Plant could readily be used for work on reprocessing of alternative fuels, spiking, coprocessing (including CIVEX), waste solidification, and the recovery of radioactive gases. The plant could be easily modified for any scale between small-scale experimental work to production-scale demonstration, involving virtually any combination of fissile/fertile fuel materials that might be used in the future. The use of this plant for the contemplated experimental work would involve lower capital costs than the use of other facilities at DOE sites, except possibly for spiking of recovered products; the operating costs would be no greater than at other sites. The work on reprocessing of alternative fuels and coprocessing could commence within about one year; on recovery of radioactive gases, in 3 to 5 years; on spiking, in 4 years; and on waste solidification demonstration, in about 5 years. The contemplated work could be begun at this plant at least as early as at Barnwell, although work on spiking of recovered products could probably be started in existing hot cells earlier than at West Valley

  7. Annual Status Report (FY2015) Performance Assessment for the Disposal of Low-Level Waste in the 200 West Area Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, R. [INTERA, Inc., Austin, TX (United States); Mehta, S. [CH2M Hill Plateau Remediation Company, Richland, WA (United States); Nichols, W. E. [CH2M Hill Plateau Remediation Company, Richland, WA (United States)

    2016-02-01

    This annual review provides the projected dose estimates of radionuclide inventories disposed in the active 200 West Area Low-Level Burial Grounds (LLBGs) since September 26, 1988. These estimates area calculated using the original does methodology developed in the performance assessment (PA) analysis (WHC-EP-0645).

  8. Identification of sites for the low-level waste disposal development and demonstration program

    International Nuclear Information System (INIS)

    Ketelle, R.H.; Lee, D.W.

    1988-04-01

    This report presents the results of site selection studies for potential low-level radioactive waste disposal sites on the Oak Ridge Reservation (ORR). Summaries of the site selection procedures used and results of previous site selection studies on the ORR are included. This report includes recommendations of sites for demonstration of shallow land burial using engineered trench designs and demonstration of above-grade disposal using design concepts similar to those used in tumulus disposal. The site selection study, like its predecessor (ORNL/TM-9717, Use of DOE Site Selection Criteria for Screening Low-Level Waste Disposal Sites on the Oak Ridge Reservation), involved application of exclusionary site screening criteria to the region of interest to eliminate unacceptable areas from consideration. Also like the previous study, the region of interest for this study was limited to the Oak Ridge Department of Energy Reservation. Reconnaissance-level environmental data were used in the study, and field inspections of candidate sites were made to verify the available reconnaissance data. Five candidate sites, all underlain by Knox dolomite residuum and bedrock, were identified for possible development of shallow land burial facilities. Of the five candidate sites, the West Chestnut site was judged to be best suited for deployment of the shallow land burial technology. Three candidate sites, all underlain by the Conasauga Group in Bear Creek Valley, were identified for possible development of above-grade disposal technologies. Of the three sites identified, the Central Bear Creek Valley site lying between State Route 95 and Gum Hollow Road was ranked most favorable for deployment of the above-grade disposal technology

  9. Decontamination and decommissioning of Extraction Cell 3 at the West Valley Demonstration Project. Topical report, January 1982-April 1985

    International Nuclear Information System (INIS)

    Jones, E.D.

    1985-12-01

    This report describes the decontamination and decommissioning (D and D) of Extraction Cell 3 (XC-3) at the West Valley Demonstration Project. XC-3 is one of several cells in the former reprocessing plant required for use in support of the solidification of high-level waste. It became radioactively contaminated during nuclear fuel reprocessing from 1966 to 1972. XC-3 contained systems used in the final uranium extraction cycle. Several pump niche and sample box drains were routed into the cell. The report describes the work performed to accomplish the D and D objectives of removing existing piping and equipment from XC-3 and to reducing radiation and contamination levels, to allow installation of equipment for the Liquid-Waste Treatment System (LWTS). Contaminated debris and equipment inside the cell were removed, packaged and stored for future disposition. Interior surfaces (walls, floor, and ceiling) of the cell were then decontaminated to a radiation level that allowed entry without the use of protective clothing or respiratory protection

  10. Characterization of the Process Mechanical Cell at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Drake, John; Schneider, Ken; Choroser, Jeff; Hughes, Karl

    2003-01-01

    The West Valley Demonstration Project has initiated decontamination and dismantlement (D and D) of the most highly radioactive and contaminated cells in a former spent nuclear fuel reprocessing plant. The goals of the D and D project are to remove loose debris in the cells and estimate the residual radioactivity level of legacy plant equipment. To support accomplishment of these goals, a unique characterization approach was developed to gather the information to meet anticipated Waste Isolation Pilot Plant (WIPP) acceptance criteria for remote-handled transuranic waste, and to facilitate segregation and packaging operations. Implementation of the characterization approach included the development and use of innovative, remote technology for measuring gamma radiation within the hot cell. The technology was used to identify and quantify radiation from individual debris items in radiation fields up to 2,000 R/hr (20 sieverts/hr). Sampling and analysis of the debris were also performed via remote handling means. Significant challenges associated with characterizing the highly radioactive and highly contaminated hot cells were encountered. The innovative solutions for meeting these challenges are applicable throughout the Department of Energy Complex and help support the goal of targeting D and D efforts toward reducing risks to public health and the environment

  11. Gravity and magnetic data of Midway Valley, southwest Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Langenheim, V.E.; Sikora, R.F.

    1993-01-01

    Detailed gravity and ground magnetic data collected along five traverses across Midway Valley on the eastern flank of Yucca Mountain in southwest Nevada are described. These data were collected as part of an effort to evaluate faulting in the vicinity of proposed surface facilities for a potential nuclear waste repository at Yucca Mountain. Geophysical data show that Midway Valley is bounded by large gravity and magnetic anomalies associated with the Bow Ridge and Paintbrush Canyon faults, on the west side of Exile Hill and on the west flank of Fran Ridge, respectively. In addition, Midway Valley itself is characterized by a number of small-amplitude anomalies that probably reflect small-scale faulting beneath Midway Valley

  12. Association of hypothyroidism with low-level arsenic exposure in rural West Texas

    International Nuclear Information System (INIS)

    Gong, Gordon; Basom, Janet; Mattevada, Sravan; Onger, Frederick

    2015-01-01

    It has been reported recently that a higher airborne arsenic level was correlated with higher urinary arsenic concentration and lower serum thyroxin level among urban policemen and rural highway workmen in Italy. The current study was to determine whether exposure to low-level arsenic groundwater (2–22 µg/L) is associated with hypothyroidism among 723 participants (118 male and 267 female Hispanics; 108 male and 230 female non-Hispanic whites, NHW) living in rural West Texas counties. Arsenic and iodine levels in their groundwater used for drinking and or cooking were estimated by the inverse distance weighted (IDW) interpolation technique. Groundwater arsenic was ≥8 µg/L in 36% of the subjects' wells while iodine concentration was <1 µg/L in 91% of their wells. Logistic regression analysis showed that arsenic in groundwater ≥8 µg/L and cumulative arsenic exposure (groundwater arsenic concentration multiplied by the number of years living in the current address) but not groundwater iodine concentration were significant predictors for hypothyroidism among Hispanics (p<0.05) but not NHW after adjusting for covariates such as age, gender, annual household income and health insurance coverage. The ethnic difference may be due to a marginally higher percentage of Hispanics (p=0.0622) who lived in areas with groundwater arsenic ≥8 µg/L compared with NHW. The prevalence of hypothyroidism was significantly higher in Hispanics or NHW of this rural cohort than the national prevalence. Measures should be taken to reduce arsenic in drinking water in order to prevent hypothyroidism in rural areas. - Highlights: • We determined if arsenic exposure is associated with hypothyroidism in rural Texas. • Groundwater arsenic level is associated with hypothyroidism among Hispanics only. • The rate of hypothyroidism in rural Texas was higher than the US general population

  13. Association of hypothyroidism with low-level arsenic exposure in rural West Texas

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Gordon, E-mail: gordon.gong@ttuhsc.edu [F. Marie Hall Institute for Rural and Community Health, Texas Tech University Health Sciences Center, Lubbock, TX (United States); Basom, Janet [F. Marie Hall Institute for Rural and Community Health, Texas Tech University Health Sciences Center, Lubbock, TX (United States); Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, TX (United States); Mattevada, Sravan [Department of Internal Medicine, University of North Texas Health Science Center, Fort Worth, TX (United States); Onger, Frederick [Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, TX (United States)

    2015-04-15

    It has been reported recently that a higher airborne arsenic level was correlated with higher urinary arsenic concentration and lower serum thyroxin level among urban policemen and rural highway workmen in Italy. The current study was to determine whether exposure to low-level arsenic groundwater (2–22 µg/L) is associated with hypothyroidism among 723 participants (118 male and 267 female Hispanics; 108 male and 230 female non-Hispanic whites, NHW) living in rural West Texas counties. Arsenic and iodine levels in their groundwater used for drinking and or cooking were estimated by the inverse distance weighted (IDW) interpolation technique. Groundwater arsenic was ≥8 µg/L in 36% of the subjects' wells while iodine concentration was <1 µg/L in 91% of their wells. Logistic regression analysis showed that arsenic in groundwater ≥8 µg/L and cumulative arsenic exposure (groundwater arsenic concentration multiplied by the number of years living in the current address) but not groundwater iodine concentration were significant predictors for hypothyroidism among Hispanics (p<0.05) but not NHW after adjusting for covariates such as age, gender, annual household income and health insurance coverage. The ethnic difference may be due to a marginally higher percentage of Hispanics (p=0.0622) who lived in areas with groundwater arsenic ≥8 µg/L compared with NHW. The prevalence of hypothyroidism was significantly higher in Hispanics or NHW of this rural cohort than the national prevalence. Measures should be taken to reduce arsenic in drinking water in order to prevent hypothyroidism in rural areas. - Highlights: • We determined if arsenic exposure is associated with hypothyroidism in rural Texas. • Groundwater arsenic level is associated with hypothyroidism among Hispanics only. • The rate of hypothyroidism in rural Texas was higher than the US general population.

  14. Environmental monitoring report for commercial low-level radioactive waste disposal sites (1960's through 1990's)

    International Nuclear Information System (INIS)

    1996-11-01

    During the time period covered in this report (1960's through early 1990's), six commercial low-level radioactive waste (LLRW) disposal facilities have been operated in the US. This report provides environmental monitoring data collected at each site. The report summarizes: (1) each site's general design, (2) each site's inventory, (3) the environmental monitoring program for each site and the data obtained as the program has evolved, and (4) what the program has indicated about releases to off-site areas, if any, including a statement of the actual health and safety significance of any release. A summary with conclusions is provided at the end of each site's chapter. The six commercial LLRW disposal sites discussed are located near: Sheffield, Illinois; Maxey Flats, Kentucky; Beatty, Nevada; West Valley, New York; Barnwell, South Carolina; Richland, Washington

  15. Low level waste disposal

    International Nuclear Information System (INIS)

    Barthoux, A.

    1985-01-01

    Final disposal of low level wastes has been carried out for 15 years on the shallow land disposal of the Manche in the north west of France. Final participant in the nuclear energy cycle, ANDRA has set up a new waste management system from the production center (organization of the waste collection) to the disposal site including the setting up of a transport network, the development of assessment, additional conditioning, interim storage, the management of the disposal center, records of the location and characteristics of the disposed wastes, site selection surveys for future disposals and a public information Department. 80 000 waste packages representing a volume of 20 000 m 3 are thus managed and disposed of each year on the shallow land disposal. The disposal of low level wastes is carried out according to their category and activity level: - in tumuli for very low level wastes, - in monoliths, a concrete structure, of the packaging does not provide enough protection against radioactivity [fr

  16. The End of the Line, Preparing the Main Plant Process Building for Demolition at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Rowell, L.E.; Kurasch, D.H.; Hackett, M.; Gorsuch, G.; Sullivan, D.W.

    2009-01-01

    The West Valley Demonstration Project (WVDP) Act of 1980 authorized the Department of Energy to conduct a high-level radioactive waste management demonstration project at the site of the former Spent Fuel Reprocessing Plant in West Valley, New York to demonstrate solidification techniques to prepare high-level liquid waste for disposal. The reprocessing facility at this site was the only commercial NRC-licensed spent fuel reprocessing plant to have operated in the United States. The spent fuel reprocessing operations ended in 1972 and DoE's cleanup operations have been underway since 1982. High-level waste solidification was safely concluded in 2002 and follow-on activities at the site have been concentrated on facility decontamination and waste management and off-site disposal. Among the features that remain at the WVDP site is the highly-contaminated Main Plant Process Building (MPPB). The five-story reinforced concrete structure, which was formerly used to reprocess irradiated nuclear fuel, contains residual levels of contamination in some areas that prohibit safe human entry. DoE's long-range plans for the site include demolition of the MPPB. Current site contractor, West Valley Environmental Services LLC (WVES), while actively working to dismantle equipment and decontaminate areas inside the MPPB, has developed a conceptual two-phase plan for demolishing the structure that provides a cost-effective, lower-dose alternative to conventional demolition techniques. This paper discusses the current condition of the MPPB and the demolition-ready preparations conducted in the facility thus far. This paper also introduces the concept of a two-part surgical demolition plan that has been proposed and is being evaluated as a safe method of demolishing the structure. The practical applications that support feasibility for the demolition approach are being demonstrated through current work applications in the MPPB. The Inside-Out Demolition proposal for the MPPB is a safe

  17. Device-Level Models Using Multi-Valley Effective Mass

    Science.gov (United States)

    Baczewski, Andrew D.; Frees, Adam; Gamble, John King; Gao, Xujiao; Jacobson, N. Tobias; Mitchell, John A.; Montaño, Inès; Muller, Richard P.; Nielsen, Erik

    2015-03-01

    Continued progress in quantum electronics depends critically on the availability of robust device-level modeling tools that capture a wide range of physics and effective mass theory (EMT) is one means of building such models. Recent developments in multi-valley EMT show quantitative agreement with more detailed atomistic tight-binding calculations of phosphorus donors in silicon (Gamble, et. al., arXiv:1408.3159). Leveraging existing PDE solvers, we are developing a framework in which this multi-valley EMT is coupled to an integrated device-level description of several experimentally active qubit technologies. Device-level simulations of quantum operations will be discussed, as well as the extraction of process matrices at this level of theory. The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  18. Topographic evolution of Yosemite Valley from Low Temperature Thermochronology

    Science.gov (United States)

    Tripathy-Lang, A.; Shuster, D. L.; Cuffey, K. M.; Fox, M.

    2014-12-01

    In this contribution, we interrogate the timing of km-scale topography development in the region around Yosemite Valley, California. Our goal is to determine when this spectacular glacial valley was carved, and how this might help address controversy surrounding the topographic evolution of the Sierra Nevada. At the scale of the range, two rival hypotheses are each supported by different datasets. Low-temperature thermochronology supports the idea that the range has been high-standing since the Cretaceous, whereas geomorphic evidence suggests that much of the elevation of the Sierra Nevada was attained during the Pliocene. Recent work by McPhillips and Brandon (2012) suggests instead that both ideas are valid, with the range losing much elevation during the Cenozoic, but regaining it during Miocene surface uplift.At the local scale, the classic study of Matthes (1930) determined that most of Yosemite Valley was excavated by the Sherwin-age glaciation that ended ~1 Ma. The consensus view is in agreement, although some argue that nearby comparable valleys comparable were carved long ago (e.g., House et al., 1998). If the Quaternary and younger glaciations were responsible for the bulk of the valley's >1 km depth, we might expect apatite (U-Th)/He ages at the valley floor to be histories at these locations, these data constrain patterns of valley topography development through time. We also supplement these data with zircon 4He/3He thermochronometry, which is a newly developed method that provides information on continuous cooling paths through ~120-220 °C. We will present both the apatite and zircon 4He/3He data and, in conjunction with thermo-kinematic modeling, discuss the ability and limitations of these data to test models of Sierra Nevada topography development through time. Matthes (1930) USGS Professional Paper House et al. (1998) Nature McPhillips and Brandon (2012) American Journal of Science

  19. The Drigg low-level waste site

    International Nuclear Information System (INIS)

    1992-01-01

    Safe disposal of waste is a vital aspect of any industrial operation whether it be production of plastics, steel or chemicals or handling of radioactive materials. Appropriate methods must be used in every case. Radioactive waste falls into three distinct categories - high, intermediate and low-level. It is the solid low-level waste making up over 90% of the total which this booklet discusses. British Nuclear Fuels plc (BNFL) operates a site for the disposal of solid low-level waste at Driggs, some six kilometres south of Sellafield in West Cumbria. The daily operations and control of the site, the responsibility of the BNFL Waste Management Unit is described. (author)

  20. Evaporation studies on Oak Ridge National Laboratory liquid low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, V.L. [PAI Corp., Oak Ridge, TN (United States); Perona, J.J. [Oak Ridge National Lab., TN (United States)

    1993-03-01

    Evaporation studies were performed with Melton Valley storage tank liquid low-level radioactive waste concentrate and with surrogates (nonradioactive) to determine the feasibility of a proposed out-of-tank-evaporation project. Bench-scale tests indicated that volume reductions ranging from 30 to 55% could be attained. Vendor-site tests were conducted (with surrogate waste forms) using a bench-scale single-stage, low-pressure (subatmospheric), low-temperature (120 to 173{degree}F) evaporator similar to units in operation at several nuclear facilities. Vendor tests were successful; a 30% volume reduction was attained with no crystallization of solids and no foaming, as would be expected from a high pH solution. No fouling of the heat exchanger surfaces occurred during these tests. It is projected that 52,000 to 120,000 gal of water could be evaporated from the supernate stored in the Melton and Bethel Valley liquid low-level radioactive waste (LLLW) storage tanks with this type of evaporator.

  1. Preliminary hydrogeologic assessment near the boundary of the Antelope Valley and El Mirage Valley groundwater basins, California

    Science.gov (United States)

    Stamos, Christina L.; Christensen, Allen H.; Langenheim, Victoria

    2017-07-19

    structures that could affect groundwater flow between the groundwater basins in the study area, gravity data were collected using more closely spaced measurements in September 2014. Groundwater-level data was gathered and collected from March 2014 through March 2015 to determine depth to water and direction of groundwater flow. The gravity and groundwater-level data showed that the saturated thickness of the alluvium was about 2,000 feet thick to the east and about 130 feet thick above the northward-trending basement ridge near Llano, California. Although it was uncertain whether the basement ridge affects the groundwater system, a potential barrier to groundwater flow could be created if the water table fell below the altitude of the basement ridge, effectively causing the area to the west of the basement ridge to become hydraulically isolated from the area to the east. In addition, the direction of regional-groundwater flow likely will be influenced by future changes in the number and distribution of pumping wells and the thickness of the saturated alluvium from which water is withdrawn. Three-dimensional animations were created to help visualize the relation between the basins’ basement topography and the groundwater system in the area. Further studies that could help to more accurately define the basins and evaluate the groundwater-flow system include exploratory drilling of multi-depth monitoring wells; collection of depth-dependent water-quality samples; and linking together existing, but separate, groundwater-flow models from the Antelope Valley and El Mirage Valley groundwater basins into a single, calibrated groundwater-flow model.

  2. Environmental monitoring report for commercial low-level radioactive waste disposal sites (1960`s through 1990`s)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    During the time period covered in this report (1960`s through early 1990`s), six commercial low-level radioactive waste (LLRW) disposal facilities have been operated in the US. This report provides environmental monitoring data collected at each site. The report summarizes: (1) each site`s general design, (2) each site`s inventory, (3) the environmental monitoring program for each site and the data obtained as the program has evolved, and (4) what the program has indicated about releases to off-site areas, if any, including a statement of the actual health and safety significance of any release. A summary with conclusions is provided at the end of each site`s chapter. The six commercial LLRW disposal sites discussed are located near: Sheffield, Illinois; Maxey Flats, Kentucky; Beatty, Nevada; West Valley, New York; Barnwell, South Carolina; Richland, Washington.

  3. Characterization of the head end cells at the West Valley Nuclear Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Vance, R.F.

    1986-11-01

    The head-end cells at the West Valley Nuclear Fuel Reprocessing Plant are characterized in this report. These cells consist of the Process Mechanical Cell (PMC) where irradiated nuclear fuel was trimmed of excess hardware and sheared into short segments; and the General Purpose Cell (GPC) where the segments were collected and stored prior to dissolution, and leached hulls were packaged for disposal. Between 1966 and 1972, while Nuclear Fuels Services operated the plant, these cells became highly contaminated with radioactive materials. The purpose of this characterization work was to develop technical information as a basis of decontamination and decommissioning planning and engineering. It was accomplished by performing remote in-cell visual examinations, radiation surveys, and sampling. Supplementary information was obtained from available written records, out-of-cell inspections, and interviews with plant personnel

  4. The public visits a nuclear waste site: Survey results from the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Hoffman, W.D.

    1987-01-01

    This paper discusses the results of the 1986 survey taken at the West Valley Demonstration Project Open House where a major nuclear waste cleanup is in progress. Over 1400 people were polled on what they think is most effective in educating the public on nuclear waste. A demographic analysis describes the population attending the event and their major interests in the project. Responses to attitudinal questions are examined to evaluate the importance of radioactive waste cleanup as an environmental issue and a fiscal responsibility. Additionally, nuclear power is evaluated on its public perception as an energy resource. The purpose of the study is to find out who visits a nuclear waste site and why, and to measure their attitudes on nuclear issues

  5. Culex pipiens, an experimental efficient vector of West Nile and Rift Valley fever viruses in the Maghreb region.

    Directory of Open Access Journals (Sweden)

    Fadila Amraoui

    Full Text Available West Nile fever (WNF and Rift Valley fever (RVF are emerging diseases causing epidemics outside their natural range of distribution. West Nile virus (WNV circulates widely and harmlessly in the old world among birds as amplifying hosts, and horses and humans as accidental dead-end hosts. Rift Valley fever virus (RVFV re-emerges periodically in Africa causing massive outbreaks. In the Maghreb, eco-climatic and entomologic conditions are favourable for WNV and RVFV emergence. Both viruses are transmitted by mosquitoes belonging to the Culex pipiens complex. We evaluated the ability of different populations of Cx. pipiens from North Africa to transmit WNV and the avirulent RVFV Clone 13 strain. Mosquitoes collected in Algeria, Morocco, and Tunisia during the summer 2010 were experimentally infected with WNV and RVFV Clone 13 strain at titers of 10(7.8 and 10(8.5 plaque forming units/mL, respectively. Disseminated infection and transmission rates were estimated 14-21 days following the exposure to the infectious blood-meal. We show that 14 days after exposure to WNV, all mosquito st developed a high disseminated infection and were able to excrete infectious saliva. However, only 69.2% of mosquito strains developed a disseminated infection with RVFV Clone 13 strain, and among them, 77.8% were able to deliver virus through saliva. Thus, Cx. pipiens from the Maghreb are efficient experimental vectors to transmit WNV and to a lesser extent, RVFV Clone 13 strain. The epidemiologic importance of our findings should be considered in the light of other parameters related to mosquito ecology and biology.

  6. Lessons learned from the West Valley spent nuclear fuel shipment within the United States

    International Nuclear Information System (INIS)

    Tyacke, M.J.; Anderson, T.

    2004-01-01

    This paper describes the lessons learned from the U.S. Department of Energy (DOE) transportation of 125 DOE-owned commercial spent nuclear fuel (SNF) assemblies by railroad from the West Valley Demonstration Project to the Idaho National Engineering and Environmental Laboratory (INEEL). On July 17, 2003, DOE made the largest single shipment of commercial SNF in the history of the United States. This was a highly visible and political shipment that used two specially designed Type B transportation and storage casks. This paper describes the background and history of the shipment. It discusses the technical challenges for licensing Type B packages for hauling large quantities of SNF, including the unique design features, testing and analysis. This paper also discusses the preshipment planning, preparations, coordination, route evaluation and selection, carrier selection and negotiations, security, inspections, tracking, and interim storage at the INEEL

  7. Early-Morning Flow Transition in a Valley in Low-Mountain Terrain Under Clear-Sky Conditions

    Science.gov (United States)

    Brötz, Björn; Eigenmann, Rafael; Dörnbrack, Andreas; Foken, Thomas; Wirth, Volkmar

    2014-07-01

    We investigate the evolution of the early-morning boundary layer in a low-mountain valley in south-western Germany during COPS (convective and orographically induced precipitation study) in summer 2007. The term low-mountain refers to a mountainous region with a relief of gentle slopes and with an absolute altitude that remains under a specified height (usually 1,500 m a.s.l.). A subset of 23 fair weather days from the campaign was selected to study the transition of the boundary-layer flow in the early morning. The typical valley atmosphere in the morning hours was characterized by a stable temperature stratification and a pronounced valley wind system. During the reversal period—called the low wind period—of the valley wind system (duration of 1-2 h), the horizontal flow was very weak and the conditions for free convection were fulfilled close to the ground. Ground-based sodar observations of the vertical wind show enhanced values of upward motion, and the corresponding statistical properties differ from those observed under windless convective conditions over flat terrain. Large-eddy simulations of the boundary-layer transition in the valley were conducted, and statistical properties of the simulated flow agree with the observed quantities. Spatially coherent turbulence structures are present in the temporal as well as in the ensemble mean analysis. Thus, the complex orography induces coherent convective structures at predictable, specific locations during the early-morning low wind situations. These coherent updrafts, found in both the sodar observations and the simulation, lead to a flux counter to the gradient of the stably stratified valley atmosphere and reach up to the heights of the surrounding ridges. Furthermore, the energy balance in the surface layer during the low wind periods is closed. However, it becomes unclosed after the onset of the valley wind. The partition into the sensible and the latent heat fluxes indicates that missing flux

  8. The cleanup of releases of radioactive materials from commercial low-level radioactive waste disposal sites: Whose jurisdiction?

    International Nuclear Information System (INIS)

    Hartnett, C.

    1994-01-01

    There exists an overlap between the Comprehensive Environmental Response, Compensation and Recovery Act (open-quotes CERCLAclose quotes) and the Atomic Energy Act (open-quotes AEAclose quotes) regarding the cleanup of releases of radioactive materials from commercial low-level radioactive waste sites. The Nuclear Regulatory Commission (open-quotes NRCclose quotes) and Agreement States have jurisdiction under the AEA, and the Environmental Protection Agency (open-quotes EPAclose quotes) has jurisdiction pursuant to CERCLA. This overlapping jurisdiction has the effect of imposing CERCLA liability on parties who have complied with AEA regulations. However, CERCLA was not intended to preempt existing legislation. This is evidenced by the federally permitted release exemption, which explicitly exempts releases from CERCLA liability pursuant to an AEA license. With little guidance as to the applicability of this exemption, it is uncertain whether CERCLA's liability is broad enough to supersede the Atomic Energy Act. It is the purpose of this paper to discuss the overlapping jurisdiction for the cleanup of releases of radioactive materials from commercial low-level radioactive waste disposal sites with particular emphasis on the cleanup at the Maxey Flats, West Valley and Sheffield sites

  9. Occupational Safety and Health Program at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    L. M. Calderon

    1999-01-01

    The West Valley Nuclear Services Co. LLC (WVNS) is committed to provide a safe, clean, working environment for employees, and to implement U.S. Department of Energy (DOE) requirements affecting worker safety. The West Valley Demonstration Project (WVDP) Occupational Safety and Health Program is designed to protect the safety, health, and well-being of WVDP employees by identifying, evaluating, and controlling biological, chemical, and physical hazards in the work place. Hazards are controlled within the requirements set forth in the reference section at the end of this report. It is the intent of the WVDP Occupational Safety and Health Program to assure that each employee is provided with a safe and healthy work environment. This report shows the logical path toward ensuring employee safety in planning work at the WVDP. In general, planning work to be performed safely includes: combining requirements from specific programs such as occupational safety, industrial hygiene, radiological control, nuclear safety, fire safety, environmental protection, etc.; including WVDP employees in the safety decision-making processes; pre-planning using safety support re-sources; and integrating the safety processes into the work instructions. Safety management principles help to define the path forward for the WVDP Occupational Safety and Health Program. Roles, responsibilities, and authority of personnel stem from these ideals. WVNS and its subcontractors are guided by the following fundamental safety management principles: ''Protection of the environment, workers, and the public is the highest priority. The safety and well-being of our employees, the public, and the environment must never be compromised in the aggressive pursuit of results and accomplishment of work product. A graded approach to environment, safety, and health in design, construction, operation, maintenance, and deactivation is incorporated to ensure the protection of the workers, the public, and the environment

  10. High-level waste solidification system for the Western New York Nuclear Service Center

    International Nuclear Information System (INIS)

    Carrell, J.R.; Holton, L.K.; Siemens, D.H.

    1982-01-01

    A preconceptual design for a waste conditioning and solidification system for the immobilization of the high-level liquid wastes (HLLW) stored at the Western New York Nuclear Service Center (WNYNSC), West Valley, New York was completed in 1981. The preconceptual design was conducted as part of the Department of Energy's (DOE) West Valley Demonstration Project, which requires a waste management demonstration at the WNYNSC. This paper summarizes the bases, assumptions, results and conclusions of the preconceptual design study

  11. COMPARATIVE ASPECTS OF EMPLOYMENT RATES BY EDUCATIONAL LEVEL IN SOUTH-WEST OLTENIA, ROMANIA AND EU

    Directory of Open Access Journals (Sweden)

    Marian Zaharia

    2013-06-01

    Full Text Available South West Region includes the counties of Dolj, Gorj, Meheninţi, Olt and Valcea and together West Region make up the Macro 4. The geographical, economic and social structural changes in the last two decades, and the economic crisis have led to some peculiarities of labor market in this development region. This paper provides a comparative analysis of employment rates by level of education in the EU (27, some EU countries, as in Romania during 2000-2011. It also analyzes the structure of employment in South West Oltenia development region, by age, level of education, sex and area, in 2010 compared to the structure of employment in Macro 4 and in some cases, with that recorded in Western region. Compared to developments in Romania and Macro 4 level, the employment rates and the structure of employees have certain characteristics. Thus features occur in age groups 55-64 years and especially in the age group over 64 years, the South West region these represents 9.05% of total employment, compared to only 1.74% in the West region. Also, in rural areas, the percentage of employed population 25 to 64 years with low levels of education and medium education level, reach 96.8% of the total, which is a weakness of this region.

  12. Groundwater discharge by evapotranspiration, Dixie Valley, west-central Nevada, March 2009-September 2011

    Science.gov (United States)

    Garcia, C. Amanda; Huntington, Jena M; Buto, Susan G.; Moreo, Michael T.; Smith, J. LaRue; Andraski, Brian J.

    2014-01-01

    With increasing population growth and land-use change, urban communities in the desert Southwest are progressively looking toward remote basins to supplement existing water supplies. Pending applications by Churchill County for groundwater appropriations from Dixie Valley, Nevada, a primarily undeveloped basin east of the Carson Desert, have prompted a reevaluation of the quantity of naturally discharging groundwater. The objective of this study was to develop a revised, independent estimate of groundwater discharge by evapotranspiration (ETg) from Dixie Valley using a combination of eddy-covariance evapotranspiration (ET) measurements and multispectral satellite imagery. Mean annual ETg was estimated during water years 2010 and 2011 at four eddy-covariance sites. Two sites were in phreatophytic shrubland dominated by greasewood, and two sites were on a playa. Estimates of total ET and ETg were supported with vegetation cover mapping, soil physics considerations, water‑level measurements from wells, and isotopic water sourcing analyses to allow partitioning of ETg into evaporation and transpiration components. Site-based ETg estimates were scaled to the basin level by combining remotely sensed imagery with field reconnaissance. Enhanced vegetation index and brightness temperature data were compared with mapped vegetation cover to partition Dixie Valley into five discharging ET units and compute basin-scale ETg. Evapotranspiration units were defined within a delineated groundwater discharge area and were partitioned as (1) playa lake, (2) playa, (3) sparse shrubland, (4) moderate-to-dense shrubland, and (5) grassland.

  13. Selection of the treatment method for the West Valley alkaline supernatant

    International Nuclear Information System (INIS)

    Carl, D.E.; Leonard, I.M.

    1987-02-01

    As part of the West Valley Demonstration Project (WVDP), th PUREX supernatant stored in Tank 8d-2 will be partially decontaminated before encapsulation in the final glass form. This report discusses selection of a method for removing Cs-137, the major radioactive ion in the supernatant. Methods considered were: (1) electrodialysis; (2) hyperfiltration; (3) precipitation with ferrocyanide, NaTPB, or PTA; (4) organic ion exchange using Cs-100 or a biologically derived media; (5) chelation using DeVoe/Holbein compostions; and (6) inorganic ion exchange using Durasil, natural zeolities, IE-95 or IE-96 media. Several different methods of using inorganic ion exchange media were also reviewed including (1) four columns with elution, and (2) two, three, or four columns without elution. After the careful evaluation of experimental data with all process constraints taken into account, the inorganic exchange media IE-96 (Linde Ionsiv IE-96 synthetic zeolite) was chosen for WVDP cesium recovery. IE-96 was chosen for the following reasons: high sorption rate, a decontamination factor (DF) over 1000, excellent exchange capacity at WVDP conditions, compatability with the glass formers used for borosilicate glass in direct melter feed applications, and a history of successful application in radio chemical seperation for waste streams. 34 refs., 29 figs., 27 tabs

  14. Provenance of radioactive placers, Big Meadow area, Valley and Boise Counties, Idaho

    International Nuclear Information System (INIS)

    Truesdell, D.; Wegrzyn, R.; Dixon, M.

    1977-02-01

    For many years, radioactive black-sand placers have been known to be present in the Bear Valley area of west-central Idaho. The largest of these is in Big Meadow, near the head of Bear Valley Creek. Presence of these placers suggests that low-grade uranium deposits might occur in rocks of the Idaho Batholith, adjacent to Bear Valley. This study was undertaken to locate the provenance of the radioactive minerals and to identify problems that need to be solved before undertaking further investigations. The principal radioactive minerals in these placers are monazite and euxenite. Other minerals include columbite, samarskite, fergusonite, xenotime, zircon, allanite, sphene, and brannerite. Only brannerite is a uranium mineral; the others contain uranium as an impurity in crystal lattices. Radiometric determinations of the concentration of uranium in stream sediments strongly indicate that the radioactive materials originate in an area drained by Casner and Howard Creeks. Equivalent uranium levels in bedrock are highest on the divide between Casner and Howard Creeks. However, this area is not known to contain low-grade uranium occurrences. Euxenite, brannerite, columbite-tantalite, samarskite, and allanite are the principal radioactive minerals that were identified in rock samples. These minerals were found in granite pegmatites, granites, and quartz monzonites. Appreciably higher equivalent uranium concentrations were also found within these rock types. The major problem encountered in this study was the difficulty in mapping bedrock because of extensive soil and glacial mantle. A partial solution to this problem might be the application of radon emanometry so that radiometric measurements would not be limited to the sparse bedrock samples

  15. TARZAN: A REMOTE TOOL DEPLOYMENT SYSTEM FOR THE WEST VALLEY DEVELOPMENT PROJECT

    International Nuclear Information System (INIS)

    Thompson, Bruce R.; Veri, James

    1999-01-01

    RedZone Robotics, Inc. undertook a development project to build Tarzan, a Remote Tool Delivery system to work inside nuclear waste storage tanks 8D-1 and 8D-2 at the West Valley Demonstration Project (WVDP). The removal of waste deposits from large storage tanks poses significant challenges during tank operations and closure. Limited access, the presence of chemical, radiological, and /or explosive hazards, and the need to deliver retrieval equipment to all regions of the tank exceed the capabilities of most conventional methods and equipment. Remotely operated devices for mobilizing and retrieving waste materials are needed. Some recent developments have been made in this area. However, none of these developments completely and cost-effectively address tanks that are congested with internal structures (e.g., support columns, cooling coils, fixed piping, etc.). The Tarzan system consists of the following parts: Locomotor which is deployed in the tank for inspection and cleanup; Hydraulic power unit providing system power for the locomotor and deployment unit; and Control system providing the man machine interface to control, coordinate and monitor the system. This document presents the final report on the Tarzan project

  16. Determination of Vertical Velocity Field of Southernmost Longitudinal Valley in Eastern Taiwan: A Joint Analysis of Leveling and GPS Measurements

    Directory of Open Access Journals (Sweden)

    Horng-Yue Chen

    2012-01-01

    Full Text Available In order to provide a detailed vertical velocity field in southernmost Longitudinal Valley where shows a complex three-fault system at the plate suture between Philippine Sea plate and Eurasia, we conducted leveling and GPS measurements, compiled data from previous surveys and combined them into a single data set. We compiled precise leveling results from 1984 to 2009, include 5 E-W trending and one N-S trending routes. We calculated the GPS vertical component from 10 continuous stations and from 89 campaign-mode stations from 1995 to 2010. The interseismic vertical rates are estimated by removing the co- and post-seismic effects of major large regional and nearby earthquakes. A stable continuous station S104 in the study area was adopted as the common reference station. We finally establish a map of the interseismic vertical velocity field. The interseismic vertical deformation was mainly accommodated by creeping/thrusting along two east-dipping strands of the three-fault system: the Luyeh and Lichi faults. The most dominant uplift of 30 mm yr-1 occurs at the hanging wall of the Lichi fault on the western Coastal Range. However the rate diminishes away from the fault in the hanging wall. The Quaternary tablelands inside of the Longitudinal Valley reveals uplift with a rate of 5 - 10 mm yr-1. Outside of the tablelands, the rest of the Longitudinal Valley flat area indicates substantial subsidence of -10 to -20 mm yr-1. Finally, it appears that the west-dipping blind fault under the eastern side of the Central Range does not play a significant role on interseismic deformation with subsidence rate of -5 to -10 mm yr-1.

  17. Geologic characterization report for the Paradox Basin Study Region, Utah Study Areas. Volume 6. Salt Valley

    International Nuclear Information System (INIS)

    1984-12-01

    Surface landforms in the Salt Valley Area are generally a function of the Salt Valley anticline and are characterized by parallel and subparallel cuestaform ridges and hogbacks and flat valley floors. The most prominent structure in the Area is the Salt Valley anticline. Erosion resulting from the Tertiary uplift of the Colorado Plateau led to salt dissolution and subsequent collapse along the crest of the anticline. Continued erosion removed the collapse material, forming an axial valley along the crest of the anticline. Paleozoic rocks beneath the salt bearing Paradox Formation consist of limestone, dolomite, sandstone, siltstone and shale. The salt beds of the Paradox Formation occur in distinct cycles separated by an interbed sequence of anhydrite, carbonate, and clastic rocks. The Paradox Formation is overlain by Pennsylvanian limestone; Permian sandstone; and Mesozoic sandstone, mudstone, conglomerate and shale. No earthquakes have been reported in the Area during the period of the historic record and contemporary seismicity appears to be diffusely distributed, of low level and small magnitude. The upper unit includes the Permian strata and upper Honaker Trail Formation. The current data base is insufficient to estimate ground-water flow rates and directions in this unit. The middle unit includes the evaporites in the Paradox Formation and no laterally extensive flow systems are apparent. The lower unit consists of the rocks below the Paradox Formation where permeabilities vary widely, and the apparent flow direction is toward the west. 108 refs., 39 figs., 9 tabs

  18. 27 CFR 9.66 - Russian River Valley.

    Science.gov (United States)

    2010-04-01

    ... Springs map. (22) Proceed 4.8 miles north-northwest along Mark West Springs Road, which becomes Porter Creek Road, to its intersection with Franz Valley Road, a light-duty road to the north of Porter Creek...

  19. Comparison of peak discharges among sites with and without valley fills for the July 8-9, 2001 flood in the headwaters of Clear Fork, Coal River basin, mountaintop coal-mining region, southern West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.; Brogan, Freddie D.

    2003-01-01

    The effects of mountaintop-removal mining practices on the peak discharges of streams were investigated in six small drainage basins within a 7-square-mile area in southern West Virginia. Two of the small basins had reclaimed valley fills, one basin had reclaimed and unreclaimed valley fills, and three basins did not have valley fills. Indirect measurements of peak discharge for the flood of July 8-9, 2001, were made at six sites on streams draining the small basins. The sites without valley fills had peak discharges with 10- to 25-year recurrence intervals, indicating that rainfall intensities and totals varied among the study basins. The flood-recurrence intervals for the three basins with valley fills were determined as though the peak discharges were those from rural streams without the influence of valley fills, and ranged from less than 2 years to more than 100 years.

  20. Ward Valley and the Federal Low-Level Radioactive Waste Policy Act

    International Nuclear Information System (INIS)

    Pasternak, A.D.

    1996-01-01

    In his State of the Union Address delivered on 23 January 1996, President Clinton said, speaking generally, open-quotes Passing a law - even the best possible law - is only a first step. The next step is to make it work.close quotes The president is right, of course; faithful execution of any law is the key. Unfortunately, this lesson appears lost on his own administration when it comes to making the Low-Level Radioactive Waste Policy Act work. That act is one of the most important environmental laws of the 1980s. It was designed by Congress and the state governors to assure both sufficient disposal capacity for low-level radioactive waste (LLRW) and regional equity in the siting of new disposal facilities. Former Congressman Morris Udall (D-Ariz.), who was chairman of the House Interior Committee and a congressional environmental leader, was author of the act. No state has done more to make the law work than California. No state has made more progress toward developing a new disposal facility for low-level radioactive waste as mandated by the act. But further progress, that is, actual construction and operation of a disposal facility, has been stymied by the federal administration, which has refused to convey federal desert lands to California for use as the site of the proposed disposal facility

  1. Development of analytical cell support for vitrification at the West Valley Demonstration Project. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Barber, F.H.; Borek, T.T.; Christopher, J.Z. [and others

    1997-12-01

    Analytical and Process Chemistry (A&PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A&PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrification campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A&PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A&PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in analysis turnaround time (TAT).

  2. Tracing groundwater with low-level detections of halogenated VOCs in a fractured carbonate-rock aquifer, Leetown Science Center, West Virginia, USA

    Science.gov (United States)

    Plummer, Niel; Sibrell, Philip L.; Casile, Gerolamo C.; Busenberg, Eurybiades; Hunt, Andrew G.; Schlosser, Peter

    2013-01-01

    Measurements of low-level concentrations of halogenated volatile organic compounds (VOCs) and estimates of groundwater age interpreted from 3H/3He and SF6 data have led to an improved understanding of groundwater flow, water sources, and transit times in a karstic, fractured, carbonate-rock aquifer at the Leetown Science Center (LSC), West Virginia. The sum of the concentrations of a set of 16 predominant halogenated VOCs (TDVOC) determined by gas chromatography with electron-capture detector (GC–ECD) exceeded that possible for air–water equilibrium in 34 of the 47 samples (median TDVOC of 24,800 pg kg−1), indicating that nearly all the water sampled in the vicinity of the LSC has been affected by addition of halogenated VOCs from non-atmospheric source(s). Leakage from a landfill that was closed and sealed nearly 20 a prior to sampling was recognized and traced to areas east of the LSC using low-level detection of tetrachloroethene (PCE), methyl chloride (MeCl), methyl chloroform (MC), dichlorodifluoromethane (CFC-12), and cis-1,2-dichloroethene (cis-1,2-DCE). Chloroform (CHLF) was the predominant VOC in water from domestic wells surrounding the LSC, and was elevated in groundwater in and near the Fish Health Laboratory at the LSC, where a leak of chlorinated water occurred prior to 2006. The low-level concentrations of halogenated VOCs did not exceed human or aquatic-life health criteria, and were useful in providing an awareness of the intrinsic susceptibility of the fractured karstic groundwater system at the LSC to non-atmospheric anthropogenic inputs. The 3H/3He groundwater ages of spring discharge from the carbonate rocks showed transient behavior, with ages averaging about 2 a in 2004 following a wet climatic period (2003–2004), and ages in the range of 4–7 a in periods of more average precipitation (2008–2009). The SF6 and CFC-12 data indicate older water (model ages of 10s of years or more) in the low-permeability shale of the Martinsburg

  3. West Valley Demonstration Project, Waste Management Area #3 -- Closure Alternative I

    Energy Technology Data Exchange (ETDEWEB)

    Marschke, Stephen F. [Environmental Measurements Laboratory (EML), New York, NY (United States)

    2000-06-30

    The Draft Environmental Impact Statement for the completion of the West Valley Demonstration Project and closure and/or long-term management of facilities at the Western New York Nuclear Service Center divided the site into Waste Management Areas (WMAs), and for each WMA, presented the impacts associated with five potential closure alternatives. This report focuses on WMA 3 (the High-Level Waste (HLW) Storage Area (Tanks 8D-1 and 8D-2), the Vitrification Facility and other facilities) and closure Alternative I (the complete removal of all structures, systems and components and the release of the area for unrestricted use), and reestimates the impacts associated with the complete removal of the HLW tanks, and surrounding facilities. A 32-step approach was developed for the complete removal of Tanks 8D-1 and 8D-2, the Supernatant Treatment System Support Building, and the Transfer Trench. First, a shielded Confinement Structure would be constructed to reduce the shine dose rate and to control radioactivity releases. Similarly, the tank heels would be stabilized to reduce potential radiation exposures. Next, the tank removal methodology would include: 1) excavation of the vault cover soil, 2) removal of the vault roof, 3) cutting off the tank’s top, 4) removal of the stabilized heel remaining inside the tank, 5) cutting up the tank’s walls and floor, 6) removal of the vault’s walls, the perlite blocks, and vault floor, and 7) radiation surveying and backfilling the resulting hole. After the tanks are removed, the Confinement Structure would be decontaminated and dismantled, and the site backfilled and landscaped. The impacts (including waste disposal quantities, emissions, work-effort, radiation exposures, injuries and fatalities, consumable materials used, and costs) were estimated based on this 32 step removal methodology, and added to the previously estimated impacts for closure of the other facilities within WMA 3 to obtain the total impacts from

  4. Sutter Buttes-the lone volcano in California's Great Valley

    Science.gov (United States)

    Hausback, Brain P.; Muffler, L.J. Patrick; Clynne, Michael A.

