WorldWideScience

Sample records for well-crystallized phases electron

  1. Electron microscope phase enhancement

    Science.gov (United States)

    Jin, Jian; Glaeser, Robert M.

    2010-06-15

    A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.

  2. Electronic phase transitions

    CERN Document Server

    Kopaev, YuV

    1992-01-01

    Electronic Phase Transitions deals with topics, which are presently at the forefront of scientific research in modern solid-state theory. Anderson localization, which has fundamental implications in many areas of solid-state physics as well as spin glasses, with its influence on quite different research activities such as neural networks, are two examples that are reviewed in this book. The ab initio statistical mechanics of structural phase transitions is another prime example, where the interplay and connection of two unrelated disciplines of solid-state theory - first principle ele

  3. Electronically Induced Phase Transformations

    Science.gov (United States)

    1980-12-01

    ries (w hen the Slater free-electron exchange is used). A systematic the active researcher. study of relativistic electron densities and isomer...comp:wrees aux mesures actuelles d’effet dHvA d’Arko et Schirber. Le calu; du facteur de forme neutronique en presence d’un champ magnetique est en bon

  4. Quantum Phase Extraction in Isospectral Electronic Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Christopher

    2010-04-28

    Quantum phase is not a direct observable and is usually determined by interferometric methods. We present a method to map complete electron wave functions, including internal quantum phase information, from measured single-state probability densities. We harness the mathematical discovery of drum-like manifolds bearing different shapes but identical resonances, and construct quantum isospectral nanostructures possessing matching electronic structure but divergent physical structure. Quantum measurement (scanning tunneling microscopy) of these 'quantum drums' [degenerate two-dimensional electron states on the Cu(111) surface confined by individually positioned CO molecules] reveals that isospectrality provides an extra topological degree of freedom enabling robust quantum state transplantation and phase extraction.

  5. Airborne electronically steerable phased array

    Science.gov (United States)

    1972-01-01

    The results are presented of the second stage of a program for the design and development of a phased array capable of simultaneous and separate transmission and reception of radio frequency signals at S-band frequencies. The design goals of this stage were the development of three major areas of interest required for the final prototype model. These areas are the construction and testing of the low-weight, full-scale 128-element array of antenna elements, the development of the RF manifold feed system, and the construction and testing of a working module containing diplexer and transmit and receive circuits.

  6. The phase effect of electronic stopping power

    Institute of Scientific and Technical Information of China (English)

    MaZhong-Quan; ZhengYu-Feng

    1998-01-01

    A corrective factor(φ(E,ρ)≤1) dependent on ion energy and mass density of material for energy loss has been introduced into Bethe-Bloch formula,so that the energy deposition process of fast ion penetrating through the allotropic solid films are well discussed with the two-component assumption.An analysis expression of electronic stopping power for different phase structures has been derived from the contribution of "valence ”and “Core” electrons.The two thirds of inelastic scattering arisen from valence electron was revealed by comparing the theoretical calculation and experimental results on both random and oriented lattice site.THe corrective factor representative to the role of inner electrons increases with the projectile energy but decreases with mass density of solids.

  7. Electronic phase separation and high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kivelson, S.A. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics; Emery, V.J. [Brookhaven National Lab., Upton, NY (United States)

    1994-01-11

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional.

  8. Electronically tunable phase locked loop oscillator

    Science.gov (United States)

    Balasis, M.; Davis, M. R.; Jackson, C. R.

    1982-02-01

    This report describes the design and development of a low noise, high power, variable oscillator incorporating a high 'Q' electronically tunable resonator as the frequency determining element. The VCO provides improved EMC performance in phase locked synthesizers which are a part of communications equipments. The oscillator combines a low noise VMOS transistor with the selectivity and out-of-band attenuation of a coaxial resonator to provide superior EMC performance. Several oscillator designs were examined and the basis for the final configuration is presented. Oscillator noise is discussed and models for analysis are explained. A brass board model was constructed and tested and the technical results are presented.

  9. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  10. Electronic phases of substances. Phase transitions with change of electron and crystalline structure

    Directory of Open Access Journals (Sweden)

    Nadykto Boris

    2015-01-01

    Full Text Available There is plenty of experimental data on high-pressure phase transformations in various materials. Variations in materials characteristics (for example, equilibrium density and bulk modulus, while the crystalline structure remains unchanged, are indicative of energy variations in outer-shell electrons of solid atoms. In experiments with crystalline structure variations, the dependence of pressure on density in some cases can be described by the same curve, the parameters of which are independent of the crystalline structure. Examples of such transformations in some materials at static compression and in shock-wave experiments are given.

  11. Controlled Phase Gate Based on an Electron Floating on Helium

    Institute of Scientific and Technical Information of China (English)

    SHI Yan-Li; MEI Feng; YU Ya-Fei; ZHANG Zhi-Ming

    2011-01-01

    We propose a scheme to generate the controlled phase gate by using an electron floating on liquid helium. The electron is also driven by a classical laser beam and by an oscillating magnetic field. In the process, the vibration of the electron is used as the qubus to couple the energy level qubit (1D Stark-shifted hydrogen) and spin qubit Ultimately. the controlled phase gate can be generated.%@@ We propose a scheme to generate the controlled phase gate by using an electron floating on liquid helium.The electron is also driven by a classical laser beam and by an oscillating magnetic field.In the process,the vibration of the electron is used as the qubus to couple the energy level qubit(1D Stark-shifted hydrogen) and spin qubit.Ultimately,the controlled phase gate can be generated.

  12. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@nano.cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Carlo Gazzadi, Gian [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Karimi, Ebrahim [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  13. Theoretical study of ferroelectric nanoparticles using phase reconstructed electron microscopy

    DEFF Research Database (Denmark)

    Phatak, C.; Petford-Long, A. K.; Beleggia, Marco

    2014-01-01

    Ferroelectric nanostructures are important for a variety of applications in electronic and electro-optical devices, including nonvolatile memories and thin-film capacitors. These applications involve stability and switching of polarization using external stimuli, such as electric fields. We present...... a theoretical model describing how the shape of a nanoparticle affects its polarization in the absence of screening charges, and quantify the electron-optical phase shift for detecting ferroelectric signals with phase-sensitive techniques in a transmission electron microscope. We provide an example phase shift...

  14. Airborne Electronically Steerable Phased Array (AESPA) program

    Science.gov (United States)

    1979-01-01

    The basic concept and design of a flatplate-fed transmission array are described and system performance requirements are summarized. Particular emphasis is given to the design of the aperture, the radiating element, the phase shifter, the flatplate feed, and the mechanical support structure. Fabrication and testing techniques are considered. Of the three major parameters of interest in demonstrating the performance capabilities of the transmissive array, beamwidth was shown to be the least sensitive to system amplitude and phase errors. Beam pointing angle was also shown to be relatively insensitive to errors. Close agreement between measured and calculated values was found for array gain. The greatest difference was found for array sidelone level.

  15. Electron correlation in molecules and condensed phases

    CERN Document Server

    March, N H

    1996-01-01

    This reference describes the latest research on correlation effects in the multicenter problems of atoms, molecules, and solids The author utilizes first- and second-order matrices, including the important observable electron density rho(r), and the Green function for discussing quantum computer simulations With its focus on concepts and theories, this volume will benefit experimental physicists, materials scientists, and physical and inorganic chemists as well as graduate students

  16. Prebunching and electron pulse phase stability in FELIX

    Science.gov (United States)

    Oepts, D.; Weits, H. H.

    1997-06-01

    The importance of coherent spontaneous emission in a free-electron laser operating with short electron pulses is discussed. A coherent enhancement by many orders of magnitude has been observed in the far infrared with the FELIX device. The associated coherence between independent optical micropulses is used to determine the phase stability of the electron pulses. It is found that the pulse-to-pulse jitter is not more than some tens of femtoseconds on a timescale of nanoseconds.

  17. Itinerant to localized electronic behavior in phase segregated ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Dalal, Biswajit; Sarkar, Babusona; De, S.K., E-mail: msskd@iacs.res.in

    2016-05-15

    Simultaneous doping of Ba and Zr for Sr and Ru in SrRuO{sub 3} leads to phase separation of orthorhombic SrRuO{sub 3} (SRO) and nine layer rhombohedral BaRuO{sub 3} (9R-BRO). Differences in ionic radius and electronegativity between the cations are responsible for the chemical phase separation with increase of doping concentration. Random substitution of Ru by Zr localizes electron and induces Metal-Insulator (M−I) transition for lower doping concentration (5% and 10%). Electron–electron interaction dominates electrical conduction process due to cationic disorder in SRO lattice. Dilution of ferromagnetic interaction due to non-magnetic element Zr decreases both Curie temperature and Curie-Wiess constant and produces Griffiths phase just above the Curie temperature. At higher doping concentration (40%), solid solution of ruthenates reveals magnetism purely related to 9R-BRO phase. - Graphical abstract: Random substitution of Sr and Ru by Ba and Zr respectively localizes electron and induces Metal-Insulator (M−I) transition for lower doping concentration. Insulating state at low temperature originates from Weak localization (WL) and electron–electron interaction (EEI) due to diffusive motion of electrons in the presence of disorder, introduced by random substitution. - Highlights: • Simultaneous doping of Ba and Zr in SrRuO{sub 3} leads to phase separation of ruthenates. • Substitution of Ru by non-magnetic Zr localizes electron and induces M–I transition. • Competition between lattice disorder and spin order leads to double M–I transition. • Critical behavior study supports 3D Heisenberg-type ferromagnet. • Dilution of ferromagnetic phase along with separate chemical phase produces Griffiths phase.

  18. High pressure phase determination and electronic properties of lithiumamidoborane

    Science.gov (United States)

    Ramzan, M.; Hussain, T.; Ahuja, R.

    2012-09-01

    In this study we report on the high pressure phase of the promising hydrogen storage material lithiumamidoborane (LiNH2BH3), on the basis of density functional theory calculations with generalized gradient approximation. We take the five possible candidate structures, Pbca, Pbcn, Pcca, Pnma, and Pnnm for the high pressure study of LiNH2BH3. The corresponding structures are relaxed with respect to fractional atomic coordinates and cell parameters, with the use of fully self-consistent ab initio electronic structure calculations to get the equilibrium parameters and total energies. Then we compare the energies of these phases and find that Pbcn is the most favorable phase at ≈100 GPa. Then we calculate the structural parameters of this phase. Finally, we calculate the density of states, Bader charge analysis, and corresponding electron density of this phase.

  19. Improved Zernike-type phase contrast for transmission electron microscopy.

    Science.gov (United States)

    Koeck, P J B

    2015-07-01

    Zernike phase contrast has been recognized as a means of recording high-resolution images with high contrast using a transmission electron microscope. This imaging mode can be used to image typical phase objects such as unstained biological molecules or cryosections of biological tissue. According to the original proposal discussed in Danev and Nagayama (2001) and references therein, the Zernike phase plate applies a phase shift of π/2 to all scattered electron beams outside a given scattering angle and an image is recorded at Gaussian focus or slight underfocus (below Scherzer defocus). Alternatively, a phase shift of -π/2 is applied to the central beam using the Boersch phase plate. The resulting image will have an almost perfect contrast transfer function (close to 1) from a given lowest spatial frequency up to a maximum resolution determined by the wave length, the amount of defocus and the spherical aberration of the microscope. In this paper, I present theory and simulations showing that this maximum spatial frequency can be increased considerably without loss of contrast by using a Zernike or Boersch phase plate that leads to a phase shift between scattered and unscattered electrons of only π /4, and recording images at Scherzer defocus. The maximum resolution can be improved even more by imaging at extended Scherzer defocus, though at the cost of contrast loss at lower spatial frequencies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  20. Phase measurement error in summation of electron holography series

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, Robert A., E-mail: robbmcleod@gmail.com [Department of Physics, University of Alberta, Edmonton, AB, Canada T6G 2E1 (Canada); National Institute for Nanotechnology, 11421 Saskatchewan Dr., Edmonton, AB, Canada T6G 2M9 (Canada); Bergen, Michael [National Institute for Nanotechnology, 11421 Saskatchewan Dr., Edmonton, AB, Canada T6G 2M9 (Canada); Malac, Marek [National Institute for Nanotechnology, 11421 Saskatchewan Dr., Edmonton, AB, Canada T6G 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, AB, Canada T6G 2E1 (Canada)

    2014-06-01

    Off-axis electron holography is a method for the transmission electron microscope (TEM) that measures the electric and magnetic properties of a specimen. The electrostatic and magnetic potentials modulate the electron wavefront phase. The error in measurement of the phase therefore determines the smallest observable changes in electric and magnetic properties. Here we explore the summation of a hologram series to reduce the phase error and thereby improve the sensitivity of electron holography. Summation of hologram series requires independent registration and correction of image drift and phase wavefront drift, the consequences of which are discussed. Optimization of the electro-optical configuration of the TEM for the double biprism configuration is examined. An analytical model of image and phase drift, composed of a combination of linear drift and Brownian random-walk, is derived and experimentally verified. The accuracy of image registration via cross-correlation and phase registration is characterized by simulated hologram series. The model of series summation errors allows the optimization of phase error as a function of exposure time and fringe carrier frequency for a target spatial resolution. An experimental example of hologram series summation is provided on WS{sub 2} fullerenes. A metric is provided to measure the object phase error from experimental results and compared to analytical predictions. The ultimate experimental object root-mean-square phase error is 0.006 rad (2π/1050) at a spatial resolution less than 0.615 nm and a total exposure time of 900 s. The ultimate phase error in vacuum adjacent to the specimen is 0.0037 rad (2π/1700). The analytical prediction of phase error differs with the experimental metrics by +7% inside the object and −5% in the vacuum, indicating that the model can provide reliable quantitative predictions. - Highlights: • Optimization of electro-optical configuration for double biprism holography. • Model of drift

  1. Phase analysis on dual-phase steel using band slope of electron backscatter diffraction pattern.

    Science.gov (United States)

    Kang, Jun-Yun; Park, Seong-Jun; Moon, Man-Been

    2013-08-01

    A quantitative and automated phase analysis of dual-phase (DP) steel using electron backscatter diffraction (EBSD) was attempted. A ferrite-martensite DP microstructure was produced by intercritical annealing and quenching. An EBSD map of the microstructure was obtained and post-processed for phase discrimination. Band slope (BS), which was a measure of pattern quality, exhibited much stronger phase contrast than another conventional one, band contrast. Owing to high sensitivity to lattice defect and little orientation dependence, BS provided handiness in finding a threshold for phase discrimination. Its grain average gave a superior result on the discrimination and volume fraction measurement of the constituent phases in the DP steel.

  2. Ramsey-type phase control of free electron beams

    CERN Document Server

    Echternkamp, Katharina E; Schäfer, Sascha; Ropers, Claus

    2016-01-01

    Interference between multiple distinct paths is a defining property of quantum physics, where "paths" may involve actual physical trajectories, as in interferometry, or transitions between different internal (e.g. spin) states, or both. A hallmark of quantum coherent evolution is the possibility to interact with a system multiple times in a phase-preserving manner. This principle underpins powerful multi-dimensional optical and nuclear magnetic resonance spectroscopies and related techniques, including Ramsey's method of separated oscillatory fields used in atomic clocks. Previously established for atomic, molecular and quantum dot systems, recent developments in the optical quantum state preparation of free electron beams suggest a transfer of such concepts to the realm of ultrafast electron imaging and spectroscopy. Here, we demonstrate the sequential coherent interaction of free electron states with two spatially separated, phase-controlled optical near-fields. Ultrashort electron pulses are acted upon in ...

  3. Phase responses of harmonics reflected from radio-frequency electronics

    Science.gov (United States)

    Mazzaro, Gregory J.; McGowan, Sean F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Martone, Anthony F.; Narayanan, Ram M.

    2016-05-01

    The phase responses of nonlinear-radar targets illuminated by stepped frequencies are studied. Data is presented for an experimental radar and two commercial electronic targets at short standoff ranges. The amplitudes and phases of harmonics generated by each target at each frequency are captured over a 100-MHz-wide transmit band. As in the authors' prior work, target detection is demonstrated by receiving at least one harmonic of at least one transmit frequency. In the present work, experiments confirm that the phase of a harmonic reflected from a radio-frequency electronic target at a standoff distance is linear versus frequency. Similar to traditional wideband radar, the change of the reflected phase with respect to frequency indicates the range to the nonlinear target.

  4. Improved Hilbert phase contrast for transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koeck, Philip J.B.

    2015-07-15

    Hilbert phase contrast has been recognized as a means of recording high resolution images with high contrast using a transmission electron microscope. This imaging mode could be used to image typical phase objects such as unstained biological molecules or cryo sections of biological tissue. According to the original proposal by (Danev et al., 2002) the Hilbert phase plate applies a phase shift of π to approximately half the focal plane (for example the right half excluding the central beam) and an image is recorded at Gaussian focus. After correction for the inbuilt asymmetry of differential phase contrast this image will have an almost perfect contrast transfer function (close to 1) from the lowest spatial frequency up to a maximum resolution determined by the wave length and spherical aberration of the microscope. In this paper I present theory and simulations showing that this maximum spatial frequency can be increased considerably almost without loss of contrast by using a Hilbert phase plate of half the thickness, leading to a phase shift of π/2, and recording images at Scherzer defocus. The maximum resolution can be improved even more by imaging at extended Scherzer defocus, though at the cost of contrast loss at lower spatial frequencies. - Highlights: • In this paper I present theory and simulations for a Hilbert phase plate that phase shifts the electron wave by π/2 instead of π while images are recorded close to Scherzer defocus instead of Gaussian focus. • I show that the point resolution for this new imaging mode is considerably higher without loss of contrast. • An additional advantage lies in the reduced thickness of the phase plate which leads to reduced inelastic scattering in the phase plate and less noise.

  5. Phase Coexistence in Gallium Nanoparticles Controlled by Electron Excitation

    Science.gov (United States)

    Pochon, S.; MacDonald, K. F.; Knize, R. J.; Zheludev, N. I.

    2004-04-01

    In gallium nanoparticles 100nm in diameter grown on the tip of an optical fiber from an atomic beam we observed equilibrium coexistence of γ, β, and liquid structural phases that can be controlled by e-beam excitation in a highly reversible and reproducible fashion. With 2keV electrons only 1pJ of excitation energy per nanoparticle is needed to exercise control, with the equilibrium phase achieved in less than a few tenths of a microsecond. The transformations between coexisting phases are accompanied by a continuous change in the nanoparticle film's reflectivity.

  6. Ultrafast Hot Electron Induced Phase Transitions in Vanadium Dioxide

    Directory of Open Access Journals (Sweden)

    Haglund R. F.

    2013-03-01

    Full Text Available The Au/Cr/VO2/Si system was investigated in pump–probe experiments. Hot-electrons generated in the Au were found to penetrate into the underlying VO2 and couple with its lattice inducing a semiconductor-to-metal phase transition in ~2 picoseconds.

  7. Phase-space Dynamics of Runaway Electrons In Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoyin Guan, Hong Qin, and Nathaniel J. Fisch

    2010-08-31

    The phase-space dynamics of runaway electrons is studied, including the influence of loop voltage, radiation damping, and collisions. A theoretical model and a numerical algorithm for the runaway dynamics in phase space are developed. Instead of standard integrators, such as the Runge-Kutta method, a variational symplectic integrator is applied to simulate the long-term dynamics of a runaway electron. The variational symplectic integrator is able to globally bound the numerical error for arbitrary number of time-steps, and thus accurately track the runaway trajectory in phase space. Simulation results show that the circulating orbits of runaway electrons drift outward toward the wall, which is consistent with experimental observations. The physics of the outward drift is analyzed. It is found that the outward drift is caused by the imbalance between the increase of mechanical angular momentum and the input of toroidal angular momentum due to the parallel acceleration. An analytical expression of the outward drift velocity is derived. The knowledge of trajectory of runaway electrons in configuration space sheds light on how the electrons hit the first wall, and thus provides clues for possible remedies.

  8. Theory of photoinduced phase transitions in itinerant electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Yonemitsu, Kenji [Institute for Molecular Science, Graduate University for Advanced Studies, Okazaki, Aichi 444-8585 (Japan)], E-mail: kxy@ims.ac.jp; Nasu, Keiichiro [Solid State Theory Division, Institute of Materials Structure Science, KEK, Graduate University for Advanced Studies, CREST JST, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)], E-mail: knasu@post.kek.jp

    2008-08-15

    Theoretical progress in the research of photoinduced phase transitions is reviewed with closely related experiments. After a brief introduction of stochastic evolution in statistical systems and domino effects in localized electron systems, we treat photoinduced dynamics in itinerant-electron systems. Relevant interactions are required in the models to describe the fast and ultrafast charge-lattice-coupled dynamics after photoexcitations. First, we discuss neutral-ionic transitions in the mixed-stack charge-transfer complex, TTF-CA. When induced by intrachain charge-transfer photoexcitations, the dynamics of the ionic-to-neutral transition are characterized by a threshold behavior, while those of the neutral-to-ionic transition by an almost linear behavior. The difference originates from the different electron correlations in the neutral and ionic phases. Second, we deal with halogen-bridged metal complexes, which show metal, Mott insulator, charge-density-wave, and charge-polarization phases. The latter two phases have different broken symmetries. The charge-density-wave to charge-polarization transition is much more easily achieved than the reverse transition. This is clarified by considering microscopic charge-transfer processes. The transition from the charge-density-wave to Mott insulator phases and that from the Mott insulator to metal phases proceed much faster than those between the low-symmetry phases. Next, we discuss ultrafast, inverse spin-Peierls transitions in an organic radical crystal and alkali-TCNQ from the viewpoint of intradimer and interdimer charge-transfer excitations. Then, we study photogenerated electrons in the quantum paraelectric perovskite, SrTiO{sub 3}, which are assumed to couple differently with soft-anharmonic phonons and breathing-type high-energy phonons. The different electron-phonon couplings result in two types of polarons, a 'super-paraelectric large polaron' with a quasi-global parity violation, and an &apos

  9. Theory of photoinduced phase transitions in itinerant electron systems

    Science.gov (United States)

    Yonemitsu, Kenji; Nasu, Keiichiro

    2008-08-01

    Theoretical progress in the research of photoinduced phase transitions is reviewed with closely related experiments. After a brief introduction of stochastic evolution in statistical systems and domino effects in localized electron systems, we treat photoinduced dynamics in itinerant-electron systems. Relevant interactions are required in the models to describe the fast and ultrafast charge-lattice-coupled dynamics after photoexcitations. First, we discuss neutral-ionic transitions in the mixed-stack charge-transfer complex, TTF-CA. When induced by intrachain charge-transfer photoexcitations, the dynamics of the ionic-to-neutral transition are characterized by a threshold behavior, while those of the neutral-to-ionic transition by an almost linear behavior. The difference originates from the different electron correlations in the neutral and ionic phases. Second, we deal with halogen-bridged metal complexes, which show metal, Mott insulator, charge-density-wave, and charge-polarization phases. The latter two phases have different broken symmetries. The charge-density-wave to charge-polarization transition is much more easily achieved than the reverse transition. This is clarified by considering microscopic charge-transfer processes. The transition from the charge-density-wave to Mott insulator phases and that from the Mott insulator to metal phases proceed much faster than those between the low-symmetry phases. Next, we discuss ultrafast, inverse spin-Peierls transitions in an organic radical crystal and alkali-TCNQ from the viewpoint of intradimer and interdimer charge-transfer excitations. Then, we study photogenerated electrons in the quantum paraelectric perovskite, SrTiO 3, which are assumed to couple differently with soft-anharmonic phonons and breathing-type high-energy phonons. The different electron-phonon couplings result in two types of polarons, a “super-paraelectric large polaron” with a quasi-global parity violation, and an “off-center-type self

  10. Prospects for electron beam aberration correction using sculpted phase masks

    Energy Technology Data Exchange (ETDEWEB)

    Shiloh, Roy, E-mail: royshilo@post.tau.ac.il; Remez, Roei; Arie, Ady

    2016-04-15

    Technological advances in fabrication methods allowed the microscopy community to take incremental steps towards perfecting the electron microscope, and magnetic lens design in particular. Still, state of the art aberration-corrected microscopes are yet 20–30 times shy of the theoretical electron diffraction limit. Moreover, these microscopes consume significant physical space and are very expensive. Here, we show how a thin, sculpted membrane is used as a phase-mask to induce specific aberrations into an electron beam probe in a standard high resolution TEM. In particular, we experimentally demonstrate beam splitting, two-fold astigmatism, three-fold astigmatism, and spherical aberration. - Highlights: • Thin membranes can be used as aberration correctors in electron columns. • We demonstrate tilt, twofold-, threefold-astigmatism, and spherical aberrations. • Experimental and physical-optics simulation results are in good agreement. • Advantages in cost, size, nonmagnetism, and nearly-arbitrary correction.

  11. Electronic properties and phase transitions in low-dimensional semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Panich, A M [Department of Physics, Ben-Gurion University of the Negev, PO Box 653, Beer Sheva 84105 (Israel)], E-mail: pan@bgu.ac.il

    2008-07-23

    We present the first review of the current state of the literature on electronic properties and phase transitions in TlX and TlMX{sub 2} (M = Ga, In; X = Se, S, Te) compounds. These chalcogenides belong to a family of the low-dimensional semiconductors possessing chain or layered structure. They are of significant interest because of their highly anisotropic properties, semi- and photoconductivity, nonlinear effects in their I-V characteristics (including a region of negative differential resistance), switching and memory effects, second harmonic optical generation, relaxor behavior and potential applications for optoelectronic devices. We review the crystal structure of TlX and TlMX{sub 2} compounds, their transport properties under ambient conditions, experimental and theoretical studies of the electronic structure, transport properties and semiconductor-metal phase transitions under high pressure, and sequences of temperature-induced structural phase transitions with intermediate incommensurate states. The electronic nature of the ferroelectric phase transitions in the above-mentioned compounds, as well as relaxor behavior, nanodomains and possible occurrence of quantum dots in doped and irradiated crystals is discussed. (topical review)

  12. Energization of outer radiation belt electrons during storm recovery phase

    Science.gov (United States)

    Shah, Asif; Waters, C. L.; Sciffer, M. D.; Menk, F. W.

    2016-11-01

    We use test particle simulations incorporating an MHD model of ULF wave propagation in the magnetosphere with realistic ionosphere boundary conditions to study electron energization in the dayside outer Van Allen radiation belt, referenced to in situ particle and wave observations. On 7 January 2011 the THEMIS spacecraft detected 3 and 4-5 mHz waves simultaneous with flux enhancement of >10 keV electrons during the early recovery phase of a moderate geomagnetic storm. We find that internal energization of equatorially mirroring electrons via nonresonant ULF wave-particle interactions can explain these observations. The wave poloidal components cause radial drift of electrons, increasing (decreasing) their kinetic energy as they move inward (outward). Electrons with initial kinetic energies of a few keV can be energized to double these values within an hour by interaction with the 3 mHz waves. The energization rate is somewhat less for the 4-5 mHz waves. An increase in the ionospheric conductance decreases the power of the fast mode wave, reducing radial drift velocities and hence decreasing the rate of energization. The fast mode poloidal field varies with radial distance and longitude, and this also affects energization. Electrons which drift outward encounter a region where the toroidal field due to the field line resonance becomes dominant and produces strong azimuthal drift. These electrons become trapped in an L-shell range just outward of the resonance region and are not energized.

  13. In-situ studies on phase transformations under electron irradiation in a high voltage electron microscope

    Indian Academy of Sciences (India)

    S Banerjee

    2003-06-01

    High voltage electron microscopy (HVEM), using electron energies adequate for causing displacements of atoms from lattice sites, is a very effective technique for studying mechanisms of solid state phase transformations and for charting the path of phase evolution in real time. This has been demonstrated in studies on chemical ordering in nickel–molybdenum alloys and on the $\\beta \\to \\omega$ displacement ordering in zirconium-niobium alloys. The enhanced diffusivity due to electron irradiation makes it possible to explore a sequence of phase evolution at low enough temperatures where even some first-order transformations are driven by free energy (G) instabilities with respect to the relevant order parameter $(\\eta)$. Specific issues addressed in these studies are reviewed in this paper.

  14. Three-phase electric drive with modified electronic smoothing inductor

    DEFF Research Database (Denmark)

    Singh, Yash Veer; Rasmussen, Peter Omand; Andersen, Torben Ole

    2010-01-01

    This paper presents a three-phase electric drive with a modified electronic smoothing inductor (MESI) having reduced size of passive components. The classical electronic smoothing inductor (ESI) is able to control a diode bridge output current and also reduce not only mains current harmonics...... but also output voltage ripple. ESI performs the function of an inductor that has controlled variable impedance. MESI requires active switches with lower ratings than ESI and has the same performance. In MESI, an active voltage source realized by a low-voltage switch-mode converter stage is inserted...

  15. Electron star birth: a continuous phase transition at nonzero density.

    Science.gov (United States)

    Hartnoll, Sean A; Petrov, Pavel

    2011-03-25

    We show that charged black holes in anti-de Sitter spacetime can undergo a third-order phase transition at a critical temperature in the presence of charged fermions. In the low temperature phase, a fraction of the charge is carried by a fermion fluid located a finite distance from the black hole. In the zero temperature limit, the black hole is no longer present and all charge is sourced by the fermions. The solutions exhibit the low temperature entropy density scaling s~T(2/z) anticipated from the emergent IR criticality of recently discussed electron stars.

  16. Electron Momentum Density and Phase Transition in ZnS

    Directory of Open Access Journals (Sweden)

    N. Munjal

    2013-01-01

    Full Text Available The electron momentum density distribution and phase transition in ZnS are reported in this paper. The calculations are performed on the basis of density functional theory (DFT based on the linear combination of atomic orbitals (LCAO method. To compare the theoretical Compton profile, the measurement on polycrystalline ZnS has been made using a Compton spectrometer employing 59.54 keV gamma rays. The spherically averaged theoretical Compton profile is in agreement with the measurement. On the basis of equal valence-electron-density Compton profiles, it is found that ZnS is less covalent as compared to ZnSe. The present study suggests zincblende (ZB to rocksalt (RS phase transition at 13.7 GPa. The calculated transition pressure is found in good agreement with the previous investigations.

  17. A permanent magnet electron beam phase-shifter

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, G.A. E-mail: trower@naxs.net; Ermakov, A.N.; Pakhomov, N.I.; Semyachkin, V.K.; Shvedunov, V.I.; Skachkov, V.S.; Tyurin, S.A

    2004-05-21

    We describe here the design and construction of a permanent magnet-based electron beam phase-shifter now operating in our 70 MeV Race-Track Microtron (P. Lucas, S. Webber (Eds.), Proceedings of the 2001 Particle Accelerator Conference, Vol. 4, IEEE, Piscataway, NJ, 2001, p. 2596; L. Gennary (Ed.), Proceedings of the 1995 Particle Accelerator Conference, Vol. 2, IEEE, Piscataway, NJ, 1996, p. 807)

  18. Prospects for electron beam aberration correction using sculpted phase masks.

    Science.gov (United States)

    Shiloh, Roy; Remez, Roei; Arie, Ady

    2016-04-01

    Technological advances in fabrication methods allowed the microscopy community to take incremental steps towards perfecting the electron microscope, and magnetic lens design in particular. Still, state of the art aberration-corrected microscopes are yet 20-30 times shy of the theoretical electron diffraction limit. Moreover, these microscopes consume significant physical space and are very expensive. Here, we show how a thin, sculpted membrane is used as a phase-mask to induce specific aberrations into an electron beam probe in a standard high resolution TEM. In particular, we experimentally demonstrate beam splitting, two-fold astigmatism, three-fold astigmatism, and spherical aberration. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Project 8 Phase II: Improved beta decay electrons reconstruction

    Science.gov (United States)

    Guigue, Mathieu; Project 8 Collaboration

    2017-01-01

    The Project 8 collaboration aims to measure the absolute neutrino mass scale using a cyclotron radiation emission spectroscopy technique on the beta decays of tritium. The second phase of the project will measure a differential spectrum of tritium beta decays and extract the tritium endpoint value with an eV or sub-eV scale precision. Monoenergetic electrons emitted by gaseous 83mKr atoms can be used to determine the coefficient between the cyclotron frequency and the electron energy and to optimize the instrument configuration for the tritium measurement. We present the progress on the processing of the electron cyclotron radiation signal to reconstruct the beta decay spectrum of krypton and tritium.

  20. Pressure induced phase transition behaviour in -electron based dialuminides

    Indian Academy of Sciences (India)

    P Ch Sahu; N V Chandra Shekar

    2000-05-01

    The rare-earth and actinide based compounds are endowed with several exotic physical and chemical properties due to the presence of -electrons. These properties exhibit interesting changes under the action of various thermodynamic fields and hence continues to be a subject of extensive research. For instance, under pressure, the nature of -electrons can be changed from localized to itinerant, leading to a variety of changes in their structural, physical and chemical properties. The present review on the high pressure phase transition behaviour of dialuminides of rare earths and actinides is an outcome of research in our laboratory during the last five years using a unique combination of a Guinier diffractometer and a diamond anvil cell built in-house. To bring out the correlations between the compressibility and structural behaviour with the electronic structure, we have also carried out electronic structure calculation. Further, the usefulness of Villars' three parameter structure maps in predicting pressure induced structural transitions has been explored and this has been illustrated with the available phase transition data.

  1. Emerging Two-Phase Cooling Technologies for Power Electronic Inverters

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.S.

    2005-08-17

    In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The

  2. Structural, electronic and optical properties of brookite phase titanium dioxide

    Science.gov (United States)

    Samat, M. H.; Taib, M. F. M.; Hassan, O. H.; Yahya, M. Z. A.; Ali, A. M. M.

    2017-04-01

    Structural, electronic and optical properties of titanium dioxide (TiO2) in brookite phase were studied via first-principles calculations in the framework of density functional theory (DFT). The exchange-correlation functional from local density approximation (LDA) and generalized gradient approximation (GGA) were used to calculate the properties of brookite TiO2. The structural parameters of brookite in orthorhombic structure (Pbca space group) are in good agreement with the previous theoretical and experimental data. The obtained direct band gaps from GGA are slightly higher than LDA. Both LDA and GGA band gaps underestimate the experimental band gap due to the well-known limitation of DFT. The density of states (DOS) displays the hybridization of O 2p and Ti 3d states and Mulliken population analysis presents the net charge of Ti and O atoms in brookite. The dielectric function was also analyzed together with other optical properties such as refractive index, reflectivity, loss function and absorption coefficient. The first-principles calculations on the least studied TiO2 in brookite phase using different exchange-correlation functional from LDA and GGA provide theoretical understanding about its structural, electronic and optical properties. Besides, these results would give a better support for technological applications concerning TiO2 materials using brookite phase.

  3. The Diamagnetic Phase Transition of Dense Electron Gas: Astrophysical Applications

    Science.gov (United States)

    Wang, Zhaojun; Lü, Guoliang; Zhu, Chunhua; Wu, Baoshan

    2016-10-01

    Neutron stars are ideal astrophysical laboratories for testing theories of the de Haas-van Alphen effect and diamagnetic phase transition which is associated with magnetic domain formation. The “magnetic interaction” between delocalized magnetic moments of electrons (the Shoenberg effect), can result in an effect of the diamagnetic phase transition into domains of alternating magnetization (Condon's domains). Associated with the domain formation are prominent magnetic field oscillation and anisotropic magnetic stress which may be large enough to fracture the crust of magnetar with a super-strong field. Even if the fracture is impossible as in “low-field” magnetar, the depinning phase transition of domain wall (DW) motion driven by low field rate (mainly due to the Hall effect) in the randomly perturbed crust can result in a catastrophically variation of magnetic field. This intermittent motion, similar to the avalanche process, makes the Hall effect be dissipative. These qualitative consequences about magnetized electron gas are consistent with observations of magnetar emission, and especially the threshold critical dynamics of driven DW can partially overcome the difficulties of “low-field” magnetar bursts and the heating mechanism of transient, or “outbursting” magnetar.

  4. The backscatter electron signal as an additional tool for phase segmentation in electron backscatter diffraction.

    Science.gov (United States)

    Payton, E J; Nolze, G

    2013-08-01

    The advent of simultaneous energy dispersive X-ray spectroscopy (EDS) data collection has vastly improved the phase separation capabilities for electron backscatter diffraction (EBSD) mapping. A major problem remains, however, in distinguishing between multiple cubic phases in a specimen, especially when the compositions of the phases are similar or their particle sizes are small, because the EDS interaction volume is much larger than that of EBSD and the EDS spectra collected during spatial mapping are generally noisy due to time limitations and the need to minimize sample drift. The backscatter electron (BSE) signal is very sensitive to the local composition due to its atomic number (Z) dependence. BSE imaging is investigated as a complimentary tool to EDS to assist phase segmentation and identification in EBSD through examination of specimens of meteorite, Cu dross, and steel oxidation layers. The results demonstrate that the simultaneous acquisition of EBSD patterns, EDS spectra, and the BSE signal can provide new potential for advancing multiphase material characterization in the scanning electron microscope.

  5. Phase Diagram and Electronic Structure of Praseodymium and Plutonium

    Science.gov (United States)

    Lanatà, Nicola; Yao, Yongxin; Wang, Cai-Zhuang; Ho, Kai-Ming; Kotliar, Gabriel

    2015-01-01

    We develop a new implementation of the Gutzwiller approximation in combination with the local density approximation, which enables us to study complex 4 f and 5 f systems beyond the reach of previous approaches. We calculate from first principles the zero-temperature phase diagram and electronic structure of Pr and Pu, finding good agreement with the experiments. Our study of Pr indicates that its pressure-induced volume-collapse transition would not occur without change of lattice structure—contrarily to Ce. Our study of Pu shows that the most important effect originating the differentiation between the equilibrium densities of its allotropes is the competition between the Peierls effect and the Madelung interaction and not the dependence of the electron correlations on the lattice structure.

  6. Phase Space Approach to Laser-driven Electronic Wavepacket Propagation

    CERN Document Server

    Takemoto, Norio; Tannor, David J

    2012-01-01

    We propose a phase space method to propagate a quantum wavepacket driven by a strong external field. The method employs the so-called biorthogonal von Neumann basis recently introduced for the calculation of the energy eigenstates of time-independent quantum systems [A. Shimshovitz and D.J. Tannor, arXiv:1201.2299v1]. While the individual elements in this basis set are time-independent, a small subset is chosen in a time-dependent manner to adapt to the evolution of the wavepacket in phase space. We demonstrate the accuracy and efficiency of the present propagation method by calculating the electronic wavepacket in a one-dimensional soft-core atom interacting with a superposition of an intense, few-cycle, near-infrared laser pulse and an attosecond extreme-ultraviolet laser pulse.

  7. Tomography of the electron beam transverse phase space at PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Asova, Galina

    2013-09-15

    The operation of a Free Elector Laser, FEL, requires high energy, high peak current electron beams with small transverse emittance. In the contemporary FELs, the electron beam is passed through a periodic magnetic structure - an undulator - which modifies the straight beam trajectory into a sinusoidal one, where FEL light is generated at each bend. According to the energy, the transverse emittance and the peak current of the beam and the parameters of the undulator, FEL radiation with wavelength in the range of nano- to micrometers can be generated. Studies and development of FELs are done all over the world. The Free electron LASer in Hamburg, FLASH, and the international European X-ray FEL, XFEL, in Hamburg, Germany, are two leading projects of the Deutsches Elektronen SYnchrotron, DESY. Part of the research program on FELs in DESY is realized in Zeuthen within the project Photo-Injector Test Facility at DESY in Zeuthen, PITZ. PITZ is an international collaboration including Germany, Russia, Italy, France, Bulgaria, Thailand, United Kingdom. The Institute of Nuclear Research and Nuclear Energy, INRNE, at the Bulgarian Academy of Sciences participates from bulgarian side. PITZ studies and optimizes the photo-injectors for FLASH and the XFEL. The research program emphasizes on detailed measurements of the transverse phase-space density distribution. Until 2010 the single slit scan technique has been used to measure the beam transverse distributions. At the end of 2010 a module for tomographic diagnostics has been installed which extends the possibilities of PITZ to measure simultaneously the two transverse planes of a single micropulse with improved signal-to-noise ratio. The difficult conditions of low emittance for high bunch charge and low energy make the operation of the module challenging. This thesis presents the design considerations for the tomography module, a number of reconstruction algorithms and their applicability to limited data sets, the influence

  8. Printable Spacecraft: Flexible Electronic Platforms for NASA Missions. Phase One

    Science.gov (United States)

    Short, Kendra (Principal Investigator); Van Buren, David (Principal Investigator)

    2012-01-01

    Atmospheric confetti. Inchworm crawlers. Blankets of ground penetrating radar. These are some of the unique mission concepts which could be enabled by a printable spacecraft. Printed electronics technology offers enormous potential to transform the way NASA builds spacecraft. A printed spacecraft's low mass, volume and cost offer dramatic potential impacts to many missions. Network missions could increase from a few discrete measurements to tens of thousands of platforms improving areal density and system reliability. Printed platforms could be added to any prime mission as a low-cost, minimum resource secondary payload to augment the science return. For a small fraction of the mass and cost of a traditional lander, a Europa flagship mission might carry experimental printed surface platforms. An Enceladus Explorer could carry feather-light printed platforms to release into volcanic plumes to measure composition and impact energies. The ability to print circuits directly onto a variety of surfaces, opens the possibility of multi-functional structures and membranes such as "smart" solar sails and balloons. The inherent flexibility of a printed platform allows for in-situ re-configurability for aerodynamic control or mobility. Engineering telemetry of wheel/soil interactions are possible with a conformal printed sensor tape fit around a rover wheel. Environmental time history within a sample return canister could be recorded with a printed sensor array that fits flush to the interior of the canister. Phase One of the NIAC task entitled "Printable Spacecraft" investigated the viability of printed electronics technologies for creating multi-functional spacecraft platforms. Mission concepts and architectures that could be enhanced or enabled with this technology were explored. This final report captures the results and conclusions of the Phase One study. First, the report presents the approach taken in conducting the study and a mapping of results against the proposed

  9. Dark-field electron holography for the measurement of geometric phase

    Energy Technology Data Exchange (ETDEWEB)

    Hytch, M.J., E-mail: hytch@cemes.fr [CEMES-CNRS and Universite de Toulouse, 29 rue Jeanne Marvig, F-31055 Toulouse (France); Houdellier, F.; Huee, F.; Snoeck, E. [CEMES-CNRS and Universite de Toulouse, 29 rue Jeanne Marvig, F-31055 Toulouse (France)

    2011-07-15

    The genesis, theoretical basis and practical application of the new electron holographic dark-field technique for mapping strain in nanostructures are presented. The development places geometric phase within a unified theoretical framework for phase measurements by electron holography. The total phase of the transmitted and diffracted beams is described as a sum of four contributions: crystalline, electrostatic, magnetic and geometric. Each contribution is outlined briefly and leads to the proposal to measure geometric phase by dark-field electron holography (DFEH). The experimental conditions, phase reconstruction and analysis are detailed for off-axis electron holography using examples from the field of semiconductors. A method for correcting for thickness variations will be proposed and demonstrated using the phase from the corresponding bright-field electron hologram. -- Highlights: {yields} Unified description of phase measurements in electron holography. {yields} Detailed description of dark-field electron holography for geometric phase measurements. {yields} Correction procedure for systematic errors due to thickness variations.

  10. Electronic phase coherence in InAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Bloemers, Christian; Lepsa, Mihail Ion; Lenk, Steffi; Lueth, Hans; Schaepers, Thomas; Gruetzmacher, Detlev [Institute of Bio- and Nanosystems (IBN-1) and JARA - Fundamentals of Future Information Technology, Forschungszentrum Juelich GmbH (Germany)

    2010-07-01

    We report on magnetotransport measurements on InAs nanowires grown by molecular beam epitaxy. Among the III-V semiconductor materials, InAs is particularly interesting because of its low direct band gap and its low effective mass. Additionally InAs is known to show a strong quantum confinement in devices of mesoscopic dimensions. A well known quantum effect revealed by magnetotransport measurements at low temperatures are the universal conductance fluctuations (UCF), resulting from electron interference. By analyzing the UCFs it is possible to draw conclusions about the phase coherence length of the electrons in the device. In the special case of a magnetic field in parallel to the wire, Altshuler-Aronov-Spivak oscillations were found in lithographically defined InAs columns. These oscillations are known to result from the surface 2DEG, which is present in those columns. In contrast the present InAs wires do not show this behavior. The explanation is given in terms of the high density of stacking faults, which were observed in transmission electron microscopy. The stacking faults are due to transitions between wurtzite and zincblende structure. The wurtzite segments are origins of polarization charges which most probably mask the effect of surface states, being the reason for the surface 2DEG.

  11. Electronic transport in amorphous phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, Jennifer Maria

    2012-09-14

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  12. Cooling of mobile electronic devices using phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Tan, F.L.; Tso, C.P. [Nanyang Technological University (Singapore). School of Mechanical and Production Engineering

    2004-02-01

    An experimental study is conducted on the cooling of mobile electronic devices, such as personal digital assistants (PDAs) and wearable computers, using a heat storage unit (HSU) filled with the phase change material (PCM) of n-eicosane inside the device. The high latent heat of n-eicosane in the HSU absorbs the heat dissipation from the chips and can maintain the chip temperature below the allowable service temperature of 50{sup o}C for 2 h of transient operations of the PDA. The heat dissipation of the chips inside a PDA and the orientation of the HSU are experimentally investigated in this paper. It was found that different orientation of the HSU inside the PDA could affect significantly the temperature distribution. (author)

  13. Generic Electronic Board Design to Control 3-Phase Ac

    Directory of Open Access Journals (Sweden)

    RojasMolina A.

    2012-01-01

    Full Text Available This work presents the design and development of a low-cost power manager with controller for a 3-phase AC induction motor, with a wide range of industrial applications. The prototype drive design and development was made using the generic standard on printed board design IPC2221. Power manager consists of two stages. First is control stage, which includes an induction motor control-specific micro-controller. Second is power stage, with IGBTs as switching elements. This design is part of a wider project whose main objective is to advance a methodology to assist the quality improvement of academia-developed electronic prototypes. It is expected that these prototypes will be aligned with industrial standards, facilitating the industry-university connection regarding technological collaboration in the automation and control domain.

  14. Dynamics of electrons in quantum Hall bubble phases

    Science.gov (United States)

    Côté, R.; Doiron, C. B.; Bourassa, J.; Fertig, H. A.

    2003-10-01

    In Landau levels N>1, the ground state of the two-dimensional electron gas (2DEG) in a perpendicular magnetic field evolves from a Wigner crystal for small filling ν* of the partially filled Landau level, into a succession of bubble states with increasing number of guiding centers per bubble as ν* increases, to a modulated stripe state near ν*=0.5. In this work, we show that these first-order phase transitions between the bubble states lead to measurable discontinuities in several physical quantities such as the density of states and the magnetization of the 2DEG. We discuss in detail the behavior of the collective excitations of the bubble states and show that their spectra have higher-energy modes besides the pinned phonon mode. The frequencies of these modes, at small wave vector k, have a discontinuous evolution as a function of filling factor that should be measurable in, for example, microwave absorption experiments.

  15. Phase Diagram and Electronic Structure of Praseodymium and Plutonium systems

    Science.gov (United States)

    Yao, Yong-Xin; Nicola, Lanata; Wang, Cai-Zhuang; Kotliar, Gabriel; Ho, Kai-Ming

    2015-03-01

    We apply a new implementation of LDA +Gutzwiller to calculate the zero-temperature phase diagram and electronic structure of Pr and Pu. Our study of Pr indicates that its pressure-induced volume-collapse transition would not occur without change of lattice structure -- contrarily to Ce. Our study of Pu shows that the most important effect originating the differentiation between the equilibrium densities of its allotropes is the competition between the Peierls effect and the Madelung interaction. However, the proper treatment of electron correlation effects is crucial to reach good agreement with experiment. A similar interplay between correlation effects and bands structure is also displayed in Pr, and might emerge in even greater generality. N.L. and G.K. supported by U.S. DOE BES under Grant No. DE-FG02- 99ER45761. Research at Ames Lab supported by the U.S. DOE, Office of BES, DMSE, Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358.

  16. Understanding oxide interfaces: From microscopic imaging to electronic phases

    Science.gov (United States)

    Ilani, Shahal

    2014-03-01

    In the last decade, the advent of complex oxide interfaces has unleashed a wealth of new possibilities to create materials with unexpected functionalities. A notable example is the two-dimensional electron system formed at the interface between LaAlO3 and SrTiO3 (LAO/STO), which exhibits ferromagnetism, superconductivity, and a wide range of unique magneto-transport properties. A key challenge is to find the microscopic mechanisms that underlie these emergent phenomena. While there is a growing understanding that these phenomena might reflect rich structures at the micro-scale, experimental progress toward microscopic imaging of this system has been so far rather limited due to the buried nature of its interface. In this talk I will discuss our experiments that study this system on microscopic and macroscopic scales. Using a newly-developed nanotube-based scanning electrometer we image on the nanoscale the electrostatics and mechanics of this buried interface. We reveal the dynamics of structural domains in STO, their role in generating the contested anomalous piezoelectricity of this substrate, and their direct effects on the physics of the interface electrons. Using macroscopic magneto-transport experiments we demonstrate that a universal Lifshitz transition between the population of d-orbitals with different symmetries underlies many of the transport phenomena observed to date. We further show that the interactions between the itinerant electrons and localized spins leads to an unusual, gate-tunable magnetic phase diagram. These measurements highlight the unique physical settings that can be realized within this new class of low dimensional systems.