    2011-01-01

    The volcanic spires of the Sutter Buttes tower 2,000 feet above the farms and fields of California's Great Valley, just 50 miles north-northwest of Sacramento and 11 miles northwest of Yuba City. The only volcano within the valley, the Buttes consist of a central core of volcanic domes surrounded by a large apron of fragmental volcanic debris. Eruptions at the Sutter Buttes occurred in early Pleistocene time, 1.6 to 1.4 million years ago. The Sutter Buttes are not part of the Cascade Range of volcanoes to the north, but instead are related to the volcanoes in the Coast Ranges to the west in the vicinity of Clear Lake, Napa Valley, and Sonoma Valley.

  5. Ionospheric E–F valley observed by a sounding rocket at the low-latitude station Hainan

    Directory of Open Access Journals (Sweden)

    J. K. Shi

    2013-08-01

    Full Text Available According to the sounding rocket experiment conducted at Hainan ionospheric observatory (19.5° N, 109.1° E, a valley between the E layer and F layer in the ionospheric electron density profile is observed and presented. The sounding rocket was launched in the morning (06:15 LT on 7 May 2011, and the observed electron density profile outside the valley agrees with the simultaneous observation by the DPS-4 digisonde at the same station. The width of the observed valley was about 42 km, the depth almost 50%, and the altitude of the electron density minimum 123.5 km. This is the first observation of the E–F valley in the low-latitude region in the East Asian sector. The results are also compared with models, and the physical mechanism of the observed valley is discussed in this paper.

  6. Low-level waste management in the South. Task 4.2 - long-term care requirements

    International Nuclear Information System (INIS)

    1983-01-01

    This paper provides an analysis of the long-term care requirements of low-level radioactive waste disposal facilities. Among the topics considered are the technical requirements for long-term care, the experiences of the three inactive and three active commercial disposal facilities concerning perpetual care and maintenance, and the financial management of a perpetual care fund. In addition, certain recommendations for the establishment of a perpetual care fund are provided. The predominant method of disposing of low-level radioactive wastes is shallow land burial. After studying alternative methods of disposal, the U.S Nuclear Regulatory Commission (NRC) concluded that there are no compelling reasons for abandoning this disposal method. Of the 22 shallow land burial facilities in the U.S., the federal government maintains 14 active and two inactive disposal sites. There are three active (Barnwell, South Carolina; Hanford, Washington; and Beatty, Nevada) and three inactive commercial disposal facilities (Maxey Flats, Kentucky; Sheffield, Illinois; and West Valley, New York). The life of a typical facility can be broken into five phases: preoperational, operational, closure, postclosure observation and maintenance, and institutional control. Long-term care of a shallow land burial facility will begin with the disposal site closure phase and continue through the postclosure observation and maintenance and institutional control phases. Since the postclosure observation and maintenance phase will last about five years and the institutional control phase 100 years, the importance of a well planned long-term care program is apparent. 26 references, 1 table

  7. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.

    Science.gov (United States)

    Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  8. Makran Mountain Range, Indus River Valley, Pakistan, India

    Science.gov (United States)

    1984-01-01

    The enormous geologic pressures exerted by continental drift can be very well illustrated by the long northward curving parallel folded mountain ridges and valleys of the coastal Makran Range of Pakistan (27.0N, 66.0E). As a result of the collision of the northward bound Indian sub-continent into the Asian Continent, the east/west parallel range has been bent in a great northward arc and forming the Indus River valley at the interface of the collision.

  9. Preliminary design of the high-level waste canister storage system: Topical report for the period of January 1, 1987--September 30, 1987

    International Nuclear Information System (INIS)

    Peters, F.E.; Leap, D.R.

    1987-11-01

    The final stage of the West Valley solidification program will be to place the high-level waste canisters in interim storage until a federal repository is ready to receive them. The waste canisters will be stored in the largest former fuel reprocessing cell at West Valley modified for this purpose. This report provides a description of the preliminary design of the Waste Canister Storage Facility. 9 refs., 14 figs., 1 tab

  10. Radwaste challenge at Beaver Valley

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Duquesne Light Company met the problem of accumulating low-level radioactive waste at its Beaver Valley nuclear plant with an aggressive program to reduce the quantity of contaminated material and demonstrate that the plant was improving its radiological protection. There was also an economic incentive to reduce low-level wastes. The imaginative campaign involved workers in the reduction effort through training and the adoption of practical approaches to reducing the amount of material exposed to radiation that include sorting trash by radiation level and a compacting system. 4 figures

  11. The Holocene sedimentary history of the Kangerlussuaq Fjord-valley fill, West Greenland

    DEFF Research Database (Denmark)

    Storms, Joep E.A.; de Winter, Ilja L.; Overeem, Irina

    2012-01-01

    valleys. Based on published and new land- and sea-based geophysical data, radiocarbon dates and geological observations we have characterized the infill and reconstructed the sedimentation history during the Holocene. Based on a revised sea level curve and data presented in this paper we defined three...... depocenters by a flood plain which transferred sediment from the GIS to the Keglen delta. Ongoing sea level fall due to glacio-isostastic uplift combined with a gradually cooler and dryer climate resulted in terrace formation along the Watson River flood plain. Around 4000 yr BP, the GIS margin reached its...... most landward location and began to advance to its present location. The final phase (Phase III; channels...

  12. Onsite storage facility for low level radwaste

    International Nuclear Information System (INIS)

    Maxwell, M.G.

    1984-01-01

    The Tennessee Valley Authority (TVA) has designed and constructed an onsite storage facility for low level radwaste (LLRW) at its Browns Ferry Nuclear Plant in northern Alabama. The paper addresses the function of this facility and provides a complete description of the reinforced concrete storage modules which are the principal structural elements of the facility. The loads and loading combinations for the design of the storage modules are defined to include the foundation design parameters. Other aspects of the modules that are addressed are; the structural roof elements that provide access to the modules, shielding requirements for the LLRW, and tornado missile considerations

  13. Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 3, May-June 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    This issue includes the following articles: Vermont ratifies Texas compact; Pennsylvania study on rates of decay for classes of low-level radioactive waste; South Carolina legislature adjourns without extending access to Barnwell for out-of-region generators; Southeast Compact Commission authorizes payments for facility development, also votes on petitions, access contracts; storage of low-level radioactive waste at Rancho Seco removed from consideration; plutonium estimates for Ward Valley, California; judgment issued in Ward Valley lawsuits; Central Midwest Commission questions court`s jurisdiction over surcharge rebates litigation; Supreme Court decides commerce clause case involving solid waste; parties voluntarily dismiss Envirocare case; appellate court affirms dismissal of suit against Central Commission; LLW Forum mixed waste working group meets; US EPA Office of Radiation and Indoor Air rulemakings; EPA issues draft radiation site cleanup regulation; EPA extends mixed waste enforcement moratorium; and NRC denies petition to amend low-level radioactive waste classification regulations.

  14. Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 3, May-June 1994

    International Nuclear Information System (INIS)

    1994-06-01

    This issue includes the following articles: Vermont ratifies Texas compact; Pennsylvania study on rates of decay for classes of low-level radioactive waste; South Carolina legislature adjourns without extending access to Barnwell for out-of-region generators; Southeast Compact Commission authorizes payments for facility development, also votes on petitions, access contracts; storage of low-level radioactive waste at Rancho Seco removed from consideration; plutonium estimates for Ward Valley, California; judgment issued in Ward Valley lawsuits; Central Midwest Commission questions court's jurisdiction over surcharge rebates litigation; Supreme Court decides commerce clause case involving solid waste; parties voluntarily dismiss Envirocare case; appellate court affirms dismissal of suit against Central Commission; LLW Forum mixed waste working group meets; US EPA Office of Radiation and Indoor Air rulemakings; EPA issues draft radiation site cleanup regulation; EPA extends mixed waste enforcement moratorium; and NRC denies petition to amend low-level radioactive waste classification regulations

  15. Photo-induced spin and valley-dependent Seebeck effect in the low-buckled Dirac materials

    Science.gov (United States)

    Mohammadi, Yawar

    2018-04-01

    Employing the Landauer-Buttiker formula we investigate the spin and valley dependence of Seebeck effect in low-buckled Dirac materials (LBDMs), whose band structure are modulated by local application of a gate voltage and off-resonant circularly polarized light. We calculate the charge, spin and valley Seebeck coefficients of an irradiated LBDM as functions of electronic doping, light intensity and the amount of the electric field in the linear regime. Our calculation reveal that all Seebeck coefficients always shows an odd features with respect to the chemical potential. Moreover, we show that, due to the strong spin-orbit coupling in the LBDMs, the induced thermovoltage in the irradiated LBDMs is spin polarized, and can also become valley polarized if the gate voltage is applied too. It is also found that the valley (spin) polarization of the induced thermovoltage could be inverted by reversing the circular polarization of light or reversing the direction the electric field (only by reversing the circular polarization of light).

  16. Geological literature on the San Joaquin Valley of California

    Science.gov (United States)

    Maher, J.C.; Trollman, W.M.; Denman, J.M.

    1973-01-01

    The following list of references includes most of the geological literature on the San Joaquin Valley and vicinity in central California (see figure 1) published prior to January 1, 1973. The San Joaquin Valley comprises all or parts of 11 counties -- Alameda, Calaveras, Contra Costa, Fresno, Kern, Kings, Madera, Merced, San Joaquin, Stanislaus, and Tulare (figure 2). As a matter of convenient geographical classification the boundaries of the report area have been drawn along county lines, and to include San Benito and Santa Clara Counties on the west and Mariposa and Tuolumne Counties on the east. Therefore, this list of geological literature includes some publications on the Diablo and Temblor Ranges on the west, the Tehachapi Mountains and Mojave Desert on the south, and the Sierra Nevada Foothills and Mountains on the east.

  17. Valley Zeeman splitting of monolayer MoS2 probed by low-field magnetic circular dichroism spectroscopy at room temperature

    Science.gov (United States)

    Wu, Y. J.; Shen, C.; Tan, Q. H.; Shi, J.; Liu, X. F.; Wu, Z. H.; Zhang, J.; Tan, P. H.; Zheng, H. Z.

    2018-04-01

    The valley Zeeman splitting of monolayer two-dimensional (2D) materials in the magnetic field plays an important role in the valley and spin manipulations. In general, a high magnetic field (6-65 T) and low temperature (2-30 K) were two key measurement conditions to observe the resolvable valley Zeeman splitting of monolayer 2D materials in current reported experiments. In this study, we experimentally demonstrate an effective measurement scheme by employing magnetic circular dichroism (MCD) spectroscopy, which enables us to distinguish the valley Zeeman splitting under a relatively low magnetic field of 1 T at room temperature. MCD peaks related to both A and B excitonic transitions in monolayer MoS2 can be clearly observed. Based on the MCD spectra under different magnetic fields (-3 to 3 T), we obtained the valley Zeeman splitting energy and the g-factors of A and B excitons, respectively. Our results show that MCD spectroscopy is a high-sensitive magneto-optical technique to explore the valley and spin manipulation in 2D materials.

  18. Waste analysis plan for the low-level burial grounds

    International Nuclear Information System (INIS)

    Barnes, B.M.

    1996-01-01

    This waste analysis plan (WAP) has been prepared for the Low-Level Burial Grounds that are located in the 200 East and 200 West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize and obtain and analyze representative samples of waste managed at this unit

  19. Waste analysis plan for the low-level burial grounds

    Energy Technology Data Exchange (ETDEWEB)

    Haas, C.R.

    1996-09-19

    This waste analysis plan (WAP) has been prepared for the Low-Level Burial Grounds (LLBG) which are located in the 200 East and West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize, and obtain and analyze representative samples of waste managed at this unit.

  20. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    Science.gov (United States)

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    levels have decreased from as high as 1830 m to 1806 m above sea level since the early Pleistocene due to episodic downcutting by the Bear River. The oldest exposed lacustrine sediments in Bear Lake Valley are probably of Pliocene age. Several high-lake phases during the early and middle Pleistocene were separated by episodes of fluvial incision. Threshold incision was not constant, however, because lake highstands of as much as 8 m above bedrock threshold level resulted from aggradation and possibly landsliding at least twice during the late-middle and late Pleistocene. Abandoned stream channels within the low-lying, fault-bounded region between Bear Lake and the modern Bear River show that Bear River progressively shifted northward during the Holocene. Several factors including faulting, location of the fluvial fan, and channel migration across the fluvial fan probably interacted to produce these changes in channel position. Late Quaternary slip rates on the east Bear Lake fault zone are estimated by using the water-level history of Bear Lake, assuming little or no displacement on dated deposits on the west side of the valley. Uplifted lacustrine deposits representing Pliocene to middle Pleistocene highstands of Bear Lake on the footwall block of the east Bear Lake fault zone provide dramatic evidence of long-term slip. Slip rates during the late Pleistocene increased from north to south along the east Bear Lake fault zone, consistent with the tectonic geomorphology. In addition, slip rates on the southern section of the fault zone have apparently decreased over the past 50 k.y. Copyright ?? 2009 The Geological Society of America.

  1. Quaternary tectonics and basin history of Pahrump and Stewart Valleys, Nevada and California

    International Nuclear Information System (INIS)

    Hoffard, J.L.

    1991-05-01

    The Pahrump fault system is an active fault system located in Pahrump and Stewart Valleys, Nevada and California, in the southern part of the Basin and Range Province. This system is 50 km long by 30 km wide and is comprised of three fault zones: the right-lateral East Nopah fault zone, the right-oblique Pahrump Valley fault zone, and the normal West Spring Mountains fault zone. All three zones have geomorphic evidence for late Quaternary activity. Analysis of active fault patterns and seismic reflection lines suggests that the Pahrump basin has had a two-stage genesis, an early history associated with a period of low angle detachment faulting probably active 10-15 Ma, and a more recent history related to the present dextral shear system, probably active post-4 Ma

  2. Faulting at Mormon Point, Death Valley, California: A low-angle normal fault cut by high-angle faults

    Science.gov (United States)

    Keener, Charles; Serpa, Laura; Pavlis, Terry L.

    1993-04-01

    New geophysical and fault kinematic studies indicate that late Cenozoic basin development in the Mormon Point area of Death Valley, California, was accommodated by fault rotations. Three of six fault segments recognized at Mormon Point are now inactive and have been rotated to low dips during extension. The remaining three segments are now active and moderately to steeply dipping. From the geophysical data, one active segment appears to offset the low-angle faults in the subsurface of Death Valley.

  3. Scaled Vitrification System III (SVS III) Process Development and Laboratory Tests at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Jain, V.; Barnes, S.M.; Bindi, B.G.; Palmer, R.A.

    2000-01-01

    At the West Valley Demonstration Project (WVDP),the Vitrification Facility (VF)is designed to convert the high-level radioactive waste (HLW)stored on the site to a stable glass for disposal at a Department of Energy (DOE)-specified federal repository. The Scaled Vitrification System III (SVS-III)verification tests were conducted between February 1995 and August 1995 as a supplemental means to support the vitrification process flowsheet, but at only one seventh the scale.During these tests,the process flowsheet was refined and optimized. The SVS-III test series was conducted with a focus on confirming the applicability of the Redox Forecasting Model, which was based on the Index of Feed Oxidation (IFO)developed during the Functional and Checkout Testing of Systems (FACTS)and SVS-I tests. Additional goals were to investigate the prototypical feed preparation cycle and test the new target glass composition. Included in this report are the basis and current designs of the major components of the Scale Vitrification System and the results of the SVS-III tests.The major subsystems described are the feed preparation and delivery, melter, and off-gas treatment systems. In addition,the correlation between the melter's operation and its various parameters;which included feed rate,cold cap coverage,oxygen reduction (redox)state of the glass,melter power,plenum temperature,and airlift analysis;were developed

  4. Development of analytical cell support for vitrification at the West Valley Demonstration Project. Topical report

    International Nuclear Information System (INIS)

    Barber, F.H.; Borek, T.T.; Christopher, J.Z.

    1997-12-01

    Analytical and Process Chemistry (A ampersand PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A ampersand PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrification campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A ampersand PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A ampersand PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in

  5. 27 CFR 9.41 - Lancaster Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Lancaster Valley. 9.41 Section 9.41 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... through the town of Gap and along Mine Ridge to the 76°07′30″ west longitude line in Paradise Township. (9...

  6. Water resources of Parowan Valley, Iron County, Utah

    Science.gov (United States)

    Marston, Thomas M.

    2017-08-29

    Parowan Valley, in Iron County, Utah, covers about 160 square miles west of the Red Cliffs and includes the towns of Parowan, Paragonah, and Summit. The valley is a structural depression formed by northwest-trending faults and is, essentially, a closed surface-water basin although a small part of the valley at the southwestern end drains into the adjacent Cedar Valley. Groundwater occurs in and has been developed mainly from the unconsolidated basin-fill aquifer. Long-term downward trends in groundwater levels have been documented by the U.S. Geological Survey (USGS) since the mid-1950s. The water resources of Parowan Valley were assessed during 2012 to 2014 with an emphasis on refining the understanding of the groundwater and surface-water systems and updating the groundwater budget.Surface-water discharge of five perennial mountain streams that enter Parowan Valley was measured from 2013 to 2014. The total annual surface-water discharge of the five streams during 2013 to 2014 was about 18,000 acre-feet (acre-ft) compared to the average annual streamflow of about 22,000 acre-ft from USGS streamgages operated on the three largest of these streams from the 1940s to the 1980s. The largest stream, Parowan Creek, contributes more than 50 percent of the annual surface-water discharge to the valley, with smaller amounts contributed by Red, Summit, Little, and Cottonwood Creeks.Average annual recharge to the Parowan Valley groundwater system was estimated to be about 25,000 acre-ft from 1994 to 2013. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall on the Markagunt Plateau east of the valley. Smaller amounts of recharge occur as infiltration of streamflow and unconsumed irrigation water near the east side of the valley on alluvial fans associated with mountain streams at the foot of the Red Cliffs. Subsurface flow from the mountain block to the east of the valley is a significant source of groundwater recharge to the basin-fill aquifer

  7. Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada

    International Nuclear Information System (INIS)

    Gibson, J.D.; Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A.

    1992-01-01

    Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques

  8. Use of Dual-Polarization Radar Variables to Assess Low-Level Wind Shear in Severe Thunderstorm Near-storm Environments in the Tennessee Valley

    Science.gov (United States)

    Crowe, Christina C.; Schultz, Christopher J.; Kumjian, Matthew; Carey, Lawerence D.; Petersen, Walter A.

    2011-01-01

    The upgrade of the National Weather Service (NWS) network of S ]band dual-polarization radars is currently underway, and the incorporation of polarimetric information into the real ]time forecasting process will enhance the forecaster fs ability to assess thunderstorms and their near ]storm environments. Recent research has suggested that the combination of polarimetric variables differential reflectivity (ZDR) and specific differential phase (KDP) can be useful in the assessment of low level wind shear within a thunderstorm. In an environment with strong low ]level veering of the wind, ZDR values will be largest along the right inflow edge of the thunderstorm near a large gradient in horizontal reflectivity (indicative of large raindrops falling with a relative lack of smaller drops), and take the shape of an arc. Meanwhile, KDP values, which are proportional to liquid water content and indicative of a large number of smaller drops, are maximized deeper into the forward flank precipitation shield than the ZDR arc as the smaller drops are being advected further from the updraft core by the low level winds than the larger raindrops. Using findings from previous work, three severe weather events that occurred in North Alabama were examined in order to assess the utility of these signatures in determining the potential for tornadic activity. The first case is from October 26, 2010, where a large number of storms indicated tornadic potential from a standard reflectivity and velocity analysis but very few storms actually produced tornadoes. The second event is from February 28, 2011, where tornadic storms were present early on in the event, but as the day progressed, the tornado threat transitioned to a high wind threat. The third case is from April 27, 2011, where multiple rounds of tornadic storms ransacked the Tennessee Valley. This event provides a dataset including multiple modes of tornadic development, including QLCS and supercell structures. The overarching goal

  9. Permeability of covers over low-level radioactive-waste burial trenches, West Valley, Cattaraugus County, New York. Water resources investigations (final) 1977-78

    International Nuclear Information System (INIS)

    Prudic, D.E.

    1980-09-01

    Gas pressure in the unsaturated parts of radioactive waste burial trenches responds to fluctuations in atmospheric pressure. Measurements of atmospheric pressure and the differential pressure between the trench gas and the atmosphere on several dates in 1977-78 were used to calculate hydraulic conductivity of the reworked silty-clay till that covers the trenches. Generally the hydraulic conductivity of covers over trenches that had a history of rapidly rising water levels are higher, at least seasonally, than covers over trenches in which the water level remained low. This supports the hypothesis that recharge occurs through the cover, presumably through fractures caused by desiccation and (or) subsidence. Hydraulic conductivities of the cover as calculated from gas- and air-pressure measurements at several trenches were 100 to 1,000 times greater than those calculated from the increase in water levels in the trenches. This difference suggests that the values obtained from the air- and gas-pressure measurements need to be adjusted and at present are not directly usable in ground-water flux calculations. The difference in magnitude of values may be caused by rapidly decreasing hydraulic conductivity during periods of recharge or by the clogging of fractures with sediment washed in by runoff

  10. Geotechnical analysis of soil samples and study of a research trench at the Western New York Nuclear Service Center, West Valley, New York. Topical report 1 Oct 78-14 Feb 80

    International Nuclear Information System (INIS)

    Hoffman, V.C.; Fickies, R.H.; Dana, R.H. Jr; Ragan, V.

    1980-10-01

    This report is the result of a study which was the second part of an investigation, involving geotechnical analysis of soil samples from the West Valley burial site with respect to containment capability. In general, the results of standard engineering tests in soil from the West Valley site confirm the results predicted by testing performed during the first part of this study in 1977. The soil was submerged for almost 2 years and samples showed some increase in moisture content accompanied by a decrease in unit weight. Changes in the plasticity of the soil during this period were not significant, however, shrinkage limits were significantly different from earlier tests. This is probably attributable to a difference in testing procedure. The minimum developed cohesion for the soil in the wall Research Trench 111 was estimated to be 18.9kN/sq meters. In shallow softened soils the developed cohesion at failure under submerged conditions was estimated to be 2.54N/sq meters and failure under sudden drawdown conditions was estimated to be 4.79kN/sq meters

  11. Low-level waste workshops. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    The Low-Level Radioactive Waste Policy Act of 1980 specifies that each state is responsible for the disposal of the low-level waste which is generated within its boundaries. The Act states that such wastes can be most safely and efficiently managed on a regional basis through compacts. It also defines low-level waste as waste which is not classified as high-level radioactive waste, transuranic waste, spent nuclear fuel, or by-product material as defined in the Atomic Energy Act of 1954. The Policy Act also stipulates that regional agreements or compacts shall not be applicable to the transportation, management, or disposal of low-level radioactive waste from atomic energy defense activities or federal research and development activities. It also specifies that agreements or compacts shall take affect on January 1, 1986, upon Congressional approval. In February 1983, the US Department of Energy awarded a grant to the Council of State Governments' Midwestern Office. The grant was to be used to fund workshops for legislation on low-level radioactive waste issues. The purpose of the workshops was to provide discussion specifically on the Midwest Interstate Compact on Low-Level Radioactive Waste. Legislators from the states which were eligible to join the compact were invited: Delaware, Illinois, Indiana, Iowa, Kentucky, Maryland, Michigan, Minnesota, Missouri, North Dakota, Ohio, South Dakota and Wisconsin. Virginia, Kansas and Nebraska were also eligible but had joined other compacts. Consequently, they weren't invited to the workshops. The Governor's office of West Virginia expressed interest in the compact, and its legislators were invited to attend a workshop. Two workshops were held in March. This report is a summary of the proceedings which details the concerns of the compact and expresses the reasoning behind supporting or not supporting the compact

  12. 75 FR 13808 - Missouri & Valley Park Railroad Corporation-Discontinuance of Service Exemption-in St Louis...

    Science.gov (United States)

    2010-03-23

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [STB Docket No. AB-1057X] Missouri & Valley Park Railroad Corporation--Discontinuance of Service Exemption--in St Louis County, MO On March 3... Subdivision between milepost 18.36 and milepost 20.50, near West Valley Park, St. Louis County, MO.\\2\\ The...

  13. Landform Evolution of the Zanskar Valley, Ladakh Himalaya.

    Science.gov (United States)

    Chahal, P.; Kumar, A.; Sharma, P.; Sundriyal, Y.; Srivastava, P.

    2017-12-01

    Zanskar River flow from south-west to north-east, perpendicularly through Higher Himalayan crystalline sequences, Tethyan sedimentary sequences, and Indus Molasses; and finally merge with the Indus River at Nimu. Geologically, the Indus valley is bounded by Ladakh Batholith in the north and highly folded and thrusted Zanskar mountain ranges in the south. Sedimentary sequences of Zanskar ranges are largely of continental origin, which were uplifted and deformed via several north verging thrusts, where Zanskar counter thrust, Choksti and Indus-Bazgo thrusts are important thrust zone, and there is atleast 36 km of crustal shortening in the Zanskar section which continued from middle Miocene to the late Pleistocene. This shortening is accommodated mainly by north or north-east directed Zanskar backthrusts. Two major tributaries of Zanskar: Tsrapchu and Doda, flow in the headwaters, along the strike of South Tibetan Detachment System (STDs), an east-west trending regional fault. The present study incorporate field sedimentology, geomorphology and chronology of landform associated with Zanskar valley. In the upper Zanskar, alluvial fan, valley fill and strath terraces configured the major landforms with paleo-lake deposits­­­ in the area between the fans. The lower catchment, at the confluence of Zanskar and Indus rivers, exhibit mainly valley fill terraces and strath terraces. Chronology suggests diachronous aggradation in the upper and lower Zanskar catchments. In the upper Zanskar large scale valley aggradation took place with simultaneously fan progradation and flooding events from 45-15 ka. Luminescence chronology of the lower Zanskar indicates aggradation from 145-55 ka and 18-12 ka. The two aggradation basins are separated by a deep V-shaped gorge which is approximately 60 km long. The longitudinal profile of the Zanskar River shows several local convexities marking knick point zone, which suggests tectonically controlled topography.

  14. Experimental transmission of West Nile Virus and Rift Valley Fever Virus by Culex pipiens from Lebanon.

    Directory of Open Access Journals (Sweden)

    Renée Zakhia

    2018-01-01

    Full Text Available West Nile virus (WNV and Rift Valley fever virus (RVFV are two emerging arboviruses transmitted by Culex pipiens species that includes two biotypes: pipiens and molestus. In Lebanon, human cases caused by WNV and RVFV have never been reported. However, the introduction of these viruses in the country is likely to occur through the migratory birds and animal trades. In this study, we evaluated the ability of Cx. pipiens, a predominant mosquito species in urban and rural regions in Lebanon, to transmit WNV and RVFV. Culex egg rafts were collected in the West Bekaa district, east of Lebanon and adult females of Cx. pipiens were experimentally infected with WNV and RVFV Clone 13 strain at titers of 1.6×108 and 1.33×107 plaque forming units (PFU/mL, respectively. We estimated viral infection, dissemination and transmission at 3, 7, 14 and 19 days post infection (dpi. Results showed that infection was higher for WNV than for RVFV from 3 dpi to 19 dpi. Viral dissemination and transmission started from 3 dpi for WNV; and only from 19 dpi for RVFV. Moreover, Cx. pipiens were able to excrete in saliva a higher number of viral particles of WNV (1028 ± 405 PFU/saliva at 19 dpi than RVFV (42 PFU/saliva at 19 dpi. Cx. pipiens from Lebanon are efficient experimental vectors of WNV and to a lower extent, RVFV. These findings should stimulate local authorities to establish an active entomological surveillance in addition to animal surveys for both viruses in the country.

  15. Response of the Apodi-Mossoró estuary-incised valley system (NE Brazil to sea-level fluctuations

    Directory of Open Access Journals (Sweden)

    Helenice Vital

    2010-01-01

    Full Text Available This study focuses on the Quaternary sea level changes in the Apodi-Mossoró Estuary and adjacent shelf, Northeastern Brazil, based on the analysis of high-resolution seismic profiles, integrated with echosounder, SRTM and satellite image data. We use these data to develop a relative stratigraphy. An incised-valley extending from the Apodi-Mossoró Estuary onto the shelf dominates the investigated area. In very shallow waters (down to 10 m depth the channel lies mainly in a NW-SE direction, changing to NE-SW in waters below10 m, in the form of a J-shaped valley. The southern flank of the shallow channel presents an abrupt morphology, probably determined by a residual scarp due to neotectonic reactivation of a pre-existing fault. This incised-valley can be correlated with a former river valley formed during the late Pleistocene fall in sea-level. The base-level change related to this drop in sea level can be regionally expressed on seismic lines as a laterally-continuous stratigraphic surface named Horizon I, interpreted as representing the sub-aerial exposure of the continental shelf. Many incised valleys were excavated on this exposed shelf, including that of the Apodi-Mossoró Estuary and its incised valley system. This incised valley has lain buried since the Holocene transgression. The Holocene sediments present sub-horizontal layers, or they have filled the incised valley with oblique features.Este estudo utiliza a integração de dados sísmicos de alta resolução, batimétricos, SRTM e imagens de satélite para desenvolvimento da estratigrafia relativa visando entender as variações do nível do mar durante o Quaternário no estuário do rio Apodi-Mossoró e plataforma adjacente, nordeste do Brasil. A principal feição identificada foi um canal submerso, na plataforma interna, parcialmente preenchido, provavelmente relacionado com o sistema de vales incisos formado durante o rebaixamento do nível do mar no Pleistoceno. O canal

  16. Siting a low-level radioactive waste disposal facility in California

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.

    1991-01-01

    US Ecology is the State of California's designee to site, develop and operate a low-level radioactive waste disposal facility. In March 1988, a site in the Ward Valley of California's Mojave Desert was chosen for development. Strong local community support has been expressed for the site. US Ecology anticipates licensing and constructing a facility to receive waste by early 1991. This schedule places California well ahead of the siting milestones identified in Federal law. (author) 1 fig., 2 refs

  17. Phase 1 Characterization sampling and analysis plan West Valley demonstration project.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. L. (Environmental Science Division)

    2011-06-30

    The Phase 1 Characterization Sampling and Analysis Plan (CSAP) provides details about environmental data collection that will be taking place to support Phase 1 decommissioning activities described in the Phase 1 Decommissioning Plan for the West Valley Demonstration Project, Revision 2 (Phase I DP; DOE 2009). The four primary purposes of CSAP data collection are: (1) pre-design data collection, (2) remedial support, (3) post-remediation status documentation, and (4) Phase 2 decision-making support. Data collection to support these four main objectives is organized into two distinct data collection efforts. The first is data collection that will take place prior to the initiation of significant Phase 1 decommissioning activities (e.g., the Waste Management Area [WMA] 1 and WMA 2 excavations). The second is data collection that will occur during and immediately after environmental remediation in support of remediation activities. Both data collection efforts have a set of well-defined objectives that encompass the data needs of the four main CSAP data collection purposes detailed in the CSAP. The main body of the CSAP describes the overall data collection strategies that will be used to satisfy data collection objectives. The details of pre-remediation data collection are organized by WMA. The CSAP contains an appendix for each WMA that describes the details of WMA-specific pre-remediation data collection activities. The CSAP is intended to expand upon the data collection requirements identified in the Phase 1 Decommissioning Plan. The CSAP is intended to tightly integrate with the Phase 1 Final Status Survey Plan (FSSP). Data collection described by the CSAP is consistent with the FSSP where appropriate and to the extent possible.

  18. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Pedersen, Steffen Hindborg

    2017-01-01

    Widespread application of thermoelectric devices for waste heat recovery requires low-cost high-performance materials. The currently available n-type thermoelectric materials are limited either by their low efficiencies or by being based on expensive, scarce or toxic elements. Here we report a low-cost...... because of the multi-valley band behaviour dominated by a unique near-edge conduction band with a sixfold valley degeneracy. This makes Te-doped Mg3Sb1.5Bi0.5 a promising candidate for the low- and intermediate-temperature thermoelectric applications....

  19. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plant, West Virginia Numerical Simulation and Risk Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2008-03-31

    A series of numerical simulations of carbon dioxide (CO{sub 2}) injection were conducted as part of a program to assess the potential for geologic sequestration in deep geologic reservoirs (the Rose Run and Copper Ridge formations), at the American Electric Power (AEP) Mountaineer Power Plant outside of New Haven, West Virginia. The simulations were executed using the H{sub 2}O-CO{sub 2}-NaCl operational mode of the Subsurface Transport Over Multiple Phases (STOMP) simulator (White and Oostrom, 2006). The objective of the Rose Run formation modeling was to predict CO{sub 2} injection rates using data from the core analysis conducted on the samples. A systematic screening procedure was applied to the Ohio River Valley CO{sub 2} storage site utilizing the Features, Elements, and Processes (FEP) database for geological storage of CO{sub 2} (Savage et al., 2004). The objective of the screening was to identify potential risk categories for the long-term geological storage of CO{sub 2} at the Mountaineer Power Plant in New Haven, West Virginia. Over 130 FEPs in seven main classes were assessed for the project based on site characterization information gathered in a geological background study, testing in a deep well drilled on the site, and general site conditions. In evaluating the database, it was apparent that many of the items were not applicable to the Mountaineer site based its geologic framework and environmental setting. Nine FEPs were identified for further consideration for the site. These FEPs generally fell into categories related to variations in subsurface geology, well completion materials, and the behavior of CO{sub 2} in the subsurface. Results from the screening were used to provide guidance on injection system design, developing a monitoring program, performing reservoir simulations, and other risk assessment efforts. Initial work indicates that the significant FEPs may be accounted for by focusing the storage program on these potential issues. The

  20. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado

    Science.gov (United States)

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate E.; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a thin, liquefied

  1. 27 CFR 9.216 - Upper Mississippi River Valley.

    Science.gov (United States)

    2010-04-01

    ...), east of St. Paul at Oakbury in Washington County. From the beginning point, proceed east on Interstate... Winnebago County to U.S. Highway 20 at Cherry Valley; then (6) Proceed west on U.S. Highway 20 to Illinois...), south of St. Paul; then (15) Follow Interstate Highway 494 (beltway) northeast into Washington County...

  2. Combining hydrology and mosquito population models to identify the drivers of Rift Valley fever emergence in semi-arid regions of West Africa.

    Science.gov (United States)

    Soti, Valérie; Tran, Annelise; Degenne, Pascal; Chevalier, Véronique; Lo Seen, Danny; Thiongane, Yaya; Diallo, Mawlouth; Guégan, Jean-François; Fontenille, Didier

    2012-01-01

    Rift Valley fever (RVF) is a vector-borne viral zoonosis of increasing global importance. RVF virus (RVFV) is transmitted either through exposure to infected animals or through bites from different species of infected mosquitoes, mainly of Aedes and Culex genera. These mosquitoes are very sensitive to environmental conditions, which may determine their presence, biology, and abundance. In East Africa, RVF outbreaks are known to be closely associated with heavy rainfall events, unlike in the semi-arid regions of West Africa where the drivers of RVF emergence remain poorly understood. The assumed importance of temporary ponds and rainfall temporal distribution therefore needs to be investigated. A hydrological model is combined with a mosquito population model to predict the abundance of the two main mosquito species (Aedes vexans and Culex poicilipes) involved in RVFV transmission in Senegal. The study area is an agropastoral zone located in the Ferlo Valley, characterized by a dense network of temporary water ponds which constitute mosquito breeding sites. The hydrological model uses daily rainfall as input to simulate variations of pond surface areas. The mosquito population model is mechanistic, considers both aquatic and adult stages and is driven by pond dynamics. Once validated using hydrological and entomological field data, the model was used to simulate the abundance dynamics of the two mosquito species over a 43-year period (1961-2003). We analysed the predicted dynamics of mosquito populations with regards to the years of main outbreaks. The results showed that the main RVF outbreaks occurred during years with simultaneous high abundances of both species. Our study provides for the first time a mechanistic insight on RVFV transmission in West Africa. It highlights the complementary roles of Aedes vexans and Culex poicilipes mosquitoes in virus transmission, and recommends the identification of rainfall patterns favourable for RVFV amplification.

  3. Combining hydrology and mosquito population models to identify the drivers of Rift Valley fever emergence in semi-arid regions of West Africa.

    Directory of Open Access Journals (Sweden)

    Valérie Soti

    Full Text Available BACKGROUND: Rift Valley fever (RVF is a vector-borne viral zoonosis of increasing global importance. RVF virus (RVFV is transmitted either through exposure to infected animals or through bites from different species of infected mosquitoes, mainly of Aedes and Culex genera. These mosquitoes are very sensitive to environmental conditions, which may determine their presence, biology, and abundance. In East Africa, RVF outbreaks are known to be closely associated with heavy rainfall events, unlike in the semi-arid regions of West Africa where the drivers of RVF emergence remain poorly understood. The assumed importance of temporary ponds and rainfall temporal distribution therefore needs to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: A hydrological model is combined with a mosquito population model to predict the abundance of the two main mosquito species (Aedes vexans and Culex poicilipes involved in RVFV transmission in Senegal. The study area is an agropastoral zone located in the Ferlo Valley, characterized by a dense network of temporary water ponds which constitute mosquito breeding sites. The hydrological model uses daily rainfall as input to simulate variations of pond surface areas. The mosquito population model is mechanistic, considers both aquatic and adult stages and is driven by pond dynamics. Once validated using hydrological and entomological field data, the model was used to simulate the abundance dynamics of the two mosquito species over a 43-year period (1961-2003. We analysed the predicted dynamics of mosquito populations with regards to the years of main outbreaks. The results showed that the main RVF outbreaks occurred during years with simultaneous high abundances of both species. CONCLUSION/SIGNIFICANCE: Our study provides for the first time a mechanistic insight on RVFV transmission in West Africa. It highlights the complementary roles of Aedes vexans and Culex poicilipes mosquitoes in virus transmission, and recommends

  4. Postcrystalline deformation of the Pelona Schist bordering Leona Valley, southern California

    Science.gov (United States)

    Evans, James George

    1978-01-01

    Detailed structural investigations in part of the Leona Valley segment of the San Andreas fault zone, 5-16 km west of Palm dale, focused on the postcrystalline deformation of the block of Mesozoic(?) Pelona Schist underlying Portal and Ritter Ridges. The early fabric of the schist is modified and in places obliterated by cataclasis along shear zones near the San Andreas fault and the Hitchbrook fault, a major west-striking branch of the San Andreas fault system. Anastomosing shear foliations, fabric elements of the postcrystalline deformation, intersect at small angles to one another and are generally vertical or steeply dipping to the north-northeast; they are subparallel to the Hitchbrook fault. Many of these shear foliations are nearly parallel to the compositional layering and schistosity, which commonly dip at moderately steep angles to the northwest. Folds in the shear foliation, commonly intrafolial, generally plunge at moderately steep angles to the north-northeast or are nearly vertical. Other folds, various in form, have axes parallel to the intersections of the early schistosity and the shear foliations and plunge in many other directions. Faults, roughly similar in orientation to the shear foliations, have orientations subparallel to large-scale structures and structural features in the Leona Valley area and in southern California: the San Andreas fault zone in Leona Valley, the Hitchbrook fault, the Garlock fault zone, steep northward-striking faults, the San Andreas fault zone north and south of the Transverse Ranges, and the generally northwest-dipping early compositional layering of the schist. Slickensides on some of the minor faults indicate that the latest movements on the steep faults are predominantly strike slip with indications of less common episodes of predominantly dip slip. The low-angle faults have oblique slip with a large dip component.

  5. LLW (Low-Level Waste) Notes, Volume 13, Number 1, February 1998

    International Nuclear Information System (INIS)

    1998-02-01

    LLW Notes is a newsletter distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties. This issue focuses on the following topics: DOI approves Ward Valley permit application; Project evidentiary hearings begin in Texas; and Summary judgment motions in California breach of contract action

  6. LLW (Low-Level Waste) Notes, Volume 13, Number 1, February 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    LLW Notes is a newsletter distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties. This issue focuses on the following topics: DOI approves Ward Valley permit application; Project evidentiary hearings begin in Texas; and Summary judgment motions in California breach of contract action.

  7. Engineering properties of high and low altitude rice varieties from Kashmir valley at different processing levels

    Directory of Open Access Journals (Sweden)

    Raees Haq

    2016-12-01

    Full Text Available The knowledge of engineering properties such as gravimetrical properties (1,000 grain mass, bulk density, true density, and porosity, dimensional properties (length, width, thickness, aspect ratio, surface area, geometric mean diameter, and sphericity, frictional properties (angle of repose and coefficient of friction, and aerodynamic properties (drag coefficient and terminal velocity are necessary parameters related to machine design for different agricultural process operations such as handling, harvesting, threshing, cleaning, conveying, sorting, drying, processing, and storage. India is a vast country and contributes 20% of the total world’s rice production with cultivars ranging from the scented long grain ones to the sticky short grains. The Kashmir valley cultivates mainly short–medium bold varieties as temperate conditions in the valley are not suitable for the cultivation of long grain scented basmati rice. The most steps in cultivation and postharvest processing are manual and the aim of this work is to emphasize which variety sustains the processing steps to produce high yield quality rice for strengthening the economic conditions of the people.

  8. Groundwater-flow and land-subsidence model of Antelope Valley, California

    Science.gov (United States)

    Siade, Adam J.; Nishikawa, Tracy; Rewis, Diane L.; Martin, Peter; Phillips, Steven P.

    2014-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley groundwater basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, groundwater provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most groundwater pumping in the valley occurs in the Antelope Valley groundwater basin, which includes the rapidly growing cities of Lancaster and Palmdale. Groundwater-level declines of more than 270 feet in some parts of the groundwater basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may increase reliance on groundwater.

  9. Uranium favorability of tertiary sedimentary rocks of the Pend Oreille River valley, Washington

    International Nuclear Information System (INIS)

    Marjaniemi, D.K.; Robins, J.W.

    1975-08-01

    Tertiary sedimentary rocks in the Pend Oreille River valley were investigated in a regional study to determine the favorability for potential uranium resources of northeastern Washington. This project involved measurement and sampling of surface sections, collection of samples from isolated outcrops, chemical and mineralogical analyses of samples, and examination of available water well logs. The Box Canyon Dam area north of Ione is judged to have very high favorability. Thick-bedded conglomerates interbedded with sandstones and silty sandstones compose the Tiger Formation in this area, and high radioactivity levels are found near the base of the formation. Uranophane is found along fracture surfaces or in veins. Carbonaceous material is present throughout the Tiger Formation in the area. Part of the broad Pend Oreille valley surrounding Cusick, Washington, is an area of high favorability. Potential host rocks in the Tiger Formation, consisting of arkosic sandstones interbedded with radioactive shales, probably extend throughout the subsurface part of this area. Carbonaceous material is present and some samples contain high concentrations of uranium. In addition, several other possible chemical indicators were found. The Tiger-Lost Creek area is rated as having medium favorability. The Tiger Formation contains very hard, poorly sorted granite conglomerate with some beds of arkosic sandstone and silty sandstone. The granite conglomerate was apparently derived from source rocks having relatively high uranium content. The lower part of the formation is more favorable than the upper part because of the presence of carbonaceous material, anomalously high concentrations of uranium, and other possible chemical indicators. The area west of Ione is judged to have low favorability, because of the very low permeability of the rocks and the very low uranium content

  10. Effects of low level fluorine pollution in a mountain valley

    Energy Technology Data Exchange (ETDEWEB)

    Bourbon, P; Tournut, J; Alary, J; Rouzaud, J F; Alengrin, F

    1971-02-01

    Fluoride content in the air and forage were determined, and symptoms of chronic fluoride poisoning in cattle raised in a mountain valley accommodating a phosphoric acid production plant were studied systematically over 10 years. The plant, processing phosphates with a fluoride content of 3.8%, emitted 20 kg of F daily. The atmospheric average F concentration ranged from zero to 10 micrograms/cu M, with 90% in the form of hydrofluoric acid and silicotetrafluoride, and 10% in the form of apatite. The fluorine content in forage, ranging from 20 to 50 ppm, and up to 164 ppm in one case, is responsible for pathological symptoms of fluorine poisoning in cattle. Fluorine content of about 30 ppm causes discoloration of the dental enamel in cattle fed such forage over more than 3 years, which corresponds to the fluorine residues of more than 1000 ppm in the jawbones. Periodic limping occurs in cattle fed forage with about 50 ppm of F over 5 years, corresponding to an F content of more than 4000 ppm. Such animals lose weight and yield much less milk than normal ones. Caries and loose teeth in cattle whose jawbones contain F residues of more than 3000 ppm are observed. Osteosis is, however, practically nonexistent. The urine F content, ranging from 2 to 20 ppm, was normal with less than 100 ppm in 60% of all animals. The results show an accumulation of F in bones, and suggest an F content of 20 ppm in forage as a safe limit.

  11. Design assessment for Melton Valley liquid low-level waste collection and transfer system upgrade project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-10-01

    This project is designed for collecting liquid low level waste (LLLW) from generating points inside the Radioisotope Engineering and Development Center (Buildings 7920 and 7930) facility and transferring this waste to the Collection Tank (F-1800) in the new Monitoring and Control Station (MCS) facility. The LLLW is transferred to the MCS in a new, underground, jacketed, stainless steel piping system. The LLLW will then be transferred from Tank F-1800 through a new, underground, jacketed, stainless steel piping system that connects the existing Bethel Valley LLLW Collection System and the Evaporator Facility Service Tanks. The interface for the two systems will be at the existing Interconnecting Pipe Line (ICPL) Valve Box adjacent to the Nonradiological Wastewater Treatment Plant. The project scope consists of the following systems: (1) Building 7920 LLLW Collection System; (2) Building 7930 LLLW Collection System; (3) LLLW Underground Transfer System to MCS; (4) MCS Building (including all equipment contained therein); (5) LLLW Underground Transfer System to ICPL Valve Box; and (6) Leak detection system for jacketed piping systems (3) and (5)

  12. Preliminary gravity and magnetic models across Midway Valley and Yucca Wash, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Langenheim, V.E.

    1994-01-01

    Detailed gravity and ground magnetic data collected along ten traverses across Midway Valley and Yucca Wash on the eastern flank of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of proposed surface facilities for a potential nuclear waste repository at Yucca Mountain. Geophysical data show that Midway Valley is bounded by large gravity and magnetic anomalies associated with the Bow Ridge and Paintbrush Canyon faults, on the west side of Exile Hill and on the west flank of Fran Ridge, respectively. In addition, Midway Valley itself is characterized by a number of small-amplitude anomalies that probably reflect small-scale faulting beneath Midway Valley. Gravity and magnetic data across the northwest trending Yucca Wash and the inferred Yucca Wash fault indicate no major vertical offsets greater than 100 m using a density contrast of 0.2 to 0.3 g/cm 3 along the proposed Yucca Wash fault. In addition, a broad magnetic high coincides with the approximate location of the hydrologic gradient and probably reflects moderately magnetic Topopah Spring Tuff or lavas in the Calico Hills Formation

  13. Hydrochemistry of the Mahomet Bedrock Valley Aquifer, East-Central Illinois: indicators of recharge and ground-water flow

    Science.gov (United States)

    Panno, S.V.; Hackley, Keith C.; Cartwright, K.; Liu, Chao-Li

    1994-01-01

    A conceptual model of the ground-water flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA), east-central Illinois, was developed using major ion chemistry and isotope geochemistry. The MVA is a 'basal' fill in the east-west trending buried bedrock valley composed of clean, permeable sand and gravel to thicknesses of up to 61 m. It is covered by a thick sequence of glacial till containing thinner bodies of interbedded sand and gravel. Ground water from the MVA was found to be characterized by clearly defined geochemical regions with three distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west. Ground water in the Onarga Valley, a northeastern tributary of the MVA, is of two types, a mixed cation-SO42- type and a mixed cation-HCO3- type. The ground water is enriched in Na+, Ca2+, Mg2+, and SO42- which appears to be the result of an upward hydraulic gradient and interaction of deeper ground water with oxidized pyritic coals and shale. We suggest that recharge to the Onarga Valley and overlying aquifers is 100% from bedrock (leakage) and lateral flow from the MVA to the south. The central MVA (south of the Onarga Valley) is composed of relatively dilute ground water of a mixed cation-HCO3- type, with low total dissolved solids, and very low concentrations of Cl- and SO42-. Stratigraphic relationships of overlying aquifers and ground-water chemistry of these and the MVA suggest recharge to this region of the MVA (predominantly in Champaign County) is relatively rapid and primarily from the surface. Midway along the westerly flow path of the MVA (western MVA), ground water is a mixed cation-HCO3- type with relatively high Cl-, where Cl- increases abruptly by one to ??? two orders of magnitude. Data suggest that the increase in Cl- is the result of leakage of saline ground water from bedrock into the MVA. Mass-balance calculations indicate that approximately 9.5% of

  14. Emerging vector-borne diseases in dromedaries in Tunisia: West Nile, bluetongue, epizootic haemorrhagic disease and Rift Valley fever

    Directory of Open Access Journals (Sweden)

    Thameur B. Hassine

    2017-03-01

    Full Text Available A total of 118 sera were collected during 2016 from two groups of dromedaries from Kebili and Medenine governorates in the south of Tunisia. The aim of this study was to provide the first serological investigation of four emerging vector-borne diseases in two groups of dromedaries in Tunisia. Sera were tested by ELISA and serum neutralisation test to identify West Nile virus (WNV, bluetongue virus (BTV, epizootic haemorrhagic disease virus (EHDV and Rift Valley fever virus (RVFV. In the first group, the seroprevalence for BTV was 4.6%, while in the second group, it was 25.8% for WNV and 9.7% for BTV. Only serotype 1 was detected for BTV in the two groups. No evidence for circulation of RVF and EHD viruses was revealed. Results indicated that dromedaries can be infected with BTV and WNV, suggesting that this species might play a significant role in the epizootiology of these viral diseases in Tunisia and neighbouring countries.

  15. Emerging vector-borne diseases in dromedaries in Tunisia: West Nile, bluetongue, epizootic haemorrhagic disease and Rift Valley fever.

    Science.gov (United States)

    Hassine, Thameur B; Amdouni, Jihane; Monaco, Federica; Savini, Giovanni; Sghaier, Soufien; Selimen, Imed B; Chandoul, Walid; Hamida, Khaled B; Hammami, Salah

    2017-03-31

    A total of 118 sera were collected during 2016 from two groups of dromedaries from Kebili and Medenine governorates in the south of Tunisia. The aim of this study was to provide the first serological investigation of four emerging vector-borne diseases in two groups of dromedaries in Tunisia. Sera were tested by ELISA and serum neutralisation test to identify West Nile virus (WNV), bluetongue virus (BTV), epizootic haemorrhagic disease virus (EHDV) and Rift Valley fever virus (RVFV). In the first group, the seroprevalence for BTV was 4.6%, while in the second group, it was 25.8% for WNV and 9.7% for BTV. Only serotype 1 was detected for BTV in the two groups. No evidence for circulation of RVF and EHD viruses was revealed. Results indicated that dromedaries can be infected with BTV and WNV, suggesting that this species might play a significant role in the epizootiology of these viral diseases in Tunisia and neighbouring countries.

  16. Waste analysis plan for the low-level burial grounds. Revision 2

    International Nuclear Information System (INIS)

    Pratt, D.A.

    1997-01-01

    The purpose of this waste analysis plan (WAP) is to document the waste 5 acceptance process, sampling methodologies, analytical techniques, and overall 6 processes that are undertaken for waste accepted for disposal at the Low-Level 7 Burial Grounds (LLBG), which are located in the 200 East and 200 West Areas of 8 the Hanford Facility, Richland, Washington. Because dangerous waste does not 9 include the source, special nuclear, and by-product material components of 10 mixed waste, radionuclides are not within the scope of this documentation. 11 The information on radionuclides is provided only for general knowledge. The 12 LLBG also receive low-level radioactive waste for disposal. The requirements 13 of this WAP are not applicable to this low-level waste

  17. Holocene palaeosols and aeolian activities in the Umimmalissuaq valley, West Greenland

    DEFF Research Database (Denmark)

    Müller, Michael; Thiel, Christine; Kühn, Peter

    2016-01-01

    Aeolian sand sheets and active dunefields preserve an ancient Holocene land surface represented by palaeosols that occur around the present ice margin in the Kangerlussuaq area, West Greenland. To determine the relation between Holocene aeolian activities and periods of soil formation, both...... margin (60 wt%) are comparable with aeolian sand sheets currently formed at greater distances (4–5 km) from the present ice margin. We propose a transport distance for fine....... This period was characterised by low but constant aeolian activity. Since aeolian activity intensified after around 300 cal. yr b2k and is still resulting in active dunefields with coarse and medium sand accumulation, the ice margin must have reached its present position at that time....

  18. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 3: Valley Types and Distribution

    Science.gov (United States)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Three major valley tapes were identified in the SW Margaritefer Sinus and Argyre regions. Two are restricted to specific geologic units while the third is independent of the geology. The first type (the small valley networks) are found within the channeled and subdued plains unit in the eastern half of the map, in the grooved and channeled plains unit north of Nirgal Vallis, and in scattered instances in the cratered plateau unit north of Argyre. The even smaller valleys just inside Argyre's rim and on the inner slopes of many large craters are not directly related to the processes which formed the small valleys but are a result, instead, of post-impact modification of the crater walls. The second type of valley network is represented by Nirgal Vallis and the similar, shorter continuation of it to the west. This type is found only in the smooth plains material west of Uzboi Vallis in the map area. The third type of valley network is that of the Uzbol-Holden-Ladon valles system. This system is related to catastrophic outflow from Argyre Basin and is topographically rather than geologically controlled.

  19. Status report on Texas Low-Level Radioactive Waste Disposal Authority activities

    International Nuclear Information System (INIS)

    Avant, R.V. Jr.

    1990-01-01

    In 1981, the Texas Low-Level Radioactive Waste Disposal Authority was created by Article 4590f-1 to site, develop, operate, decommission, and close a low-level radioactive waste disposal facility for Texas generated waste. In 1989, the Authority's act was recodified by the Texas legislature in the Health and Safety Code., Title 5. Sanitation and Environmental Quality, Subtitle D. Nuclear and Radioactive Materials, Chapter 402. The Authority is governed by a Board of Directors appointed by the Governor, composed of a certified health physicist, geologist, attorney, medical doctor, and two private citizens. Under the statute, low-level radioactive waste is defined as any radioactive material with a half-life of 35 years or less or having less than 10 nanocuries per gram of transuranics. Materials with half-lives of greater than 35 years may be classed as low-level waste if special criteria are established by the Texas Department of Health Bureau of Radiation Control. Subsequent sessions of the legislature have amended the act to revise siting criteria, require consideration of state land, create a Citizen's Advisory Committee, incorporate alternative designs, and establish a special low-level radioactive waste account in the state treasury. The Authority began its activities in 1982. The Authority has proposed a site in far West Texas near Fort Hancock, but El Paso County, the neighboring county to the west, has instituted three separate lawsuits to slow or stop the site selection process. Particular attention was paid early in the site selection process to items which could be fatal flaws from a licensing standpoint. This paper discusses the Fort Hancock site description, site evaluation studies, siting issues, waste volume projections, facility design, license application, cost and schedule

  20. Earthquake precursory studies in Kangra valley of North West Himalayas, India, with special emphasis on radon emission

    International Nuclear Information System (INIS)

    Kumar, Arvind; Singh, Surinder; Mahajan, Sandeep; Bajwa, Bikramjit Singh; Kalia, Rajeev; Dhar, Sunil

    2009-01-01

    The continuous soil gas radon monitoring is carried out at Palampur and the daily monitoring of radon concentration in water is carried out at Dharamshala region of Kangra valley of North West Himalayas, India, a seismic zone V, to study the correlation of radon anomalies in relation to seismic activities. In this study, radon monitoring in soil was carried out by using barasol probe manufactured by Algade France, whereas the radon content in water was recorded using RAD 7 radon monitoring system of Durridge Company USA. The effect of meteorological parameters viz. temperature, pressure, wind velocity, rainfall, and humidity on radon emission has been studied. The seasonal average value and standard deviation of radon in soil and water is calculated to find the radon anomaly to minimize the effect of meteorological parameters on radon emission. The radon anomalies observed in the region have been correlated with the seismic events of M≥2 reported by Wadia Institute of Himalayas Geology Dehradoon and Indian Meteorological Department, New Delhi in NW Himalayas within 250 km distance from the monitoring stations.

  1. The geology and mineral deposits of Tantalite Valley, Warmbad district, South West Africa

    International Nuclear Information System (INIS)

    Von Backstroem, J.W.

    1976-04-01

    The Tantalite Valley Complex, a poorly mineralised (Cu and Ni sulphides) body of roughly concentric peridotite-gabbroid intrusions was emplaced along a major zone of dislocation (the Tantallite Valley Lineament) into a metasedimentary sequence of migmatites and gneisses which, together with the complex, have experienced a complex metamorphic and tectonic history. A number of large mineralised pegmatites (producers of minerals of Nb, Ta, Bi, Li and Be over the past two decades), was intruded about 1000 Ma ago [af

  2. FY94 site characterization and multilevel well installation at a west Bear Creek Valley research site on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Moline, G.R.; Schreiber, M.E.

    1996-03-01

    The goals of this project are to collect data that will assist in determining what constitutes a representative groundwater sample in fractured shale typical of much of the geology underlying the ORR waste disposal sites, and to determine how monitoring-well construction and sampling methods impact the representativeness of the sample. This report details the FY94 field activities at a research site in west Bear Creek Valley on the Oak Ridge Reservation (ORR). These activities funded by the Energy Systems Groundwater Program Office through the Oak Ridge Reservation Hydrologic and Geologic Studies (ORRHAGS) task, focus on developing appropriate sampling protocols for the type of fractured media that underlies many of the ORR waste disposal sites. Currently accepted protocols were developed for porous media and are likely to result in nonrepresentative samples in fractured systems

  3. Nuclear waste. DOE's program to prepare high-level radioactive waste for final disposal

    International Nuclear Information System (INIS)

    Bannerman, Carl J.; Owens, Ronald M.; Dowd, Leonard L.; Herndobler, Christopher S.; Purvine, Nancy R.; Stenersen, Stanley G.

    1989-11-01

    In summary, as of December 1988, the four sites collectively stored about 95 million gallons of high-level waste in underground tanks and bins. Approximately 57 million gallons are stored at Hanford, 34 million gallons at Savannah River, 3 million gallons at INEL, and 6 million gallons at West Valley. The waste is in several forms, including liquid, sludge, and dry granular materials, that make it unsuitable for permanent storage in its current state at these locations. Leaks from the tanks, designed for temporary storage, can pose an environmental hazard to surrounding land and water for thousands of years. DOE expects that when its waste processes at Savannah River, West Valley, and Hanford become operational, the high-level radioactive waste stored at these sites will be blended with other materials to immobilize it by forming a glass-like substance. The glass form will minimize the risk of environmental damage and make the waste more acceptable for permanent disposal in a geologic repository. At INEL, DOE is still considering various other immobilization and permanent disposal approaches. In July 1989, DOE estimated that it would cost about $13 billion (in fiscal year 1988 dollars) to retrieve, process, immobilize, and store the high-level waste until it can be moved to a permanent disposal site: about $5.3 billion is expected to be spent at Savannah River, $0.9 billion at West Valley, $2.8 billion at Hanford, and $4.0 billion at INEL. DOE has started construction at Savannah River and West Valley for facilities that will be used to transform the waste into glass (a process known as vitrification). These sites have each encountered schedule delays, and one has encountered a significant cost increase over earlier estimates. More specifically, the Savannah River facility is scheduled to begin high-level waste vitrification in 1992; the West Valley project, based on a January 1989 estimate, is scheduled to begin high-level waste vitrification in 1996, about 8

  4. Virgin Valley opal district, Humboldt County, Nevada

    Science.gov (United States)

    Staatz, Mortimer Hay; Bauer, Herman L.

    1951-01-01

    The Virgin Valley opal district, Humboldt County, Nevada, is near the Oregon-Nevada border in the Sheldon Game Refuge. Nineteen claims owned by Jack and Toni Crane were examined, sampled, and tested radiometrically for uranium. Numerous discontinuous layers of opal are interbedded with a gently-dipping series of vitric tuff and ash which is at least 300 ft thick. The tuff and ash are capped by a dark, vesicular basalt in the eastern part of the area and by a thin layer of terrace qravels in the area along the west side of Virgin Valley. Silicification of the ash and tuff has produced a rock that ranges from partly opalized rock that resembles silicified shale to completely altered rock that is entirely translucent, and consists of massive, brown and pale-green opal. Carnotite, the only identified uranium mineral, occurs as fracture coatings or fine layers in the opal; in places, no uranium minerals are visible in the radioactive opal. The opal layers are irregular in extent and thickness. The exposed length of the layers ranges from 8 to 1, 200 ft or more, and the thickness of the layers ranges from 0. 1 to 3. 9 ft. The uranium content of each opal layer, and of different parts of the same layer, differs widely. On the east side of Virgin Valley four of the seven observed opal layers, nos. 3, 4, 5, and 7, are more radioactive than the average; and the uranium content ranges from 0. 002 to 0. 12 percent. Two samples, taken 5 ft apart across opal layer no. 7, contained 0. 003 and 0. -049 percent uranium. On the west side of the valley only four of the fifteen observed opal layers, nos; 9, , 10, 14, and 15, are more radioactive than the average; and the uranium content ranges from 0. 004 to 0. 047 percent. Material of the highest grade was found in a small discontinuous layer of pale-green opal (no. 4) on the east side of Virgin Valley. The grade of this layer ranged from 0. 027 to 0. 12 percent uranium.

  5. Valley-filtered edge states and quantum valley Hall effect in gated bilayer graphene.

    Science.gov (United States)

    Zhang, Xu-Long; Xu, Lei; Zhang, Jun

    2017-05-10

    Electron edge states in gated bilayer graphene in the quantum valley Hall (QVH) effect regime can carry both charge and valley currents. We show that an interlayer potential splits the zero-energy level and opens a bulk gap, yielding counter-propagating edge modes with different valleys. A rich variety of valley current states can be obtained by tuning the applied boundary potential and lead to the QVH effect, as well as to the unbalanced QVH effect. A method to individually manipulate the edge states by the boundary potentials is proposed.

  6. Early-to-middle Holocene sea-level fluctuations, coastal progradation and the Neolithic occupations in Yaojiang valley of southern Hangzhou bay, eastern China

    Science.gov (United States)

    Liu, Y.; Sun, Q.; Fan, D.; Chen, Z.

    2017-12-01

    The formation of Holocene coast in eastern China provided material base for the development of Neolithic civilizations. The coastal Yaojiang valley of south Hangzhou bay was one of the examples where the well-known Neolithic Hemudu Culture (HC) of Eastern China initiated. Here, we studied the early-to-middle Holocene environment changes in relation to sea-level fluctuations on the basis of a serial of sediment cores based on a set of new Accelerator Mass Spectrometry radiocarbon (AMS 14C) chronology. The result indicated that relative sea-level rose rapidly in the Yaojiang valley at the early Holocene, reaching its maximum at ca. 8000-7800 cal yr BP and then decelerated at ca. 7800-7500 cal yr BP. The alluvial plain in Yaojiang valley began to form at the foothills first and then grew towards the valley center accompanying with the sea-level stabilization after ca. 7500 cal yr BP. This progressive progradation of alluvial plain would attract the early arrivals of foragers to dwell at the foothills to engaging in rice farming after ca.7000 cal yr BP and starting the epic Hemudu Culture. The HC people then move down to the valley center as more land became available thanks to sediment aggregation and progradation. The rise and development of HC were closely associated with the sea-level induced landscape changes in Yaojiang valley at the early-middle Holocene, and the unstable hydraulic condition in the valley after 5000 cal yr BP could be accountable for the cultural termination.

  7. A Model for the Sounding Rocket Measurement on an Ionospheric E-F Valley at the Hainan Low Latitude Station

    International Nuclear Information System (INIS)

    Wang Zheng; Shi Jiankui; Guan Yibing; Liu Chao; Zhu Guangwu; Torkar Klaus; Fredrich Martin

    2014-01-01

    To understand the physics of an ionospheric E-F valley, a new overlapping three-Chapman-layer model is developed to interpret the sounding rocket measurement in the morning (sunrise) on May 7, 2011 at the Hainan low latitude ionospheric observation station (19.5°N, 109.1°E). From our model, the valley width, depth and height are 43.0 km, 62.9% and 121.0 km, respectively. From the sounding rocket observation, the valley width, depth and height are 42.2 km, 47.0% and 123.5 km, respectively. The model results are well consistent with the sounding rocket observation. The observed E-F valley at Hainan station is very wide and deep, and rapid development of the photochemical process in the ionosphere should be the underlying reason. (astrophysics and space plasma)

  8. Statistical modeling of the abundance of vectors of West African Rift Valley fever in Barkédji, Senegal.

    Directory of Open Access Journals (Sweden)

    Cheikh Talla

    Full Text Available Rift Valley fever is an emerging mosquito-borne disease that represents a threat to human and animal health. The exophilic and exophagic behavior of the two main vector in West Africa (Aedes vexans and Culex poicilipes, adverse events post-vaccination, and lack of treatment, render ineffective the disease control. Therefore it is essential to develop an information system that facilitates decision-making and the implementation of adaptation strategies. In East Africa, RVF outbreaks are linked with abnormally high rainfall, and can be predicted up to 5 months in advance by modeling approaches using climatic and environmental parameters. However, the application of these models in West Africa remains unsatisfactory due to a lack of data for animal and human cases and differences in the dynamics of the disease emergence and the vector species involved in transmission. Models have been proposed for West Africa but they were restricted to rainfall impact analysis without a spatial dimension. In this study, we developed a mixed Bayesian statistical model to evaluate the effects of climatic and ecological determinants on the spatiotemporal dynamics of the two main vectors. Adult mosquito abundance data were generated from July to December every fortnight in 2005-2006 at 79 sites, including temporary ponds, bare soils, shrubby savannah, wooded savannah, steppes, and villages in the Barkédji area. The results demonstrate the importance of environmental factors and weather conditions for predicting mosquito abundance. The rainfall and minimum temperature were positively correlated with the abundance of Cx. poicilipes, whereas the maximum temperature had negative effects. The rainfall was negatively correlated with the abundance of Ae. vexans. After combining land cover classes, weather conditions, and vector abundance, our model was used to predict the areas and periods with the highest risks of vector pressure. This information could support decision

  9. Geomorphological characteristics of increased landslide activity in the Gudbrandsdalen valley, Norway

    Science.gov (United States)

    Heyerdahl, Håkon; Høydal, Øyvind

    2016-04-01

    The Gudbrandsdalen valley in Eastern Norway lies in a region where annual precipitation is generally low (down to 300 mm/year). The landslide activity has consequently historically been low, although the lower part of the valley sides generally is draped with thick layers of Quaternary deposits, primarily of glacial or glaciofluvial origin. The perception of natural hazards in the valley was previously primarily connected to flooding in the main river in the valley bottom during early summer, due to large discharges resulting from snowmelt in the mountainous regions west and east of the valley. However, several high-intensity events have changed the image of the region. Starting with a localized, but intense, landslide event in the Northern part of the valley in year 2008, two larger events covering almost the entire valley occurred in the years 2011 and 2013. A high number of landslides was triggered in all these events, including many flash floods and debris flows/debris slides in small and steep tributary rivers along the valley slopes. Landslide triggering covers different release mechanisms: In 2008, landslides were triggered without precipitation in not-frozen soil deposits without snow cover in the lower part of the valley. Groundwater flow through the permeable bedrock ("Otta schist") resulting from snow-melt in the elevated mountainous areas caused landslide triggering due to positive pore-water pressures forming at the bedrock surface below soil deposits, or at depressions in the terrain. Subsequent rainfall resulted in even more landslides being released. In later events (years 2011 and 2013) many landslides were caused by surface water taking new paths downslope, often due to man-made changes in existing waterways (typically poorly planned drainage solutions or new roads). Relatively small discharges in slopes with unconsolidated and easily erodible glacial deposits (typically lateral moraine) in many cases lead to small initial slides that down

  10. ASPECTS ON THE ACTUAL LEVEL OF EDUCATIONAL DEVELOPMENT AT THE SOUTH-WEST REGION OLTENIA

    Directory of Open Access Journals (Sweden)

    CHIRCULESCU MARIA FELICIA

    2017-08-01

    Full Text Available Due to the complexity of the educational sector, the work is topical, even though over time there have been many concerns regarding its education and development and the correlation between the level of educational development and the level of economic development. The aim of the paper is to analyze the educational development at the level of the South-West Oltenia region over the period 2010-2015, thus using the statistical series for the mentioned timeframe we analyzed the evolution of the number of educational units in the South-West Oltenia region And the evolution of the school population in the South-West Oltenia region. Thus, the objective of the paper is enshrined in the overall objective of Romania, namely to reduce the economic and social development disparities between Romania and other EU Member States. The results of the analysis carried out by the two indicators, the number of educational units in the South-West Oltenia region and the number of the school population at the level of the South-West Oltenia region indicate that the number of educational units in the period 2010-2015 decreased by 4.28% And the number of the school population by 14.67%.

  11. Decontamination of stainless steel canisters that contain high-level waste

    International Nuclear Information System (INIS)

    Bray, L.A.

    1987-01-01

    At the West Valley Nuclear Services Company (WVNSC) in West Valley, New York, high-level radioactive waste (HLW) will be vitrified into a borosilicate glass form and poured into large, stainless steel canisters. During the filling process, volatile fission products, principally 137 Cs, condense on the exterior of the canisters. The smearable contamination that remains on the canisters after they are filled and partially cooled must be removed from the canisters' exterior surfaces prior to their storage and ultimate shipment to a US Department of Energy (DOE) repository for disposal. A simple and effective method was developed for decontamination of HLW canisters. This method of chemical decontamination is applicable to a wide variety of contaminated equipment found in the nuclear industry. The process employs a reduction-oxidation system [Ce(III)/Ce(IV)] in nitric acid solution to chemically mill the surface of stainless steel, similar to the electropolishing process, but without the need for an applied electrical current. Contaminated canisters are simply immersed in the solution at controlled temperature and Ce(IV) concentration levels

  12. Climatology of atmospheric PM10 concentration in the Po Valley

    Science.gov (United States)

    Bigi, A.; Ghermandi, G.

    2014-01-01

    The limits to atmospheric pollutant concentration set by the European Commission provide a challenging target for the municipalities in the Po Valley, because of the characteristic climatic conditions and high population density of this region. In order to assess climatology and trends in the concentration of atmospheric particles in the Po Valley, a dataset of PM10 data from 41 sites across the Po Valley have been analysed, including both traffic and background sites (either urban, suburban or rural). Of these 41 sites, 18 with 10 yr or longer record have been analysed for long term trend in de-seasonalized monthly means, in annual quantiles and in monthly frequency distribution. A widespread significant decreasing trend has been observed at most sites, up to few percent per year, by Generalised Least Square and Theil-Sen method. All 41 sites have been tested for significant weekly periodicity by Kruskal-Wallis test for mean anomalies and by Wilcoxon test for weekend effect magnitude. A significant weekly periodicity has been observed for most PM10 series, particularly in summer and ascribed mainly to anthropic particulate emissions. A cluster analysis has been applied in order to highlight stations sharing similar pollution conditions over the reference period. Five clusters have been found, two gathering the metropolitan areas of Torino and Milano and their respective nearby sites and the other three clusters gathering north-east, north-west and central Po Valley sites respectively. Finally the observed trends in atmospheric PM10 have been compared to trends in provincial emissions of particulates and PM precursors, and analysed along with data on vehicular fleet age, composition and fuel sales. Significant basin-wide drop in emissions occurred for gaseous pollutants, contrarily to emissions of PM10 and PM2.5, whose drop resulted low and restricted to few provinces. It is not clear whether the decrease for only gaseous emissions is sufficient to explain the

  13. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: Implications for crustal growth at the North American continental margin

    Science.gov (United States)

    Godfrey, N.J.; Beaudoin, B.C.; Klemperer, S.L.; Levander, A.; Luetgert, J.; Meltzer, A.; Mooney, W.; Tréhu, A.

    1997-01-01

    The nature of the Great Valley basement, whether oceanic or continental, has long been a source of controversy. A velocity model (derived from a 200-km-long east-west reflection-refraction profile collected south of the Mendocino triple junction, northern California, in 1993), further constrained by density and magnetic models, reveals an ophiolite underlying the Great Valley (Great Valley ophiolite), which in turn is underlain by a westward extension of lower-density continental crust (Sierran affinity material). We used an integrated modeling philosophy, first modeling the seismic-refraction data to obtain a final velocity model, and then modeling the long-wavelength features of the gravity data to obtain a final density model that is constrained in the upper crust by our velocity model. The crustal section of Great Valley ophiolite is 7-8 km thick, and the Great Valley ophiolite relict oceanic Moho is at 11-16 km depth. The Great Valley ophiolite does not extend west beneath the Coast Ranges, but only as far as the western margin of the Great Valley, where the 5-7-km-thick Great Valley ophiolite mantle section dips west into the present-day mantle. There are 16-18 km of lower-density Sierran affinity material beneath the Great Valley ophiolite mantle section, such that a second, deeper, "present-day" continental Moho is at about 34 km depth. At mid-crustal depths, the boundary between the eastern extent of the Great Valley ophiolite and the western extent of Sierran affinity material is a near-vertical velocity and density discontinuity about 80 km east of the western margin of the Great Valley. Our model has important implications for crustal growth at the North American continental margin. We suggest that a thick ophiolite sequence was obducted onto continental material, probably during the Jurassic Nevadan orogeny, so that the Great Valley basement is oceanic crust above oceanic mantle vertically stacked above continental crust and continental mantle.

  14. Cross flow filtration of Oak Ridge National Laboratory liquid low-level waste

    International Nuclear Information System (INIS)

    Fowler, V.L.; Hewitt, J.D.

    1989-12-01

    A new method for disposal of Oak Ridge National Laboratory liquid low-level radioactive waste is being developed as an alternative to hydrofracture. The acceptability of the final waste form rests in part on the presence or absence of transuranic (TRU) isotopes. Inertial cross flow filtration was used in this study to determine the potential of this method for separation of the TRU isotopes from the bulk liquid stored in the Melton Valley Storage Tanks. 7 refs., 11 figs., 5 tabs

  15. Progress on the national low level radioactive waste repository and national intermediate level waste store

    International Nuclear Information System (INIS)

    Perkins, C.

    2001-01-01

    Over the last few years, significant progress has been made towards siting national, purpose-built facilities for Australian radioactive waste. In 2001, after an eight year search, a preferred site and two alternatives were identified in central-north South Australia for a near-surface repository for Australian low level (low level and short-lived intermediate level) radioactive waste. Site 52a at Everts Field West on the Woomera Prohibited Area was selected as the preferred site as it performs best against the selection criteria, particularly with respect to geology, ground water, transport and security. Two alternative sites, Site 45a and Site 40a, east of the Woomera-Roxby Downs Road, were also found to be highly suitable for the siting of the national repository. A project has commenced to site a national store for intermediate (long-lived intermediate level) radioactive waste on Commonwealth land for waste produced by Commonwealth agencies. Public input has been sought on relevant selection criteria

  16. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    International Nuclear Information System (INIS)

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the δ 18 O values of groundwater were relatively homogeneous (mostly -7.0 ± 0.5 per-thousand), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high 18 O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low 18 O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in δ 18 O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are ∼10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for ∼40 years, creating cones of depression ∼25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low 18 O water (-11.0 per-thousand) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp 18 O gradients in our groundwater isotope map

  17. Temporal Characterisation of Ground-level Ozone Concentration in Klang Valley

    Science.gov (United States)

    Izzah Mohamad Hashim, Nur; Noor, Norazian Mohamed; Yasina Yusof, Sara

    2018-03-01

    In Malaysia, ground-level ozone (O3) is one of the most significant air pollutants due to the increasing sources of ozone precursors. Hence, the surface O3 concentration should have received substantial attention because of its negative effects to human health, vegetation and the environment. In this study, hourly air pollutants dataset (i.e O3, Carbon monoxide (CO), Nitrogen dioxide (NO2), Particulate matter (PM10), Non-methane hydrocarbon (NmHC), Sulphur dioxide (SO2)) and weather parameters (i.e. wind speed (WS), wind direction (WD), temperature (T), ultraviolet B (UVB)) for ten years period (2003-2012) in Klang Valley were selected for analysis in this study. Two monitoring stations were selected that are Petaling Jaya and Shah Alam. The aim of the study is to determine the diurnal variations of O3 concentrations according to the seasonal monsoon and the correlation between the ground-level O3 concentration and others parameter. A high concentration of ground-level O3 was observed during the first transition (April to May) for both of the stations. While at a low surface, O3 concentration was found out during the southwest monsoon within June to September. Pearson correlation was used to find the correlation between the O3 concentration and all other pollutants and weather parameters. Most of the relationship between O3concentrationswas positively correlated with NO2 and negative relationship was found out with NMHC. These results were expected since these pollutants are known as the O3 precursors. Besides that, O3 concentration and its precursors show a positive significant correlation with all meteorological factors except for relative humidity.

  18. Temporal Characterisation of Ground-level Ozone Concentration in Klang Valley

    Directory of Open Access Journals (Sweden)

    Mohamad Hashim Nur Izzah

    2018-01-01

    Full Text Available In Malaysia, ground-level ozone (O3 is one of the most significant air pollutants due to the increasing sources of ozone precursors. Hence, the surface O3 concentration should have received substantial attention because of its negative effects to human health, vegetation and the environment. In this study, hourly air pollutants dataset (i.e O3, Carbon monoxide (CO, Nitrogen dioxide (NO2, Particulate matter (PM10, Non-methane hydrocarbon (NmHC, Sulphur dioxide (SO2 and weather parameters (i.e. wind speed (WS, wind direction (WD, temperature (T, ultraviolet B (UVB for ten years period (2003-2012 in Klang Valley were selected for analysis in this study. Two monitoring stations were selected that are Petaling Jaya and Shah Alam. The aim of the study is to determine the diurnal variations of O3 concentrations according to the seasonal monsoon and the correlation between the ground-level O3 concentration and others parameter. A high concentration of ground-level O3 was observed during the first transition (April to May for both of the stations. While at a low surface, O3 concentration was found out during the southwest monsoon within June to September. Pearson correlation was used to find the correlation between the O3 concentration and all other pollutants and weather parameters. Most of the relationship between O3concentrationswas positively correlated with NO2 and negative relationship was found out with NMHC. These results were expected since these pollutants are known as the O3 precursors. Besides that, O3 concentration and its precursors show a positive significant correlation with all meteorological factors except for relative humidity.

  19. Intelligent electric vehicle charging: Rethinking the valley-fill

    Science.gov (United States)

    Valentine, Keenan; Temple, William G.; Zhang, K. Max

    This study proposes an intelligent PEV charging scheme that significantly reduces power system cost while maintaining reliability compared to the widely discussed valley-fill method of aggregated charging in the early morning. This study considers optimal PEV integration into the New York Independent System Operator's (NYISO) day-ahead and real-time wholesale energy markets for 21 days in June, July, and August of 2006, a record-setting summer for peak load. NYISO market and load data is used to develop a statistical Locational Marginal Price (LMP) and wholesale energy cost model. This model considers the high cost of ramping generators at peak-load and the traditional cost of steady-state operation, resulting in a framework with two competing cost objectives. Results show that intelligent charging assigns roughly 80% of PEV load to valley hours to take advantage of low steady-state cost, while placing the remaining 20% equally at shoulder and peak hours to reduce ramping cost. Compared to unregulated PEV charging, intelligent charging reduces system cost by 5-16%; a 4-9% improvement over the flat valley-fill approach. Moreover, a Charge Flexibility Constraint (CFC), independent of market modeling, is constructed from a vehicle-at-home profile and the mixture of Level 1 and Level 2 charging infrastructure. The CFC is found to severely restrict the ability to charge vehicles during the morning load valley. This study further shows that adding more Level 2 chargers without regulating PEV charging will significantly increase wholesale energy cost. Utilizing the proposed intelligent PEV charging method, there is a noticeable reduction in system cost if the penetration of Level 2 chargers is increased from 70/30 to 50/50 (Level 1/Level 2). However, the system benefit is drastically diminished for higher penetrations of Level 2 chargers.

  20. Effects of land use changes on water and nitrogen flows at the scale of West African inland valleys: an explorative model.

    NARCIS (Netherlands)

    Ridder, de N.; Stomph, T.J.; Fresco, L.O.

    1997-01-01

    Land use and cover, as influenced by agricultural practices, and the changes in these with increasing pressure on land, are among the factors determining water flows in inland valleys. Changing water flows affect nitrogen flows both at the plot level and at levels higher than plots. We present a

  1. Classification of low-resource livestock producers in the North West ...

    African Journals Online (AJOL)

    Classification of low-resource livestock producers in the North West Province. I.V. Nsahlai, A.T. Sedumedi. Abstract. (South African J of Animal Science, 2000, 30, Supplement 1: 109-110). Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  2. Subclinical nutritional rickets among adolescents in Kaghan Valley.

    Science.gov (United States)

    Shah, Tanveer Hussain; Hassan, Mukhtiar; Siddiqui, Tahir Saeed

    2014-09-01

    To determine the occurrence of subclinical rickets and its causing factors among adolescent students of schools in Kaghan Valley, Pakistan. Observation cross-sectional study. Department of Biochemistry and Health Sciences, Hazara University, Mansehra, Ayub Medical College and Teaching Hospital, Abbottabad, from March to April 2012. Sixty seven students (34 boys and 33 girls) age between 11 - 16 years included in the study from different schools of Kaghan Valley, Pakistan. Characteristic, serum biochemical and nutritional status were measured for all the participants. On the basis of biochemical finding the boys and girls students were divided in to two groups, normal subjects and subclinical rickets (absent symptoms with altered biochemistry). Twenty six participants, 19 (73%) girls and 07 (27%) boys had biochemical abnormality but no clinical signs and symptoms of rickets. Low vitamin D and high alkaline phosphatase level were observed in 26 (100%), 21 (81%), low calcium in 17 (65%) and low phosphorus 7 (27%) subjects with subclinical rickets. None had high parathormone level above normal range. Nutritional intake of calcium, phosphorus and vitamin D was found less than the recommended daily intake in all the participants. Subclinical rickets is common problem among adolescent students especially in girls which is due to low nutritional intakes and avoidance of sunshine due to environmental and traditional impacts.

  3. West Valley Demonstration Project annual report

    International Nuclear Information System (INIS)

    1986-01-01

    In FY 1985 the most challenging goal of the Project to date, the start of verification testing of major subsystems of the Vitrification System, was accomplished. Individual testing of subsystems was completed in FY 1985 allowing for the start of integrated testing of all major portions of the Vitrification System. Other accomplishments during this period included completion of cleanup of the first of several former reprocessing cells, the first phase of testing and operation of the system which will solidify low-level liquid wastes and the beginning of construction to support installation of the Supernatant Treatment System which will be used to remove the radioactive fission products from the supernatant

  4. Levels of /sup 137/Cs in soils and vegetation of West Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, B G [Link Systems Ltd., High Wycombe (UK)

    1978-05-01

    Samples of topsoils and vegetation from a wide distribution of sites in West Malaysia have been analysed for their /sup 137/Cs content by gross gamma-ray spectrometry using a Ge(Li) detector. The levels of contamination ranged up to 6.7 nCi/m/sup 2/ in soils from peak locations and up to 24 nCi/m/sup 2/ in one nonpeak location. There was an indication of a possible preferential scavenging effect by rainfall during the south west monsoon period (May to September) making levels in the western rainfall zone slightly higher than in the eastern rainfall zone. The levels in canopy leaves were shown to be strongly correlated with the presence of epiphyllae colonies on their surfaces, causing an enhanced interception of aerosols. The highest level recorded in canopy leaves was 3.7 pCi/g and corresponded to 70% of the leaves harboring epiphyllae colonies. Levels from epiphytic lichens and mosses ranged from 0.23 to 1.3 pCi/g and up to 4.2 pCi/g for ferns. The data on soil samples suggest that West Malaysia has intercepted a minimum of 522 Ci of /sup 137/Cs from past nuclear weapons testing as of March 1974.

  5. Groundwater quality in the Indian Wells Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  6. Surficial geologic map of the Heath-Northfield-Southwick-Hampden 24-quadrangle area in the Connecticut Valley region, west-central Massachusetts

    Science.gov (United States)

    Stone, Janet R.; DiGiacomo-Cohen, Mary L.

    2010-01-01

    The surficial geologic map layer shows the distribution of nonlithified earth materials at land surface in an area of 24 7.5-minute quadrangles (1,238 mi2 total) in west-central Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, and organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text, quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.

  7. Modelling the Effects of Sea-level, Climate Change, Geology, and Tectonism on the Morphology of the Amazon River Valley and its Floodplain

    Science.gov (United States)

    Aalto, R. E.; Cremon, E.; Dunne, T.