  17. Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications.

    Science.gov (United States)

    Hettler, Simon; Dries, Manuel; Hermann, Peter; Obermair, Martin; Gerthsen, Dagmar; Malac, Marek

    2017-05-01

    We analyze electron-beam induced carbon contamination in a transmission electron microscope. The study is performed on thin films potentially suitable as phase plates for phase-contrast transmission electron microscopy. Electron energy-loss spectroscopy and phase-plate imaging is utilized to analyze the contamination. The deposited contamination layer is identified as a graphitic carbon layer which is not prone to electrostatic charging whereas a non-conductive underlying substrate charges. Several methods that inhibit contamination are evaluated and the impact of carbon contamination on phase-plate imaging is discussed. The findings are in general interesting for scanning transmission electron microscopy applications.

  18. An application of ultrasonic phased array imaging in electron beam welding inspection

    Institute of Scientific and Technical Information of China (English)

    周琦; 刘方军; 李志军; 李旭东; 齐铂金

    2002-01-01

    The basic principle and features of ultrasonic phased array imaging are discussed in this paper. Through the ultrasonic phased array technology, the electron beam welding defects and frozen keyholes characterization and imaging were realized. The ultrasonic phased array technology can detect kinds of defects in electron beam welding (EBW) quickly and easily.

  19. Electronic transport in amorphous phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, Jennifer Maria

    2012-09-14

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  20. Electron-electron interactions, topological phase, and optical properties of a charged artificial benzene ring

    Science.gov (United States)

    Ozfidan, Isil; Vladisavljevic, Milos; Korkusinski, Marek; Hawrylak, Pawel

    2015-12-01

    We present a theory of the electronic and optical properties of a charged artificial benzene ring (ABR). The ABR is described by the extended Hubbard model solved using exact diagonalization methods in both real and Fourier space as a function of the tunneling matrix element t , Hubbard on-site repulsion U , and interdot interaction V . In the strongly interacting case, we discuss exact analytical results for the spectrum of the hole in a half-filled ABR dressed by the spin excitations of the remaining electrons. The spectrum is interpreted in terms of the appearance of a topological phase associated with an effective gauge field piercing through the ring. We show that the maximally spin-polarized (S =5 /2 ) and maximally spin-depolarized (S =1 /2 ) states are the lowest energy, orbitally nondegenerate, states. We discuss the evolution of the phase diagram and level crossings as interactions are switched off and the ground state becomes spin nondegenerate but orbitally degenerate S =1 /2 . We present a theory of optical absorption spectra and show that the evolution of the ground and excited states, level crossings, and presence of artificial gauge can be detected optically.

  1. Three-dimensional manipulation of electron beam phase space for seeding soft x-ray free-electron lasers

    CERN Document Server

    Feng, Chao; Deng, Haixiao; Zhao, Zhentang

    2014-01-01

    In this letter, a simple technique is proposed to induce strong density modulation into the electron beam with small energy modulation. By using the combination of a transversely dispersed electron beam and a wave-front tilted seed laser, three-dimensional manipulation of the electron beam phase space can be utilized to significantly enhance the micro-bunching of seeded free-electron laser schemes, which will improve the performance and extend the short-wavelength range of a single-stage seeded free-electron laser. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in a soft x-ray free-electron laser.

  2. Three-dimensional manipulation of electron beam phase space for seeding soft x-ray free-electron lasers

    Directory of Open Access Journals (Sweden)

    Chao Feng

    2014-07-01

    Full Text Available In this paper, a simple technique is proposed to induce strong density modulation into the electron beam with small energy modulation. By using the combination of a transversely dispersed electron beam and a wave-front tilted seed laser, three-dimensional manipulation of the electron beam phase space can be utilized to significantly enhance the microbunching of seeded free-electron laser schemes, which will improve the performance and extend the short-wavelength range of a single-stage seeded free-electron laser. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in a soft x-ray free-electron laser.

  3. Electron correlation effects beyond the random phase approximation

    Science.gov (United States)

    Fan, J. D.; Malozovsky, Y. M.

    2016-04-01

    The methods that have been used to deal with a many-particle system can be basically sorted into three types: Hamiltonian, field theory and phenomenological method. The first two methods are more popular. Traditionally, the Hamiltonian method has been widely adopted in the conventional electronic theory for metals, alloys and semiconductors. Basically, the mean-field approximation (MFA) that has been working well for a weakly coupled system like a metal is employed to simplify a Hamiltonian corresponding to a particular electron system. However, for a strongly coupled many-particle system like a cuprate superconductor MFA should in principle not apply. Therefore, the field theory on the basis of Green’s function and the Feynman diagrams must be invoked. In this method, one is however more familiar with the random phase approximation (RPA) that gives rise to the same results as MFA because of being short of the information for higher-order terms of interaction. For a strongly coupled electron system, it is obvious that one has to deal with higher-order terms of a pair interaction to get a correct solution. Any ignorance of the higher-order terms implies that the more sophisticated information contained in those terms is discarded. However, to date one has not reached a consensus on how to deal with the higher-order terms beyond RPA. We preset here a method that is termed the diagrammatic iteration approach (DIA) and able to derive higher-order terms of the interaction from the information of lower-order ones on the basis of Feynman diagram, with which one is able to go beyond RPA step by step. It is in principle possible that all of higher-order terms can be obtained, and then sorted to groups of diagrams. It turns out that each of the groups can be replaced by an equivalent one, forming a diagrammatic Dyson-equation-like relation. The diagrammatic solution is eventually “translated” to a four-dimensional integral equation. The method can be applied to a

  4. Acceleration of injected electron beam by ultra-intense laser pulses with phase disturbances

    CERN Document Server

    Nakamura, T; Kato, S; Tanimoto, M; Koyama, K; Koga, J

    2003-01-01

    Acceleration of an injected electron beam by ultra-intense laser pulses with phase disturbances is investigated. The energy gain of the beam electrons depends on the initial energy of the injected electrons in the stochastic acceleration process. The effect is larger for electrons with some injection energy as opposed to electrons with no initial energy. The corresponding accelerating field for electrons having certain amounts of initial energy becomes larger than that of the standard wakefield. (author)

  5. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-08-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  6. ATLAS LAr Calorimeter Trigger Electronics Phase-1 Upgrade

    CERN Document Server

    Aad, Georges; The ATLAS collaboration

    2017-01-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for a shut-down period of 2019-2020, referred to as the Phase-I upgrade, will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow sufficient increase of the trigger rate, an improvement of the trigger system is required. The Liquid Argon (LAr) Calorimeter read-out will therefore be modified to use digital trigger signals with a higher spatial granularity in order to improve the identification efficiencies of electrons, photons, tau, jets and missing energy, at high background rejection rates at the Level-1 trigger. The new trigger signals will be arranged in 34000 so-called Super Cells which achieves 5-10 times better granularity than the trigger towers currently used and allows an improved background rejection. The readout of the trigger signals will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will...

  7. Phase jump method for efficiency enhancement in free-electron lasers

    Directory of Open Access Journals (Sweden)

    Alan Mak

    2017-06-01

    Full Text Available The efficiency of a free-electron laser can be enhanced by the phase jump method. The method utilizes the phase-shifting chicanes in the drift sections between the undulator segments. By applying appropriate phase jumps, the microbunched electron beam can decelerate and radiate coherently beyond the initial saturation, enabling further energy transfer to the optical beam. This article presents a new physics model for the phase jump method, and supports it with numerical simulations. Based on the electron dynamics in the longitudinal phase space, the model describes the energy extraction mechanism, and addresses the selection criteria for the phase jump magnitude. While the ponderomotive bucket is stationary, energy can be extracted from electrons outside the bucket. With the aid of the new model, a comparison is made between the phase jump method and undulator tapering. The model also explores the potential of the phase jump method to suppress the growth of synchrotron sidebands in the optical spectrum.

  8. Phase jump method for efficiency enhancement in free-electron lasers

    Science.gov (United States)

    Mak, Alan; Curbis, Francesca; Werin, Sverker

    2017-06-01

    The efficiency of a free-electron laser can be enhanced by the phase jump method. The method utilizes the phase-shifting chicanes in the drift sections between the undulator segments. By applying appropriate phase jumps, the microbunched electron beam can decelerate and radiate coherently beyond the initial saturation, enabling further energy transfer to the optical beam. This article presents a new physics model for the phase jump method, and supports it with numerical simulations. Based on the electron dynamics in the longitudinal phase space, the model describes the energy extraction mechanism, and addresses the selection criteria for the phase jump magnitude. While the ponderomotive bucket is stationary, energy can be extracted from electrons outside the bucket. With the aid of the new model, a comparison is made between the phase jump method and undulator tapering. The model also explores the potential of the phase jump method to suppress the growth of synchrotron sidebands in the optical spectrum.

  9. Enhanced coherent emission of terahertz radiation by energy-phase correlation in a bunched electron beam.

    Science.gov (United States)

    Doria, A; Gallerano, G P; Giovenale, E; Messina, G; Spassovsky, I

    2004-12-31

    We report the first observation of enhanced coherent emission of terahertz radiation in a compact free electron laser. A radio-frequency (rf) modulated electron beam is passed through a magnetic undulator emitting coherent radiation at harmonics of the rf with a phase which depends on the electron drift velocity. A proper correlation between the energy and phase distributions of the electrons in the bunch has been exploited to lock in phase the radiated field, resulting in over 1 order of magnitude enhancement of the coherent emission.

  10. Overview of Phase Space Manipulations of Relativistic Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao; /SLAC

    2012-08-31

    Phase space manipulation is a process to rearrange beam's distribution in 6-D phase space. In this paper, we give an overview of the techniques for tailoring beam distribution in 2D, 4D, and 6D phase space to meet the requirements of various applications. These techniques become a new focus of accelerator physics R&D and very likely these advanced concepts will open up new opportunities in advanced accelerators and the science enabled by them.

  11. Ultrafast electronic relaxation of excited state vitamin B{sub 12} in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Shafizadeh, Niloufar [Laboratoire de Photophysique Moleculaire, U.P.R. 3361 CNRS Bat 210, Universite de Paris-Sud, 91405 Orsay, Cedex (France)], E-mail: Niloufar.Shafizadeh@u-psud.fr; Poisson, Lionel; Soep, Benoit [Laboratoire Francis Perrin, CEA/DSM/DRECAM/SPAM - CNRS URA 2453, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France)

    2008-06-23

    The time evolution of electronically excited vitamin B{sub 12} (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states.

  12. Ultrafast electronic relaxation of excited state vitamin B 12 in the gas phase

    Science.gov (United States)

    Shafizadeh, Niloufar; Poisson, Lionel; Soep, Benoıˆt

    2008-06-01

    The time evolution of electronically excited vitamin B 12 (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states.

  13. RF Phase Stability and Electron Beam Characterization for the PLEIADES Thomson X-Ray Source

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W J; Hartemann, F V; Tremaine, A M; Springer, P T; Le Sage, G P; Barty, C P J; Rosenzweig, J B; Crane, J K; Cross, R R; Fittinghoff, D N; Gibson, D J; Slaughter, D R; Anderson, S

    2002-10-16

    We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. To produce picosecond, high brightness x-ray pulses, picosecond timing, terahertz bandwidth diagnostics, and RF phase control are required. Planned optical, RF, x-ray and electron beam measurements to characterize the dependence of electron beam parameters and synchronization on RF phase stability are presented.

  14. Rapid increase in relativistic electron flux controlled by nonlinear phase trapping of whistler chorus elements

    Science.gov (United States)

    Saito, Shinji; Miyoshi, Yoshizumi; Seki, Kanako

    2016-07-01

    Wave-particle interactions with whistler chorus waves are believed to provide a primary acceleration for electrons in the outer radiation belt. Previous models for flux enhancement of the radiation belt have assumed the stochastic process as a diffusion manner of successive random-phase interactions, but physical mechanisms for the acceleration are not fully incorporated in these models because of the lack of a nonlinear scattering process. Here we report rapid increase in relativistic electron flux by using an innovative computer simulation model that incorporates not only diffusive process but also nonlinear scattering processes. The simulations show that three types of scattering simultaneously occur, which are diffusive, phase trapping, and phase bunching. It is found that the phase trapping is the most efficient mechanism to produce the MeV electrons rapidly in the scattering processes. The electrons are accelerated from 400 keV to over 1 MeV in time scale less than 60 s. On the other hand, as the phase trapping is suppressed by the breaking of relative phase angle between waves and gyrating electrons during the interaction, the increase of electron flux at MeV energy is clearly reduced. Our simulations conclude that the phase-trapping process causes a significant effect for the increase in relativistic electron flux and suggest that a quasi-linear diffusion model is not always valid to fully describe the relativistic electron acceleration.

  15. Electron impact ionization of the gas-phase sorbitol

    Science.gov (United States)

    Chernyshova, Irina; Markush, Pavlo; Zavilopulo, Anatoly; Shpenik, Otto

    2015-03-01

    Ionization and dissociative ionization of the sorbitol molecule by electron impact have been studied using two different experimental methods. In the mass range of m/ z = 10-190, the mass spectra of sorbitol were recorded at the ionizing electron energies of 70 and 30 eV. The ion yield curves for the fragment ions have been analyzed and the appearance energies of these ions have been determined. The relative total ionization cross section of the sorbitol molecule was measured using monoenergetic electron beam. Possible fragmentation pathways for the sorbitol molecule were proposed.

  16. Phase-space dynamics of runaway electrons in magnetic fields

    Science.gov (United States)

    Guo, Zehua; McDevitt, Christopher J.; Tang, Xian-Zhu

    2017-04-01

    Dynamics of runaway electrons in magnetic fields are governed by the competition of three dominant physics: parallel electric field acceleration, Coulomb collision, and synchrotron radiation. Examination of the energy and pitch-angle flows reveals that the presence of local vortex structure and global circulation is crucial to the saturation of primary runaway electrons. Models for the vortex structure, which has an O-point to X-point connection, and the bump of runaway electron distribution in energy space have been developed and compared against the simulation data. Identification of these velocity-space structures opens a new venue to re-examine the conventional understanding of runaway electron dynamics in magnetic fields.

  17. Effects of Perpendicular Thermal Velocities on the Transverse Instability in Electron Phase Space Holes

    Institute of Scientific and Technical Information of China (English)

    WU Ming-Yu; WU Hong; LU Quan-Ming; XUE Bing-Sen

    2010-01-01

    @@ A multi-dimensional electron phase-space hole(electron hole)is considered to be unstable to the transverse instability.We perform two-dimensional(219)particle-in-cell(PIC)simulations to study the evolutions of electron holes in weakly magnetized plasma(Ωe < ωpe,where Ωe and ωpe are the electron gyrofrequency and plasma frequency,respectively),and the effects of perpendicular thermal velocities on the transverse instability are investigated.

  18. Phase engineering of monolayer transition-metal dichalcogenide through coupled electron doping and lattice deformation

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Bin; Lan, Guoqiang; Song, Jun, E-mail: jun.song2@mcgill.ca [Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5 (Canada); Guo, Yinsheng [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Mi, Zetian [Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec H3A 0E9 (Canada)

    2015-11-09

    First-principles calculations were performed to investigate the phase stability and transition within four monolayer transition-metal dichalcogenide (TMD) systems, i.e., MX{sub 2} (M = Mo or W and X = S or Se) under coupled electron doping and lattice deformation. With the lattice distortion and electron doping density treated as state variables, the energy surfaces of different phases were computed, and the diagrams of energetically preferred phases were constructed. These diagrams assess the competition between different phases and predict conditions of phase transitions for the TMDs considered. The interplay between lattice deformation and electron doping was identified as originating from the deformation induced band shifting and band bending. Based on our findings, a potential design strategy combining an efficient electrolytic gating and a lattice straining to achieve controllable phase engineering in TMD monolayers was demonstrated.

  19. EMERGENCE OF A LYOTROPIC LAMELLAR PHASE - SURFACTANT-AQUEOUS PHASE CONTACT EXPERIMENTS EXAMINED WITH A CRYO-TRANSMISSION ELECTRON-MICROSCOPE : Surfactant-Aqueous Phase Contact Experiments Examined with a Cryo-Transmission Electron Microscope

    NARCIS (Netherlands)

    Sein, A; van Breemen, J.F.L.; Engberts, J.B.F.N.

    A phase penetration experiment has been conducted, employing a cryo-transmission electron microscope (cryo-TEM). With this technique, the phase transitions and the molecular rearrangement that result from the phase penetration can be studied on almost the molecular level. The technique has been

  20. Photosynthetic Reaction Centers as Active Molecular Electronic Components. Phase I

    Science.gov (United States)

    1993-08-13

    SDS bring to 1 liter with H20, pH to 8.3 10% APS = 10% (w/v) Ammonium persulfate Assemble gel plates and spacers (how depends on apparatus). Mix up...the synthesis of polypyrrole microtubules in 12 Biological Components Corporation Phase I Final Report SBIR ARMY 92-103 commercially available

  1. Site occupation, phase stability, crystal and electronic structures of the doped S phase (Al2CuMg)

    Science.gov (United States)

    Gu, Jianglong; Gu, Huimin; Zhai, Yuchun; Ma, Peihua

    2016-07-01

    The S phase (Al2CuMg) is an important strengthening phase for the Al-Cu-Mg alloys, which are widely used in the aerospace and transportation industries. The commonly added alloying elements (Mn, Ti, Zr) and the impurity elements (Fe and Si) in the Al-Cu-Mg alloys are always found in the S phase. First-principles calculations based on the density functional theory (DFT) were used to investigate the influence of doping Mn, Ti, Zr, Fe and Si elements on the S phase. Key findings demonstrated that these elements prefer to occupy different atomic sites in the S phase. Ti and Zr improved the structural stability of the S phase. The bulk modulus of the Fe, Si, Ti and Zr doped S phases becomes larger than that of the pure S phase. Both the crystal and electronic structures of the S phase are affected by the dopants. The results of this study provide a better theoretical understanding of the S phase, providing guidance for improved composition design and performance optimization of Al-Cu-Mg alloys.

  2. EDFA-based coupled opto-electronic oscillator and its phase noise

    Science.gov (United States)

    Salik, Ertan; Yu, Nan; Tu, Meirong; Maleki, Lute

    2004-01-01

    EDFA-based coupled opto-electronic oscillator (COEO), an integrated optical and microwave oscillator that can generate picosecond optical pulses, is presented. the phase noise measurements of COEO show better performance than synthesizer-driven mode-locked laser.

  3. Nuclear quantum and electronic exchange-correlation effects on the high pressure phase diagram of lithium

    Science.gov (United States)

    Clay, Raymond; Morales, Miguel; Bonev, Stanimir

    Lithium at ambient conditions is the simplest alkali metal and exhibits textbook nearly-free electron character. However, increased core/valence electron overlap under compression leads to surprisingly complex behavior. Dense lithium is known to posses a maximum in the melting line, a metal to semiconductor phase transition around 80GPa, reemergent metallicity around 120GPa, and low coordination solid and liquid phases. In addition to its complex electronic structure at high pressure, the atomic mass of lithium is low enough that nuclear quantum effects could have a nontrivial impact on its phase diagram. Through a combination of density functional theory based path-integral and classical molecular dynamics simulations, we have investigated the impact of both nuclear quantum effects and anharmonicity on the melting line and solid phase boundaries. Additionally, we have determined the robustness of previously predicted tetrahedral clustering in the dense liquid to the inclusion of nuclear quantum effects and approximate treatment of electronic exchange-correlation effects.

  4. Phase dependent structural and electronic properties of lanthanum orthophosphate (LaPO4)

    Science.gov (United States)

    Neupane, M. R.; Garrett, G. A.; Rudin, S.; Andzelm, J. W.

    2016-05-01

    We study the phase-dependent structural and electronic properties of bulk LaPO4, using density functional theory (DFT). The applicability of conventional semi-local and hybrid functionals in predicting structural and electronic properties of monoclinic and hexagonal LaPO4 is evaluated by comparing results to available experimental data. The monoclinic LaPO4 was found to be more stable than the hexagonal phase in ambient conditions with a small energy difference, suggesting a possibility of a phase transition. Both the phases in the bulk form are found to be diamagnetic with indirect energy gaps. These results are consistent with available experimental results. In the monoclinic phase, the hybrid functionals predict indirect band gap at about 8 eV. Furthermore, the calculated indirect-direct transition energy offset (ΔE) in the hexagonal phase was three times lower than the monoclinic phase. Our calculations based on hybrid functionals also reveal that the states near the conduction band edge in the hexagonal LaPO4 are strongly hybridized between La and PO4 states. By analyzing the band dispersion around the band edges, we show that the hexagonal phase has lighter electron effective mass, as compared to the monoclinic phase. With a larger energy gap, smaller ΔE, and smaller electron effective mass, the hexagonal LaPO4 might be a promising candidate material as an n-type transparent oxide.

  5. Application of phase change materials in thermal management of electronics

    Energy Technology Data Exchange (ETDEWEB)

    Kandasamy, Ravi [Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore); Wang Xiangqi [Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)], E-mail: x.wang@nus.edu.sg; Mujumdar, Arun S. [Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)

    2007-12-15

    Application of a novel PCM package for thermal management of portable electronic devices was investigated experimentally for effects of various parameters e.g. power input, orientation of package, and various melting/freezing times under cyclic steady conditions. Also, a two-dimensional numerical study was made and compared the experimental results. Results show that increased power inputs increase the melting rate, while orientation of the package to gravity has negligible effect on the thermal performance of the PCM package. The thermal resistance of the device and the power level applied to the PCM package are of critical importance for design of a passive thermal control system. Comparison with numerical results confirms that PCM-based design is an excellent candidate design for transient electronic cooling applications.

  6. Transmission electron microscopy of the preclinical phase of experimental phytophotodermatitis

    Directory of Open Access Journals (Sweden)

    Hiram Larangeira de Almeida Jr

    2008-01-01

    Full Text Available OBJECTIVE: To examine the epidermis in induced phytophotodermatitis using transmission electron microscopy in order to detect histologic changes even before lesions are visible by light microscopy. INTRODUCTION: In the first six hours after the experimental induction of phytophotodermatitis, no changes are detectable by light microscopy. Only after 24 hours can keratinocyte necrosis and epidermal vacuolization be detected histologically, and blisters form by 48 hours. METHODS: The dorsum of four adult rats (Rattus norvegicus was manually epilated. After painting the right half of the rat with the peel juice of Tahiti lemon, they were exposed to sunlight for eight minutes under general anesthesia. The left side was used as the control and exposed to sunlight only. Biopsies were performed immediately after photoinduction and one and two hours later, and the tissue was analyzed by transmission electron microscopy. RESULTS: No histological changes were seen on the control side. Immediately after induction, vacuolization in keratinocytes was observed. After one hour, desmosomal changes were also observed in addition to vacuolization. Keratin filaments were not attached to the desmosomal plaque. Free desmosomes and membrane ruptures were also seen. At two hours after induction, similar changes were found, and granular degeneration of keratin was also observed. DISCUSSION: The interaction of sunlight and psoralens generates a photoproduct that damages keratinocyte proteins, leading to keratinocyte necrosis and blister formation. CONCLUSIONS: Transmission electron microscopy can detect vacuolization, lesions of the membrane, and desmosomes in the first two hours after experimental induction of phytophotodermatitis.

  7. Phase Jump Method for Efficiency Enhancement in Free-Electron Lasers

    CERN Document Server

    Mak, Alan; Werin, Sverker

    2016-01-01

    The efficiency of a free-electron laser can be enhanced by sustaining the growth of the radiation power beyond the initial saturation. One notable method is undulator tapering, which involves the variation of the gap height and/or the period along the undulator. Another method is the introduction of phase jumps, using phase-shifting chicanes in the drift sections separating the undulator segments. In this article, we develop a physics model of this phase jump method, and verify it with numerical simulations. The model elucidates the energy extraction process in the longitudinal phase space. The main ingredient is the microbunch deceleration cycle, which enables the microbunched electron beam to decelerate and radiate coherently beyond the initial saturation. The ponderomotive bucket is stationary, and energy can even be extracted from electrons outside the bucket. The model addresses the selection criteria for the phase jump values, and the requirement on the undulator segment length. It also describes the me...

  8. Measurement of the transmission phase of an electron in a quantum two-path interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Takada, S., E-mail: shintaro.takada@neel.cnrs.fr; Watanabe, K. [Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yamamoto, M. [Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); PRESTO, JST, Kawaguchi-shi, Saitama 331-0012 (Japan); Bäuerle, C. [Université Grenoble Alpes, Institut NEEL, F-38042 Grenoble (France); CNRS, Institut NEEL, F-38042 Grenoble (France); Ludwig, A.; Wieck, A. D. [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum (Germany); Tarucha, S. [Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198 (Japan)

    2015-08-10

    A quantum two-path interferometer allows for direct measurement of the transmission phase shift of an electron, providing useful information on coherent scattering problems. In mesoscopic systems, however, the two-path interference is easily smeared by contributions from other paths, and this makes it difficult to observe the true transmission phase shift. To eliminate this problem, multi-terminal Aharonov-Bohm (AB) interferometers have been used to derive the phase shift by assuming that the relative phase shift of the electrons between the two paths is simply obtained when a smooth shift of the AB oscillations is observed. Nevertheless, the phase shifts using such a criterion have sometimes been inconsistent with theory. On the other hand, we have used an AB ring contacted to tunnel-coupled wires and acquired the phase shift consistent with theory when the two output currents through the coupled wires oscillate with well-defined anti-phase. Here, we investigate thoroughly these two criteria used to ensure a reliable phase measurement, the anti-phase relation of the two output currents, and the smooth phase shift in the AB oscillation. We confirm that the well-defined anti-phase relation ensures a correct phase measurement with a quantum two-path interference. In contrast, we find that even in a situation where the anti-phase relation is less well-defined, the smooth phase shift in the AB oscillation can still occur but does not give the correct transmission phase due to contributions from multiple paths. This indicates that the phase relation of the two output currents in our interferometer gives a good criterion for the measurement of the true transmission phase, while the smooth phase shift in the AB oscillation itself does not.

  9. The adiabatic phase mixing and heating of electrons in Buneman turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Che, H.; Goldstein, M. L. [Goddard Space Flight Center, NASA, Greenbelt, Maryland 20771 (United States); Drake, J. F.; Swisdak, M. [IREAP, University of Maryland, College Park, Maryland 20742 (United States)

    2013-06-15

    The nonlinear development of the strong Buneman instability and the associated fast electron heating in thin current layers with Ω{sub e}/ω{sub pe}<1 is explored. Phase mixing of the electrons in wave potential troughs and a rapid increase in temperature are observed during the saturation of the instability. We show that the motion of trapped electrons can be described using a Hamiltonian formalism in the adiabatic approximation. The process of separatrix crossing as electrons are trapped and de-trapped is irreversible and guarantees that the resulting electron energy gain is a true heating process.

  10. In-focus electron microscopy of frozen-hydrated biological samples with a Boersch phase plate

    Energy Technology Data Exchange (ETDEWEB)

    Barton, B.; Rhinow, D.; Walter, A.; Schroeder, R. [Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main (Germany); Benner, G.; Majorovits, E.; Matijevic, M.; Niebel, H. [Carl Zeiss NTS GmbH, D-73447 Oberkochen (Germany); Mueller, H.; Haider, M. [CEOS GmbH, Englerstr. 26, 69126 Heidleberg (Germany); Lacher, M.; Schmitz, S.; Holik, P. [Caesar Research Center, Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany); Kuehlbrandt, W., E-mail: werner.kuehlbrandt@mpibp-frankfurt.mpg.de [Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main (Germany)

    2011-12-15

    We report the implementation of an electrostatic Einzel lens (Boersch) phase plate in a prototype transmission electron microscope dedicated to aberration-corrected cryo-EM. The combination of phase plate, C{sub s} corrector and Diffraction Magnification Unit (DMU) as a new electron-optical element ensures minimal information loss due to obstruction by the phase plate and enables in-focus phase contrast imaging of large macromolecular assemblies. As no defocussing is necessary and the spherical aberration is corrected, maximal, non-oscillating phase contrast transfer can be achieved up to the information limit of the instrument. A microchip produced by a scalable micro-fabrication process has 10 phase plates, which are positioned in a conjugate, magnified diffraction plane generated by the DMU. Phase plates remained fully functional for weeks or months. The large distance between phase plate and the cryo sample permits the use of an effective anti-contaminator, resulting in ice contamination rates of <0.6 nm/h at the specimen. Maximal in-focus phase contrast was obtained by applying voltages between 80 and 700 mV to the phase plate electrode. The phase plate allows for in-focus imaging of biological objects with a signal-to-noise of 5-10 at a resolution of 2-3 nm, as demonstrated for frozen-hydrated virus particles and purple membrane at liquid-nitrogen temperature. -- Highlights: Black-Right-Pointing-Pointer We implement an electrostatic Boersch phase plate into a dedicated prototypical TEM. Black-Right-Pointing-Pointer Phase contrast aberration-corrected electron microscope (PACEM) includes a diffraction magnification unit (DMU). Black-Right-Pointing-Pointer DMU minimizes obstruction of low spatial frequencies by the phase plate. Black-Right-Pointing-Pointer In-focus phase contrast generation is demonstrated for frozen-hydrated biological specimens.

  11. Pulse laser induced graphite-to-diamond phase transition: the role of quantum electronic stress

    Science.gov (United States)

    Wang, ZhengFei; Liu, Feng

    2017-02-01

    First-principles calculations show that the pulse laser induced graphite-to-diamond phase transition is related to the lattice stress generated by the excited carriers, termed as "quantum electronic stress (QES)". We found that the excited carriers in graphite generate a large anisotropic QES that increases linearly with the increasing carrier density. Using the QES as a guiding parameter, structural relaxation spontaneously transforms the graphite phase into the diamond phase, as the QES is reduced and minimized. Our results suggest that the concept of QES can be generally applied as a good measure to characterize the pulse laser induced phase transitions, in analogy to pressure induced phase transitions.

  12. ATLAS LAr Phase upgrade of the Front End Electronics

    CERN Document Server

    Newcomer, Mitchel; The ATLAS collaboration

    2016-01-01

    The Phase II upgrade of the ATLAS Liquid Argon detector includes a 17 bit dynamic range front end amplifier with a two or three gain multi‐pole shaper employing CR‐(RC)n shaping. Each gain stage of the shaper will be followed by a 40Msps, 14b dynamic range, 12‐13b ENOB digitizer, serializer and fiber optic driver. A study is underway to see if a single technology (65nm or 130nm CMOS) will be suitable for all blocks up to the optical Link, enabling consideration of the development a Front End System On a Chip (FESOC).

  13. Thermal electron attachment to chlorinated alkenes in the gas phase

    Science.gov (United States)

    Wnorowski, K.; Wnorowska, J.; Michalczuk, B.; Jówko, A.; Barszczewska, W.

    2017-01-01

    This paper reports the measurements of the rate coefficients and the activation energies of the electron capture processes with various chlorinated alkenes. The electron attachment processes in the mixtures of chlorinated alkenes with carbon dioxide have been investigated using a Pulsed Townsend technique. This study has been performed in the temperature range (298-378) K. The obtained rate coefficients more or less depended on temperature in accordance to Arrhenius equation. The activation energies (Ea's) were determined from the fit to the experimental data points with function ln(k) = ln(A) - Ea/kBT. The rate coefficients at 298 K were equal to 1.0 × 10-10 cm3 s-1, 2.2 × 10-11 cm3 s-1, 1.6 × 10-9 cm3 s-1, 4.4 × 10-8 cm3 s-1, 2.9 × 10-12 cm3 s-1 and 7.3 × 10-12 cm3 s-1 and activation energies were: 0.27 eV, 0.26 eV, 0.25 eV, 0.21 eV, 0.55 eV and 0.42 eV, for trans-1,2-dichloroethylene, cis-1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, 2-chloropropene, 3-chloropropene respectively.

  14. Electronic correlations at the alpha-gamma structural phase transition in paramagnetic iron

    OpenAIRE

    Leonov, I.; Poteryaev, A. I.; Anisimov, V. I.; Vollhardt, D.

    2010-01-01

    We compute the equilibrium crystal structure and phase stability of iron at the alpha(bcc)-gamma(fcc) phase transition as a function of temperature, by employing a combination of ab initio methods for calculating electronic band structures and dynamical mean-field theory. The magnetic correlation energy is found to be an essential driving force behind the alpha-gamma structural phase transition in paramagnetic iron.

  15. Deep Learning the Quantum Phase Transitions in Random Two-Dimensional Electron Systems

    Science.gov (United States)

    Ohtsuki, Tomoki; Ohtsuki, Tomi

    2016-12-01

    Random electron systems show rich phases such as Anderson insulator, diffusive metal, quantum Hall and quantum anomalous Hall insulators, Weyl semimetal, as well as strong/weak topological insulators. Eigenfunctions of each matter phase have specific features, but owing to the random nature of systems, determining the matter phase from eigenfunctions is difficult. Here, we propose the deep learning algorithm to capture the features of eigenfunctions. Localization-delocalization transition, as well as disordered Chern insulator-Anderson insulator transition, is discussed.

  16. Power Electronic Transformer based Three-Phase PWM AC Drives

    Science.gov (United States)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common

  17. Optical Emission Spectroscopy Study of Competing Phases of Electrons in the Second Landau Level.

    Science.gov (United States)

    Levy, A L; Wurstbauer, U; Kuznetsova, Y Y; Pinczuk, A; Pfeiffer, L N; West, K W; Manfra, M J; Gardner, G C; Watson, J D

    2016-01-01

    Quantum phases of electrons in the filling factor range 2≤ν≤3 are probed by the weak optical emission from the partially populated second Landau level and spin wave measurements. Observations of optical emission include a multiplet of sharp peaks that exhibit a strong filling factor dependence. Spin wave measurements by resonant inelastic light scattering probe breaking of spin rotational invariance and are used to link this optical emission with collective phases of electrons. A remarkably rapid interplay between emission peak intensities manifests phase competition in the second Landau level.

  18. Determination of electron bunch shape using transition radiation and phase-energy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Crosson, E.R.; Berryman, K.W.; Richman, B.A. [Stanford Univ., CA (United States)] [and others

    1995-12-31

    We present data comparing microbunch temporal information obtained from electron beam phase-energy measurements with that obtained from transition radiation auto-correlation measurements. The data was taken to resolve some of the ambiguities in previous transition radiation results. By measuring the energy spectrum of the electron beam as a function of its phase relative to the accelerating field, phase-energy information was extracted. This data was analyzed using tomographic techniques to reconstruct the phase-space distribution assuming an electron energy dependence of E({var_phi}) = E{sub o} + E{sub acc}cos({var_phi}), where E{sub o} is the energy of an electron entering the field, E{sub acc} is the peak energy gain, and {var_phi} is the phase between the crest of the RF wave and an electron. Temporal information about the beam was obtained from the phase space distribution by taking the one dimensional projection along the time axis. We discuss the use of this technique to verify other transition radiation analysis methods.

  19. Phase matching strategy for the undulator system in the European X-ray Free Electron Laser

    Science.gov (United States)

    Li, Yuhui; Pflueger, Joachim

    2017-02-01

    The undulator system in the European X-ray Free Electron Laser is mainly comprised of 5-m long undulator segments and 1.1 m long intersections in between. The longitudinal component of the electrons' velocity is reduced when traveling inside an undulator due to the wiggle motion. Therefore the optical phase is detuned. The detune effect is also from the undulator fringe field where electron longitudinal speed also deviates from the oscillation condition. The total detune effect is compensated by a magnetic device called phase shifter, which is correspondingly set for a specific undulator gap. In this paper we investigate the homogeneity of the fringe field from different undulators. Different phase matching criteria are studied. The field fitting technique for the phase matching in high accuracy is demonstrated in detail. The impact by air coil is also studied. Eventually the matching test by spontaneous radiation simulation is made. A test method for high sensitivity to matching error is proposed.

  20. Phase II Final Report Computer Optimization of Electron Guns

    Energy Technology Data Exchange (ETDEWEB)

    R. Lawrence Ives; Thuc Bui; Hien Tran; Michael Read; Adam Attarian; William Tallis

    2011-04-15

    This program implemented advanced computer optimization into an adaptive mesh, finite element, 3D, charged particle code. The routines can optimize electron gun performance to achieve a specified current, beam size, and perveance. It can also minimize beam ripple and electric field gradients. The magnetics optimization capability allows design of coil geometries and magnetic material configurations to achieve a specified axial magnetic field profile. The optimization control program, built into the charged particle code Beam Optics Analyzer (BOA) utilizes a 3D solid modeling package to modify geometry using design tables. Parameters within the graphical user interface (currents, voltages, etc.) can be directly modified within BOA. The program implemented advanced post processing capability for the optimization routines as well as the user. A Graphical User Interface allows the user to set up goal functions, select variables, establish ranges of variation, and define performance criteria. The optimization capability allowed development of a doubly convergent multiple beam gun that could not be designed using previous techniques.

  1. On the role of inelastic scattering in phase-plate transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hettler, Simon, E-mail: simon.hettler@kit.edu [Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), Engesserstr. 7, 76131 Karlsruhe (Germany); Wagner, Jochen; Dries, Manuel [Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), Engesserstr. 7, 76131 Karlsruhe (Germany); Oster, Marco; Wacker, Christian; Schröder, Rasmus R. [CellNetworks, BioQuant, Universität Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg (Germany); Gerthsen, Dagmar [Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), Engesserstr. 7, 76131 Karlsruhe (Germany)

    2015-08-15

    The phase contrast of Au nanoparticles on amorphous-carbon films with different thicknesses is analyzed using an electrostatic Zach phase plate in a Zeiss 912 Ω transmission electron microscope with in-column energy filter. Specifically, unfiltered and plasmon-filtered phase-plate transmission electron microscopy (PP TEM) images are compared to gain insight in the role of coherence after inelastic scattering processes. A considerable phase-contrast contribution resulting from a combined elastic–inelastic scattering process is found in plasmon-filtered PP TEM images. The contrast reduction compared to unfiltered images mainly originates from zero-order beam broadening caused by the inelastic scattering process. The effect of the sequence of the elastic and inelastic scattering processes is studied by varying the position of the nanoparticles, which can be either located on top or at the bottom of the amorphous-carbon film with respect to the incident electron beam direction. - Highlights: • Combined application of electrostatic Zach phase plate and energy filter in a TEM. • Contrast analysis of Au nanoparticles on amorphous carbon films. • Phase contrast inversion in unfiltered images by Zach phase plate. • Phase contrast in plasmon-filtered images by inelastic–elastic scattering process. • Analysis of different effects on nanoparticle contrast.

  2. Multiscale phase mapping of LiFePO4-based electrodes by transmission electron microscopy and electron forward scattering diffraction.

    Science.gov (United States)

    Robert, Donatien; Douillard, Thierry; Boulineau, Adrien; Brunetti, Guillaume; Nowakowski, Pawel; Venet, Denis; Bayle-Guillemaud, Pascale; Cayron, Cyril

    2013-12-23

    LiFePO4 and FePO4 phase distributions of entire cross-sectioned electrodes with various Li content are investigated from nanoscale to mesoscale, by transmission electron microscopy and by the new electron forward scattering diffraction technique. The distributions of the fully delithiated (FePO4) or lithiated particles (LiFePO4) are mapped on large fields of view (>100 × 100 μm(2)). Heterogeneities in thin and thick electrodes are highlighted at different scales. At the nanoscale, the statistical analysis of 64 000 particles unambiguously shows that the small particles delithiate first. At the mesoscale, the phase maps reveal a core-shell mechanism at the scale of the agglomerates with a preferential pathway along the electrode porosities. At larger scale, lithiation occurs in thick electrodes "stratum by stratum" from the surface in contact with electrolyte toward the current collector.

  3. First-principles study of structural and electronic properties of different phases of GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Arabi, H. [Faculty of Science, Department of Physics, University of Birjand, Birjand (Iran, Islamic Republic of)]. E-mail: harabi@birjand.ac.ir; Pourghazi, A. [Faculty of Science, Department of Physics, University of Isfahan, Isfahan (Iran, Islamic Republic of); Ahmadian, F. [Faculty of Science, Department of Physics, University of Birjand, Birjand (Iran, Islamic Republic of); Nourbakhsh, Z. [Faculty of Science, Department of Physics, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2006-03-01

    We present a theoretical investigation of structural and electronic properties of the four known structural phases of GaAs (zinc-blende, sc16, cinnabar and Cmcm). We used the full potential linearized augmented plane wave method, within local density approximation, and also within generalized gradient approximation for the exchange correlation potential. The lattice constants, bulk modulus and its pressure derivative are calculated for each of the four phases. The data obtained for the transition pressures between different phases are presented. Band structures and densities of states of the four phases are also given. The results are compared with previous calculations and with experimental results.

  4. Electron crystallography applied to the structure determination of Nb(Cu,Al,X) Laves phases.

    Science.gov (United States)

    Gigla, M; Lelatko, J; Krzelowski, M; Morawiec, H

    2006-09-01

    The presence of primary precipitates of the Laves phases considerably improves the mechanical properties and the resistance to thermal degradation of the high-temperature shape memory Cu-Al-Nb alloys. The structure analysis of the Laves phases was carried out on particles contained in the ternary and quaternary alloys as well on synthesized compounds related to the composition of the Nb(Cu,Al,X)(2) phase, where X = Ni, Co, Cr, Ti and Zr. The precise structure determination of the Laves phases was carried out by the electron crystallography method using the CRISP software.

  5. Practical aspects of Boersch phase contrast electron microscopy of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Andreas [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany); Muzik, Heiko; Vieker, Henning; Turchanin, Andrey; Beyer, Andre; Goelzhaeuser, Armin [University of Bielefeld, Physics of Supramolecular Systems and Surfaces, Universitaetsstr. 25, D-33615 Bielefeld (Germany); Lacher, Manfred; Steltenkamp, Siegfried; Schmitz, Sam; Holik, Peter [Caesar Research Center, Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany); Kuehlbrandt, Werner [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany); Rhinow, Daniel, E-mail: daniel.rhinow@biophys.mpg.de [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany)

    2012-05-15

    Implementation of physical phase plates into transmission electron microscopes to achieve in-focus contrast for ice-embedded biological specimens poses several technological challenges. During the last decade several phase plates designs have been introduced and tested for electron cryo-microscopy (cryoEM), including thin film (Zernike) phase plates and electrostatic devices. Boersch phase plates (BPPs) are electrostatic einzel lenses shifting the phase of the unscattered beam by an arbitrary angle. Adjusting the phase shift to 90 Degree-Sign achieves the maximum contrast transfer for phase objects such as biomolecules. Recently, we reported the implementation of a BPP into a dedicated phase contrast aberration-corrected electron microscope (PACEM) and demonstrated its use to generate in-focus contrast of frozen-hydrated specimens. However, a number of obstacles need to be overcome before BPPs can be used routinely, mostly related to the phase plate devices themselves. CryoEM with a physical phase plate is affected by electrostatic charging, obliteration of low spatial frequencies, and mechanical drift. Furthermore, BPPs introduce single sideband contrast (SSB), due to the obstruction of Friedel mates in the diffraction pattern. In this study we address the technical obstacles in detail and show how they may be overcome. We use X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) to identify contaminants responsible for electrostatic charging, which occurs with most phase plates. We demonstrate that obstruction of low-resolution features is significantly reduced by lowering the acceleration voltage of the microscope. Finally, we present computational approaches to correct BPP images for SSB contrast and to compensate for mechanical drift of the BPP. -- Highlights: Black-Right-Pointing-Pointer Various obstacles need to be overcome before Boersch phase plates can be used routinely. Black-Right-Pointing-Pointer Technical problems include

  6. Density functional theory study of mixed-phase TiO₂: heterostructures and electronic properties.

    Science.gov (United States)

    Li, Wei-Kun; Hu, Peijun; Lu, Guanzhong; Gong, Xue-Qing

    2014-04-01

    In this work, density functional theory calculations have been performed to study the geometric, electronic, and energetic properties of two-phase TiO₂ composites built by joining two single-phase TiO₂ slabs, aiming at verifying possible improvement of the photo-activities of the composites through phase separation of excitons. We find that such desired electronic properties can be determined by several factors. When both the HOMO and LUMO levels of one of the two single-phase TiO₂ slabs are higher than the corresponding ones of the other, the composite may have native electronic structures with phase-separated HOMO-LUMO states, especially when the two slabs exhibit highly matched surface lattices. For those pairs of TiO₂ slabs with the HOMO and LUMO levels of one phase being within the range of those of the other, though the energetically favored composite give HOMO-LUMO states within one phase, one may still be able to separate them and move the HOMO state to the interface region by destabilizing the interactions between the two slabs.

  7. Sagnac experiment with electrons: Reanalysis of a rotationally induced phase shift for charged particles

    Science.gov (United States)

    Neutze, Richard; Hasselbach, Franz

    1998-07-01

    Using a path-integral formalism, we present a reanalysis of the Sagnac experiment with electrons of Hasselbach and Nicklaus [Phys. Rev. A 48, 143 (1993)]. Our analysis, from an inertial frame of reference, makes explicit the central role of the electrostatic biprism in generating interference fringes and recovers the Sagnac formula for the phase shift induced when rotating the interferometer. This phase shift, however, is shown to differ significantly in physical origin from the similar experiment with neutrons. In the electron Sagnac experiment, rotation displaces all classical electron paths closer to (or further from, depending upon direction) the electrostatic biprisms, thereby perturbing the electrostatic potential along these paths, and a phase shift of an electrostatic nature arises. Our analysis yields a corrected expression for the projected area of the interferometer and small numerical corrections to previous work are consequently given.

  8. Selective triggering of phase change in dielectrics by femtosecond pulse trains based on electron dynamics control

    Institute of Scientific and Technical Information of China (English)

    Xu Chuan-Cai; Jiang Lan; Leng Ni; Liu Peng-Jun

    2013-01-01

    In this study we experimentally reveal that the phase change mechanism can be selectively triggered by shaping femtosecond pulse trains based on electron dynamics control (EDC),including manipulation of excitations,ionizations,densities,and temperatures of electrons.By designing the pulse energy distribution to adjust the absorptions,excitations,ionizations,and recombinations of electrons,the dominant phase change mechanism experiences transition from nonthermal to thermal process.This phenomenon is observed in quadruple,triple,and double pulses per train ablation of fused silica separately.This opens up possibilities for controlling phase change mechanisms by EDC,which is of great significance in laser processing of dielectrics and fabrication of integrated nano-and micro-optical devices.

  9. Generation of high harmonic free electron laser with phase-merging effect

    Science.gov (United States)

    Li, Heting; Jia, Qika; Zhao, Zhouyu

    2017-03-01

    An easy-to-implement scheme is proposed to produce the longitudinal electron bunch density modulation with phase-merging phenomenon. In this scheme an electron bunch is firstly transversely dispersed in a modified dogleg to generate the exact dependence of electron energy on the transverse position, then it is modulated in a normal modulator. After travelling through a modified chicane with specially designed transfer matrix elements, the density modulation with phase-merging effect is generated which contains high harmonic components of the seed laser. We present theoretical analysis and numerical simulations for seeded soft x-ray free-electron laser. The results demonstrate that this technique can significantly enhance the frequency up-conversion efficiency and allow a seeded FEL operating at very high harmonics.

  10. Elastic scattering of vortex electrons provides direct access to the Coulomb phase

    CERN Document Server

    Ivanov, I P; Surzhykov, A; Fritzsche, S

    2016-01-01

    Vortex electron beams are freely propagating electron waves carrying adjustable orbital angular momentum with respect to the propagation direction. Such beams were experimentally realized just a few years ago and are now used to probe various electromagnetic processes. So far, these experiments used the single vortex electron beams, either propagating in external fields or impacting a target. Here, we investigate the elastic scattering of two such aligned vortex electron beams and demonstrate that this process allows one to experimentally measure features which are impossible to detect in the usual plane-wave scattering. The scattering amplitude of this process is well approximated by two plane-wave scattering amplitudes with different momentum transfers, which interfere and give direct experimental access to the Coulomb phase. This phase (shift) affects the scattering of all charged particles and has thus received significant theoretical attention but was never probed experimentally. We show that a properly ...