    2017-12-01

    How continental-scale rivers respond to climate, geology, and sea level change is not well represented in morphodynamic models. Large rivers respond to influences less apparent in the form and deposits of smaller streams, as the huge scales require long time periods for changes in form and behavior. Tectonic deformation and excavation of resistant deposits can affect low gradient continental-scale rivers, thereby changing flow pathways, channel slope and sinuosity, along-stream patterns of sediment transport capacity, channel patterns, floodplain construction, and valley topography. Nowhere are such scales of morphodynamic response grander than the Amazon River, as described in papers by L.A.K. Mertes. Field-based understanding has improved over the intervening decades, but mechanistic models are needed to simulate and synthesize key morphodynamic components relevant to the construction of large river valleys, with a focus on the Amazon. The Landscape-Linked Environmental Model (LLEM) utilizes novel massively parallel computer architectures to simulate multiple-direction flow, sediment transport, deposition, and incision for exceptionally large (30-80 million nodes per compute unit) lowland dispersal systems. LLEM represents key fluvial processes such as bed and bar deposition, lateral and vertical erosion/incision, levee and floodplain construction, floodplain hydrology, `badlands dissection' of weak sedimentary deposits during falling sea level, tectonic and glacial-isostatic deformation, and provides a 3D record of created stratigraphy and underlying bedrock. We used LLEM to simulate the development of the main valley of the Amazon over the last million years, exploring the propagation of incision waves and system dissection during glacial lowstands, followed by rapid valley filling and extreme lateral mobility of channels during interglacials. We present metrics, videos, and 3D fly-throughs characterizing how system development responds to key assumptions

  8. Evaluation of the Location and Recency of Faulting Near Prospective Surface Facilities in Midway Valley, Nye County, Nevada

    Science.gov (United States)

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2001-01-01

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern

  9. Evaluation of the location and recency of faulting near prospective surface facilities in Midway Valley, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2002-01-17

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern

  10. Evaluation of the location and recency of faulting near prospective surface facilities in Midway Valley, Nye County, Nevada

    International Nuclear Information System (INIS)

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2002-01-01

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern

  11. Design/installation and structural integrity assessment under the Federal Facility Agreement for Bethel Valley Low-Level Waste Collection and Transfer System upgrade for Building 2026 (High Radiation Level Analytical Laboratory) and Building 2099 (Monitoring and Control Station) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-10-01

    This document presents a Design/Installation and Structural Integrity Assessment for a replacement tank system for portions of the Bethel Valley Low Level Waste (LLW) System, located at the Oak Ridge Reservation, Oak Ridge, Tennessee. This issue of the assessment covers the design aspects of the replacement tank system, and certifies that the design has sufficient structural integrity and is acceptable for the storing or treating of hazardous and/or radioactive substances. The present issue identifies specific activities that must be completed during the fabrication, installation, and testing of the replacement tank system in order to provide assurance that the final installation complies with governing requirements. Portions of the LLW system are several decades old, or older, and do not comply with current environmental protection regulations. Several subsystems of the LLW system have been designated to receive a state-of-the-art replacement and refurbishment. One such subsystem serves Building 2026, the High Radiation Level Analytical Laboratory. This assessment focuses on the scope of work for the Building 2026 replacement LLW Collection and Transfer System, including the provision of a new Monitoring and Control Station (Building 2099) to receive, store, and treat (adjust pH) low level radioactive waste

  12. Performance assessment for low-level waste disposal in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, A.B. [UK Dept. of the Environment, London (United Kingdom)

    1995-12-31

    British Nuclear Fuels plc (BNFL) operate a site for the disposal of Low Level Radioactive Waste at Drigg in West Cumbria, in North-West England. HMIP are responsible for the regulation of the site with regard to environmental discharges of radioactive materials, both operational and post-closure. This paper is concerned with post-closure matters only. Two post-closure performance assessments have been carried out for this site: one by the National Radiological Protection Board (NRPB) in 1987; and a subsequent one carried out on behalf of HMIP, completed in 1991. Currently, BNFL are preparing a Safety Case for continued operation of the Drigg site, and it expected that the core of this Case will comprise BNFL`s own analysis of post-closure performance. HMIP has developed procedures for the assessment of this Case, based upon experience of the previous Drigg assessments, and also upon the experience of similar work carried out in the assessment of Intermediate Level Waste (ILW) disposal at both deep and shallow potential sites. This paper describes the more important features of these procedures.

  13. Site-wide remedial alternative development in Bear Creek Valley, Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Anderson, M.

    1995-07-01

    This paper presents a case study of an environmental restoration project at a major mixed waste site that poses unique challenges to remediation efforts. Bear Creek Valley is located immediately west of the Y-12 Plant on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The Y-12 Plant was built in 1943 as part of the Manhattan Project, with its original mission being electromagnetic separation of uranium. Since being completed, the Y-12 Plant has also been used for chemical processing of uranium and lithium compounds as well as precision fabrication of components containing these and other materials. Wastes containing radionuclides, metals, chlorinated solvents, oils, coolants, polychlorinated biphenyis (PCBs), and others were disposed of in large quantities at Bear Creek Valley as a result of manufacturing operations at the Y-12 Plant. The Bear Creek Valley feasibility study is using innovative strategies to efficiently and thoroughly consider the information available regarding Bear Creek Valley and process options that could be combined into its remedial alternatives

  14. Mechanical control over valley magnetotransport in strained graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ning, E-mail: maning@stu.xjtu.edu.cn [Department of Physics, MOE Key Laboratory of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Shengli, E-mail: zhangsl@mail.xjtu.edu.cn [Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Daqing, E-mail: liudq@cczu.edu.cn [School of Mathematics and Physics, Changzhou University, Changzhou 213164 (China)

    2016-05-06

    Recent experiments report that the graphene exhibits Landau levels (LLs) that form in the presence of a uniform strain pseudomagnetic field with magnitudes up to hundreds of tesla. We further reveal that the strain removes the valley degeneracy in LLs, and leads to a significant valley polarization with inversion symmetry broken. This accordingly gives rise to the well separated valley Hall plateaus and Shubnikov–de Haas oscillations. These effects are absent in strainless graphene, and can be used to generate and detect valley polarization by mechanical means, forming the basis for the new paradigm “valleytronics” applications. - Highlights: • We explore the mechanical strain effects on the valley magnetotransport in graphene. • We analytically derive the dc collisional and Hall conductivities under strain. • The strain removes the valley degeneracy in Landau levels. • The strain causes a significant valley polarization with inversion symmetry broken. • The strain leads to the well separated valley Hall and Shubnikov–de Haas effects.

  15. Subclinical Nutritional Rickets Among Adolescents in Kaghan Valley

    International Nuclear Information System (INIS)

    Shah, T. H.; Hassan, M.; Siddiqui, T. S.

    2014-01-01

    Objective: To determine the occurrence of subclinical rickets and its causing factors among adolescent students of schools in Kaghan Valley, Pakistan. Study Design: Observation cross-sectional study. Place and Duration of Study: Department of Biochemistry and Health Sciences, Hazara University, Mansehra, Ayub Medical College and Teaching Hospital, Abbottabad, from March to April 2012. Methodology: Sixty seven students (34 boys and 33 girls) age between 11 - 16 years included in the study from different schools of Kaghan Valley, Pakistan. Characteristic, serum biochemical and nutritional status were measured for all the participants. On the basis of biochemical finding the boys and girls students were divided in to two groups, normal subjects and subclinical rickets (absent symptoms with altered biochemistry). Results: Twenty six participants, 19 (73%) girls and 07 (27%) boys had biochemical abnormality but no clinical signs and symptoms of rickets. Low vitamin D and high alkaline phosphatase level were observed in 26 (100%), 21 (81%), low calcium in 17 (65%) and low phosphorus 7 (27%) subjects with subclinical rickets. None had high parathormone level above normal range. Nutritional intake of calcium, phosphorus and vitamin D was found less than the recommended daily intake in all the participants. Conclusion: Subclinical rickets is common problem among adolescent students especially in girls which is due to low nutritional intakes and avoidance of sunshine due to environmental and traditional impacts. (author)

  16. Geologic map of the Lower Valley quadrangle, Caribou County, Idaho

    Science.gov (United States)

    Oberlindacher, H. Peter; Hovland, R. David; Miller, Susan T.; Evans, James G.; Miller, Robert J.

    2018-04-05

    The Lower Valley 7.5-minute quadrangle, located in the core of the Southeast Idaho Phosphate Resource Area, includes Mississippian to Triassic marine sedimentary rocks, Pliocene to Pleistocene basalt, and Tertiary to Holocene surficial deposits. The Mississippian to Triassic marine sedimentary sequence was deposited on a shallow shelf between an emergent craton to the east and the Antler orogenic belt to the west. The Meade Peak Phosphatic Shale Member of the Permian Phosphoria Formation hosts high-grade deposits of phosphate that were the subject of geologic studies through much of the 20th century. Open-pit mining of the phosphate has been underway within and near the Lower Valley quadrangle for several decades.

  17. Ward Valley transfer stalled by Babbitt

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Interior Secretary Bruce Babbitt announced on November 24 that he would not authorize the land transfer for the proposed low-level waste disposal site at Ward Valley, California, until a legal challenge to the facility's license and environmental impact statement is resolved. Even if the matter is resolved quickly, there exists the possibility that yet another hearing will be held on the project, even though state courts in California have stated flatly that no such hearings are required

  18. The role of the national low level waste repository operator in delivering new solutions for the management of low level wastes in the UK - 16217

    International Nuclear Information System (INIS)

    Walkingshaw, Martin

    2009-01-01

    The UK National Low Level Waste Repository (LLWR) is located near to the village of Drigg in West Cumbria. It is the principal site for disposal of solid Low Level Radioactive Waste (LLW) in the United Kingdom. This paper describes the program of work currently being undertaken by the site's operators, (LLW Repository Ltd and its newly appointed Parent Body Organisation), to extend the life of the LLWR and reduce the overall cost of LLW management to the UK taxpayer. The current focus of this program is to prevent disposal capacity being taken up at LLWR by waste types which lend themselves to alternative treatment and/or disposition routes. The chosen approach enables consignors to segregate LLW at source into formats which allow further treatment for volume reduction or, (for wastes with lower levels of activity), consignment in the future to alternative disposal facilities. Segregated waste services are incorporated into LLW Disposal commercial agreements between the LLWR operator and waste consignors. (author)

  19. Early to Middle Holocene sea level fluctuation, coastal progradation and the Neolithic occupation in the Yaojiang Valley of southern Hangzhou Bay, Eastern China

    Science.gov (United States)

    Liu, Yan; Sun, Qianli; Fan, Daidu; Dai, Bin; Ma, Fuwei; Xu, Lichen; Chen, Jing; Chen, Zhongyuan

    2018-06-01

    The Yaojiang Valley (YJV) of southern Hangzhou Bay was the birthplace of the well-known Hemudu Culture (HC), one of the representatives of Neolithic civilization in eastern China. To explore the magnitude of natural environmental effects on the HC trajectory, the palaeo-embayment setting of the YJV was studied in detail for the first time in terms of 3D Holocene strata supported by a series of new radiocarbon-dated cores. The results indicated that the local relative sea level rose rapidly during the Early Holocene in the YJV, reached its maximum flooding surface ca. 7900 cal yr BP, and then remained stable ca. 7900-7600 cal yr BP. Thereupon, an estuary stretching inland was first formed by marine transgression, and then, it was transformed to an alluvial-coastal plain by regressive progradation. The alluvial plain was initiated in the foothills and then spread towards the valley centre after sea level stabilization ca. 7600 cal yr BP. Accompanying these natural environmental changes, the earliest arrivals of foragers in the valley occurred no later than ca. 7000 cal yr BP. They engaged in rice farming and fostered the HC for approximately two millennia from ca. 7000-5000 cal yr BP as more lands developed from coastal progradation. The rise and development of the HC are closely associated with the sea level-induced landscape changes in the YJV in the Early-Middle Holocene, but the enigmatic exodus of the HC people after ca. 5000 cal yr BP is still contentious and possibly linked with the rapid waterlogging and deterioration of this setting in such a low-lying coastal plain as well as with associated social reasons.

  20. Waste Analysis Plan for the Low-Level Burial Grounds [CANCELLED] Reissued as HNF-5841

    International Nuclear Information System (INIS)

    ELLEFSON, M.D.

    2000-01-01

    Canceled see HNF-5841 Rev 0. This waste analysis plan (WAP) has been prepared for the Low-Level Burial Grounds which are located in the 200 East and West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize, obtain and analyze representative samples of waste managed at this unit

  1. Long Valley Caldera 2003 through 2014: overview of low level unrest in the past decade

    Science.gov (United States)

    Wilkinson, Stuart K.; Hill, David P.; Langbein, John O.; Lisowski, Michael; Mangan, Margaret T.

    2014-01-01

    Long Valley Caldera is located in California along the eastern escarpment of the Sierra Nevada Range. The caldera formed about 760,000 years ago as the eruption of 600 km3 of rhyolite magma (Bishop Tuff) resulted in collapse of the partially evacuated magma chamber. Resurgent doming in the central part of the caldera occurred shortly afterwards, and the most recent eruptions inside the caldera occurred about 50,000 years ago. The caldera remains thermally active, with many hot springs and fumaroles, and has had significant deformation and seismicity since at least 1978. Periods of intense unrest in the 1980s to early 2000s are well documented in the literature (Hill and others, 2002; Ewert and others, 2010). In this poster, we extend the timeline forward, documenting seismicity and deformation over the past decade.

  2. Ward Valley transfer stalled by Babbitt

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Interior Secretary Bruce Babbitt announced on November 24 that he would not authorize the land transfer for the proposed low-level waste disposal site at Ward Valley, California, until a legal challenge to the facility's license and environmental impact statement is resolved. Even if the matter is resolved quickly, there exists the possibility that yet another hearing will be held on the project, even though state courts in California have stated flatly that no such hearings are required.

  3. Understanding low-level radioactive waste. National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1983-10-01

    Chapters are devoted to: background and policymaking for low-level waste management; commercial low-level waste generation; Department of Energy low-level waste generation; low-level waste treatment; packaging and transportation; commercial low-level waste disposal; Department of Energy low-level waste disposal; Department of Energy low-level waste management program; and laws and regulations

  4. Experience with disposal of low-level radioactive waste: building confidence for and against the regulations

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Lowenthal, M.D.

    2001-01-01

    Following the controversy regarding the potential use of the Ward Valley site in California as a low level radioactive waste facility, an Advisory Group and a Scientific Panel were formed to recommend alternatives to the Governor. During the course of the Group and Panel deliberations, the arguments for and against near surface burial and waste classification were crystallized. In this paper we discuss the bases upon which the arguments were formed and what we can learn from them. (author)

  5. Experience with disposal of low-level radioactive waste: building confidence for and against the regulations

    Energy Technology Data Exchange (ETDEWEB)

    Kastenberg, W.E.; Lowenthal, M.D. [University of California, Dept. of Nuclear Engineering, CA (United States)

    2001-07-01

    Following the controversy regarding the potential use of the Ward Valley site in California as a low level radioactive waste facility, an Advisory Group and a Scientific Panel were formed to recommend alternatives to the Governor. During the course of the Group and Panel deliberations, the arguments for and against near surface burial and waste classification were crystallized. In this paper we discuss the bases upon which the arguments were formed and what we can learn from them. (author)

  6. Aerial photographic interpretation of lineaments and faults in late Cenozoic deposits in the eastern parts of the Saline Valley 1:100, 000 quadrangle, Nevada and California, and the Darwin Hills 1:100, 000 quadrangle, California

    International Nuclear Information System (INIS)

    Reheis, M.C.

    1991-01-01

    Faults and fault-related lineaments in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous compared to those in most other areas of the Great Basin. Two maps at a scale of 1:100,000 summarize information about lineaments and faults in the area around and southwest of the Death Valley-Furnace Creek fault system based on extensive aerial-photo interpretation, limited field interpretation, limited field investigations, and published geologic maps. There are three major fault zones and two principal faults in the Saline Valley and Darwin Hills 1:100,000 quadrangles. (1) The Death Valley-Furnace Creek fault system and (2) the Hunter Mountain fault zone are northwest-trending right-lateral strike-slip fault zones. (3) The Panamint Valley fault zone and associated Towne Pass and Emigrant faults are north-trending normal faults. The intersection of the Hunter Mountain and Panamint Valley fault zones is marked by a large complex of faults and lineaments on the floor of Panamint Valley. Additional major faults include (4) the north-northwest-trending Ash Hill fault on the west side of Panamint Valley, and (5) the north-trending range-front Tin Mountain fault on the west side of the northern Cottonwood Mountains. The most active faults at present include those along the Death Valley-Furnace Creek fault system, the Tin Mountain fault, the northwest and southeast ends of the Hunter Mountain fault zone, the Ash Hill fault, and the fault bounding the west side of the Panamint Range south of Hall Canyon. Several large Quaternary landslides on the west sides of the Cottonwood Mountains and the Panamint Range apparently reflect slope instability due chiefly to rapid uplift of these ranges. 16 refs

  7. DIOXINS AND ENDOMETRIOSIS: COHORT STUDY OF WOMEN IN WEST VIRGINIA

    Science.gov (United States)

    Kanawha Valley of West Virginia has a history of 2,3,7,8-tetrachlorodibenzo-p-dioxin contamination (dioxin, TCDD). The bulk of the dioxin found in this area appears to be derived from the production of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and the disposal of associated wa...

  8. Geologic map of the Vail West quadrangle, Eagle County, Colorado

    Science.gov (United States)

    Scott, Robert B.; Lidke, David J.; Grunwald, Daniel J.

    2002-01-01

    Rio Grande rift system in Colorado. In the southwestern part of the map area, a diapiric(?) exposure of the Eagle Valley Evaporite exists and chaotic faults and folds suggest extensive dissolution and collapse of overlying bedrock, indicating the presence of a geologic hazard. Quaternary landslides are common and indicate that landslide hazards are widespread in the area, particularly where old slide deposits are disturbed by construction. The late Pliocene(?) landslide that consists largely of a smectitic upper Morrison Formation matrix and boulders of Dakota Sandstone is readily reactivated. Debris flows are likely to invade low-standing areas within the towns of Vail and West Vail where tributaries of Gore Creek issue from the mountains on the north side of the valley.

  9. Outdoor radiofrequency radiation levels in the West Bank-Palestine.

    Science.gov (United States)

    Lahham, Adnan; Hammash, Alaa

    2012-05-01

    This work presents the results of exposure levels to radio frequency (RF) emission from different sources in the environment of the West Bank-Palestine. These RF emitters include FM and TV broadcasting stations and mobile phone base stations. Power densities were measured at 65 locations distributed over the West Bank area. These locations include mainly centres of the major cities. Also a 24 h activity level was investigated for a mobile phone base station to determine the maximum activity level for this kind of RF emitters. All measurements were conducted at a height of 1.7 m above ground level using hand held Narda SRM 3000 spectrum analyzer with isotropic antenna capable of collecting RF signals in the frequency band from 75 MHz to 3 GHz. The average value of power density resulted from FM radio broadcasting in all investigated locations was 0.148 μW cm(-2), from TV broadcasting was 0.007 μW cm(-2) and from mobile phone base station was 0.089 μW cm(-2). The maximum total exposure evaluated at any location was 3.86 μW cm(-2). The corresponding exposure quotient calculated for this site was 0.02. This value is well below unity indicating compliance with the International Commission on non-ionising Radiation protection guidelines. Contributions from all relevant RF sources to the total exposure were evaluated and found to be ~62 % from FM radio, 3 % for TV broadcasting and 35 % from mobile phone base stations. The average total exposure from all investigated RF sources was 0.37 μW cm(-2).

  10. High-level waste immobilization program: an overview

    International Nuclear Information System (INIS)

    Bonner, W.R.

    1979-09-01

    The High-Level Waste Immobilization Program is providing technology to allow safe, affordable immobilization and disposal of nuclear waste. Waste forms and processes are being developed on a schedule consistent with national needs for immobilization of high-level wastes stored at Savannah River, Hanford, Idaho National Engineering Laboratory, and West Valley, New York. This technology is directly applicable to high-level wastes from potential reprocessing of spent nuclear fuel. The program is removing one more obstacle previously seen as a potential restriction on the use and further development of nuclear power, and is thus meeting a critical technological need within the national objective of energy independence

  11. Evidence for slow late-glacial ice retreat in the upper Rangitata Valley, South Island, New Zealand

    Science.gov (United States)

    Shulmeister, J.; Fink, D.; Winkler, S.; Thackray, G. D.; Borsellino, R.; Hemmingsen, M.; Rittenour, T. M.

    2018-04-01

    A suite of cosmogenic radionuclide ages taken from boulders on lateral and latero-terminal moraines in the Rangitata Valley, eastern South Island, New Zealand demonstrates that relatively thick ice occupied valley reaches inland of the Rangitata Gorge until c. 21 ka. Thereafter ice began to thin, and by c. 17 ka it had retreated 33 km up-valley of the Rangitata Gorge to the Butler-Brabazon Downs, a structurally created basin in the upper Rangitata Valley. Despite its magnitude, this retreat represents a minor ice volume reduction from 21 ka to 17 ka, and numerous lateral moraines preserved suggest a relatively gradual retreat over that 4 ka period. In contrast to records from adjacent valleys, there is no evidence for an ice-collapse at c. 18 ka. We argue that the Rangitata record constitutes a more direct record of glacial response to deglacial climate than other records where glacial dynamics were influenced by proglacial lake development, such as the Rakaia Valley to the North and the major valleys in the Mackenzie Basin to the south-west. Our data supports the concept of a gradual warming during the early deglaciation in the South Island New Zealand.

  12. Sustainable agricultural development in inland valleys

    NARCIS (Netherlands)

    Zwart, S.J.

    2018-01-01

    The inland valley in Africa are common landscapes that have favorable conditions for agricultural production. Compared to the surrounding uplands they are characterized by a relatively high and secure water availability and high soil fertility levels. Inland valleys thus have a high agricultural

  13. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site

  14. 76 FR 13605 - Notice of Availability of Draft Waste Incidental to Reprocessing Evaluation for the Vitrification...

    Science.gov (United States)

    2011-03-14

    ... selected offsite low-level waste disposal facility, either the NNSS Area 5 Radioactive Waste Management... in West Valley, New York, is waste incidental to reprocessing and thus is not high-level radioactive... evaluation pursuant to DOE Manual 435.1-1, Radioactive Waste Management. DOE is consulting with the Nuclear...

  15. Hydrogeology and simulation of groundwater flow at the Green Valley reclaimed coal refuse site near Terre Haute, Indiana

    Science.gov (United States)

    Bayless, E. Randall; Arihood, Leslie D.; Fowler, Kathleen K.

    2011-01-01

    The Green Valley reclaimed coal refuse site, near Terre Haute, Ind., was mined for coal from 1948 to 1963. Subsurface coal was cleaned and sorted at land surface, and waste material was deposited over the native glacial till. Approximately 2.7 million cubic yards of waste was deposited over 159 acres (92.3 hectares) in tailings ponds and gob piles. During 1993, the Indiana Department of Natural Resources, Division of Reclamation, improved the site by grading gob piles, filling tailings ponds, and covering the refuse with a layer of glacial drift. During 2008, the Division of Reclamation and U.S. Geological Survey initiated a cooperative investigation to characterize the hydrogeology of the site and construct a calibrated groundwater flow model that could be used to simulate the results of future remedial actions. In support of the modeling, a data-collection network was installed at the Green Valley site to measure weather components, geophysical properties, groundwater levels, and stream and seep flow. Results of the investigation indicate that (1) there is negligible overland flow from the site, (2) the prevailing groundwater-flow direction is from northeast to southwest, with a much smaller drainage to the northeast, (3) there is not a direct hydraulic connection between the refuse and West Little Sugar Creek, (4) about 24 percent of the groundwater recharge emerges through seeps, and water from the seeps evaporates or eventually flows to West Little Sugar Creek and the Green Valley Mine Pond, and (5) about 72 percent of groundwater recharge moves vertically downward from the coal refuse into the till and follows long, slow flow paths to eventual dischage points.

  16. Ground-water flow and transport modeling of the NRC-licensed waste disposal facility, West Valley, New York

    International Nuclear Information System (INIS)

    Kool, J.B.; Wu, Y.S.

    1991-10-01

    This report describes a simulation study of groundwater flow and radionuclide transport from disposal at the NRC licensed waste disposal facility in West Valley, New York. A transient, precipitation driven, flow model of the near-surface fractured till layer and underlying unweathered till was developed and calibrated against observed inflow data into a recently constructed interceptor trench for the period March--May 1990. The results suggest that lateral flow through the upper, fractured till layer may be more significant than indicated by previous, steady state flow modeling studies. A conclusive assessment of the actual magnitude of lateral flow through the fractured till could however not be made. A primary factor contributing to this uncertainty is the unknown contribution of vertical infiltration through the interceptor trench cap to the total trench inflow. The second part of the investigation involved simulation of the migration of Sr-90, Cs-137 and Pu-239 from the one of the fuel hull disposal pits. A first-order radionuclide leach rate with rate coefficient of 10 -6 /day was assumed to describe radionuclide release into the disposal pit. The simulations indicated that for wastes buried below the fractured till zone, no significant migration would occur. However, under the assumed conditions, significant lateral migration could occur for radionuclides present in the upper, fractured till zone. 23 refs., 68 figs., 12 tabs

  17. A Study of the Groundwater Level Spatial Variability in the Messara Valley of Crete

    Science.gov (United States)

    Varouchakis, E. A.; Hristopulos, D. T.; Karatzas, G. P.

    2009-04-01

    The island of Crete (Greece) has a dry sub-humid climate and marginal groundwater resources, which are extensively used for agricultural activities and human consumption. The Messara valley is located in the south of the Heraklion prefecture, it covers an area of 398 km2, and it is the largest and most productive valley of the island. Over-exploitation during the past thirty (30) years has led to a dramatic decrease of thirty five (35) meters in the groundwater level. Possible future climatic changes in the Mediterranean region, potential desertification, population increase, and extensive agricultural activity generate concern over the sustainability of the water resources of the area. The accurate estimation of the water table depth is important for an integrated groundwater resource management plan. This study focuses on the Mires basin of the Messara valley for reasons of hydro-geological data availability and geological homogeneity. The research goal is to model and map the spatial variability of the basin's groundwater level accurately. The data used in this study consist of seventy (70) piezometric head measurements for the hydrological year 2001-2002. These are unevenly distributed and mostly concentrated along a temporary river that crosses the basin. The range of piezometric heads varies from an extreme low value of 9.4 meters above sea level (masl) to 62 masl, for the wet period of the year (October to April). An initial goal of the study is to develop spatial models for the accurate generation of static maps of groundwater level. At a second stage, these maps should extend the models to dynamic (space-time) situations for the prediction of future water levels. Preliminary data analysis shows that the piezometric head variations are not normally distributed. Several methods including Box-Cox transformation and a modified version of it, transgaussian Kriging, and Gaussian anamorphosis have been used to obtain a spatial model for the piezometric head. A

  18. Low levels of persistent organic pollutants (POPs) in New Zealand eels reflect isolation from atmospheric sources

    International Nuclear Information System (INIS)

    Holmqvist, Niklas; Stenroth, Patrik; Berglund, Olof; Nystroem, Per; Olsson, Karin; Jellyman, Don; McIntosh, Angus R.; Larsson, Per

    2006-01-01

    Polychlorinated biphenyls (PCBs) and organic pesticides (i.e., DDTs) were measured in long finned eels (Anguilla dieffenbachii) in 17 streams on the west coast of South Island, New Zealand. Very low levels of PCBs and low levels of ppDDE were found. The concentrations of PCBs and ppDDE were not correlated within sites indicating that different processes determined the levels of the two pollutants in New Zealand eels. The PCBs probably originate from atmospheric transport, ppDDE levels are determined by land use and are higher in agriculture areas. The low contamination level of these aquatic systems seems to be a function of a low input from both long and short-range transport as well as few local point sources. No correlation could be found between lipid content and persistent organic pollutants (POPs) concentration (as shown in previous studies) in the eels which could be explained by low and irregular intake of the pollutants. - Low levels of PCBs found in New Zealand eels reflect isolation from atmospheric sources while DDTs levels are determined by land use

  19. Decontamination of the chemical crane room and decontamination and decommissioning of the extraction chemical room at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Phillips, E.C.; Golden, M.P.

    1986-01-01

    This paper describes the decontamination of the Chemical Crane Room (CCR) of the West Valley Plant and the Extraction Chemical Room (XCR) from radioactively contaminated conditions to essentially shirt sleeve environments. In both cases, subsequent use re-contaminated the rooms. Prior to decontamination, general exposure rates in the CCR were 50 to 100 mR/hr with hot spots as high as 2000 mR/hr. Smearable levels on the floor were in the range of 10 5 to 10 6 dpm per 100/cm 2 . Respiratory protection was mandatory for entry. In the Extraction Chemical Room (XCR) prior to decontamination and decommissioning (D/D), radiological surveys indicated a maximum radiation field of 5 mR/hr, due to sources internal to the room, and 20,000 dpm beta/100 cm 2 surface contamination. A radiation source external to the XCR caused a hot spot with a 9 mR/hr exposure rate inside the XCR. The CCR, located at the north end of the Chemical Process Cell (CPC) is for the storage and servicing of two bridge cranes used in the CPC. Decontamination and exposure reduction in the CCR has been completed using vacuum cleaning, damp wipe down, and surface grinding followed by shielding and painting. The decontamination and decommissioning of the Extraction Chemical Room (XCR), located on the fifth floor elevation (160') of the reprocessing plant at the WVDP, has been completed. D/D operations included removal of piping, tanks, supports, and equipment to provide a clean work area of about 3000 square feet and 17 feet high

  20. Application of remote sensing technique to site selection for low and intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Chen Zhangru; Jin Yuanxin; Liu Yuemiao; Hou Dewen

    2001-01-01

    Based on the relative criteria of selection of disposal site for low and intermediate level radioactive waste, the social-economic conditions, landform, morphologic properties, regional geological stability, hydrogeological and engineering geological characters of adjacent area of Anhui, Zhejiang and Jiangsu provinces were investigated. The geological interpretation of thematic mapper images, field reconnaissance and data analysis were conducted during the research work. The results show that three areas in the west part of Zhejiang Province were recommended as potential site for disposal of low and intermediate level radioactive waste. They are Bajiaotang area, Tiebanchong area and Changxing-Guangde-Anji nabes

  1. BPA/Lower Valley transmission project. Final environmental impact statement

    International Nuclear Information System (INIS)

    1998-06-01

    Bonneville Power Administration and Lower Valley Power and Light, Inc. propose to solve a voltage stability problem in the Jackson and Afton, Wyoming areas. Lower Valley buys electricity from BPA and then supplies it to the residences and businesses of the Jackson and Afton, Wyoming areas. BPA is considering five alternatives. For the Agency Proposed Action, BPA and Lower Valley would construct a new 115-kV line from BPA's Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPA's Teton Substation near Jackson in Teton County, Wyoming. The new line would be next to an existing 115-kV line. The Single-Circuit Line Alternative has all the components of the Agency Proposed Action except that the entire line would be supported by single-circuit wood pole H-frame structures. the Short Line Alternative has all the components of the Single-Circuit Line Alternative except it would only be half as long. BPA would also construct a new switching station near the existing right-of-way, west or north of Targhee Tap. Targhee Tap would then be removed. For the Static Var Compensation Alternative, BPA would install a Static Var Compensator (SVC) at Teton or Jackson Substation. An SVC is a group of electrical equipment placed at a substation to help control voltage on a transmission system. The No Action Alternative assumes that no new transmission line is built, and no other equipment is added to the transmission system

  2. Outdoor radiofrequency radiation levels in the West Bank-palestine

    International Nuclear Information System (INIS)

    Lahham, A.; Hammash, A.

    2012-01-01

    This work presents the results of exposure levels to radio frequency (RF) emission from different sources in the environment of the West Bank-Palestine. These RF emitters include FM and TV broadcasting stations and mobile phone base stations. Power densities were measured at 65 locations distributed over the West Bank area. These locations include mainly centres of the major cities. Also a 24 h activity level was investigated for a mobile phone base station to determine the maximum activity level for this kind of RF emitters. All measurements were conducted at a height of 1.7 m above ground level using hand held Narda SRM 3000 spectrum analyzer with isotropic antenna capable of collecting RF signals in the frequency band from 75 MHz to 3 GHz. The average value of power density resulted from FM radio broadcasting in all investigated locations was 0.148 μW cm -2 , from TV broadcasting was 0.007 μW cm -2 and from mobile phone base station was 0.089 μW cm -2 . The maximum total exposure evaluated at any location was 3.86 μW cm -2 . The corresponding exposure quotient calculated for this site was 0.02. This value is well below unity indicating compliance with the International Commission on non-ionising Radiation protection guidelines. Contributions from all relevant RF sources to the total exposure were evaluated and found to be ∼62 % from FM radio, 3 % for TV broadcasting and 35 % from mobile phone base stations. The average total exposure from all investigated RF sources was 0.37 μW cm -2 . (authors)

  3. Design/installation and structural integrity assessment under the Federal Facility Agreement for Bethel Valley low-level waste collection and transfer system upgrade for Building 2026 (High Radiation Level Analytical Laboratory) and Building 2099 (Monitoring and Control Station) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-11-01

    This document presents a Design/Installation and Structural Integrity Assessment for a replacement tank system for portions of the Bethel Valley Low-Level Waste (LLW) System, located at the Oak Ridge Reservation, Oak Ridge, Tennessee. This issue of the assessment covers the design aspects of the replacement tank system, and certifies that the design has sufficient structural integrity and is acceptable for the storing or treating of hazardous and/or radioactive substances. This document will be reissued at a future date and will then include the assessment of the installation of the replacement tank system. The present issue identifies specific activities that must be completed during the fabrication, installation, and testing of the replacement tank system in order to provide assurance that the final installation complies with governing requirements

  4. West Valley Demonstration Project vitrification process equipment Functional and Checkout Testing of Systems (FACTS)

    International Nuclear Information System (INIS)

    Carl, D.E.; Paul, J.; Foran, J.M.; Brooks, R.

    1990-01-01

    The Vitrification Facility (VF) at the West Valley Demonstration Project was designed to convert stored radioactive waste into a stable glass for disposal in a federal repository. The Functional and Checkout Testing of Systems (FACTS) program was conducted from 1984 to 1989. During this time new equipment and processes were developed, installed, and implemented. Thirty-seven FACTS tests were conducted, and approximately 150,000 kg of glass were made by using nonradioactive materials to simulate the radioactive waste. By contrast, the planned radioactive operation is expected to produce approximately 500,000 kg of glass. The FACTS program demonstrated the effectiveness of equipment and procedures in the vitrification system, and the ability of the VF to produce quality glass on schedule. FACTS testing also provided data to validate the WVNS waste glass qualification method and verify that the product glass would meet federal repository acceptance requirements. The system was built and performed to standards which would have enabled it to be used in radioactive service. As a result, much of the VF tested, such as the civil construction, feed mixing and holding vessels, and the off-gas scrubber, will be converted for radioactive operation. The melter was still in good condition after being at temperature for fifty-eight of the sixty months of FACTS. However, the melter exceeded its recommended design life and will be replaced with a similar melter. Components that were not designed for remote operation and maintenance will be replaced with remote-use items. The FACTS testing was accomplished with no significant worker injury or environmental releases. During the last FACTS run, the VF processes approximated the remote-handling system that will be used in radioactive operations. Following this run the VF was disassembled for conversion to a radioactive process. Functional and checkout testing of new components will be performed prior to radioactive operation

  5. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    International Nuclear Information System (INIS)

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith LaRue, J.; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    component of 0.5 foot, is estimated to be about 6,000 acre-feet. Annual subsurface outflow from Oasis Valley into the Amargosa Desert is estimated to be between 30 and 130 acre-feet. Estimates of total annual ground-water withdrawal from Oasis Valley by municipal and non-municipal users in 1996 and 1999 are 440 acre-feet and 210 acre-feet, respectively. Based on these values, natural annual ground-water discharge from Oasis Valley is about 6,100 acre-feet. Total annual discharge was 6,500 acre-feet in 1996 and 6,300 acre-feet in 1999. This quantity of natural ground-water discharge from Oasis Valley exceeds the previous estimate made in 1962 by a factor of about 2.5. Water levels were measured in Oasis Valley to gain additional insight into the ET process. In shallow wells, water levels showed annual fluctuations as large as 7 feet and daily fluctuations as large as 0.2 foot. These fluctuations may be attributed to water loss associated with evapotranspiration. In shallow wells affected by E T, annual minimum depths to water generally occurred in winter or early spring shortly after daily ET reached minimum rates. Annual maximum depths to water generally occurred in late summer or fall shortly after daily ET reached maximum rates. The magnitude of daily water-level fluctuations generally increased as ET increased and decreased as depth to water increased

  6. Valley-orbit hybrid states in Si quantum dots

    Science.gov (United States)

    Gamble, John; Friesen, Mark; Coppersmith, S. N.

    2013-03-01

    The conduction band for electrons in layered Si nanostructures oriented along (001) has two low-lying valleys. Most theoretical treatments assume that these valleys are decoupled from the long-wavelength physics of electron confinement. In this work, we show that even a minimal amount of disorder (a single atomic step at the quantum well interface) is sufficient to mix valley states and electron orbitals, causing a significant distortion of the long-wavelength electron envelope. For physically realistic electric fields and dot sizes, this valley-orbit coupling impacts all electronic states in Si quantum dots, implying that one must always consider valley-orbit hybrid states, rather than distinct valley and orbital degrees of freedom. We discuss the ramifications of our results on silicon quantum dot qubits. This work was supported in part by ARO (W911NF-08-1-0482) and NSF (DMR-0805045).

  7. Crustal structure of norther Oaxaca terrane; The Oaxaca and caltepec faults, and the Tehuacan Valley. A gravity study.

    Science.gov (United States)

    Campos-Enriquez, J. O.; Alatorre-Zamora, M. A.; Ramón, V. M.; Belmonte, S.

    2014-12-01

    Northern Oaxaca terrane, southern Mexico, is bound by the Caltepec and Oaxaca faults to the west and east, respectively. These faults juxtapose the Oaxaca terrane against the Mixteca and Juarez terranes, respectively. The Oaxaca Fault also forms the eastern boundary of the Cenozoic Tehuacan depression. Several gravity profiles across these faults and the Oaxaca terrane (including the Tehuacan Valley) enables us to establish the upper crustal structure of this region. Accordingly, the Oaxaca terrane is downward displaced to the east in two steps. First the Santa Lucia Fault puts into contact the granulitic basamental rocks with Phanerozoic volcanic and sedimentary rocks. Finally, the Gavilan Fault puts into contact the Oaxaca terrane basement (Oaxaca Complex) into contact with the volcano-sedimentary infill of the valley. This gravity study reveals that the Oaxaca Fault system gives rise to a series of east tilted basamental blocks (Oaxaca Complex?). A structural high at the western Tehuacan depression accomadates the east dipping faults (Santa Lucia and Gavilan faults) and the west dipping faults of the Oaxaca Fault System. To the west of this high structural we have the depper depocenters. The Oaxaca Complex, the Caltepec and Santa Lucia faults continue northwestwards beneath Phanerozoic rocks. The faults are regional tectonic structures. They seem to continue northwards below the Trans-Mexican Volcanic Belt. A major E-W to NE-SW discontinuity on the Oaxaca terrane is inferred to exist between profiles 1 and 2. The Tehuacan Valley posses a large groundwater potential.

  8. Cosmogenic 10Be ages from the Meirs and Garwood Valleys, Denton Hills, West Antarctica, suggest an absence in LGM Ice Sheet expansion.

    Science.gov (United States)

    Fink, David; Joy, Kurt; Storey, Bryan

    2014-05-01

    It has been hypothesised that during interglacials, thinning of the Ross Ice Shelf allowed a more open water environment with increased local precipitation. This resulted in outlet glaciers, which drain the Transantarctic Mountains and fed by the East Antarctic Ice Sheet, advancing during moist warmer periods, apparently out of phase with colder arid dry periods. Significantly the ice core record during these warm periods also shows increased accumulation continent wide The geomorphology of the Denton Hills in the Royal Society Range, West Antarctica, is a result of Miocene fluvial incision reworked by subsequent glacial advances throughout the Quaternary. The Garwood and Miers glacial valleys drain ice across the Denton Hills into the Shelf, and should thus show maximum extent during interstadials. To understand the chronology of late Quaternary glaciations, 15 granitic boulders from terminal moraines were sampled for 10Be and 26Al cosmogenic dating. Obtaining reliable exposure ages of erratics within moraines that represent timing of deposition (i.e. glacial advances) is problematic in polar regions, where glacial activity is principally controlled by ice sheet dynamics. Recycling of previously exposed debris, uncertainty in provenance of glacially transported boulders and a lack of a post-depositional hydrologic process to remove previously exposed material from a valley system, leads to ambiguities in multiple exposure ages from a single coeval glacial landform. More importantly, cold-based ice advance can leave a landform unmodified resulting in young erratics deposited on bedrock that shows weathering and/or inconsistent age-altitude relationships. Primarily, inheritance becomes a difficulty in qualifying exposure ages from polar regions. Preliminary results from the Garwood and Miers Valleys indicate that glaciers in the Denton Hills had begun to retreat from their last maximum positions no later than 23-37 ka, and thus the local last glacial maximum

  9. The design, construction, and operation of the Integrated Radwaste Treatment System (IRTS) Drum Cell

    International Nuclear Information System (INIS)

    Landau, B.; Russillo, A.; Frank, D.; Garland, D.

    1989-12-01

    This report describes the design, construction, and the operation of the Integrated Radwaste Treatment Systems (IRTS) Drum Cell at the West Valley Demonstration Project (WVDP), West Valley, New York. The IRTS Drum Cell was designed to provide a shielded, secure storage area for the remote handling and placement of low-level Class C radioactive waste produced in the IRTS. The Drum Cell was designed to contain up to approximately 8,804 drums from decontaminated supernatant processing. This waste is to be poured into 0.27m 3 in a temperature controlled environment to ensure the cement will not be subjected to freezing and thawing cycles. A Temporary Weather Structure (TWS), a pre-engineered building, now encloses the Drum Cell and associated equipment so that remote waste-handling and placement operations can continue without regard to weather conditions. The Drum Cell was designed so that this TWS could be removed and the low-level waste entombed in place. Final disposition of this low-level waste is currently being evaluated in an Environmental Impact Statement (EIS). 10 refs., 11 figs., 1 tab

  10. Solid waste generation in reprocessing nuclear fuel

    International Nuclear Information System (INIS)

    North, E.D.

    1975-01-01

    Estimates are made of the solid wastes generated annually from a 750-ton/year plant (such as the NFS West Valley plant): high-level waste, hulls, intermediate level waste, failed equipment, HEPA filters, spent solvent, alpha contaminated combustible waste, and low specific activity waste. The annual volume of each category is plotted versus the activity level

  11. Optically initialized robust valley-polarized holes in monolayer WSe2

    KAUST Repository

    Hsu, Wei-Ting

    2015-11-25

    A robust valley polarization is a key prerequisite for exploiting valley pseudospin to carry information in next-generation electronics and optoelectronics. Although monolayer transition metal dichalcogenides with inherent spin–valley coupling offer a unique platform to develop such valleytronic devices, the anticipated long-lived valley pseudospin has not been observed yet. Here we demonstrate that robust valley-polarized holes in monolayer WSe2 can be initialized by optical pumping. Using time-resolved Kerr rotation spectroscopy, we observe a long-lived valley polarization for positive trion with a lifetime approaching 1 ns at low temperatures, which is much longer than the trion recombination lifetime (~10–20 ps). The long-lived valley polarization arises from the transfer of valley pseudospin from photocarriers to resident holes in a specific valley. The optically initialized valley pseudospin of holes remains robust even at room temperature, which opens up the possibility to realize room-temperature valleytronics based on transition metal dichalcogenides.

  12. Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics

    Science.gov (United States)

    Peacock, Jared R.; Mangan, Margaret T.; McPhee, Darcy K.; Wannamaker, Phil E.

    2016-01-01

    Though shallow flow of hydrothermal fluids in Long Valley Caldera, California, has been well studied, neither the hydrothermal source reservoir nor heat source has been well characterized. Here a grid of magnetotelluric data were collected around the Long Valley volcanic system and modeled in 3-D. The preferred electrical resistivity model suggests that the source reservoir is a narrow east-west elongated body 4 km below the west moat. The heat source could be a zone of 2–5% partial melt 8 km below Deer Mountain. Additionally, a collection of hypersaline fluids, not connected to the shallow hydrothermal system, is found 3 km below the medial graben, which could originate from a zone of 5–10% partial melt 8 km below the south moat. Below Mammoth Mountain is a 3 km thick isolated body containing fluids and gases originating from an 8 km deep zone of 5–10% basaltic partial melt.

  13. Optimal decentralized valley-filling charging strategy for electric vehicles

    International Nuclear Information System (INIS)

    Zhang, Kangkang; Xu, Liangfei; Ouyang, Minggao; Wang, Hewu; Lu, Languang; Li, Jianqiu; Li, Zhe

    2014-01-01

    Highlights: • An implementable charging strategy is developed for electric vehicles connected to a grid. • A two-dimensional pricing scheme is proposed to coordinate charging behaviors. • The strategy effectively works in decentralized way but achieves the systematic valley filling. • The strategy allows device-level charging autonomy, and does not require a bidirectional communication/control network. • The strategy can self-correct when confronted with adverse factors. - Abstract: Uncoordinated charging load of electric vehicles (EVs) increases the peak load of the power grid, thereby increasing the cost of electricity generation. The valley-filling charging scenario offers a cheaper alternative. This study proposes a novel decentralized valley-filling charging strategy, in which a day-ahead pricing scheme is designed by solving a minimum-cost optimization problem. The pricing scheme can be broadcasted to EV owners, and the individual charging behaviors can be indirectly coordinated. EV owners respond to the pricing scheme by autonomously optimizing their individual charge patterns. This device-level response induces a valley-filling effect in the grid at the system level. The proposed strategy offers three advantages: coordination (by the valley-filling effect), practicality (no requirement for a bidirectional communication/control network between the grid and EV owners), and autonomy (user control of EV charge patterns). The proposed strategy is validated in simulations of typical scenarios in Beijing, China. According to the results, the strategy (1) effectively achieves the valley-filling charging effect at 28% less generation cost than the uncoordinated charging strategy, (2) is robust to several potential affecters of the valley-filling effect, such as (system-level) inaccurate parameter estimation and (device-level) response capability and willingness (which cause less than 2% deviation in the minimal generation cost), and (3) is compatible with

  14. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Waste Burial Grounds

    International Nuclear Information System (INIS)

    SONNICHSEN, J.C.