  11. Mapping of the photo-induced metastable and hidden phases in 2D electronic materials

    Science.gov (United States)

    Zhou, Faran; Sun, Tianyin; Han, Tzong-Ru; Malliakas, Christos; Duxbury, Phillip; Mahanti, Subhendra; Kanatzidis, Mercouri; Ruan, Chong-Yu; MSU Team; NU Team

    Using the ultrafast electron imaging techniques, we studied the light-induced phase transitions in transition-metal dichalcogenide materials. A succession of different phases was introduced transiently using femtosecond mid-infrared pulses and the local atomic scale charge-density-wave dynamics and morphological evolution of the long-range textured domains were in situ characterized using the ultrashort coherent electron pulses. The various metastable and hidden states emerging under the controlled nonthermal, nonadiabatic driving highlight the interaction-driven nature of these transitions with limited involvement of lattice entropy. The methodology introduced here can be generally applied to survey the complex energy landscape in strongly correlated electron systems, avoiding the difficulty of electrostatic gating or confounding effects due to defects and/or disorder. In particular, the observation of robust non-thermal switching at meso-scales and at ultrafast timescales, provides a platform for designing high-speed low-energy consumption nano-photonics and electronics devices.

  12. On the behavior of scattering phases in collisions of electrons with multi-atomic objects

    CERN Document Server

    Amusia, M Ya

    2015-01-01

    We have studied the energy dependence of several first scattering phases with multi-atomic object. As concrete examples representing the general trends endohedrals Neon inside C60 and Argon inside C60 are considered. It appeared that the presence of an inner atom, either Ne or Ar, qualitatively affects the scattering phases, in spite of the fact that the fullerene consists of 60 carbon atoms, while the atom staffed inside is only one. Calculations are performed in the one-electron Hartree-Fock (HF) and random phase approximation with exchange (RPAE) for the inner atom while the fullerenes shell is substituted by static potential without and with the polarization potential. It appeared that the total endohedral scattering phase is simply a sum of atomic, Ne or Ar, and fullerenes C60 phases, contrary to the intuitive assumption that the total phases on C60 and Neon inside C60 or Ar inside C60 has to be the same.

  13. Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography

    Science.gov (United States)

    Demurtas, Davide; Guichard, Paul; Martiel, Isabelle; Mezzenga, Raffaele; Hébert, Cécile; Sagalowicz, Laurent

    2015-11-01

    Bulk and dispersed cubic liquid crystalline phases (cubosomes), present in the body and in living cell membranes, are believed to play an essential role in biological phenomena. Moreover, their biocompatibility is attractive for nutrient or drug delivery system applications. Here the three-dimensional organization of dispersed cubic lipid self-assembled phases is fully revealed by cryo-electron tomography and compared with simulated structures. It is demonstrated that the interior is constituted of a perfect bicontinuous cubic phase, while the outside shows interlamellar attachments, which represent a transition state between the liquid crystalline interior phase and the outside vesicular structure. Therefore, compositional gradients within cubosomes are inferred, with a lipid bilayer separating at least one water channel set from the external aqueous phase. This is crucial to understand and enhance controlled release of target molecules and calls for a revision of postulated transport mechanisms from cubosomes to the aqueous phase.

  14. Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells.

    Science.gov (United States)

    Hatke, A T; Liu, Yang; Magill, B A; Moon, B H; Engel, L W; Shayegan, M; Pfeiffer, L N; West, K W; Baldwin, K W

    2014-06-20

    In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes.

  15. Thermal Warpage Measurement of Electronic Packages by Shadow Moiré with Phase Stepping Technique

    Institute of Scientific and Technical Information of China (English)

    Yinyan Wang

    2011-01-01

    Phase-stepping technique is applied to the analysis of fringe patterns of shadow moiré of electronic packages.Sensitivity of the fringe pattern analysis is demonstrated to be significantly increased. Thermally induced warpage of electronic packages is successfully measured in real-time as the sample is driven through a simulated reflow process.The paper discusses the technique of phase stepping,noise filtering and its application to the shadow moiré method.Applications of the technology are presented.

  16. Electronic phase separation at the LaAlO₃/SrTiO₃ interface.

    Science.gov (United States)

    Ariando; Wang, X; Baskaran, G; Liu, Z Q; Huijben, J; Yi, J B; Annadi, A; Barman, A Roy; Rusydi, A; Dhar, S; Feng, Y P; Ding, J; Hilgenkamp, H; Venkatesan, T

    2011-02-08

    There are many electronic and magnetic properties exhibited by complex oxides. Electronic phase separation (EPS) is one of those, the presence of which can be linked to exotic behaviours, such as colossal magnetoresistance, metal-insulator transition and high-temperature superconductivity. A variety of new and unusual electronic phases at the interfaces between complex oxides, in particular between two non-magnetic insulators LaAlO(3) and SrTiO(3), have stimulated the oxide community. However, no EPS has been observed in this system despite a theoretical prediction. Here, we report an EPS state at the LaAlO(3)/SrTiO(3) interface, where the interface charges are separated into regions of a quasi-two-dimensional electron gas, a ferromagnetic phase, which persists above room temperature, and a (superconductor like) diamagnetic/paramagnetic phase below 60 K. The EPS is due to the selective occupancy (in the form of 2D-nanoscopic metallic droplets) of interface sub-bands of the nearly degenerate Ti orbital in the SrTiO(3). The observation of this EPS demonstrates the electronic and magnetic phenomena that can emerge at the interface between complex oxides mediated by the Ti orbital.

  17. Experimental demonstration of electron longitudinal-phase-space linearization by shaping the photoinjector laser pulse.

    Science.gov (United States)

    Penco, G; Danailov, M; Demidovich, A; Allaria, E; De Ninno, G; Di Mitri, S; Fawley, W M; Ferrari, E; Giannessi, L; Trovó, M

    2014-01-31

    Control of the electron-beam longitudinal-phase-space distribution is of crucial importance in a number of accelerator applications, such as linac-driven free-electron lasers, colliders and energy recovery linacs. Some longitudinal-phase-space features produced by nonlinear electron beam self- fields, such as a quadratic energy chirp introduced by geometric longitudinal wakefields in radio-frequency (rf) accelerator structures, cannot be compensated by ordinary tuning of the linac rf phases nor corrected by a single high harmonic accelerating cavity. In this Letter we report an experimental demonstration of the removal of the quadratic energy chirp by properly shaping the electron beam current at the photoinjector. Specifically, a longitudinal ramp in the current distribution at the cathode linearizes the longitudinal wakefields in the downstream linac, resulting in a flat electron current and energy distribution. We present longitudinal-phase-space measurements in this novel configuration compared to those typically obtained without longitudinal current shaping at the FERMI linac.

  18. Phase separation of electrons strongly coupled with phonons in cuprates and manganites

    Science.gov (United States)

    Alexandrov, Sasha

    2009-03-01

    Recent advanced Monte Carlo simulations have not found superconductivity and phase separation in the Hubbard model with on-site repulsive electron-electron correlations. I argue that microscopic phase separations in cuprate superconductors and colossal magnetoresistance (CMR) manganites originate from a strong electron-phonon interaction (EPI) combined with unavoidable disorder. Attractive electron correlations, caused by an almost unretarded EPI, are sufficient to overcome the direct inter-site Coulomb repulsion in these charge-transfer Mott-Hubbard insulators, so that low energy physics is that of small polarons and small bipolarons. They form clusters localized by disorder below the mobility edge, but propagate as the Bloch states above the mobility edge. I identify the Froehlich EPI as the most essential for pairing and phase separation in superconducting layered cuprates. The pairing of oxygen holes into heavy bipolarons in the paramagnetic phase (current-carrier density collapse (CCDC)) explains also CMR and high and low-resistance phase coexistence near the ferromagnetic transition of doped manganites.

  19. Subpicosecond electron bunch train production using a phase-space exchange technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.-E.; /Fermilab; Piot, P.; /Fermilab /Northern Illinois U.; Johnson, A.S.; Lumpkin, A.H.; /Fermilab; Maxwell, T.J.; /Fermilab /Northern Illinois U.; Ruan, J.; Thurman-Keup, R.M.; /Fermilab

    2011-03-01

    Our recent experimental demonstration of a photoinjector electron bunch train with sub-picosecond structures is reported in this paper. The experiment is accomplished by converting an initially horizontal beam intensity modulation into a longitudinal phase space modulation, via a beamline capable of exchanging phase-space coordinates between the horizontal and longitudinal degrees of freedom. The initial transverse modulation is produced by intercepting the beam with a multislit mask prior to the exchange. We also compare our experimental results with numerical simulations.

  20. Phase recovery for electron holography using Gerchberg-Papoulis iterative algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Takeshi [Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704 (United States)]. E-mail: takeshi.fujita@asu.edu; McCartney, M.R. [Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704 (United States)

    2005-03-15

    The Gerchberg-Papoulis (GP) iterative algorithm is applied to electron holographic reconstruction to supplement the Fourier-transform method. The GP algorithm can recover the phase to high accuracy using simulated holograms. This method is useful when a region of known amplitude is present, such as a region of vacuum or uniform thickness. Modulations of the phase on the order of 0.1 rad can be corrected significantly using this algorithm.

  1. Phase recovery for electron holography using Gerchberg-Papoulis iterative algorithm.

    Science.gov (United States)

    Fujita, Takeshi; McCartney, M R

    2005-03-01

    The Gerchberg-Papoulis (GP) iterative algorithm is applied to electron holographic reconstruction to supplement the Fourier-transform method. The GP algorithm can recover the phase to high accuracy using simulated holograms. This method is useful when a region of known amplitude is present, such as a region of vacuum or uniform thickness. Modulations of the phase on the order of 0.1 rad can be corrected significantly using this algorithm.

  2. Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection.

    Science.gov (United States)

    Appavoo, Kannatassen; Wang, Bin; Brady, Nathaniel F; Seo, Minah; Nag, Joyeeta; Prasankumar, Rohit P; Hilton, David J; Pantelides, Sokrates T; Haglund, Richard F

    2014-03-12

    Ultrafast photoinduced phase transitions could revolutionize data-storage and telecommunications technologies by modulating signals in integrated nanocircuits at terahertz speeds. In quantum phase-changing materials (PCMs), microscopic charge, lattice, and orbital degrees of freedom interact cooperatively to modify macroscopic electrical and optical properties. Although these interactions are well documented for bulk single crystals and thin films, little is known about the ultrafast dynamics of nanostructured PCMs when interfaced to another class of materials as in this case to active plasmonic elements. Here, we demonstrate how a mesh of gold nanoparticles, acting as a plasmonic photocathode, induces an ultrafast phase transition in nanostructured vanadium dioxide (VO2) when illuminated by a spectrally resonant femtosecond laser pulse. Hot electrons created by optical excitation of the surface-plasmon resonance in the gold nanomesh are injected ballistically across the Au/VO2 interface to induce a subpicosecond phase transformation in VO2. Density functional calculations show that a critical density of injected electrons leads to a catastrophic collapse of the 6 THz phonon mode, which has been linked in different experiments to VO2 phase transition. The demonstration of subpicosecond phase transformations that are triggered by optically induced electron injection opens the possibility of designing hybrid nanostructures with unique nonequilibrium properties as a critical step for all-optical nanophotonic devices with optimizable switching thresholds.

  3. Limit on the radiative neutrinoless double electron capture of ^{36}Ar from GERDA Phase I

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2016-12-01

    Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of ^{36}Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array ( Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of ^{36}Ar was established: T_{1/2} > 3.6 × 10^{21} years at 90% CI.

  4. Limit on the radiative neutrinoless double electron capture of {sup 36}Ar from GERDA Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Balata, M.; D' Andrea, V.; Di Vacri, A.; Junker, M.; Laubenstein, M. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); Allardt, M.; Domula, A.; Lehnert, B.; Schneider, B.; Wester, T.; Wilsenach, H.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Barabanov, I.; Bezrukov, L.; Doroshkevich, E.; Fedorova, O.; Gurentsov, V.; Kazalov, V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Moseev, P.; Selivanenko, O.; Veresnikova, A.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Barros, N. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); University of Pennsylvania, Philadelphia, PA (United States); Baudis, L.; Benato, G.; Kish, A.; Miloradovic, M.; Mingazheva, R.; Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Bauer, C.; Hakenmueller, J.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Stepaniuk, M.; Wagner, V.; Wegmann, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bellotti, E. [Universita Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN Milano Bicocca, Milan (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics NRC ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Medinaceli, E.; Sada, C.; Sturm, K. von [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padua (Italy); INFN Padova, Padua (Italy); Bode, T.; Csathy, J.J.; Lazzaro, A.; Schoenert, S.; Wiesinger, C. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Borowicz, D. [Jagiellonian University, Institute of Physics, Krakow (Poland); Joint Institute for Nuclear Research, Dubna (Russian Federation); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Caldwell, A.; Gooch, C.; Kneissl, R.; Liao, H.Y.; Majorovits, B.; Palioselitis, D.; Schulz, O.; Vanhoefer, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Cattadori, C.; Salamida, F. [INFN Milano Bicocca, Milan (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics NRC ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Misiaszek, M.; Panas, K.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Krakow (Poland); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Hemmer, S.; Lippi, I.; Stanco, L. [INFN Padova, Padua (Italy); Hult, M.; Lutter, G. [European Commission, JRC-Geel, Geel (Belgium); Inzhechik, L.V. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Moscow (Russian Federation); Klimenko, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); International University for Nature, Society and Man ' ' Dubna' ' , Dubna (Russian Federation); Lubashevskiy, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Macolino, C. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); LAL, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Pandola, L. [INFN Laboratori Nazionali del Sud, Catania (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy); INFN Milano (Italy); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Collaboration: GERDA collaboration

    2016-12-15

    Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of {sup 36}Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array (Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of {sup 36}Ar was established: T{sub 1/2} > 3.6 x 10{sup 21} years at 90% CI. (orig.)

  5. Limit on the Radiative Neutrinoless Double Electron Capture of $^{36}$Ar from GERDA Phase I

    CERN Document Server

    Agostini, M; Bakalyarov, A M; Balata, M; Barabanov, I; Barros, N; Baudis, L; Bauer, C; Bellotti, E; Belogurov, S; Belyaev, S T; Benato, G; Bettini, A; Bezrukov, L; Bode, T; Borowicz, D; Brudanin, V; Brugnera, R; Caldwell, A; Cattadori, C; Chernogorov, A; D'Andrea, V; Demidova, E V; di Vacri, A; Domula, A; Doroshkevich, E; Egorov, V; Falkenstein, R; Fedorova, O; Freund, K; Frodyma, N; Gangapshev, A; Garfagnini, A; Gooch, C; Grabmayr, P; Gurentsov, V; Gusev, K; Hakenmüller, J; Hegai, A; Heisel, M; Hemmer, S; Heusser, G; Hofmann, W; Hult, M; Inzhechik, L V; Csáthy, J Janicskó; Jochum, J; Junker, M; Kazalov, V; Kihm, T; Kirpichnikov, I V; Kirsch, A; Kish, A; Klimenko, A; Kneißl, R; Knöpfle, K T; Kochetov, O; Kornoukhov, V N; Kuzminov, V V; Laubenstein, M; Lazzaro, A; Lebedev, V I; Lehnert, B; Liao, H Y; Lindner, M; Lippi, I; Lubashevskiy, A; Lubsandorzhiev, B; Lutter, G; Macolino, C; Majorovits, B; Maneschg, W; Medinaceli, E; Miloradovic, M; Mingazheva, R; Misiaszek, M; Moseev, P; Nemchenok, I; Palioselitis, D; Panas, K; Pandola, L; Pelczar, K; Pullia, A; Riboldi, S; Rumyantseva, N; Sada, C; Salamida, F; Salathe, M; Schmitt, C; Schneider, B; Schönert, S; Schreiner, J; Schütz, A -K; Schulz, O; Schwingenheuer, B; Selivanenko, O; Shirchenko, M; Simgen, H; Smolnikov, A; Stanco, L; Stepaniuk, M; Vanhoefer, L; Vasenko, A A; Veresnikova, A; von Sturm, K; Wagner, V; Walter, M; Wegmann, A; Wester, T; Wiesinger, C; Wilsenach, H; Wojcik, M; Yanovich, E; Zhitnikov, I; Zhukov, S V; Zinatulina, D; Zuber, K; Zuzel, G

    2016-01-01

    Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of $^{36}$Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of $^{36}$Ar was established: $T_{1/2} > $ 4.0 $\\times$ 10$^{21}$ yr at 90 % C.I.

  6. Electronic structure and magnetic properties of selected lanthanide and actinide intermetallic Laves-phase alloys

    DEFF Research Database (Denmark)

    Eriksson, Olle; Johansson, Börje; Brooks, M. S. S.

    1989-01-01

    The electronic structure and magnetic properties of some yttrium and uranium Laves-phase pseudobinary alloys with 3d elements have been calculated. The calculations were done by simulating the electronic structure of the alloy by that of an ordered compound with the same stoichiometry. In general...... a good agreement between the experimental and theoretical magnetic moment was found, indicating that the spurious long-range order of the calculations is of minor importance. A comparison between the present supercell cluster approach and the virtual-crystal approximation for the electronic structure...

  7. Electrons Mediate the Gas-Phase Oxidation of Formic Acid with Ozone.

    Science.gov (United States)

    van der Linde, Christian; Tang, Wai-Kit; Siu, Chi-Kit; Beyer, Martin K

    2016-08-26

    Gas-phase reactions of CO3 (.-) with formic acid are studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Signal loss indicates the release of a free electron, with the formation of neutral reaction products. This is corroborated by adding traces of SF6 to the reaction gas, which scavenges 38 % of the electrons. Quantum chemical calculations of the reaction potential energy surface provide a reaction path for the formation of neutral carbon dioxide and water as the thermochemically favored products. From the literature, it is known that free electrons in the troposphere attach to O2 , which in turn transfer the electron to O3 . O3 (.-) reacts with CO2 to form CO3 (.-) . The reaction reported here formally closes the catalytic cycle for the oxidation of formic acid with ozone, catalyzed by free electrons.

  8. Instability of the chiral phase and electronic ferroelectricity in the extended Falicov-Kimball model

    Science.gov (United States)

    Golosov, D. I.

    2013-03-01

    We consider a spinless extended Falicov--Kimball model at half-filling, for the case of opposite-parity bands. Within the Hartree--Fock approach, we calculate the excitation energies in the chiral phase, which is a possible mean-field solution in the presence of a hybridisation. It is shown that the chiral phase is unstable. We then briefly review the accumulated results on stability and degeneracies of the excitonic insulator phase. Based on these, we conclude that the presence of both hybridisation and narrow-band hopping is required for electronic ferroelectricity.

  9. A novel technique for electronic phasing of high power fiber amplifier arrays

    Science.gov (United States)

    Shay, T. M.; Baker, J. T.; Sanchez, Anthony D.; Robin, C. A.; Vergien, C. L.; Zeringue, C.; Gallant, D.; Lu, Chunte A.; Pulford, Benjamin; Bronder, T. J.; Lucero, Arthur

    2009-06-01

    We report high power phase locked fiber amplifier array using the Self-Synchronous Locking of Optical Coherence by Single-detector Electronic-frequency Tagging technique. We report the first experimental results for a five element amplifier array with a total locked power of more than 725-W. We will report on experimental measurements of the phase fluctuations versus time when the control loop is closed. The rms phase error was measured to be λ/60. Recent results will be reported. To the best of the authors' knowledge this is the highest fiber laser power to be coherently combined.

  10. Determining the Effects of EMIC Waves on Precipitating MeV Electrons during Strom Main Phases

    Science.gov (United States)

    Chen, Y.

    2015-12-01

    Theoretic studies have suggested that electromagnetic ion cyclotron (EMIC) waves can cause significant precipitation of ~MeV electrons, supposedly accounting for the fast dropouts of outer-belt electrons during storm main phases. Usually the resonance between left-hand polarized EMIC with electrons with moderate energy is unlikely due to their opposite polarizations, while resonance with highly relativistic electrons do occur and cause electrons to precipitate into the atmosphere through pitch-angle scattering. Several previous studies on observations find a close relation between the two phenomena, e.g., Cliverd et al. [2007], Sandanger et al. [2007], and Miyoshi et al. [2008], while others find otherwise, e.g., Meredith et al. [2011]; recently, more observational evidence supporting the connection has been reported (e.g., Li et al. [2014] and Blum et al. [2015]). However, whether and under what favoring conditions EMIC waves cause rapid dropouts of relativistic electrons during storm main phases remain unresolved questions. Here, using latest wave and electron data from multiple missions including Van Allen Probes, BARREL, and NOAA POES, we systemically examine the relation between EMIC waves and MeV electron precipitation. We first construct two independent event lists for intensified EMIC waves and enhancements of MeV electron precipitation, respectively. Then we cross check the two lists to identify if any significant correlation exists in between, and further characterize the wave effectiveness in terms of L-shell, MLT, resonance energy, as well as the background plasma conditions. Results from this study will advance our knowledge about the loss mechanism of outer-belt electrons, thus laying down another stepping stone towards high-fidelity physics-based models for radiation belts.

  11. The Effect of Electronic Structure on the Phases Present in High Entropy Alloys

    Science.gov (United States)

    Leong, Zhaoyuan; Wróbel, Jan S.; Dudarev, Sergei L.; Goodall, Russell; Todd, Iain; Nguyen-Manh, Duc

    2017-01-01

    Multicomponent systems, termed High Entropy Alloys (HEAs), with predominantly single solid solution phases are a current area of focus in alloy development. Although different empirical rules have been introduced to understand phase formation and determine what the dominant phases may be in these systems, experimental investigation has revealed that in many cases their structure is not a single solid solution phase, and that the rules may not accurately distinguish the stability of the phase boundaries. Here, a combined modelling and experimental approach that looks into the electronic structure is proposed to improve accuracy of the predictions of the majority phase. To do this, the Rigid Band model is generalised for magnetic systems in prediction of the majority phase most likely to be found. Good agreement is found when the predictions are confronted with data from experiments, including a new magnetic HEA system (CoFeNiV). This also includes predicting the structural transition with varying levels of constituent elements, as a function of the valence electron concentration, n, obtained from the integrated spin-polarised density of states. This method is suitable as a new predictive technique to identify compositions for further screening, in particular for magnetic HEAs.

  12. Deep Learning the Quantum Phase Transitions in Random Electron Systems: Applications to Three Dimensions

    Science.gov (United States)

    Ohtsuki, Tomi; Ohtsuki, Tomoki

    2017-04-01

    Three-dimensional random electron systems undergo quantum phase transitions and show rich phase diagrams. Examples of the phases are the band gap insulator, Anderson insulator, strong and weak topological insulators, Weyl semimetal, and diffusive metal. As in the previous paper on two-dimensional quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016)], we use an image recognition algorithm based on a multilayered convolutional neural network to identify which phase the eigenfunction belongs to. The Anderson model for localization-delocalization transition, the Wilson-Dirac model for topological insulators, and the layered Chern insulator model for Weyl semimetal are studied. The situation where the standard transfer matrix approach is not applicable is also treated by this method.

  13. Unified band-theoretic description of structural, electronic, and magnetic properties of vanadium dioxide phases

    Science.gov (United States)

    Xu, Sheng; Shen, Xiao; Hallman, Kent A.; Haglund, Richard F.; Pantelides, Sokrates T.

    2017-03-01

    The debate about whether the insulating phases of vanadium dioxide (V O2 ) can be described by band theory or whether it requires a theory of strong electron correlations remains unresolved even after decades of research. Energy-band calculations using hybrid exchange functionals or including self-energy corrections account for the insulating or metallic nature of different phases but have not yet successfully accounted for the observed magnetic orderings. Strongly correlated theories have had limited quantitative success. Here we report that by using hard pseudopotentials and an optimized hybrid exchange functional, the energy gaps and magnetic orderings of both monoclinic V O2 phases and the metallic nature of the high-temperature rutile phase are consistent with available experimental data, obviating an explicit role for strong correlations. We also identify a potential candidate for the newly found metallic monoclinic phase.

  14. Magnetic imaging with a Zernike-type phase plate in a transmission electron microscope

    DEFF Research Database (Denmark)

    Pollard, Shawn; Malac, Marek; Beleggia, Marco

    2013-01-01

    We demonstrate the use of a hole-free phase plate (HFPP) for magnetic imaging in transmission electron microscopy by mapping the domain structure in PrDyFeB samples. The HFPP, a Zernike-like imaging method, allows for detecting magnetic signals in-focus to correlate the sample crystal structure a...

  15. Structure analysis of large argon clusters from gas-phase electron diffraction data: some recent results

    NARCIS (Netherlands)

    Waal, van de B.W.

    1999-01-01

    An up-to-date overview of recent developments in the structure elucidation of large ArN-clusters (103phase electron diffraction data, is given. Although a satisfactory model for N3000 had been found in 1996, the size range beyond N10,000 presents new and unexpected problems. T

  16. Scanning electron microscopy and X-ray spectroscopy applied to mycelial phase of sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    M. Thibaut

    1975-04-01

    Full Text Available Scanning electron microscopy applied to the mycelial phase of Sporothrix schenckii shows a matted mycelium with conidia of a regular pattern. X-Ray microanalysis applied in energy dispersive spectroscopy and also in wavelength dispersive spectroscopy reveals the presence of several elements of Mendeleef's classification.

  17. Performance improvement of three phase rectifier by employing electronic smoothing inductor

    DEFF Research Database (Denmark)

    Singh, Yash Veer; Rasmussen, Peter Omand; Andersen, Torben O.

    2014-01-01

    An electronic smoothing inductor (ESI) is very attractive circuit topology to improve power factor and to reduce the total harmonic distortions (THDs) of the ac mains current in a three phase diode bridge rectifier. The ESI reduces the low frequency ripples and controls the intermediate dc...

  18. Development of an integrated photonic beamformer for electronically-steered Ku-band phased array antenna

    NARCIS (Netherlands)

    Zhuang, L.; Marpaung, D.A.I.; Burla, M.; Boot, R.; Hulzinga, A.; Beeker, W.P.; Beeker, Willem; van Dijk, P.; Roeloffzen, C.G.H.

    2011-01-01

    Currently an integrated photonic beamformer for electronically-steered Ku-band phased array antenna (PAA) system for satellite communications is being developed within a Dutch Point One R&D Innovation Project “Broadband Satellite Communication Services on High-Speed Transport Vehicles‿, targeting

  19. From phase separation to long-range order in a system of interacting electrons

    Science.gov (United States)

    Derzhko, Volodymyr; Jȩdrzejewski, Janusz

    2003-10-01

    We study a system composed of fermions (electrons), hopping on a square lattice, and of immobile particles (ions), that is described by the spinless Falicov-Kimball Hamiltonian augmented by a next-nearest-neighbor attractive interaction between the ions (a nearest-neighbor repulsive interaction between the ions can be included and does not alter the results). A part of the grand-canonical phase diagram of this system is constructed rigorously, when the coupling between the electrons and ions is much stronger than the hopping intensity of electrons. The obtained diagram implies that, at least for a few rational densities of particles, by increasing the hopping intensity the system can be driven from a state of phase separation to a state with a long-range order. This kind of transitions occurs also, when the hopping fermions are replaced by hopping hard-core bosons.

  20. Energetic electron-bunch generation in a phase-locked longitudinal laser electric field

    Science.gov (United States)

    Xiao, K. D.; Huang, T. W.; Ju, L. B.; Li, R.; Yang, S. L.; Yang, Y. C.; Wu, S. Z.; Zhang, H.; Qiao, B.; Ruan, S. C.; Zhou, C. T.; He, X. T.

    2016-04-01

    Energetic electron acceleration processes in a plasma hollow tube irradiated by an ultraintense laser pulse are investigated. It is found that the longitudinal component of the laser field is much enhanced when a linear polarized Gaussian laser pulse propagates through the plasma tube. This longitudinal field is of π /2 phase shift relative to the transverse electric field and has a π phase interval between its upper and lower parts. The electrons in the plasma tube are first pulled out by the transverse electric field and then trapped by the longitudinal electric field. The trapped electrons can further be accelerated to higher energy in the presence of the longitudinal electric field. This acceleration mechanism is clearly illustrated by both particle-in-cell simulations and single particle modelings.

  1. Gate Tuning of Electronic Phase Transitions in Two-Dimensional NbSe2

    Science.gov (United States)

    Xi, Xiaoxiang; Berger, Helmuth; Forró, László; Shan, Jie; Mak, Kin Fai

    2016-09-01

    Recent experimental advances in atomically thin transition metal dichalcogenide (TMD) metals have unveiled a range of interesting phenomena including the coexistence of charge-density-wave (CDW) order and superconductivity down to the monolayer limit. The atomic thickness of two-dimensional (2D) TMD metals also opens up the possibility for control of these electronic phase transitions by electrostatic gating. Here, we demonstrate reversible tuning of superconductivity and CDW order in model 2D TMD metal NbSe2 by an ionic liquid gate. A variation up to ˜50 % in the superconducting transition temperature has been observed. Both superconductivity and CDW order can be strengthened (weakened) by increasing (reducing) the carrier density in 2D NbSe2 . The doping dependence of these phase transitions can be understood as driven by a varying electron-phonon coupling strength induced by the gate-modulated carrier density and the electronic density of states near the Fermi surface.

  2. Two-Phase Cooling of Targets and Electronics for Particle Physics Experiments

    CERN Document Server

    Thome, J R; Park, J E

    2009-01-01

    An overview of the LTCM lab’s decade of experience with two-phase cooling research for computer chips and power electronics will be described with its possible beneficial application to high-energy physics experiments. Flow boiling in multi-microchannel cooling elements in silicon (or aluminium) have the potential to provide high cooling rates (up to as high as 350 W/cm2), stable and uniform temperatures of targets and electronics, and lightweight construction while also minimizing the fluid inventory. An overview of two-phase flow and boiling research in single microchannels and multi-microchannel test elements will be presented together with video images of these flows. The objective is to stimulate discussion on the use of two-phase cooling in these demanding applications, including the possible use of CO2.

  3. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles

    Science.gov (United States)

    Hu, Jianjun; Hong, Yan; Muratore, Chris; Su, Ming; Voevodin, Andrey A.

    2011-09-01

    The solid-liquid phase transition of silica encapsulated bismuth nanoparticles was studied by in situ transmission electron microscopy (TEM). The nanoparticles were prepared by a two-step chemical synthesis process involving thermal decomposition of organometallic precursors for nucleating bismuth and a sol-gel process for growing silica. The microstructural and chemical analyses of the nanoparticles were performed using high-resolution TEM, Z-contrast imaging, focused ion beam milling, and X-ray energy dispersive spectroscopy. Solid-liquid-solid phase transitions of the nanoparticles were directly recorded by electron diffractions and TEM images. The silica encapsulation of the nanoparticles prevented agglomeration and allowed particles to preserve their original volume upon melting, which is desirable for applications of phase change nanoparticles with consistently repeatable thermal properties.

  4. Ultrafast control of electron spin in a quantum dot using geometric phase

    Science.gov (United States)

    Malinovsky, V. S.; Rudin, S.

    2012-12-01

    We propose a scheme to perform arbitrary unitary operations on a single electron-spin qubit in a quantum dot. The design is solely based on the geometrical phase that the qubit state acquires after a cyclic evolution in the parameter space. The scheme is utilizing ultrafast linearly-chirped pulses providing adiabatic excitation of the qubit states and the geometric phase is fully controlled by the relative phase between pulses. The analytic expression of the evolution operator for the electron spin in a quantum dot, which provides a clear geometrical interpretation of the qubit dynamics is obtained. Using parameters of InGaN/GaN, GaN/AlN quantum dots we provide an estimate for the time scale of the qubit rotations and parameters of the external fields.

  5. Electron Holes in phase-space: what they are and why they matter

    Science.gov (United States)

    Hutchinson, I. H.

    2016-10-01

    Plasma electron holes are soliton-like electric potential structures sustained self-consistently by a deficit of phase-space density on trapped orbits. They are a class of Bernstein Green and Kruskal (BGK)-mode phase-space vortices, long studied in basic analytic and computational theory and observed in some experiments. Recently it has become clear from space-craft observations that isolated potential structures with the character of electron holes constitute an important component of space-plasma turbulence. Modern computational simulations of collisionless plasmas also often observe electron holes to form as a nonlinear consequence of kinetic electron instabilities. This tutorial will explain the basic theory of electron hole structure, trace the development of the understanding of electron holes, and survey some of the observational evidence for their significance. It was found early on that unmagnetized multidimensional simulations of electron two-stream instabilities do not show the long lived holes that appear in one dimension. Deliberately-created 1-D slab holes in multiple dimensions experience a transverse instability unless the guiding magnetic field is strong enough. Analysis has yet to identify unequivocally the instability mechanism and threshold; but it can show that spherically symmetric holes in 3-D without magnetic field are essentially impossible. Recent simulations have studied holes' formation, self-acceleration, merging, splitting, and growth. Analytic understanding of many of these phenomena is gained from the kinematics of the hole regarded as a coherent entity, accounting for the plasma momentum changes it induces, and especially the interaction with the ions. Electron holes can travel at up to approximately the electron thermal speed, but not slower (relative to ions) than several times the ion acoustic speed. Some notable current research questions will be described.

  6. Compositional phase stability of strongly correlated electron materials within DFT+U

    Science.gov (United States)

    Isaacs, Eric B.; Marianetti, Chris A.

    2017-01-01

    Predicting the compositional phase stability of strongly correlated electron materials is an outstanding challenge in condensed matter physics. In this work, we employ the density functional theory plus U (DFT +U ) formalism to address the effects of local correlations due to transition metal d electrons on compositional phase stability in the prototype phase stable and separating materials LixCoO2 and olivine LixFePO4 , respectively. We introduce a spectral decomposition of the DFT +U total energy, revealing the distinct roles of the filling and ordering of the d orbital correlated subspace. The on-site interaction U drives both of these very different materials systems towards phase separation, stemming from enhanced ordering of the d orbital occupancies in the x =0 and x =1 species, whereas changes in the overall filling of the d shell contribute negligibly. We show that DFT +U formation energies are qualitatively consistent with experiments for phase stable LixCoO2 , phase separating LixFePO4 , and phase stable LixCoPO4 . However, we find that charge ordering plays a critical role in the energetics at intermediate x , strongly dampening the tendency for the Hubbard U to drive phase separation. Most relevantly, the phase stability of Li1 /2CoO2 within DFT +U is qualitatively incorrect without allowing charge ordering, which is problematic given that neither charge ordering nor the band gap that it induces are observed in experiment. We demonstrate that charge ordering arises from the correlated subspace interaction energy as opposed to the double counting. Additionally, we predict the Li order-disorder transition temperature for Li1 /2CoO2 , demonstrating that the unphysical charge ordering within DFT +U renders the method problematic, often producing unrealistically large results. Our findings motivate the need for other advanced techniques, such as DFT plus dynamical mean-field theory, for total energies in strongly correlated materials.

  7. Metastable phase of lead phthalocyanine films on graphite: Correlation between geometrical and electronic structures

    Science.gov (United States)

    Kawakita, N.; Yamada, T.; Meissner, M.; Forker, R.; Fritz, T.; Munakata, T.

    2017-01-01

    The geometrical and electronic structures of a metastable phase of lead phthalocyanine (PbPc) films on graphite have been studied by combined use of low energy electron diffraction (LEED) and two-photon photoemission (2PPE) spectroscopy. In submonolayer (sub-ML) PbPc films on graphite, islands in a metastable phase are formed just after deposition, as we reported previously by use of photoelectron emission microscopy (PEEM) [I. Yamamoto, N. Matsuura, M. Mikamori, R. Yamamoto, T. Yamada, K. Miyakubo, N. Ueno, and T. Munakata, Surf. Sci. 602, 2232 (2008), 10.1016/j.susc.2008.04.037]. On single crystalline graphite substrates, the metastable islands produce clearly discernible LEED spots. By comparing the unit cell with that of annealed 1 ML films, molecules in the metastable islands are standing upright with a molecular density 1.8 times higher than that in the well-ordered 1 ML films. The LEED spots for the sub-ML films disappear after annealing. The islands in the metastable phase are surrounded by areas of a two-dimensional (2D) gaslike phase composed of flat-lying molecules. The metastable islands melt into the 2D gas phase, consistent with the PEEM results. In 2PPE spectroscopy, the lowest unoccupied molecular orbital (LUMO) derived level of the metastable phase is clearly distinguishable from that of flat-lying molecules. By tracking the thermal annealing process of the films by 2PPE spectroscopy, we clarify the decay of the LUMO derived peak intensity, the work function shift, and the energy shifts of molecular states associated with the transition from the metastable phase to the 2D gas phase. With this, we demonstrate the complementary capabilities of LEED and 2PPE spectroscopy to probe phase transitions of organic films in a nondestructive manner.

  8. Structural and electronic phase transitions of ThS2 from first-principles calculations

    Science.gov (United States)

    Guo, Yongliang; Wang, Changying; Qiu, Wujie; Ke, Xuezhi; Huai, Ping; Cheng, Cheng; Zhu, Zhiyuan; Chen, Changfeng

    2016-10-01

    Thorium and its compounds have received considerable attention in recent years due to the renewed interest in developing the thorium fuel cycle as an alternative nuclear energy technology. There is pressing current need to explore the physical properties essential to the fundamental understanding and practical application of these materials. Here we report on a computational study of thorium disulfide (ThS2), which plays an important role in the thorium fuel reprocessing cycle. We have employed the density functional theory and evolutionary structure search methods to determine the crystal structures, electronic band structures, phonon dispersions and density of states, and thermodynamic properties of ThS2 under various pressure and temperature conditions. Our calculations identify several crystalline phases of ThS2 and a series of structural phase transitions induced by pressure and temperature. The calculated results also reveal electronic phase transitions from the semiconducting state in the low-pressure phases of ThS2 in the P n m a and F m 3 ¯m symmetry to the metallic state in the high-pressure phases of ThS2 in the P n m a and I 4 /m m m symmetry. These results explain the experimental observation of the thermodynamic stability of the P n m a phase of ThS2 at the ambient conditions and a pressure-induced structural phase transition in ThS2 around 40 GPa. Moreover, the present study reveals considerable additional information on the structural and electronic properties of ThS2 in a wide range of pressure and temperature. Such information provides key insights into the fundamental material behavior and the underlying mechanisms that lay the foundation for further exploration and application of ThS2.

  9. Structural and magnetic phase formation in nanophase brass–iron electron compounds

    Indian Academy of Sciences (India)

    A K Mishra; C Bansal

    2005-11-01

    Starting with Cu0.65Zn0.35 with an e/a ratio of 1.35 we studied the phase formation in nanophase (Cu0.65Zn0.35)1−Fe alloys in the concentration range 0.1 ≤ ≤ 0.7 to see the effect of altering the electron concentration. The evolution of bcc phase from the fcc phase as a function of Fe concentration was investigated by Mössbauer spectroscopy and X-ray diffraction. The grain size, lattice parameters, and average hyperfine magnetic field distributions were estimated for the nanophase alloys. The fcc phase was observed to persist up to 40 atomic per cent Fe substitutions, a mixed (fcc + bcc) phase region up to 70 atomic per cent Fe and bcc phase beyond 70 atomic per cent Fe. The magnetic state of the alloys changed from nonmagnetic for ≤ 0.3 to magnetically ordered state at room temperature for ≥ 0.33, which lies in the fcc phase region. The fcc phase alloys of Fe with non-magnetic metals have very low magnetic transition temperatures. However, in this system the room temperature state is unusually magnetic.

  10. Parallel power electronics filters in three-phase four-wire systems principle, control and design

    CERN Document Server

    Wong, Man-Chung; Lam, Chi-Seng

    2016-01-01

    This book describes parallel power electronic filters for 3-phase 4-wire systems, focusing on the control, design and system operation. It presents the basics of power-electronics techniques applied in power systems as well as the advanced techniques in controlling, implementing and designing parallel power electronics converters. The power-quality compensation has been achieved using active filters and hybrid filters, and circuit models, control principles and operational practice problems have been verified by principle study, simulation and experimental results. The state-of-the-art research findings were mainly developed by a team at the University of Macau. Offering background information and related novel techniques, this book is a valuable resource for electrical engineers and researchers wanting to work on energy saving using power-quality compensators or renewable energy power electronics systems. .

  11. Expeditious Stochastic Calculation of Random-Phase Approximation Energies for Thousands of Electrons in Three Dimensions.

    Science.gov (United States)

    Neuhauser, Daniel; Rabani, Eran; Baer, Roi

    2013-04-04

    A fast method is developed for calculating the random phase approximation (RPA) correlation energy for density functional theory. The correlation energy is given by a trace over a projected RPA response matrix, and the trace is taken by a stochastic approach using random perturbation vectors. For a fixed statistical error in the total energy per electron, the method scales, at most, quadratically with the system size; however, in practice, due to self-averaging, it requires less statistical sampling as the system grows, and the performance is close to linear scaling. We demonstrate the method by calculating the RPA correlation energy for cadmium selenide and silicon nanocrystals with over 1500 electrons. We find that the RPA correlation energies per electron are largely independent of the nanocrystal size. In addition, we show that a correlated sampling technique enables calculation of the energy difference between two slightly distorted configurations with scaling and a statistical error similar to that of the total energy per electron.

  12. Phase speed of electrostatic waves: The critical parameter for efficient electron surfing acceleration

    CERN Document Server

    Dieckmann, M E; Parviainen, M; Shukla, P K; Sircombe, N J

    2006-01-01

    Particle acceleration by means of non-linear plasma wave interactions is of great topical interest. Accordingly, in this paper we focus on the electron surfing process. Self-consistent kinetic simulations, using both relativistic Vlasov and PIC (Particle In Cell) approaches, show here that electrons can be accelerated to highly relativistic energies (up to 100 m_e c^2) if the phase speed of the electrostatic wave is mildly relativistic (0.6c to 0.9c for the magnetic field strengths considered). The acceleration is strong because of relativistic stabilisation of the nonlinearly saturated electrostatic wave, seen in both relativistic Vlasov and PIC simulations. An inverse power law momentum distribution can arise for the most strongly accelerated electrons. These results are of relevance to observed rapid changes in the radio synchrotron emission intensities from microquasars, gamma ray bursts and other astrophysical objects that require rapid acceleration mechanisms for electrons.

  13. Phase speed of electrostatic waves: the critical parameter for efficient electron surfing acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M E [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Sircombe, N J [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Parviainen, M [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Shukla, P K [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Dendy, R O [UKAEA Culham Division, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2006-04-15

    Particle acceleration by means of nonlinear plasma wave interactions is of great topical interest. Accordingly, in this paper we focus on the electron surfing process. Self-consistent kinetic simulations, using both relativistic Vlasov and particle-in-cell (PIC) approaches, show here that electrons can be accelerated to highly relativistic energies (up to 100m{sub e}c{sup 2}) if the phase speed of the electrostatic wave is mildly relativistic (0.6c to 0.9c for the magnetic field strengths considered). The acceleration is strong because of relativistic stabilization of the nonlinearly saturated electrostatic wave, seen in both relativistic Vlasov and PIC simulations. An inverse power law momentum distribution can arise for the most strongly accelerated electrons. These results are of relevance to observed rapid changes in the radio synchrotron emission intensities from microquasars, gamma ray bursts and other astrophysical objects that require rapid acceleration mechanisms for electrons.

  14. Liquid-phase catalytic reactor combined with measurement of hot electron flux and chemiluminescence

    Science.gov (United States)

    Nedrygailov, Ievgen I.; Lee, Changhwan; Moon, Song Yi; Lee, Hyosun; Park, Jeong Young

    2016-11-01

    Understanding the role of electronically nonadiabatic interactions during chemical reactions on metal surfaces in liquid media is of great importance for a variety of applications including catalysis, electrochemistry, and environmental science. Here, we report the design of an experimental apparatus for detection of the highly excited (hot) electrons created as a result of nonadiabatic energy transfer during the catalytic decomposition of hydrogen peroxide on thin-film metal-semiconductor nanodiodes. The apparatus enables the measurement of hot electron flows and related phenomena (e.g., surface chemiluminescence) as well as the corresponding reaction rates at different temperatures. The products of the chemical reaction can be characterized in the gaseous phase by means of gas chromatography. The combined measurement of hot electron flux, catalytic activity, and light emission can lead to a fundamental understanding of the elementary processes occurring during the heterogeneous catalytic reaction.

  15. Controlling multipolar surface plasmon excitation through the azimuthal phase structure of electron vortex beams

    Science.gov (United States)

    Ugarte, Daniel; Ducati, Caterina

    2016-05-01

    We have theoretically studied how the azimuthal phase structure of an electron vortex beam excites surface plasmons on metal particles of different geometries as observed in electron energy loss spectroscopy (EELS). We have developed a semiclassical approximation combining a ring-shaped beam and the dielectric formalism. Our results indicate that for the case of total orbital angular momentum transfer, we can manipulate surface plasmon multipole excitation and even attain an enhancement factor of several orders of magnitude. Since electron vortex beams interact with particles mostly through effects due to azimuthal symmetry, i.e., in the plane perpendicular to the electron beam, anisotropy information (longitudinal and transversal) of the sample may be derived in EELS studies by comparing nonvortex and vortex beam measurements.

  16. Crystal growth and electronic structure of low-temperature phase SrMgF{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, Victor V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Functional Electronics Laboratory, Tomsk State University, Tomsk 634050 (Russian Federation); Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Goloshumova, Alina A. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090 (Russian Federation); Isaenko, Ludmila I. [Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090 (Russian Federation); Jiang, Xingxing [BCCRD, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Lobanov, Sergey I. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090 (Russian Federation); Zhang, Zhaoming [Australian Nuclear Science & Technology Organisation, Lucas Heights, NSW 2234 (Australia); Lin, Zheshuai, E-mail: zslin@mail.ipc.ac.cn [BCCRD, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-04-15

    Using the vertical Bridgman method, the single crystal of low temperature phase SrMgF{sub 4} is obtained. The crystal is in a very good optical quality with the size of 10×7×5 mm{sup 3}. Detailed photoemission spectra of the element core levels are determined by a monochromatic AlKa (1486.6 eV) X-ray source. Moreover, the first-principles calculations are performed to investigate the electronic structure of SrMgF{sub 4}. A good agreement between experimental and calculated results is achieved. It is demonstrated that almost all the electronic orbitals are strongly localized and the hybridization with the others is very small, but the Mg–F bonds covalency is relatively stronger than that of Sr–F bonds. - Graphical abstract: Large size of low-temperature phase SrMgF{sub 4} crystal was obtained (right) and its electronic structure was investigated by X-ray photoelectron spectroscopy and first-principles calculation (left). - Highlights: • Large size single crystal of low-temperature phase SrMgF{sub 4} is obtained. • Electronic structure of SrMgF{sub 4} is measured by X-ray photoelectron spectroscopy. • Partial densities of states are determined by first-principles calculation. • Good agreement between experimental and calculated results is achieved. • Strong ionic characteristics of chemical bonds are exhibited in SrMgF{sub 4}.

  17. Design and experiment of electronic speckle shearing phase-shifting pattern interferometer

    CERN Document Server

    Xu, Tianhua; Jing, Wencai; Zhang, Hongxia; Jia, Dagong; Zhang, Yimo

    2016-01-01

    An electronic speckle shearing phase-shifting pattern interferometer (ESSPPI) based on Michelson interferometer was based in this paper. A rotatable mirror driven by a step motor in one of its reflective arm is used to generate an adjustable shearing and the mirror driven by piezoelectric transducer (PZT) in the other reflective arm was used to realize phaseshifting. In the experiments, the deformation of an aluminum plate with the same extern-force on different positions and different forces on the same position is measured. Meanwhile, the phase distribution and phase-unwrap image of the aluminum plate with the extern-force on its center position is obtained by the four-step phase-shifting method.

  18. Design and experiment of electronic speckle shearing phase-shifting pattern interferometer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An electronic speckle shearing phase-shifting pattern interferometer (ESSPPI) based on Michelson interferometer was based in this paper. A rotatable mirror driven by a step motor in one of its reflective arm is used to generate an adjustable shearing and the mirror driven by piezoelectric transducer (PZT) in the other reflective arm was used to realize phaseshifting. In the experiments, the deformation of an aluminum plate with the same extern-force on different positions and different forces on the same position is measured. Meanwhile, the phase distribution and phase-unwrap image of the aluminum plate with the extern-force on its center position is obtained by the four-step phase-shifting method.

  19. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating

    Science.gov (United States)

    Payne, Allison; Vyas, Urvi; Todd, Nick; Bever, Joshua de; Christensen, Douglas A.; Parker, Dennis L.

    2011-01-01

    Purpose: This study presents the results obtained from both simulation and experimental techniques that show the effect of mechanically or electronically steering a phased array transducer on proximal tissue heating. Methods: The thermal response of a nine-position raster and a 16-mm diameter circle scanning trajectory executed through both electronic and mechanical scanning was evaluated in computer simulations and experimentally in a homogeneous tissue-mimicking phantom. Simulations were performed using power deposition maps obtained from the hybrid angular spectrum (HAS) method and applying a finite-difference approximation of the Pennes’ bioheat transfer equation for the experimentally used transducer and also for a fully sampled transducer to demonstrate the effect of acoustic window, ultrasound beam overlap and grating lobe clutter on near-field heating. Results: Both simulation and experimental results show that electronically steering the ultrasound beam for the two trajectories using the 256-element phased array significantly increases the thermal dose deposited in the near-field tissues when compared with the same treatment executed through mechanical steering only. In addition, the individual contributions of both beam overlap and grating lobe clutter to the near-field thermal effects were determined through comparing the simulated ultrasound beam patterns and resulting temperature fields from mechanically and electronically steered trajectories using the 256-randomized element phased array transducer to an electronically steered trajectory using a fully sampled transducer with 40 401 phase-adjusted sample points. Conclusions: Three distinctly different three distinctly different transducers were simulated to analyze the tradeoffs of selected transducer design parameters on near-field heating. Careful consideration of design tradeoffs and accurate patient treatment planning combined with thorough monitoring of the near-field tissue temperature will

  20. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating.

    Science.gov (United States)

    Payne, Allison; Vyas, Urvi; Todd, Nick; de Bever, Joshua; Christensen, Douglas A; Parker, Dennis L

    2011-09-01

    This study presents the results obtained from both simulation and experimental techniques that show the effect of mechanically or electronically steering a phased array transducer on proximal tissue heating. The thermal response of a nine-position raster and a 16-mm diameter circle scanning trajectory executed through both electronic and mechanical scanning was evaluated in computer simulations and experimentally in a homogeneous tissue-mimicking phantom. Simulations were performed using power deposition maps obtained from the hybrid angular spectrum (HAS) method and applying a finite-difference approximation of the Pennes' bioheat transfer equation for the experimentally used transducer and also for a fully sampled transducer to demonstrate the effect of acoustic window, ultrasound beam overlap and grating lobe clutter on near-field heating. Both simulation and experimental results show that electronically steering the ultrasound beam for the two trajectories using the 256-element phased array significantly increases the thermal dose deposited in the near-field tissues when compared with the same treatment executed through mechanical steering only. In addition, the individual contributions of both beam overlap and grating lobe clutter to the near-field thermal effects were determined through comparing the simulated ultrasound beam patterns and resulting temperature fields from mechanically and electronically steered trajectories using the 256-randomized element phased array transducer to an electronically steered trajectory using a fully sampled transducer with 40 401 phase-adjusted sample points. Three distinctly different three distinctly different transducers were simulated to analyze the tradeoffs of selected transducer design parameters on near-field heating. Careful consideration of design tradeoffs and accurate patient treatment planning combined with thorough monitoring of the near-field tissue temperature will help to ensure patient safety during an MRg

  1. Effect of electron correlations on the electronic structure and phase stability of FeSe upon lattice expansion

    Science.gov (United States)

    Skornyakov, S. L.; Anisimov, V. I.; Vollhardt, D.; Leonov, I.

    2017-07-01

    We present results of a detailed theoretical study of the electronic, magnetic, and structural properties of the chalcogenide parent system FeSe using a fully charge-self-consistent implementation of the density functional theory plus dynamical mean-field theory (DFT+DMFT) method. In particular, we predict a remarkable change of the electronic structure of FeSe which is accompanied by a complete reconstruction of the Fermi surface topology (Lifshitz transition) upon a moderate expansion of the lattice volume. The phase transition results in a change of the in-plane magnetic nesting wave vector from (π ,π ) to (π ,0 ) and is associated with a transition from itinerant to orbital-selective localized magnetic moments. We attribute this behavior to a correlation-induced shift of the Van Hove singularity of the Fe t2 bands at the M point across the Fermi level. Our results reveal a strong orbital-selective renormalization of the effective mass m*/m of the Fe 3 d electrons upon expansion. The largest effect occurs in the Fe x y orbital, which gives rise to a non-Fermi-liquid-like behavior above the transition. The behavior of the momentum-resolved magnetic susceptibility χ (q ) demonstrates that magnetic correlations are also characterized by a pronounced orbital selectivity, suggesting a spin-fluctuation origin of the nematic phase of paramagnetic FeSe. We conjecture that the anomalous behavior of FeSe upon expansion is associated with the proximity of the Fe t2 Van Hove singularity to the Fermi level and the sensitive dependence of its position on external conditions.

  2. Electron-phonon coupling and structural phase transitions in early transition metal oxides and chalcogenides

    Science.gov (United States)

    Farley, Katie Elizabeth

    Pronounced nonlinear variation of electrical transport characteristics as a function of applied voltage, temperature, magnetic field, strain, or photo-excitation is usually underpinned by electronic instabilities that originate from the complex interplay of spin, orbital, and lattice degrees of freedom. This dissertation focuses on two canonical materials that show pronounced discontinuities in their temperature-dependent resistivity as a result of electron---phonon and electron---electron correlations: orthorhombic TaS3 and monoclinic VO2. Strong electron-phonon interactions in transition metal oxides and chalcogenides results in interesting structural and electronic phase transitions. The properties of the material can be changed drastically in response to external stimuli such as temperature, voltage, or light. Understanding the influence these interactions have on the electronic structure and ultimately transport characteristics is of utmost importance in order to take these materials from a fundamental aspect to prospective applications such as low-energy interconnects, steep-slope transistors, and synaptic neural networks. This dissertation describes synthetic routes to nanoscale TaS3 and VO2, develops mechanistic understanding of their electronic instabilities, and in the case of the latter system explores modulation of the electronic and structural phase transition via the incorporation of substitutional dopant atoms. We start in chapter 2 with a detailed study of the synthesis and electronic transport properties of TaS3, which undergoes a Peierls' distortion to form a charge density wave. Scaling this material down to the nanometer-sized regime allows for interrogation of single or discrete phase coherent domains. Using electrical transport and broad band noise measurements, the dynamics of pinning/depinning of the charge density wave is investigated. Chapter 3 provides a novel synthetic approach to produce high-edge-density MoS2 nanorods. MoS2 is a

  3. Radial gradients of phase space density in the inner electron radiation

    Science.gov (United States)

    Kim, Kyung-Chan; Shprits, Yuri

    2012-12-01

    While the outer radiation belt (3.5 inner radiation belt (1.2 inner electron belt in recent years. It has been generally accepted that the equilibrium structure of radiation belt electrons is explained by the slow inward radial diffusion from a source in the outer belt and losses by Coulomb collision and wave-particle interaction. In this study, we examine this well accepted theory using the radial profiles of the phase space density (PSD), inferred from in situ measurements made by three different satellites: S3-3, CRRES, and POLAR. Our results show that electron PSD in the inner electron belt has a clear prominent local peak and negative radial gradient in the outer portion of the inner zone, i.e., decreasing PSD with increasingL-value. A likely explanation for the peaks in PSD is acceleration due to energy diffusion produced by lightning-generated and anthropogenic whistlers. These results indicate that either additional local acceleration mechanism is responsible for the formation of the inner electron belt or inner electron belt is formed by sporadic injections of electrons into the inner zone. The currently well accepted model of slow diffusion and losses will be further examined by the upcoming Radiation Belt Storm Probes (RBSP) mission.

  4. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons

    Energy Technology Data Exchange (ETDEWEB)

    Close, R.; Chen, Z. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); Shibata, N. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Findlay, S.D., E-mail: scott.findlay@monash.edu [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia)

    2015-12-15

    Differential phase contrast images in scanning transmission electron microscopy can be directly and quantitatively related to the gradient of the projected specimen potential provided that (a) the specimen can be treated as a phase object and (b) full 2D diffraction patterns as a function of probe position can be obtained. Both are challenging to achieve in atomic resolution imaging. The former is fundamentally limited by probe spreading and dynamical electron scattering, and we explore its validity domain in the context of atomic resolution differential phase contrast imaging. The latter, for which proof-of-principle experimental data sets exist, is not yet routine. We explore the extent to which more established segmented detector geometries can instead be used to reconstruct a quantitatively good approximation to the projected specimen potential. - Highlights: • Atomic-resolution differential phase contrast (DPC) imaging explored via simulation. • Phase-object approximation limits quantification to specimens a few nanometers thick. • Segmented detectors give good estimates of the diffraction pattern's first moment.

  5. Direct phase selection of initial phases from single-wavelength anomalous dispersion (SAD) for the improvement of electron density and ab initio structure determination

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chung-De [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan (China); National Tsing Hua University, Hsinchu, Taiwan (China); Huang, Yen-Chieh [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan (China); Chiang, Hsin-Lin [National Tsing Hua University, Hsinchu, Taiwan (China); Hsieh, Yin-Cheng; Guan, Hong-Hsiang; Chuankhayan, Phimonphan [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@nsrrc.org.tw [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan (China); National Tsing Hua University, Hsinchu, Taiwan (China); National Cheng Kung University, Tainan City 701, Taiwan (China); National Cheng Kung University, Tainan City 701, Taiwan (China)

    2014-09-01

    A novel direct phase-selection method to select optimized phases from the ambiguous phases of a subset of reflections to replace the corresponding initial SAD phases has been developed. With the improved phases, the completeness of built residues of protein molecules is enhanced for efficient structure determination. Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (ϕ{sub 1} and ϕ{sub 2}) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θ{sub DS} list as a criterion to select optimized phases ϕ{sub am} from ϕ{sub 1} or ϕ{sub 2} of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases ϕ{sub SAD} has been developed. Based on this work, reflections with an angle θ{sub DS} in the range 35–145° are selected for an optimized improvement, where θ{sub DS} is the angle between the initial phase ϕ{sub SAD} and a preliminary density-modification (DM) phase ϕ{sub DM}{sup NHL}. The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination.

  6. Low-Energy Electron Diffraction Determination of the Structure of the Zeta Phase of Oxygen Physisorbed on Graphite

    DEFF Research Database (Denmark)

    Toney, Michael; Fain, S.C.

    1984-01-01

    Low-energy electron diffraction measurements on the ζ phase of diatomic oxygen physisorbed on the basal plane of graphite single crystals are reported for 12......Low-energy electron diffraction measurements on the ζ phase of diatomic oxygen physisorbed on the basal plane of graphite single crystals are reported for 12...

  7. MgH2 → Mg phase transformation driven by a high-energy electron beam: An in situ transmission electron microscopy study

    Science.gov (United States)

    Paik, B.; Jones, I. P.; Walton, A.; Mann, V.; Book, D.; Harris, I. R.

    2010-01-01

    The dynamics of a phase change have been studied using the electron beam in a transmission electron microscope to transform MgH2 into Mg. The study involved selected-area diffraction and electron-energy-loss spectroscopy (EELS). The orientation relation ( ? and ? ), obtained from the electron diffraction study, has been used to propose a model for the movements of magnesium atoms during the phase change. The in situ EELS results have been compared with the existing H-desorption model. The study aims to describe the sorption dynamics of hydrogen in MgH2, which is a base material for a number of promising hydrogen storage systems.

  8. Phase stability in heavy f-electron metals from first-principles theory

    Energy Technology Data Exchange (ETDEWEB)

    Soderlind, P

    2005-11-17

    The structural phase stability of heavy f-electron metals is studied by means of density-functional theory (DFT). These include temperature-induced transitions in plutonium metal as well as pressure-induced transitions in the trans-plutonium metals Am, Cm, Bk, and Cf. The early actinides (Th-Np) display phases that could be rather well understood from the competition of a crystal-symmetry breaking mechanism (Peierls distortion) of the 5f states and electrostatic forces, while for the trans-plutonium metals (Am-Cf) the ground-state structures are governed by 6d bonding. We show in this paper that new physics is needed to understand the phases of the actinides in the volume range of about 15-30 {angstrom}{sup 3}. At these volumes one would expect, from theoretical arguments made in the past, to encounter highly complex crystal phases due to a Peierls distortion. Here we argue that the symmetry reduction associated with spin polarization can make higher symmetry phases competitive. Taking this into account, DFT is shown to describe the well-known phase diagram of plutonium and also the recently discovered complex and intriguing high-pressure phase diagrams of Am and Cm. The theory is further applied to investigate the behaviors of Bk and Cf under compression.

  9. Experimental confirmation of chaotic phase synchronization in coupled time-delayed electronic circuits.

    Science.gov (United States)

    Senthilkumar, D V; Srinivasan, K; Murali, K; Lakshmanan, M; Kurths, J

    2010-12-01

    We report the experimental demonstration of chaotic phase synchronization (CPS) in unidirectionally coupled time-delay systems using electronic circuits. We have also implemented experimentally an efficient methodology for characterizing CPS, namely, the localized sets. Snapshots of the evolution of coupled systems and the sets as observed from the oscilloscope confirming CPS are shown experimentally. Numerical results from different approaches, namely, phase differences, localized sets, changes in the largest Lyapunov exponents, and the correlation of probability of recurrence (C(CPR)) corroborate the experimental observations.

  10. Electron microscopic observation of LE/LC phase transition in dipalmitoyl phosphatidylcholine monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Neuman, R.D.; Fereshtehkhou, S.; Ovalle, R.

    1984-10-01

    The monolayer structure of L-..cap alpha..-dipalmitoyl phosphatidylcholine (DPPC) at the air/water interface was examined using improved electron microscopic techniques. The DPPC monolayer is homogeneous in both the liquid-expanded (LE) and liquid-condensed (LC) states. In the intermediate LE/LC region, however, the monolayer is nonhomogeneous and biphasic. The results of two coexisting phases are consistent with the interpretation of a first-order phase transition occurring between the LE and LC states in monomolecular films. 20 references, 2 figures.

  11. Analytical electron microscope study of the omega phase transformation in a zirconium--niobium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zaluzec, N.J.

    1979-06-01

    An in-situ study of the as-quenched omega phase transformation in Zr--15% Nb was conducted between the temperatures of 77 and 300/sup 0/K using analytical electron microscopy. The domain size of the omega regions observed in this investigation was on the order of 30 A, consistent with previous observations in this system. No alignment of omega domains along <222> directions of the bcc lattice was observed and in-situ thermal cycling experiments failed to produce a long period structure of alternating ..beta.. and ..omega.. phase regions as predicted by one theory of this transformation. Several techniques of microstructural analysis were developed, refined, and standardized. Grouped under the general classification of Analytical Electron Microscopy (AEM) they provide the experimentalist with a unique tool for the microcharacterization of solids, allowing semiquantitative to quantitative analysis of the morphology, crystallography, elemental composition, and electronic structure of regions as small as 20 A in diameter. These techniques have complications, and it was necessary to study the AEM system used in this work so that instrumental artifacts which invalidate the information produced in the microscope environment might be eliminated. Once these factors had been corrected, it was possible to obtain a wealth of information about the microvolume of material under investigation. The microanalytical techniques employed during this research include: energy dispersive x-ray spectroscopy (EDS) using both conventional and scanning transmission electron microscopy (CTEM, STEM), transmission scanning electron diffraction (TSED), the stationary diffraction pattern technique, and electron energy loss spectroscopy (ELS) using a dedicated scanning transmission electron microscope (DSTEM).

  12. Effectiveness of perturbation theory approaches for computing non-condon electron transfer dynamics in condensed phases.

    Science.gov (United States)

    Cook, William R; Coalson, Rob D; Evans, Deborah G

    2009-08-20

    A description of electron transfer in condensed-phase media requires models that adequately describe the coupling of the electronic degrees of freedom to the surrounding nuclear coordinates. The spin-boson model has been the canonical model used to understand quantum dynamic processes in condensed-phase media over the last 25 years. Inherent in the standard model of a two-state quantum system coupled to a bosonic bath is the assumption that the Condon approximation is valid. In this context, the Condon approximation assumes that the bath configurations (coordinates) have no effect on the nonadiabatic coupling matrix element. While this is a useful model for electron transfer in small molecular systems, the validity of this approximation is less likely when large-scale motions of solvent molecules are strongly coupled to the electron transfer event, e.g., in molecular clamps and long-range electron transfer in biopolymers. In the present paper a general model for two-state electron transfer which allows for system-bath coupling in both the diagonal and off-diagonal (nonadiabatic) terms is studied. Time-dependent perturbation theory for this Hamiltonian is developed using a small polaron transformation. As noted in several recent studies, in a certain regime of parameter space, the relevant Hamiltonian admits an exact solution, termed the exactly solvable non-Condon Hamiltonian (or NCE). This limit, for which exact solutions are available, is used to benchmark the short- and long-time accuracy of various perturbative approaches. The validated perturbation equations are subsequently used to explore the role of non-Condon effects on electron transfer by systematically increasing the strength of the non-Condon coupling term from zero (i.e., the canonical spin-boson model) to the value that pertains to the exactly solvable non-Condon model (where non-Condon effects are significant).

  13. Structural, electronic and elastic properties of REIr2 (RE=La and Ce) Laves phase compounds

    Science.gov (United States)

    Shrivastava, Deepika; Fatima, Bushra; Sanyal, Sankar P.

    2016-05-01

    REIr2 (RE = La and Ce) Laves phase intermetallic compounds were investigated with respect to their structural, electronic and elastic properties using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA) as implemented in WIEN2k code. The ground state properties such as lattice constants (a0), bulk modulus (B), pressure derivative of bulk modulus (Bꞌ) and density of state at Fermi level N(EF) have been obtained by optimization method. The electronic structure (BS, TDOS and PDOS) reveals that these Laves phase compounds are metallic in nature. The calculated elastic constants indicate that these compounds are mechanically stable at ambient pressure and found to be ductile in nature.

  14. Comparative study of runaway electron diffusion in the rise phase of low and normal discharges in the SINP tokamak

    Indian Academy of Sciences (India)

    Ramesh Narayanan; A N Sekar Iyengar

    2010-10-01

    The behaviour of runaway electrons in the SINP tokamak, which can be operated in a normal edge safety factor () (NQ) discharge configuration as well as in a low (LQ) configuration, was experimentally investigated, during the initial plasma generation phase. An energy analysis of the runaway electron dynamics in the rise phase of the SINP tokamak discharges was also made. A comparison of the runaway electron diffusion coefficients in NQ and LQ is carried out in this paper.

  15. Proposed imaging of the ultrafast electronic motion in samples using x-ray phase-contrast

    CERN Document Server

    Dixit, Gopal; Santra, Robin

    2013-01-01

    Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wavepacket would appear to be the most obvious approach to image the electronic motion in real-time and real-space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wavepacket. However, recent results by Dixit {\\em et al.} [Proc. Natl. Acad. Sci. U.S.A., {\\bf 109}, 11636 (2012)] have put this notion into question and shown that the scattering in the far-field regime probes spatio-temporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wavepacket via ultrafast x-ray {\\em phase contrast imaging}. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field reg...

  16. Longitudinal phase space manipulation in energy recovering linac-driven free-electron lasers

    Directory of Open Access Journals (Sweden)

    P. Piot

    2003-03-01

    Full Text Available Energy recovering an electron beam after it has participated in a free-electron laser (FEL interaction can be quite challenging because of the substantial FEL-induced energy spread and the energy antidamping that occurs during deceleration. In the Jefferson Lab infrared FEL driver accelerator, such an energy recovery scheme was implemented by properly matching the longitudinal phase space throughout the recirculation transport by employing the so-called energy compression scheme. In the present paper, after presenting a single-particle dynamics approach of the method used to energy recover the electron beam, we report on experimental validation of the method obtained by measurements of the so-called “compression efficiency” and “momentum compaction” lattice transfer maps at different locations in the recirculation transport line. We also compare these measurements with numerical tracking simulations.

  17. Generation of Phase-Locked Pulses from a Seeded Free-Electron Laser.

    Science.gov (United States)

    Gauthier, David; Ribič, Primož Rebernik; De Ninno, Giovanni; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca

    2016-01-15

    In a coherent control experiment, light pulses are used to guide the real-time evolution of a quantum system. This requires the coherence and the control of the pulses' electric-field carrier waves. In this work, we use frequency-domain interferometry to demonstrate the mutual coherence of time-delayed pulses generated by an extreme ultraviolet seeded free-electron laser. Furthermore, we use the driving seed laser to lock and precisely control the relative phase between the two free-electron laser pulses. This new capability opens the way to a multitude of coherent control experiments, which will take advantage of the high intensity, short wavelength, and short duration of the pulses generated by seeded free-electron lasers.

  18. Electron Spin Pairing and the Phase Diagram of High-Tc Superconductors

    Institute of Scientific and Technical Information of China (English)

    GUO Wei; HAN Ru-Shan

    2001-01-01

    The origin of the instability of the normal state of electrons in the superconducting copper oxides is shown by the K-J model, in which the superexchange (K) between local moments and the Kondo exchange ( J) between electron and local moment are considered. The suppression of superexchange via impurity doping may induce effective spin coupling between electrons and triplet pairing (S = 1, Sz = 0). The spin pairing theory explains the phase diagram of high-To superconductors, especially the superconducting transition temperature Tc, the pseudogap temperature T* and the magnetic crossover temperature Tn as a function of the doped hole concentration. The universal expression for the empirical law of the superconducting transition temperature is derived from the theory.

  19. Photo-fragmentation and electron-detachment studies of gas-phase chromophore ions

    DEFF Research Database (Denmark)

    Rahbek, Dennis Bo

    -physical properties of two important bio-chromophores by investigating the properties of structural isomers of these molecules. The chromophores are the ones found in the green fluorescent protein and the photoactive yellow protein. The photo-physical properties have been studied experimentally in the gas phase...... excitation energy. This results in a competition between de-excitation by internal conversion and electron emission. Both of these processes are of non-adiabatic character as they rely on coupling between electronic energy and energy in nuclear motion. Moreover, it is found that higher-lying states...... in the anionic forms serves as ‘doorway’- states into the continuum of the neutral radical. Regarding the structural isomeric forms of each of the chromophores we find that the degree of electronic coupling between the subunitsmaking up the chromophores is crucial for the tuning the absorption properties, both...

  20. Strain-induced phase transition and electron spin-polarization in graphene spirals.

    Science.gov (United States)

    Zhang, Xiaoming; Zhao, Mingwen

    2014-07-16

    Spin-polarized triangular graphene nanoflakes (t-GNFs) serve as ideal building blocks for the long-desired ferromagnetic graphene superlattices, but they are always assembled to planar structures which reduce its mechanical properties. Here, by joining t-GNFs in a spiral way, we propose one-dimensional graphene spirals (GSs) with superior mechanical properties and tunable electronic structures. We demonstrate theoretically the unique features of electron motion in the spiral lattice by means of first-principles calculations combined with a simple Hubbard model. Within a linear elastic deformation range, the GSs are nonmagnetic metals. When the axial tensile strain exceeds an ultimate strain, however, they convert to magnetic semiconductors with stable ferromagnetic ordering along the edges. Such strain-induced phase transition and tunable electron spin-polarization revealed in the GSs open a new avenue for spintronics devices.

  1. The Phase 2 Upgrade of the ATLAS Hadronic Tile Calorimeter Readout Electronics

    CERN Document Server

    Meehan, S; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. Its main upgrade will occur for the High Luminosity LHC phase (phase 2) where the peak luminosity will increase 5-fold compared to the design luminosity. An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. The smallest independent on-detector electronics module has been reduced from 45 channels to 6, greatly reducing the consequences of a failure in the on-detector electronics. The size of the smallest mechanical module has been reduced by a factor 4 to facilitate maintenance. This will mostly be ac...

  2. Gate Control of Electronic Phases in a Quarter-Filled Manganite

    Science.gov (United States)

    Hatano, T.; Ogimoto, Y.; Ogawa, N.; Nakano, M.; Ono, S.; Tomioka, Y.; Miyano, K.; Iwasa, Y.; Tokura, Y.

    2013-10-01

    Electron correlation often produces a variety of electrically insulating states caused by self-organization of electrons, which are particularly stable at commensurate fillings. Although collapsing such ordered states by minute external stimuli has been a key strategy toward device applications, it is difficult to access their true electronic phase boundaries due to the necessity of fine-tuning of material parameters. Here, we demonstrate the ambipolar resistance switching in Pr1-xSrxMnO3 thin films (x = 0.5; an effectively 1/4-filled state) by quasi-continuous control of the doping level x and band-width W using gate-voltage and magnetic field, enabled by the extreme electric-field formed at the nanoscale interface generated in an electrolyte-gated transistor. An electroresistance peak with unprecedented steepness emerges on approaching a critical point in the x-W phase diagram. The technique opens a new route to Mott-insulator based transistors and to discovering singularities hitherto unnoticed in conventional bulk studies of strongly correlated electron systems.

  3. Effect of a Physical Phase Plate on Contrast Transfer in an Aberration-Corrected Transmission Electron Microscope

    OpenAIRE

    Gamm, B.; Schultheiß, K.; Schröder, R. R.; Gerthsen, D.

    2010-01-01

    In this theoretical study we analyze contrast transfer of weak-phase objects in a transmission electron microscope, which is equipped with an aberration corrector (Cs-corrector) in the imaging lens system and a physical phase plate in the back focal plane of the objective lens. For a phase shift of pi/2 between scattered and unscattered electrons induced by a physical phase plate, the sine-type phase contrast transfer function is converted into a cosine-type function. Optimal imaging conditio...

  4. Phase matching strategy for the undulator system in the European X-ray Free Electron Laser

    Directory of Open Access Journals (Sweden)

    Yuhui Li

    2017-02-01

    Full Text Available The undulator system in the European X-ray Free Electron Laser is mainly comprised of 5-m long undulator segments and 1.1 m long intersections in between. The longitudinal component of the electrons’ velocity is reduced when traveling inside an undulator due to the wiggle motion. Therefore the optical phase is detuned. The detune effect is also from the undulator fringe field where electron longitudinal speed also deviates from the oscillation condition. The total detune effect is compensated by a magnetic device called phase shifter, which is correspondingly set for a specific undulator gap. In this paper we investigate the homogeneity of the fringe field from different undulators. Different phase matching criteria are studied. The field fitting technique for the phase matching in high accuracy is demonstrated in detail. The impact by air coil is also studied. Eventually the matching test by spontaneous radiation simulation is made. A test method for high sensitivity to matching error is proposed.

  5. Electronic Wave Packet Interferometry of Gas Phase Samples: High Resolution Spectra and Collective Effects

    Science.gov (United States)

    Stienkemeier, Frank

    2017-06-01

    Time-resolved coherent spectroscopy has opened many new directions to study ultrafast dynamics in complex quantum systems. While most applications have been achieved in the condensed phase, we are focusing on dilute gas phase samples, in particular, on doped helium droplet beams. Isolation in such droplets at millikelvin temperatures provides unique opportunities to synthesize well-defined complexes, to prepare specific ro-vibronic states, and study their dynamics. To account for the small densities in our samples, we apply a phase modulation technique in order to reach enough sensitivity and a high spectral resolution in electronic wave packet interferometry experiments. The combination with mass-resolved ion detection enabled us e.g. to characterize vibrational structures of excimer molecules. By extending this technique we have observed collective resonances in samples of very low density (10^8 cm^{-3}). With a variant of this method, we are currently elaborating the implementation of nonlinear all-XUV spectroscopy.

  6. Electronic Structure and Spin Configuration Trends of Single Transition Metal Impurity in Phase Change Material

    Science.gov (United States)

    Li, H.; Pei, J.; Shi, L. P.

    2016-10-01

    Fe doped phase change material GexSbyTez has shown experimentally the ability to alter its magnetic properties by phase change. This engineered spin degree of freedom into the phase change material offers the possibility of logic devices or spintronic devices where they may enable fast manipulation of ferromagnetism by a phase change mechanism. The electronic structures and spin configurations of isolated transition metal dopant in phase change material (iTM-PCM) is important to understand the interaction between localized metal d states and the unique delocalized host states of phase change material. Identifying an impurity center that has, in isolation, a nonvanishing magnetic moment is the first step to study the collective magnetic ordering, which originates from the interaction among close enough individual impurities. Theoretical description of iTM-PCM is challenging. In this work, we use a screened exchange hybrid functional to study the single 3d transition metal impurity in crystalline GeTe and GeSb2Te4. By curing the problem of local density functional (LDA) such as over-delocalization of the 3d states, we find that Fe on the Ge/Sb site has its majority d states fully occupied while its minority d states are empty, which is different from the previously predicted electronic configuration by LDA. From early transition metal Cr to heavier Ni, the majority 3d states are gradually populated until fully occupied and then the minority 3d states begin to be filled. Interpretive orbital interaction pictures are presented for understanding the local and total magnetic moments.

  7. Skeletal growth phases of the cold-water coral Lophelia pertusa shown by scanning electron microscope and electron backscatter diffraction

    Science.gov (United States)

    Mouchi, Vincent; Vonlanthen, Pierre; Verrecchia, Eric P.; Crowley, Quentin G.

    2016-04-01

    Lophelia pertusa is a cold-water coral, which may form reefs by the association of multiple coralites within which a polyp lives. Each individual polyp builds an aragonite skeleton by an initial phase of early mineralization (traditionally referred to as centres of calcification) from which aragonite fibres grow in thickening deposits. The skeleton wall features successive optically opaque and translucent bands previously attributed to different regimes of growth as either uniform in crystal orientation (translucent bands) or with a chaotic organization (opaque bands). The processes involved in any organizational changes are still unknown. Microlayers in the coral wall, which represent separate periods of skeletal growth, have been recently identified and described. These growth patterns are readily visible under scanning electron microscope (SEM) after etching in dilute formic acid, but they do not necessarily form continuously visible structures. Here we present high quality SEM images and electron backscatter diffraction (EBSD) maps to study aragonite fibre orientation across the wall of L. pertusa. Both microlayers and opaque and translucent bands are compared to the crystallographic orientation of the aragonite fibres. EBSD maps and SEM images indicate that aragonite fibres do not exhibit a chaotic orientation, even in opaque bands. The absence of continuity of microlayers is partially explained by an association of multiple crystallographic preferred orientations of aragonite fibres. In the case of L. pertusa, careful textural characterisation is necessary prior to elemental or isotope analysis in order to select a skeletal transect representing a linear and continuous time period.

  8. Time-resolved electron beam phase space tomography at a soft x-ray free-electron laser

    Directory of Open Access Journals (Sweden)

    Michael Röhrs

    2009-05-01

    Full Text Available High-gain free-electron lasers (FELs in the ultraviolet and x-ray regime put stringent demands on the peak current, transverse emittance, and energy spread of the driving electron beam. At the soft x-ray FEL FLASH, a transverse deflecting microwave structure (TDS has been installed to determine these parameters for the longitudinally compressed bunches, which are characterized by a narrow leading peak of high charge density and a long tail. The rapidly varying electromagnetic field in the TDS deflects the electrons vertically and transforms the time profile into a streak on an observation screen. The bunch current profile was measured single shot with an unprecedented resolution of 27 fs under FEL operating conditions. A precise single-shot measurement of the energy distribution along a bunch was accomplished by using the TDS in combination with an energy spectrometer. Variation of quadrupole strengths allowed for a determination of the horizontal emittance as a function of the longitudinal position within a bunch, the so-called slice emittance. In the bunch tail, a normalized slice emittance of about 2  μm was found, in agreement with expectations. In the leading spike, however, surprisingly large emittance values were observed, in apparent contradiction with the low emittance deduced from the measured FEL gain. By applying three-dimensional phase space tomography, we were able to show that the bunch head contains a central core of low emittance and high local current density, which is presumably the lasing part of the bunch.

  9. Evolution of Electron Phase Orbits of Multi-photon Nonlinear Compton Scattering in High Power Laser-plasma

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; L(U) Jian

    2005-01-01

    The evolution of the electron phase orbits based on the multi-photon nonlinear Compton scattering with the high power laser-plasma is discussed by using Kroll-Morton-Rosenbluth theory. The random evolution of the un-captured electron phase orbits from periodicity to non-periodicity is found after the energy has been exchanged between the electron and photons. With the increase of the absorbed photon number n by an electron,this evolution will be more and more intense, while which is rapidly decreased with the enhancement of the collision non-flexibility ξ and their initial speeds of the electrons and photons, but this evolution is lower than that in the high power laser field. When the electrons are captured by the laser field, the evolution is finished, and the electrons will stably transport,and the photons don't provide the energy for these electrons any more.

  10. Energetic electron propagation in the decay phase of non-thermal flare emission

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jing; Yan, Yihua [Key Laboratory of Solar Activities, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Tsap, Yuri T., E-mail: huangj@nao.cas.cn [Crimean Astrophysical Observatory of Kyiv National Taras Shevchenko University, 98409 Crimea, Nauchny (Ukraine)

    2014-06-01

    On the basis of the trap-plus-precipitation model, the peculiarities of non-thermal emission in the decay phase of solar flares have been considered. The calculation formulas for the escape rate of trapped electrons into the loss cone in terms of time profiles of hard X-ray (HXR) and microwave (MW) emission have been obtained. It has been found that the evolution of the spectral indices of non-thermal emission depend on the regimes of the pitch angle diffusion of trapped particles into the loss cone. The properties of non-thermal electrons related to the HXR and MW emission of the solar flare on 2004 November 3 are studied with Nobeyama Radioheliograph, Nobeyama Radio Polarimeters, RHESSI, and Geostationary Operational Environmental Satellite observations. The spectral indices of non-thermal electrons related to MW and HXR emission remained constant or decreased, while the MW escape rate as distinguished from that of the HXRs increased. This may be associated with different diffusion regimes of trapped electrons into the loss cone. New arguments in favor of an important role of the superstrong diffusion for high-energy electrons in flare coronal loops have been obtained.

  11. Ultrahigh Density Data Storage on Phase-Change Media Using Electron Beams

    Science.gov (United States)

    Gibson, Gary A.

    2004-03-01

    The unique, microfabricated, electron-beam-based data storage device described here is capable of providing large signals at MHz data rates from nanoscale bits. This device consists of three main components: a microfabricated array of electron-beam sources that are used to read and write bits, a medium containing a phase-changeable data storage layer, and an xy-stage capable of moving the storage medium relative to the electron sources with sub-nanometer precision. The storage medium consists of a pn-junction diode formed by growing the layered III-VI semiconductor InSe epitaxially on Si(111) with a thin intermediate layer of GaSe. Data bits are reversibly recorded as amorphous regions in the InSe layer. These bits are detected by monitoring the current induced in the diode by a scanned electron beam. Differences in the electronic properties of the amorphous and crystalline states of InSe modulate this current. The success of this approach results from the remarkable ability of layered chalcogenides to maintain exceptionally good electrical properties near their surfaces after repeated cycles of amorphization and recrystallization. The micromachined xy-stage utilizes an area-efficient design that allows 50% of the die to contain scanned data. This device is compatible with the integration of CMOS electronics and achieves a scan range of ± 25 μm using biases of only ± 15 V. Each electron-beam source is comprised of multiple nanostructured silicon field-emission tips with individual extractors and lenses. These sources show promise in delivering the high current densities and low noise required for this data storage application.

  12. Magnetic phase transitions in ferrite nanoparticles characterized by electron spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Arias, Yesica, E-mail: yeika01@hotmail.com; Vázquez-Victorio, Gabriela; Ortega-Zempoalteca, Raul; Acevedo-Salas, Ulises; Valenzuela, Raul [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Ammar, Souad [Laboratoires ITODYS, Université de Paris-Diderot, PRES Sorbonne Paris Cité, CNRS-UMR 7086, 75205 Paris Cedex (France)

    2015-05-07

    Ferrite magnetic nanoparticles in the composition Zn{sub 0.7}Ni{sub 0.3}Fe{sub 2}O{sub 4} were synthesized by the polyol method, with an average size of 8 nm. Electron spin resonance (ESR) measurements were carried out at a frequency of 9.45 GHz in the 100–500 K temperature range. Obtained results exhibited a characteristic ESR signal in terms of resonance field, H{sub res}, linewidth, ΔH, and peak ratio, R, for each magnetic phase. At low temperatures, the ferrimagnetic phase showed low H{sub res}, broad ΔH, and asymmetric R. At high temperatures, these parameters exhibited opposite values: high H{sub res}, small ΔH, and R ∼ 1. For intermediate temperatures, a different phase was observed, which was identified as a superparamagnetic phase by means of zero-field cooling-field cooling and hysteresis loops measurements. The observed differences were explained in terms of the internal fields and especially due to the cubic anisotropy in the ordered phase.

  13. Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation.

    Science.gov (United States)

    Tekavec, Patrick F; Lott, Geoffrey A; Marcus, Andrew H

    2007-12-07

    Two-dimensional electronic coherence spectroscopy (ECS) is an important method to study the coupling between distinct optical modes of a material system. Such studies often involve excitation using a sequence of phased ultrashort laser pulses. In conventional approaches, the delays between pulse temporal envelopes must be precisely monitored or maintained. Here, we introduce a new experimental scheme for phase-selective nonlinear ECS, which combines acousto-optic phase modulation with ultrashort laser excitation to produce intensity modulated nonlinear fluorescence signals. We isolate specific nonlinear signal contributions by synchronous detection, with respect to appropriately constructed references. Our method effectively decouples the relative temporal phases from the pulse envelopes of a collinear train of four sequential pulses. We thus achieve a robust and high signal-to-noise scheme for phase-selective ECS to investigate the resonant nonlinear optical response of photoluminescent systems. We demonstrate the validity of our method using a model quantum three-level system-atomic Rb vapor. Moreover, we show how our measurements determine the resonant complex-valued third-order susceptibility.

  14. Structural phase transition and opto-electronic properties of NaZnAs

    Energy Technology Data Exchange (ETDEWEB)

    Djied, A.; Seddik, T.; Merabiha, O. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Murtaza, G. [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Ahmed, R., E-mail: rashidahmed@utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Bin-Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Uğur, Ş. [Department of Physics, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara (Turkey); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University Setif 1, 19000 Setif (Algeria)

    2015-02-15

    Highlights: • First competent characterizations of NaZnAs at the level of FP-LAPW+lo. • NaZnAs, a potential alternative candidate to III-V for photovoltaic applications. • NaZnAs, a cheaper and abundantly available direct band gap semiconductor. • Potential material for solar radiation absorber from infrared to ultraviolet. - Abstract: In this study, we predict the structural phase transitions as well as opto-electronic properties of the filled-tetrahedral (Nowotny-Juza) NaZnAs compound. Calculations employ the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) scheme. The exchange-correlation potential is treated within the generalized gradient approximation of Perdew-Burke and Ernzerhof (GGA-PBE). In addition, Tran and Blaha (TB) modified Becke-Johnson (mBJ) potential is also used to obtain more accurate optoelectronic properties. Geometry optimization is performed to obtain reliable total energies and other structural parameters for each NaZnAs phase. In our study, the sequence of the structural phase transition on compression is Cu{sub 2}Sb-type → β → α phase. NaZnAs is a direct (Γ-Γ) band gap semiconductor for all the structural phases. However, compared to PBE-GGA, the mBJ approximation reproduces better fundamental band gaps. Moreover, for insight into its potential for photovoltaic applications, different optical parameters are studied.

  15. Spatially Resolved Photoemission Spectroscopy to Probe Electronic Phase Separation in Manganites and Related Compounds

    Science.gov (United States)

    Das Sarma, Dipankar

    2005-03-01

    Manganese oxides that exhibit colossal magnetoresistance (CMR) are often characterised by a competition of different electronic phases that critically influence their properties and leads to the coexistence of spatially separated competing phases. Despite extensive experimentation, characteristic length-scales associated with phase coexistence remains an important open question. While theoretical work has pointed to a nanometric length-scale, experiments have uncovered multiple length-scales ranging from the atomic to the sub-micron, covering many orders of magnitude. The role of chemical inhomogeneity in driving this phenomenon is not well understood. Moreover, these early experiments were carried out on polycrystalline and thin film specimens. Here we use a spatially resolved, direct spectroscopic probe for electronic structure with an additional unique sensitivity to chemical compositions to investigate high quality single crystal sample of La1/4Pr3/8Ca3/8MnO3. The formation of distinct electronic domains is observed in absence of any perceptible chemical inhomogeneity, where the relevant length-scale is at least an order of magnitude larger than all previous estimates. The present results, exhibiting memory effects in the domain morphology, suggest that electronic domain formation is intimately connected with long-range strains, often thought to be an important ingredient in the physics of this effect. Additionally, we have also applied this technique to a variety of related materials, such as (LuMnO3)0.79(La5/8Sr3/8MnO3)0.21, and Sr2FexMo1-xO6. Our preliminary results in all these cases suggest that the existence of spatially inhomogeneous electronic phases plays important roles in determining many of the interesting properties of such systems. This work is carried out in collaboration with M. Bertolo, G. Cautero, S-W. Cheong, A. Fujimori, T. Y. Koo, S.R. Krishnakumar, U. Manju, S. Ray, S. La Rosa P. A. Sharma and D. Topwal.

  16. Quantitative imaging of electron density and effective atomic number using phase contrast CT

    Energy Technology Data Exchange (ETDEWEB)

    Qi Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen Guanghong, E-mail: gchen7@wisc.ed [Department of Medical Physics, University of Wisconsin-Madison, WI 53705 (United States)

    2010-05-07

    Compared to single energy CT, which only provides information for x-ray linear attenuation coefficients, dual-energy CT is able to obtain both the electron density and effective atomic number for different materials in a quantitative way. In this study, as an alternative to dual-energy CT, a novel quantitative imaging method based on phase contrast CT is presented. Rather than requiring two projection data sets with different x-ray energy spectra, diffraction-grating-based phase contrast CT is capable of reconstructing images of both linear attenuation and refractive index decrement from the same projection data using a single x-ray energy spectra. From the two images, quantitative information of both the electron density and effective atomic number can be extracted. Two physical phantoms were constructed and used to validate the presented method. Experimental results demonstrate that (1) electron density can be accurately determined from refractive index decrement through a linear relationship, and (2) the effective atomic number can be explicitly derived from the ratio of the linear attenuation to refractive index decrement using a power function plus a constant. The presented method will provide insight into the technique of material separation and find its use in medical and industrial applications.

  17. Quantitative imaging of electron density and effective atomic number using phase contrast CT

    Science.gov (United States)

    Qi, Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen, Guang-Hong

    2010-05-01

    Compared to single energy CT, which only provides information for x-ray linear attenuation coefficients, dual-energy CT is able to obtain both the electron density and effective atomic number for different materials in a quantitative way. In this study, as an alternative to dual-energy CT, a novel quantitative imaging method based on phase contrast CT is presented. Rather than requiring two projection data sets with different x-ray energy spectra, diffraction-grating-based phase contrast CT is capable of reconstructing images of both linear attenuation and refractive index decrement from the same projection data using a single x-ray energy spectra. From the two images, quantitative information of both the electron density and effective atomic number can be extracted. Two physical phantoms were constructed and used to validate the presented method. Experimental results demonstrate that (1) electron density can be accurately determined from refractive index decrement through a linear relationship, and (2) the effective atomic number can be explicitly derived from the ratio of the linear attenuation to refractive index decrement using a power function plus a constant. The presented method will provide insight into the technique of material separation and find its use in medical and industrial applications.

  18. Discharge stratification in noble gases as convergence of electron phase trajectories to attractors

    Science.gov (United States)

    Golubovskii, Yu.; Valin, S.; Pelyukhova, E.; Nekuchaev, V.; Sigeneger, F.

    2016-12-01

    A new dynamic method to analyse resonance effects in glow discharges is proposed as a supplement to fluid and kinetic approaches for the investigation of discharge stratification. The method is applicable to striations, which are caused by the nonlocal electron behaviour at lower pressure and current. It is based on the analysis of the electron phase trajectories in spatially periodic fields. Being quite intuitive and easier than the solution of the Boltzmann equation, this method gives a quantitative description of the main effects arising from the kinetic analysis, for example, the appearance of attractors of the phase trajectories. The dynamic theory eliminates the main difficulty of the kinetic theory associated with the large relaxation length of the electron energy distribution function in periodic fields and describes the integer and rational resonances that correspond to S-, P- and R-striations. As a result, the stratification of the discharge can be interpreted as the excitation of one of the spatial resonator modes of the positive column.

  19. Sub-cycle optical phase control of nanotunnelling in the single-electron regime

    Science.gov (United States)

    Rybka, Tobias; Ludwig, Markus; Schmalz, Michael F.; Knittel, Vanessa; Brida, Daniele; Leitenstorfer, Alfred

    2016-10-01

    The high peak electric fields provided by single-cycle light pulses can be harnessed to manipulate and control charge motion in solid-state systems, resulting in electron emission out of metals and semiconductors or high harmonics generation in dielectrics. These processes are of a non-perturbative character and require precise reproducibility of the electric-field profile. Here, we vary the carrier-envelope phase of 6-fs-long near-infrared pulses with pJ-level energy to control electronic transport in a laterally confined nanoantenna with an 8 nm gap. Peak current densities of 50 MA cm-2 are achieved, corresponding to the transfer of individual electrons in a half-cycle period of 2 fs. The observed behaviours are made possible by the strong distortion of the effective tunnelling barrier due to the extreme electric fields that the nanostructure provides and sustains under sub-cycle optical biasing. Operating at room temperature and in a standard atmosphere, the performed experiments demonstrate a robust class of nanoelectronic switches gated by phase-locked optical transients of minute energy content.

  20. Transverse phase space mapping of relativistic electron beams using optical transition radiation

    Directory of Open Access Journals (Sweden)

    G. P. Le Sage

    1999-12-01

    Full Text Available Optical transition radiation (OTR has proven to be a versatile and effective diagnostic for measuring the profile, divergence, and emittance of relativistic electron beams with a wide range of parameters. Diagnosis of the divergence of modern high brightness beams is especially well suited to OTR interference (OTRI techniques, where multiple dielectric or metal foils are used to generate a spatially coherent interference pattern. Theoretical analysis of measured OTR and OTRI patterns allows precise measurement of electron beam emittance characteristics. Here we describe an extension of this technique to allow mapping of divergence characteristics as a function of transverse coordinates within a measured beam. We present the first experimental analysis of the transverse phase space of an electron beam using all optical techniques. Comparing an optically masked portion of the beam to the entire beam, we measure different angular spread and average direction of the particles. Direct measurement of the phase-space ellipse tilt angle has been demonstrated using this optical masking technique.

  1. Non-Fermi-liquid d-wave metal phase of strongly interacting electrons.

    Science.gov (United States)

    Jiang, Hong-Chen; Block, Matthew S; Mishmash, Ryan V; Garrison, James R; Sheng, D N; Motrunich, Olexei I; Fisher, Matthew P A

    2013-01-03

    Developing a theoretical framework for conducting electronic fluids qualitatively distinct from those described by Landau's Fermi-liquid theory is of central importance to many outstanding problems in condensed matter physics. One such problem is that, above the transition temperature and near optimal doping, high-transition-temperature copper-oxide superconductors exhibit 'strange metal' behaviour that is inconsistent with being a traditional Landau Fermi liquid. Indeed, a microscopic theory of a strange-metal quantum phase could shed new light on the interesting low-temperature behaviour in the pseudogap regime and on the d-wave superconductor itself. Here we present a theory for a specific example of a strange metal--the 'd-wave metal'. Using variational wavefunctions, gauge theoretic arguments, and ultimately large-scale density matrix renormalization group calculations, we show that this remarkable quantum phase is the ground state of a reasonable microscopic Hamiltonian--the usual t-J model with electron kinetic energy t and two-spin exchange J supplemented with a frustrated electron 'ring-exchange' term, which we here examine extensively on the square lattice two-leg ladder. These findings constitute an explicit theoretical example of a genuine non-Fermi-liquid metal existing as the ground state of a realistic model.

  2. Ultrafast electron diffraction from laser-aligned molecules in the gas phase

    Science.gov (United States)

    Yang, Jie

    Ultrafast electron diffraction has emerged since the end of last century, and has become an increasingly important tool for revealing great details of molecular dynamics. In comparison to spectroscopic techniques, ultrafast electron diffraction directly probes time-resolved structure of target molecules, and therefore can potentially provide "molecular movies" of the reactions being studied. These molecular movies are critical for understanding and ultimately controlling the energy conversion pathways and efficiencies of photochemical processes. In this dissertation, I have focused on ultrafast electron diffraction from gas-phase molecules, and have investigated several long-standing challenges that have been preventing researchers from being able to achieve 3-D molecular movies of photochemical reactions. The first challenge is to resolve the full 3-D structure for molecules in the gas phase. The random orientation of molecules in the gas phase smears out the diffraction signal, which results in only 1-D structural information being accessible. The second challenge lies in temporal resolution. In order to resolve coherent nuclear motions on their natural time scale, a temporal resolution of ˜200 femtosecond or better is required. However, due to experimental limitations the shortest temporal resolution that had been achieved was only a few picoseconds in early 2000, by Zewail group from Caltech. The first challenge is tackled by laser-alignment. In the first half of the dissertation, I approach this method both theoretically and experimentally, and demonstrate that by using a short laser pulse to transiently align target molecules in space, 3-D molecular structure can be reconstructed ab-initio from diffraction patterns. The second half of the dissertation presents two experiments, both of which are important steps toward imaging coherent nuclear motions in real time during photochemical reactions. The first experiment simultaneously resolves molecular alignment

  3. Electron bunch energy and phase feed-forward stabilization system for the Mark V RF-linac free-electron laser.

    Science.gov (United States)

    Hadmack, M R; Jacobson, B T; Kowalczyk, J M D; Lienert, B R; Madey, J M J; Szarmes, E B

    2013-06-01

    An amplitude and phase compensation system has been developed and tested at the University of Hawai'i for the optimization of the RF drive system to the Mark V free-electron laser. Temporal uniformity of the RF drive is essential to the generation of an electron beam suitable for optimal free-electron laser performance and the operation of an inverse Compton scattering x-ray source. The design of the RF measurement and compensation system is described in detail and the results of RF phase compensation are presented. Performance of the free-electron laser was evaluated by comparing the measured effects of phase compensation with the results of a computer simulation. Finally, preliminary results are presented for the effects of amplitude compensation on the performance of the complete system.