    2000-01-01

    As directed by the U.S. Department of Energy (DOE), Richland Operations Office (DOE-RL), Fluor Hanford, Inc. will implement the requirements of DOE Order 435.1, Radioactive Waste Management, as the requirements relate to the continued operation of the low-level waste disposal facilities on the Hanford Site. DOE Order 435.1 requires a disposal authorization statement authorizing operation (or continued operation) of a low-level waste disposal facility. The objective of this Order is to ensure that all DOE radioactive waste is managed in a manner that protects the environment and personnel and public health and safety. The manual (DOE Order 435.1 Manual) implementing the Order states that a disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980 documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility. Failure to obtain a disposal authorization statement shall result in shutdown of an operational disposal facility. In fulfillment of the requirements of DOE Order 435.1, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area and the 200 West Area Low-Level Burial Grounds. The disposal authorization statement constitutes approval of the performance assessment and composite analysis, authorizes operation of the facility, and includes conditions that the disposal facility must meet. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area Low-Level Burial Grounds be written and approved by the DOE-RL. The monitoring plan is to be updated and implemented within 1 year following issuance of the disposal authorization statement to

  15. University-level nutrition training in West Africa: cost and financing issues.

    Science.gov (United States)

    Sodjinou, Roger; Bosu, William; Fanou, Nadia; Zagre, Noel; Tchibindat, Félicité; Baker, Shawn; Delisle, Helene

    2015-01-01

    There is a serious shortage of skilled nutrition professionals in West Africa. Investing in nutrition training is one of the strategies for strengthening the human resource base in nutrition. However, little is known about how nutrition training in the region is financed and the levels of tuition fees charged. The purpose of this study was to provide a comprehensive assessment about the levels of tuition fees charged for nutrition training in the West Africa region and to determine to what extent this is of reach to the average student. The data for this study were obtained from 74 nutrition degree programs operating in nine West African countries in 2013 through semi-structured interviews during on-site visits or through self-administered questionnaires. They included the age of the programs, school ownership, tuition fees, financial assistance, and main sources of funding. Tuition fees (in 2013 US$) were expressed per program to enable uniformity and comparability. Simple descriptive and bivariate analyses were performed. Results from 74 nutrition training programs in nine countries showed a wide variation in tuition fees within and between countries. The tuition fees for bachelor's, master's, and doctoral programs, respectively, ranged from 372 to 4,325 (mean: 2,353); 162 to 7,678 (mean: 2,232); and 369 to 5,600 (mean: 2,208). The tuition fees were significantly higher (pstudent. Recent master's programs appeared to charge higher fees than older ones. We found a significant negative correlation between tuition fees and the age of the program, after controlling for school ownership (r=-0.33, pstudents from poor background to nutrition training. Governments should institute financing mechanisms such as scholarships, public-private partnerships, credit facilities, and donor funding to facilitate access to tertiary-level nutrition training in the region.

  16. Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: 2. Modeling results

    Science.gov (United States)

    Panday, Arnico K.; Prinn, Ronald G.; SchäR, Christoph

    2009-11-01

    After completing a 9-month field experiment studying air pollution and meteorology in the Kathmandu Valley, Nepal, we set up the mesoscale meteorological model MM5 to simulate the Kathmandu Valley's meteorology with a horizontal resolution of up to 1 km. After testing the model against available data, we used it to address specific questions to understand the factors that control the observed diurnal cycle of air pollution in this urban basin in the Himalayas. We studied the dynamics of the basin's nocturnal cold air pool, its dissipation in the morning, and the subsequent growth and decay of the mixed layer over the valley. During mornings, we found behavior common to large basins, with upslope flows and basin-center subsidence removing the nocturnal cold air pool. During afternoons the circulation in the Kathmandu Valley exhibited patterns common to plateaus, with cooler denser air originating over lower regions west of Kathmandu arriving through mountain passes and spreading across the basin floor, thereby reducing the mixed layer depth. We also examined the pathways of pollutant ventilation out of the valley. The bulk of the pollution ventilation takes place during the afternoon, when strong westerly winds blow in through the western passes of the valley, and the pollutants are rapidly carried out through passes on the east and south sides of the valley. In the evening, pollutants first accumulate near the surface, but then are lifted slightly when katabatic flows converge underneath. The elevated polluted layers are mixed back down in the morning, contributing to the morning pollution peak. Later in the morning a fraction of the valley's pollutants travels up the slopes of the valley rim mountains before the westerly winds begin.

  17. Geologic features of the Connecticut Valley, Massachusetts, as related to recent floods

    Science.gov (United States)

    Jahns, Richard Henry

    1947-01-01

    This report gives the results of a geologic study of certain features that bear upon the recent flood behavior of rivers flowing in the Massachusetts part of the Connecticut Valley. It is in part an outline of the physiographic history of the Connecticut River, a 'history that is treated in progressively greater detail as it concerns events occurring from Mesozoic time to the present, and in part a discussion of erosional and depositional processes associated with the extraordinary floods of March 1936 and September 1938. The Connecticut River flows southward through Massachusetts in a broad lowland area of more than 400 square miles and is joined in this area by four large tributaries, the Deerfield and Westfield Rivers from the west and the Millers and Chicopee Rivers from the east. The lowland area, or :Connecticut Valley province, is flanked on the west by the Berkshire Hills, a, deeply incised uplifted plateau, and on the east by the central upland, or Worcester .County plateau, a lower upland marked by rolling topography. Most of the broad, relatively flat valley floor is underlain by Triassic sedimentary rocks. Rising above it, however, are the prominent Holyoke-Mount Tom and Deerfield Ranges, which consist in large part of dark-colored igneous rocks, also of Triassic age. There is evidence of several cycles of erosion in central western Massachusetts, the last two of which are of Tertiary age and appear to have reached nature and very youthful stages of topographic development, respectively. Immediately prior to the glacial epoch, therefore, the Connecticut River flowed in a fairly narrow, deep gorge, which it had incised in the rather flat 5ottom of the valley that it had formed at an earlier stage. A Pleistocene crustal subsidence probably of several hundred feet, for which there has been only partial compensation in postglacial time, was responsible for the present position of much of this gorge below sea level. That an estuary does not now occupy the

  18. Prevalence and impacts of low back pain among peasant farmers in South-West Nigeria

    Directory of Open Access Journals (Sweden)

    Bosede Abidemi Tella

    2013-08-01

    Full Text Available Objectives: A relationship between low back pain (LBP and poor postures has been previously established with a high prevalence observed in many occupations. This study aimed to investigate the prevalence of LBP, associated risk factors and impacts on farmers in South-West Nigeria. Materials and Methods: Six hundred and four farmers completed a 36-item closed-ended questionnaire which was translated to Yoruba language with content validity and back translation done afterwards. The questionnaire sought information on demographic data, 12-month prevalence, severity, history, causes and management of LBP, and its impacts on farm activities and the activities of daily living. Data was analyzed using the Statistical Package for Social Sciences (SPSS version 17. Data was summarized using descriptive statistics of mean, range, frequency, standard deviation, percentage. Chi2 and Mann-Whitney-U test were used to find association between variables. The level of significance was set at α = 0.05. Results: The 12-month prevalence of LBP among the respondents was 74.4%. Low back pain was described as moderate in 53.4%. Prolonged bending (51.3% was the most related risk factor. A considerable proportion (65.9% of the respondents were unable to continue some of the previously enjoyed activities. Males had significantly higher (p < 0.05 prevalence, recurrence and duration of LBP than the females. Conclusion: There is a high prevalence of LBP among farmers in South-West Nigeria. Age, sex and years of involvement in farming have a significant influence on the prevalence of LBP.

  19. Total Water Level Fun Facts: The Relative Contribution of Extreme Total Water Levels Along the US West Coast

    Science.gov (United States)

    Serafin, K.; Ruggiero, P.; Stockdon, H. F.

    2016-02-01

    In the fall of 2014, parts of the US West Coast endured some of the highest monthly mean sea level anomalies on record, likely due to the presence of "the blob" (Bond et al., 2015), an anomalously warm water mass in the NE Pacific. However, despite the significantly above average water levels, the coastline experienced only marginal coastal flooding and erosion hazards because the ensuing winter lacked significant storms, underscoring the fact that extreme total water levels (TWLs) are compound events. To better understand how several individual processes combine to cause devastating coastal hazards, we investigate the relative contribution that each component (waves, tides, and non-tidal residuals) has on extreme TWLs on sandy beaches. Water level records along the US West Coast are decomposed into mean sea level, astronomical tide, and non-tidal residuals (NTRs). The NTR is further split into an intra-annual seasonal signal, monthly mean sea level anomalies (inter-annual variability), and meteorological surge. TWL time series are then generated by combining water levels with wave runup, computed using wave data and beach morphology. We use this data-driven, structural function approach to investigate the spatial variability of the relative contribution of each component to the maximum TWL event on record. We also use a probabilistic, full simulation TWL model (Serafin and Ruggiero, 2014) to generate multiple, synthetic TWL records, to explore the relative contribution of each component to extreme TWL return levels. We assess the sensitivity to local beach morphology by computing TWLs for a range of observed beach slopes. Extreme TWLs are higher in Oregon and Washington than in California. Wave runup typically comprises > 50% of the TWL signal, while NTRs often compose < 5%, illustrating the importance wave climate has on the potential for extreme TWLs. While waves are typically larger in the North, California experiences greater contributions to extreme TWLs from

  20. Title: Long Valley Caldera 2003 through 2012: Overview of low level unrest in the last decade Authors: Stuart Wilkinson, David Hill, Michael Lisowski, Deborah Bergfeld, Margaret Mangan

    Science.gov (United States)

    Wilkinson, S. K.; Hill, D. P.; Lisowski, M.; Bergfeld, D.; Mangan, M.

    2012-12-01

    Long Valley Caldera is located in central California along the eastern escarpment of the Sierra Nevada and at the western edge of the Basin and Range. The caldera formed 0.76 Ma ago during the eruption of 600 cubic kilometers the Bishop Tuff that resulted in the collapse of the partially evacuated magma chamber. Since at least late 1978, Long Valley Caldera has experienced recurring earthquake swarms and ground uplift, suggesting future eruptions are possible. Unrest in Long Valley Caldera during the 1980s to early 2000s is well documented in the literature. Episodes of inflation centered on the resurgent dome in the western part of the caldera occurred in 1979-1980, 1983, 1989-1990, 1997-1998, and 2002-2003, accumulating ~ 80 cm of uplift. Earthquakes of M ≥ 3.0 were numerous in the caldera and in the Sierra Nevada block to the south of the caldera from 1980 through 1983 (800 events including four M~ 6 earthquakes in 1980); in the caldera from 1997 through mid-1998 (150 events); and in the Sierra Nevada block from mid-1998 through 1999 (~160 events) and more modestly from 2002 through 2003 (7 events). In this presentation, we summarize the low-levels of caldera unrest during the last decade. The number of earthquakes in Sierra Nevada block and the caldera has gradually diminished over the last decade. Fifty Sierra Nevada earthquakes had magnitudes 3.0≤M≤4.6. In the caldera, only six earthquakes had magnitudes 3.0≤M≤3.8. A three-month swarm of minor earthquakes (235 events with 0.5≤M≤3.8; most below 2.0) occurred in the caldera in mid-2010. Analysis of continuous GPS data over the last year shows an inflationary pattern within the caldera centered on the resurgent dome, with a maximum uplift rate of ~ 2-3 cm/yr. The rate of deformation is comparable to that of 2002-2003, and well below ~ 70 cm/yr rates observed during the peak of inflation in the late 1990s. Steaming ground and diffuse CO2 discharge has long been a feature of Long Valley Caldera

  1. Maturity analysis of the innovation system in the livestock industries of West Sumatra, Indonesia

    Science.gov (United States)

    Suresti, A.; Dinata, U. G. S.; Wati, R.

    2018-02-01

    The main objective of this study was to analyse the ANIS of Livestock industry in West Sumatera according to its main determinants. This research aims to know and understand the maturity level of the regional innovationsystem of West Sumatra livestock industries, including recommendation for improvements. The maturity level of the regional innovation system was analyzed with the ANIS method by using an opinion survey to some experts from businessmen, government and universities. This expert opinion survey was conducted to measure expert perceptions on the implementations of determinants of west Sumatera regional innovations systems on livestock industries on macro level (innovations policy), mezzo level (innovation institutions and programs) and micro level (innovation capacity). By using Likert method, the result showed maturity level for the West Sumatra livestock industries innovation system was still develop. This is caused by low maturity in the macro and meso determinants which are at the central and regional government side. This research result may be useful as recommendations for the government for improving the maturity level and may be a basic for incoming researches to identify regional innovation system determinants with low maturity to improve.

  2. A conceptual geochemical model of the geothermal system at Surprise Valley, CA

    Science.gov (United States)

    Fowler, Andrew P. G.; Ferguson, Colin; Cantwell, Carolyn A.; Zierenberg, Robert A.; McClain, James; Spycher, Nicolas; Dobson, Patrick

    2018-03-01

    groundwater samples collected in proximity to structures that transmit thermal fluids, suggesting the brine may be thermal in nature. On the western side of the valley at the Lake City mud volcano, the deep brine-meteoric water mixture subsequently boils in the shallow subsurface, precipitates calcite, and re-equilibrates at about 130 °C. On the eastern side of the valley, meteoric fluid mixes to a greater extent with the deep brine, cools conductively without boiling, and the composition is modified as dissolved elements are sequestered by secondary minerals that form along the cooling and outflow path at temperatures geothermal fluids at lower temperatures during outflow explains why subsurface temperature estimates based on classical geothermometry methods are highly variable, and fail to agree with temperature estimates based on dissolved sulfate-oxygen isotopes and results of classical and multicomponent geothermometry applied to reconstructed deep well fluids. The proposed model is compatible with the idea suggested by others that thermal fluids on the western and eastern side of the valley have a common source, and supports the hypothesis that low temperature re-equilibration during west to east flow is the major control on hot spring fluid compositions, rather than dilution, evaporation, or differences in rock type.

  3. The geochemistry of groundwater resources in the Jordan Valley: The impact of the Rift Valley brines

    Science.gov (United States)

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Polak, A.; Shavit, U.

    2007-01-01

    The chemical composition of groundwater in the Jordan Valley, along the section between the Sea of Galilee and the Dead Sea, is investigated in order to evaluate the origin of the groundwater resources and, in particular, to elucidate the role of deep brines on the chemical composition of the regional groundwater resources in the Jordan Valley. Samples were collected from shallow groundwater in research boreholes on two sites in the northern and southern parts of the Jordan Valley, adjacent to the Jordan River. Data is also compiled from previous published studies. Geochemical data (e.g., Br/Cl, Na/Cl and SO4/Cl ratios) and B, O, Sr and S isotopic compositions are used to define groundwater groups, to map their distribution in the Jordan valley, and to evaluate their origin. The combined geochemical tools enabled the delineation of three major sources of solutes that differentially affect the quality of groundwater in the Jordan Valley: (1) flow and mixing with hypersaline brines with high Br/Cl (>2 ?? 10-3) and low Na/Cl (shallow saline groundwaters influenced by brine mixing exhibit a north-south variation in their Br/Cl and Na/Cl ratios. This chemical trend was observed also in hypersaline brines in the Jordan valley, which suggests a local mixing process between the water bodies. ?? 2007 Elsevier Ltd. All rights reserved.

  4. Long term effects of climate on human adaptation in the middle Gila River Valley, Arizona, America

    NARCIS (Netherlands)

    Zhu, T.; Ertsen, M.W.; Van de Giesen, N.C.

    2015-01-01

    The Hohokam, an irrigation-based society in the American South West, used the river valleys of the Salt and Gila Rivers between 500 and 1500 AD to grow their crops. Such irrigated crops are linking human agency, water sources and the general natural environment. In order to grow crops, water

  5. Fire hazard analysis for the Westinghouse Hanford Company managed low-level mixed waste Trench 31 and 34

    International Nuclear Information System (INIS)

    Howard, B.J.

    1995-01-01

    This analysis is to assess comprehensively the risks from fire within the new lined landfills, provided by W-025 and designated Trench 31 and 34 of Burial Ground 218-W-5; they are located in the 200 West area of the Hanford Site, and are designed to receive low-level mixed waste

  6. Filtration of Oak Ridge National Laboratory simulated liquid low-level waste

    International Nuclear Information System (INIS)

    Fowler, V.L.; Hewitt, J.D.

    1989-08-01

    A method for disposal of Oak Ridge National Laboratory's (ORNL's) liquid low-level radioactive waste (LLLW) is being developed in which the material will be solidified in cement and stored in an aboveground engineered storage facility. The acceptability of the final waste form rests in part on the presence or absence of transuranic isotopes. Filtration methods to remove transuranic isotopes from the bulk liquid stored in the Melton Valley Storage Tanks (MVST) were investigated in this study. Initial batch studies using waste from MVST indicate that >99.9% of the transuranic isotopes can be removed from the bulk liquid by simple filtration. Bench-scale studies with a nonradioactive surrogate waste indicate that >99.5% of the suspended solids can be removed from the bulk liquid via inertial crossflow filtration. 4 refs., 3 figs., 11 tabs

  7. 76 FR 11259 - Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Rasmussen Valley...

    Science.gov (United States)

    2011-03-01

    ... operation, a small support staging facility would be constructed at the active mining site immediately west... cooperating agency. The mining and reclamation plans have been developed and submitted for agency review of proposed open pit mining operations at the Rasmussen Valley Phosphate Federal Mineral Lease I-05975, in...

  8. The Gabbs Valley, Nevada, geothermal prospect: Exploring for a potential blind geothermal resource

    Science.gov (United States)

    Payne, J.; Bell, J. W.; Calvin, W. M.

    2012-12-01

    The Gabbs Valley prospect in west-central Nevada is a potential blind geothermal resource system. Possible structural controls on this system were investigated using high-resolution LiDAR, low sun-angle aerial (LSA) photography, exploratory fault trenching and a shallow temperature survey. Active Holocene faults have previously been identified at 37 geothermal systems with indication of temperatures greater than 100° C in the western Nevada region. Active fault controls in Gabbs Valley include both Holocene and historical structures. Two historical earthquakes occurring in 1932 and 1954 have overlapping surface rupture patterns in Gabbs Valley. Three active fault systems identified through LSA and LiDAR mapping have characteristics of Basin and Range normal faulting and Walker Lane oblique dextral faulting. The East Monte Cristo Mountains fault zone is an 8.5 km long continuous NNE striking, discrete fault with roughly 0.5 m right-normal historic motion and 3 m vertical Quaternary separation. The Phillips Wash fault zone is an 8.2 km long distributed fault system striking NE to N, with Quaternary fault scarps of 1-3 m vertical separation and a 500 m wide graben adjacent to the Cobble Cuesta anticline. This fault displays ponded drainages, an offset terrace riser and right stepping en echelon fault patterns suggestive of left lateral offset, and fault trenching exposed non-matching stratigraphy typical of a significant component of lateral offset. The unnamed faults of Gabbs Valley are a 10.6 km long system of normal faults striking NNE and Quaternary scarps are up to 4 m high. These normal faults largely do not have historic surface rupture, but a small segment of 1932 rupture has been identified. A shallow (2 m deep) temperature survey of 80 points covering roughly 65 square kilometers was completed. Data were collected over approximately 2 months, and continual base station temperature measurements were used to seasonally correct temperature measurements. A 2

  9. Geohydrology of the Unconsolidated Valley-Fill Aquifer in the Meads Creek Valley, Schuyler and Steuben Counties, New York

    Science.gov (United States)

    Miller, Todd S.; Bugliosi, Edward F.; Reddy, James E.

    2008-01-01

    The Meads Creek valley encompasses 70 square miles of predominantly forested uplands in the upper Susquehanna River drainage basin. The valley, which was listed as a Priority Waterbody by the New York State Department of Environmental Conservation in 2004, is prone to periodic flooding, mostly in its downstream end, where development is occurring most rapidly. Hydraulic characteristics of the unconsolidated valley-fill aquifer were evaluated, and seepage rates in losing and gaining tributaries were calculated or estimated, in an effort to delineate the aquifer geometry and identify the factors that contribute to flooding. Results indicated that (1) Meads Creek gained about 61 cubic feet of flow per second (about 6.0 cubic feet per second per mile of stream channel) from ground-water discharge and inflow from tributaries in its 10.2-mile reach between the northernmost and southernmost measurement sites; (2) major tributaries in the northern part of the valley are not significant sources of recharge to the aquifer; and (3) major tributaries in the central and southern part of the valley provide recharge to the aquifer. The ground-water portion of streamflow in Meads Creek (excluding tributary inflow) was 11.3 cubic feet per second (ft3/s) in the central part of the valley and 17.2 ft3/s in the southern part - a total of 28.5 ft3/s. Ground-water levels were measured in 29 wells finished in unconfined deposits for construction of a potentiometric-surface map to depict directions of ground-water flow within the valley. In general, ground water flows from the edges of the valley toward Meads Creek and ultimately discharges to it. The horizontal hydraulic gradient for the entire 12-mile-long aquifer averages about 30 feet per mile, whereas the gradient in the southern fourth of the valley averages about half that - about 17 feet per mile. A water budget for the aquifer indicated that 28 percent of recharge was derived from precipitation that falls on the aquifer, 32

  10. Shared decision making in West Africa: The forgotten area.

    Science.gov (United States)

    Diouf, Ndeye Thiab; Ben Charif, Ali; Adisso, Lionel; Adekpedjou, Rhéda; Zomahoun, Hervé Tchala Vignon; Agbadjé, Titilayo Tatiana; Dogba, Mama Joyce; Garvelink, Mirjam Marjolein

    2017-06-01

    Up to now, little attention has been paid to West Africa when it comes to shared decision making (SDM). West African countries seem to lag behind with regard to SDM initiatives compared to many other countries in the world. There is some interest in informed decision making or informed consent, but little in a full SDM process. Few decision-making tools are available for healthcare professionals and the majority are not designed to support decision-making with patients. Furthermore, to the best of our knowledge, there are no training programs for implementing SDM in healthcare teams. Many barriers exist to implementing SDM in West Africa, including lack of options, few or poor health resources and low levels of education. However, African countries present many opportunities for SDM as well. Existing SDM innovations developed for other populations with low literacy could be explored and adapted to the West African context, and research on implementation and outcomes in West Africa could contribute to SDM worldwide. West African countries are in an excellent position to both learn from other countries and contribute to SDM development in other parts of the world. In this paper we reflect on SDM challenges and opportunities, and propose a research agenda for West Africa. We hope to awaken interest in SDM in West Africa and encourage future collaborations on SDM with various West African stakeholders, including patients, healthcare professionals, policymakers, non-government organisations (NGOs) and academic institutions. Copyright © 2017. Published by Elsevier GmbH.

  11. Predicting arsenic concentrations in groundwater of San Luis Valley, Colorado: implications for individual-level lifetime exposure assessment.

    Science.gov (United States)

    James, Katherine A; Meliker, Jaymie R; Buttenfield, Barbara E; Byers, Tim; Zerbe, Gary O; Hokanson, John E; Marshall, Julie A

    2014-08-01

    Consumption of inorganic arsenic in drinking water at high levels has been associated with chronic diseases. Risk is less clear at lower levels of arsenic, in part due to difficulties in estimating exposure. Herein we characterize spatial and temporal variability of arsenic concentrations and develop models for predicting aquifer arsenic concentrations in the San Luis Valley, Colorado, an area of moderately elevated arsenic in groundwater. This study included historical water samples with total arsenic concentrations from 595 unique well locations. A longitudinal analysis established temporal stability in arsenic levels in individual wells. The mean arsenic levels for a random sample of 535 wells were incorporated into five kriging models to predict groundwater arsenic concentrations at any point in time. A separate validation dataset (n = 60 wells) was used to identify the model with strongest predictability. Findings indicate that arsenic concentrations are temporally stable (r = 0.88; 95 % CI 0.83-0.92 for samples collected from the same well 15-25 years apart) and the spatial model created using ordinary kriging best predicted arsenic concentrations (ρ = 0.72 between predicted and observed validation data). These findings illustrate the value of geostatistical modeling of arsenic and suggest the San Luis Valley is a good region for conducting epidemiologic studies of groundwater metals because of the ability to accurately predict variation in groundwater arsenic concentrations.

  12. Subsurface characterization and geohydrologic site evaluation West Chestnut Ridge site

    International Nuclear Information System (INIS)

    1984-01-01

    The West Chestnut Ridge Site at the Oak Ridge National Laboratory is being considered for use as a repository for low-level radioactive waste. The purposes of this study were to provide a geohydrological characterization of the site for use in pathways analysis, and to provide preliminary geotechnical recommendations that would be used for development of a site utilization plan. Subsurface conditions were investigated at twenty locations and observation wells were installed. Field testing at each location included the Standard Penetration Test and permeability tests in soil and rock. A well pumping test was ocmpleted at one site. Laboratory testing included permeability, deformability, strength and compaction tests, as well as index and physical property tests. The field investigations showed that the subsurface conditions include residual soil overlying a weathered zone of dolomite which grades into relatively unweathered dolomite at depth. The thickness of residual soil is typically 80 ft (24 m) on the ridges, but can be as little as 10 ft (3 m) in the valleys. Trench excavations to depths of 30 ft (9 m) should not present serious slope stability problems above the water table. On-site soils can be used for liners or trench backfill but these soils may require moisture conditioning to achieve required densities. 19 figures, 8 tables

  13. Low-level waste management

    International Nuclear Information System (INIS)

    Levin, G.B.

    1980-01-01

    An overview of the current situation in the United States and a look to the future of low-level waste management are presented. Current problems and challenges are discussed, such as: the need of additional disposal sites in the future; risks and costs involved in transport of low-level wastes; reduction of low-level waste volume through smelting, incineration, and storage for wastes containing nuclides with short half lives; development of a national policy for the management of low-level waste, and its implementation through a sensible system of regulations. Establishing a success with low-level waste management should provide the momentum and public confidence needed to continue on and to resolve the technical and politically more difficult low-level waste problems

  14. Evaluation of geologic structure guiding ground water flow south and west of Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    McKee, E.H.

    1998-01-01

    Ground water flow through the region south and west of Frenchman Flat, in the Ash Meadows subbasin of the Death Valley ground water flow system, is controlled mostly by the distribution of permeable and impermeable rocks. Geologic structures such as faults are instrumental in arranging the distribution of the aquifer and aquitard rock units. Most permeability is in fractures caused by faulting in carbonate rocks. Large faults are more likely to reach the potentiometric surface about 325 meters below the ground surface and are more likely to effect the flow path than small faults. Thus field work concentrated on identifying large faults, especially where they cut carbonate rocks. Small faults, however, may develop as much permeability as large faults. Faults that are penetrative and are part of an anastomosing fault zone are particularly important. The overall pattern of faults and joints at the ground surface in the Spotted and Specter Ranges is an indication of the fracture system at the depth of the water table. Most of the faults in these ranges are west-southwest-striking, high-angle faults, 100 to 3500 meters long, with 10 to 300 /meters of displacement. Many of them, such as those in the Spotted Range and Rock Valley are left-lateral strike-slip faults that are conjugate to the NW-striking right-lateral faults of the Las Vegas Valley shear zone. These faults control the ground water flow path, which runs west-southwest beneath the Spotted Range, Mercury Valley and the Specter Range. The Specter Range thrust is a significant geologic structure with respect to ground water flow. This regional thrust fault emplaces siliceous clastic strata into the north central and western parts of the Specter Range

  15. Low-level radioactive waste, mixed low-level radioactive waste, and biomedical mixed waste

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This document describes the proceedings of a workshop entitled: Low-Level Radioactive Waste, Mixed Low-Level Radioactive Waste, and Biomedical Mixed Waste presented by the National Low-Level Waste Management Program at the University of Florida, October 17-19, 1994. The topics covered during the workshop include technical data and practical information regarding the generation, handling, storage and disposal of low-level radioactive and mixed wastes. A description of low-level radioactive waste activities in the United States and the regional compacts is presented

  16. Estimates of interhemispheric transport of radioactive debris by the east African low-level jet stream

    International Nuclear Information System (INIS)

    Rangarajan, C.; Eapen, C.D.

    1981-01-01

    The movement of air masses across the equator by way of the east African low-level jet stream has been studied using fission products from the French nuclear tests of the South Pacific as tracers. The studies show that the transit time of air masses from Malagasy to India is 3--6 days and about 75% of the air mass on the west coast of India is from the southern hemisphere

  17. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  18. Customer Need ́s Satisfaction in the Housing Sector: the Case of the Toluca Valley

    Directory of Open Access Journals (Sweden)

    Delgado-Hernández David Joaquín

    2013-10-01

    Full Text Available Currently, the construction sector faces great challenges, as the recent economic contraction has directly impacted this industry, and only companies that can offer quality products and services will survive in today’s highly competitive markets. In particular, the housing sector has to find ways to meet the needs of its customers due to the number of firms competing in this arena. There are some studies that quantify the demand for housing as well as those that reveal the number of homes sold per year in a region. However, investigations in Mexico to establish the level of cus- tomer satisfaction with their homes are still scarce. Thus, the main objective of this research is to determine the level of customer satisfaction in the Toluca Valley ́s housing sector (a region located 60 km west of Mexico City, in low income projects developed by Mexican construction companies. Having applied a questionnaire to users from seventy eight houses within eight different projects, some issues were identified that builders could improve, and take into account during the design stage of new housing developments. Among the main ones are: insulation, wall and ceil- ing materials, space distribution, and house ́s size. In contrast, residents are rela- tively satisfied with: the ease of cleaning, the aesthetics of the projects and the proximity to schools and supermarkets.

  19. Analysis of the Carmel Valley alluvial ground-water basin, Monterey County, California

    Science.gov (United States)

    Kapple, Glenn W.; Mitten, Hugh T.; Durbin, Timothy J.; Johnson, Michael J.

    1984-01-01

    A two-dimensional, finite-element, digital model was developed for the Carmel Valley alluvial ground-water basin using measured, computed, and estimated discharge and recharge data for the basin. Discharge data included evapotranspiration by phreatophytes and agricultural, municipal, and domestic pumpage. Recharge data included river leakage, tributary runoff, and pumping return flow. Recharge from subsurface boundary flow and rainfall infiltration was assumed to be insignificant. From 1974 through 1978, the annual pumping rate ranged from 5,900 to 9,100 acre-feet per year with 55 percent allotted to municipal use principally exported out of the valley, 44 percent to agricultural use, and 1 percent to domestic use. The pumpage return flow within the valley ranged from 900 to 1,500 acre-feet per year. The aquifer properties of transmissivity (about 5,900 feet squared per day) and of the storage coefficient (0.19) were estimated from an average alluvial thickness of 75 feet and from less well-defined data on specific capacity and grain-size distribution. During calibration the values estimated for hydraulic conductivity and storage coefficient for the lower valley were reduced because of the smaller grain size there. The river characteristics were based on field and laboratory analyses of hydraulic conductivity and on altitude survey data. The model is intended principally for simulation of flow conditions using monthly time steps. Time variations in transmissivity and short-term, highrecharge potential are included in the model. The years 1974 through 1978 (including "pre-" and "post-" drought) were selected because of the extreme fluctuation in water levels between the low levels measured during dry years and the above-normal water levels measured during the preceding and following wet years. Also, during this time more hydrologic information was available. Significantly, computed water levels were generally within a few feet of the measured levels, and computed

  20. High-level waste tank modifications, installation of mobilization equipment/check out

    International Nuclear Information System (INIS)

    Schiffhauer, M.A.; Thompson, S.C.

    1992-01-01

    PUREX high-level waste (HLW) is contained at the West Valley Demonstration Project (WVDP) in an underground carbon-steel storage tank. The HLW consists of a precipitated sludge and an alkaline supernate. This report describes the system that the WVDP has developed and implemented to resuspend and wash the HLW sludge from the tank. The report discusses Sludge Mobilization and Wash System (SMWS) equipment design, installation, and testing. The storage tank required modifications to accommodate the SMWS. These modifications are discussed as well

  1. INFLUENCE OF SNOWFALL ON BLOOD LEAD LEVELS OF FREE-FLYING BALD EAGLES (HALIAEETUS LEUCOCEPHALUS) IN THE UPPER MISSISSIPPI RIVER VALLEY.

    Science.gov (United States)

    Lindblom, Ronald A; Reichart, Letitia M; Mandernack, Brett A; Solensky, Matthew; Schoenebeck, Casey W; Redig, Patrick T

    2017-10-01

    Lead poisoning of scavenging raptors occurs primarily via consumption of game animal carcasses containing lead, which peaks during fall firearm hunting seasons. We hypothesized that snowfall would mitigate exposure by concealing carcasses. We categorized blood lead level (BLL) for a subsample of Bald Eagles (Haliaeetus leucocephalus) from the Upper Mississippi River Valley and described BLL with respect to age, sex, and snowfall. We captured Bald Eagles overwintering in the Upper Mississippi River Valley (n=55) between December 1999 and January 2002. Individual BLL ranged from nondetectable to 335 μg/dL, with 73% of the samples testing positive for acute exposure to lead. Eagle BLL did not significantly differ between age or sex, but levels were higher immediately following the hunting season, and they were lower when the previous month's snowfall was greater than 11 cm. This study suggests a window of time between the white-tailed deer (Odocoileus virginianus) hunting season and the onset of snow when the population experienced peak exposure to lead. Combining these findings with existing research, we offer a narrative of the annual lead exposure cycle of Upper Mississippi River Valley Bald Eagles. These temporal associations are necessary considerations for accurate collection and interpretation of BLL.

  2. Geologic setting of the proposed West Flank Forge Site, California: Suitability for EGS research and development

    Science.gov (United States)

    Sabin, Andrew; Blake, Kelly; Lazaro, Mike; Blankenship, Douglas; Kennedy, Mack; McCullough, Jess; DeOreo, S.B.; Hickman, Stephen H.; Glen, Jonathan; Kaven, Joern; Williams, Colin F.; Phelps, Geoffrey; Faulds, James E.; Hinz, Nicholas H.; Calvin, Wendy M.; Siler, Drew; Robertson-Tait, Ann

    2017-01-01

    The proposed West Flank FORGE site is within the China Lake Naval Air Weapons Station (NAWS), China Lake, CA. The West Flank is west of the Coso geothermal field, an area of China Lake NAWS dominated by the Quaternary Coso volcanic field largely comprised of rhyolite domes and their volcaniclastic and epiclastic horizons. The largest dome flow complex, Sugarloaf Mountain, marks the northwestern margin of the geothermal field. The West Flank is situated due west of Sugarloaf. The geologic setting of the West Flank was determined from one deep well (83-11) drilled as a potential production hole in 2009. The bottom-hole temperature (BHT) of well 83-11 approaches 600 oF (315˚C), but flow tests demonstrate very low, non-commercial permeabilities. With the exception of the upper 600 feet of volcaniclastic alluvium, well 83-11 is completed in granitic basement. The West Flank possesses the primary attributes of a FORGE site: non-commercial permeability (geothermal fieldThe Coso Mountains host the Coso volcanic field and are within a right-releasing stepover between the dextral Airport Lake (ALF) and Little Lake fault zones (LLFZ) and the Wild Horse Mesa and Owens Valley faults. Two distinct fault populations have been identified at Coso: WNW-trending and antithetical, NE-trending strike-slip faults and N- to NNE-trending normal faults. These faults are both high permeability drilling targets at depth within the main (productive) geothermal field and they locally segment the field into distinct hydrothermal regimes. The West Flank may be segmented from the rest of the field by one such northerly trending fault. The overall minimum principal stress orientation in the main geothermal field varies from 103˚ to 108˚; however, the minimum horizontal principal stress in 83-11 is rotated to 081˚.

  3. The understanding of the formation of valleys and its implication on site characterization: Moredalen and Pukedalen, south-eastern Sweden

    International Nuclear Information System (INIS)

    Tiren, Sven A.; Waenstedt, Stefan; Straeng, Thomas

    2010-11-01

    In south-eastern Sweden, there are a number of over-deepened narrow valleys, more than 20 m deep, formed in Precambrian bedrock located above the highest post-glacial shoreline. Canyon-like valleys, called 'kursu' or kursu valleys, are generally interpreted to be formed by glaciofluvial erosion. An example of such a valley is Moredalen, a canyon in the Fennoscandian Shield, which has an implication on site selection for radioactive waste disposal. There are also more open over-deepened valleys along which sub-glacial flow has occurred, e.g. Pukedalen. The main part of this paper discusses a combined geological and geophysical investigation of Moredalen, with the aim to investigate possible reasons for the formation of such an unusual feature formed in acid vulcanite and foliated tonalitic to granodioritic rocks. Moredalen is a marked, approximately 7 km long, E-W striking valley that cuts through a plateau (c. 140 m a.s.l.), and an elevated block of the sub-Cambrian peneplain. Glaciofluvial sediments can be found up-streams where the canyon widens to the west. Just east of the valley is a larger delta deposited at the highest post-glacial shoreline (c. 105 m a.s.l). Further east of, and in line with the Moredalen valley there is an esker. Rock debris in the valley is angular. Pukedalen is a northwest-southeast trending valley incised in massive granite. The valley is in its northern parts relatively open and becomes narrow in its south-eastern part having partly a vertical south-western wall. Rock surfaces are smooth along the valley and rock debris in the valley consists generally of rounded blocks. In line with Pukedalen, on both sides at great distances though, there are eskers. Geomorphological features of this kind indicate certain characteristics of the bedrock that need to be considered during safety analysis of repositories for nuclear waste. The distinct weakness zones along which the kursu-valleys are formed create prominent transport paths for

  4. The understanding of the formation of valleys and its implication on site characterization: Moredalen and Pukedalen, south-eastern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Tiren, Sven A.; Waenstedt, Stefan; Straeng, Thomas (GEOSIGMA AB (Sweden))

    2010-11-15

    In south-eastern Sweden, there are a number of over-deepened narrow valleys, more than 20 m deep, formed in Precambrian bedrock located above the highest post-glacial shoreline. Canyon-like valleys, called 'kursu' or kursu valleys, are generally interpreted to be formed by glaciofluvial erosion. An example of such a valley is Moredalen, a canyon in the Fennoscandian Shield, which has an implication on site selection for radioactive waste disposal. There are also more open over-deepened valleys along which sub-glacial flow has occurred, e.g. Pukedalen. The main part of this paper discusses a combined geological and geophysical investigation of Moredalen, with the aim to investigate possible reasons for the formation of such an unusual feature formed in acid vulcanite and foliated tonalitic to granodioritic rocks. Moredalen is a marked, approximately 7 km long, E-W striking valley that cuts through a plateau (c. 140 m a.s.l.), and an elevated block of the sub-Cambrian peneplain. Glaciofluvial sediments can be found up-streams where the canyon widens to the west. Just east of the valley is a larger delta deposited at the highest post-glacial shoreline (c. 105 m a.s.l). Further east of, and in line with the Moredalen valley there is an esker. Rock debris in the valley is angular. Pukedalen is a northwest-southeast trending valley incised in massive granite. The valley is in its northern parts relatively open and becomes narrow in its south-eastern part having partly a vertical south-western wall. Rock surfaces are smooth along the valley and rock debris in the valley consists generally of rounded blocks. In line with Pukedalen, on both sides at great distances though, there are eskers. Geomorphological features of this kind indicate certain characteristics of the bedrock that need to be considered during safety analysis of repositories for nuclear waste. The distinct weakness zones along which the kursu-valleys are formed create prominent transport paths for

  5. Valley-dependent band structure and valley polarization in periodically modulated graphene

    Science.gov (United States)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  6. Geologic characterization report for the Paradox Basin Study Region, Utah Study Areas. Volume 6: Salt Valley

    Science.gov (United States)

    1984-12-01

    Surface landforms in the Salt Valley Area are generally a function of the Salt Valley anticline and are characterized by parallel and subparallel cuestaform ridges and hogbacks and flat valley floors. The most prominent structure in the Area is the Salt Valley anticline. Erosion resulting from the Tertiary uplift of the Colorado Plateau led to salt dissolution and subsequent collapse along the crest of the anticline. Continued erosion removed the collapse material, forming an axial valley along the crest of the anticline. Paleozoic rocks beneath the salt bearing Paradox Formation consist of limestone, dolomite, sandstone, siltstone and shale. The salt beds of the Paradox formation occur in distinct cycles separated by an interbed sequence of anhydrite, carbonate, and clastic rocks. The Paradox Formation is overlain by Pennsylvanian limestone; Permian sandstone; and Mesozoic sandstone, mudstone, conglomerate and shale. No earthquakes have been reported in the area during the period of the historic record and contemporary seismicity appears to be diffusely distributed, of low level and small magnitude. The upper unit includes the Permian strata and upper Honaker trail formation.

  7. Uranium favorability of tertiary sedimentary rocks of the western Okanogan highlands and of the upper Columbia River valley, Washington

    International Nuclear Information System (INIS)

    Marjaniemi, D.K.; Robins, J.W.

    1975-08-01

    Tertiary sedimentary rocks in the northern portions of the western Okanogan highlands and in the upper Columbia River valley were investigated during a regional study to determine the favorability for potential uranium resources of the Tertiary sedimentary rocks of northeastern Washington. This project involved measurement and sampling of surface sections, collection of samples from isolated outcrops, and chemical and mineralogical analyses of samples. No portion of the project area of this report is rated of high or of medium favorability for potential uranium resources. Low favorability ratings are given to Oroville, Tonasket, and Pine Creek areas of the Okanogan River valley; to the Republic graben; and to the William Lakes, Colville, and Sheep Creek areas of the upper Columbia River valley. All these areas contain some fluvial, poorly sorted feldspathic or arkosic sandstones and conglomerates. These rocks are characterized by very low permeability and a consistently high siliceous matrix suggesting very low initial permeability. There are no known uranium deposits in any of these areas, and low level uranium anomalies are rare

  8. Hydrogeology of the West Siberian Basin

    International Nuclear Information System (INIS)

    Foley, M.G.; Bradley, D.J.; Cole, C.R.

    1996-01-01

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in extensive radioactive contaminant releases to the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. We have assumed that ground-water flow in the West Siberian Basin is topographically driven, with recharge to the basin occurring in the highlands on the west, east, and south, and internal discharge localized in numerous river valleys and lakes that ultimately discharge north to the ocean. We are modeling the regional hydrogeology as three-dimensional, steady-state, saturated flow that is recharged from above. We acquired topographic, geologic, hydrostratigraphic, hydrogeologic, and water-balance data for the West Siberian Basin and constructed a regional water table. We correlated and combined 70 different rock types derived from published descriptions of West Siberian Basin rocks into 17 rock types appropriate for assignment of hydrogeologic properties on the basis of spatial heterogeneity and constituent (i.e., sand, silt, and clay) diversity. Examination of resulting three-dimensional assemblages of rock types showed that they were consistent with published and inferred paleogeography and depositional processes. Calibrating the basin's moisture balance (i.e., recharge and discharge) to the derived water table determined plausible input parameter values for unknowns such as hydraulic conductivities. The general directions of calculated ground-water flow suggest that major rivers act as discharge areas, with upwelling below the rivers extending down into the basement rocks, and that ground-water divides that penetrate the entire thickness of the model are evident between major rivers

  9. High-level waste borosilicate glass a compendium of corrosion characteristics. Volume 1

    International Nuclear Information System (INIS)

    Cunnane, J.C.