  4. Interplay between nanolaminated structure and electron-phonon coupling in Ti-based MAX phases

    Science.gov (United States)

    Nassour, A.; Mauchamp, V.; Dubois, S.

    2016-11-01

    A linear-response method to the density functional theory is used to derive lattice dynamics, the transport spectral function, and the electron-phonon coupling (EPC) constant of T i2AlC , a member of the very large class of nanolaminated conducting ceramics named MAX phases (where M is a transition metal, A is an element from groups IIIA to VIA, and X is carbon and/or nitrogen). By coupling ab initio calculations with the semiclassical Boltzmann transport theory for electron-phonon scattering, the experimentally observed anisotropic electrical transport properties of T i2AlC are rationalized. Our results indicate that in T i2AlC , because of the weak dependence of the EPC constant λtr ,α (α =x x and z z ) on the crystallographic direction, the anisotropy of ρ (T ) results from the anisotropy of the Fermi surface. These conclusions, in contrast with those obtained on T i3Si C2 (another member of the MAX phases family) using a similar approach, establish a correlation between the nanolaminated structure of the MAX phases and the origin of the anisotropy of their transport properties.

  5. Nanoscale Structure of Self-Assembling Hybrid Materials of Inorganic and Electronically Active Organic Phases

    Energy Technology Data Exchange (ETDEWEB)

    Sofos, M.; Goswami, D.A. Stone D.K.; Okasinski, J.S.; Jin, H.; Bedzyk, M.J.; Stupp, S.I. (NWU)

    2008-10-06

    Hybrid materials with nanoscale structure that incorporates inorganic and organic phases with electronic properties offer potential in an extensive functional space that includes photovoltaics, light emission, and sensing. This work describes the nanoscale structure of model hybrid materials with phases of silica and electronically active bola-amphiphile assemblies containing either oligo(p-phenylene vinylene) or oligo(thiophene) segments. The hybrid materials studied here were synthesized by evaporation-induced self-assembly and characterized by X-ray scattering techniques. Grazing-incidence X-ray scattering studies of these materials revealed the formation of two-dimensional hexagonally packed cylindrical micelles of the organic molecules with diameters between 3.1 and 3.6 nm and cylindrical axes parallel to the surface. During the self-assembly process at low pH, the cylindrical aggregates of conjugated molecules become surrounded by silica giving rise to a hybrid structure with long-range order. Specular X-ray reflectivity confirmed the long-range periodicity of the hybrid films within a specific range of molar ratios of tetraethyl orthosilicate to cationic amphiphile. We did not observe any long-range ordering in fully organic analogues unless quaternary ammonium groups were replaced by tertiary amines. These observations suggest that charge screening in these biscationic conjugated molecules by the mineral phase is a key factor in the evolution of long range order in the self-assembling hybrids.

  6. A mixed ionic and electronic conducting dual-phase membrane with high oxygen permeability.

    Science.gov (United States)

    Fang, Wei; Liang, Fangyi; Cao, Zhengwen; Steinbach, Frank; Feldhoff, Armin

    2015-04-13

    To combine good chemical stability and high oxygen permeability, a mixed ionic-electronic conducting (MIEC) 75 wt% Ce(0.85)Gd(0.1)Cu(0.05)O(2-δ)-25 wt% La(0.6)Ca(0.4)FeO(3-δ)(CGCO-LCF) dual-phase membrane based on a MIEC-MIEC composite has been developed. Copper doping into Ce(0.9)Gd(0.1)O(2-δ) (CGO) oxide enhances both ionic and electronic conductivity, which then leads to a change from ionic conduction to mixed conduction at elevated temperatures. For the first time we demonstrate that an intergranular film with 2-10 nm thickness containing Ce, Ca, Gd, La, and Fe has been formed between the CGCO grains in the CGCO-LCF one-pot dual-phase membrane. A high oxygen permeation flux of 0.70 mL min(-1) cm(-2) is obtained by the CGCO-LCF one-pot dual-phase membrane with 0.5 mm thickness at 950 °C using pure CO2 as the sweep gas, and the membrane shows excellent stability in the presence of CO2 even at lower temperatures (800 °C) during long-term operation.

  7. Atomic structure and electronic properties of the SixSb100-x phase-change memory material

    DEFF Research Database (Denmark)

    Verma, Ashok K.; Modak, Paritosh; Svane, Axel

    2011-01-01

    The electronic and structural properties of SixSb100-x (x∼16) materials are investigated using first-principles molecular dynamics simulations. Crystalline-liquid-amorphous phase transitions are examined and remarkable changes in the local structure around the Si atoms are found. The average Si....... The electronic density of states is metal-like in both the crystalline and the liquid phases, but it exhibits a pseudogap at the Fermi level in the amorphous phase, reflecting the strong abundance of fourfold coordinated Si in the amorphous phase....

  8. Electron attachment to DNA single strands: gas phase and aqueous solution

    Science.gov (United States)

    Gu, Jiande; Xie, Yaoming; Schaefer, Henry F.

    2007-01-01

    The 2′-deoxyguanosine-3′,5′-diphosphate, 2′-deoxyadenosine-3′,5′-diphosphate, 2′-deoxycytidine-3′,5′-diphosphate and 2′-deoxythymidine-3′,5′-diphosphate systems are the smallest units of a DNA single strand. Exploring these comprehensive subunits with reliable density functional methods enables one to approach reasonable predictions of the properties of DNA single strands. With these models, DNA single strands are found to have a strong tendency to capture low-energy electrons. The vertical attachment energies (VEAs) predicted for 3′,5′-dTDP (0.17 eV) and 3′,5′-dGDP (0.14 eV) indicate that both the thymine-rich and the guanine-rich DNA single strands have the ability to capture electrons. The adiabatic electron affinities (AEAs) of the nucleotides considered here range from 0.22 to 0.52 eV and follow the order 3′,5′-dTDP > 3′,5′-dCDP > 3′,5′-dGDP > 3′,5′-dADP. A substantial increase in the AEA is observed compared to that of the corresponding nucleic acid bases and the corresponding nucleosides. Furthermore, aqueous solution simulations dramatically increase the electron attracting properties of the DNA single strands. The present investigation illustrates that in the gas phase, the excess electron is situated both on the nucleobase and on the phosphate moiety for DNA single strands. However, the distribution of the extra negative charge is uneven. The attached electron favors the base moiety for the pyrimidine, while it prefers the 3′-phosphate subunit for the purine DNA single strands. In contrast, the attached electron is tightly bound to the base fragment for the cytidine, thymidine and adenosine nucleotides, while it almost exclusively resides in the vicinity of the 3′-phosphate group for the guanosine nucleotides due to the solvent effects. The comparatively low vertical detachment energies (VDEs) predicted for 3′,5′-dADP− (0.26 eV) and 3′,5′-dGDP− (0.32 eV) indicate that electron detachment

  9. The superconducting phase and electronic excitations of (Rb,Cs) Fe 2 As 2

    Science.gov (United States)

    Kanter, J.; Shermadini, Z.; Khasanov, R.; Amato, A.; Bukowski, Z.; Batlogg, B.

    2011-03-01

    We present specific heat, transport and Muon-Spin Rotation (μ SR) results on (Rb,Cs) Fe 2 As 2 . RbFe 2 As 2 was only recently found to be superconducting below 2.6 K by Bukowski et al. Compared to the related BaFe 2 As 2 the electron density is lower and no magnetic order is observed. For the superconducting phase the superfluid density was calculated from μ SR data. The temperature dependence of the superfluid density and the magnetic penetration depth is well described by a multi-gap scenario. In addition the electronic contribution the specific heat was studied for different compositions and magnetic fields and reveals a high value for the Sommerfeld coefficient γ .

  10. The structural, electronic, elastic and dynamic properties of Co3W in the L12 phase

    Science.gov (United States)

    Arikan, Nihat

    2017-02-01

    A theoretical study is presented for the structural, electronic, elastic and phonon properties of Co3W compounds in L12 phase in the framework of density functional theory. The calculations are carried out within the PBE-GGA for the exchange correlation potential. The electronic structure and particle density of states (DOS) show that Co3W compound is metallic with sturdy hybridization near the Fermi level. The phonon dispersion curves, and the projected density of states been investigated for the first time with an ab initio method using density functional perturbation theory (DFPT). Temperature variations of specific heat capacity in the range of 0-2000 K are obtained using the quasi-harmonic model.

  11. Stellar electron-capture rates calculated with the finite-temperature relativistic random-phase approximation

    CERN Document Server

    Niu, YiFei; Vretenar, Dario; Meng, Jie

    2011-01-01

    We introduce a self-consistent microscopic theoretical framework for modelling the process of electron capture on nuclei in stellar environment, based on relativistic energy density functionals. The finite-temperature relativistic mean-field model is used to calculate the single-nucleon basis and the occupation factors in a target nucleus, and $J^{\\pi} = 0^{\\pm}$, $1^{\\pm}$, $2^{\\pm}$ charge-exchange transitions are described by the self-consistent finite-temperature relativistic random-phase approximation. Cross sections and rates are calculated for electron capture on 54,56Fe and 76,78Ge in stellar environment, and results compared with predictions of similar and complementary model calculations.

  12. Electronic properties of Laves phase ZrFe{sub 2} using Compton spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Samir, E-mail: sameerbhatto11@gmail.com; Kumar, Kishor; Ahuja, B. L. [Department of Physics, University College of Science, ML Sukhadia University, Udaipur-313001 (India); Dashora, Alpa [UM-DAE Centre for Excellence in Basic Sciences, Vidyanagari, Santacruz(E), Mumbai-400098 (India)

    2016-05-06

    First-ever experimental Compton profile of Laves phase ZrFe{sub 2}, using indigenous 20 Ci {sup 137}Cs Compton spectrometer, is presented. To analyze the experimental electron momentum density, we have deduced the theoretical Compton profiles using density functional theory (DFT) and hybridization of DFT and Hartree-Fock scheme within linear combination of atomic orbitals (LCAO) method. The energy bands and density of states are also calculated using LCAO prescription. The theoretical profile based on local density approximation gives a better agreement with the experimental profile than other reported schemes. The present investigations validate the inclusion of correlation potential of Perdew-Zunger in predicting the electronic properties of ZrFe{sub 2}.

  13. Electronic properties of Laves phase ZrFe2 using Compton spectroscopy

    Science.gov (United States)

    Bhatt, Samir; Kumar, Kishor; Dashora, Alpa; Ahuja, B. L.

    2016-05-01

    First-ever experimental Compton profile of Laves phase ZrFe2, using indigenous 20 Ci 137Cs Compton spectrometer, is presented. To analyze the experimental electron momentum density, we have deduced the theoretical Compton profiles using density functional theory (DFT) and hybridization of DFT and Hartree-Fock scheme within linear combination of atomic orbitals (LCAO) method. The energy bands and density of states are also calculated using LCAO prescription. The theoretical profile based on local density approximation gives a better agreement with the experimental profile than other reported schemes. The present investigations validate the inclusion of correlation potential of Perdew-Zunger in predicting the electronic properties of ZrFe2.

  14. Tests of CMS Phase 1 Pixel Upgrade Back-End Electronics

    Science.gov (United States)

    Kilpatrick, Matthew

    2016-03-01

    The CMS detector will be upgraded so that it can handle the higher instantaneous luminosity of the 13-14 TeV collisions. The Phase 1 Pixel detector will experience a higher density of particle interactions requiring new front-end and read-out electronics. A front-end pixel data emulator was developed to validate the back-end readout electronics prior to installation and operation. A FPGA-based design emulates 400 Mbps data patterns from the front-end read-out chips and will be used to confirm that each Front End Driver (FED) can correctly decode and process the expected data patterns and error conditions. A FED test bench using the emulator can produce LHC-like conditions for stress testing FED hardware, firmware and online software. The design of the emulator and initial test results will be reported.

  15. Phase-change recording medium that enables ultrahigh-density electron-beam data storage

    Science.gov (United States)

    Gibson, G. A.; Chaiken, A.; Nauka, K.; Yang, C. C.; Davidson, R.; Holden, A.; Bicknell, R.; Yeh, B. S.; Chen, J.; Liao, H.; Subramanian, S.; Schut, D.; Jasinski, J.; Liliental-Weber, Z.

    2005-01-01

    An ultrahigh-density electron-beam-based data storage medium is described that consists of a diode formed by growing an InSe/GaSe phase-change bilayer film epitaxially on silicon. Bits are recorded as amorphous regions in the InSe layer and are detected via the current induced in the diode by a scanned electron beam. This signal current is modulated by differences in the electrical properties of the amorphous and crystalline states. The success of this recording scheme results from the remarkable ability of layered III-VI materials, such as InSe, to maintain useful electrical properties at their surfaces after repeated cycles of amorphization and recrystallization.

  16. Local electronic structure of olivine phases of LixFePO4.

    Science.gov (United States)

    Miao, Shu; Kocher, Michael; Rez, Peter; Fultz, Brent; Yazami, Rachid; Ahn, Channing C

    2007-05-24

    Changes in the local electronic structure at atoms around Li sites in the olivine phase of LiFePO4 were studied during delithiation. Electron energy loss spectrometry was used for measuring shifts and intensities of the near-edge structure at the K-edge of O and at the L-edges of P and Fe. Electronic structure calculations were performed on these materials with a plane-wave pseudopotential code and with an atomic multiplet code with crystal fields. It is found that both Fe and O atoms accommodate some of the charge around the Li+ ion, evidently in a hybridized Fe-O state. The O 2p levels appear to be fully occupied at the composition LiFePO4. With delithiation, however, these states are partially emptied, suggestive of a more covalent bonding to the oxygen atom in FePO4 as compared to LiFePO4. The same behavior is found for the white lines at the Fe L2,3-edges, which also undergo a shift in energy upon delithiation. A charge transfer of up to 0.48 electrons is found at the Fe atoms, as determined from white line intensity variations after delithiation, while the remaining charge is compensated by O atoms. No changes are evident at the P L2,3-edges.

  17. The New Front-End Electronics for the ATLAS Tile Calorimeter Phase 2 Upgrade

    CERN Document Server

    Drake, Gary; The ATLAS collaboration

    2015-01-01

    We present the plans, design, and performance results to date ofor the new front-end electronics being developed for the Phase 2 Upgrade of the ATLAS Tile Calorimeter. The front-end electronics will be replaced to address the increase in beam energy and luminosity planned for the LHC around 2023, as well as to upgrade to faster, more modern components with higher radiation tolerance. The new electronics will operate dead-timelessly, pushing full data sets from each beam crossing to the data acquisition system that resides off-detector in the USA15 counting room. The new electronics contains five main parts: the front-end boards that connect directly to the photo-multiplier tubes; the Main Boards that digitize the data; the Daughter Boards that collect the data streams and contain the high-speed optical communication links for writing data to the data acquisition system; a programmable high voltage control system; and a new low-voltage power supply. There are different options for implementing these subcompone...

  18. The New Front-End Electronics for the ATLAS Tile Calorimeter Phase 2 Upgrade

    CERN Document Server

    Drake, Gary; The ATLAS collaboration

    2015-01-01

    We present the design for the new front-end electronics being developed for the Phase 2 Upgrade of the ATLAS Tile Calorimeter. The front-end electronics will be replaced to address the increase in beam energy and luminosity planned for the LHC around 2023, as well as to upgrade to faster, more modern components with higher radiation tolerance. The new electronics will operate dead-timelessly, pushing full data sets from each beam crossing to the data acquisition system that resides off-detector in the USA15 counting room. The new electronics contains five main parts: the Front End Boards that connect directly to the photo-multiplier tubes; the Main Boards that digitize the data; the Daughter Boards that collect the data streams and contain the high-speed optical communication links for writing data to the data acquisition system; a programmable high voltage control system; and a new low-voltage power supply. There are different options for implementing these subcomponents, which will be described. The new sys...

  19. Tests with beam setup of the TileCal phase-II upgrade electronics

    Science.gov (United States)

    Reward Hlaluku, Dingane

    2017-09-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run-2 value. The ATLAS Tile calorimeter plans to introduce a new readout architecture by completely replacing the back-end and front-end electronics for the High Luminosity LHC. The photomultiplier signals will be fully digitized and transferred for every bunch crossing to the off-detector Tile PreProcessor. The Tile PreProcessor will further provide preprocessed digital data to the first level of trigger with improved spatial granularity and energy resolution in contrast to the current analog trigger signals. A single super-drawer module commissioned with the phase-II upgrade electronics is to be inserted into the real detector to evaluate and qualify the new readout and trigger concepts in the overall ATLAS data acquisition system. This new super-drawer, so-called hybrid Demonstrator, must provide analog trigger signals for backward compatibility with the current system. This Demonstrator drawer has been inserted into a Tile calorimeter module prototype to evaluate the performance in the lab. In parallel, one more module has been instrumented with two other front-end electronics options based on custom ASICs (QIE and FATALIC) which are under evaluation. These two modules together with three other modules composed of the current system electronics were exposed to different particles and energies in three test-beam campaigns during 2015 and 2016.

  20. Electron impact ionization of water molecules in ice and liquid phases

    Energy Technology Data Exchange (ETDEWEB)

    Joshipura, K N [Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120 (India); Gangopadhyay, Sumona [Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120 (India); Limbachiya, C G [P S Science College, Kadi (N.G.) 382 715 (India); Vinodkumar, Minaxi [V P and R P T P Science College, Vallabh Vidyanagar-388 120 (India)

    2007-09-15

    Electron scattering processes in ice or water are known to occur in natural as well as man-made systems. But the processes are difficult to investigate in theory or in laboratory. We present our calculations on total ionization cross section (Q{sub ion}) for collisions of electrons with H{sub 2}O molecules in condensed matter (ice and liquid) forms, at impact energies from ionization threshold to 1000 eV, extendable to about 1 MeV. Our theoretical method determines the total inelastic cross section (Q{sub inel}) of electron impact on H{sub 2}O (ice), by starting with the complex scattering potential partial wave formalism. Reasonable approximations are invoked to project out the ionization cross section of H{sub 2}O molecule in ice (or liquid) form by using the Q{sub inel} as an input. Properties of the condensed phase H{sub 2}O are incorporated together with bulk screening effects in the scattering echanism. Due to medium effects, the present Q{sub ion} are found to be lower than the corresponding values for H{sub 2}O in free or gaseous state. Macroscopic cross sections and electron mean free paths for the bulk medium are also calculated. This study has potential applications in radiation biology as well as chemistry and in planetary science and astrophysics.

  1. The New Front End Electronics For the ATLAS Tile Calorimeter Phase 2 Upgrade

    CERN Document Server

    Gomes, Agostinho; The ATLAS collaboration

    2015-01-01

    We present the plans, design, and performance results to date for the new front-end electronics being developed for the Phase 2 Upgrade of the ATLAS Tile Calorimeter. The front-end electronics will be replaced to address the increased luminosity at the HL-LHC around 2023, as well as to upgrade to faster, more modern components with higher radiation tolerance. The new electronics will operate dead-timelessly, pushing full data sets from each beam crossing to the data acquisition system that resides off-detector in the USA15 counting room. The new electronics contains five main parts: the front-end boards that connect directly to the photomultiplier tubes; the Main Boards that digitize the data; the Daughter Boards that collect the data streams and contain the high-speed optical communication links for writing data to the data acquisition system; a programmable high voltage control system; and a new low-voltage power supply. There are different options for implementing these subcomponents, which will be describ...

  2. The new Front End Electronics for the ATLAS Tile Calorimeter Phase 2 Upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00226662; The ATLAS collaboration

    2016-01-01

    We present the plans, design, and performance results to date for the new front end electronics being developed for the Phase 2 Upgrade of the ATLAS Tile Calorimeter. The front end electronics will be replaced to address the increased luminosity at the HL-LHC around 2023, as well as to upgrade to faster, more modern components with higher radiation tolerance. The new electronics will operate dead-timelessly, pushing full data sets from each beam crossing to the data acquisition system that resides off-detector in the USA15 counting room. The new electronics contains five main parts: the front end boards that connect directly to the photomultiplier tubes; the Main Boards that digitize the data; the Daughter Boards that collect the data streams and contain the high speed optical communication links for writing data to the data acquisition system; a programmable high voltage control system; and a new low voltage power supply. There are different options for implementing these subcomponents, which will be describ...

  3. Phase stability and electronic structure of UMo2Al20: A first-principles study

    Science.gov (United States)

    Liu, Peng-Chuang; Xian, Ya-Jiang; Wang, Xin; Zhang, Yu-Ting; Zhang, Peng-Cheng

    2017-09-01

    In this paper, the phase stability of UMo2Al20 was explored using cluster formula in combination with first-principles calculations. Cluster formula analysis uncovered that the compound was composed of two principal clusters, i.e. [Mo-Al12] and [U-Al16]. The electronic interactions between U, Mo and Al atoms in this compound were discussed using elastic property, Bader charges and energy-resolved local bonding analysis, as well as the electronic interactions between Mo and Al atoms in [Mo-Al12] cluster and between U and Al atoms in [U-Al16] cluster. It revealed that UMo2Al20 satisfied the mechanical stability criterion for cubic system, and exhibited near ionic bonding character with weak bonding directionality. The calculations within both standard DFT and HSE frameworks demonstrated that U and Al atoms acted as an electron donor while Mo atoms acted as electron acceptor. The intrinsic stability of UMo2Al20 mainly stemmed from the bonding states of Mo-Al bonds and Al-Al bonds in [Mo-Al12] cluster. These calculations provide a further insight on the CeCr2Al20-type ternary compounds.

  4. Experimental Research of Electronic Devices Thermal Control Using Metallic Phase Change Materials

    Institute of Scientific and Technical Information of China (English)

    Ai-Gang Pan; Jun-Biao Wang; Xian-Jie Zhang; Xiao-Bao Cao

    2014-01-01

    A Phase-change thermal control unit ( PTCU) filled with metallic phase change material ( PCM) Bismuth alloy for electric devices thermal protection was developed and investigated experimentally. The PTCU filled with PCM was designed and manufactured. Resistance heating components ( RCHs) produced 1 W, 3 W, 5 W, 7W, and 10 W for simulating heat generation of electronic devices. At various heating power levels, the performance of PTCU were tested during heating period and one duty cycle period. The experimental results show that the PTCU delays RCH reaching the maximum operating temperature. Also, a numerical model was developed to enable interpretation of experimental results and to perform parametric studies. The results confirmed that the PTCU is suitable for electric devices thermal control.

  5. Synthesis, crystal structure and electronic structure of the binary phase Rh2Cd5

    Science.gov (United States)

    Koley, Biplab; Chatterjee, S.; Jana, Partha P.

    2017-02-01

    A new phase in the Rh-Cd binary system - Rh2Cd5 has been identified and characterized by single crystal X-ray diffraction and Energy dispersive X-ray analysis. The stoichiometric compound Rh2Cd5 crystallizes with a unit cell containing 14 atoms, in the orthorhombic space group Pbam (55). The crystal structure of Rh2Cd5 can be described as a defect form of the In3Pd5 structure with ordered vacancies, formed of two 2D atomic layers with the stacking sequence: ABAB. The A type layers consist of (3.6.3.6)-Kagomé nets of Cd atoms while the B type layers consist of (35) (37)- nets of both Cd and Rh atoms. The stability of this line phase is investigated by first principle electronic structure calculations on the model of ordered Rh2Cd5.

  6. Super-resolution phase reconstruction technique in electron holography with a stage-scanning system

    Science.gov (United States)

    Lei, Dan; Mitsuishi, Kazutaka; Harada, Ken; Shimojo, Masayuki; Ju, Dongying; Takeguchi, Masaki

    2014-02-01

    Super-resolution image reconstruction is a digital signal processing technique that allows creating a high-resolution image from multiple low-resolution images taken at slightly different positions. We introduce the super-resolution image reconstruction technique into electron holography for reconstructing phase images as follows: the studied specimen is shifted step-wise with a high-precision piezo holder, and a series of holograms is recorded. When the step size is not a multiple of the CCD pixel size, processing of the acquired series results in a higher pixel density and spatial resolution as compared to the phase image obtained with conventional holography. The final resolution exceeds the limit of the CCD pixel size divided by the magnification.

  7. Phase-Field Modeling of Microstructure Evolution in Electron Beam Additive Manufacturing

    Science.gov (United States)

    Gong, Xibing; Chou, Kevin

    2015-05-01

    In this study, the microstructure evolution in the powder-bed electron beam additive manufacturing (EBAM) process is studied using phase-field modeling. In essence, EBAM involves a rapid solidification process and the properties of a build partly depend on the solidification behavior as well as the microstructure of the build material. Thus, the prediction of microstructure evolution in EBAM is of importance for its process optimization. Phase-field modeling was applied to study the microstructure evolution and solute concentration of the Ti-6Al-4V alloy in the EBAM process. The effect of undercooling was investigated through the simulations; the greater the undercooling, the faster the dendrite grows. The microstructure simulations show multiple columnar-grain growths, comparable with experimental results for the tested range.

  8. A study on the pulsed laser printing of liquid-phase exfoliated graphene for organic electronics

    Science.gov (United States)

    Papazoglou, S.; Raptis, Y. S.; Chatzandroulis, S.; Zergioti, I.

    2014-10-01

    The aim of this work is the pulsed laser printing of liquid-phase exfoliated graphene in the nanosecond regime and the optimization of the printing process on Si/SiO2 and flexible polymer substrates (polyethylene naphthalate) via the laser-induced forward transfer technique (LIFT). The laser printing conditions and the optimum energy fluence window for reproducible deposition have been investigated, while the deposited graphene features have been studied morphologically and structurally by means of optical microscopy, micro-Raman spectroscopy and electrical characterization. LIFT experiments were carried out using the fourth harmonic (266 nm) of a pulsed ns Nd:YAG laser combined with a high-power imaging micromachining system to monitor the printing process throughout the experiments. The irradiation of our graphene solution resulted in the deposition of well-resolved patterns on different surfaces, highlighting LIFT as an alternative technique for the printing and patterning of liquid-phase exfoliated graphene for organic electronics applications.

  9. A symmetry-respecting topologically-ordered surface phase of 3d electron topological insulators

    OpenAIRE

    Metlitski, Max A.; Kane, C. L.; Fisher, Matthew P. A.

    2013-01-01

    A 3d electron topological insulator (ETI) is a phase of matter protected by particle-number conservation and time-reversal symmetry. It was previously believed that the surface of an ETI must be gapless unless one of these symmetries is broken. A well-known symmetry-preserving, gapless surface termination of an ETI supports an odd number of Dirac cones. In this paper we deduce a symmetry-respecting, gapped surface termination of an ETI, which carries an intrinsic 2d topological order, Moore-R...

  10. Phase-I Trigger Readout Electronics Upgrade for the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00452211; The ATLAS collaboration

    2017-01-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for the Long Shut-down period of 2019-2020 (LS2), referred to as Phase-I upgrade, will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow sucient increase of the trigger rate, an improvement of the trigger system is required. The Liquid Argon (LAr) Calorimeter read-out will therefore be modi ed to use digital trigger signals with a higher spatial granularity in order to improve the identi cation effciencies of electrons, photons, tau, jets and missing energy, at high background rejection rates at the Level-1 trigger.

  11. Effectiveness of rf phase modulation for increasing bunch length in electron storage rings

    Science.gov (United States)

    Orsini; Mosnier

    2000-04-01

    Aiming at increasing the apparent bunch length and hence the beam lifetime in electron storage rings, rf phase modulation near one parametric resonance has been experimentally investigated. Since the possible benefit of this technique depends greatly on the ring parameters, we studied the effect of such a modulation for different rf parameters on the longitudinal emittance. Theoretical predictions and results of simulations are compared and discussed. It is shown that synchrotron radiation tends to spoil the parametric resonance. In particular, a criterion for island survival has been found.

  12. Scanning electron microscopy and X-ray spectroscopy applied to mycelial phase of sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    M. Thibaut

    1975-04-01

    Full Text Available Scanning electron microscopy applied to the mycelial phase of Sporothrix schenckii shows a matted mycelium with conidia of a regular pattern. X-Ray microanalysis applied in energy dispersive spectroscopy and also in wavelength dispersive spectroscopy reveals the presence of several elements of Mendeleef's classification.Sporothrix schenckii foi estudado em microscopia eletrônica. Foram observados caracteres das hífas e dos esporos, vários elementos da classificação periódica foram postos em evidência graças à micro-análise a raios X.

  13. The Phase-I Trigger Readout Electronics Upgrade for the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    Ochoa, Ines; The ATLAS collaboration

    2017-01-01

    Electronics developments are pursued for the trigger readout of the ATLAS Liquid-Argon Calorimeter towards the Phase-I upgrade scheduled in the LHC shut-down period of 2019-2020. The LAr Trigger Digitizer system will digitize 34000 channels at a 40 MHz sampling with 12 bit precision after the bipolar shaper at the front-end system, and transmit to the LAr Digital Processing system in the back-end to extract the transverse energies. Results of ASIC developments including QA and radiation hardness evaluations, and performances on prototypes will presented with the overall system design.

  14. Angular Momentum-Phase Coherent State for an Electron in Uniform Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; FAN Yue

    2001-01-01

    Based on the newly constructed state |l, r》 [Fan et al., Chin. Phys. Lett. 16(1999)706], where l is the angular momentum quantum number and r denotes the electron's orbit radius in a uniform magnetic field, we propose a new angular momentum-phase coherent state by introducing a new operator A. A and A+ are annihilation and creation operators in the |l, r》 space, respectively. The coherent state is A's eigenket and possesses non-orthonormal and overcomplete properties. It is constructed on the certain superposition of zero-angular momentum states along the radius direction.

  15. Pressure-induced phase transition and electronic properties of MgB2C2

    Science.gov (United States)

    Zheng, Baobing

    2017-05-01

    Two thermodynamically stable new high-pressure phases of MgB2C2 with P-3m1 and I4 cm structure were uncovered through first principles crystal structure search based on unbiased evolutionary simulations. Compared with oC80-MgB2C2 and oP10-MgB2C2 phases, the theoretically predicted hP5-MgB2C2 and tI20-MgB2C2 phases show an intriguing three-dimensional (3D) sp3 B-C bonded network, instead of original 2D sp2 B-C layers, which has been confirmed with the analysis of their structures and partial densities of states. The phase transitions of oC80-MgB2C2 → oP10-MgB2C2, oP10-MgB2C2 → hP5-MgB2C2, and hP5-MgB2C2 → tI20-MgB2C2 occur at 4.6 GPa, 18.9 GPa, and 247.5 GPa, respectively, which have been determined according to the examination of enthalpy differences curves. Electronic band structure calculations suggest that the oC80-MgB2C2, oP10-MgB2C2 and hP5-MgB2C2 phases are indirect band gap semiconductor, while the tI20-MgB2C2 phase changes to direct band gap semiconductor.

  16. Investigation into spiral phase plate contrast in optical and electron microscopy

    CERN Document Server

    Juchtmans, Roeland; Lubk, Axel; Verbeeck, Jo

    2016-01-01

    The use of phase plates in the back focal plane of a microscope is a well established technique in optical microscopy to increase the contrast of weakly interacting samples and is gaining interest in electron microscopy as well. In this paper we study the spiral phase plate (SPP), also called helical, vortex, or two-dimensional Hilbert phase plate, that adds an angularly dependent phase of the form $e^{i\\ell\\phi}$ to the exit wave in Fourier space. In the limit of large collection angles, we analytically calculate that the average of a pair of $\\ell=\\pm1$ SPP images is directly proportional to the gradient squared of the exit wave, explaining the edge contrast previously seen in optical SPP work. The difference between a clockwise-anticlockwise pair of SPP images and conditions where this difference vanishes and the gradient of the exit wave can be seen from one single SPP image, are discussed. Finally, we demonstrate how with three images, one without and one with each of an $\\ell=\\pm1$ SPP, may give enough ...

  17. Coupled magnetic, structural, and electronic phase transitions in FeRh

    Science.gov (United States)

    Lewis, L. H.; Marrows, C. H.; Langridge, S.

    2016-08-01

    The B2-ordered intermetallic magnetic compound FeRh exhibits a thermodynamically first-order phase transition in the vicinity of room temperature that makes it a highly intriguing subject for both fundamental and applied study. On heating through the transition the magnetic character changes from antiferromagnetic to ferromagnetic order with an accompanying large increase in the electrical conductivity and an abrupt expansion in the lattice structure. Accompanying these effects is a very large entropy change comprising both magnetic and lattice contributions. As well as being driven by temperature, these coupled phase transitions may be driven by the application or removal of a magnetic field, or, because of the extremely strong lattice-spin interactions present in this compound, by an applied strain (pressure), and combinations thereof. In addition to these driving factors, the transition temperature can also be tuned by both compositional and finite size effects. Building from historical work on bulk forms of FeRh, the effects of extrinsic and intrinsic parameter variation on the coupled magnetic, structural, and electronic phase transitions are reviewed here, with special attention directed to phenomena that manifest themselves in thin films. Overall, the rich manner in which the physical properties of FeRh change at the phase transition has potential for a wide range of technological applications in areas such as thermally-assisted magnetic recording media, CFC-free magnetic cooling, sensors for energy management, and novel spintronic devices.

  18. Slippage effect on laser phase error amplification in seeded harmonic generation free-electron lasers

    CERN Document Server

    Feng, Chao; Wang, Guanglei; Wang, Dong; Xiang, Dao; Zhao, Zhentang

    2013-01-01

    Free-electron lasers (FELs) seeded with external lasers hold great promise for generating high power radiation with nearly transform-limited bandwidth in soft x-ray region. However, it has been pointed out that the initial seed laser noise will be amplified by the frequency up-conversion process, which may degrade the quality of the output radiation produced by a harmonic generation scheme. In this paper, theoretical and simulation studies for laser phase error amplification in seeded FEL schemes with slippage effect taken into account are presented. It is found that, the seed laser imperfection experienced by the electron beam can be significantly smoothed by the slippage effect in the modulator when the slippage length is comparable to the laser pulse length. This smoothing effect allows one to preserve the excellent temporal coherence of seeded FELs in presence of large laser phase errors. For ultra-short UV seed lasers with FWHM around 16 fs, the slippage length in a modulator with ~30 undulator periods i...

  19. The reaction of CF2Cl2 with gas-phase hydrated electrons.

    Science.gov (United States)

    Lengyel, Jozef; van der Linde, Christian; Fárník, Michal; Beyer, Martin K

    2016-09-14

    The reaction of dichlorodifluoromethane (CF2Cl2) with hydrated electrons (H2O)n(-) (n = 30-86) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. The hydrated electron reacts with CF2Cl2, forming (H2O)mCl(-) with a rate constant of (8.6 ± 2.2) × 10(-10) cm(3) s(-1), corresponding to an efficiency of 57 ± 15%. The reaction enthalpy was determined using nanocalorimetry, revealing a strongly exothermic reaction with ΔHr(CF2Cl2, 298 K) = -208 ± 41 kJ mol(-1). The combination of the measured reaction enthalpy with thermochemical data from the condensed phase yields a C-Cl bond dissociation enthalpy (BDE) ΔHC-Cl(CF2Cl2, 298 K) = 355 ± 41 kJ mol(-1) that agrees within error limits with the predicted values from quantum chemical calculations and published BDEs.

  20. Effect of a physical phase plate on contrast transfer in an aberration-corrected transmission electron microscope.

    Science.gov (United States)

    Gamm, B; Schultheiss, K; Gerthsen, D; Schröder, R R

    2008-08-01

    In this theoretical study we analyze contrast transfer of weak-phase objects in a transmission electron microscope, which is equipped with an aberration corrector (C(s)-corrector) in the imaging lens system and a physical phase plate in the back focal plane of the objective lens. For a phase shift of pi/2 between scattered and unscattered electrons induced by a physical phase plate, the sine-type phase contrast transfer function is converted into a cosine-type function. Optimal imaging conditions could theoretically be achieved if the phase shifts caused by the objective lens defocus and lens aberrations would be equal to zero. In reality this situation is difficult to realize because of residual aberrations and varying, non-zero local defocus values, which in general result from an uneven sample surface topography. We explore the conditions--i.e. range of C(s)-values and defocus--for most favourable contrast transfer as a function of the information limit, which is only limited by the effect of partial coherence of the electron wave in C(s)-corrected transmission electron microscopes. Under high-resolution operation conditions we find that a physical phase plate improves strongly low- and medium-resolution object contrast, while improving tolerance to defocus and C(s)-variations, compared to a microscope without a phase plate.

  1. Gutzwiller charge phase diagram of cuprates, including electron-phonon coupling effects

    Science.gov (United States)

    Markiewicz, R. S.; Seibold, G.; Lorenzana, J.; Bansil, A.

    2015-02-01

    Besides significant electronic correlations, high-temperature superconductors also show a strong coupling of electrons to a number of lattice modes. Combined with the experimental detection of electronic inhomogeneities and ordering phenomena in many high-Tc compounds, these features raise the question as to what extent phonons are involved in the associated instabilities. Here we address this problem based on the Hubbard model including a coupling to phonons in order to capture several salient features of the phase diagram of hole-doped cuprates. Charge degrees of freedom, which are suppressed by the large Hubbard U near half-filling, are found to become active at a fairly low doping level. We find that possible charge order is mainly driven by Fermi surface nesting, with competition between a near-(π ,π ) order at low doping and antinodal nesting at higher doping, very similar to the momentum structure of magnetic fluctuations. The resulting nesting vectors are generally consistent with photoemission and tunneling observations, evidence for charge density wave order in YBa2Cu3O7-δ including Kohn anomalies, and suggestions of competition between one- and two-q-vector nesting.

  2. Thermal entanglement between π-electrons in silicene and photons; occurrence of phase transitions

    Science.gov (United States)

    Rastgoo, S.; Golshan, M. M.

    2017-03-01

    In this article, the thermal entanglement between π-electronic states in a monolayer silicene sheet and a single mode quantized electromagnetic field is investigated. We assume that the system is in thermal equilibrium with the environment at a temperature T, so that the whole system is described by the Boltzmann distribution. Using the states of total Hamiltonian, the thermal density matrix and, consequently, its partially transposed one is computed, giving rise to the determination of negativity. Our analytical calculations, along with representative figures, show that the system is separable at zero temperature, exhibits a maximum, at a specific temperature, and asymptotically vanishes. Along these lines we also report the effects of electron-photon coupling, as well as the silicene buckling, on the entanglement. Specifically, we demonstrate that the maximal value of entanglement is larger for stronger electron-photon coupling, while it decreases for larger buckling effect. Moreover, we show that the gap in the total energy spectrum remains intact for any value of the buckling parameter. There is, however, one state whose energy changes sign, at a specific buckling, indicating a change of phase.

  3. First principles study of structural and electronic properties of different phases of boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rashid [Centre for High Energy Physics, University of the Punjab, Lahore 54590 (Pakistan)], E-mail: rasofi@hotmail.com; Fazal-e-Aleem [Centre for High Energy Physics, University of the Punjab, Lahore 54590 (Pakistan); Hashemifar, S. Javad; Akbarzadeh, Hadi [Department of Physics, Isfahan University of Technology, 84156 Isfahan (Iran, Islamic Republic of)

    2007-11-15

    A theoretical study of structural and electronic properties of the four phases of BN (zincblende, wurtzite, hexagonal and rhombohedral) is presented. The calculations are done by full potential (linear) augmented plane wave plus local orbitals (APW+lo) method based on the density functional theory (DFT) as employed in WIEN2k code. Using the local density approximation (LDA) and generalized gradient approximation (GGA-PBE) for the exchange correlation energy functional, we have calculated lattice parameters, bulk modulus, its pressure derivative and cohesive energy. In order to calculate electronic band structure, another form of the generalized gradient approximation proposed by Engel and Vosko (GGA-EV) has been employed along with LDA and GGA-PBE. It is found that all the three approximations exhibit similar band structure qualitatively. However, GGA-EV gives energy band gap values closer to the measured data. Our results for structural and electronic properties are compared with the experimental and other theoretical results wherever these are available.

  4. Extremely large electronic anisotropy caused by electronic phase separation in Ca3(Ru0.97Ti0.03)2O7 single crystal

    Science.gov (United States)

    Peng, Jing; Wu, Xiaoshan; Mao, Zhiqiang

    2015-03-01

    Bilayered ruthenate Ca3 Ru2O7 exhibits rich electronic and magnetic properties. It orders at 56K, with FM bilayers antiferromagnetically coupled along c-axis (AFM-a). The AFM transition is closely followed by a first-order metal-insulator (MI) transition at 48K where spin directions switch to the b-axis (AFM-b). While this MI transition is accompanied by the opening of anisotropic charge gap; small Fermi pockets survive from the MI transition, thus resulting in quasi-2D metallic transport behavior for Tinsulating state with a nearest-neighbor AFM order via Ti doping. Ca3(Ru0 . 97 Ti0 . 03) 2O7 is close to the critical composition for the AFM-b-to-G-AFM phase transition. Our recent studies show the sample with this composition is characterized by an electronic phase separation between the insulating G-AFM phase (major) and the localized AFM-b phase (minor). The minor AFM-b phase forms a conducting path through electronic percolation within the ab-plane, but not along the c-axis, thus resulting in extremely large electronic anisotropy with ρab /ρc ~109 , which may be the largest among bulk materials.

  5. Statistical values of valence electron structure parameters applied to research on phase transition temperature and eutectoid reaction of titanium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the empirical electron theory of solids and molecules (EET), the statisti- cal values of valence electron structure parameters SnA and SEA which can char- acterize the properties of alloy phases are calculated, and influences of alloying elements (e.g., V, Nb, Mo, Hf, Zr, Fe, Mn, Co, Cr, Si, and so on) on the phase transi- tion temperature and eutectoid reaction of titanium alloy are discussed with the statistical values of valence electron structure parameters. The research results agree well with real situations.

  6. Structures, electronic properties and stability phase diagrams for copper(I/II) bromide surfaces.

    Science.gov (United States)

    Altarawneh, Mohammednoor; Marashdeh, Ali; Dlugogorski, Bogdan Z

    2015-04-14

    This study presents a comprehensive periodic slab DFT investigation into structures, electronic properties and thermodynamic stability of all plausible terminations of CuBr and CuBr2 surfaces. We first estimate lattice constants, formation and cohesive energies for the two bulk copper bromides before proceeding to analyse geometrical and electronic features of CuBr and CuBr2 configurations. Surface geometries exhibit, to a large extent, corresponding bulk structures. Nevertheless, certain CuBr2 surfaces experience a downward displacement of the topmost Cu-containing layers. We plot total and projected density of states for bulk and surface geometries of these two copper bromides and calculate their associated Bader's electronic charges. Electronic structure analysis for the bulk and surfaces of these two copper bromides show that CuBr bulk and its most stable surface (CuBr(001)_Br) do not exhibit any metallic character, whereas CuBr2 bulk and its most stable surface (CuBr2(001)_Br) both exhibit metallic characters. The formalism of the ab initio atomistic thermodynamics affords the construction of energy phase diagrams. We predict that the CuBr(001) surface, truncated with Br atoms, is the most stable structure among the considered CuBr slabs at all physically meaningful ranges of the chemical potential of bromine. This surface resembles a c(2 × 2)-bromine sheet that was characterised experimentally from initial interaction of Br2 with a Cu(100) surface. We find that surfaces terminated with the electronegative bromine atoms, if accompanied by significant relaxation, tend to be more stable. Calculated surface energies predict the shapes of CuBr and CuBr2 nanoparticles as the chemical potential of bromine changes.

  7. Interacting one dimensional electron systems and stripe phase of high temperature superconductors

    Science.gov (United States)

    Jaefari, Akbar

    In this dissertation, I will consider the problem of coupled one dimensional electronic systems particularly in connection with the stripe phases of high temperature superconductors. Three major problems have been addressed in this dissertation. In chapter one, I consider the problem of the Local Density of States for spin-gapped one-dimensional charge density wave (CDW) states and Mott insulators in the presence of a hard-wall boundary. I calculate the boundary contribution to the single-particle Green function in the low-energy limit using field theory techniques and analyze it in terms of its Fourier transform in both time and space. The boundary LDOS in the CDW case exhibits a singularity at momentum 2kF, which is indicative of the pinning of the CDW order at the impurity. Several dispersing features has been observed at frequencies above the spin gap, which provide a characteristic signature of spin-charge separation. This demonstrates that the boundary LDOS can be used to infer properties of the underlying bulk system. In the presence of a boundary magnetic field mid-gap states localized at the boundary emerge with signature in the LDOS. I discuss implications of these results for STM experiments on quasi-1D systems such as two-leg ladder materials like Sr14Cu24O41. By exchanging the roles of charge and spin sectors, all our results directly carry over to the case of one-dimensional Mott insulators. In the second chapter, I study an extended Hubbard-Heisenberg model on two types of two leg ladders, a model without flux and a model with flux pi per plaquette. In the case of the conventional (flux-less) ladder the Pair density wave state arises for certain filling fractions when commensurability conditions is satisfied. For the flux pi ladder the pair density wave phase is generally present. The PDW phase is characterized by a finite spin gap and a superconducting order parameter with a finite (commensurate in this case) wave vector and power

  8. Zero temperature magnetic phase diagram of Wigner crystal in anisotropic two-dimensional electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Chenggang [Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States)], E-mail: zcf@ornl.gov; Bhatt, Ravin N. [Department of Electrical Engineering, Princeton Center for Theoretical Physics, and Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544 (United States)

    2008-04-01

    We study the effect of mass anisotropy on the magnetic ordering of the Wigner crystal phase of low density electron systems in two dimensions at T=0. We apply the instanton approximation to various ring exchange processes, which includes the lowest order Gaussian fluctuations beyond the WKB approximation. The multi-particle exchange frequencies are calculated with effective mass anisotropy, both with and without ensuing lattice distortions. We find that when sufficient mass anisotropy is present, the two-spin exchange process between the nearest neighbors becomes more frequent than the three particle processes. Therefore, its corresponding antiferromagnetic exchange exceeds the ferromagnetic exchange from the three-spin process and becomes dominant. Numerical diagonalization of small clusters with two, three, and four-spin exchange terms shows a transition from a ferromagnetic to an antiferromagnetic ground state with increasing mass anisotropy.

  9. High energy Compton spectroscopy and electronic structure of Laves phase ZrFe2

    Science.gov (United States)

    Bhatt, Samir; Kumar, Kishor; Arora, Gunjan; Bapna, Komal; Ahuja, B. L.

    2016-08-01

    We present the first-ever experimental Compton profile of Laves phase ZrFe2 using indigenous 20 Ci 137Cs Compton spectrometer. To annotate the experimental electron momentum density, we have calculated the theoretical Compton profiles using density functional theory (DFT) and hybridization of Hartree-Fock and DFT within linear combination of atomic orbitals (LCAO) method. The spin-polarized energy bands and density of states are computed using LCAO and full potential-linearized augmented plane wave methods. The revised Perdew-Burke-Ernzerhof functional (for solids) based theoretical profile gives a marginally better agreement with the experimental profile as compared to other approximations considered in the present work. The Fermi surface topology of ZrFe2 is explained in terms of majority- and minority-spin energy bands.

  10. Readout electronics and test bench for the CMS Phase I pixel detector

    CERN Document Server

    Del Burgo, Riccardo

    2016-01-01

    The present CMS pixel detector will be replaced with an upgraded pixel system during the LHC extended technical stop in winter 2016/2017. The CMS Phase 1 pixel upgrade combines a new pixel readout chip, which minimizes detection inefficiencies, with several other design improvements to maintain the excellent tracking performance of CMS at the higher luminosity conditions foreseen for the coming years. The upgraded detector features new readout electronics which require detailed evaluation. For this purpose a test stand has been setup, including a slice of the CMS pixel DAQ system, all components of the upgraded readout chain together with a number of detector modules. The test stand allows for detailed evaluation and verification of all detector components, and is also crucial to develop tests and procedures to be used during the detector assembly and the commissioning and calibration of the detector. In this talk the system test and its functionalities will be described with a focus on the tests performed fo...

  11. In Situ Transmission Electron Microscopy Observation of Nanostructural Changes in Phase-Change Memory

    KAUST Repository

    Meister, Stefan

    2011-04-26

    Phase-change memory (PCM) has been researched extensively as a promising alternative to flash memory. Important studies have focused on its scalability, switching speed, endurance, and new materials. Still, reliability issues and inconsistent switching in PCM devices motivate the need to further study its fundamental properties. However, many investigations treat PCM cells as black boxes; nanostructural changes inside the devices remain hidden. Here, using in situ transmission electron microscopy, we observe real-time nanostructural changes in lateral Ge2Sb2Te5 (GST) PCM bridges during switching. We find that PCM devices with similar resistances can exhibit distinct threshold switching behaviors due to the different initial distribution of nanocrystalline and amorphous domains, explaining variability of switching behaviors of PCM cells in the literature. Our findings show a direct correlation between nanostructure and switching behavior, providing important guidelines in the design and operation of future PCM devices with improved endurance and lower variability. © 2011 American Chemical Society.

  12. Correspondence between the electronic structure and phase separation in a K-doped FeSe system

    Science.gov (United States)

    Liu, C.; Zhao, J. L.; Wang, J. O.; Qian, H. J.; Wu, R.; Wang, H. H.; Zhang, N.; Ibrahim, K.

    2017-10-01

    Phase separated potassium intercalated FeSe thin films have been synthesized by pulsed laser deposition. The coexistence of FeSe phase and 245 phase was investigated both by x-ray photoemission spectroscopy (XPS) and x-ray diffraction. The volume ratio of these two phases is sensitive to temperatures and amount of extra potassium dosing. The XPS and ultraviolet photoelectron spectroscopy results indicated that these two phases shows the different hybridization strength between adjacent Fe layer and Se layer. We infer that the layered electronic structure is the necessary condition of superconductivity in potassium-doped FeSe system, and the phase separation is driven by competition between quasi-2D and 3D bonding mode within FeSe layer. Similar competition may also be able to interpret the phase seperation in K x Fe2-y Se2 bulk single crystal. Project supported under 11375228 by NSFC and 2016YFA0401002 by MOST of China.

  13. Polarization induced water molecule dissociation below the first-order electronic-phase transition temperature.

    Science.gov (United States)

    Das Arulsamy, Andrew; Kregar, Zlatko; Eleršič, Kristina; Modic, Martina; Subramani, Uma Shankar

    2011-09-01

    Hydrogen produced from the photocatalytic splitting of water is one of the reliable alternatives to replace the polluting fossil and the radioactive nuclear fuels. Here, we provide unequivocal evidence for the existence of blue- and red-shifting O-H covalent bonds within a single water molecule adsorbed on the MgO surface as a result of asymmetric displacement polarizabilities. The adsorbed H-O-H on MgO gives rise to one weaker H-O bond, while the other O-H covalent bond from the same adsorbed water molecule compensates this effect with a stronger bond. The weaker bond (nearest to the surface), the interlayer tunneling electrons and the silver substrate are shown to be the causes for the smallest dissociative activation energy on the MgO monolayer. The origin that is responsible to initiate the splitting mechanism is proven to be due to the changes in the polarizability of an adsorbed water molecule, which are further supported by the temperature-dependent static dielectric constant measurements for water below the first-order electronic-phase transition temperature.

  14. E-beam addressed Spatial Light Modulator employing electron trapping materials. Phase 1

    Science.gov (United States)

    Lu, Xiaojing; Yang, Xiangyang; Wrigley, Charles Y.; Bradley, Richard; Meszaros, Janos

    1995-03-01

    Spatial light modulators (SLM's) play a critically important role in optical signal processing and optical computing. A novel electron beam addressed emissive SLM which combines high performance polycrystalline electron trapping (ET) materials with an advanced field-emitter array is being developed. The proposed SLM combines high resolution (greater than 100 lplmm), high SBP (greater than 1000 x 1000), high frame rate (greater than or equal 1 KHz), high contrast ratio (greater than l03:l) and low drive voltage (less than 15 V) in a single device. The additional features of the proposed SLM are its wide variety of operation modes and electrical and optical dual-addressability. Such a SLM, if successfully developed, will surely have substantial impact on optical processing technology. During the Phase-1 efforts, a review of field emitter arrays has been done to show that it has the merits of electrical-addressability, high space-bandwidth product (SBP), low drive voltage compatible with IC driving circuitry, and high update speed. The device architecture has been investigated and the design of two prototype devices has been provided.

  15. Electronic band structures of AV(2) (A = Ta, Ti, Hf and Nb) Laves phase compounds.

    Science.gov (United States)

    Charifi, Z; Reshak, Ali Hussain; Baaziz, H

    2009-01-14

    First-principles density functional calculations, using the all-electron full potential linearized augmented plane wave method, have been performed in order to investigate the structural and electronic properties for Laves phase AV(2) (A = Ta, Ti, Hf and Nb) compounds. The generalized gradient approximation and the Engel-Vosko-generalized gradient approximation were used. Our calculations show that these compounds are metallic with more bands cutting the Fermi energy (E(F)) as we move from Nb to Ta, Hf and Ti, consistent with the increase in the values of the density of states at the Fermi level N(E(F)). N(E(F)) is controlled by the overlapping of V-p/d, A-d and A-p states around the Fermi energy. The ground state properties of these compounds, such as equilibrium lattice constant, are calculated and compared with the available literature. There is a strong/weak hybridization between the states, V-s states are strongly hybridized with A-s states below and above E(F). Around the Fermi energy we notice that V-p shows strong hybridization with A-p states.

  16. Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces.

    Science.gov (United States)

    Politi, José Roberto dos Santos; Viñes, Francesc; Rodriguez, Jose A; Illas, Francesc

    2013-08-14

    The geometric and electronic structure of catalytically relevant molybdenum carbide phases (cubic δ-MoC, hexagonal α-MoC, and orthorhombic β-Mo2C) and their low Miller-index surfaces have been investigated by means of periodic density functional theory (DFT) based calculations with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. Comparison to available experimental data indicates that this functional is particularly well suited to study these materials. The calculations reveal that β-Mo2C has a stronger metallic character than the other two polymorphs, both β-Mo2C and δ-MoC have a large ionic contribution, and δ- and α-MoC exhibit the strongest covalent character. Among the various surfaces explored, the calculations reveal the high stability of the δ-MoC(001) nonpolar surface, Mo- and C-terminated (001) polar surfaces of α-MoC, and the nonpolar (011) surface of β-Mo2C. A substantially low work function of only 3.4 eV is predicted for β-Mo2C(011), suggesting that this system is particularly well suited for (electro)catalytic processes where surface → adsorbate electron transfer is essential. The overall implications for heterogeneously catalysed reactions by these molybdenum carbide nanoparticles are also discussed.

  17. Electronic Spectra of Protonated Fluoranthene in a Neon Matrix and Gas Phase at 10 K.

    Science.gov (United States)

    Chakraborty, A; Rice, C A; Hardy, F-X; Fulara, J; Maier, J P

    2016-07-14

    Four electronic systems with origin bands at 759.5, 559.3, 476.3, and 385.5 nm are detected in a 6 K neon matrix following deposition of mass-selected protonated fluoranthene C16H11(+) produced from a reaction of neutral vapor and ethanol in a hot-cathode ion source. Two cationic isomers are identified as the carriers of these band systems. The 559.3, 476.3, and 385.5 nm absorptions are assigned to 4,3,2 (1)A' ← X (1)A' transitions of isomer E(+) (γ-) and the 2 (1)A' ← X (1)A' system at 759.5 nm is of isomer C(+) (α-) of protonated fluoranthene on the basis of theoretical predictions. The electronic spectrum of E(+) was also recorded in the gas phase using a resonant 1 + 1 two-photon excitation-dissociation technique in an ion trap at vibrational and rotational temperatures of 10 K. The 3,2 (1)A' ← X (1)A' transitions have origin band maxima at 558.28 ± 0.01 and 474.92 ± 0.01 nm. Both the 2 (1)A' and 3 (1)A' excited states have a distinct vibrational pattern with lifetimes on the order of 1 ps.

  18. Introduction to Topological Phases and Electronic Interactions in (2+1) Dimensions

    Science.gov (United States)

    Nascimento, Leandro O.

    2017-04-01

    A brief introduction to topological phases is provided, considering several two-band Hamiltonians in one and two dimensions. Relevant concepts of the topological insulator theory, such as: Berry phase, Chern number, and the quantum adiabatic theorem, are reviewed in a basic framework, which is meant to be accessible to non-specialists. We discuss the Kitaev chain, SSH, and BHZ models. The role of the electromagnetic interaction in the topological insulator theory is addressed in the light of the pseudo-quantum electrodynamics (PQED). The well-known parity anomaly for massless Dirac particle is reviewed in terms of the Chern number. Within the continuum limit, a half-quantized Hall conductivity is obtained. Thereafter, by considering the lattice regularization of the Dirac theory, we show how one may obtain the well-known quantum Hall conductivity for a single Dirac cone. The renormalization of the electron energy spectrum, for both small and large coupling regime, is derived. In particular, it is shown that massless Dirac particles may, only in the strong correlated limit, break either chiral or parity symmetries. For graphene, this implies the generation of Landau-like energy levels and the quantum valley Hall effect.

  19. Local orbital angular momentum revealed by spiral phase plate imaging in transmission electron microscopy

    CERN Document Server

    Juchtmans, Roeland

    2015-01-01

    The orbital angular momentum (OAM) of light and matter waves is a parameter that is getting increasingly more attention over the past couple of years. Beams with a well defined OAM, the so-called vortex beams, are applied already in e.g. telecommunication, astrophysics, nanomanipulation and chiral measurements in optics and electron microscopy. Also the OAM of a wave induced by the interaction with a sample, shows great potential of interest. In all these experiments it is crucial to measure the exact (local) OAM content of the wave, whether it is an incoming vortex beam or an exit wave after interacting with a sample. In this work we investigate the use of spiral phase plates as an alternative to the programmable phase plates used in optics to measure OAM. We derive analytically how these can be used to study the local OAM components of any wave function. By means of numerical simulations we illustrate how the OAM of a pure vortex beam can be measured. We also look at a sum of misaligned vortex beams and sho...

  20. Phase Diagram and Electronic Properties of High-Tc Superconducting Oxides

    Science.gov (United States)

    Pavuna, Davor

    We firstly briefly summarize some of the most relevant recent results and open questions across rather complex electronic phase diagram of cuprates. We continue with a discussion of results on thin superconducting oxide films grown by laser ablation. Systematic studies show that BSCCO-phases and LSCO-214 exhibit conductor-like Fermi edge, whereas materials containing "chains" (like YBCO-123) are prone to very rapid surface degradation, most likely related to critical oxygen loss at the outermost layers. Recently, direct ARPES dispersion measurements on in-situ grown, strained 10UC thin LSCO-214 films (Tc = 44 K) have shown the band crossing of Fermi level well before the Brillouin zone boundary. This is in contrast to the flat band observed in unstrained single crystals — and to the band flattening predicted by band calculations for in-plane compressive strain. In spite of density of states reduction near the Fermi level, the critical temperature increases in strained films with respect to unstrained crystals; this poses further challenge to HTSC theory.

  1. Performance of carrier phase recovery for electronically dispersion compensated coherent systems.

    Science.gov (United States)

    Farhoudi, Ramtin; Ghazisaeidi, Amirhossein; Rusch, Leslie Ann

    2012-11-19

    An analytical approach taking into account carrier phase estimation (CPE) is presented to predict performance of quadrature phase shift-keying (QPSK) systems using coherent detection. Using this approach, system performance is found as a function of symbol rate, local oscillator (LO) linewidth, chromatic dispersion (CD) and signal-to-noise ratio (SNR). A new expression is derived for the covariance matrix of the conditional probability density function (pdf) of the decision statistic. This pdf is used to find bit error rate (BER) semi-analytically. Our analytical derivation assumes perfect removal of data modulation which corresponds to an ideal decision feedback (DF) carrier recovery. The validity of the analytical pdf for predicting BER is verified for a wide range of system parameters of interest in long haul systems. In addition, our semi-analytical BER provides a lower bound for the Viterbi-Viterbi (VV) BER, while showing the analytical BER previously proposed in the literature shows an overly pessimistic prediction of VV BER performance. We show that inaccuracy in previous analysis stems from overly simple model for the CPE when compensating large accumulated dispersion electronically. Finally, we study extension of our results to quadrature amplitude modulation (QAM). Preliminary simulation results are promising but the accuracy of our semi-analytical approach for predicting BER should be investigated further.

  2. Multisatellite determination of the relativistic electron phase space density at geosynchronous orbit: An integrated investigation during geomagnetic storm times

    Science.gov (United States)

    Chen, Y.; Friedel, R. H. W.; Reeves, G. D.; Cayton, T. E.; Christensen, R.

    2007-11-01

    An integrated investigation method, which can study the relativistic electron phase space density distribution and check the reliability of employed magnetic field models simultaneously, is developed and applied to the geosynchronous orbit region for 53 geomagnetic storms during a ˜190-d period. First, to test how the magnetospheric magnetic field affects the study of phase space density, two approaches are taken on handling the magnetic field model: One is to use an existing empirical model through the whole storm period; the other is to select one from a list of existing magnetic field models for each time bin during the period by fitting to multipoint in situ measurements. The magnetic field models in both approaches are again tested by Liouville's theorem, which requires the conserved phase space density for fixed phase space coordinates given no local losses and sources. Then on the basis of the selected magnetic field model, the phase space density is calculated by transforming the flux data from three Los Alamos National Laboratory geosynchronous satellites. By following the procedure developed here and using the cross-satellite calibration achieved in previous work, we deduce the storm time electron phase space density distribution for the region near geosynchronous orbit, covering a range of L shells with L* centered ˜6. This work establishes the radial phase space density gradient at constant adiabatic invariants as a function of universal time during storm times, and three types of geomagnetic storms are defined according to the degree of energy-dependent enhancements of energetic electrons during recovery phases. Initial results from this study suggest a source outside geosynchronous orbit for low-energy electrons and a major source inside for high-energy electrons.

  3. Visualization of phase evolution in model organic photovoltaic structures via energy-filtered transmission electron microscopy.

    Science.gov (United States)

    Herzing, Andrew A; Ro, Hyun Wook; Soles, Christopher L; DeLongchamp, Dean M

    2013-09-24

    The morphology of the active layer in an organic photovoltaic bulk-heterojunction device is controlled by the extent and nature of phase separation during processing. We have studied the effects of fullerene crystallinity during heat treatment in model structures consisting of a layer of poly(3-hexylthiophene) (P3HT) sandwiched between two layers of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Utilizing a combination of focused ion-beam milling and energy-filtered transmission electron microscopy, we monitored the local changes in phase distribution as a function of annealing time at 140 °C. In both cases, dissolution of PCBM within the surrounding P3HT was directly visualized and quantitatively described. In the absence of crystalline PCBM, the overall phase distribution remained stable after intermediate annealing times up to 60 s, whereas microscale PCBM aggregates were observed after annealing for 300 s. Aggregate growth proceeded vertically from the substrate interface via uptake of PCBM from the surrounding region, resulting in a large PCBM-depleted region in their vicinity. When precrystallized PCBM was present, amorphous PCBM was observed to segregate from the intermediate P3HT layer and ripen the crystalline PCBM underneath, owing to the far lower solubility of crystalline PCBM within P3HT. This process occurred rapidly, with segregation already evident after annealing for 10 s and with uptake of nearly all of the amorphous PCBM by the crystalline layer after 60 s. No microscale aggregates were observed in the precrystallized system, even after annealing for 300 s.

  4. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    Science.gov (United States)

    Wienkes, Lee Raymond

    Interest in mixed-phase silicon thin film materials, composed of an amorphous semiconductor matrix in which nanocrystalline inclusions are embedded, stems in part from potential technological applications, including photovoltaic and thin film transistor technologies. Conventional mixed-phase silicon films are produced in a single plasma reactor, where the conditions of the plasma must be precisely tuned, limiting the ability to adjust the film and nanoparticle parameters independently. The films presented in this thesis are deposited using a novel dual-plasma co-deposition approach in which the nanoparticles are produced separately in an upstream reactor and then injected into a secondary reactor where an amorphous silicon film is being grown. The degree of crystallinity and grain sizes of the films are evaluated using Raman spectroscopy and X-ray diffraction respectively. I describe detailed electronic measurements which reveal three distinct conduction mechanisms in n-type doped mixed-phase amorphous/nanocrystalline silicon thin films over a range of nanocrystallite concentrations and temperatures, covering the transition from fully amorphous to ~30% nanocrystalline. As the temperature is varied from 470 to 10 K, we observe activated conduction, multiphonon hopping (MPH) and Mott variable range hopping (VRH) as the nanocrystal content is increased. The transition from MPH to Mott-VRH hopping around 100K is ascribed to the freeze out of the phonon modes. A conduction model involving the parallel contributions of these three distinct conduction mechanisms is shown to describe both the conductivity and the reduced activation energy data to a high accuracy. Additional support is provided by measurements of thermal equilibration effects and noise spectroscopy, both done above room temperature (>300 K). This thesis provides a clear link between measurement and theory in these complex materials.

  5. Local probe investigations of the electronic phase diagrams of iron pnictides and chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Materne, Philipp

    2015-09-24

    In this work, the electronic phase diagrams of Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} and Fe{sub 1+y}Te were investigated using muon spin relaxation and Moessbauer spectroscopy. Single crystals of Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} with x = 0.00, 0.35, 0.50, and 0.67 were examined. The undoped 122 parent compound CaFe{sub 2}As{sub 2} is a semi metal and shows antiferromagnetic commensurate spin density wave order below 167 K. By hole doping via Na substitution, the magnetic order is suppressed and superconductivity emerges including a Na-substitution level region, where both phases coexist. Upon Na substitution, a tilting of the magnetic moments out of the ab-plane is found. The interaction of the magnetic and superconducting order parameter in this coexistence region was studied and a nanoscopic coexistence of both order parameters is found. This is proven by a reduction of the magnetic order parameter of 7 % in x = 0.50 below the superconducting transition temperature. This reduction was analysed using Landau theory and a systematic correlation between the reduction of the magnetic order parameter and the ratio of the transition temperatures, T{sub c}/T{sub N}, for the 122 family of the iron pnictides is presented. The magnetic phase transition is accompanied by a tetragonal-to-orthorhombic phase transition. The lattice dynamics at temperatures above and below this magneto-structural phase transition were studied and no change in the lattice dynamics were found. However, the lattice for finite x is softer than for the undoped compound. For x = 0.67, diluted magnetic order is found. Therefore, the magnetism in Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} is persistent even at optimal doping. The superconducting state is investigated by measuring the temperature dependence of the magnetic penetration depth, where two superconducting gaps with a weighting of nearly 50:50 are obtained. A temperature independent anisotropy of the magnetic penetration depth γ{sub

  6. Experimental demonstration of longitudinal beam phase space linearizer in a free-electron laser facility by corrugated structures

    CERN Document Server

    Deng, Haixiao; Feng, Chao; Zhang, Tong; Wang, Xingtao; Lan, Taihe; Feng, Lie; Zhang, Wenyan; Liu, Xiaoqing; Yao, Haifeng; Shen, Lei; Li, Bin; Zhang, Junqiang; Li, Xuan; Fang, Wencheng; Wang, Dan; Couprie, Marie-emmanuelle; Lin, Guoqiang; Liu, Bo; Gu, Qiang; Wang, Dong; Zhao, Zhentang

    2014-01-01

    Removal of residual linear energy chirp and intrinsic nonlinear energy curvature in the relativistic electron beam from radiofrequency linear accelerator is of paramount importance for efficient lasing of a high-gain free-electron laser. Recently, it was theoretically and experimentally demonstrated that the longitudinal wakefield excited by the electrons itself in the corrugated structure allows for precise control of the electron beam phase space. In this Letter, we report the first utilization of a corrugated structure as beam linearizer in the operation of a seeded free-electron laser driven by a 140 MeV linear accelerator, where a gain of ~10,000 over spontaneous emission was achieved at the second harmonic of the 1047 nm seed laser, and a free-electron laser bandwidth narrowing by about 50% was observed, in good agreement with the theoretical expectations.

  7. Quantitative Agreement between Electron-Optical Phase Images of WSe2 and Simulations Based on Electrostatic Potentials that Include Bonding Effects

    Science.gov (United States)

    Borghardt, S.; Winkler, F.; Zanolli, Z.; Verstraete, M. J.; Barthel, J.; Tavabi, A. H.; Dunin-Borkowski, R. E.; Kardynal, B. E.

    2017-02-01

    The quantitative analysis of electron-optical phase images recorded using off-axis electron holography often relies on the use of computer simulations of electron propagation through a sample. However, simulations that make use of the independent atom approximation are known to overestimate experimental phase shifts by approximately 10%, as they neglect bonding effects. Here, we compare experimental and simulated phase images for few-layer WSe2 . We show that a combination of pseudopotentials and all-electron density functional theory calculations can be used to obtain accurate mean electron phases, as well as improved atomic-resolution spatial distribution of the electron phase. The comparison demonstrates a perfect contrast match between experimental and simulated atomic-resolution phase images for a sample of precisely known thickness. The low computational cost of this approach makes it suitable for the analysis of large electronic systems, including defects, substitutional atoms, and material interfaces.

  8. Transmission electron microscopy studying of structural features of NiTi B2 phase formed under pulsed electron-beam impact

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, Ludmila L.; Semin, Viktor O.; Gudimova, Ekaterina Y. [Institute of Strength Physicists and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Neiman, Alexey A., E-mail: nasa@ispms.tsc.ru; Lotkov, Alexander I.; Ostapenko, Marina G. [Institute of Strength Physicists and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Koval, Nikolai N.; Teresov, Anton D. [National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Institute of High Current Electronics SB RAS, Tomsk, 634055 (Russian Federation)

    2015-10-27

    By transmission electron microscopy method the evolution of structural-phase states on a depth of close to equiatomic NiTi modified layer has been studied. Modification performed by pulse impact on its surface low-energy high-current electron beam (beam energy density 10 J/sm{sup 2}, 10 pulses, pulse duration 50mks). It is established that during the treatment in the layer thickness of 8–10 μm, the melting of primary B2 phase and contained therein as Ti2Ni phase particles occurs. The result is change in the concentration ratio of titanium and nickel in the direction of increasing titanium content, which was confirmed by X-ray analysis in the form of increased unit cell parameter B2 phase. Analysis of the electron diffraction pattern showed that the modified layer is characterized as a highly distorted structure on the basis of bcc lattice. Lattice distortions are maximal near the surface and extends to a depth of melt. In subjacent layer there is gradual decline lattice distortions is observed.

  9. Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF electron source for the European X-FEL

    Energy Technology Data Exchange (ETDEWEB)

    Roensch, Juliane

    2010-01-15

    The Photoinjector Test facility at DESY, Zeuthen site, (PITZ) is aiming for the optimization of electron guns for SAS-FELs. For this it is necessary to investigate the characteristics of the six dimensional phase space of the bunch produced by a photoinjector. This thesis is focused on the analysis of the longitudinal properties of the electron bunch distribution, this means the temporal current distribution and the momentum distribution as well as the correlation of both properties. The complete distribution of the electron bunch in longitudinal phase space of a photoinjector was measured directly for the first time at a beam momentum of about 5 MeV/c, using an existing apparatus. This system had been designed for an accelerating gradient of 40 MV/m. Its subcomponents were analysed to understand sources of uncertainties of the measurement system. The usage of higher accelerating gradients in the gun (60 MV/m, resulting in a beam momentum of about 6.8 MeV/c) demands major modifications of the existing measurement system for the longitudinal phase space distribution. An upgrade of the facility by an additional accelerating cavity required the design of further longitudinal diagnostics systems for the analysis at higher momenta (up to 40 MeV/c). Measurements of the longitudinal beam properties to determine the influence of different operation parameters, like RF launch phase, charge, accelerating field gradient and laser distribution were performed and compared to simulations. (orig.)

  10. Effect of the Initial Laser Phase on the Interaction Between Relativistic Electron and Ultra-Intense Laser Field in a Strong Uniform Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    HE Xin-Kui; SHUAI Bin; GE Xiao-Chun; LI Ru-Xin; XU Zhi-Zhan

    2004-01-01

    @@ We investigate the influence of the initial laser phase on the interaction between relativistic electron and ultraintense linear polarized laser field in a strong uniform magnetic field. It is found that the dynamic behaviour of the relativistic electron and the emission spectrum varies dramatically with different initial laser field phases.The effect of changing initial phase is contrary in the two parameter regions divided by the resonance condition.The phase dependence of the electron energy and velocity components are also studied. Some beat structure is found when the initial laser phase is zero and this structure is absent when the initial laser phase is a quarter of a period.

  11. Development of a variable frequency power electronics inverter to control the speed of a three-phase induction motor

    OpenAIRE

    Neves, Pedro; Afonso, João L.

    2006-01-01

    This work presents the development and implementation of a variable frequency Power Electronics inverter to drive a three-phase induction motor. The inverter allows a user to control the speed and torque developed by the motor, as well as its rotating direction. The inverter’s digital controller was implemented with a microcontroller. The inverter is fed from a rectifier with capacitor filter, which is connected to single-phase, 50 Hz power mains.

  12. Design, Modelling and Simulation of Two-Phase Two-Stage Electronic System with Orthogonal Output for Supplying of Two-Phase ASM

    Directory of Open Access Journals (Sweden)

    Michal Prazenica

    2011-01-01

    Full Text Available This paper deals with the two-stage two-phase electronic systems with orthogonal output voltages and currents - DC/AC/AC. Design of two-stage DC/AC/AC high frequency converter with two-phase orthogonal output using single-phase matrix converter is also introduced. Output voltages of them are strongly nonharmonic ones, so they must be pulse-modulated due to requested nearly sinusoidal currents with low total harmonic distortion. Simulation experiment results of matrix converter for both steady and transient states for IM motors are given in the paper, also experimental verification under R-L load, so far. The simulation results confirm a very good time-waveform of the phase current and the system seems to be suitable for low-cost application in automotive/aerospace industries and application with high frequency voltage sources.

  13. Phase diagrams and anomalous thermodynamic behavior of a correlated spin–electron system on doubly decorated planar lattices

    Energy Technology Data Exchange (ETDEWEB)

    Strečka, Jozef, E-mail: jozef.strecka@upjs.sk [Department of Theoretical Physics and Astrophysics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 040 01 Košice (Slovakia); Čenčariková, Hana [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice (Slovakia); Lyra, Marcelo L. [Instituto de Fisica, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil)

    2015-12-04

    Phase diagrams and thermodynamic properties of a correlated spin–electron system considering localized Ising spins on nodal sites and mobile electrons on decorating sites of doubly decorated planar lattices are rigorously examined with the help of generalized decoration–iteration transformation. The investigated model defined on loose-packed (honeycomb and square) lattices exhibits the phase diagram including a spontaneous ferromagnetic and antiferromagnetic order in a vicinity of quarter and half-filling, respectively, while the same model on close-packed (triangular and kagome) lattices only shows a spontaneous ferromagnetic order due to a kinetically-driven spin frustration at high electron concentrations. The lower critical concentration, at which the ferromagnetic order appears, is remarkably close to a bond percolation threshold in spite of the annealed character of the developed procedure. The specific heat exhibits at the critical temperature either a logarithmic divergence for integer-valued electron concentrations or it shows a finite-cusp for any non-integer electron concentration due to the annealed bond disorder. - Highlights: • Correlated spin–electron system on decorated 2D lattices is exactly solved. • Phase diagrams involve ferro- and antiferromagnetic order near 1/4 and 1/2 filling. • Magnetization is not saturated at zero temperature due to the annealed disorder. • Specific heat displays a finite cusp at the critical temperature.

  14. Microemulsion phase as a medium for electrodeposition of nickel and electron-transfer study of ferrocyanide-ferricyanide redox system.

    Science.gov (United States)

    Ganesh, V; Lakshminarayanan, V

    2010-09-01

    We report our electrochemical studies in a W/O microemulsion phase consisting of a ternary mixture of water, Triton X-100, and toluene. The microemulsion phase plays the dual role of a template in the electrodeposition of nickel and as an electrolytic medium in the study of electron-transfer kinetics. The nickel electrodeposits obtained using this microemulsion phase as a template were characterized by surface analysis techniques such as scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies while cyclic voltammetry (CV) was used to determine the electro-active true surface area of the template-deposited nickel. For electron-transfer studies, CV and electrochemical impedance spectroscopy were employed using potassium ferro/ferricyanide as a redox probe. In contrast to the diffusion-controlled process of the redox probe in aqueous medium, a charge-transfer control was observed in the W/O microemulsion phase. We found that the rate constant value for this particular redox reaction in the microemulsion phase is decreased by about four orders of magnitude when compared to the corresponding value in aqueous medium. The observed phenomenon has been correlated to the structure of the W/O microemulsion phase at the interface, exhibiting a microelectrode array behavior.

  15. Hidden Fermi-liquid Charge Transport in the Antiferromagnetic Phase of the Electron-Doped Cuprate Superconductors

    Science.gov (United States)

    Li, Yangmu; Tabis, W.; Yu, G.; Barišić, N.; Greven, M.

    2016-11-01

    Systematic analysis of the planar resistivity, Hall effect, and cotangent of the Hall angle for the electron-doped cuprates reveals underlying Fermi-liquid behavior even deep in the antiferromagnetic part of the phase diagram. The transport scattering rate exhibits a quadratic temperature dependence, and is nearly independent of doping and compound and carrier type (electrons versus holes), and hence is universal. Our analysis moreover indicates that the material-specific resistivity upturn at low temperatures and low doping has the same origin in both electron- and hole-doped cuprates.

  16. Ferromagnetic Fe on Cu(001) throughout the fcc-like phase: arguing from the viewpoint of the electronic structure.

    Science.gov (United States)

    Donath, M; Pickel, M; Schmidt, A B; Weinelt, M

    2009-04-01

    The scientific enthusiasm for ultrathin Fe films on Cu(001) has now lasted for more than 20 years. Is there ferromagnetic iron with a face-centred cubic (fcc) structure? Does ferromagnetism in Fe hinge on the body-centred cubic (bcc) structure? In this contribution, we try to establish that the electron system gives evidence of ferromagnetic behaviour with fcc-like electronic bands. We examine a crystal-induced surface state, which is characteristic of fcc surface order. Furthermore, we compare electronic signatures of fcc and bcc: the d-band exchange splitting, image-potential-state energies and the work function. We conclude that, from the viewpoint of the electronic structure, Fe on Cu(001) is found to be ferromagnetic throughout the fcc-like phase. This result raises a new question: how much deviation from the relaxed fcc order is acceptable without losing the electronic signature of fcc?

  17. Electronic stress tensor analysis of molecules in gas phase of CVD process for GeSbTe alloy

    CERN Document Server

    Nozaki, Hiroo; Ichikawa, Kazuhide; Tachibana, Akitomo

    2015-01-01

    We analyze the electronic structure of molecules which may exist in gas phase of chemical vapor deposition process for GeSbTe alloy using the electronic stress tensor, with special focus on the chemical bonds between Ge, Sb and Te atoms. We find that, from the viewpoint of the electronic stress tensor, they have intermediate properties between alkali metals and hydrocarbon molecules. We also study the correlation between the bond order which is defined based on the electronic stress tensor, and energy-related quantities. We find that the correlation with the bond dissociation energy is not so strong while one with the force constant is very strong. We interpret these results in terms of the energy density on the "Lagrange surface", which is considered to define the boundary surface of atoms in a molecule in the framework of the electronic stress tensor analysis.

  18. Electronic stress tensor analysis of molecules in gas phase of CVD process for GeSbTe alloy.

    Science.gov (United States)

    Nozaki, Hiroo; Ikeda, Yuji; Ichikawa, Kazuhide; Tachibana, Akitomo

    2015-06-15

    We analyze the electronic structure of molecules which may exist in gas phase of chemical vapor deposition process for GeSbTe alloy using the electronic stress tensor, with special focus on the chemical bonds between Ge, Sb, and Te atoms. We find that, from the viewpoint of the electronic stress tensor, they have intermediate properties between alkali metals and hydrocarbon molecules. We also study the correlation between the bond order which is defined based on the electronic stress tensor, and energy-related quantities. We find that the correlation with the bond dissociation energy is not so strong while one with the force constant is very strong. We interpret these results in terms of the energy density on the "Lagrange surface," which is considered to define the boundary surface of atoms in a molecule in the framework of the electronic stress tensor analysis.

  19. Spectral-phase interferometry for direct electric-field reconstruction applied to seeded extreme-ultraviolet free-electron lasers

    CERN Document Server

    Mahieu, Benoît; De Ninno, Giovanni; Dacasa, Hugo; Lozano, Magali; Rousseau, Jean-Philippe; Zeitoun, Philippe; Garzella, David; Merdji, Hamed

    2015-01-01

    We present a setup for complete characterization of femtosecond pulses generated by seeded free-electron lasers (FEL's) in the extreme-ultraviolet spectral region. Two delayed and spectrally shifted replicas are produced and used for spectral phase interferometry for direct electric field reconstruction (SPIDER). We show that it can be achieved by a simple arrangement of the seed laser. Temporal shape and phase obtained in FEL simulations are well retrieved by the SPIDER reconstruction, allowing to foresee the implementation of this diagnostic on existing and future sources. This will be a significant step towards an experimental investigation and control of FEL spectral phase.

  20. Electronic phase diagram of NaFe1-xCoxAs investigated by scanning tunneling microscopy

    Institute of Scientific and Technical Information of China (English)

    Zhou Xiao-Dong; Cai Peng; Wang Ya-Yu

    2013-01-01

    Our recent scanning tunneling microscopy (STM) studies of the NaFe1-xCoxAs phase diagram over a wide range of dopings and temperatures are reviewed.Similar to the high-Tc cuprates,the iron-based superconductors lie in close proximity to a magnetically ordered phase.Therefore,it is widely believed that magnetic interactions or fluctuations play an important role in triggering their Cooper pairings.Among the key issues regarding the electronic phase diagram are the properties of the parent spin density wave (SDW) phase and the superconducting (SC) phase,as well as the interplay between them.The NaFe1-xCoxAs is an ideal system for resolving these issues due to its rich electronic phases and the charge-neutral cleaved surface.In our recent work,we directly observed the SDW gap in the parent state,and it exhibits unconventional features that are incompatible with the simple Fermi surface nesting picture.The optimally doped sample has a single SC gap,but in the underdoped regime we directly viewed the microscopic coexistence of the SDW and SC orders,which compete with each other.In the overdoped regime we observed a novel pseudogap-like feature that coexists with superconductivity in the ground state,persists well into the normal state,and shows great spatial variations.The rich electronic structures across the phase diagram of NaFel-xCoxAs revealed here shed important new light for defining microscopic models of the iron-based superconductors.In particular,we argue that both the itinerant electrons and local moments should be considered on an equal footing in a realistic model.

  1. Superconductivity Emerging from an Electronic Phase Separation in the Charge Ordered Phase of RbFe2As2

    Science.gov (United States)

    Civardi, E.; Moroni, M.; Babij, M.; Bukowski, Z.; Carretta, P.

    2016-11-01

    75As, 87Rb, and 85Rb nuclear quadrupole resonance (NQR) and 87Rb nuclear magnetic resonance measurements in a RbFe2As2 iron-based superconductor are presented. We observe a marked broadening of the 75As NQR spectrum below T0≃140 K which is associated with the onset of a charge order in the FeAs planes. Below T0 we observe a power-law decrease in the 75As nuclear spin-lattice relaxation rate down to T*≃20 K . Below T* the nuclei start to probe different dynamics owing to the different local electronic configurations induced by the charge order. A fraction of the nuclei probes spin dynamics associated with electrons approaching a localization while another fraction probes activated dynamics possibly associated with a pseudogap. These different trends are discussed in light of an orbital selective behavior expected for the electronic correlations.

  2. Pulmonary vascular response during phases of canine heartworm disease: scanning electron microscopic study.

    Science.gov (United States)

    Schaub, R G; Rawlings, C A

    1980-07-01

    Pulmonary arteries and veins of 14 dogs in phases of heartworm disease (Dirofilaria immitis infection) were examined by scanning electron microscopy. Two dogs were infected with D immitis microfilaria only, whereas 12 dogs were infected with adult D immitis. Seven of the dogs infected with adult worms were untreated. Two of these 7 dogs had natural infections of unknown duration introduced by mosquito bite, whereas 5 were experimentally infected for 30 days. The remaining five dogs were experimentally infected for 1 year and had worms removed by drug therapy. These five dogs were maintained 12 months after treatment. Arteries and veins from dogs infected with microfilaria had a continuous sheet of endothelial cells. Arterial endothelium from the seven nontreated dogs infected with adult heartworms exhibited swirling patterns, pore formation, and separation of intercellular junctions. Arteries from all dogs had numerous endothelialized villus protrusions; veins had similar, less extensive changes. Arteries and veins from experimentally infected dogs were similar to naturally infected dogs, indicating the infection procedure produced lesions similar to that normally seen in heartworm disease. The extent of vascular lesions was reduced in four of the five treated dogs that had been infected with adult worms. Adult worms, not microfilaria, may produce the vascular lesions seen in heartworm disease. Lesions will regress if worms are removed from the circulation. Lesions may be caused by generation of humoral factors initiated by the presence of adult worms.

  3. Phase - I Trigger Readout Electronics upgrade for the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Dinkespiler, Bernard; The ATLAS collaboration

    2017-01-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for shut-down period of 2018-2019, referred to as Phase-I upgrade, will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow sufficient increase of the trigger rate, an improvement of the trigger system is required. The Liquid Argon (LAr) Calorimeter read-out will therefore be modified to use digital trigger signals with a higher spatial granularity in order to improve the identification efficiencies of electrons, photons, tau, jets and missing energy, at high background rejection rates at the Level-1 trigger. The new trigger signals will be arranged in 34000 so-called Super Cells which achieves 5-10 times better granularity than the trigger towers currently used and allows an improved background rejection. The readout of the trigger signals will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will be tr...

  4. EPR policies for electronics in developing Asia: an adapted phase-in approach.

    Science.gov (United States)

    Akenji, Lewis; Hotta, Yasuhiko; Bengtsson, Magnus; Hayashi, Shiko

    2011-09-01

    The amount of e-waste is growing rapidly in developing countries, and the health and environmental problems resulting from poor management of this waste have become a concern for policy makers. In response to these challenges, a number of Asian developing countries have been inspired by policy developments in OECD countries, and have drafted legislations based on the principle of extended producer responsibility (EPR). However, the experiences from developed countries show that a successful implementation of EPR policies requires adequate institutions and sufficient administrative capacity. Even advanced countries are thus facing difficulties. This paper concludes from existing literature and from the authors' own observations that there seems to be a mismatch between the typical policy responses to e-waste problems in developing Asia and the capacity for successful implementation of such policies. It also notes that the e-waste situation in developing Asian countries is further complicated by a number of additional factors, such as difficulties in identifying producers, import of used electronic products and e-waste (sometimes illegal), and the existence of a strong informal waste sector. Given these challenges, the authors conclude that comprehensive EPR policy schemes of the kind that have been implemented in some advanced countries are not likely to be effective. The paper therefore proposes an alternative phase-in approach whereby developing Asian countries are able to move gradually towards EPR systems. It argues that this approach would be more feasible, and discusses what could be the key building blocks of each implementation stage.

  5. Decomposition of gas-phase diphenylether at 473 K by electron beam generated plasma

    CERN Document Server

    Kim, H H; Kojima, T

    2003-01-01

    Decomposition of gas-phase diphenylether (DPE) in the order of several parts per million by volume (ppmv) was studied as a model compound of dioxin using a flow-type electron-beam reactor at an elevated temperature of 473 K. The ground state oxygen ( sup 3 P) atoms played an important role in the decomposition of DPE resulting in the formation of 1,4-hydroquinone (HQ) as a major ring retaining product. The high yield of hydroquinone indicated that the breakage of ether bond (C-O) is important in the initial step of DPE decomposition. Ring cleavage products were CO and CO sub 2 , and NO sub 2 was also produced from background N sub 2 -O sub 2. The sum of the yields of HQ, CO sub 2 and CO accounts for over 90% of the removed DPE. Hydroxyl radicals (OH) were less important in the dilute DPE decomposition at a high water content, and were mostly consumed by recombination reactions to form hydrogen peroxide. The smaller the initial DPE concentrations, the higher the decomposition efficiency and the lower the yield...

  6. Chemical Ordering Modulated Electronic Phase Separation and Macroscopic Properties in Colossal Magnetoresistance Manganites

    Science.gov (United States)

    Zhu, Yinyan; Du, Kai; Yin, Lifeng; Shen, Jian; Low-dimensional material physics Team

    Using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistance (La1-yPry)1-x CaxMnO3 (LPCMO) system, which has been well known for its large length scale electronic phase separation (EPS) phenomena. Our experimental results show that the chemical ordering of Pr leads to dramatic reduction of the length scale of EPS. Moreover, compared to the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has ~100 K higher metal-insulator transition temperature. We have further investigated the n-dependence of the physical properties of the (LCMO)2n/(PCMO)n superlattices. Magnetic and transport measurements indicate that the physical properties change nonmonotonically with increasing n, reaching a minimum for both the Curie temperature and the meta-insulator transition temperature. The crossover thickness thus reflects the characteristic correlation length scale along the vertical direction of the superlattice. For superlattices with n smaller than the correlation length, we combine MFM studies and model calculations to explain the weakened ferromagnetism and metallicity with increasing n.

  7. The Trigger Readout Electronics for the Phase-1 Upgrade of the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    Wolff, Robert; The ATLAS collaboration

    2017-01-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for the shut-down period of 2018-2019 (Phase-I upgrade), will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow a corresponding increase of the trigger rate, an improvement of the trigger system is required. The new trigger signals from the ATLAS Liquid Argon Calorimeter will be arranged in 34000 so-called Super Cells which achieve 5-10 times better granularity than the current system; this improves the background rejection capabilities through more precise energy measurements, and the use of shower shapes to discriminate electrons and photons from jets. The new system will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will be transmitted to the back-end using a custom serializer and optical converter with 5.12 Gb/s. To verify the full functionality, a demonstrator set-up has been installed on the A...

  8. Phase-I Trigger Readout Electronics Upgrade for the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    Camplani, Alessandra; The ATLAS collaboration

    2017-01-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for shut-down period of 2018-2019, referred to as Phase-I upgrade, will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow sufficient increase of the trigger rate, an improvement of the trigger system is required. The Liquid Argon (LAr) Calorimeter read-out will therefore be modified to use digital trigger signals with a higher spatial granularity in order to improve the identification efficiencies of electrons, photons, tau, jets and missing energy, at high background rejection rates at the Level-1 trigger. The new trigger signals will be arranged in 34000 so-called Super Cells which achieves 5-10 times better granularity than the trigger towers currently used and allows an improved background rejection. The readout of the trigger signals will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will be tr...

  9. Decomposition of gas-phase diphenylether at 473 K by electron beam generated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Ha [Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Hakoda, Teruyuki [Department of Material Development, Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute (JAERI), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Kojima, Takuji [Department of Material Development, Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute (JAERI), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2003-03-07

    Decomposition of gas-phase diphenylether (DPE) in the order of several parts per million by volume (ppmv) was studied as a model compound of dioxin using a flow-type electron-beam reactor at an elevated temperature of 473 K. The ground state oxygen ({sup 3}P) atoms played an important role in the decomposition of DPE resulting in the formation of 1,4-hydroquinone (HQ) as a major ring retaining product. The high yield of hydroquinone indicated that the breakage of ether bond (C-O) is important in the initial step of DPE decomposition. Ring cleavage products were CO and CO{sub 2}, and NO{sub 2} was also produced from background N{sub 2}-O{sub 2}. The sum of the yields of HQ, CO{sub 2} and CO accounts for over 90% of the removed DPE. Hydroxyl radicals (OH) were less important in the dilute DPE decomposition at a high water content, and were mostly consumed by recombination reactions to form hydrogen peroxide. The smaller the initial DPE concentrations, the higher the decomposition efficiency and the lower the yields of primary products. NO scavenges oxygen atoms and decreases the DPE decomposition, while the addition of n-butane causes positive effect on the decomposition of DPE due to the several secondary radicals (HO{sub 2}, alkyl and alkoxy radicals) produced during the decomposition of n-butane.

  10. Electron transport and electron energy distributions within the wurtzite and zinc-blende phases of indium nitride: Response to the application of a constant and uniform electric field

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqua, Poppy; Hadi, Walid A.; Salhotra, Amith K.; O' Leary, Stephen K., E-mail: stephen.oleary@ubc.ca [School of Engineering, The University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada); Shur, Michael S. [Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3590 (United States)

    2015-03-28

    Within the framework of an ensemble semi-classical three-valley Monte Carlo electron transport simulation approach, we critically contrast the nature of the electron transport that occurs within the wurtzite and zinc-blende phases of indium nitride in response to the application of a constant and uniform electric field. We use the electron energy distribution and its relationship with the electron transport characteristics in order to pursue this analysis. For the case of zinc-blende indium nitride, only a peak corresponding to the electrons within the lowest energy conduction band valley is observed, this peak being seen to broaden and shift to higher energies in response to increases in the applied electric field strength, negligible amounts of upper energy conduction band valley occupancy being observed. In contrast, for the case of wurtzite indium nitride, in addition to the aforementioned lowest energy conduction band valley peak in the electron energy distribution, and its broadening and shifting to higher energies in response to increases in the applied electric field strength, beyond a certain critical electric field strength, 30 kV/cm for the case of this particular material, upper energy conduction band valley occupancy is observed, this occupancy being further enhanced in response to further increases in the applied electric field strength. Reasons for these results are provided. The potential for device consequences is then commented upon.

  11. A two-stream plasma electron microwave source for high-power millimeter wave generation, phase 1

    Science.gov (United States)

    Guest, Gareth E.; Dandl, Raphael A.

    1989-03-01

    A novel high power millimeter/microwave source is proposed in which one or more pairs of interpenetrating streams of electrons, flowing through a background plasma in a static magnetic field are used to generate a hot-electron plasma that is confined in a mirror-like magnetic field. Energy stored in the anisotropic, hot-electron plasma is then used to amplify pulses of unstable plasma waves to large amplitude by selective deactivation of mechanisms that stabilize the hot-electron plasma during the energy accumulation phase when the density of hot electrons is rapidly increased through the beam-plasma interaction. The Phase 1 program has yielded a design for an experimental arrangement capable of verifying the key aspects of this novel source concept, as well as a theoretical framework for interpreting the empirical Phase 2 results produced by the experimental device and extrapolating those results to evaluate the suitability of the proposed source to meet the requirements of various high power microwave and millimeter wave defense and industrial applications. The experiments will be carried out in a timely and cost-effective way by employing the AMPHED (a CW magetic mirror) experimental facility at Applied Microwave Plasma Concepts (AMPC).

  12. Native defect induced charge and ferromagnetic spin ordering and coexisting electronic phases in CoO epitaxial thin film

    Energy Technology Data Exchange (ETDEWEB)

    Negi, D. S., E-mail: devendranegi@jncasr.ac.in, E-mail: ranjan@jncasr.ac.in; Loukya, B.; Datta, R., E-mail: devendranegi@jncasr.ac.in, E-mail: ranjan@jncasr.ac.in [International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2015-12-07

    We report on the observation of Co vacancy (V{sub Co}) induced charge ordering and ferromagnetism in CoO epitaxial thin film. The ordering is associated with the coexistence of commensurate, incommensurate, and discommensurate electronic phases. Density functional theory calculation indicates the origin of ordering in Co atoms undergoing high spin to low spin transition immediately surrounding the V{sub Co(16.6 at. %)}. Electron magnetic chiral dichroism experiment confirms the ferromagnetic signal at uncompensated Co spins. Such a native defects induced coexistence of different electronic phases at room temperature in a simple compound CoO is unique and adds to the richness of the field with the possibility of practical device application.

  13. Electron beam-formed ferromagnetic defects on MoS2 surface along 1 T phase transition

    Science.gov (United States)

    Han, Sang Wook; Park, Youngsin; Hwang, Young Hun; Jekal, Soyoung; Kang, Manil; Lee, Wang G.; Yang, Woochul; Lee, Gun-Do; Hong, Soon Cheol

    2016-12-01

    1 T phase incorporation into 2H-MoS2 via an optimal electron irradiation leads to induce a weak ferromagnetic state at room temperature, together with the improved transport property. In addition to the 1T-like defects, the electron irradiation on the cleaved MoS2 surface forms the concentric circle-type defects that are caused by the 2 H/1 T phase transition and the vacancies of the nearby S atoms of the Mo atoms. The electron irradiation-reduced bandgap is promising in vanishing the Schottky barrier to attaining spintronics device. The simple method to control and improve the magnetic and electrical properties on the MoS2 surface provides suitable ways for the low-dimensional device applications.

  14. Phase stability, electronic structure and equation of state of cubic TcN from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Song, T., E-mail: songting_lzjtu@yeah.net [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Ma, Q. [School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Sun, X.W., E-mail: xsun@carnegiescience.edu [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015 (United States); Liu, Z.J., E-mail: liuzj_lzcu@163.com [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Department of Physics, Lanzhou City University, Lanzhou 730070 (China); Fu, Z.J. [School of Electrical and Electronic Engineering, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Wei, X.P.; Wang, T.; Tian, J.H. [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China)

    2016-09-07

    The phase transition, electronic band structure, and equation of state (EOS) of cubic TcN are investigated by first-principles pseudopotential method based on density-functional theory. The calculated enthalpies show that TcN has a transformation between zincblende and rocksalt phases and the pressure determined by the relative enthalpy is 32 GPa. The calculated band structure indicates the metallic feature and it might make cubic TcN a better candidate for hard materials. Particular attention is paid to the predictions of volume, bulk modulus and its pressure derivative which play a central role in the formulation of approximate EOSs using the quasi-harmonic Debye model. - Highlights: • The phase transition pressure and electronic band structure for cubic TcN are determined. • Particular attention is paid to investigate the equation of state parameters for cubic TcN. • The thermodynamic properties up to 80 GPa and 3000 K are successfully predicted.