    1994-03-01

    Current plans call for the United States Department of Energy (DOE) to start up facilities for vitrification of high-level radioactive waste (HLW) stored in tanks at the Savannah River Site, Aiken, South Carolina, in 1995; West Valley Demonstration Project, West Valley, New York, in 1996; and at the Hanford Site, Richland, Washington, after the year 2000. The product from these facilities will be canistered HLW borosilicate glass, which will be stored, transported, and eventually disposed of in a geologic repository. The behavior of this glass waste product, under the range of likely service conditions, is the subject of considerable scientific and public interest. Over the past few decades, a large body of scientific information on borosilicate waste glass has been generated worldwide. The intent of this document is to consolidate information pertaining to our current understanding of waste glass corrosion behavior and radionuclide release. The objective, scope, and organization of the document are discussed in Section 1.1, and an overview of borosilicate glass corrosion is provided in Section 1.2. The history of glass as a waste form and the international experience with waste glass are summarized in Sections 1.3 and 1.4, respectively

  10. UMTRA project water sampling and analysis plan, Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1994-04-01

    The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters

  11. Status of the Texas low-level radioactive waste disposal site - construction sequencing and staffing patterns

    International Nuclear Information System (INIS)

    Jacobi, L.R. Jr.

    1996-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority, an agency of the State of Texas, has been attempting to develop a site for the disposal of low-level radioactive waste in Texas for more than fourteen years. Since 1991, the agency has been evaluating a site near Sierra Blanca, in far west Texas. Site characterization was completed in 1992, and a license application was filed that year. Construction plans were completed in 1993. In April 1996, the licensing agency, the Texas Natural Resource Conservation Commission, completed its review and proposed to issue a license. The administrative hearings on the proposed license should be completed by July 1997. The Authority is prepared to begin construction and operations as soon as a final license can be issued

  12. Effect of dietary salt levels on the performance of West African Dwarf ...

    African Journals Online (AJOL)

    A 70-day feeding trial was conducted to estimate the effect of levels (0, 5, 10, and 15g/kg cassava peels, respectively) of common salt and cassava peels (dry and fresh using Gmelina arborea leaves as a basal diet on the average daily gain, dry matter intake, feed conversion efficiency and water consumption in West African ...

  13. High-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region, California

    Science.gov (United States)

    Ponce, D. A.; Mangan, M.; McPhee, D.

    2013-12-01

    A new high-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region greatly enhances previous magnetic interpretations that were based on older, low-resolution, and regional aeromagnetic data sets and provides new insights into volcano-tectonic processes. The surveyed area covers a 8,750 km2 NNW-trending swath situated between the Sierra Nevada to the west and the Basin and Range Province to the east. The surveyed area includes the volcanic centers of Mono Lake, Mono-Inyo Craters, Mammoth Mountain, Devils Postpile, and Long Valley Caldera. The NW-trending eastern Sierra frontal fault zone crosses through the study area, including the active Mono Lake, Silver Lake, Hartley Springs, Laurel Creek, and Hilton Creek faults. Over 6,000 line-kilometers of aeromagnetic data were collected at a constant terrain clearance of 150 m, a flight-line spacing of 400 m, and a tie-line spacing of 4 km. Data were collected via helicopter with an attached stinger housing a magnetic sensor using a Scintrex CS-3 cesium magnetometer. In the northern part of the survey area, data improve the magnetic resolution of the individual domes and coulees along Mono Craters and a circular shaped magnetic anomaly that coincides with a poorly defined ring fracture mapped by Kistler (1966). Here, aeromagnetic data combined with other geophysical data suggests that Mono Craters may have preferentially followed a pre-existing plutonic basement feature that may have controlled the sickle shape of the volcanic chain. In the northeastern part of the survey, aeromagnetic data reveal a linear magnetic anomaly that correlates with and extends a mapped fault. In the southern part of the survey, in the Sierra Nevada block just south of Long Valley Caldera, aeromagnetic anomalies correlate with NNW-trending Sierran frontal faults rather than to linear NNE-trends observed in recent seismicity over the last 30 years. These data provide an important framework for the further analysis of the

  14. Site characterization at the Rabbit Valley Geophysical Performance Evaluation Range

    International Nuclear Information System (INIS)

    Koppenjan, S.; Martinez, M.

    1994-01-01

    The United States Department of Energy (US DOE) is developing a Geophysical Performance Evaluation Range (GPER) at Rabbit Valley located 30 miles west of Grand Junction, Colorado. The purpose of the range is to provide a test area for geophysical instruments and survey procedures. Assessment of equipment accuracy and resolution is accomplished through the use of static and dynamic physical models. These models include targets with fixed configurations and targets that can be re-configured to simulate specific specifications. Initial testing (1991) combined with the current tests at the Rabbit Valley GPER will establish baseline data and will provide performance criteria for the development of geophysical technologies and techniques. The US DOE's Special Technologies Laboratory (STL) staff has conducted a Ground Penetrating Radar (GPR) survey of the site with its stepped FM-CW GPR. Additionally, STL contracted several other geophysical tests. These include an airborne GPR survey incorporating a ''chirped'' FM-CW GPR system and a magnetic survey with a surfaced-towed magnetometer array unit Ground-based and aerial video and still frame pictures were also acquired. STL compiled and analyzed all of the geophysical maps and created a site characterization database. This paper discusses the results of the multi-sensor geophysical studies performed at Rabbit Valley and the future plans for the site

  15. Geologic evaluation of the Oasis Valley basin, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Fridrich, C.J.; Minor, S.A.; and Mankinen, E.A.

    2000-01-13

    This report documents the results of a geologic study of the area between the underground-nuclear-explosion testing areas on Pahute Mesa, in the northwesternmost part of the Nevada Test Site, and the springs in Oasis Valley, to the west of the Test Site. The new field data described in this report are also presented in a geologic map that is a companion product(Fridrich and others, 1999) and that covers nine 7.5-minute quadrangles centered on Thirsty Canyon SW, the quadrangle in which most of the Oasis Valley springs are located. At the beginning of this study, published detailed maps were available for 3 of the 9 quadrangles of the study area: namely Thirsty Canyon (O'Connor and others, 1966); Beatty (Maldonado and Hausback, 1990); and Thirsty Canyon SE (Lipman and others, 1966). Maps of the last two of these quadrangles, however, required extensive updating owing to recent advances in understanding of the regional structure and stratigraphy. The new map data are integrated in this re port with new geophysical data for the Oasis Valley area, include gravity, aeromagnetic, and paleomagnetic data (Grauch and others, 1997; written comm., 1999; Mankinen and others, 1999; Hildenbrand and others, 1999; Hudson and others, 1994; Hudson, unpub. data).

  16. Terrestrial Cosmogenic-Nuclide Dating of Alluvial Fans in Death Valley, California

    Science.gov (United States)

    Machette, Michael N.; Slate, Janet L.; Phillips, Fred M.

    2008-01-01

    Panamint Valley and over Wingate Wash. A remnant of ancient lake shoreline deposits that once extended across the Hanaupah Canyon fan constrains the timing and extent of the last deep cycle of Pleistocene Lake Manly. The lacustrine delta complex yields a 36Cl depth-profile date of 130 ka, which is consistent with deposition during a highstand of Lake Manly at the end of MIS 6. These deposits are presently at an altitude of about 30 meters above sea level (asl), which relates to a lake with a maximum depth of about 115 meters. Remnants of shoreline deposits at higher elevations on the southern margin of the Hanaupah Canyon fan complex are cut across older alluvium (unit Qao) and may be related to an MIS 6 highstand of at least 67 meters asl or, more likely, an older (MIS 8 or earlier) highstand that is poorly preserved and still undated in the valley. As part of our work on the west-side fans, we also dated an older phase of alluvial-fan deposits from the Trail Canyon fan complex, which is north of Hanaupah Canyon. A 36Cl depth-profile age of 170 ka suggests alluvial deposition of unit Qaio (older phase of Qao) took place prior to the MIS 6 highstand of Lake Manly. Knowing the absolute ages (or range in ages) of the intermediate-age (Qai) surfaces in Death Valley allows us to estimate the following rates of geologic processes: (1) a lateral slip rate of 5 millimeters per year for the northern Death Valley fault zone; (2) uplift of 50 meters in roughly the past 80,000 years for parts of the Mustard Canyon hills in east-central Death Valley; and (3) an estimated 10-40 m of dip-slip thrust movement on the Echo Canyon fault in Furnace Creek Canyon.

  17. A Sr-isotopic comparison between thermal waters, rocks, and hydrothermal calcites, Long Valley caldera, California

    Science.gov (United States)

    Goff, F.; Wollenberg, H.A.; Brookins, D.C.; Kistler, R.W.

    1991-01-01

    The 87Sr/86Sr values of thermal waters and hydrothermal calcites of the Long Valley caldera geothermal system are more radiogenic than those of young intracaldera volcanic rocks. Five thermal waters display 87Sr/86Sr of 0.7081-0.7078 but show systematically lighter values from west to east in the direction of lateral flow. We believe the decrease in ratio from west to east signifies increased interaction of deeply circulating thermal water with relatively fresh volcanic rocks filling the caldera depression. All types of pre-, syn-, and post-caldera volcanic rocks in the west and central caldera have (87Sr/86Sr)m between about 0.7060 and 0.7072 and values for Sierra Nevada granodiorites adjacent to the caldera are similar. Sierran pre-intrusive metavolcanic and metasedimentary rocks can have considerably higher Sr-isotope ratios (0.7061-0.7246 and 0.7090-0.7250, respectively). Hydrothermally altered volcanic rocks inside the caldera have (87Sr/86Sr)m slightly heavier than their fresh volcanic equivalents and hydrothermal calcites (0.7068-0.7105) occupy a midrange of values between the volcanic/plutonic rocks and the Sierran metamorphic rocks. These data indicate that the Long Valley geothermal reservoir is first equilibrated in a basement complex that contains at least some metasedimentary rocks. Reequilibration of Sr-isotope ratios to lower values occurs in thermal waters as convecting geothermal fluids flow through the isotopically lighter volcanic rocks of the caldera fill. ?? 1991.

  18. Valley-selective optical Stark effect probed by Kerr rotation

    Science.gov (United States)

    LaMountain, Trevor; Bergeron, Hadallia; Balla, Itamar; Stanev, Teodor K.; Hersam, Mark C.; Stern, Nathaniel P.

    2018-01-01

    The ability to monitor and control distinct states is at the heart of emerging quantum technologies. The valley pseudospin in transition metal dichalcogenide (TMDC) monolayers is a promising degree of freedom for such control, with the optical Stark effect allowing for valley-selective manipulation of energy levels in WS2 and WSe2 using ultrafast optical pulses. Despite these advances, understanding of valley-sensitive optical Stark shifts in TMDCs has been limited by reflectance-based detection methods where the signal is small and prone to background effects. More sensitive polarization-based spectroscopy is required to better probe ultrafast Stark shifts for all-optical manipulation of valley energy levels. Here, we show time-resolved Kerr rotation to be a more sensitive probe of the valley-selective optical Stark effect in monolayer TMDCs. Compared to the established time-resolved reflectance methods, Kerr rotation is less sensitive to background effects. Kerr rotation provides a fivefold improvement in the signal-to-noise ratio of the Stark effect optical signal and a more precise estimate of the energy shift. This increased sensitivity allows for observation of an optical Stark shift in monolayer MoS2 that exhibits both valley and energy selectivity, demonstrating the promise of this method for investigating this effect in other layered materials and heterostructures.

  19. PRESTO low-level waste transport and risk assessment code

    International Nuclear Information System (INIS)

    Little, C.A.; Fields, D.E.; McDowell-Boyer, L.M.; Emerson, C.J.

    1981-01-01

    PRESTO (Prediction of Radiation Effects from Shallow Trench Operations) is a computer code developed under US Environmental Protection Agency (EPA) funding to evaluate possible health effects from shallow land burial trenches. The model is intended to be generic and to assess radionuclide transport, ensuing exposure, and health impact to a static local population for a 1000-y period following the end of burial operations. Human exposure scenarios considered by the model include normal releases (including leaching and operational spillage), human intrusion, and site farming or reclamation. Pathways and processes of transit from the trench to an individual or population inlude: groundwater transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. Both population doses and individual doses are calculated as well as doses to the intruder and farmer. Cumulative health effects in terms of deaths from cancer are calculated for the population over the thousand-year period using a life-table approach. Data bases are being developed for three extant shallow land burial sites: Barnwell, South Carolina; Beatty, Nevada; and West Valley, New York

  20. Sediment Thickness and a WEST-EAST Geologic Cross Section in the Caracas Valley

    OpenAIRE

    KANTAK, PETER; SCHMITZ, MICHAEL; AUDEMARD, FRANCK

    2005-01-01

    Caracas is located at the Caribbean - South America plate boundary zone, with an associated strike slip fault system, which accommodates the relative movement of both plates and is responsible for the seismic hazard in the region. The damage pattern of the 1967 Caracas earthquake emphasized the existence of important site effects due to the sedimentary basin fill of the Caracas valley. A revised map of the sedimentary thickness was developed during this study, based on drill holes (mostly fro...

  1. Indoor gamma radiation dose levels in West Bengal using passive dosimeters

    International Nuclear Information System (INIS)

    Shetty, P.G.; Sahu, S.K.; Swarnkar, M.; Takale, R.A.; Pandit, G.G.

    2016-01-01

    Geography of West Bengal, a state in eastern India, is diverse, of high peaks of Himalaya in the northern extremes to coastal regions down south, with regions such as plateau and Ganges delta intervening in between. West Bengal is only state in India where Himalayas are in the north and Sea is at the south, with both plains and plateaus covering the remaining region. West Bengal is divided into three main divisions known as the Jalpaiguri division, Burdwan division and the Presidency division. It shows the district map of West Bengal. The result of preliminary indoor gamma radiation monitoring carried out in different districts of West Bengal is given in this paper

  2. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Burial Grounds

    International Nuclear Information System (INIS)

    2006-01-01

    The U.S. Department of Energy Order 435.1, Radioactive Waste Management, requires a disposal authorization statement authorizing operation (or continued operation) for low-level waste disposal facilities. In fulfillment of these requirements, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area burial grounds and the 200 West Area burial grounds. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area low-level burial grounds be written and approved by the Richland Operations Office. As a result of a record of decision for the Hanford Site Solid Waste Program and acceptance of the Hanford Site Solid Waste Environmental Impact Statement, the use of the low-level burial ground (LLBG) as a disposal facility for low-level and mixed low-level wastes has been restricted to lined trenches and the Navy reactor-compartment trench only. Hence, as of July 2004, only the two lined trenches in burial ground 218-W-5 (trenches 31 and 34, see Appendix A) and the Navy reactor-compartment trench in burial ground 218 E 12B (trench 94) are allowed to receive waste. When the two lined trenches are filled, the LLBG will cease to operate except for reactor compartment disposal at trench 94. Remaining operational lifetime of the LLBG is dependent on waste volume disposal rates. Existing programs for air sampling and analyses and subsidence monitoring are currently adequate for performance assessment at the LLBG. The waste disposal authorization for the Hanford Site is based (in part) on the post-closure performance assessments for the LLBG. In order to maintain a useful link between operational monitoring (e.g., Resource Conservation and Recovery Act [RCRA], Comprehensive Environmental Response, Compensation, and Liability Act, and State Waste Discharge Permits), constituents, monitoring frequencies, and boundaries require

  3. Geochemical evidence for seasonal controls on the transportation of Holocene loess, Matanuska Valley, southern Alaska, USA

    Science.gov (United States)

    Muhs, Daniel; Budahn, James R.; Skipp, Gary L.; McGeehin, John

    2016-01-01

    Loess is a widespread Quaternary deposit in Alaska and loess accretion occurs today in some regions, such as the Matanuska Valley. The source of loess in the Matanuska Valley has been debated for more than seven decades, with the Knik River and the Matanuska River, both to the east, being the leading candidates and the Susitna River, to the west, as a less favorable source. We report here new stratigraphic, mineralogic, and geochemical data that test the competing hypotheses of these river sources. Loess thickness data are consistent with previous studies that show that a source or sources lay to the east, which rules out the Susitna River as a source. Knik and Matanuska River silts can be distinguished using Sc–Th–La, LaN/YbN vs. Eu/Eu∗, Cr/Sc, and As/Sb. Matanuska Valley loess falls clearly within the range of values for these ratios found in Matanuska River silt. Dust storms from the Matanuska River are most common in autumn, when river discharge is at a minimum and silt-rich point bars are exposed, wind speed from the north is beginning to increase after a low-velocity period in summer, snow depth is still minimal, and soil temperatures are still above freezing. Thus, seasonal changes in climate and hydrology emerge as critical factors in the timing of aeolian silt transport in southern Alaska. These findings could be applicable to understanding seasonal controls on Pleistocene loess accretion in Europe, New Zealand, South America, and elsewhere in North America.

  4. Tectonic Setting of the Gravity Fault and Implications for Ground-Water Resources in the Death Valley Region, Nevada and California

    Science.gov (United States)

    Blakely, R. J.; Sweetkind, D. S.; Faunt, C. C.; Jansen, J. R.; McPhee, D. K.; Morin, R. L.

    2007-12-01

    The Amargosa trough, extending south from Crater Flat basin to the California-Nevada state line, is believed to be a transtensional basin accommodated in part by strike-slip displacement on the northwest-striking State Line fault and normal displacement on the north-striking Gravity fault. The Gravity fault, lying along the eastern margin of the Amargosa trough, was first recognized in the 1970s on the basis of correlations between gravity anomalies and a prominent spring line in Amargosa Valley. The Gravity fault causes an inflection in water-table levels, similar to other (but not all) normal faults in the area. Pools along the spring line, some of which lie within Death Valley National Park and Ash Meadows Wildlife Refuge, include endemic species potentially threatened by increasing agricultural activities in Amargosa Valley immediately to the west, where water tables are declining. Most of the springs and pools lie east of the Gravity fault, however, and it is important to understand the role that the Gravity fault plays in controlling ground-water flow. We have conducted a variety of geophysical investigations at various scales to better understand the tectonic framework of the Amargosa Desert and support new ground-water-flow models. Much of our focus has been on the tectonic interplay of the State Line, Gravity, and other faults in the area using gravity, ground-magnetic, audiomagnetotelluric (AMT), and time-domain electromagnetic (TEM) surveys. With 1250 new gravity measurements from Ash Meadows and Stewart Valley, we have developed a revised three-dimensional crustal model of the Amargosa trough constrained by well information and geologic mapping. The model predicts approximately 2 km of vertical offset on the Gravity fault but also suggests a complex structural framework. The fault is conventionally seen as a simple, down-to-the-west normal fault juxtaposing permeable pre-Tertiary carbonate rocks to the east against less permeable Tertiary sediments to

  5. Understanding Particulate Matter Dynamics in the San Joaquin Valley during DISCOVER-AQ, 2013

    Science.gov (United States)

    Prabhakar, G.; Zhang, X.; Kim, H.; Parworth, C.; Pusede, S. E.; Wooldridge, P. J.; Cohen, R. C.; Zhang, Q.; Cappa, C. D.

    2015-12-01

    Air quality in the California San Joaquin Valley (SJV) during winter continues to be the worst in the state, failing EPA's 24-hour standard for particulate matter. Despite our improved understanding of the sources of particulate matter (PM) in the valley, air-quality models are unable to predict PM concentrations accurately. We aim to characterize periods of high particulate matter concentrations in the San Joaquin Valley based on ground and airborne measurements of aerosols and gaseous pollutants, during the DISCOVER-AQ campaign, 2013. A highly instrumented aircraft flew across the SJV making three transects in a repeatable pattern, with vertical spirals over select locations. The aircraft measurements were complemented by ground measurements at these locations, with extensive chemically-speciated measurements at a ground "supersite" at Fresno. Hence, the campaign provided a comprehensive three-dimensional view of the particulate and gaseous pollutants around the valley. The vertical profiles over the different sites indicate significant variability in the concentrations and vertical distribution of PM around the valley, which are most likely driven by differences in the combined effects of emissions, chemistry and boundary layer dynamics at each site. The observations suggest that nighttime PM is dominated by surface emissions of PM from residential fuel combustion, while early morning PM is strongly influenced by mixing of low-level, above-surface, nitrate-rich layers formed from dark chemistry overnight to the surface.

  6. Mitochondrial markers for molecular identification of Aedes mosquitoes (Diptera: Culicidae) involved in transmission of arboviral disease in West Africa.

    Science.gov (United States)

    Cook, Shelley; Diallo, Mawlouth; Sall, Amadou A; Cooper, Alan; Holmes, Edward C

    2005-01-01

    Correct classification of the insect vector is central to the study of arboviral disease. A simple molecular method for identification of the main vectors of the mosquito-borne viruses, dengue, yellow fever, and Rift Valley fever in Senegal, West Africa, was developed. We present a system in which the five mosquito species (Diptera: Culicidae) responsible for the majority of flaviviral disease transmission in Senegal can be reliably identified using small amounts of DNA coextracted during flaviviral screening procedures, via an easy amplification of the mitochondrial gene cytochrome oxidase c subunit I or II (COI or COII, respectively). We observed that despite very similar morphology, the two cryptic disease vector species Aedes furcifer Edwards and Aedes taylori Edwards are highly divergent at the molecular level. This sequence variation was used as a basis for the development of a polymerase chain reaction-restriction fragment-length polymorphism system for the differentiation of the two species. We also present the first investigation of the phylogeny of the culicine mosquitoes based on all COI and COII sequences currently available. There seems to be very low intraspecific variation in both genes, whereas interspecific variation is high. As a consequence, COI and COII are ideal candidates for the molecular identification of disease vectors to species level, whereas deeper divergences remain equivocal by using these genes. This system provides a new technique for the accurate identification of culicine disease vectors in West Africa and provides a basis for the expansion of such methods into the study of a range of diseases.

  7. EXAMINATION OF HABITAT USE AND DISPERSAL OF EXOTIC BULLFROGS AND THEIR POTENTIAL IMPACT ON NATIVE AMPHIBIAN COMMUNITIES IN THE WILLAMETTE VALLEY, OREGON

    Science.gov (United States)

    Bullfrogs (Rana catesbeiana) are exotic in the west and have been implicated in the decline of western pond turtles and native ranids. Habitat alterations that favor bullfrogs have enhanced populations, particularly in agricultural areas such as the Willamette Valley. I will pres...

  8. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers

    Science.gov (United States)

    Tong, Wen-Yi; Duan, Chun-Gang

    2017-08-01

    In analogy to all-electric spintronics, all-electric valleytronics, i.e., valley manipulation via electric means, becomes an exciting new frontier as it may bring revolutions in the field of data storage with ultra-high speed and ultra-low power consumption. The existence of the anomalous valley Hall effect in ferrovalley materials demonstrates the possibility of electrical detection for valley polarization. However, in previously proposed valley-polarized monolayers, the anomalous valley Hall effect is controlled by external magnetic fields. Here, through elaborate structural design, we propose the antiferrovally bilayer as an ideal candidate for realizing all-electric valleytronic devices. Using the minimal k.p model, we show that the energy degeneracy between valley indexes in such system can be lifted by electric approaches. Subsequently, the anomalous valley Hall effect strongly depends on the electric field as well. Taking the bilayer VSe2 as an example, all-electric tuning and detecting of anomalous valley Hall effect is confirmed by density-functional theory calculations, indicating that the valley information in such antiferrovalley bilayer can be reversed by an electric field perpendicular to the plane of the system and easily probed through the sign of the Hall voltage.

  9. Dominant role of winds near Sri Lanka in driving seasonal sea level variations along the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, I.; Vialard, J.; Izumo, T.; Lengaigne, M.; Han, W.; Mc; Muraleedharan, P.M.

    version: Geophys. Res. Lett.: 43(13); 2016; 7028-7035 Dominant role of winds near Sri Lanka in driving seasonal sea-level variations along the west coast of India I. Suresh1, J. Vialard2, T. Izumo2,3, M. Lengaigne,2,3, W. Han4, J. McCreary5, P... as manifested both in sea level and surface circulation of the North Indian Ocean (NIO) [e.g., Schott and McCreary, 2001]. The sea level along the west coast of India (WCI), in particular, is dominated by the seasonal cycle. Figure 1a, which shows...

  10. New insight on the water management in Ica Valley-Peru

    Science.gov (United States)

    Guttman, Joseph; Berger, Diego

    2014-05-01

    The Andes divide Peru into three natural drainage basins: Pacific basin, Atlantic basin and Lake Titicaca basin. According to the National Water Authority (ANA), the Pacific basin is the driest basin. The bulk of water that feed the local aquifers in the coastal Pacific region is coming from rivers that flow west from the Andes. One of them is the Ica River- source of the Ica Aquifer and the Pampas de Villacuri Aquifer. The Ica River flows in a graben that was created by a series of faults. The graben is filled with sand and gravel with interbeded and lenses of clay. The aquifer thickness varies between 25 meters to more than 200 meters. The Ica Valley has an extension of 7700 km2 and belongs to the Province of Ica, the second larger economic center in Peru. The Valley is located in the hyperarid region of the Southern Coastal area of Peru with a few millimeters of precipitation per year. The direct recharge is almost zero. The recharge into the Ica Valley aquifer is comes indirectly by infiltration of storm water through the riverbed generates in the Andes, through irrigation canals and by irrigation return flow. In this hyperarid region, local aquifers like the Ica Valley are extremely valuable resources to local populations and are the key sources of groundwater for agriculture and population needs. Therefore, these aquifers play a crucial role in providing people with water and intense attention should be given to manage the water sector properly and to keep the aquifer sustainable for future generations. The total pumping (from rough estimations) is much greater than the direct and indirect recharge. The deficit in the water balance is reflected in large water level decline, out of operation of shallow wells and the ascending of saline water from deeper layers. The change from flood irrigation that contributes about 35-40% of the water to the aquifer, to drip irrigation dramatically reduces the amount of water that infiltrates into the sub-surface from the

  11. Diversity of inland valleys and opportunities for agricultural development in Sierra Leone.

    Directory of Open Access Journals (Sweden)

    Elliott Ronald Dossou-Yovo

    Full Text Available Inland valleys are becoming increasingly important agricultural production areas for rural households in sub-Saharan Africa due to their relative high and secure water availability and soil fertility. In addition, inland valleys are important as water buffer and biodiversity hot spots and they provide local communities with forest, forage, and fishing resources. As different inland-valley ecosystem functions may conflict with agricultural objectives, indiscriminate development should be avoided. This study aims to analyze the diversity of inland valleys in Sierra Leone and to develop guidelines for more precise interventions. Land use, biophysical and socio-economic data were analyzed on 257 inland valleys using spatial and multivariate techniques. Five cluster groups of inland valleys were identified: (i semi-permanently flooded with high soil organic carbon (4.2% and moderate available phosphorus (10.2 ppm, mostly under natural vegetation; (ii semi-permanently flooded with low soil organic carbon (1.5% and very low available phosphorus (3.1 ppm, abandoned by farmers; (iii seasonally flooded with moderate soil organic carbon (3.1% and low available phosphorus (8.3 ppm, used for rainfed rice and off-season vegetables produced without fertilizer application for household consumption and market; (iv well drained with moderate soil organic carbon (3.8% and moderate available phosphorus (10.0 ppm, used for rainfed rice and off-season vegetables produced with fertilizer application for household consumption and market; and (v well drained with moderate soil organic carbon (3.6% and moderate available phosphorus (11 ppm, used for household consumption without fertilizer application. Soil organic carbon, available phosphorus, hydrological regime, physical accessibility and market opportunity were the major factors affecting agricultural intensification of inland valleys. Opening up the areas in which inland valleys occur through improved roads and

  12. Field, geochemistry and Sr-Nd isotopes of the Pan-African granitoids from the Tifnoute Valley (Sirwa, Anti-Atlas, Morocco): a post-collisional event in a metacratonic setting

    Science.gov (United States)

    Toummite, A.; Liegeois, J. P.; Gasquet, D.; Bruguier, O.; Beraaouz, E. H.; Ikenne, M.

    2013-10-01

    In the Tifnoute Valley, three plutonic units have been defined: the Askaoun intrusion, the Imourkhssen intrusion and the Ougougane group of small intrusions. They are made of quartz diorite, granodiorite and granite and all contain abundant mafic microgranular enclaves (MME). The Askaoun granodiorite and the Imourkhssen granite have been dated by LA-ICP-MS on zircon at 558 ± 2 Ma and 561 ± 3 Ma, respectively. These granitic intrusions are subcontemporaneous to the widespread volcanic and volcano-detrital rocks from the Ouarzazate Group (580-545 Ma), marking the post-collisional transtensional period in the Anti-Atlas and which evolved towards alkaline and tholeiitic lavas in minor volume at the beginning of the Cambrian anorogenic intraplate extensional period. Geochemically, the Tifnoute Valley granitoids belong to an alkali-calcic series (high-K calc-alkaline) with typical Nb-Ta negative anomalies and no alkaline affinities. Granitoids and enclaves display positive ɛNd-560Ma (+0.8 to +3.5) with young Nd-TDM between 800 and 1200 Ma and relatively low 87Sr/86Sr initial ratios (Sri: 0.7034 and 0.7065). These values indicate a mainly juvenile source corresponding to a Pan-African metasomatized lithospheric mantle partly mixed with an old crustal component from the underlying West African Craton (WAC). Preservation in the Anti-Atlas of pre-Pan-African lithologies (c. 2.03 Ga basement, c. 800 Ma passive margin greenschist-facies sediments, allochthonous 750-700 Ma ophiolitic sequences) indicates that the Anti-Atlas lithosphere has not been thickened and was never an active margin during the Neoproterozoic. After a transpressive period, the late Ediacaran period (580-545 Ma) is marked by movement on near vertical transtensional faults, synchronous with the emplacement of the huge Ouarzazate Group and the Tifnoute Valley granitoids. We propose here a geodynamical model where the Tifnoute Valley granitoids as well as the Ouarzazate Group were generated during the post

  13. Martian channels and valleys - Their characteristics, distribution, and age

    Science.gov (United States)

    Carr, M. H.; Clow, G. D.

    1981-01-01

    The distribution and ages of Martian channels and valleys, which are generally believed to have been cut by running water, are examined with particular emphasis on the small branching networks referred to as runoff channels or valley networks. Valleys at latitudes from 65 deg S to 65 deg N were surveyed on Viking images at resolutions between 125 and 300 m. Almost all of the valleys are found in the old cratered terrain, in areas characterized by high elevations, low albedos and low violet/red ratios. The networks are deduced to have formed early in the history of the planet, with a formation rate declining rapidly shortly after the decline of the cratering rate 3.9 billion years ago. Two types of outflow channels are distinguished: unconfined, in which broad swaths of terrain are scoured, and confined, in which flow is restricted to discrete channels. Both types start at local sources, and have formed episodically throughout Martian history. Fretted channels, found mainly in two latitude belts characterized by relatively rapid erosion along escarpments, are explained by the lateral enlargement of other channels by mass wasting.

  14. Stream capture to form Red Pass, northern Soda Mountains, California

    Science.gov (United States)

    Miller, David; Mahan, Shannon

    2014-01-01

    Red Pass, a narrow cut through the Soda Mountains important for prehistoric and early historic travelers, is quite young geologically. Its history of downcutting to capture streams west of the Soda Mountains, thereby draining much of eastern Fort Irwin, is told by the contrast in alluvial fan sediments on either side of the pass. Old alluvial fan deposits (>500 ka) were shed westward off an intact ridge of the Soda Mountains but by middle Pleistocene time, intermediate-age alluvial fan deposits (~100 ka) were laid down by streams flowing east through the pass into Silurian Valley. The pass was probably formed by stream capture driven by high levels of groundwater on the west side. This is evidenced by widespread wetland deposits west of the Soda Mountains. Sapping and spring discharge into Silurian Valley over millennia formed a low divide in the mountains that eventually was overtopped and incised by a stream. Lessons include the importance of groundwater levels for stream capture and the relatively youthful appearance of this ~100-200 ka feature in the slowly changing Mojave Desert landscape.

  15. 1996 structural integrity assessments for the Category C Liquid Low-Level Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-09-01

    This document provides a report of the efforts made to satisfy the Federal Facility Agreement for the structural integrity certification of ten Category C Liquid Low Level Waste (LLLW) tank systems on the Oak Ridge Reservation in Oak Ridge, Tennessee. Within this document, each Category C tank system is described including the associated pipeline segments evaluated as a part of those tank systems. A separate structural integrity assessment was conducted for each of the LLLW Tank Systems, four of which are located in Melton Valley, and six of which are located in Bethel Valley. The results of the structural integrity assessments are reported herein. The assessments are based on (1) a review of available tank design drawings, (2) a qualitative assessment of corrosion on the tank and pipelines, and primarily (3) leak testing program results

  16. 1996 structural integrity assessments for the Category C Liquid Low-Level Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This document provides a report of the efforts made to satisfy the Federal Facility Agreement for the structural integrity certification of ten Category C Liquid Low Level Waste (LLLW) tank systems on the Oak Ridge Reservation in Oak Ridge, Tennessee. Within this document, each Category C tank system is described including the associated pipeline segments evaluated as a part of those tank systems. A separate structural integrity assessment was conducted for each of the LLLW Tank Systems, four of which are located in Melton Valley, and six of which are located in Bethel Valley. The results of the structural integrity assessments are reported herein. The assessments are based on (1) a review of available tank design drawings, (2) a qualitative assessment of corrosion on the tank and pipelines, and primarily (3) leak testing program results.

  17. Geology and hydrology of the West Milton area, Saratoga County, New York

    Science.gov (United States)

    Mack, Frederick K.; Pauszek, F.H.; Crippen, John R.

    1964-01-01

    This report describes the geology, ground-water conditions, streamflow characteristics, and quality of water in the West Milton area, Saratoga County, N.Y. The West Milton area is in the east-central part of New York in the hilly region that forms a transition zone between the Adirondack Mountains and the Hudson-Mohawk valley lowland. Bedrock underlying the area consists of crystalline rocks of Precambrian age and sandstone, dolomite, limestone, and shale formations of Cambrian and Ordovician age. The formations have been moderately folded and have been displaced as much as several hundred feet' along at least three northeast-trending normal faults. The bedrock is overlain in nearly all parts of the area by a layer of unconsolidated deposits which ranges in thickness from a few feet to more than 200 feet. The unconsolidated deposits are of Pleistocene age and consist of unstratified materials (till) laid down by glacial ice at stratified sediments deposited by glacial meltwaters. The topography of the bedrock surface differs greatly from the topography of the land surface. Although not evident in the present topography, at least two channels, cut in bedrock by preglacial streams, pass through the area. Ground-water supplies adequate to satisfy domestic requirements can be obtained from wells in any part of the area. Large ground-water supplies may be taken from coarse-grained stratified deposits comprising two aquifers in the valley of Kayaderosseras Creek. The Atomic Energy Commission has pumped as much as 1 mgd from a horizontal well drawing from the uppermost aquifer which is composed of flood-plain deposits. Part of the water yielded by this well during extended periods of pumping is induced flow from the creek. Three nearby vertical wells drilled by the Commission comprise a separate well field capable of yielding at least 2 mgd and possibly as much as 3 mgd from the deeper stratified deposits underlying the valley. A pumping test showed that at near the

  18. Apolipoprotein A-I and B levels, dyslipidemia and metabolic syndrome in south-west Chinese women with PCOS.

    Science.gov (United States)

    Zhang, Jinxia; Fan, Ping; Liu, Hongwei; Bai, Huai; Wang, Ying; Zhang, Feng

    2012-08-01

    following conditions: fasting total cholesterol≥5.7 mmol/l, fasting triglycerides (TG)≥1.7 mmol/l, fasting high-density lipoprotein cholesterol (HDL-C)PCOS was 52.96%, about two times than that in the controls, 28.95%. The most common components of dyslipidemia in patients with PCOS were decreased HDL-C (41.13%) and increased TG (24.14%). PCOS patients with dyslipidemia had significantly higher TG/HDL-C ratios, and lower HDL-C and apoA-I levels when compared with the controls or patients without dyslipidemia, and had significantly higher BMIs, fasting insulin concentrations, 2-h insulin and glucose levels, homeostatic model assessment IR, TG levels, LDL-C levels, atherogenic indexes, apoB concentrations and apoB/apoA-I ratios when compared with all of the control women, with or without dyslipidemia and patients without dyslipidemia. The frequency of MS in patients with PCOS was 25.62%, more than five times than that in the controls. The main two risk factors were increased waist circumference and low HDL-C levels. In the four PCOS phenotypes based on the Rotterdam criteria, the oligo- and/or anovulation+PCO presented the highest prevalence of dyslipidemia (66.14%) and MS (34.65%). Binary logistic regression analysis showed that increased apoB levels, an increased apoB/apoA-I ratio and MS was strongly associated with PCOS (odds ratio=17.41, 27.16 and 7.66, 95% confidence interval: 6.93-43.74, 9.46-77.93 and 4.32-13.57, respectively) after adjustment for age. The relatively minor limitations of this study are discussed within the paper. GENERALISABILITY TO OTHER POPULATIONS: The metabolic patterns found in south-west Chinese with PCOS are compared with that of other populations. This work was supported by Chinese National Natural Science Foundation (81070463), Program for Changjiang Scholars and Innovative Research Team in University (IRT0935), and Research Seed Fund from West China Second Hospital of Sichuan University (to H.B.). There are no any competing interests. N/A.

  19. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National...

    Science.gov (United States)

    2012-06-05

    ... Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National Park, Inyo... an Environmental Impact Statement for the Saline Valley Warm Springs Management Plan, Death Valley... analysis process for the Saline Valley Warm Springs Management Plan for Death Valley [[Page 33238...

  20. Wells measured for water-levels, unconfined and confined aquifers, Wood River Valley aquifer system, south-central Idaho, October 2006 and October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  1. Esophageal cancer in north rift valley of western Kenya | Wakhisi ...

    African Journals Online (AJOL)

    Esophageal cancer in north rift valley of western Kenya. ... Our finding also contrast with an earlier reported study that indicated that Rift Valley is a low prevalence area for this type of cancer. The mean age ... This may lead to identification of molecular biomarkers to be used in future for the early detection of this neoplasm.

  2. Low-level effects

    International Nuclear Information System (INIS)

    Devine, R.T.; Chaput, R.L.

    1987-01-01

    Risk assignments can be made to given practices involving exposure to radiation, because sufficient data are available for the effects of high-dose, low-LET radiation and because sufficient exists in the methods of extrapolation to low doses and low dose rates. The confidence in the extrapolations is based on the fact that the risk is not expected to be overestimated, using the assumptions made (as opposed to the possibility that the extrapolations represent an accurate estimate of the risk). These risk estimates have been applied to the selection of permissible exposure levels, to show that various amounts of radiation involve no greater risk to the worker than the risk expected in another industry that is generally considered safe. The setting of standards for protection from exposure to low levels of ionizing radiation is made by expert committees at the national and international levels who weigh social factors as well as scientific factors. Data on low-level effects may be applied when assigning a ''probability of causation'' to a certain exposure of radiation. This has become a prominent method for arriving at an equitable award for damages caused by such exposure. The generation of these tables requires as many (if not more) social and political considerations as does the setting up of protection criteria. It is impossible to extract a purely scientific conclusion solely from the protection standards and other legal decisions. Sufficient information exists on low-LET radiation that safety standards for exposure can be rationally (if not scientifically) agreed upon

  3. Foehn-induced effects on local dust pollution, frontal clouds and solar radiation in the Dead Sea valley

    Science.gov (United States)

    Kishcha, Pavel; Starobinets, Boris; Savir, Amit; Alpert, Pinhas; Kaplan, Michael

    2018-06-01

    Despite the long history of investigation of foehn phenomena, there are few studies of the influence of foehn winds on air pollution and none in the Dead Sea valley. For the first time the foehn phenomenon and its effects on local dust pollution, frontal cloudiness and surface solar radiation were analyzed in the Dead Sea valley, as it occurred on 22 March 2013. This was carried out using both numerical simulations and observations. The foehn winds intensified local dust emissions, while the foehn-induced temperature inversion trapped dust particles beneath this inversion. These two factors caused extreme surface dust concentration in the western Dead Sea valley. The dust pollution was transported by west winds eastward, to the central Dead Sea valley, where the speed of these winds sharply decreased. The transported dust was captured by the ascending airflow contributing to the maximum aerosol optical depth (AOD) over the central Dead Sea valley. On the day under study, the maximum surface dust concentration did not coincide with the maximum AOD: this being one of the specific effects of the foehn phenomenon on dust pollution in the Dead Sea valley. Radar data showed a passage of frontal cloudiness through the area of the Dead Sea valley leading to a sharp drop in noon solar radiation. The descending airflow over the downwind side of the Judean Mountains led to the formation of a cloud-free band followed by only the partial recovery of solar radiation because of the extreme dust pollution caused by foehn winds.

  4. FY 1995 separation studies for liquid low-level waste treatment at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Bostick, D.T.; Arnold, W.D.; Burgess, M.W.

    1995-01-01

    During FY 1995, studies were continued to develop improved methods for centralized treatment of liquid low-level waste (LLLW) at Oak Ridge National Laboratory (ORNL). Focus in this reporting period was on (1) identifying the parameters that affect the selective removal of 90 Sr and 137 Cs, two of the principal radioactive contaminants expected in the waste; (2) validating the effectiveness of the treatment methods by testing an ac Melton Valley Storage Tank (MVST) supernate; (3) evaluating the optimum solid/liquid separation techniques for the waste; (4) identifying potential treatment methods for removal of technetium from LLLW; and (5) identifying potential methods for stabilizing the high-activity secondary solid wastes generated by the treatment

  5. Assessment of regional change in nitrate concentrations in groundwater in the Central Valley, California, USA, 1950s-2000s

    Science.gov (United States)

    Burow, Karen R.; Jurgens, Bryant C.; Belitz, Kenneth; Dubrovsky, Neil M.

    2013-01-01

    A regional assessment of multi-decadal changes in nitrate concentrations was done using historical data and a spatially stratified non-biased approach. Data were stratified into physiographic subregions on the basis of geomorphology and soils data to represent zones of historical recharge and discharge patterns in the basin. Data were also stratified by depth to represent a shallow zone generally representing domestic drinking-water supplies and a deep zone generally representing public drinking-water supplies. These stratifications were designed to characterize the regional extent of groundwater with common redox and age characteristics, two factors expected to influence changes in nitrate concentrations over time. Overall, increasing trends in nitrate concentrations and the proportion of nitrate concentrations above 5 mg/L were observed in the east fans subregion of the Central Valley. Whereas the west fans subregion has elevated nitrate concentrations, temporal trends were not detected, likely due to the heterogeneous nature of the water quality in this area and geologic sources of nitrate, combined with sparse and uneven data coverage. Generally low nitrate concentrations in the basin subregion are consistent with reduced geochemical conditions resulting from low permeability soils and higher organic content, reflecting the distal portions of alluvial fans and historical groundwater discharge areas. Very small increases in the shallow aquifer in the basin subregion may reflect downgradient movement of high nitrate groundwater from adjacent areas or overlying intensive agricultural inputs. Because of the general lack of regionally extensive long-term monitoring networks, the results from this study highlight the importance of placing studies of trends in water quality into regional context. Earlier work concluded that nitrate concentrations were steadily increasing over time in the eastern San Joaquin Valley, but clearly those trends do not apply to other

  6. Two Late Pleistocene climate-driven incision/aggradation rhythms in the middle Dnieper River basin, west-central Russian Plain

    Science.gov (United States)

    Panin, Andrei; Adamiec, Grzegorz; Buylaert, Jan-Pieter; Matlakhova, Ekaterina; Moska, Piotr; Novenko, Elena

    2017-06-01

    In valleys of the River Seim and its tributaries in the middle Dnieper basin (west-central Russian Plain), two low terraces (T1, 10-16 m, and T0, 5-7 m above the river) and a floodplain (2-4 m) with characteristic large and small palaeochannels exist. A range of field and laboratory techniques was applied and ∼30 new numerical ages (OSL and 14C dates) were obtained to establish a chronology of incision and aggradation events that resulted in the current valley morphology. Two full incision/aggradation rhythms and one additional aggradation phase from the previous rhythm were recognized in the Late Pleistocene - Holocene climate cycle. The following events were detected. (1) Late MIS 5 - early MIS 4: aggradation of Terrace T1 following the deep incision at the end of MIS 6. (2) Late MIS 4 (40-30 ka): incision into Terrace T1 below the present-day river, formation of the main scarp in the bottom of the valley between Terrace T1 and Terrace T0/Floodplain levels. (3) MIS 2: aggradation of Terrace T0, lateral migrations of a shallow braided channel located few meters above the present-day river since ∼25 ka through the LGM. (4) 18-13 ka: incision into Terrace T0 below the modern river. Multiple-thread channels concentrated in a single flow that at some places formed large meanders. In the period 15-13 ka, high floods that rose above the present-day floods left large levees and overbank loams on Terrace T0. (5) Younger Dryas - Holocene transition: aggradation up to the modern channel level, transformation of large Late Glacial to small Holocene meanders. The established incision/aggradation rhythms are believed to be manifested over the Central Russian Plain outside the influence of ice sheets in the north and base level changes in the south. The two-phase deepening of the valley occurred in the last quarter of the last glacial epoch but can not be attributed directly to the glacial-interglacial transition. Both the detected incision events correspond to relatively

  7. Interpretation of gravity profiles across the northern Oaxaca terrane, its boundaries and the Tehuacán Valley, southern Mexico

    Science.gov (United States)

    Campos-Enríquez, J. O.; Alatorre-Zamora, M. A.; Keppie, J. D.; Belmonte-Jiménez, S. I.; Ramón-Márquez, V. M.