  15. First-principles study of structural and electronic properties of Laves phases structures YM2 (M = Cu and Zn

    Directory of Open Access Journals (Sweden)

    Benabadji M.K.

    2013-09-01

    Full Text Available First-principles calculations have been carried out to investigate the structural properties and electronic structure of the main binary Laves phase YCu2 and YZn2 with C14, C14, C36 and CeCu2 structures in Cu-Y-Zn alloy, respectively. The total energies of Laves phases with various occupations of nonequivalent lattice sites in all four structural forms have been calculated Ab initio by a pseudopotential VASP code. The optimized structural parameters were in very good agreement with the experimental values. The calculated heat of formation showed that the CeCu2-YCu2 and YZn2 Laves phase was of the strongest alloying ability and structural stability. The electronic density of states (DOS and charge density distribution were given.

  16. Electron spin echo studies of the internal motion of radicals in crystals: Phase memory vs correlation time

    Science.gov (United States)

    Kispert, Lowell D.; Bowman, Michael K.; Norris, James R.; Brown, Meta S.

    1982-01-01

    An electron spin echo (ESE) study of the internal motion of the CH2 protons in irradiated zinc acetate dihydrate crystals shows that quantitative measurements of the motional correlation time can be obtained quite directly from pulsed measurements. In the slow motional limit, the motional correlation time is equal to the phase memory time determined by ESE. In the fast motional limit, the motional correlation time is proportional to the no motion spectral second moment divided by the ESE phase memory time. ESE offers a convenient method of studying motion, electron transfer, conductivity, etc. in a variety of systems too complicated for study by ordinary EPR. New systems for study by ESE include biological samples, organic polymers, liquid solutions of radicals with unresolved hyperfine, etc. When motion modulates large anisotropic hyperfine couplings, ESE measurements of the phase memory time are sensitive to modulation of pseudosecular hyperfine interactions.

  17. Investigations of nanoreactors on the basis of p-type porous silicon: Electron structure and phase composition

    Energy Technology Data Exchange (ETDEWEB)

    Lenshin, A.S. [Voronezh State University, Solid State Physics and Nanostructures Department, Universitetskaya pl. 1, Voronezh 394006 (Russian Federation); Kashkarov, V.M., E-mail: kash@phys.vsu.ru [Voronezh State University, Solid State Physics and Nanostructures Department, Universitetskaya pl. 1, Voronezh 394006 (Russian Federation); Spivak, Yu. M. [SPbGETU ' LETI' , Department of Microelectronics (Russian Federation); Moshnikov, V.A., E-mail: vamoshnikov@mail.ru [SPbGETU ' LETI' , Department of Microelectronics (Russian Federation)

    2012-08-15

    Investigations of the electron structure and phase composition of the surface layers in porous silicon with a developed system of nanopores were made with the use of ultrasoft X-ray spectroscopy and X-ray photoelectron spectroscopy. The samples of porous silicon were obtained on the substrates with p-type conductivity under different modes of electrochemical etching. Porous surface layer represents a system of weakly connected pores oriented mainly perpendicular to the surface of silicon wafer. The mean transverse pore dimension is of {approx}50 nm. Silicon dioxide and sub-oxide were found in porous layer. We assume that these phases cover pores surface thus providing a possibility of the use of the structures as nanoreactors. -- Highlights: Black-Right-Pointing-Pointer Nanoporous silicon layers were obtained. Black-Right-Pointing-Pointer A system of weakly connected pores was detected. Black-Right-Pointing-Pointer Electron structure and phase composition of the surface layers in porous silicon were investigated.

  18. Mineralogical composition and phase-to-phase relationships in natural hydraulic lime and/or natural cement - raw materials and burnt products revealed by scanning electron microscopy

    Science.gov (United States)

    Kozlovcev, Petr; Přikryl, Richard; Racek, Martin; Přikrylová, Jiřina

    2016-04-01

    In contrast to modern process of production of cement clinker, traditional burning of natural hydraulic lime below sintering temperature relied on the formation of new phases from ion migration between neighbouring mineral grains composing raw material. The importance of the mineralogical composition and spatial distribution of rock-forming minerals in impure limestones used as a raw material for natural hydraulic lime presents not well explored issue in the scientific literature. To fill this gap, the recent study focuses in detailed analysis of experimentally burnt impure limestones (mostly from Barrandian area, Bohemian Massif). The phase changes were documented by optical microscopy, X-ray diffraction, and scanning electron microscopy with an energy dispersive spectrometer (SEM-EDS) coupled with x-ray elemental mapping. The latest allowed for visualization of distribution of elements within raw materials and burnt products. SEM/EDS study brought valuable data on the presence of transitional and/or minor phases, which were poorly detectable by other methods.

  19. Analysis of electron structure of γ′α2 phase boundaries in ternary TiAl intermetallics

    Institute of Scientific and Technical Information of China (English)

    KONG Fan-tao; CHEN Yu-yong

    2006-01-01

    The electron structure of γ/α2 phase boundaries in lamellar colonies in Ti-47Al-2M(M=Nb, Cr, V) (mole fraction, %) alloys was theoretically investigated by Empirical Electron Theory of Solid and Molecules (EET) and the bond-length-difference (BLD) method. Average-Atom-Model was employed to calculate valence electron structure of TiAl intermetallics containing site substitution elements. On this basis, the boundary condition of electron movement was employed in the improved Thomas-Fermi-Dirac (TFD) theory to decide the continuity of the electron density of the lamellar colonies interface and it is found that of γ/α2 interface is continuous(△ρ<10%). Furthermore, it is found that adding alloying elements (including Nb, Cr, and V) can improve the electron density (△ρ) of γ/α2 interfaces, and decrease the electron density difference(△ρ) of γ/α2 interfaces. Adding V element decreasing △ρ is more remarkable than other site substitution elements. According to electron structure study of γ/α2 interfaces in Ti-47Al-2M alloys, the added elements improve mechanical properties of the alloy in the following order: V>Cr>Nb.

  20. Phase behaviors of binary mixtures composed of electron-rich and electron-poor triphenylene discotic liquid crystals

    Science.gov (United States)

    An, Lingling; Jing, Min; Xiao, Bo; Bai, Xiao-Yan; Zeng, Qing-Dao; Zhao, Ke-Qing

    2016-09-01

    Disk-like liquid crystals (DLCs) can self-assemble to ordered columnar mesophases and are intriguing one-dimensional organic semiconductors with high charge carrier mobility. To improve their applicable property of mesomorphic temperature ranges, we exploit the binary mixtures of electronic donor-acceptor DLC materials. The electron-rich 2,3,6,7,10,11-hexakis(alkoxy)triphenylenes (C4, C6, C8, C10, C12) and an electron-deficient tetrapentyl triphenylene-2,3,6,10-tetracarboxylate have been prepared and their binary mixtures have been investigated. The mesomorphism of the 1:1 (molar ratio) mixtures has been characterized by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and small angel x-ray scattering (SAXS). The self-assembled monolayer structure of a discogen on a solid-liquid interface has been imaged by the high resolution scanning tunneling microscopy (STM). The match of peripheral chain length has important influence on the mesomorphism of the binary mixtures. Project supported by the National Natural Science Foundation of China (Grant Nos. 51273133 and 51443004).

  1. Universal set of single-qubit gates based on geometric phase of electron spin in a quantum dot

    Science.gov (United States)

    Malinovsky, Vladimir; Rudin, Sergey

    2012-02-01

    The electron spin in a single quantum dot is one of the perspective realizations of a qubit for the implementation of a quantum computer. During last decade several control schemes to perform single gate operations on a single quantum dot spin have been reported. We propose a scheme that allows performing ultrafast arbitrary unitary operations on a single qubit. We demonstrate how to use the geometric phase, which the Bloch vector gains along the cyclic path, to prepare an arbitrary state of a single qubit. It is shown that, the geometrical phase is fully controllable by the relative phase between the external fields. Using the analytic expression of the evolution operator for the electron spin in a quantum dot, we propose a scheme to design a universal set of single-qubit gates based solely on the geometrical phase that the qubit state acquires after a cyclic evolution in the parameter space. The scheme is utilizing ultrafast linearly-chirped pulses providing adiabatic excitation of the qubit states and the geometric phase is fully controlled by the relative phase between pulses.

  2. Influence of electron beam exposure on crystallization of phase-change materials

    NARCIS (Netherlands)

    Pandian, Ramanathaswamy; Kooi, Bart J.; De Hosson, Jeff Th. M.; Pauza, Andrew

    2007-01-01

    Isothermal crystallization of amorphous SbxTe films capped with ZnS-SiO2 or GeCrN layers was performed using in situ heating within a transmission electron microscope. The effect of the electron beam of the microscope on the crystallization process was investigated. It was found that electron irradi

  3. Thermoelectric properties and electronic structure of the Zintl phase Sr5Al2Sb6.

    Science.gov (United States)

    Zevalkink, Alex; Takagiwa, Yoshiki; Kitahara, Koichi; Kimura, Kaoru; Snyder, G Jeffrey

    2014-03-28

    The Zintl phase Sr5Al2Sb6 has a large, complex unit cell and is composed of relatively earth-abundant and non-toxic elements, making it an attractive candidate for thermoelectric applications. The structure of Sr5Al2Sb6 is characterized by infinite oscillating chains of AlSb4 tetrahedra. It is distinct from the structure type of the previously studied Ca5M2Sb6 compounds (M = Al, Ga or In), all of which have been shown to have promising thermoelectric performance. The lattice thermal conductivity of Sr5Al2Sb6 (~0.55 W mK(-1) at 1000 K) was found to be lower than that of the related Ca5M2Sb6 compounds due to its larger unit cell (54 atoms per primitive cell). Density functional theory predicts a relatively large band gap in Sr5Al2Sb6, in agreement with the experimentally determined band gap of E(g) ~ 0.5 eV. High temperature electronic transport measurements reveal high resistivity and high Seebeck coefficients in Sr5Al2Sb6, consistent with the large band gap and valence-precise structure. Doping with Zn(2+) on the Al(3+) site was attempted, but did not lead to the expected increase in carrier concentration. The low lattice thermal conductivity and large band gap in Sr5Al2Sb6 suggest that, if the carrier concentration can be increased, thermoelectric performance comparable to that of Ca5Al2Sb6 could be achieved in this system.

  4. Phase dependence of secondary electron emission at the Cs-Sb-Si (111) interface

    Science.gov (United States)

    Govind, Govind; Kumar, Praveen; Shivaprasad, S. M.

    2009-06-01

    The multi-alkali antimonides adsorption on Si (111) surface has drawn much attention of several surface science studies due to its importance in both, fundamental and technological aspects of night vision devices & photocathodes. We report the formation of alkali metal antimonide ternary interface on Si(111)- 7×7 surface and in-situ characterization by X-ray Photoelectron Spectroscopy (XPS). The results show that Cs adsorption on clean Si(111) surface follows the layer-by-layer (Frank van der Merwe) growth mode at low flux rate, while Sb grows as islands (Volmer-Weber) on Cs/Si surface. The changes in the Si (2p) and Cs (3d) core level spectra show the formation of a ternary interface (Sb/Cs/Si) at room temperature, which is further confirmed by changes in the density of states in the valence band spectra. The temperature controlled desorption of ternary interface, by monitoring the chemical species remnant on the surface after annealing at different temperatures, reveal that the Sb islands desorb at 750° C, which implies a stronger Cs-Si bond to Cs-Sb bond. The work function changes from 3.9 eV to 0.8 eV for Cs adsorption on Si, which further reduces to 0.65 eV after Sb adsorption on the Cs/Si interface. The changes in work function corresponds to the compositional and chemical nature of the interface and thus indicate that the secondary electron emission is an extremely phase dependent phenomena.

  5. Longitudinal phase-space manipulation of ellipsoidal electron bunches in realistic fields

    Directory of Open Access Journals (Sweden)

    S. B. van der Geer

    2006-04-01

    Full Text Available Since the recent publication of a practical recipe to create “pancake” electron bunches which evolve into uniformly filled ellipsoids, a number of papers have addressed both an alternative method to create such ellipsoids as well as their behavior in realistic fields. So far, the focus has been on the possibilities to preserve the initial “thermal” transverse emittance. This paper addresses the linear longitudinal phase space of ellipsoidal bunches. It is shown that ellipsoidal bunches allow ballistic compression at subrelativistic energies, without the detrimental effects of nonlinear space-charge forces. This in turn eliminates the need for the large correlated energy spread normally required for longitudinal compression of relativistic particle beams, while simultaneously avoiding all problems related to magnetic compression. Furthermore, the linear space-charge forces of ellipsoidal bunches can be used to reduce the remaining energy spread even further, by carefully choosing the beam transverse size, in a process that is essentially the time-reversed process of the creation of an ellipsoid at the cathode. The feasibility of compression of ellipsoidal bunches is illustrated with a relatively simple setup, consisting of a half-cell S-band photogun and a two-cell booster compressor. Detailed GPT simulations in realistic fields predict that 100 pC ellipsoidal bunches can be ballistically compressed to 100 fs, at a transverse emittance of 0.7   μm, with a final energy of 3.7 MeV and an energy spread of only 50 keV.

  6. Single electron emission in two-phase xenon with application to the detection of coherent neutrino-nucleus scattering

    CERN Document Server

    Santos, E; Chepel, V; Araujo, H M; Akimov, D Yu; Barnes, E J; Belov, V A; Burenkov, A A; Currie, A; DeViveiros, L; Ghag, C; Hollingsworth, A; Horn, M; Kalmus, G E; Kobyakin, A S; Kovalenko, A G; Lebedenko, V N; Lindote, A; Lopes, M I; Luscher, R; Majewski, P; Murphy, A StJ; Neves, F; Paling, S M; da Cunha, J Pinto; Preece, R; Quenby, J J; Reichhart, L; Scovell, P R; Silva, C; Solovov, V N; Smith, N J T; Smith, P F; Stekhanov, V N; Sumner, T J; Thorne, C; Walker, R J

    2011-01-01

    We present an experimental study of single electron emission in ZEPLIN-III, a two-phase xenon experiment built to search for dark matter WIMPs, and discuss applications enabled by the excellent signal-to-noise ratio achieved in detecting this signature. Firstly, we demonstrate a practical method for precise measurement of the free electron lifetime in liquid xenon during normal operation of these detectors. Then, using a realistic detector response model and backgrounds, we assess the feasibility of deploying such an instrument for measuring coherent neutrino-nucleus elastic scattering using the ionisation channel in the few-electron regime. We conclude that it should be possible to measure this elusive neutrino signature above an ionisation threshold of $\\sim$3 electrons both at a stopped pion source and at a nuclear reactor. Detectable signal rates are larger in the reactor case, but the triggered measurement and harder recoil energy spectrum afforded by the accelerator source enable lower overall backgroun...

  7. Phase stability in the systems AeAl(2-x)Mgx (Ae = Ca, Sr, Ba): electron concentration and size controlled variations on the laves phase structural theme.

    Science.gov (United States)

    Amerioun, Shahrad; Yokosawa, Tadahiro; Lidin, Sven; Häussermann, Ulrich

    2004-07-26

    The systems AeAl(2-x)Mgx (Ae = Ca, Sr, Ba) display electron concentration induced Laves phase structural changes. However, the complete sequence MgCu2 --> MgNi2 --> MgZn2 with increasing x (decreasing electron count) is only observed for Ae = Ca. Compounds SrAl(2-x)Mgx (0 MgNi2 --> MgZn2 occurs with increasing Mg content x. Thus, larger Sr does not allow the realization of the MgCu2 structure at low x. For Ae = Ba a binary compound BaAl2 does not exist, but more Ba-rich Ba7Al13 forms. The reinvestigation of the crystal structure of Ba7Al13 by selected area and convergent beam electron diffraction in a transmission electron microscope revealed a superstructure, which subsequently could be refined from single X-ray diffraction data. The formula unit of the superstructure is Ba21Al40 (space group P31m, Z = 1, a = 10.568(1) angstroms, c = 17.205(6) angstroms). In Ba21Al40 a size match problem between Ba and Al present in Ba7Al13 is resolved. The structure of Ba7Al13 (Ba21Al40) can be considered as a Ba excess variant of the hexagonal MgNi2 Laves phase type structure. An incommensurately modulated variant of the MgNi2 structure is obtained for phases BaAl(2-x)Mgx with x = 0.8-1. At even higher Mg concentrations a structural change to the proper MgZn2 type structure takes place. Copyright 2004 American Chemical Society

  8. Microstructural investigation of Nd-rich phase in sintered Nd-Fe-B magnets through electron microscopy

    Institute of Scientific and Technical Information of China (English)

    付新; 韩小磊; 杜志伟; 冯海波; 李岩峰

    2013-01-01

    The distribution, morphologies and structures of intergranular Nd-rich phase in sintered Nd-Fe-B magnets were studied through electron microscopy. Backscattered electron (BSE) imaging revealed that Nd-rich particles with various morphologies and sizes were randomly distributed at the grain boundaries and the triple junctions of the tetragonal Nd2Fe14B matrix. Through selected area electron diffraction (SAED) analysis under a systematic tilting condition, most intergranular Nd-rich phase particles, with sizes ranging from hundreds of nanometres to several micrometres, were identified as face-centred cubic (FCC) structure. Such particles possessed several approximate orientation relationships with their adjacent Nd2Fe14B matrix grains, such as (002)Nd2Fe14B//(200)FCC_Nd-rich [120] Nd2Fe14B//[001]FCC_Nd-rich, (002)Nd2Fe14B//( 220 )FCC_Nd-rich [110] Nd2Fe14B//[112]FCC_Nd-rich, as well as (011)Nd2Fe14B//(131)FCC_Nd-rich [111] Nd2Fe14B//[114]FCC_Nd-rich, which could be attributed to minimising interfacial energy. The combination of high-resolution electron microscopy with energy-dispersive X-ray spectroscopy revealed the internal inhomogeneous nature of Nd-rich phases. The large lattice distortion and nanoscale-ordered structures within a single Nd-rich grain were observed.

  9. Neural network prediction of relativistic electrons at geosynchronous orbit during the storm recovery phase: effects of recurring substorms

    Directory of Open Access Journals (Sweden)

    M. Fukata

    Full Text Available During the recovery phase of geomagnetic storms, the flux of relativistic (>2 MeV electrons at geosynchronous orbits is enhanced. This enhancement reaches a level that can cause devastating damage to instruments on satellites. To predict these temporal variations, we have developed neural network models that predict the flux for the period 1–12 h ahead. The electron-flux data obtained during storms, from the Space Environment Monitor on board a Geostationary Meteorological Satellite, were used to construct the model. Various combinations of the input parameters AL, SAL, Dst and SDst were tested (where S denotes the summation from the time of the minimum Dst. It was found that the model, including SAL as one of the input parameters, can provide some measure of relativistic electron-flux prediction at geosynchronous orbit during the recovery phase. We suggest from this result that the relativistic electron-flux enhancement during the recovery phase is associated with recurring substorms after Dst minimum and their accumulation effect.

    Key words. Magnetospheric physics (energetic particles, trapped; magnetospheric configuration and dynamics; storms and substorms

  10. Distinguishing cubic and hexagonal phases within InGaN/GaN microstructures using electron energy loss spectroscopy.

    Science.gov (United States)

    Griffiths, I J; Cherns, D; Albert, S; Bengoechea-Encabo, A; Angel Sanchez, M; Calleja, E; Schimpke, T; Strassburg, M

    2016-05-01

    3D InGaN/GaN microstructures grown by metal organic vapor phase epitaxy (MOVPE) and molecular beam epitaxy (MBE) have been extensively studied using a range of electron microscopy techniques. The growth of material by MBE has led to the growth of cubic GaN material. The changes in these crystal phases has been investigated by Electron Energy Loss Spectroscopy, where the variations in the fine structure of the N K-edge shows a clear difference allowing the mapping of the phases to take place. GaN layers grown for light emitting devices sometimes have cubic inclusions in the normally hexagonal wurtzite structures, which can influence the device electronic properties. Differences in the fine structure of the N K-edge between cubic and hexagonal material in electron energy loss spectra are used to map cubic and hexagonal regions in a GaN/InGaN microcolumnar device. The method of mapping is explained, and the factors limiting spatial resolution are discussed.

  11. Distinguishing cubic and hexagonal phases within InGaN/GaN microstructures using electron energy loss spectroscopy

    Science.gov (United States)

    CHERNS, D; ALBERT, S.; BENGOECHEA‐ENCABO, A.; ANGEL SANCHEZ, M.; CALLEJA, E.; SCHIMPKE, T.; STRASSBURG, M.

    2015-01-01

    Summary 3D InGaN/GaN microstructures grown by metal organic vapor phase epitaxy (MOVPE) and molecular beam epitaxy (MBE) have been extensively studied using a range of electron microscopy techniques. The growth of material by MBE has led to the growth of cubic GaN material. The changes in these crystal phases has been investigated by Electron Energy Loss Spectroscopy, where the variations in the fine structure of the N K‐edge shows a clear difference allowing the mapping of the phases to take place. GaN layers grown for light emitting devices sometimes have cubic inclusions in the normally hexagonal wurtzite structures, which can influence the device electronic properties. Differences in the fine structure of the N K‐edge between cubic and hexagonal material in electron energy loss spectra are used to map cubic and hexagonal regions in a GaN/InGaN microcolumnar device. The method of mapping is explained, and the factors limiting spatial resolution are discussed. PMID:26366483

  12. Phase diagram of electron systems near the superconductor-insulator transition.

    Science.gov (United States)

    Pokrovsky, V L; Falco, G M; Nattermann, T

    2010-12-31

    The zero temperature phase diagram of Cooper pairs exposed to disorder and a magnetic field is determined theoretically from a variational approach. Four distinct phases are found: a Bose and a Fermi insulating, a metallic, and a superconducting phase, respectively. The results explain the giant negative magnetoresistance found experimentally in In-O, TiN, Be and high-T(c) materials.

  13. Neutrino and Electron-positron Pair Emission from Phase-induced Collapse of Neutron Stars to Quark Stars

    CERN Document Server

    Cheng, K S

    2010-01-01

    We study the energy released from phase-transition induced collapse of neutron stars, which results in large amplitude stellar oscillations. To model this process we use a Newtonian hydrodynamic code, with a high resolution shock-capturing scheme. The physical process considered is a sudden phase transition from normal nuclear matter to a mixed phase of quark and nuclear matter. We show that both the temperature and the density at the neutrinosphere oscillate with time. However, they are nearly 180 degree out of phase. Consequently, extremely intense, pulsating neutrino/antineutrino and leptonic pair fluxes will be emitted. During this stage several mass ejecta can be ejected from the stellar surface by the neutrinos and antineutrinos. These ejecta can be further accelerated to relativistic speeds by the electron/positron pairs, created by the neutrino and antineutrino annihilation outside the stellar surface. We suggest that this process may be a possible mechanism for short Gamma-Ray Bursts.

  14. Optical properties of VO{sub 2} films at the phase transition: Influence of substrate and electronic correlations

    Energy Technology Data Exchange (ETDEWEB)

    Peterseim, Tobias; Dressel, Martin [1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany); Dietrich, Marc; Polity, Angelika [I. Physikalisches Institut, Justus-Liebig Universität Gießen, Heinrich-Buff-Ring 16, 35392 Gießen (Germany)

    2016-08-21

    Thin films of VO{sub 2} on different substrates, Al{sub 2}O{sub 3} and SiO{sub 2}/Si, have been prepared and characterized from room temperature up to 360 K. From the band structure in the rutile metallic phase and in the monoclinic insulating phase, the optical properties are calculated and compared with reflection measurements performed as a function of temperatures. Various interband transitions can be assigned and compared with previous speculations. We extract the parameters of the metallic charge carriers that evolve upon crossing the insulator-to-metal phase transition and find effects by the substrate. The influence of electronic correlations becomes obvious at the phase transition.

  15. Phase stability, elastic anisotropy and electronic structure of cubic MAl2 (M = Mg, Ca, Sr and Ba) Laves phases from first-principles calculations

    Science.gov (United States)

    Kong, Yuanyuan; Duan, Yonghua; Ma, Lishi; Li, Runyue

    2016-10-01

    By performing first-principles calculations within the generalized gradient approximation, the phase stability, elastic constant and anisotropy, and density of states of cubic C15-type MAl2 (M = Mg, Ca, Sr and Ba) Laves phases have been investigated. Optimized equilibrium lattice parameters and formation enthalpies agree well with the available experimental data. Elastic constants C ij have been evaluated, and these C15-type MAl2 Laves phases are mechanically stable due to the meeting of C ij to the mechanical stability criteria. Polycrystalline elastic moduli have been deduced from elastic constants by Voigt-Reuss-Hill approximation. Plastic properties were characterized via values of B/G, Poisson’s ratio ν and Cauchy pressure (C 12-C 44). The elastic anisotropy has been considered by several anisotropy indexes (A U , A Z , A shear and A comp), anisotropy of shear modulus, and 3D surface constructions of bulk and Young’s moduli. Additionally, the sound velocity anisotropy and Debye temperature were predicted. Finally, electronic structures were carried out to reveal the underlying phase stability mechanism of these Laves phases.

  16. A first-principle study on the phase transition, electronic structure, and mechanical properties of three-phase ZrTi2 alloy under high pressure*

    Science.gov (United States)

    Yuan, Xiao-Li; Xue, Mi-An; Chen, Wen; An, Tian-Qing

    2016-11-01

    We employed density-functional theory (DFT) within the generalized gradient approximation (GGA) to investigate the ZrTi2 alloy, and obtained its structural phase transition, mechanical behavior, Gibbs free energy as a function of pressure, P-V equation of state, electronic and Mulliken population analysis results. The lattice parameters and P-V EOS for α, β and ω phases revealed by our calculations are consistent with other experimental and computational values. The elastic constants obtained suggest that ω-ZrTi2 and α-ZrTi2 are mechanically stable, and that β-ZrTi2 is mechanically unstable at 0 GPa, but becomes more stable with increasing pressure. Our calculated results indicate a phase transition sequence of α → ω → β for ZrTi2. Both the bulk modulus B and shear modulus G increase linearly with increasing pressure for three phases. The G/B values illustrated good ductility of ZrTi2 alloy for three phases, with ωweb page at http://dx.doi.org/10.1140/epjb/e2016-70218-0

  17. Electron microscopy analyses and electrical properties of the layered Bi{sub 2}WO{sub 6} phase

    Energy Technology Data Exchange (ETDEWEB)

    Taoufyq, A. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex (France); Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); Département d‘Études des Réacteurs, Laboratoire Dosimétrie Capteurs Instrumentation, CEA Cadarache (France); Société CESIGMA—Signals and Systems, 1576 Chemin de La Planquette, F 83 130 LA GARDE (France); Ait Ahsaine, H. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); Patout, L. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex (France); Benlhachemi, A.; Ezahri, M. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); and others

    2013-07-15

    The bismuth tungstate Bi{sub 2}WO{sub 6} was synthesized using a classical coprecipitation method followed by a calcination process at different temperatures. The samples were characterized by X-ray diffraction, simultaneous thermogravimetry and differential thermal analysis (TGA/DTA), scanning and transmission electron microscopy (SEM, TEM) analyses. The Rietveld analysis and electron diffraction clearly confirmed the Pca2{sub 1} non centrosymmetric space group previously proposed for this phase. The layers Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2−} have been directly evidenced from the HRTEM images. The electrical properties of Bi{sub 2}WO{sub 6} compacted pellets systems were determined from electrical impedance spectrometry (EIS) and direct current (DC) analyses, under air and argon, between 350 and 700 °C. The direct current analyses showed that the conduction observed from EIS analyses was mainly ionic in this temperature range, with a small electronic contribution. Electrical change above the transition temperature of 660 °C is observed under air and argon atmospheres. The strong conductivity increase observed under argon is interpreted in terms of formation of additional oxygen vacancies coupled with electron conduction. - Graphical abstract: High resolution transmission electron microscopy: inverse fast Fourier transform giving the layered structure of the Bi{sub 2}WO{sub 6} phase, with a representation of the cell dimensions (b and c vectors). The Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2−} sandwiches are visible in the IFFT image. - Highlights: • Using transmission electron microscopy, we visualize the layered structure of Bi{sub 2}WO{sub 6}. • Electrical analyses under argon gas show some increase in conductivity. • The phase transition at 660 °C is evidenced from electrical modification.

  18. Phase space distribution of an electron beam emerging from Compton/Thomson back-scattering by an intense laser pulse

    Science.gov (United States)

    Petrillo, V.; Chaikovska, I.; Ronsivalle, C.; Rossi, A. R.; Serafini, L.; Vaccarezza, C.

    2013-01-01

    We analyze the energy distribution of a relativistic electron beam after the Compton back-scattering by a counterpropagating laser field. The analysis is performed for parameters in the range of realistic X-γ sources, in the framework of the Quantum Electrodynamics, by means of the code CAIN. The results lead to the conclusion that, in the regime considered, the main effect is the initial formation of stripes, followed by the diffusion of the most energetic particles toward lower values in the longitudinal phase space, with a final increase of the electron energy bandwidth.

  19. Spectroscopy of RFe3(BO3)4 multiferroics: phase transitions, spin-phonon interaction, coupled electron-phonon modes

    Science.gov (United States)

    Popova, M. N.

    2016-12-01

    Review of the work performed in the author's laboratory is given, on high-resolution Fourier spectroscopy studies of multiferroics from the family of rare-earth iron borates with the structure of the natural mineral huntite. For these multiferroics, we reveal spectral signatures of interactions between electronic, spin, and lattice degrees of freedom. We have observed and investigated coupled electron-phonon modes in PrFe3(BO3)4 and TbFe3(BO3)4. The structure of the magnetically ordered phase of EuFe3(BO3)4 is determined.

  20. Phase Boundary Propagation in Li-Alloying Battery Electrodes Revealed by Liquid-Cell Transmission Electron Microscopy.

    Science.gov (United States)

    Leenheer, Andrew J; Jungjohann, Katherine L; Zavadil, Kevin R; Harris, Charles T

    2016-06-28

    Battery cycle life is directly influenced by the microstructural changes occurring in the electrodes during charge and discharge cycles. Here, we image in situ the nanoscale phase evolution in negative electrode materials for Li-ion batteries using a fully enclosed liquid cell in a transmission electron microscope (TEM) to reveal early degradation that is not evident in the charge-discharge curves. To compare the electrochemical phase transformation behavior between three model materials, thin films of amorphous Si, crystalline Al, and crystalline Au were lithiated and delithiated at controlled rates while immersed in a commercial liquid electrolyte. This method allowed for the direct observation of lithiation mechanisms in nanoscale negative electrodes, revealing that a simplistic model of a surface-to-interior lithiation front is insufficient. For the crystalline films, a lithiation front spread laterally from a few initial nucleation points, with continued grain nucleation along the growing interface. The intermediate lithiated phases were identified using electron diffraction, and high-resolution postmortem imaging revealed the details of the final microstructure. Our results show that electrochemically induced solid-solid phase transformations can lead to highly concentrated stresses at the laterally propagating phase boundary which should be considered for future designs of nanostructured electrodes for Li-ion batteries.

  1. Segregation Study of the β phase on the Al-Li Alloy Surface using Auger Electron Spectroscopy

    Science.gov (United States)

    Belkhiat, S.; Keraghel, F.

    2009-11-01

    Auger Electron spectroscopy (AES) has been used to study lithium segregation on Al-3.49wt%-Li alloy surface. In this work, the surface atomic composition as a function of temperature was followed. In our previous works, the activation energy of Li segregation has been determined experimentally being in agreement with the resulted theoretical value. In this paper, one showed that the segregation energy of Li on the surface depends of the crystalline structure and of the Li content in the Al-Li alloy matrix. β-AlLi phase on the alloy surface, used in the power sources for the propulsion of electrical vehicles and for stocking energy, is obtained by progressive heating. We showed that the segregated lithium on the alloy surface is reversible as a function of decreasing temperature and consequently β-AlLi phase is converted in α-AlLi phase. On the other hand, the brutal heating of the sample drives to the conversion of the α-AlLi phase to β-AlLi phase and stabilizes the surface towards other segregation; therefore the conversion of β-AlLi phase to α-AlLi phase is irreversible.

  2. Impact of anharmonic effects on the phase stability, thermal transport, and electronic properties of AlN

    Science.gov (United States)

    Shulumba, Nina; Raza, Zamaan; Hellman, Olle; Janzén, Erik; Abrikosov, Igor A.; Odén, Magnus

    2016-09-01

    Wurtzite aluminium nitride (AlN) is a technologically important wide-band-gap semiconductor with an unusually high thermal conductivity, used in optical applications and as a heatsink substrate. Explaining many of its properties depends on an accurate description of its lattice dynamics, which have thus far only been captured in the quasiharmonic approximation. In this work, we show that anharmonic effects have a considerable impact on its phase stability and transport properties, since they are much stronger in the rocksalt phase. We construct a theoretical pressure-temperature phase diagram of AlN, demonstrating that the rocksalt phase is stabilized by increasing temperature, with respect to the wurtzite phase. We recover the thermal conductivity of the wurtzite phase (320 Wm-1K-1 under ambient conditions) and compute the hitherto unknown thermal conductivity of the rocksalt phase (81 Wm-1K-1 ). We also show that the electronic band gap decreases with temperature. These findings provide further evidence that anharmonic effects cannot be ignored in simulations of materials intended for high-temperature applications.

  3. Investigations of the electron phase space dynamics in triggered whistler wave emissions using low noise \\delta f method

    Science.gov (United States)

    Tao, Xin; Zonca, Fulvio; Chen, Liu

    2017-09-01

    The evolution of the electron phase space structures during excitation of a triggered emission is investigated using the nonlinear δ f method. Previous studies suggested that the dynamics of phase space structures due to nonlinear wave particle interactions is critical to the excitation of triggered emissions with frequency chirping. We introduce the use of the nonlinear δ f method to simulate triggered emissions. Compared with full-f particle-in-cell method, the nonlinear δ f method significantly reduces numerical noise, therefore making the phase space structures more identifiable. Specific to the simulation of triggered emissions, the nonlinear δ f method also does not show numerical distortion of the distribution function due to reflecting particle boundary conditions. Using the nonlinear δ f method, we show that during the main portion of the chirping element, the phase space structure roughly maintains a shape so that the resonant island moves a distance in phase space that is on the same order as its width during one phase space bounce period of deeply trapped particles, supporting that the interaction is non-adiabatic. We also demonstrate the disappearance of the phase space structure near the end of the chirping. Our work suggests that the nonlinear δ f method could be very useful for the study of excitation of triggered emissions and to understand the mechanism of frequency chirping.

  4. Girder deformation related phase errors on the undulators for the European X-Ray Free Electron Laser

    Directory of Open Access Journals (Sweden)

    Yuhui Li

    2015-06-01

    Full Text Available In long gap tunable undulators, strong magnetic forces always lead to some amount of gap-dependent girder deformation and resulting gap-dependent phase errors. For the undulators for the European XFEL, this problem has been investigated thoroughly and quantitatively. Using the different gap dependencies of suitable shims and pole height tuning, a method is presented which can be applied to reduce the overall gap dependence of the phase error if needed. It is exemplified by tuning one of the undulator segments for the European X-Ray Free Electron Laser back to specs.

  5. A first principles study of phase stability, bonding, electronic and lattice dynamical properties of beryllium chalcogenides at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar 364001 (India); Mankad, Venu [Central Institute of Plastic Engineering and Technology, Ahmedabad (India); Jha, Prafulla K., E-mail: prafullaj@yahoo.com [Department of Physics, Faculty of Science, The M.S. University of Baroda, Vadodara 390002 (India)

    2014-12-25

    Highlights: • First principles calculations are performed for BeS, BeSe and BeTe in B3, B8 and B1 phases. • They are indirect wide band gap semiconductors stable in B3 phase at ambient condition. • Phonon calculations at ambient and high pressure are reported. • The NiAs phase is dynamically stable at high pressure. - Abstract: The present paper reports a detailed and systematic theoretical study of structural, mechanical, electronic, vibrational and thermodynamical properties of three beryllium chalcogenides BeS, BeSe and BeTe in zinc blende, NiAs and rock salt phases by performing ab initio calculations based on density-functional theory. The calculated value of lattice constants and bulk modulus are compared with the available experimental and other theoretical data and found to agree reasonably well. These compounds are indirect wide band gap semiconductors with a partially ionic contribution in all considered three phases. The zinc blende phase of these chalcogenides is found stable at ambient condition and phase transition from zinc blende to NiAs structure is found to occur. The bulk modulus, its pressure derivative, anisotropic factor, Poission’s ratio, Young’s modulus for these are also calculated and discussed. The phonon dispersion curves of these beryllium chalcogenides in zinc blende phase depict their dynamical stability in this phase at ambient condition. We have also estimated the temperature variation of specific heat at constant volume, entropy and Debye temperature for these compounds in zinc blende phase. The variation of lattice-specific heat with temperature obeys the classical Dulong–Petit’s law at high temperature, while at low-temperature it obeys the Debye’s T{sup 3} law.

  6. Electronic structure and magnetism of strained bcc phases across the fcc to bcc transition in ultrathin Fe films

    Science.gov (United States)

    Calloni, Alberto; Berti, Giulia; Bussetti, Gianlorenzo; Fratesi, Guido; Finazzi, Marco; Ciccacci, Franco; Duò, Lamberto

    2016-11-01

    We investigated the electronic structure of the bcc metastable phases involved in the fcc to bcc transition of Fe. Ultrathin Fe films were grown on a 2-monolayer (ML) Ni/W(110) substrate, where a fcc lattice is stabilized at low Fe coverages and the transition proceeds through the formation of bcc nuclei showing a specific "Kurdjumov-Sachs" orientation with the substrate. A comprehensive description of the electronic structure evolution is achieved by combining spin-resolved UV photoemission spectroscopy and ab initio calculations. According to our results, an exchange-split band structure is observed starting from 2 ML of Fe, concomitant with the formation of ferromagnetic bcc nuclei. Continuous modifications are observed in the spin-resolved photoemission spectra for increasing Fe coverage, especially for what concerns the minority states, possibly indicative of the progressive relaxation of the strained bcc phase starting from the bcc/fcc interface.

  7. Activation of Metal-Organic Precursors by Electron Bombardment in the Gas Phase for Enhanced Deposition of Solid Films.

    Science.gov (United States)

    Sun, Huaxing; Qin, Xiangdong; Zaera, Francisco

    2012-09-01

    The incorporation of gas-phase electron-impact ionization and activation of metal-organic compounds into atomic layer deposition (ALD) processes is reported as a way to enhance film growth with stable precursors. Specifically, it is shown here that gas-phase activation of methylcyclopentadienylmanganese tricarbonyl, MeCpMn(CO)3, which was accomplished by using a typical nude ion gauge employed in many ultrahigh-vacuum (UHV) studies, enhances its dissociative adsorption on silicon surfaces, affording the design of ALD cycles with more extensive Mn deposition and at lower temperatures. Significantly higher Mn uptakes were demonstrated by X-ray photoelectron spectroscopy (XPS) on both silicon dioxide films and on Si(100) wafers Ar(+)-sputtered to remove their native oxide layer. The effectiveness of this electron-impact activation approach in ALD is explained in terms of the cracking patterns seen in mass spectrometry for the metal-organic precursor used.

  8. Phase Transformation and Enhancing Electron Field Emission Properties in Microcrystalline Diamond Films Induced by Cu Ion Implantation and Rapid Annealing

    Institute of Scientific and Technical Information of China (English)

    Yan-Yan Shen; Yi-Xin Zhang; Ting Qi; Yu Qiao; Yu-Xin Jia; Hong-Jun Hei; Zhi-Yong He

    2016-01-01

    Cu ion implantation and subsequent rapid annealing at 500℃ in N2 result in low surface resistivity of 1.611 ohm/sq with high mobility of 290 cm2 V-1 S-1 for microcrystalline diamond (MCD) films.Its electrical field emission behavior can be turned on at Eo =2.6 V/μm,attaining a current density of 19.5μA/cm2 at an applied field of 3.5 V/μm.Field emission scanning electron microscopy combined with Raman and x-ray photoelectron microscopy reveal that the formation of Cu nanoparticles in MCD films can catalytically convert the less conducting disorder/a-C phases into graphitic phases and can provoke the formation of nanographite in the films,forming conduction channels for electron transportation.

  9. Structural, electronic and elastic properties of REIr{sub 2} (RE=La and Ce) Laves phase compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Deepika, E-mail: deepika89shrivastava@gmail.com; Fatima, Bushra; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal, 462026 (India)

    2016-05-23

    REIr{sub 2} (RE = La and Ce) Laves phase intermetallic compounds were investigated with respect to their structural, electronic and elastic properties using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA) as implemented in WIEN2k code. The ground state properties such as lattice constants (a{sub 0}), bulk modulus (B), pressure derivative of bulk modulus (B′) and density of state at Fermi level N(E{sub F}) have been obtained by optimization method. The electronic structure (BS, TDOS and PDOS) reveals that these Laves phase compounds are metallic in nature. The calculated elastic constants indicate that these compounds are mechanically stable at ambient pressure and found to be ductile in nature.

  10. Phase-Space Density Analysis of the AE-8 Traped Electron and the AP-8 Trapped Proton Model Environments

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Cayton

    2005-08-01

    The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, {mu}, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of {mu} and K, and for 3.5 R{sub E} < L < 6.5 R{sub E}, the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R{sub E} for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits {mu}-dependent local minima around L = 5 R{sub E}. Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K{sub c}. Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons.

  11. Phase-Space Density Analyses of the AE-8 Trapped Electron and the AP-8 Trapped Proton Model Environments

    Energy Technology Data Exchange (ETDEWEB)

    T.E. Cayton

    2005-08-12

    The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, {mu}, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of {mu} and K, and for 3.5 R{sub E} < L < 6.5 R{sub E}, the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R{sub E} for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits {mu}-dependent local minima around L = 5 R{sub E}. Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K{sub c}. Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons.

  12. Parallel preparation of plan-view transmission electron microscopy specimens by vapor-phase etching with integrated etch stops

    Energy Technology Data Exchange (ETDEWEB)

    English, Timothy S., E-mail: englisht@stanford.edu [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Provine, J [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Marshall, Ann F.; Koh, Ai Leen [Stanford Nano Shared Facilities, Stanford University, Stanford, CA 94305 (United States); Kenny, Thomas W. [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2016-07-15

    Specimen preparation remains a practical challenge in transmission electron microscopy and frequently limits the quality of structural and chemical characterization data obtained. Prevailing methods for thinning of specimens to electron transparency are serial in nature, time consuming, and prone to producing artifacts and specimen failure. This work presents an alternative method for the preparation of plan-view specimens using isotropic vapor-phase etching with integrated etch stops. An ultrathin amorphous etch-stop layer simultaneously serves as an electron transparent support membrane whose thickness is defined by a controlled growth process such as atomic layer deposition with sub-nanometer precision. This approach eliminates the need for mechanical polishing or ion milling to achieve electron transparency, and reduces the occurrence of preparation induced artifacts. Furthermore, multiple specimens from a plurality of samples can be thinned in parallel due to high selectivity of the vapor-phase etching process. These features enable dramatic reductions in preparation time and cost without sacrificing specimen quality and provide advantages over wet etching techniques. Finally, we demonstrate a platform for high-throughput transmission electron microscopy of plan-view specimens by combining the parallel preparation capabilities of vapor-phase etching with wafer-scale micro- and nanofabrication. - Highlights: • Parallel thinning of plan-view specimens enables high-throughput microscopy studies. • The support membrane thickness is controlled with sub-nanometer precision. • No physical etching (polishing, dimpling, or ion milling) is required. • Large area and uniformly thin specimens are suitable for Cs-corrected HRTEM. • Wafer-scale integration enables custom specimens for in situ experiments.

  13. Gas phase adiabatic electron affinities of cyclopenta-fused polycyclic aromatic hydrocarbons

    NARCIS (Netherlands)

    Todorov, P.D.; Koper, C.; van Lenthe, J.H.; Jenneskens, L.W.

    2008-01-01

    The B3LYP/DZP++ adiabatic electron affinity (AEA) of nine (non)-alternant polycyclic aromatic hydrocarbons are reported and discussed. Calculations became feasible for molecules this size by projecting out the near-linearly dependent part of the one-electron basis. Non-alternant PAH consisting of an

  14. Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy

    Science.gov (United States)

    Ginsberg, Naomi S.; Davis, Jeffrey A.; Ballottari, Matteo; Cheng, Yuan-Chung; Bassi, Roberto; Fleming, Graham R.

    2011-01-01

    The CP29 light harvesting complex from green plants is a pigment-protein complex believed to collect, conduct, and quench electronic excitation energy in photosynthesis. We have spectroscopically determined the relative angle between electronic transition dipole moments of its chlorophyll excitation energy transfer pairs in their local protein environments without relying on simulations or an X-ray crystal structure. To do so, we measure a basis set of polarized 2D electronic spectra and isolate their absorptive components on account of the tensor relation between the light polarization sequences used to obtain them. This broadly applicable advance further enhances the acuity of polarized 2D electronic spectroscopy and provides a general means to initiate or feed back on the structural modeling of electronically-coupled chromophores in condensed phase systems, tightening the inferred relations between the spatial and electronic landscapes of ultrafast energy flow. We also discuss the pigment composition of CP29 in the context of light harvesting, energy channeling, and photoprotection within photosystem II. PMID:21321222

  15. Collective nature of the insulating phase in a strongly interacting 2D electron system at zero magnetic field

    Science.gov (United States)

    Li, Shiqi; Sarachik, M. P.; Shashkin, A. A.; Kravchenko, S. V.

    2015-03-01

    Recent measurements by our group in the low-disorder 2D electron system in silicon have shown that the thermopower diverges at a finite disorder-independent density, providing clear evidence for a transition to a new phase at low density which may be a precursor phase, or a direct transition to the Wigner solid. In agreement with earlier measurements, we report nonlinear I-V characteristics in the insulating phase with a threshold voltage that yields a characteristic length that is too large to be attributed to delocalization of individual electrons. The observed behavior has been attributed to a percolation transition, or to the presence of an additional conduction channel due to a sliding electron solid (Wigner crystal). Our current measurements seek to provide supporting evidence for the presence of a zero-field Wigner solid by detecting the noise generated by the sliding crystallites. Work at CCNY is provided by NSF Grant DMR-1309008 and BSF Grant 2012210; for S. K. by NSF Grant DMR-1309337 and BSF Grant 2012210; for A. A. S. by RFBR Grant 13-02-00095.

  16. Boron fullerenes B(32+8k) with four-membered rings and B32 solid phases: geometrical structures and electronic properties.

    Science.gov (United States)

    Sheng, Xian-Lei; Yan, Qing-Bo; Zheng, Qing-Rong; Su, Gang

    2009-11-14

    Based on ab initio calculations, we have studied the geometrical, electronic properties and chemical bonding of boron fullerenes B(32+8k) (0 cubic (sc), face-centered cubic (fcc), body-centered cubic (bcc), and body-centered tetragonal (bct) structures, where the bct phase is observed to be the most stable. Electronic structure calculations reveal that the sc, fcc and bcc phases of B(32) solids are metallic, but the bct phase is a semimetal.

  17. Rare earth monopnictides and monochalcogenides from first principles: towards an electronic phase diagram of strongly correlated materials

    DEFF Research Database (Denmark)

    Petit, Leon; Tyer, R.; Szotek, Z.

    2010-01-01

    We present the results of an ab initio study of the electronic structure of 140 rare earth compounds. Specifically, we predict an electronic phase diagram of the entire range of rare earth monopnictides and monochalcogenides, composed of metallic, semiconducting and heavy fermion-like regions...... and exhibiting valency transitions brought about by a complex interplay between ligand chemistry and lanthanide contraction. The calculations exploit the combined effect of a first-principles methodology, which can adequately describe the dual character of electrons, itinerant versus localized, and high...... calculated to within ~1.5% of the experimental values, and its ability to describe localization phenomena in solids, makes it a competitive atomistic simulation approach in the search for and design of new materials with specific physical properties and possible technological applications....