    2014-12-01

    A gravity study was conducted across the northern Oaxaca terrane and its bounding faults: the Caltepec and Oaxaca Faults to the west and east, respectively. These faults juxtapose the Oaxaca terrane against the Mixteca and Juarez terranes, respectively. The Oaxaca Fault also forms the eastern boundary of the Cenozoic Tehuacán depression. On the west, at depth, the Tehuacán valley is limited by the normal buried Tehuacán Fault. This gravity study reveals that the Oaxaca Fault system gives rise to a series of east tilted basamental blocks (Oaxaca Complex). The tectonic depression is filled with Phanerozoic rocks and has a deeper depocenter to the west. The gravity data also indicate that on the west, the Oaxaca Complex, the Caltepec and Santa Lucia faults continue northwestwards beneath Phanerozoic rocks. A major E-W to NE-SW discontinuity is inferred to exist between profiles 1 and 2.

  8. Low back pain and low level flying

    NARCIS (Netherlands)

    J.C.F.M. Aghina

    1989-01-01

    textabstractLow level flying is a very good tactical possibility to carry out a mission unseen by a hostile radarsystem. Nowadays, Western Europe in general and the Federal Republic of Germany in particular, decreased . the permissions to low level flying in assigned regions. That's why the

  9. Topographic Evolution of the Sierra Nevada Resolved by Inversion of Low-Temperature Thermochronology

    Science.gov (United States)

    McPhillips, D. F.; Brandon, M. T.

    2011-12-01

    At present, there are two competing ideas for the topographic evolution of the Sierra Nevada Range. One idea is that the Sierra Nevada was formed as a monocline in the Cretaceous, marking the transition from the Great Valley forearc basin to the west, and a high Nevadaplano plateau to the east, similar to the west flank of the modern Altiplano of the Andes. Both the thermochronologic signature of local relief and the stable isotopic evidence of a topographic rain shadow support this hypothesis. However, a suite of geomorphic observations suggests that the Sierra gained a large fraction of its present elevation as recently as the Pliocene. This recent surface uplift could have been driven by convective removal of in the lower part of the lithosphere and/or by changes in dynamic topography associated with deep subduction of the Farallon plate. Here we present the first comprehensive analysis of low-temperature thermochronology in the Sierra Nevada, which provides a definitive solution, which indicates that both ideas are likely correct. Our analysis is distinguished by three new factors: The first is that we allow for separate evolutions for the local relief and the long-wavelength topography. Second, we use Al-in-Hb paleobarometry to constrain the initial depth of emplacement for the Sierra Nevada plutons. Third, our analysis is tied to a sea-level reference by using the paleo-bathymetric record of the Great Valley basin, where it on-laps the Sierra Nevada batholith. According to our analysis, westward tilting of the Sierra accounts for 2 km of uplift since 20 Ma. Topographic relief increased by a factor of 2. These findings suggest that the Sierra Nevada lost elevation through most of the Tertiary but regained much of its initial elevation following the onset of surface uplift in the Miocene.

  10. Low-level Radioactivity Measurements

    International Nuclear Information System (INIS)

    Churtgen, C.

    2007-01-01

    The low-level radioactivity measurements service performs measurements of alpha or beta emitters on various types of low-radioactivity samples (biological and environmental) from internal and external clients. to maintain and develop techniques concerning the measurement of low-level radioactivity of alpha and beta emitting radionuclides in environmental or biological samples; to measure these samples by means of low-background counters (liquid scintillators, proportional counters, ZnS counters and alpha-spectrometers); to support and advise the nuclear and non-nuclear industry on problems of radioactive contamination or low level radioactivity measurements; to maintain the quality assurance system according to the ISO17025 standard for which we obtained the Beltest accreditation in 1998; to assess the internal dose from occupational intakes of radionuclides for workers of the nuclear industry;

  11. Alternative processes for managing existing commercial high-level radioactive wastes

    International Nuclear Information System (INIS)

    1976-04-01

    A number of alternatives are discussed for managing high-level radioactive waste presently stored at the West Valley, New York, plant owned by Nuclear Fuel Services, Inc. These alternatives (liquid storage, conversion to cement, shale fracturing, shale cement, calcination, aqueous silicate, conversion to glass, and salt cake) are limited to concepts presently under active investigation by ERDA. Each waste management option is described and examined regarding the status of the technology; its applications to managing NFS waste; its advantages and disadvantages; the research and development needed to implement the option; safety considerations; and estimated costs and time to implement the process

  12. Low-level Radioactivity Measurements

    International Nuclear Information System (INIS)

    Hurtgen, C.

    2002-01-01

    The objectives of the research performed in the area of low-level radioactivity measurements are (1) to maintain and develop techniques for the measurement of low-level environmental and biological samples, (2) to measure these samples by means of low-background counters (liquid scintillators, proportional counters, ZnS counters, alpha spectrometry), (3) to support and advise the nuclear and non-nuclear industry on problems of radioactive contamination and low-level radioactivity measurements; (4) to maintain and improve the quality assurance system according to the ISO17025 standard; and (5) to assess the internal dose from occupational intakes of radionuclides of workers of the nuclear industry. Progress and achievements in these areas in 2001 are reported

  13. Low-level Radioactivity Measurements

    International Nuclear Information System (INIS)

    Hurtgen, C.

    2001-01-01

    The objectives of the research performed in the area of low-level radioactivity measurements are (1) to maintain and develop techniques for the measurement of low-level environmental and biological samples, (2) to measure these samples by means of low-background counters (liquid scintillators, proportional counters, ZnS counters, alpha spectrometry), (3) to support and advice the nuclear and non-nuclear industry in matters concerning radioactive contamination and/or low-level radioactivity measurements; (4) to maintain the quality assurance system according to the EN45001/ISO17025 standard; and (5) to assess the internal dose from occupational intakes of radionuclides of workers of the nuclear industry. Progress and achievements in these areas in 2000 are reported

  14. The selection, licensing, and operation of a low-level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Arrowsmith, H.W.; Dalton, D.

    1990-01-01

    The Scientific Ecology Group has just completed the selection, procurement, licensing, and start-up of a low-level radioactive waste incinerator. This incinerator is the only commercial radioactive waste incinerator in the US and was licensed by the Environmental Protection Agency, the State of Tennessee, the City of Oak Ridge, and the Tennessee Valley Authority. This incinerator has a thermal capacity of 13,000,000 BTUs and can burn approximately 1,000 pounds per hour of typical radioactive waste. Waste to be incinerated is sorted in a new waste sorting system at the SEG facility. The sorting is essential to assure that the incinerator will not be damaged by any unexpected waste and to maintain the purity of the incinerator off-gas. The volume reduction expected for typical waste is approximately 100:1. After burning, the incinerator ash is compacted or vitrified before shipment to burial sites

  15. Use of ground-water reservoirs for storage of surface water in the San Joaquin Valley, California

    Science.gov (United States)

    Davis, G.H.; Lofgren, B.E.; Mack, Seymour

    1964-01-01

    The San Joaquin Valley includes roughly the southern two-thirds of the Central Valley of California, extending 250 miles from Stockton on the north to Grapevine at the foot of the Tehachapi Mountains. The valley floor ranges in width from 25 miles near Bakersfield to about 55 miles near Visalia; it has a surface area of about 10,000 square miles. More than one-quarter of all the ground water pumped for irrigation in the United States is used in this highly productive valley. Withdrawal of ground water from storage by heavy pumping not only provides a needed irrigation water supply, but it also lowers the ground-water level and makes storage space available in which to conserve excess water during periods of heavy runoff. A storage capacity estimated to be 93 million acre-feet to a depth of 200 feet is available in this ground-water reservoir. This is about nine times the combined capacity of the existing and proposed surface-water reservoirs in the San Joaquin Valley under the California Water Plan. The landforms of the San Joaquin Valley include dissected uplands, low plains and fans, river flood plains and channels, and overflow lands and lake bottoms. Below the land surface, unconsolidated sediments derived from the surrounding mountain highlands extend downward for hundreds of feet. These unconsolidated deposits, consisting chiefly of alluvial deposits, but including some widespread lacustrine sediments, are the principal source of ground water in the valley. Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the valley, three distinct ground-water reservoirs are present. In downward succession these are 1) a body of unconfined and semiconfined fresh water in alluvial deposits of Recent, Pleistocene, and possibly later Pliocene age, overlying the Corcoran clay member of the Tulare formation; 2) a body of fresh water confined beneath the Corcoran clay member, which

  16. Pupillary Responses to Robotic and Human Emotions: The Uncanny Valley and Media Equation Confirmed

    Directory of Open Access Journals (Sweden)

    Anne Reuten

    2018-05-01

    Full Text Available Physiological responses during human–robots interaction are useful alternatives to subjective measures of uncanny feelings for nearly humanlike robots (uncanny valley and comparable emotional responses between humans and robots (media equation. However, no studies have employed the easily accessible measure of pupillometry to confirm the uncanny valley and media equation hypotheses, evidence in favor of the existence of these hypotheses in interaction with emotional robots is scarce, and previous studies have not controlled for low level image statistics across robot appearances. We therefore recorded pupil size of 40 participants that viewed and rated pictures of robotic and human faces that expressed a variety of basic emotions. The robotic faces varied along the dimension of human likeness from cartoonish to humanlike. We strictly controlled for confounding factors by removing backgrounds, hair, and color, and by equalizing low level image statistics. After the presentation phase, participants indicated to what extent the robots appeared uncanny and humanlike, and whether they could imagine social interaction with the robots in real life situations. The results show that robots rated as nearly humanlike scored higher on uncanniness, scored lower on imagined social interaction, evoked weaker pupil dilations, and their emotional expressions were more difficult to recognize. Pupils dilated most strongly to negative expressions and the pattern of pupil responses across emotions was highly similar between robot and human stimuli. These results highlight the usefulness of pupillometry in emotion studies and robot design by confirming the uncanny valley and media equation hypotheses.

  17. Multi-valley effective mass theory for device-level modeling of open quantum dynamics

    Science.gov (United States)

    Jacobson, N. Tobias; Baczewski, Andrew D.; Frees, Adam; Gamble, John King; Montano, Ines; Moussa, Jonathan E.; Muller, Richard P.; Nielsen, Erik

    2015-03-01

    Simple models for semiconductor-based quantum information processors can provide useful qualitative descriptions of device behavior. However, as experimental implementations have matured, more specific guidance from theory has become necessary, particularly in the form of quantitatively reliable yet computationally efficient modeling. Besides modeling static device properties, improved characterization of noisy gate operations requires a more sophisticated description of device dynamics. Making use of recent developments in multi-valley effective mass theory, we discuss device-level simulations of the open system quantum dynamics of a qubit interacting with phonons and other noise sources. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  18. Dioxins and endometriosis: cohort study of women in West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Diliberto, J.; Birnbaum, L. [U.S. Environmental Protection Agency, NHEERL, ETD, Research Triangle Park, NC (United States); Staats, D.A. [West Virginia Dept. of Environmental Protection, Charleston, WV (United States); Staats, D.A.; Becker, J.; Jude, D.; Chouinard, S.C.; Smith, T. [Marshall Univ. Medical Center, Huntington, WV (United States); Sirinek, L. [West Virginia Dept. of Environmental Protection, Wheeling, WV (United States); Clark, G. [Xenobiotic Detection Systems Inc., Durham, NC (United States); Landy, R. [U.S. Environmental Protection Agency, Region 3, ESC, Ft. Meade, MD (United States)

    2004-09-15

    The women in this endometriosis/dioxin health study reside in the Kanawha/Ohio River Valley area of West Virginia and comprise a potential cluster (cohort) of individuals who have been exposed to dioxins (dioxin and dioxin-like chemicals) at background levels higher than those seen in other areas of the United States. The emissions from an unique constellation of chemical industries appear to have led to high levels of environmental dioxin contaminants. In addition, this area has a high incidence of endometriosis. Previous animal studies, both in nonhuman primates and rodents, have demonstrated a correlation between dioxin exposure and endometriosis. Human epidemiology studies have suggested an association but have not demonstrated a statistically significant correlation, possibly due to limitations in study design such as insufficient numbers, measurement of only TCDD rather than total equivalents to TCDD (TEQs), and/or lack of surgical ascertainment of endometriosis. The present study is addressing these issues. Thus, we have the unusual congruence of identified emission sources and high background levels of dioxins and a potentially related elevation of endometriosis. Endometriosis is a condition suffered by women in which the endometrial tissue, that usually lines the uterus, migrates to other areas. Most commonly it is found in the abdomen, bladder, ovaries or bowel. Patients with endometriosis experience pelvic pain, irregular bleeding, infertility and other problems. Immune suppression has been associated with severe endometriosis. This debilitating condition is a poorly understood disease. In the United States, this condition affects millions of women in their reproductive years and is showing up more frequently in very young women. Endometriosis will seriously impact future fertility and health care utilization. Data suggest that the rate of endometriosis in the Kanawha and Ohio River valleys is higher than is seen in other regions of the United States.

  19. West Nile virus ecology in a tropical ecosystem in Guatemala.

    Science.gov (United States)

    Morales-Betoulle, Maria E; Komar, Nicholas; Panella, Nicholas A; Alvarez, Danilo; López, María R; Betoulle, Jean-Luc; Sosa, Silvia M; Müller, María L; Kilpatrick, A Marm; Lanciotti, Robert S; Johnson, Barbara W; Powers, Ann M; Cordón-Rosales, Celia

    2013-01-01

    West Nile virus ecology has yet to be rigorously investigated in the Caribbean Basin. We identified a transmission focus in Puerto Barrios, Guatemala, and established systematic monitoring of avian abundance and infection, seroconversions in domestic poultry, and viral infections in mosquitoes. West Nile virus transmission was detected annually between May and October from 2005 to 2008. High temperature and low rainfall enhanced the probability of chicken seroconversions, which occurred in both urban and rural sites. West Nile virus was isolated from Culex quinquefasciatus and to a lesser extent, from Culex mollis/Culex inflictus, but not from the most abundant Culex mosquito, Culex nigripalpus. A calculation that combined avian abundance, seroprevalence, and vertebrate reservoir competence suggested that great-tailed grackle (Quiscalus mexicanus) is the major amplifying host in this ecosystem. West Nile virus transmission reached moderate levels in sentinel chickens during 2007, but less than that observed during outbreaks of human disease attributed to West Nile virus in the United States.

  20. Fabrication, characterization, and evaluation of a fully radioactive glass

    International Nuclear Information System (INIS)

    Olson, K.M.; Elliott, M.L.; Shade, J.W.; Smith, H.D.

    1991-01-01

    West Valley Sludge Glass-1 (WVSG-1) was fabricated using high-level waste from the West Valley Demonstration Project. Melt foaming was a problem during fabrication and a unique two-step funnel system was designed to feed the melting calcine into a crucible. The resultant glass was essentially bubble free. Crushed WVSG-1 was tested for durability using the Product Consistency Test developed at WSRC. Except for Al, the release of nonradioactive elements from WVSG-1 was lower than the release of the same elements from ATM-10, the West Valley reference glass and the release of the radionuclides Th, U, and Tc was about the same as for ATM-10

  1. Low level waste repositories

    International Nuclear Information System (INIS)

    Hill, P.R.H.; Wilson, M.A.

    1983-11-01

    Factors in selecting a site for low-level radioactive waste disposal are discussed. South Australia has used a former tailings dam in a remote, arid location as a llw repository. There are also low-level waste disposal procedures at the Olympic Dam copper/uranium project

  2. The Advantages of the Passive Construction of Office Buildings in the Jiu Valley

    Directory of Open Access Journals (Sweden)

    Andreea Cristina TATARU

    2016-06-01

    Full Text Available The concept of a 'passive House' has been introduced for the first time in Germany, subsequently being extended and at higher latitudes and different features climatic from those of Germany, in the south, west and south-west of Europe. In this paper we strive to study at the concept of 'passive house' in the Jiu Valley (latitude 45.63, and longitude 25.41 Using the Passive House Planning Package (PHPP software 2007 calculate the heating requirements for such a House, depending on the latitude and climate conditions in the locality. It will also analyze the constructive solutions for reduction of the amount of heat below the maximum allowed for a "passive house" (which is 15 kWh/m² per year. Also we will present you which are advantages of construction of this kind of building.

  3. Genesis and continuity of quaternary sand and gravel in glacigenic sediment at a proposed low-level radioactive waste disposal site in east-central Illinois

    Science.gov (United States)

    Troost, K.G.; Curry, B. Brandon

    1991-01-01

    The Illinois Department of Nuclear Safety has characterized the Martinsville Alternative Site (MAS) for a proposed low-level radioactive waste disposal facility. The MAS is located in east-central Illinois approximately 1.6 km (1 mi) north of the city of Martinsville. Geologic investigation of the 5.5-km2 (1380-acre) site revealed a sequence of chiefly Illinoian glacigenic sediments from 6 to 60 m (20-200 ft) thick overlying two major bedrock valleys carved in Pennsylvanian strata. Relatively permeable buried units include basal, preglacial alluvium; a complex of intraglacial and subglacial sediment; englacial deposits; and supraglacial fluvial deposits. Postglacial alluvium underlies stream valleys on and adjacent to the site. In most areas, the buried sand units are confined by low-permeability till, lacustrine sediment, colluvium, and loess. The distribution and thickness of the most extensive and continuous buried sand units have been modified considerably by subglacial erosion, and their distributions have been influenced by the buried bedrock valleys. The most continuous of the various sand units were deposited as preglacial and postglacial alluvium and are the uppermost and lowermost stratigraphic units at the alternative site. Sand units that were deposited in englacial or ice-marginal environments are less continuous. Aquifer pumping tests, potentiometric head data, and groundwater geochemistry analyses indicate minimal interaction of groundwater across localized interconnections of the permeable units. ?? 1991 Springer-Verlag New York Inc.

  4. Stratigraphic architecture of back-filled incised-valley systems: Pennsylvanian-Permian lower Cutler beds, Utah, USA

    Science.gov (United States)

    Wakefield, Oliver J. W.; Mountney, Nigel P.

    2013-12-01

    The Pennsylvanian to Permian lower Cutler beds collectively form the lowermost stratigraphic unit of the Cutler Group in the Paradox Basin, southeast Utah. The lower Cutler beds represent a tripartite succession comprising lithofacies assemblages of aeolian, fluvial and shallow-marine origin, in near equal proportion. The succession results from a series of transgressive-regressive cycles, driven by repeated episodes of climatic variation and linked changes in relative sea-level. Relative sea-level changes created a number of incised-valleys, each forming through fluvial incision during lowered base-level. Aeolian dominance during periods of relative sea-level lowstand aids incised-valley identification as the erosive bounding surface juxtaposes incised-valley infill against stacked aeolian faces. Relative sea-level rises resulted in back-flooding of the incised-valleys and their infill via shallow-marine and estuarine processes. Back-flooded valleys generated marine embayments within which additional local accommodation was exploited. Back-filling is characterised by a distinctive suite of lithofacies arranged into a lowermost, basal fill of fluvial channel and floodplain architectural elements, passing upwards into barform elements with indicators of tidal influence, including inclined heterolithic strata and reactivation surfaces. The incised-valley fills are capped by laterally extensive and continuous marine limestone elements that record the drowning of the valleys and, ultimately, flooding and accumulation across surrounding interfluves (transgressive surface). Limestone elements are characterised by an open-marine fauna and represent the preserved expression of maximum transgression.

  5. Low magnesium level

    Science.gov (United States)

    Low magnesium level is a condition in which the amount of magnesium in the blood is lower than normal. The medical ... that convert or use energy ( metabolism ). When the level of magnesium in the body drops below normal, ...

  6. The increasing unemployment gap between the low and high educated in West Germany. Structural or cyclical crowding-out?

    Science.gov (United States)

    Klein, Markus

    2015-03-01

    This paper addresses trends in education-specific unemployment risks at labor market entry in West Germany from the mid-1970s to the present. In line with previous research it shows that vocationally qualified school-leavers have relatively lower unemployment risks than school-leavers with general education. Over time, the gap in unemployment risks between the low-educated and medium- and highly educated labor market entrants substantially widened for both sexes. The literature identifies two different mechanisms for this trend: structural or cyclical crowding out. While in the former scenario low-educated become increasingly unemployed due to an oversupply of tertiary graduates and displacement from above, in the latter their relative unemployment risk varies with the business cycle. The results provide evidence for cyclical rather than structural crowding-out in West Germany. Since macroeconomic conditions became generally worse over time, this strongly explains the widening unemployment gap between the low-educated and all other education groups. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Iodine-125 and Iodine-131 in the Thames Valley and other areas

    International Nuclear Information System (INIS)

    Howe, J.R.; Lloyd, M.K.; Bowlt, C.

    1985-01-01

    Part of the Iodine-125 and Iodine-131 waste from hospitals and research centres is discarded down drains and passes through sewage and water reclamation works into the river system. Relatively high concentration of radioiodine occur in outfalls that discharge into the river Thames, lower levels are found in the mainstream river and less still in the reservoirs and tap water supplies abstracted from the river. The pathway from waste to drinking water could account for the low levels of Iodine-125 found in the thyroid glands of some farm animals and human beings in the Thames valley

  8. Valley polarization in bismuth

    Science.gov (United States)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  9. Appraisal of ground-water resources in the San Antonio Creek Valley, Santa Barbara County, California

    Science.gov (United States)

    Hutchinson, C.B.

    1980-01-01

    A nearly threefold increase in demand for water in the 154-square-mile San Antonio Creek valley in California during the period 1958-77 has increased the potential for overdraft on the ground-water basin. The hydrologic budget for this period showed a perennial yield of about 9,800 acre-feet per year and an annual ground-water discharge of about 11,400 acre-feet per year, comprising net pumpage of 7,100 acre-feet, phreatophyte evapotranspiration of 3,000 acre-feet, and base streamflow of 1 ,300 acre-feet. The base flow in San Antonio Creek could diminish to zero when net pumpage reaches 13,500 acre-feet per year. The environmentally sensitive marshland area of Barka Slough may then become stressed as water normally lost through evapotranspiration is captured by pumpage. The aquifer consists of alluvial valley fill that ranges in thickness from 0 to 3,500 feet. Ground water moves seaward from recharge areas along mountain fronts to a consolidated rock barrier about 5 miles east of the Pacific coast. Upwelling of ground water just east of the barrier has resulted in the 550-acre Barka Slough. Transmissivity of the aquifer ranges from 2,600 to 34,000 feet squared per day, with the lowest values occurring in the central part of the valley where the aquifer is thickest but probably finer grained. The salinity problems are increasing in the agricultural parts of the valley, which is east of the barrier. West of the barrier, stream and ground-water quality is poor, owing to seepage of saline water from the marine shale that underlies the area at shallow depths. A proposed basinwide monitoring program includes 17 water-level sites, 12 water-quality sampling sites, 3 streamflow measuring sites, and periodic infrared aerial photography of Barka Slough. A computer model of the ground-water flow system could be developed to assess the impact of various water-management alternatives. (USGS)

  10. Analytical results, geology, and sample locality map of mercury-sulfur-gypsum mineralization at Crater, Inyo County, California

    Science.gov (United States)

    Erickson, M.S.; Marsh, S.P.; Roemer, T.A.

    1984-01-01

    The Crater mercury-su l fur-gypsum ~ineral ized area is located in east-central California along the crest of the Last Chance Range, west of the north end of Death Valley (fig. 1). The area is in the northwest quarter of the Last Chance Range 15-minute quadrangle and occupies the area between 117 39 and 117 45 longitude and 37 10 and 37 15 latitudP.. The area studied lies between 5000 ( 1525 m) and 6000 ( 1830 m) feet above sea level. Relief isgenerally moderate but can be extreme in some places, as at Hanging Rock Canyon (plate 1). The climate is arid, and there are no active streams in the area. The range fronts east and west of the area are precipitous and incised by many steep canyons, whereas the range crest has relatively low relief. The old abandoned town and mine site of Crater 1 ie in this area of low relief. Access to the Crater area is by paved and dirt roads from Big Pine to the west or from the north end of the Death Valley National Monument to the southeast.

  11. BETWEEN THE WEST AND THE EAST: UKRAINIAN ECONOMIC THOUGHT AS THE CROSSROADS

    Directory of Open Access Journals (Sweden)

    A. Oleinik

    2015-10-01

    Full Text Available Ukrainian economists, similarly to Ukrainian society, are in the middle of the process of turning from the East to the West. However, the visibility of their work remains low both in the East and the West. The analysis of their publication activity (using data from the Web of Science and eLibrary confirms these assumptions. It is argued that the first step in this eventual transition consists in building the space for economic debates at the national level. Active and healthy debates at the national level will increase chances of Ukrainian economists to be heard internationally.

  12. Greening Turner Valley

    International Nuclear Information System (INIS)

    Byfield, M.

    2010-01-01

    This article discussed remedial activities undertaken in the Turner Valley. Remedial action in the valley must satisfy the financial concerns of engineers and investors as well as the environmental concerns of residents and regulators. Natural gas production in the Turner Valley began in 1914. The production practices were harmful and wasteful. Soil and water pollution was not considered a problem until recently. The impacts of cumulative effects and other pollution hazards are now being considered as part of many oil and gas environmental management programs. Companies know it is cheaper and safer to prevent pollutants from being released, and more efficient to clean them up quickly. Oil and gas companies are also committed to remediating historical problems. Several factors have simplified remediation plans in the Turner Valley. Area real estate values are now among the highest in Alberta. While the valley residents are generally friendly to the petroleum industry, strong communication with all stakeholders in the region is needed. 1 fig.

  13. Packaged low-level waste verification system

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, K.; Winberg, M.R.; McIsaac, C.V. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  14. Controlling low-level radioactive waste

    International Nuclear Information System (INIS)

    1990-01-01

    This series of information sheets describes at a popular level the sources of low-level radioactive wastes, their associated hazards, methods of storage, transportation and disposal, and the Canadian regulations that cover low-level wastes

  15. Sea level changes induced by local winds on the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Mehra, P.; Tsimplis, M.N.; Desai, R.G.P.; Joseph, A.; Shaw, A.G.P.; Somayajulu, Y.K.; Cipollini, P.

    1 National Institute of Oceanography, Goa, India 2 National Oceanography Centre, Southampton, UK # [Corresponding author: pmehra@nio.org] Abstract The contribution of atmospheric pressure and wind to sea level variability at Goa (West...), Southampton under an Indian Ocean Tsunami Warning System (IOWTS) fellowship-2008-2009. We are all grateful to the International Oceanographic Commission for providing us with the opportunity of working together. 17 R: Correlation coefficient between sea...

  16. Levels of Organisation in agent-based modelling for renewable resources management. Agricultural water management collective rules enforcement in the French Drome River Valley Case Study

    International Nuclear Information System (INIS)

    Abrami, G.

    2004-11-01

    Levels of Organisation in agent-based modelling for renewable resources management. Agricultural water management collective rules enforcement in the French Dr me River Valley Case Study. In the context of Agent-Based Modelling for participative renewable resources management, this thesis is concerned with representing multiple tangled levels of organisation of a system. The Agent-Group-Role (AGR) formalism is borrowed from computer science research. It has been conceptually specified to handle levels of organisation, and behaviours within levels of organisation. A design methodology dedicated to AGR modelling has been developed, together with an implementation of the formalism over a multi-agent platform. AGR models of agricultural water management in the French Dr me River Valley have been built and tested. This experiment demonstrates the AGR formalism ability to (1) clarify usually implicit hypothesis on action modes, scales or viewpoints (2) facilitate the definition of scenarios with various collective rules, and various rules in enforcement behaviours (3) generate bricks for generic irrigated catchment models. (author)

  17. Equity of commercial low-level radioactive waste disposal fees. Report to Congress

    International Nuclear Information System (INIS)

    1998-02-01

    In the Report accompanying the Fiscal Year 1997 Senate Energy and Water Development Appropriations Bill, the Senate Appropriations Committee directed the Department of Energy (DOE) to prepare a study of the costs of operating a low-level radioactive waste (LLW) disposal facility such as the one at Barnwell, South Carolina, and to determine whether LLW generators are paying equitable disposal fees. The disposal costs of four facilities are reviewed in this report, two operating facilities and two planned facilities. The operating facilities are located at Barnwell, South Carolina, and Richland, Washington. They are operated by Chem-Nuclear, LLC, (Chem-Nuclear), and US Ecology, Inc., (US Ecology), respectively. The planned facilities are expected to be built at Ward Valley, California, and Sierra Blanca, Texas. They will be operated by US Ecology and the State of Texas, respectively. This report found that disposal fees vary significantly among facilities for a variety of reasons. However, the information suggests that at each disposal facility, LLW generators pay equitable disposal fees

  18. Commercial production of ethanol in the San Luis Valley, Colorado. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Boswell, B.S.; Walter, K.M.; Hart, M.L.; Sherwood, P.B.

    1983-07-01

    The commercial feasibility of producing between 76 and 189 million liters (20 to 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source was assessed. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (IGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstocks for the production of ethanol.

  19. Radiation processing of temperate fruits of Kashmir valley

    International Nuclear Information System (INIS)

    Hussain, Peerzada R.; Meena, Raghuveer S.; Dar, Mohd A.; Wani, Ali M.

    2011-01-01

    Kashmir valley is famous for its temperate horticulture. Main temperate fruits grown commercially in the valley include apple, pear, peach, plum, cherry, strawberry and apricot. These fruits being perishable and susceptible to microbial spoilage, have a short shelf-life. The short shelf-life in an impediment in their transportation and marketing and results in huge losses. Study was carried out at NRL, Srinagar to investigate the effect of gamma irradiation on the keeping quality of most of these fruits. The effect of gamma irradiation alone and in combination with other techniques like controlled low temperature storage, edible polysaccharide coating and calcium chloride treatment was studied in detail. The results revealed that there is a great potential for the use of radiation in extending the storage life of most of the temperate fruits produced in the valley of Kashmir. (author)

  20. Chlorinated hydrocarbons and biomarkers of exposure in wading birds and fish of the Lower Rio Grande Valley, Texas

    Science.gov (United States)

    Wainwright, S.E.; Mora, M.A.; Sericano, J.L.; Thomas, P.

    2001-01-01

    During 1997 we evaluated reproductive success in colonial water birds nesting in the Lower Rio Grande Valley (LRGV), Texas, and correlated success with concentrations of contaminants in eggs. We also measured steroid hormones and gonadosomatic index (GSI) as biomarkers of endocrine effects in common carp (Cyprinus carpio). Nest and fledging success of green herons (Butorides virescens) and great egrets (Ardea alba) were similar to those found in other parts of North America; however, nesting success of black-crowned night-herons (Nycticorax nycticorax) was lower, very likely due to flooding of the nesting area. Except for DDE and toxaphene, all chlorinated pesticides in bird eggs were low and not of concern for negative effects on any of the three species. DDE was highest in green heron eggs and seemed to increase along a geographic gradient from west to east, with eggs from Falcon Reservoir containing low concentrations, and those at Los Indios containing the highest concentrations (approx. 11,000 ng/g WW), near or above the threshold for reproductive impairment. DDE levels in great egrets and black-crowned night-herons were below those that are associated with reproductive impairment. Mean DDE levels in carp at the JAS Farms site were above the threshold level suggested for predator protection. Toxaphene was detected in about 20% of the samples with high levels observed in green heron eggs from Los Indios (mean = 4,402 ng/g WW). These are the highest toxaphene levels reported in bird eggs in the LRGV. Toxaphene levels in fish ranged between 90 and 312 ng/g WW. In general, PCBs in bird eggs and fish tissue were low and at levels not of concern for reproductive effects. The greatest concentrations of testosterone and 11-ketotestosterone were detected in fish from the JAS Farms site, which also had the greatest concentrations of DDE. Increased androgen production and gonad development in fish at this site, relative to Pharr, could be possibly associated with

  1. Cement waste form qualification report: WVDP [West Valley Demonstration Project] PUREX decontaminated supernatant

    International Nuclear Information System (INIS)

    McVay, C.W.; Stimmel, J.R.; Marchetti, S.

    1988-08-01

    This report provides a summary of work performed to develop a cement-based, low-level waste formulation suitable for the solidification of decontaminated high-level waste liquid produced as a by-product of PUREX spent fuel reprocessing. The resultant waste form is suitable for interim storage and is intended for ultimate disposal as low-level Class C waste; it also meets the stability requirements of the NRC Branch Technical Position on Waste Form Qualification, May 1983 and the requirements of 10 CFR 61. A recipe was developed utilizing only Portland Type I cement based on an inorganic salts simulant of the PUREX supernatant. The qualified recipe was tested full scale in the production facility and was observed to produce a product with entrained air, low density, and lower-than-expected compressive strength. Further laboratory scale testing with actual decontaminated supernatant revealed that set retarders were present in the supernatant, precluding setting of the product and allowing the production of ''bleed water.'' Calcium nitrate and sodium silicate were added to overcome the set retarding effect and produced a final product with improved performance when compared to the original formulation. This report describes the qualification process and qualification test results for the final product formulation. 7 refs., 38 figs., 21 tabs

  2. Hypertension Prevalence, Awareness and Control Levels among Ghawarna: An African-Descendant Ethnic Minority in the Jordan Valley.

    Science.gov (United States)

    Kheirallah, Khalid A; Liswi, Mohammed; Alazab, Rami; Bataineh, Zeyad; Alzyoud, Sukaina; Alsulaiman, Jomana; Jaddou, Hashem

    2015-08-07

    Treatment and control of hypertension (HTN) is a challenging issue as undiagnosed HTN prevalence seems to be high among certain ethnic groups, such as African-descendant populations. The current study attempted to measure HTN prevalence, awareness and control levels among Ghawarna, an African-descendant ethnic group living in the Jordan Valley (Al-Ghawr). A cross-sectional study was conducted in a community of Ghawarna between March and June 2013 in Ghawr Al-Mazraa Village in the southern part of the Jordan Valley. A total of 517 participants, aged >25 years, were randomly selected using cluster random sampling technique. Data were collected using an interviewer-administrated questionnaire and on-location measurement of blood pressure (BP), height, and weight. Prevalence rates were compared by sex and age groups using chi-square test while backward selection logistic regression analysis was used to identify predictors of HTN. We found 229 (44.3%) of the 517 participants had HTN. Of those 229 hypertensives, 146 (28.2%) participants were discovered to have HTN for the "first time." Only 23 of the 83 who were aware of their hypertension had their BP controlled. When we added the undiagnosed HTN (n=146) to the uncontrolled HTN (n=60), the prevalence of uncontrolled HTN became 90% (206/229). Older age, higher BMI, diabetes mellitus, and dyslipidemia were associated with having HTN. HTN prevalence, awareness and control levels are alarming among Ghawarna.

  3. Valley-locked thermospin effect in silicene and germanene with asymmetric magnetic field induced by ferromagnetic proximity effect

    Science.gov (United States)

    Zhai, Xuechao; Wang, Yun-Tong; Wen, Rui; Wang, Shu-Xuan; Tian, Yue; Zhou, Xingfei; Chen, Wei; Yang, Zhihong

    2018-02-01

    Silicene and germanene, as graphenelike materials with observable spin-orbit couplings and two distinctive valleys, have potential applications in future low-dissipation spintronics and valleytronics. We here propose a magnetic system of silicene or germanene intercalated between two ferromagetic (FM) dielectric layers, and find that the system with a proximity-induced asymmetric magnetic field supports an attractive phenomenon named the valley-locked spin-dependent Seebeck effect (VL-SSE) driven by a thermal gradient. The VL-SSE indicates that the carries from only one valley could be thermally excited, with opposite spin polarization counterpropagating along the thermal gradient direction, while nearly no carrier from the other insulating valley is excited due to the relatively wide band gap. It is also illustrated that the VL-SSE here does not survive in the usual FM or anti-FM systems, and can be destroyed by the overlarge temperature broadening. Moreover, we prove that the signal for VL-SSE can be weakened gradually with the enhancement of the local interlayer electric field, and be strengthened lineally by increasing the source-drain temperature difference in a caloritronic field effect transistor. Further calculations indicate that the VL-SSE is robust against many perturbations, including the global and local Fermi levels as well as the magnetic strength. These findings about the valley-locked thermospin effect provide a nontrivial and convenient dimension to control the quantum numbers of spin and valley and are expected to be applied in future spin-valley logic circuits and energy-saving devices.

  4. Functions and requirements document, WESF decoupling project, low-level liquid waste system

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J.H., Fluor Daniel Hanford

    1997-02-27

    The Waste Encapsulation and Storage Facility (WESF) was constructed in 1974 to encapsulate and store cesium and strontium which were isolated at B Plant from underground storage tank waste. The WESF, Building 225-B, is attached physically to the west end of B Plant, Building 221-B, 200 East area. The WESF currently utilizes B Plant facilities for disposing liquid and solid waste streams. With the deactivation of B Plant, the WESF Decoupling Project will provide replacement systems allowing WESF to continue operations independently from B Plant. Four major systems have been identified to be replaced by the WESF Decoupling Project, including the following: Low Level Liquid Waste System, Solid Waste Handling System, Liquid Effluent Control System, and Deionized Water System.

  5. Spirit's West Valley Panorama

    Science.gov (United States)

    2008-01-01

    NASA'S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Sprit spent the closing months of 2007. After several months near the base of the plateau called 'Home Plate' in the inner basin of the Columbia Hills range inside Gusev Crater, Spirit climbed onto the eastern edge of the plateau during the rover's 1,306th Martian day, or sol, (Sept. 5, 2007). It examined rocks and soils at several locations on the southern half of Home Plate during September and October. It was perched near the western edge of Home Plate when it used its panoramic camera (Pancam) to take the images used in this view on sols 1,366 through 1,369 (Nov. 6 through Nov. 9, 2007). With its daily solar-energy supply shrinking as Martian summer turned to fall, Spirit then drove to the northern edge of Home Plate for a favorable winter haven. The rover reached that northward-tilting site in December, in time for the fourth Earth-year anniversary of its landing on Mars. Spirit reached Mars on Jan. 4, 2004, Universal Time (Jan. 3, 2004, Pacific Standard Time). It landed at a site at about the center of the horizon in this image. This panorama covers a scene spanning left to right from southwest to northeast. The western edge of Home Plate is in the foreground, generally lighter in tone than the more distant parts of the scene. A rock-dotted hill in the middle distance across the left third of the image is 'Tsiolkovski Ridge,' about 30 meters or 100 feet from the edge of Home Plate and about that same distance across. A bump on the horizon above the left edge of Tsiolkovski Ridge is 'Grissom Hill,' about 8 kilometers or 5 miles away. At right, the highest point of the horizon is 'Husband Hill,' to the north and about 800 meters or half a mile away. This view combines separate images taken through Pancam filters centered on wavelengths of 753 nanometers, 535 nanometers and 432 nanometers to produce an approximately true-color panorama.

  6. West Valley feasibility study

    International Nuclear Information System (INIS)

    Pirro, J.

    1981-01-01

    This report presents the results of a technical assessment of decontamination alternative prepared for the Western New York Nuclear Service Center (WNYNSC). The purpose of the assessment is to determine the recommended method for decontamination of cell surfaces and decontamination and removal of fuel reprocessing cell equipment to permit manual entry into the cells for the installation of waste solidification equipment. The primary cells of interest are the PMC, GPC, and CPC because they offer the largest usable volume for the solidification program. The secondary cells include XC-1, XC-2, XC-3 and the PPC which may be needed to support the solidification program. Five decontamination assessments were evaluated (A-E). The assessments included the estimated cost, occupational exposure, duration, manpower, waste volume generated, and final cell radiation levels achieved with the alternative decontamination methods. The methods varied from thorough destructive decontamination to equipment removal without decontamination followed by cell wall and floor decontamination. The recommended method for the primary cells is to utilize the remote manipulators and cranes to the maximum extent possible to decontaminate equipment and cell surfaces remotely, and to remove the equipment for temporary on-site storage. The recommended method for secondary cell decontamination is to remotely decontaminate the cells to the maximum extent possible prior to manned entry for contact-removal of the fuel reprocessing equipment (Assessment D). Assessment A is expected to cost $8,713,500 in 1980 dollars (including a 25% contingency) and will result in an occupational exposure of 180.3 manRem. Assessment D is expected to cost $11,039,800 and will result in an occupational exposure of 259 manRems

  7. West Valley feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Pirro, J.

    1981-01-01

    This report presents the results of a technical assessment of decontamination alternative prepared for the Western New York Nuclear Service Center (WNYNSC). The purpose of the assessment is to determine the recommended method for decontamination of cell surfaces and decontamination and removal of fuel reprocessing cell equipment to permit manual entry into the cells for the installation of waste solidification equipment. The primary cells of interest are the PMC, GPC, and CPC because they offer the largest usable volume for the solidification program. The secondary cells include XC-1, XC-2, XC-3 and the PPC which may be needed to support the solidification program. Five decontamination assessments were evaluated (A-E). The assessments included the estimated cost, occupational exposure, duration, manpower, waste volume generated, and final cell radiation levels achieved with the alternative decontamination methods. The methods varied from thorough destructive decontamination to equipment removal without decontamination followed by cell wall and floor decontamination. The recommended method for the primary cells is to utilize the remote manipulators and cranes to the maximum extent possible to decontaminate equipment and cell surfaces remotely, and to remove the equipment for temporary on-site storage. The recommended method for secondary cell decontamination is to remotely decontaminate the cells to the maximum extent possible prior to manned entry for contact-removal of the fuel reprocessing equipment (Assessment D). Assessment A is expected to cost $8,713,500 in 1980 dollars (including a 25% contingency) and will result in an occupational exposure of 180.3 manRem. Assessment D is expected to cost $11,039,800 and will result in an occupational exposure of 259 manRems.

  8. Stream seepage and groundwater levels, Wood River Valley, south-central Idaho, 2012-13

    Science.gov (United States)

    Bartolino, James R.

    2014-01-01

    Stream discharge and water levels in wells were measured at multiple sites in the Wood River Valley, south-central Idaho, in August 2012, October 2012, and March 2013, as a component of data collection for a groundwater-flow model of the Wood River Valley aquifer system. This model is a cooperative and collaborative effort between the U.S. Geological Survey and the Idaho Department of Water Resources. Stream-discharge measurements for determination of seepage were made during several days on three occasions: August 27–28, 2012, October 22–24, 2012, and March 27–28, 2013. Discharge measurements were made at 49 sites in August and October, and 51 sites in March, on the Big Wood River, Silver Creek, their tributaries, and nearby canals. The Big Wood River generally gains flow between the Big Wood River near Ketchum streamgage (13135500) and the Big Wood River at Hailey streamgage (13139510), and loses flow between the Hailey streamgage and the Big Wood River at Stanton Crossing near Bellevue streamgage (13140800). Shorter reaches within these segments may differ in the direction or magnitude of seepage or may be indeterminate because of measurement uncertainty. Additional reaches were measured on Silver Creek, the North Fork Big Wood River, Warm Springs Creek, Trail Creek, and the East Fork Big Wood River. Discharge measurements also were made on the Hiawatha, Cove, District 45, Glendale, and Bypass Canals, and smaller tributaries to the Big Wood River and Silver Creek. Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established by the U.S. Geological Survey in 2006. Maps of the October 2012 water-table altitude in the unconfined aquifer and the potentiometric-surface altitude of the confined aquifer have similar topology to those on maps of October 2006 conditions. Between October 2006 and October 2012, water-table altitude in the unconfined aquifer rose by

  9. Geologic Map of the House Rock Valley Area, Coconino County, Northern Arizona

    Science.gov (United States)

    Billingsley, George H.; Priest, Susan S.

    2010-01-01

    This geologic map is a cooperative effort of the U.S. Geological Survey (USGS), the Bureau of Land Management, the National Park Service, and the U.S. Forest Service to provide a geologic database for resource management officials and visitor information services. This map was produced in response to information needs related to a proposed withdrawal of three segregated land areas near Grand Canyon National Park, Arizona, from new hard rock mining activity. House Rock Valley was designated as the east parcel of the segregated lands near the Grand Canyon. This map was needed to provide connectivity for the geologic framework of the Grand Canyon segregated land areas. This geologic map of the House Rock Valley area encompasses approximately 280 mi2 (85.4 km2) within Coconino County, northern Arizona, and is bounded by longitude 111 degrees 37'30' to 112 degrees 05' W. and latitude 36 degrees 30' to 36 degrees 50' N. The map area is in the eastern part of the Arizona Strip, which lies within the southern Colorado Plateaus geologic province (herein Colorado Plateau). The Arizona Strip is the part of Arizona lying north of the Colorado River. The map is bound on the east by the Colorado River in Marble Canyon within Grand Canyon National Park and Glen Canyon National Recreation Area, on the south and west by the Kaibab National Forest and Grand Canyon National Game Preserve, and on the north by the Vermilion Cliffs Natural Area, the Paria Canyon Vermilion Cliffs Wilderness Area, and the Vermilion Cliffs National Monument. House Rock State Buffalo Ranch also bounds the southern edge of the map area. The Bureau of Land Management Arizona Field Office in St. George, Utah, manages public lands of the Vermilion Cliffs Natural Area, Paria Canyon - Vermilion Cliffs Wilderness and Vermilion Cliffs National Monument. The North Kaibab Ranger District in Fredonia, Arizona, manages U.S. Forest Service land along the west edge of the map area and House Rock State Buffalo Ranch

  10. Research in the selection of very low level radioactive waste disposal site in southwest China

    International Nuclear Information System (INIS)

    Tuo, Xianguo; Long, Qiong; Zhong, Hongmei; Xu, Zhengqi; Mu, Keliang; Gao, Lan

    2008-01-01

    The ultimate goal of Chinese Radioactive Nuclear Waste Management and Disposal Security is that must use proper and optimized ways to manage radioactive waste and make sure human beings and the environment either at the present or in the future can be free from any unacceptable risks. According to the goal, this paper presents an overview of comprehensive site characterization work that comprises investigations of physical geography, climatology, geology and hydrogeology, as well as geological hazard on two candidate Very Low Level Radioactive Waste (VLLW) disposal sites (Site 1 and Site 2) which are both located in the south west of China. The results showed that there are many similarities in the regional extent of the two sites, but many distinct differences are found in terrain and topographic features, granule stratum, hydraulic gradient, and so on. On the whole, the two alternative sites are in line with the requirements for very low level radioactive waste disposal, and Site 1 is superior to Site 2. (author)

  11. Characterisation and quantification of trace metal elements in atmospheric deposition and particularities in the Aspe valley (Pyrenees): implementation of road traffic air quality indicators

    International Nuclear Information System (INIS)

    Veschambre, S.

    2006-04-01

    This study of inputs of trace metal elements (TME) in the Aspe valley (Pyrenees Atlantiques) has two objectives: (1) to define a reference state of metallic contaminants for the monitoring of road traffic emissions since the opening of the Somport tunnel and, (2) to evaluate sources and climatic conditions which contribute to TME inputs in the Aspe valley. To establish air quality indicators, TME (Al, Na, Mg, K, V, Mn, Cr, Zn, Cu, Rb, Cd, Sn, Sb, Ba, Ce, Pb and U) and lead isotopic ratios ( 208 Pb/ 206 Pb, 206 Pb/ 207 Pb and 208 Pb/ 207 Pb) were determined in the atmospheric receptors (fresh snow, wet deposition, atmospheric particulates and lichen). Sampling and analyses with ultra clean procedures were employed for TME quantification. Variability of atmospheric receptors studied, allows integration on a daily and pluri-annual temporal scale and a spatial scale in the North-South axis of the valley and as a function of the altitude from the road. The Aspe valley presents a level of contamination characteristic of remote European areas and the metallic contaminants identified are Cd, Sb, Zn, Cu, Pb and Sn. In the low valley, air quality indicators indicate contaminant contributions (i) from local emissions of domestic heat sources, from agricultural burning practices and road traffic, and (ii) from regional anthropogenic sources of waste incinerators, metallurgic industries and urban centres. In altitude, the valley is significantly influenced by wind erosion and long range transport of TME in the Northern Hemisphere. Characterisation of TME and the isotopic ratios of Pb in the Somport tunnel indicate (i) a significant emission of Cu, Sb, Zn and Ba and (ii) an isotopic composition from a slightly radiogenic source even though Pb concentrations indicate low emissions from road traffic emissions. Nevertheless, the low traffic volume in the Aspe valley prevents conclusive evidence of significant contamination from road traffic. (author)

  12. Graphene valley pseudospin filter using an extended line defect

    Science.gov (United States)

    Gunlycke, Daniel; White, Carter

    2011-03-01

    Although graphene exhibits excellent electron and thermal transport properties, it does not have an intrinsic band gap, required to use graphene as a replacement material for silicon and other semiconductors in conventional electronics. The band structure of graphene with its two cones near the Fermi level, however, offers opportunities to develop non-traditional applications. One such avenue is to exploit the valley degeneracy in graphene to develop valleytronics. A central component in valleytronics is the valley filter, just as the spin filter is central in spintronics. Herein, we present a two-dimensional valley filter based on scattering of electrons and holes off a recently observed extended line defect [Nat. Nanotech.5, 326 (2010)] within graphene. The transmission probability depends strongly on the valley pseudospin and the angle of incidence of the incident quasiparticles. Quasiparticles arriving at the line defect at a high angle of incidence lead to a valley polarization of the transmitted beam that is near 100 percent. This work was supported by ONR, directly and through NRL.

  13. Fitness-valley crossing with generalized parent-offspring transmission.

    Science.gov (United States)

    Osmond, Matthew M; Otto, Sarah P

    2015-11-01

    Simple and ubiquitous gene interactions create rugged fitness landscapes composed of coadapted gene complexes separated by "valleys" of low fitness. Crossing such fitness valleys allows a population to escape suboptimal local fitness peaks to become better adapted. This is the premise of Sewall Wright's shifting balance process. Here we generalize the theory of fitness-valley crossing in the two-locus, bi-allelic case by allowing bias in parent-offspring transmission. This generalization extends the existing mathematical framework to genetic systems with segregation distortion and uniparental inheritance. Our results are also flexible enough to provide insight into shifts between alternate stable states in cultural systems with "transmission valleys". Using a semi-deterministic analysis and a stochastic diffusion approximation, we focus on the limiting step in valley crossing: the first appearance of the genotype on the new fitness peak whose lineage will eventually fix. We then apply our results to specific cases of segregation distortion, uniparental inheritance, and cultural transmission. Segregation distortion favouring mutant alleles facilitates crossing most when recombination and mutation are rare, i.e., scenarios where crossing is otherwise unlikely. Interactions with more mutable genes (e.g., uniparental inherited cytoplasmic elements) substantially reduce crossing times. Despite component traits being passed on poorly in the previous cultural background, small advantages in the transmission of a new combination of cultural traits can greatly facilitate a cultural transition. While peak shifts are unlikely under many of the common assumptions of population genetic theory, relaxing some of these assumptions can promote fitness-valley crossing. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Radio-iodine in thyroid glands of swans, farm animals and humans, also in algae and river water from the Thames Valley, England

    Energy Technology Data Exchange (ETDEWEB)

    Howe, J.R.; Lloyd, M.K.

    1986-01-01

    A highly sensitive counting system has been used to measure radio-iodine in environmental samples from the Thames Valley. Iodine-125 and occasionally iodine-131 have been found in the thyroid glands of most of the swans that have died on the River Thames, the River Wey and the Grand Union Canal, and in algae and water samples from the Thames and many of its tributaries. The presence of this activity is ascribed to the waste discarded into the drainage system by hospitals and research laboratories, reaching the rivers via the effluent from sewage treatment works. The Thames is used as a source of drinking water, particularly in London and its western approaches. Weed and water samples collected from river water abstraction points, reservoirs, tap water supplies, and animal water troughs fed from this supply all contained low levels of iodine-125. The drinking water route can account for the iodine-125 found in the thyroids of farm animals from west Surrey and in a few people living in London. The amounts found constitute a trivial radiation dose to man and animals as they are far below the acceptable limit of exposure for man.

  15. Low-level-waste-treatment handbook

    International Nuclear Information System (INIS)

    Clinton, S.D.; Goeller, H.E.; Holladay, D.W.; Donaldson, T.L.

    1982-01-01

    The initial draft of the Low-Level Waste Treatment Handbook has been prepared and submitted to the DOE Low-Level Waste Management Program for review and comment. A revised draft is scheduled to be delivered to DOE Headquarters in December 1982. The Handbook is designed to be useful to all individuals and groups concerned with low-level wastes. It is one of several volumes that will ultimately comprise a Low-Level Waste Technology Handbook. The objective of the Low-Level Waste Treatment Handbook is to present an overview of current practices related to the segregation, classification, volume reduction, solidification, handling, packaging, and transportation of LLW for disposal in a shallow land burial facility. The Handbook is intended to serve as a guide to individuals interested in the treatment and handling of low-level radioactive waste. The Handbook will not explicitly tell the user how to design and operate LLW treatment facilities, but rather will identify (1) kinds of information required to evaluate the options, (2) methods that may be used to evaluate these options, and (3) limitations associated with the selection of the treatment options. The focus of the Handbook is providing guidance on how to do waste treatment for disposal by shallow land burial

  16. Observations of Air Quality at the Edge of Kathmandu, Nepal, and the Diurnal Cycle of Air Pollution In and Around the Kathmandu Valley

    Science.gov (United States)

    Panday, A. K.; Prinn, R. G.; Regmi, R. P.

    2006-12-01

    The Kathmandu Valley is a bowl-shaped basin in the Nepal Himalaya, with a rapidly growing city surrounded by rice fields and steep terraced and forested mountain slopes. The valley's air quality is influenced by urban and rural emissions, nocturnal pooling of cold air, slope winds, and a daily exchange of air through mountain passes. To understand these processes and to inform air pollution policy in Nepal, we have carried out the most comprehensive study of air pollution in Nepal to date. During the 9-month dry season of 2004-2005, we carried out continuous measurements every minute of carbon monoxide, ozone, PM10, wind speed, wind direction, solar radiation, temperature, and humidity on the eastern edge of Kathmandu city, at a site that daily received air from both the city and rural areas. We recorded the diurnal cycle of the vertical temperature structure and stability with temperature loggers on towers and mountains. A sodar measured the mixed layer height and upper-level winds. 24-hour simultaneous bag sampling campaigns on mountain peaks, passes, the rural valley, and within the city provided glimpses of the spatial patterns of the diurnal cycle of CO -- a useful tracer of anthropogenic emissions. We measured winds on mountain passes and ozone on mountain peaks. At our main measurement site we found a daily-recurring pattern of CO and PM10, with an afternoon low showing rural background levels, even though the arriving air had traversed the city. This was followed by an evening peak starting at sunset, a second low late at night, and a morning peak enhanced by re-circulation. Pollutants emitted in the valley only traveled out of the valley between the late morning and sunset. During winter months, rush hour was outside of this period, enhancing the morning and evening peaks. Within the city, ozone dropped to zero at night. At mid-day we observed an ozone peak enhanced by photochemical production when the air mass that had been stagnant over the city swept

  17. Determination of organically bound tritium background level in biological samples from a wide area in the south-west of France

    International Nuclear Information System (INIS)

    Pointurier, F.; Baglan, N.; Alanic, G.; Chiappini, R.

    2003-01-01

    In this paper, the authors describe a sensitive method for low-level non-exchangeable OBT determination. This methodology combines suitable sample treatment, a combustion apparatus for large-sized samples and low-background liquid scintillation spectrometry, along with precautions that substantially reduce the risks of sample contamination. Great care must be taken in the measurement of non-exchangeable OBT at environmental levels. Many authors have discussed the opportunities for cross-contamination between samples and contamination by exchange with the laboratory atmosphere. The authors also describe an application of the methodology to a large-scale sampling and measurement campaign, aimed at the determination of the environmental non-exchangeable OBT background level in tree leaves and ferns collected on the site and in the vicinity of a research centre located in the south-west of France, not far from Bordeaux. This study constitutes a 'zero level' for the non-exchangeable OBT activity, as, to our knowledge, there is no tritium source within or in the surroundings of the sampled area capable of producing non-exchangeable OBT activities above the natural levels. Our analyses showed that non-exchangeable OBT activities in the collected samples were very low, ranging from below the detection limit (ca 0.7 Bq kg -1 of dry material) to ca 2 Bq kg -1 of dry material. These values are similar to the natural tritium background measured in water samples. No discrepancies can be shown between fern samples and oak tree leaf samples or between samples collected inside and outside the research site

  18. Determination of organically bound tritium background level in biological samples from a wide area in the south-west of France

    Energy Technology Data Exchange (ETDEWEB)

    Pointurier, F. E-mail: fabien.pointurier@cea.fr; Baglan, N.; Alanic, G.; Chiappini, R

    2003-07-01

    In this paper, the authors describe a sensitive method for low-level non-exchangeable OBT determination. This methodology combines suitable sample treatment, a combustion apparatus for large-sized samples and low-background liquid scintillation spectrometry, along with precautions that substantially reduce the risks of sample contamination. Great care must be taken in the measurement of non-exchangeable OBT at environmental levels. Many authors have discussed the opportunities for cross-contamination between samples and contamination by exchange with the laboratory atmosphere. The authors also describe an application of the methodology to a large-scale sampling and measurement campaign, aimed at the determination of the environmental non-exchangeable OBT background level in tree leaves and ferns collected on the site and in the vicinity of a research centre located in the south-west of France, not far from Bordeaux. This study constitutes a 'zero level' for the non-exchangeable OBT activity, as, to our knowledge, there is no tritium source within or in the surroundings of the sampled area capable of producing non-exchangeable OBT activities above the natural levels. Our analyses showed that non-exchangeable OBT activities in the collected samples were very low, ranging from below the detection limit (ca 0.7 Bq kg{sup -1} of dry material) to ca 2 Bq kg{sup -1} of dry material. These values are similar to the natural tritium background measured in water samples. No discrepancies can be shown between fern samples and oak tree leaf samples or between samples collected inside and outside the research site.

  19. Improvement of Low-Grade Silica Sand Deposits in Um Bogma Area-West Central Sinai, Egypt

    International Nuclear Information System (INIS)

    Abdel-Rahman, I.F.; El Shennawy, A.A.

    2012-01-01

    There are several silica sand deposits in Sinai, but they require upgrading to provide a raw materials acceptable for the glass manufacture. This study records beneficiation of low-grade silica sand deposits near Um Bogma at west central Sinai. The improvement techniques of ore dressing involving wet sieving, attrition scrubbing, decantation, gravimetric and magnetic separations have been applied depending on the physical properties of the constituents.

  20. Montana Valley and Foothill Prairies Ecoregion: Chapter 6 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Taylor, Janis L.

    2012-01-01

    The Montana Valley and Foothill Prairies Ecoregion comprises numerous intermountain valleys and low-elevation foothill prairies spread across the western half of Montana, on both sides of the Continental Divide (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion, which covers approximately 64,658 km2 (24,965 mi2), includes the Flathead Valley and the valleys surrounding Helena, Missoula, Bozeman, Billings, Anaconda, Dillon, and Lewistown (fig. 1). These valleys are generally characterized by shortgrass prairie vegetation and are flanked by forested mountains (Woods and others, 1999); thus, the valleys’ biotas with regards to fish and insects are comparable. In many cases, the valleys are conduits for some of the largest rivers in the state, including Clark Fork and the Missouri, Jefferson, Madison, Flathead, Yellowstone, Gallatin, Smith, Big Hole, Bitterroot, and Blackfoot Rivers (fig. 2). The Montana Valley and Foothill Prairies Ecoregion also includes the “Rocky Mountain front,” an area of prairies along the eastern slope of the northern Rocky Mountains. Principal land uses within the ecoregion include farming, grazing, and mining. The valleys serve as major transportation and utility corridors and also contain the majority of Montana’s human population. The Montana Valley and Foothill Prairies Ecoregion extends into 17 mostly rural counties throughout western Montana. Only three of the counties—Carbon, Yellowstone, and Missoula—are part of a metropolitan statistical area with contiguous built-up areas tied to an employment center. Nearly two-thirds of Montana residents live in nonmetropolitan counties (Albrecht, 2008). Ten of the counties within the ecoregion had population growth rates greater than national averages (9–13 percent) between 1970 and 2000 (table 1). Ravalli and Gallatin Counties had the highest growth rates. Population growth was largely due to amenity-related inmigration and an economy dependent on tourism

  1. VALDRIFT 1.0: A valley atmospheric dispersion model with deposition

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K.J.; Bian, X.; Whiteman, C.D.

    1995-05-01

    VALDRIFT version 1.0 is an atmospheric transport and diffusion model for use in well-defined mountain valleys. It is designed to determine the extent of ddft from aedal pesticide spraying activities, but can also be applied to estimate the transport and diffusion of various air pollutants in valleys. The model is phenomenological -- that is, the dominant meteorological processes goveming the behavior of the valley atmosphere are formulated explicitly in the model, albeit in a highly parameterized fashion. The key meteorological processes treated are: (1) nonsteady and nonhomogeneous along-valley winds and turbulent diffusivities, (2) convective boundary layer growth, (3) inversion descent, (4) noctumal temperature inversion breakup, and (5) subsidence. The model is applicable under relatively cloud-free, undisturbed synoptic conditions and is configured to operate through one diumal cycle for a single valley. The inputs required are the valley topographical characteristics, pesticide release rate as a function of time and space, along-valley wind speed as a function of time and space, temperature inversion characteristics at sunrise, and sensible heat flux as a function of time following sunrise. Default values are provided for certain inputs in the absence of detailed observations. The outputs are three-dimensional air concentration and ground-level deposition fields as a function of time.

  2. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    Energy Technology Data Exchange (ETDEWEB)

    Carilli, Jhon T. [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States); Krenzien, Susan K. [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)

    2013-07-01

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  3. Commercial production of ethanol in the San Luis Valley, Colorado. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Sherwood, P.B.; Boswell, B.S.; Walter, K.M.; Hart, M.L.

    1983-07-01

    The purpose of this study is to assess the commercial feasibility of producing between 76 and 189 million liters (20 and 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (KGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstock for the production of ethanol.

  4. Team West Virginia/Rome Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Korakakis, Dimitris [West Virginia Univ., Morgantown, WV (United States)

    2017-04-10

    Overall, the team, West Virginia University (WVU) and University of Rome Tor Vergata (UTV), has a goal of building an attractive, low-cost, energy-efficient solar-powered home that represents both the West Virginian and Italian cultures.

  5. Influence of system controls on the Late Quaternary geomorphic evolution of a rapidly-infilled incised-valley system: The lower Manawatu valley, North Island New Zealand

    Science.gov (United States)

    Clement, Alastair J. H.; Fuller, Ian C.

    2018-02-01

    The Manawatu incised-valley estuary was rapidly infilled between 12,000-4700 cal. yr BP. A combination of empirical measurements of sedimentation rates, a reconstruction of relative sea-level (RSL) change, and digital elevation models of key surfaces within the Holocene sedimentary fill of the valley were integrated to produce a numerical model to investigate the influence of the system controls of sea-level change, sediment flux, and accommodation space on the rapid infilling history of the palaeo-estuary. The numerical model indicates that sediment flux into the palaeo-estuary was greatest during the Holocene marine transgression between 12,000-8000 years BP. The average rate of sediment deposition in the estuary during this period was 1.0 M m3 yr- 1. This rapid rate of sedimentation was controlled by the rate of accommodation space creation, as regulated by the rate of sea-level rise and the antecedent configuration of the valley. By the time sea levels stabilised c. 7500 cal. yr BP, the palaeo-estuary had been substantively infilled. Limited accommodation space resulted in rapid infilling of the central basin, though sediment flux into the estuary between 7100 and 4500 cal. yr BP was at a lower rate of 234,000 m3 yr- 1. The limited accommodation space also influenced hydrodynamic conditions in the estuarine central basin, driving export of fine-grained sediment from the estuary. Once the accommodation space of the estuarine basin was infilled sediment bypassed the system, with a consequent reduction in the sedimentation rate in the valley. More accurate partitioning of the sources of sediment driving the infilling is necessary to quantify sediment bypassing. Post-depositional lowering of RSL index points from the valley is driven by neotectonics and sediment compaction.

  6. Contaminated Materials Treatment Program annual report for FY 1989

    International Nuclear Information System (INIS)

    Ross, W.A.; Powell, J.A.

    1990-08-01

    The Western New York Nuclear Services Center reprocessed nuclear fuel for five years until operations were terminated in 1972. Underground tanks at the site contain high-level waste (HLW) generated during the reprocessing operations. Based on original agreements, the state of New York has assumed responsibility for the wastes and the site. The Department of Energy (DOE) is assisting New York State, through the West Valley Demonstration Project (WVDP), in processing and solidifying the HLW. The site contractor for the WVDP is West Valley Nuclear Services Co., Inc. (WVNS). The Pacific Northwest Laboratory (PNL), through the West Valley Support Project, has been supporting WVNS and DOE in establishing vitrification and waste processing technology and capability at the West Valley Site. The specific objective of the West Valley Support Project during FY 1989 were to complete designs of remote equipment, assist in characterizing the WVNS feed, sampling, ceramic melter and off-gas systems, provide chemical analysis of the radioactive wastes and testing of future processes with actual radioactive wastes, provide testing and modeling studies of the reference WV waste product, and conduct special studies, such as evaluating corrosion of the waste tanks and supporting operation of the supernatant treatment system. 13 refs., 13 figs., 5 tabs

  7. Transportation and disposal configuration for DOE-managed low-level and mixed low-level waste

    International Nuclear Information System (INIS)

    Johnsen, T.

    1993-06-01

    This report briefly examines the current U.S. Department of Energy complex-wide configuration for transportation and disposal of low-level and mixed low-level waste, and also retraces the historical sequence of events and rationale that has guided its development. The study determined that Nevada Test Site and the Hanford Site are the only two sites that currently provide substantial disposal services for offsite low-level waste generators. It was also determined that mixed low-level waste shipments are infrequent and are generally limited to shipments to offsite commercial treatment facilities or other Department of Energy sites for storage. The current alignment of generator to disposal site for low-level waste shipments is generally consistent with the programmatic mission of the generator; that is, defense-generated waste is shipped to the Nevada Test Site and research-generated waste is transported to the Hanford Site. The historical development of the current configuration was resurrected by retrieving Department of Energy documentation and interviewing both current and former department and contractor personnel. According to several accounts, the basic framework of the system was developed during the late 1970s, and was reportedly based on the ability of the disposal site to manage a given waste form. Documented evidence to support this reasoning, however, could not be uncovered

  8. Results of environmental monitoring in the Kinta Valley and Cameron Highland areas

    International Nuclear Information System (INIS)

    Thoste, V.

    1994-01-01

    The environmental radioactivity of the Kinta Valley and the Cameron Highlands show relative high values of gamma and alpha radiation. Both types of radiation are strongly related to meteorological conditions. In the Kinta Valley the average environmental values for Ra-222 are I 00 Bq/m sup 3 air. The monitoring chart shows a sinus shaped curve of the Radon 222 daughter concentration (EER = energy equivalent radon concentration). The concentration levels differ by I 0 times from a low in the late afternoon (around 18:00) and a high with the sunrise in the early morning (around 7:00). In the Kinta Valley and at the Pangkor island the observed interval is 24-hours. In the Kinta Valley three different surveys each of one week length showed, that the daily fluctuations exists over the whole year and doe not depend on rainy or dry seasons.. In the Cameron Highlands the outdoor radioactivity varies much faster than in the valley. There wash-out and building up periods during and between rain falls control external gamma and alpha concentration. Immediately after wash-out local gamma values can rise to 10 μSv/hour near the ground. It is concluded that the radioactivity concentration in the air is controlled by the building up time of the Rn 222 (around two hours) and the Rn 220 progeny (around 12 hours). An equilibrium factor of around 0.2 to 0.3 shows that full equilibrium is never reached in the air system. The calculation of the yearly external exposure is only possible with the knowledge of the local monitored concentration curve. A first calculation of the external dose rate for the persons living in the Kinta Valley was made. The calculations suggest dose rates between 5 and 15 mSv per year. High effective doses rates are expected film inhalation of indoor Radon progeny concentrations and from ingestion of contaminated food. (author)

  9. Radioactive waste management in West Germany

    Energy Technology Data Exchange (ETDEWEB)

    Krause, H [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.)

    1978-01-01

    The technologies developed in West Germany for radioactive waste management are widely reviewed. The first topic in this review paper is the disposal of low- and middle-level radioactive liquid wastes. Almost all these liquid wastes are evaporated, and the typical decontamination factor attained is 10/sup 4/ -- 10/sup 6/. The second topic is the solidification of residuals. Short explanation is given to bituminization and some new processes. The third topic is high-level liquid wastes. Degradation of glass quality due to various radiation is discussed. Embedding of small glass particles containing radioactive wastes into metal is also explained. Disposals of low-level solid wastes and the special wastes produced from reprocessing and mixed oxide fuel fabrication are explained. Final disposal of radioactive wastes in halite is discussed as the last topic. Many photographs are used to illustrate the industrial or experimental use of those management methods.

  10. Large quaternary landslides in the central appalachian valley and ridge province near Petersburg, West Virginia

    Science.gov (United States)

    Southworth, C. Scott

    1988-01-01

    Geological mapping and photointerpretation of side-looking airborne radar images and color-infrared aerial photographs reveal two large Quaternary landslides in the Valley and Ridge province of the central Appalachians near Petersburg, W. Va. The Elkhorn Mountain rock avalanche occurs on the thrust-faulted northwestern flank of the Elkhorn Mountain anticlinorium. A minimum of 7 ?? 106 m3 of quartzite colluvium was transported more than 3 km from a 91 m high escarpment of Silurian Tuscarora Quartzite. The extensively vegetated deposit may owe, in part, its transport and weathering to periglacial conditions during the Pleistocene. In contrast, the Gap Mountain rock block slide is a single allochthonous block that is 1.2 km long, 0.6 km wide, and at least 60 m thick. The 43 ?? 106 m3 block is composed of limestone of the Helderberg Group and the Oriskany Sanstone of Early Devonian age. Planar detachment probably occurred along a dissolution bedding plane near the Shriver Chert and the Oriskany Sandstone contact. Failure probably was initiated by downcutting of the South Branch Potomac River during the Pleistocene. Landslides of this magnitude suggest accelerated erosion during periglacial climates in the Pleistocene. The recognition of these large slope failures may provide evidence of paleoclimatic conditions and, thereby, increase our understanding of the geomorphologic development of the Valley and Ridge province. ?? 1988.

  11. Geology and mineral deposits of Churchill County, Nevada

    Science.gov (United States)

    Willden, Ronald; Speed, Robert C.

    1974-01-01

    Churchill County, in west-central Nevada, is an area of varied topography and geology that has had a rather small total mineral production. The western part of the county is dominated by the broad low valley of the Carson Sink, which is underlain by deposits of Lake Lahontan. The bordering mountain ranges to the west and south are of low relief and underlain largely by Tertiary volcanic and sedimentary units. Pre-Tertiary rocks are extensively exposed east of the Carson Sink in the Stillwater Range, Clan Alpine Mountains, Augusta Mountains, and New Pass Mountains. The eastern valleys are underlain by Quaternary alluvial and lacustrine deposits contemporaneous with the western deposits of Lake Lahontan. The eastern mountain ranges are more rugged than the western ranges and have higher relief; the eastern valleys are generally narrower.

  12. Transport of particle pollution into the Maipo Valley: winter 2015 campaign results

    Science.gov (United States)

    Huneeus, Nicolás; Mazzeo, Andrea; Ordóñez, César; Donoso, Nicolás; Gallardo, Laura; Molina, Luisa; Moreno, Valeria; Muñoz, Ricardo; Orfanoz, Andrea; Vizcarra, Aldo

    2016-04-01

    Each winter, Santiago (33° 27'S, 70° 40'W) the capital of Chile with a population of about 7 million people, experiences episodes with particulate matter (PM) concentrations larger than allowed by Chilean environmental regulations. Transport and residential heating largely dominate emissions prior to and during these episodes. Important impact of black carbon (BC) on the cryosphere has been documented in other parts of the world associated with urban pollution. In order to explore if BC from Santiago has the potential to reach the Andean cryosphere during the aforementioned episodes, a one week-long campaign was conducted in Santiago and the Maipo Valley between 18th and 25th of July 2015 when the air quality conditions of the city reached twice the critical levels (pre-emergency in Chilean regulations). Measurements were carried out at three sites: downtown Santiago, the entrance of the valley (and outskirts of Santiago) and 12 km inside the Maipo Valley. At each of these sites both surface and vertically distributed measurements were conducted. A meteorological station measuring standard meteorological parameters and an E-Sampler measuring PM10 concentrations were installed at each site. In addition, a tethered balloon equipped with a sonde and a mini-aethalometer was used in each site to measure vertical profiles of standard meteorological parameters and BC concentrations, respectively. The tethered balloon was raised every three hours up to a maximum of 1000 meters above ground level, whenever meteorological conditions allowed. In general, the BC concentrations inside the valley, both at the surface and in the vertical, were dominated by emissions within the valley and BC was limited to shallow layers above the ground. However, on both days with critical air quality levels, winds blowing from the city and deeper BC layers were observed inside the valley. Furthermore, during these days observations at the entrance of the valley and those taken inside were

  13. Precipitation and runoff simulations of select perennial and ephemeral watersheds in the middle Carson River basin, Eagle, Dayton, and Churchill Valleys, west-central Nevada

    Science.gov (United States)

    Jeton, Anne E.; Maurer, Douglas K.

    2011-01-01

    The effect that land use may have on streamflow in the Carson River, and ultimately its impact on downstream users can be evaluated by simulating precipitation-runoff processes and estimating groundwater inflow in the middle Carson River in west-central Nevada. To address these concerns, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, began a study in 2008 to evaluate groundwater flow in the Carson River basin extending from Eagle Valley to Churchill Valley, called the middle Carson River basin in this report. This report documents the development and calibration of 12 watershed models and presents model results and the estimated mean annual water budgets for the modeled watersheds. This part of the larger middle Carson River study will provide estimates of runoff tributary to the Carson River and the potential for groundwater inflow (defined here as that component of recharge derived from percolation of excess water from the soil zone to the groundwater reservoir). The model used for the study was the U.S. Geological Survey's Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Models were developed for 2 perennial watersheds in Eagle Valley having gaged daily mean runoff, Ash Canyon Creek and Clear Creek, and for 10 ephemeral watersheds in the Dayton Valley and Churchill Valley hydrologic areas. Model calibration was constrained by daily mean runoff for the 2 perennial watersheds and for the 10 ephemeral watersheds by limited indirect runoff estimates and by mean annual runoff estimates derived from empirical methods. The models were further constrained by limited climate data adjusted for altitude differences using annual precipitation volumes estimated in a previous study. The calibration periods were water years 1980-2007 for Ash Canyon Creek, and water years 1991-2007 for Clear Creek. To

  14. Hydrological responses to channelization and the formation of valley plugs and shoals

    Science.gov (United States)

    Pierce, Aaron R.; King, Sammy L.

    2017-01-01

    Rehabilitation of floodplain systems focuses on restoring interactions between the fluvial system and floodplain, however, there is a paucity of information on the effects of valley plugs and shoals on floodplain hydrological processes. We investigated hydrologic regimes in floodplains at three valley plug sites, two shoal sites, and three unchannelized sites. Valley plug sites had altered surface and sub-surface hydrology relative to unchannelized sites, while only sub-surface hydrology was affected at shoal sites. Some of the changes were unexpected, such as reduced flood duration and flood depth in floodplains associated with valley plugs. Our results emphasize the variability associated with hydrologic processes around valley plugs and our rudimentary understanding of the effects associated with these geomorphic features. Water table levels were lower at valley plug sites compared to unchannelized sites, however, valley plug sites had a greater proportion of days when water table inundation was above mean root collar depth than both shoal and unchannelized sites as a result of lower root collar depths and higher deposition rates. This study has provided evidence that valley plugs can affect both surface and sub-surface hydrology in different ways than previously thought and illustrates the variability in hydrological responses to valley plug formation.

  15. An Overview of the Geological and Geotechnical Aspects of the New Railway Line in the Lower Inn Valley

    Science.gov (United States)

    Eder, Stefan; Poscher, Gerhard; Sedlacek, Christoph

    The new railway line in the lower Inn-valley is part of the Brenner railway axis from Munich to Verona (feeder north). The first section between the villages of Kundl and Radfeld, west of Wörgl, and the village of Baumkirchen, east of Innsbruck, will become one of the biggest infrastructure projects ever built in Austria, with a length of approx. 43 km and an underground portion of approx. 80%. The article gives an overview of the various geologic formations - hard rock sections in the valley slopes, different water-saturated gravel and sand formations in the valley floor and geotechnically difficult conditions in sediments of Quaternary terraces. It also describes the methodology of the soil reconnaissance using groundwater models for hydrogeologic estimations, core drillings for evaluating geologic models and describes the experiences gained from the five approx. 7.5 km long reconnaissance tunnels for geotechnical and hydrogeological testing. The results of the soil reconnaissance were used to plan different construction methods, such as excavation in soft rock under a jet grouting roof and compressed-air, as well as mechanised shield with fluid support.

  16. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    Science.gov (United States)

    Barton, Gary J.

    2004-01-01

    high flows. Conveyance losses in the Pebble-Topaz reach were greatest, about 283 cubic feet per second, during the spring regulated high flows and were attributed to a hydroelectric project.Comparison of water levels in 30 wells in the Portneuf Valley during September and October 1968 and 2001 indicated long-term declines since 1968; the median decline was 3.4 feet. September and October were selected for characterizing long-term ground-water-level fluctuations because declines associated with irrigation reach a maximum at the end of the irrigation season. The average annual snowpack in the study area has declined significantly; 1945 85 average annual snowpack was 16.1 inches, whereas 1986 through 2002 average annual snowpack was 11.6 inches. Water-level declines during 1998 2002 may be partially attributable to the extended dry climatic conditions. It is unclear whether the declines could be partially attributed to increases in ground-water withdrawals. Between 1968 and 1980, water rights for ground-water withdrawals nearly doubled from 23,500 to 46,000 acre-feet per year. During this period, ground-water levels were relatively constant and did not exhibit a declining trend that could be related to increased ground-water withdrawal rights. However, ground-water withdrawals are not measured in the valley; thus, the amount of water pumped is not known. Since the 1990s, there have been several years when the Chesterfield Reservoir has not completely refilled, and the water in storage behind the reservoir has been depleted by the middle of the irrigation season. In this situation, surface-water diversions for irrigation were terminated before the end of the irrigation season, and irrigators, who were relying in part on diversions from the Portneuf River, had to rely solely on ground water as an alternate supply. Smaller volumes of water in the Chesterfield Reservoir since the 1990s indicate a growing demand for ground-water supplies.

  17. Galaxy and Mass Assembly (GAMA): Morphological transformation of galaxies across the green valley

    Science.gov (United States)

    Bremer, M. N.; Phillipps, S.; Kelvin, L. S.; De Propris, R.; Kennedy, Rebecca; Moffett, Amanda J.; Bamford, S.; Davies, L. J. M.; Driver, S. P.; Häußler, B.; Holwerda, B.; Hopkins, A.; James, P. A.; Liske, J.; Percival, S.; Taylor, E. N.

    2018-05-01

    We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and on to the red sequence. We select Galaxy And Mass Assembly (GAMA) survey galaxies with 10.25 sensitive K-band profiles of red and green galaxy populations are very similar while g-band profiles indicate more disc-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disc components and that the blue to red evolution is driven by colour change in the disc. Together, these strongly suggest that galaxies evolve from blue to red through secular disc fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical time-scale for traversing the green valley ˜1-2 Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a rôle in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disc galaxies that are insufficiently supplied with gas to maintain previous levels of disc star formation, eventually attaining passive colours. No single event is needed to quench their star formation.

  18. Topological valley-chiral edge states of Lamb waves in elastic thin plates

    Science.gov (United States)

    Wang, Jian; Mei, Jun

    2018-05-01

    We investigate the nontrivial topology of the band structure of Lamb waves in a thin phononic crystal plate. When inversion symmetry is broken, a valley pseudospin degree of freedom is formed around K and K‧ valleys for the A0 Lamb mode, which is decoupled from the S0 and SH0 modes in the low-frequency regime. Chiral edge states are explicitly demonstrated, which are immune to defects and exhibit unidirectional transport behaviors when intervalley scattering is weak. The quantum valley Hall effect is thus simulated in a simple way in the context of Lamb waves.

  19. University-level nutrition training in West Africa: cost and financing issues

    Directory of Open Access Journals (Sweden)

    Roger Sodjinou

    2015-11-01

    Full Text Available Background: There is a serious shortage of skilled nutrition professionals in West Africa. Investing in nutrition training is one of the strategies for strengthening the human resource base in nutrition. However, little is known about how nutrition training in the region is financed and the levels of tuition fees charged. The purpose of this study was to provide a comprehensive assessment about the levels of tuition fees charged for nutrition training in the West Africa region and to determine to what extent this is of reach to the average student. Methodology: The data for this study were obtained from 74 nutrition degree programs operating in nine West African countries in 2013 through semi-structured interviews during on-site visits or through self-administered questionnaires. They included the age of the programs, school ownership, tuition fees, financial assistance, and main sources of funding. Tuition fees (in 2013 US$ were expressed per program to enable uniformity and comparability. Simple descriptive and bivariate analyses were performed. Results: Results from 74 nutrition training programs in nine countries showed a wide variation in tuition fees within and between countries. The tuition fees for bachelor's, master's, and doctoral programs, respectively, ranged from 372 to 4,325 (mean: 2,353; 162 to 7,678 (mean: 2,232; and 369 to 5,600 (mean: 2,208. The tuition fees were significantly higher (p<0.05 in private institutions than in public institutions (mean: US$3,079 vs. US$2,029 for bachelor's programs; US$5,118 vs. US$1,820 for master's programs; and US$3,076 vs. US$1,815 for doctoral programs. The difference in the tuition fees between Francophone and Anglophone countries was not statistically significant (mean: US$2,570 vs. US$2,216 for bachelor's programs; US$2,417 vs. US$2,147 for master's programs; US$3,285 vs. US$2,055 for doctoral programs. In most countries, the tuition fees appeared to be out of reach of the average student

  20. Subsidence due to Excessive Groundwater Withdrawal in the San Joaquin Valley, California

    Science.gov (United States)

    Corbett, F.; Harter, T.; Sneed, M.

    2011-12-01

    Francis Corbett1, Thomas Harter1 and Michelle Sneed2 1Department of Land Air and Water Resources, University of California, Davis. 2U.S. Geological Survey Western Remote Sensing and Visualization Center, Sacramento. Abstract: Groundwater development within the Central Valley of California began approximately a century ago. Water was needed to supplement limited surface water supplies for the burgeoning population and agricultural industries, especially within the arid but fertile San Joaquin Valley. Groundwater levels have recovered only partially during wet years from drought-induced lows creating long-term groundwater storage overdraft. Surface water deliveries from Federal and State sources led to a partial alleviation of these pressure head declines from the late 1960s. However, in recent decades, surface water deliveries have declined owing to increasing environmental pressures, whilst water demands have remained steady. Today, a large portion of the San Joaquin Valley population, and especially agriculture, rely upon groundwater. Groundwater levels are again rapidly declining except in wet years. There is significant concern that subsidence due to groundwater withdrawal, first observed at a large scale in the middle 20th century, will resume as groundwater resources continue to be depleted. Previous subsidence has led to problems such as infrastructure damage and flooding. To provide a support tool for groundwater management on a naval air station in the southern San Joaquin Valley (Tulare Lake Basin), a one-dimensional MODFLOW subsidence model covering the period 1925 to 2010 was developed incorporating extensive reconstruction of historical subsidence and water level data from various sources. The stratigraphy used for model input was interpreted from geophysical logs and well completion reports. Gaining good quality data proved problematic, and often values needed to be estimated. In part, this was due to the historical lack of awareness/understanding of

  1. Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    Science.gov (United States)

    Freitag, Nils M.; Reisch, Tobias; Chizhova, Larisa A.; Nemes-Incze, Péter; Holl, Christian; Woods, Colin R.; Gorbachev, Roman V.; Cao, Yang; Geim, Andre K.; Novoselov, Kostya S.; Burgdörfer, Joachim; Libisch, Florian; Morgenstern, Markus

    2018-05-01

    Coherent manipulation of the binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid-state systems, whereas exploitation of the valley has only recently been started, albeit without control at the single-electron level. Here, we show that van der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunnelling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits.

  2. Uranium favorability of tertiary sedimentary rocks of the Pend Oreille River valley, Washington. [Measurement and sampling of surface sections, collection of samples from isolated outcrops, chemical and mineralogical analyses of samples, and examination of available water logs

    Energy Technology Data Exchange (ETDEWEB)

    Marjaniemi, D.K.; Robins, J.W.

    1975-08-01

    Tertiary sedimentary rocks in the Pend Oreille River valley were investigated in a regional study to determine the favorability for potential uranium resources of northeastern Washington. This project involved measurement and sampling of surface sections, collection of samples from isolated outcrops, chemical and mineralogical analyses of samples, and examination of available water well logs. The Box Canyon Dam area north of Ione is judged to have very high favorability. Thick-bedded conglomerates interbedded with sandstones and silty sandstones compose the Tiger Formation in this area, and high radioactivity levels are found near the base of the formation. Uranophane is found along fracture surfaces or in veins. Carbonaceous material is present throughout the Tiger Formation in the area. Part of the broad Pend Oreille valley surrounding Cusick, Washington, is an area of high favorability. Potential host rocks in the Tiger Formation, consisting of arkosic sandstones interbedded with radioactive shales, probably extend throughout the subsurface part of this area. Carbonaceous material is present and some samples contain high concentrations of uranium. In addition, several other possible chemical indicators were found. The Tiger-Lost Creek area is rated as having medium favorability. The Tiger Formation contains very hard, poorly sorted granite conglomerate with some beds of arkosic sandstone and silty sandstone. The granite conglomerate was apparently derived from source rocks having relatively high uranium content. The lower part of the formation is more favorable than the upper part because of the presence of carbonaceous material, anomalously high concentrations of uranium, and other possible chemical indicators. The area west of Ione is judged to have low favorability, because of the very low permeability of the rocks and the very low uranium content. (auth)

  3. Asymmetric valley-resolved beam splitting and incident modes in slanted graphene junctions

    International Nuclear Information System (INIS)

    Hsieh, S. H.; Chu, C. S.

    2016-01-01

    Electron injection into a graphene sheet through a slanted armchair graphene nanoribbon (AGNR) is investigated. An incident mode, or subband, in the AGNR is valley-unpolarized. Our attention is on the valley-resolved nature of the injected electron beams and its connection to the incident mode. It is known for a normal injection that an incident mode will split symmetrically into two valley-resolved beams of equal intensity. We show, in contrast, that slanted injections result in asymmetric valley-resolved beam splitting. The most asymmetric beam splitting cases, when one of the valley-resolved beams has basically disappeared, are found and the condition derived. This is shown not due to trigonal warping because it holds even in the low incident energy regime, as long as collimation allows. These most asymmetric beam splitting cases occur at energies within an energy interval near and include the subband edge of an incident mode. The physical picture is best illustrated by a projection of the slanted AGNR subband states onto that of the 2D graphene sheet. It follows that the disappearing of a valley-resolved beam coincides with the situation that the group velocities of the projected states in the corresponding valley are in backward directions

  4. Low-level waste program technical strategy

    International Nuclear Information System (INIS)

    Bledsoe, K.W.

    1994-01-01

    The Low-Level Waste Technical Strategy document describes the mechanisms which the Low-Level Waste Program Office plans to implement to achieve its mission. The mission is to manage the receipt, immobilization, packaging, storage/disposal and RCRA closure (of the site) of the low-level Hanford waste (pretreated tank wastes) in an environmentally so