  18. Topological phase, structural, electronic, thermodynamic and optical properties of XPtSb (X=Lu, Sc) compounds

    Science.gov (United States)

    Narimani, Mitra; Nourbakhsh, Zahra

    2017-03-01

    The electronic, thermodynamic and optical properties of XPtSb (X=Lu, Sc) half Heusler compounds are studied based on density functional theory. The calculations are carried out in the presence of spin orbit interaction. The exchange correlation part of total energy is calculated within local density approximation, generalized gradient approximation, Engel-Vosco generalized gradient approximation and modified Becke and Johnson exchange potential with the correlation potential of the generalized gradient approximation. The effect of pressure on the electron density of states and linear coefficient of the electronic specific heat is studied. Using the band structure calculations at different pressures, the band inversion strength and topological phase transition of these compounds are investigated. Some thermodynamic properties of XPtSb compounds by different thermal models using the non-equilibrium Gibbs function are studied and compared with experiment. Furthermore the effect of pressure on dielectric function of XPtSb (X=Lu, Sc) compounds is investigated.

  19. Electronic and Elastic Properties of CaMg2 Alloy Phase under Various Pressures by Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Fu Jia

    2017-01-01

    Full Text Available The influencing effect of pressure on structural, elastic and electronic properties of CaMg2 Laves phase is mainly investigated. The optimized structural parameters at zero pressure are a = b = 6.250Å, c = 10.101Å, which has good agreement with the experimental and theoretical values. The elastic constants are calculated, and then the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and anisotropy factor are determined. The results show that the applied pressure is beneficial to the elastic properties of CaMg2. The analysis of electronic density of states (DOS and Mulliken electron population reveal the bonding characteristics in CaMg2 crystal. Finally, the Debye temperatures under different pressures are obtained from the average sound velocity.

  20. Equation of state of fully ionized electron-ion plasmas. II. Extension to relativistic densities and to the solid phase

    CERN Document Server

    Potekhin, A Yu

    2000-01-01

    The analytic equation of state of nonideal Coulomb plasmas consisting of pointlike ions immersed in a polarizable electron background (physics/9807042) is improved, and its applicability range is considerably extended. First, the fit of the electron screening contribution in the free energy of the Coulomb liquid is refined at high densities where the electrons are relativistic. Second, we calculate the screening contribution for the Coulomb solid (bcc and fcc) and derive an analytic fitting expression. Third, we propose a simple approximation to the internal and free energy of the liquid one-component plasma of ions, accurate within the numerical errors of the most recent Monte Carlo simulations. We obtain an updated value of the coupling parameter at the solid-liquid phase transition for the one-component plasma: Gamma_m = 175.0 (+/- 0.4).

  1. Pressure-induced phase transition in Bi2Se3 at 3 GPa: electronic topological transition or not?

    Science.gov (United States)

    Bera, Achintya; Pal, Koushik; Muthu, D V S; Waghmare, U V; Sood, A K

    2016-03-16

    In recent years, a low pressure transition around P3 GPa exhibited by the A2B3-type 3D topological insulators is attributed to an electronic topological transition (ETT) for which there is no direct evidence either from theory or experiments. We address this phase transition and other transitions at higher pressure in bismuth selenide (Bi2Se3) using Raman spectroscopy at pressure up to 26.2 GPa. We see clear Raman signatures of an isostructural phase transition at P2.4 GPa followed by structural transitions at ∼ 10 GPa and 16 GPa. First-principles calculations reveal anomalously sharp changes in the structural parameters like the internal angle of the rhombohedral unit cell with a minimum in the c/a ratio near P3 GPa. While our calculations reveal the associated anomalies in vibrational frequencies and electronic bandgap, the calculated Z2 invariant and Dirac conical surface electronic structure remain unchanged, showing that there is no change in the electronic topology at the lowest pressure transition.

  2. Orbital dependent Rashba splitting and electron-phonon coupling of 2D Bi phase on Cu(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Gargiani, Pierluigi; Lisi, Simone; Betti, Maria Grazia [Dipartimento di Fisica, Università di Roma “La Sapienza,” Piazzale A. Moro 5, I-00185 Roma (Italy); Ibrahimi, Amina Taleb; Bertran, François; Le Fèvre, Patrick [Synchrotron SOLEIL, Saint-Aubin-BP 48, F-91192 Gif sur Yvette (France); Chiodo, Letizia [Center for Life Nano Science - Sapienza, Istituto Italiano di Tecnologia and European Theoretical Spectroscopy Facility (ETSF), Viale Regina Elena 291, I-00161, Roma (Italy)

    2013-11-14

    A monolayer of bismuth deposited on the Cu(100) surface forms a highly ordered c(2×2) reconstructed phase. The low energy single particle excitations of the c(2×2) Bi/Cu(100) present Bi-induced states with a parabolic dispersion in the energy region close to the Fermi level, as observed by angle-resolved photoemission spectroscopy. The electronic state dispersion, the charge density localization, and the spin-orbit coupling have been investigated combining photoemission spectroscopy and density functional theory, unraveling a two-dimensional Bi phase with charge density well localized at the interface. The Bi-induced states present a Rashba splitting, when the charge density is strongly localized in the Bi plane. Furthermore, the temperature dependence of the spectral density close to the Fermi level has been evaluated. Dispersive electronic states offer a large number of decay channels for transitions coupled to phonons and the strength of the electron-phonon coupling for the Bi/Cu(100) system is shown to be stronger than for Bi surfaces and to depend on the electronic state symmetry and localization.

  3. Pressure-induced change of the electronic state in the tetragonal phase of CaFe2As2

    Science.gov (United States)

    Sakaguchi, Yui; Ikeda, Shugo; Kuse, Tetsuji; Kobayashi, Hisao

    2014-07-01

    We have investigated the electronic states of single-crystal CaFe2As2 under hydrostatic pressure using 57Fe Mössbauer spectroscopy and magnetization measurements. The center shift and the quadrupole splitting were refined from observed 57Fe Mössbauer spectra using the single-crystalline sample under pressure at room temperature. A discontinuous decrease in the pressure dependence of the refined center shift was observed at 0.33 GPa without any anomaly in the pressure dependence of the refined quadrupole splitting, indicating a purely electronic state change in CaFe2As2 with a tetragonal structure. Such a change is shown to be reflected in the peak-like anomalies observed in the pressure dependences of the magnetic susceptibility at 0.26 GPa above 150 K. Our results reveal that this pressure-induced electronic state change suppresses the tetragonal-to-orthorhombic structural phase transition accompanied by an antiferromagnetic ordering. We further observed superconductivity in CaFe2As2 below ˜8 K around 0.33 GPa although our sample was not in a single phase at this pressure. These findings suggest that the electronic state change observed in CaFe2As2 with the tetragonal structure is relevant to the appearance of the pressure-induced superconductivity in AFe2As2.

  4. Application of Berry's Phase to the Effective Mass of Bloch Electrons

    Science.gov (United States)

    Rave, M. J.; Kerr, W. C.

    2010-01-01

    Berry's phase, although well known since 1984, has received little attention among textbook authors of solid state physics. We attempt to address this lack by showing how the presence of the Berry's phase significantly changes a standard concept (effective mass) found in most solid state texts. Specifically, we show that the presence of a non-zero…

  5. Vibrational states of the triplet electronic state of H3+. The role of non-adiabatic coupling and geometrical phase

    CERN Document Server

    Alijah, Alexander

    2015-01-01

    Vibrational energies and wave functions of the triplet state of the H3+ ion have been determined. In the calculations, the ground and first excited triplet electronic states are included as well as the non-Born-Oppenheimer coupling between them. A diabatization procedure transforming the two adiabatic ab initio potential energy surfaces of the triplet-H3+ state into a 2x2 matrix is employed. The diabatization takes into account the non-Born-Oppenheimer coupling and the effect of the geometrical phase due to the conical intersection between the two adiabatic potential surfaces. The results are compared to the calculation involving only the lowest adiabatic potential energy surface of the triplet-H3+ ion and neglecting the geometrical phase. The energy difference between results with and without the non-adiabatic coupling and the geometrical phase is about a wave number for the lowest vibrational levels.

  6. Performance evaluation of partial differential equation models in electronic speckle pattern interferometry and the delta-mollification phase map method.

    Science.gov (United States)

    Tang, Chen; Zhang, Fang; Li, Botao; Yan, Haiqing

    2006-10-01

    The ordinary differential equation (ODE) and partial differential equation (PDE) image- processing methods have been applied to reduce noise and enhance the contrast of electronic speckle pattern interferometry fringe patterns. We evaluate the performance of a few representative PDE denoising models quantitatively with two parameters called image fidelity and speckle index, and then we choose a good denoising model. Combining this denoising model with the ODE enhancement method, we make it possible to perform contrast enhancement and denoising simultaneously. Second, we introduce the delta-mollification method to smooth the unwrapped phase map. Finally, based on PDE image processing, delta mollification and some traditional techniques, an approach of phase extraction from a single fringe pattern is tested for computer-simulated and experimentally obtained fringe patterns. The method works well under a high noise level and limited visibility and can extract accurate phase values.

  7. Performance evaluation of partial differential equation models in electronic speckle pattern interferometry and the δ-mollification phase map method

    Science.gov (United States)

    Tang, Chen; Zhang, Fang; Li, Botao; Yan, Haiqing

    2006-10-01

    The ordinary differential equation (ODE) and partial differential equation (PDE) image- processing methods have been applied to reduce noise and enhance the contrast of electronic speckle pattern interferometry fringe patterns. We evaluate the performance of a few representative PDE denoising models quantitatively with two parameters called image fidelity and speckle index, and then we choose a good denoising model. Combining this denoising model with the ODE enhancement method, we make it possible to perform contrast enhancement and denoising simultaneously. Second, we introduce the δ-mollification method to smooth the unwrapped phase map. Finally, based on PDE image processing, δ mollification and some traditional techniques, an approach of phase extraction from a single fringe pattern is tested for computer-simulated and experimentally obtained fringe patterns. The method works well under a high noise level and limited visibility and can extract accurate phase values.

  8. Structural phase transition, electronic and elastic properties of rocksalt structure SnAs and SnSb

    Science.gov (United States)

    Shrivastava, Deepika; Dabhi, Shweta D.; Jha, Prafulla K.; Sanyal, Sankar P.

    2016-10-01

    Pressure induced structural phase transitions in SnAs and SnSb have been studied using ab-initio density functional theory. The phase transition from NaCl to CsCl structure occurs at 29.8 GPa for SnAs, which agrees well with experimental data, while the same for SnSb is found to be 10.6 GPa, reported for the first time. The calculated ground state properties are in good agreement with available experimental and theoretical results. The electronic and bonding properties have also been analyzed. The elastic constants along with other secondary elasticity properties in B1 (NaCl-type) phase are also estimated at ambient as well as high pressure.

  9. Rotationally resolved electronic spectroscopy of biomolecules in the gas phase. Melatonin

    Science.gov (United States)

    Yi, John T.; Brand, Christian; Wollenhaupt, Miriam; Pratt, David W.; Leo Meerts, W.; Schmitt, Michael

    2011-07-01

    Rotationally resolved electronic spectra of the A and B bands of melatonin have been analyzed using an evolutionary strategy approach. From a comparison of the ab initio calculated structures of energy selected conformers to the experimental rotational constants, the A band could be shown to be due to a gauche structure of the side chain, while the B band is an anti structure. Both bands show a complicated pattern due to a splitting from the threefold internal rotation of the methyl rotor in the N-acetyl group of the molecules. From a torsional analysis we additionally were able to determine the barriers of the methyl torsion in both electronic states of melatonin B and give an estimate for the change of the barrier upon electronic excitation in melatonin A. The electronic nature of the lowest excited singlet state could be determined to be 1Lb (as in the chromophore indole) from comparison to the results of ab initio calculations.

  10. Strong electronic interaction and multiple quantum Hall ferromagnetic phases in trilayer graphene

    Science.gov (United States)

    Datta, Biswajit; Dey, Santanu; Samanta, Abhisek; Agarwal, Hitesh; Borah, Abhinandan; Watanabe, Kenji; Taniguchi, Takashi; Sensarma, Rajdeep; Deshmukh, Mandar M.

    2017-02-01

    Quantum Hall effect provides a simple way to study the competition between single particle physics and electronic interaction. However, electronic interaction becomes important only in very clean graphene samples and so far the trilayer graphene experiments are understood within non-interacting electron picture. Here, we report evidence of strong electronic interactions and quantum Hall ferromagnetism seen in Bernal-stacked trilayer graphene. Due to high mobility ~500,000 cm2 V-1 s-1 in our device compared to previous studies, we find all symmetry broken states and that Landau-level gaps are enhanced by interactions; an aspect explained by our self-consistent Hartree-Fock calculations. Moreover, we observe hysteresis as a function of filling factor and spikes in the longitudinal resistance which, together, signal the formation of quantum Hall ferromagnetic states at low magnetic field.

  11. Capturing social and behavioral domains in electronic health records: Phase 1

    National Research Council Canada - National Science Library

    Board on Population Health and Public Health Practice; Institute of Medicine; Committee on the Recommended Social and Behavioral Domains and Measures for Electronic Health Records

    2014-01-01

    .... Electronic health records (EHRs) provide crucial information to providers treating individual patients, to health systems, including public health officials, about the health of populations, and to researchers about the determinants...

  12. Molecular vibrations kof iron trifluoride and aluminum trifluoride from gas-phase electron diffraction

    Science.gov (United States)

    Hargittai, Magdolna; Subbotina, Natalya Yu.; Gershikov, Alexander G.

    1991-04-01

    A vibrational analysis of the electron diffraction intensity data of iron trifluoride provides firm evidence for the planarity of this molecule. The optimized deformation frequencies of iron trifluoride, ν 2 110(17) and ν 4 158(17) cm -1, appear to be much lower than the available estimates. The optimized symmetric streching frequency for aluminium trifluoride is 683(54) cm -1 from the joint analysis of electron diffraction intensities and vibrational frequencies. Force constants are also obtained for both molecules.

  13. Optical control of electron phase space in plasma accelerators with incoherently stacked laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kalmykov, S. Y., E-mail: skalmykov2@unl.edu; Shadwick, B. A. [Department of Physics and Astronomy, University of Nebraska – Lincoln, Lincoln, Nebraska 68588-0299 (United States); Davoine, X. [CEA, DAM, DIF, Arpajon F-91297 (France); Lehe, R.; Lifschitz, A. F. [Laboratoire d' Optique Appliquée, ENSTA-CNRS-École Polytechnique UMR 7639, Palaiseau F-91761 (France)

    2015-05-15

    It is demonstrated that synthesizing an ultrahigh-bandwidth, negatively chirped laser pulse by incoherently stacking pulses of different wavelengths makes it possible to optimize the process of electron self-injection in a dense, highly dispersive plasma (n{sub 0}∼10{sup 19} cm{sup −3}). Avoiding transformation of the driving pulse into a relativistic optical shock maintains a quasi-monoenergetic electron spectrum through electron dephasing and boosts electron energy far beyond the limits suggested by existing scaling laws. In addition, evolution of the accelerating bucket in a plasma channel is shown to produce a background-free, tunable train of femtosecond-duration, 35–100 kA, time-synchronized quasi-monoenergetic electron bunches. The combination of the negative chirp and the channel permits acceleration of electrons beyond 1 GeV in a 3 mm plasma with 1.4 J of laser pulse energy, thus offering the opportunity of high-repetition-rate operation at manageable average laser power.

  14. Zernike phase contrast cryo-electron microscopy reveals 100 kDa component in a protein complex

    Science.gov (United States)

    Wu, Yi-Min; Wang, Chun-Hsiung; Chang, Jen-wei; Chen, Yi-yun; Miyazaki, Naoyuki; Murata, Kazuyoshi; Nagayama, Kuniaki; Chang, Wei-Hau

    2013-12-01

    Cryo-electron microscopy (cryo-EM) has become a powerful technique for obtaining near atomic structures for large protein assemblies or large virus particles, but the application to protein particles smaller than 200-300 kDa has been hampered by the feeble phase contrast obtained for such small samples and the limited number of electrons tolerated by them without incurring excessive radiation damage. By implementing a thin-film quarter-wave phase plate to a cryo-EM, Nagayama, one of the present authors, has recently restored the long-lost very low spatial frequencies, generating in-focus phase contrast superior to that of conventional defocusing phase contrast, and successfully applied the so-called Zernike phase-plate cryo-EM to target various biological samples in native state. Nevertheless, the sought-after goal of using enhanced phase contrast to reveal a native protein as small as 100 kDa waits to be realized. Here, we report a study in which 200 kV Zernike phase-plate cryo-EM with a plate cut-on periodicity of 36 nm was applied to visualize 100 kDa components of various protein complexes, including the small domains on the surface of an icosahedral particle of ˜38 nm derived from the dragon grouper nervous necrosis virus (DGNNV) and the labile sub-complex dissociated from yeast RNA polymerase III of 17 nm. In the former case, we observed a phase contrast reversal phenomenon at the centre of the icosahedral particle and traced its root cause to the near matching of the cut-on size and the particle size. In summary, our work has demonstrated that Zernike phase-plate implementation can indeed expand the size range of proteins that can be successfully investigated by cryo-EM, opening the door for countless proteins. Finally, we briefly discuss the possibility of using a transfer lens system to enlarge the cut-on periodicity without further miniaturizing the plate pinhole.

  15. Estimation of visibility of phase contrast with extraction voltages for field emission gun electron microscopes.

    Science.gov (United States)

    Meng, Xing

    2017-02-01

    Estimation was made for visibility of phase contrast with varying extraction voltages. The resulting decay rates of visibility show that images with low image contrast from cryo EM will be seriously impacted with high extraction voltages.

  16. Analytical electron microscope study of the omega phase transformation in a zirconium-niobium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zaluzec, N. J.

    1979-01-01

    The study of the as-quenched omega phase morphology shows that the domain size of Zr-15% Nb is on the order of 30 A. No alignment of omega domains along <222>..beta.. directions was observed and samples having undergone thermal cycling in thin foil form, did not develop a long-period structure of alternating ..beta.. and ..omega.. phases below the omega transformation temperature. (FS)

  17. Analysis on the Oversize Blast Furnace Desulfurization and a Sulfide Capacity Prediction Model Based on Congregated Electron Phase

    Science.gov (United States)

    Zhenyang, Wang; Jianliang, Zhang; Gang, An; Zhengjian, Liu; Zhengming, Cheng; Junjie, Huang; Jingwei, Zhang

    2016-02-01

    Through analyzed and regressed the actual productive desulfurization data from the oversize blast furnace (5500 m3) in north China, the relationship between the sulfur distribution parameters and the slag composition in actual production situation was investigated. As the slag and hot metal phases have their own balance sulfur content or sulfur partial pressure in gas phase, respectively, the non-equilibrium of sulfur among gas, slag, and metal phases leads to the transmission and distribution of sulfur. Combined with sulfur transmission reactions between gas, slag and metal phases, C/CO pairs equilibrium, and Wagner model, the measured sulfide capacity can be acquired using sulfur distribution ratio, sulfur activity coefficient, and oxygen activity in hot metal. Based on the theory of congregated electron phase, a new sulfide capacity prediction model (CEPM) has been developed, which has a good liner relationship with the measured sulfide capacity. Thus, using the burden structure for BF, the ironmaking slag composition can be obtained simply and can be used to reliably predict the ironmaking slag desulfurization ability a few hours later after charging under a certain temperature by CEPM.

  18. Suppression of the Structural Phase Transition and Lattice Softening in Slightly Underdoped Ba1−xKxFe2As2 with Electronic Phase Separation

    Energy Technology Data Exchange (ETDEWEB)

    Inosov, D.; Leineweber, A; Yang, X; Park, J; Christensen, N; Dinnebier, R; Sun, G; Niedermayer, C; Haug, H; et. al.

    2009-01-01

    We present x-ray powder diffraction (XRPD) and neutron-diffraction measurements on the slightly underdoped iron-pnictide superconductor Ba1-xKxFe2As2, Tc=32 K. Below the magnetic-transition temperature Tm=70 K, both techniques show an additional broadening of the nuclear Bragg peaks, suggesting a weak structural phase transition. However, macroscopically the system does not break its tetragonal symmetry down to 15 K. Instead, XRPD patterns at low temperature reveal an increase in the anisotropic microstrain proportionally in all directions. We associate this effect with the electronic phase separation previously observed in the same material and with the effect of lattice softening below the magnetic phase transition. We employ density-functional theory to evaluate the distribution of atomic positions in the presence of dopant atoms both in the normal and magnetic states and to quantify the lattice softening, showing that it can account for a major part of the observed increase in the microstrain.

  19. Cross sections for low-energy electron scattering from adenine in the condensed phase.

    Science.gov (United States)

    Panajotović, Radmila; Michaud, Marc; Sanche, Léon

    2007-01-07

    Measurements of the vibrational and electronic excitation of a sub-monolayer up to a monolayer film of adenine were performed with a high resolution electron energy-loss (HREEL) spectrometer. The integral cross sections (over the half-space angle) for excitation of the normal vibrational modes of the ground electronic state and electronically excited states are calculated from the measured reflectivity EEL spectra. Most cross sections for vibrational excitation are of the order of 10(-17) cm(2), the largest being the out-of-plane wagging of the amino-group and the six-member ring deformations. A wide resonance feature appears in the incident energy dependence of the vibrational cross sections at 3-5 eV, while a weak shoulder is present in this dependence for combined ring deformations and bending of hydrogen atoms. For the five excited electronic states, at 4.7, 5.0, 5.5, 6.1 and 6.6 eV, the cross sections are of the order of 10(-18) cm(2), except in the case of the state at the energy of 6.1 eV, for which it is two to three times higher.

  20. Phase Stability and Stoichiometry in Thin Film Iron Pyrite: Impact on Electronic Transport Properties.

    Science.gov (United States)

    Zhang, Xin; Scott, Tom; Socha, Tyler; Nielsen, David; Manno, Michael; Johnson, Melissa; Yan, Yuqi; Losovyj, Yaroslav; Dowben, Peter; Aydil, Eray S; Leighton, Chris

    2015-07-01

    The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated in poor solar cell performance. Here, phase-pure polycrystalline pyrite FeS2 films, synthesized by ex situ sulfidation, are subject to systematic reduction by vacuum annealing (to 550 °C) to assess phase stability, stoichiometry evolution, and their impact on transport. Bulk probes reveal the onset of pyrrhotite (Fe(1-δ)S) around 400 °C, rapidly evolving into the majority phase by 425 °C. This is supported by X-ray photoelectron spectroscopy on (001) crystals, revealing surface Fe(1-δ)S formation as low as 160 °C, with rapid growth near 400 °C. The impact on transport is dramatic, with Fe(1-δ)S minority phases leading to a crossover from diffusive transport to hopping (due to conductive Fe(1-δ)S nanoregions in an FeS2 matrix), followed by metallicity when Fe(1-δ)S dominates. Notably, the crossover to hopping leads to an inversion of the sign, and a large decrease in magnitude of the Hall coefficient. By tracking resistivity, magnetotransport, magnetization, and structural/chemical parameters vs annealing, we provide a detailed picture of the evolution in properties with stoichiometry. A strong propensity for S-deficient minority phase formation is found, with no wide window where S vacancies control the FeS2 carrier density. These findings have important implications for FeS2 solar cell development, emphasizing the need for (a) nanoscale chemical homogeneity, and (b) caution in interpreting carrier types and densities.

  1. New ordered MAX phase Mo2TiAlC2: Elastic and electronic properties from first-principles

    Science.gov (United States)

    Hadi, M. A.; Ali, M. S.

    2016-10-01

    First-principles computation on the basis of density functional theory (DFT) is executed with the CASTEP code to explore the structural, elastic, and electronic properties along with Debye temperature and theoretical Vickers’ hardness of newly discovered ordered MAX phase carbide Mo2TiAlC2. The computed structural parameters are very reasonable compared with the experimental results. The mechanical stability is verified by using the computed elastic constants. The brittleness of the compound is indicated by both the Poisson’s and Pugh’s ratios. The new MAX phase is capable of resisting the pressure and tension and also has the clear directional bonding between atoms. The compound shows significant elastic anisotropy. The Debye temperature estimated from elastic moduli (B, G) is found to be 413.6 K. The electronic structure indicates that the bonding nature of Mo2TiAlC2 is a mixture of covalent and metallic with few ionic characters. The electron charge density map shows a strong directional Mo-C-Mo covalent bonding associated with a relatively weak Ti-C bond. The calculated Fermi surface is due to the low-dispersive Mo 4d-like bands, which makes the compound a conductive one. The hardness of the compound is also evaluated and a high value of 9.01 GPa is an indication of its strong covalent bonding.

  2. Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory

    Science.gov (United States)

    Magnuson, Martin; Mattesini, Maurizio

    2017-01-01

    This is a critical review of MAX-phase carbides and nitrides from an electronic-structure and chemical bonding perspective. This large group of nanolaminated materials is of great scientific and technological interest and exhibit a combination of metallic and ceramic features. These properties are related to the special crystal structure and bonding characteristics with alternating strong M-C bonds in high-density MC slabs, and relatively weak M-A bonds between the slabs. Here, we review the trend and relationship between the chemical bonding, conductivity, elastic and magnetic properties of the MAX phases in comparison to the parent binary MX compounds with the underlying electronic structure probed by polarized X-ray spectroscopy. Spectroscopic studies constitute important tests of the results of state-of-the-art electronic structure density functional theory that is extensively discussed and are generally consistent. By replacing the elements on the M, A, or X-sites in the crystal structure, the corresponding changes in the conductivity, elasticity, magnetism and other materials properties makes it possible to tailor the characteristics of this class of materials by controlling the strengths of their chemical bonds.

  3. Electron-Beam Detection of Bits Reversibly Recorded on Epitaxial InSe/GaSe/Si Phase-Change Diodes

    Science.gov (United States)

    Chaiken, Alison; Gibson, Gary A.; Chen, John; Yeh, Bao S.; Jasinski, J. B.; Liliental‑Weber, Z.; Nauka, K.; Yang, C. C.; Lindig, D. D.; Subramanian, S.

    2006-04-01

    We demonstrate a data read-back scheme based on electron-beam induced current in a data storage device that utilizes thermal recording onto a phase-change medium. The phase-change medium is part of a heterojunction diode whose local charge-collection efficiency depends on the crystalline or amorphous state of a bit. Current gains up to 65 at 2 keV electron beam energy have been demonstrated using InSe/GaSe/Si epitaxial diodes. Fifteen write-erase cycles are obtained without loss of signal contrast by using a protective cap layer and short write pulses. 100 write-erase cycles have been achieved with some loss of contrast. Erasure times for the bits are longer than in similar polycrystalline In-Se media films. Possible reasons for the long erasure times are discussed in terms of a nucleation- or growth-dominated recrystallization. Prospects for extension to smaller bit sizes using electron-beam writing are considered.

  4. Carrier-envelope phase mapping in laser-induced electron diffraction

    Science.gov (United States)

    Geiseler, Henning; Ishii, Nobuhisa; Kaneshima, Keisuke; Geier, Florian; Kanai, Teruto; Tolstikhin, Oleg I.; Morishita, Toru; Itatani, Jiro

    2016-09-01

    We present laser-induced electron diffraction measurements of elastic differential scattering cross sections (DCSs) of a photoelectron on the parent ion for argon, krypton, and xenon, using waveform-controlled few-cycle pulses. Considering only cutoff electrons and employing the adiabatic theory for the analysis enables us to eliminate ambiguities in extracting the DCSs from experimental spectra. Contrary to previous works, which mainly focused on the angular dependence of the DCS, our method allows us to extract also its dependence on the scattering momentum. In the case of xenon, we demonstrate how this method can be used to obtain the complete angular and momentum dependence of the DCS in a range of these variables determined by the pulse. The obtained results are compared to theoretical calculations based on the single-active-electron approximation, which shows a high level of agreement. Further investigations may provide opportunities to study multielectron effects when more advanced theoretical models become available.

  5. Water-soluble phosphine-protected Au9 clusters: Electronic structures and nuclearity conversion via phase transfer

    Science.gov (United States)

    Yao, Hiroshi; Tsubota, Shuhei

    2017-08-01

    In this article, isolation, exploration of electronic structures, and nuclearity conversion of water-soluble triphenylphosphine monosulfonate (TPPS)-protected nonagold (Au9) clusters are outlined. The Au9 clusters are obtained by the reduction of solutions containing TPPS and HAuCl4 and subsequent electrophoretic fractionation. Mass spectrometry and elemental analysis reveal the formation of [Au9(TPPS)8]5- nonagold cluster. UV-vis absorption and magnetic circular dichroism (MCD) spectra of aqueous [Au9(TPPS)8]5- are quite similar to those of [Au9(PPh3)8]3+ in organic solvent, so the solution-phase structures are likely similar for both systems. Simultaneous deconvolution analysis of absorption and MCD spectra demonstrates the presence of some weak electronic transitions that are essentially unresolved in the UV-vis absorption. Quantum chemical calculations for a model compound [Au9(pH3)8]3+ show that the possible (solution-phase) skeletal structure of the nonagold cluster has D2h core symmetry rather than C4-symmetrical centered crown conformation, which is known as the crystal form of the Au9 compound. Moreover, we find a new nuclearity conversion route from Au9 to Au8; that is, phase transfer of aqueous [Au9(TPPS)8]5- into chloroform using tetraoctylammonium bromide yields [Au8(TPPS)8]6- clusters in the absence of excess phosphine.

  6. Experimental implementation of optimal phase-covariant quantum cloning machine with a single electron spin in diamond at room temperature

    CERN Document Server

    Pan, Xin-Yu; Yang, Li-Li; Fan, Heng

    2010-01-01

    Here we report an experimental realization of optimal phase-covariant quantum cloning machine with a single electron spin in solid state system at room temperature. The involved three states of two logic qubits are encoded physically in three levels of a single electron spin with two Zeeman sub-levels at a nitrogen-vacancy defect center in diamond. The preparation of input state and the phase-covariant quantum cloning transformation are controlled by two independent microwave fields. The center can be optically spin-polarized and the output state can be measured by combining confocal microscopy technique with spin-selective rates of fluorescence. The measured intensities of fluorescence of the output state are fitted in data of Rabi oscillations to find the exact form of the output. We provide the first solid-state proof-of-concept demonstration of the optimal phase-covariant quantum cloning. The combination of two microwave fields provides a technique to precisely control and measure a three-level superposed...

  7. Opto-electronic properties of bismuth oxide films presenting different crystallographic phases

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Celia L. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Depablos-Rivera, Osmary, E-mail: osmarydep@yahoo.com [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Silva-Bermudez, Phaedra [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Instituto Nacional de Rehabilitación, Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, C.P.14389, Ciudad de México, D.F. (Mexico); Muhl, Stephen [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Zeinert, Andreas; Lejeune, Michael; Charvet, Stephane; Barroy, Pierre [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 1 (France); Camps, Enrique [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, kilómetro 36.5. La Marquesa, Municipio de Ocoyoacac, CP 52750, Estado de México (Mexico); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico)

    2015-03-02

    The optical, electrical and structural properties of bismuth oxide thin films deposited by radio frequency reactive magnetron sputtering were studied. The Bi{sub 2}O{sub 3} thin films were grown on Si and glass substrates under different power and substrate temperatures in an oxygen-enriched plasma leading to films with different crystalline phase as evidenced by X-ray diffraction and Raman spectroscopy. The optical properties of the films were measured using ellipsometric spectroscopy and optical transmission spectra. In order to parameterize the optical dispersion functions (n, k) of the films, the Tauc–Lorentz dispersion model was used. The optical bandgap was then assessed by different methods and the results are compared to the thermal variations of the electrical resistivity of the films. It was found that the refractive index, extinction coefficient and optical gap strongly depend on the deposition conditions and the crystalline phase; the fluorite defect cubic δ-Bi{sub 2}O{sub 3} phase showed the lowest optical gap and lower resistivity. - Highlights: • Different bismuth oxide phases were obtained by sputtering. • The power and substrate temperature were the two key parameters. • Room temperature delta-Bi{sub 2}O{sub 3} thin films were obtained. • The optical bandgap was around 1.5 and 2.2 eV, depending on the phase. • The bismuth oxide films presented activation energies around 1 eV.

  8. Phase noise analysis for OFDM systems based on hot-carrier effects in synchronization electronics

    Science.gov (United States)

    Herlekar, Sameer R.; Zhang, Chi; Wu, Hsiao-Chun; Srivastava, Ashok

    2005-05-01

    Phase noise may be regarded as the most severe cause of performance degradation in OFDM systems. Hot carriers (HCs), found in the CMOS synchronization circuits, are high-mobility charge carriers that degrade the MOSFET devices" performance by increasing the threshold voltage required to operate the MOSFETs. The HC effect manifests itself as the phase noise, which increases with the continued MOSFET operation and results in the performance degradation of the Voltage-Controlled Oscillator (VCO) built on the MOSFET. The HC effect is particularly evident in the short-channel MOSFET devices. The MOSFET instability will impact on the OFDM system performance. The relationship between the OFDM system performance and the hot carrier effect can be analyzed in terms of a crucial parameter, the MOSFET threshold voltage. In this paper, we derive a general phase noise model for OFDM systems based on the Hot-carrier effect and the corresponding drifted threshold voltage in differential ring oscillators. The expected OFDM performance degradation due to the hot carrier effect is provided through our simulations. We show that the OFDM BER performance evaluation using the existing phase noise models can be upto three orders of magnitude different from the results obtained by using our phase noise model.

  9. Structural and electronic properties of high pressure phases of lead chalcogenides

    Science.gov (United States)

    Petersen, John; Scolfaro, Luisa; Myers, Thomas

    2012-10-01

    Lead chalcogenides, most notably PbTe and PbSe, have become an active area of research due to their thermoelectric properties. The high figure of merit (ZT) of these materials has brought much attention to them, due to their ability to convert waste heat into electricity. Variation in synthesis conditions gives rise to a need for analysis of structural and thermoelectric properties of these materials at different pressures. In addition to the NaCl structure at ambient conditions, lead chalcogenides have a dynamic orthorhombic (Pnma) intermediate phase and a higher pressure yet stable CsCl phase. By altering the lattice constant, we simulate the application of external pressure; this has notable effects on ground state total energy, band gap, and structural phase. Using the General Gradient Approximation (GGA) in Density Functional Theory (DFT), we calculate the phase transition pressures by finding the differences in enthalpy from total energy calculations. For each phase, elastic constants, bulk modulus, shear modulus, Young's modulus, and hardness are calculated, using two different approaches. In addition to structural properties, we analyze the band structure and density of states at varying pressures, paying special note to thermoelectric implications.

  10. Exploring phase stability, electronic and mechanical properties of Ce–Pb intermetallic compounds using first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Xiaoma [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physical Science and Technology, Guangxi University, Nanning 530004 (China); Computational Alloy Design Group, IMDEA Materials Institute, Getafe, Madrid 28906 (Spain); Wang, Ziru; Lan, Chunxiang [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physical Science and Technology, Guangxi University, Nanning 530004 (China); Xu, Guanglong [Computational Alloy Design Group, IMDEA Materials Institute, Getafe, Madrid 28906 (Spain); Ouyang, Yifang, E-mail: ouyangyf@gxu.edu.cn [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physical Science and Technology, Guangxi University, Nanning 530004 (China); Du, Yong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2016-05-15

    The phase stability, electronic and mechanical properties of Ce–Pb intermetallics have been investigated by using first-principles calculations. Five stable and four metastable phases of Ce–Pb intermetallics were verified. Among them, CePb{sub 2} has been confirmed as HfGa{sub 2}-type structure. For Ce{sub 5}Pb{sub 3}, the high pressure phase transformation from D8{sub m} to D8{sub 8} with trivalent Ce has been predicted to occur at P=1.2 GPa and a high temperature phase transformation has been predicted from D8{sub m} to D8{sub 8} with tetravalent Ce at 531.5 K. The calculated lattice constants of the five stable phases are in good agreement with experimental values. The electronic density of states, charge density and electron localization function of Ce{sub 3}Pb have been calculated, which indicated that the Ce and Pb show ionic behavior. The polycrystalline bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also estimated from the calculated single crystalline elastic constants. All of the calculated elastic constants satisfy mechanical stability criteria. The microhardness and mechanical anisotropy are predicted. The anisotropic nature of the Ce–Pb intermetallic compounds are demonstrated by the three-dimensional orientation dependent surfaces of Young's moduli and linear compressibility are also demonstrated. The longitudinal, transverse and average sound velocities and the Debye temperatures are also obtained in this work. The Ce{sub 3}Pb has the largest Debye temperature of 192.6 K, which means the Ce{sub 3}Pb has a highest melting point and high thermal conductivity than other compounds. - Graphical abstract: The convex hull plots of the enthalpies of formation for Ce–Pb binary systems calculated at 0 K. - Highlights: • The five stable and four metastable phases in the Ce–Pb binary system were predicted. • The crystal structure of CePb{sub 2} has been confirmed as HfGa{sub 2}-type.

  11. Elastic electron scattering from CH sub 3 I molecules oriented in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Volkmer, M.; Meier, C.; Mihill, A.; Fink, M.; Boewering, N. (Fakultaet fuer Physik, Universitaet Bielefeld, D-4800 Bielefeld 1 (Germany))

    1992-04-13

    A novel experiment on elastic electron scattering from free, spatially oriented molecules has been performed. CH{sub 3}I molecules state selected by an electrostatic hexapole lens were oriented in a homogeneous electric field. The differential scattering cross sections were measured at an electron energy of 1 keV in the angular range of 4{degree}--14{degree} with the orientation switched on and off. From these data the orientation-dependent contribution to the molecular interference was determined. The results show a distinct oscillatory pattern as a function of momentum transfer as predicted by theory.

  12. Integrated smart two-phase spreader to enhance reliability of power electronic modules in aeronautical applications

    Science.gov (United States)

    Mohaupt, Mikael; Barremaecker, Laurent; Wilson, Ian

    2014-07-01

    Reliability of power electronic modules is a key characteristic of existing and innovative modules. An increasing quantity of these modules is used in a large range of applications and addresses from annex up to vital functions, especially with the more electronic aircraft and recent developments in transport applications. To propose a solution to this lifetime issue, Microsemi and EHP have designed, manufactured and tested an improved flat heat pipe to fulfil aeronautic requirements. The frame of this development is based on the existing SP3 power module of Microsemi and significant decrease of thermal resistance is demonstrated by thermal tests.

  13. Optical and Electronic Analysis of the Two Fluorite-Related Phases in the Ga-In-Sn-O System

    Science.gov (United States)

    Dolgonos, Alex

    Optical transparency and electrical conductivity, traditionally mutually-exclusive materials properties, are both critical for the performance of electrode materials in applications such as flat-panel displays and organic photovoltaics (OPVs). Owing to their wide band gaps which are amenable to degenerate doping, transparent conducting oxides (TCOs) are widely utilized for organic optoelectronic applications. The two fluorite-related phases in the Ga-In-Sn-O (GITO) pseudo-ternary system---Ga,Sn co-substituted bixbyite 2O3 and the so-called "T-phase" Ga3--xIn5+xSn2O 16---have the potential to overcome the issues associated with Sn-doped 2O3 (ITO) by reducing the indium content, utilizing compositions that are more stable in acidic conditions, and offering work function levels that are in better alignment with adjacent layers in organic optoelectronic devices. In this work, the composition and processing effects on the optical and electronic properties of the bixbyite phase and the T-phase in the GITO system were determined. Electronic properties were analyzed by conductivity and Seebeck coefficient measurements, and the combination of these two properties revealed carrier characteristics for these two phases. The optical band gaps of the phases were determined from absorption data by methods developed in this work, which account for the band-altering effects of doping in TCOs. The optical characterization methods were experimentally confirmed through a combination of diffuse-reflectance and photoluminescence measurements of un-doped and Sn-doped In2O3. The bixbyite phase's conductivity, Seebeck coefficient, and optical band gap are dominated by the concentration of Sn-on-In substitution defects, as expected. Remarkably, Ga substition was found to have a negligible effect on the electronic properties. A conductivity of 3000 S/cm was achieved in bulk specimens containing a relatively small Sn content of 1 atomic percent and 4.5 atomic percent Ga. Ga behaves as an

  14. Electron bunch profile reconstruction based on phase-constrained iterative algorithm

    Science.gov (United States)

    Bakkali Taheri, F.; Konoplev, I. V.; Doucas, G.; Baddoo, P.; Bartolini, R.; Cowley, J.; Hooker, S. M.

    2016-03-01

    The phase retrieval problem occurs in a number of areas in physics and is the subject of continuing investigation. The one-dimensional case, e.g., the reconstruction of the temporal profile of a charged particle bunch, is particularly challenging and important for particle accelerators. Accurate knowledge of the longitudinal (time) profile of the bunch is important in the context of linear colliders, wakefield accelerators and for the next generation of light sources, including x-ray SASE FELs. Frequently applied methods, e.g., minimal phase retrieval or other iterative algorithms, are reliable if the Blaschke phase contribution is negligible. This, however, is neither known a priori nor can it be assumed to apply to an arbitrary bunch profile. We present a novel approach which gives reproducible, most-probable and stable reconstructions for bunch profiles (both artificial and experimental) that would otherwise remain unresolved by the existing techniques.

  15. Transient electronic structure of the photoinduced phase of Pr0.7Ca0.3MnO3 probed with soft x-ray pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rini, M.; Zhu, Y.; Wall, S.; Tobey, R. I.; Ehrke, H.; Garl, T.; Freeland, J. W.; Tomioka, Y.; Tokura, Y.; Cavalleri, A.; Schoenlein, R. W.

    2009-04-01

    We use time-resolved x-ray absorption near-edge structure spectroscopy to investigate the electronic dynamics associated with the photoinduced insulator-to-metal phase transition in the colossal magnetoresistive manganite Pr{sub 0.7}Ca{sub 0.3}MnO{sub 3}. Absorption changes at the O K and Mn L edges directly monitor the evolution of the density of unoccupied states in the transient photoinduced phase. We show that the electronic structure of the photoinduced phase is remarkably similar to that of the ferromagnetic metallic phase reached in related manganites upon cooling below the Curie temperature.

  16. Structural dynamics of gas-phase molybdenum nanoclusters : A transmission electron microscopy study

    NARCIS (Netherlands)

    Vystavel, T; Koch, SA; Palasantzas, G; De Hosson, JTM

    2005-01-01

    In this paper we study structural aspects of molybdenum clusters by transmission electron microscopy. The deposited clusters with sizes 4 nm or larger show a body-centered crystal (bcc) structure. The clusters are self-assembled from smaller structural units and form cuboids with a typical size of 4

  17. Onset of chaos in a single-phase power electronic inverter

    DEFF Research Database (Denmark)

    Avrutin, Viktor; Mosekilde, Erik; Zhusubaliyev, Zhanybai T.;

    2015-01-01

    Supported by experiments on a power electronic DC/AC converter, this paper considers an unusual transition from the domain of stable periodic dynamics (corresponding to the desired mode of operation) to chaotic dynamics. The behavior of the converter is studied by means of a 1D stroboscopic map...

  18. Effects of the precursor electron bunch on quasi-phase matched direct laser acceleration

    Science.gov (United States)

    Lin, M.-W.; Hsieh, C.-Y.; Liu, Y.-L.; Chen, S.-H.; Jovanovic, I.

    2016-12-01

    Direct laser acceleration (DLA) of electrons can be achieved by utilizing the axial field of a well-guided, radially polarized laser pulse in a density-modulated plasma waveguide. When a laser pulse of a few terawatt (TW) peak power is applied, however, the laser ponderomotive force perturbs plasma electrons to concentrate in the center, such that the generated electrostatic fields can significantly defocus the externally injected electron witness bunch and considerably deteriorate the acceleration efficiency. To improve the performance of DLA, a leading electron bunch, which acts as a precursor, can be introduced in DLA to effectively confine the witness bunch. Three-dimensional particle-in-cell simulations have been conducted to demonstrate that the transverse properties of the witness bunch can be significantly improved when a precursor bunch is used. Selected bunch transverse sizes, bunch charges, and axial separation from the witness bunch have been assigned to the precursor in a series of DLA simulations. Since a favorable ion-focusing force is provided by the precursor, the transverse properties of witness bunch can be maintained when a relatively high-power (˜2 TW) laser pulse is used in DLA, and an improved overall acceleration efficiency can be achieved.

  19. Coherent spontaneous emission and spontaneous phase locking in a free-electron laser

    NARCIS (Netherlands)

    Weits, H. H.; Oepts, D.

    1999-01-01

    We present measurements that demonstrate the existence of spontaneous coherence between independently generated laser pulses in the FELIX free-electron laser, The experiments show that the interpulse coherence is caused by a high level of coherently enhanced spontaneous emission. We have been able t

  20. Electronic structure, cohesive, and magnetic properties of the actinide-iridium Laves phases

    DEFF Research Database (Denmark)

    Eriksson, O.; Johansson, B.; Brooks, M. S. S.

    1989-01-01

    The electronic structure of the isostructural AIr2 systems (A=Th, Pa, U, Np, Pu, and Am) has been obtained by means of the scalar relativistic and fully relativistic linear muffin-tin orbital techniques. Ground-state properties such as lattice constants and onset of magnetic order have been calcu...

  1. Low-loss and programmable integrated photonic beamformer for electronically-steered broadband phased array antennas

    NARCIS (Netherlands)

    Zhuang, Leimeng; Marpaung, David; Burla, Maurizio; Roeloffzen, Chris; Beeker, Willem; Leinse, Arne; Dijk, van Paul

    2011-01-01

    Recently we have reported the dev electronically-steered Ku-band (10.7-12.75 G antenna system employing an integrated photonic beamformer, which is intended to be applied on high-speed transport vehicles for mobile reception of digital video broadcasting via satellite signals (1). Besides the advant

  2. Coexistence of electron-glass phase and persistent photoconductivity in GeSbTe compounds

    Science.gov (United States)

    Ovadyahu, Z.

    2015-03-01

    It is demonstrated that persistent photoconductivity (PPC), well studied in lightly-doped semiconductors, is observable in GeSbTe compounds using infrared excitation at cryogenic temperatures. The low levels of energy flux necessary to induce an appreciable effect seems surprising given the high carrier concentration n of these ternary alloys (n >1020cm-3 ). On the other hand, their high density of carriers makes GeSbTe films favorable candidates for exhibiting intrinsic electron-glass effects with long relaxation times. These are indeed observed in GeSbTe thin films that are Anderson-localized. In particular, a memory dip is observed in samples with sheet resistances larger than ≈105Ω at T ≈4 K with similar characteristics as in other systems that exhibit intrinsic electron-glass effects. Persistent photoconductivity, however, is observable in GeSbTe films even for sheet resistances of the order of 103Ω , well below the range of disorder required for observing electron-glass effects. These two nonequilibrium phenomena, PPC and electron glass, are shown to be of different nature in terms of other aspects as well. In particular, their relaxation dynamics is qualitatively different; the excess conductance Δ G associated with PPC decays with time as a stretched exponential whereas a logarithmic relaxation law characterizes Δ G (t ) of all electron glasses studied to date. Surprisingly, the magnitude of the memory dip is enhanced when the system is in the PPC state. This counter-intuitive result may be related to the compositional disorder in these materials extending over mesoscopic scales. Evidence in support of this scenario is presented and discussed.

  3. Demonstrator System for the Phase-I Upgrade of the Trigger Readout Electronics of the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    Chen, Kai; The ATLAS collaboration

    2014-01-01

    The trigger readout electronics of the ATLAS Liquid Argon (LAr) Calorimeters will be improved for the Phase- I luminosity upgrade of the LHC, to enhance the trigger feature extraction. Signals with higher spatial granularity will be digitized and processed by newly developed front-end and back- end electronics. In order to evaluate technical and performance aspects, a demonstrator system has been set up, many off-detector tests have been done. Analog signal parameters including the noise and cross-talk, as well as digital signal treatment, high speed data transmission have been measured and verified. After a series of tests, the demonstrator system has been installed on the ATLAS detector before the LHC run-2.

  4. Operational Experience with Radioactive Source Calibration of the CMS Hadron Endcap Calorimeter Wedges with Phase I Upgrade Electronics

    CERN Document Server

    Bilki, Burak

    2017-01-01

    The Phase I Upgrade of the CMS Hadron Endcap Calorimeters consist of new photodetectors (Silicon Photomultipliers in place of Hybrid Photo-Diodes) and front-end electronics (QIE11). The upgrade will allow the elimination of the high amplitude noise and drifting response of the Hybrid Photo-Diodes, at the same time enabling the mitigation of the radiation damage of the scintillators and the wavelength shifting fibers with a larger spectral acceptance of the Silicon Photomultipliers. The upgrade will also allow to increase the longitudinal segmentation of the readout to be beneficial for pile-up mitigation and recalibration due to depth-dependent radiation damage.As a realistic operational exercise, the responses of the Hadron Endcap Calorimeter wedges are being calibrated with a $^{60}$Co radioactive source both with current and upgrade electronics. The exercise will provide a manifestation of the benefits of the upgrade. Here we describe the instrumentation details and the operational experiences related to t...

  5. Communication: Charge transfer dominates over proton transfer in the reaction of nitric acid with gas-phase hydrated electrons

    Science.gov (United States)

    Lengyel, Jozef; Med, Jakub; Slavíček, Petr; Beyer, Martin K.

    2017-09-01

    The reaction of HNO3 with hydrated electrons (H2O)n- (n = 35-65) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and ab initio molecular dynamics simulations. Kinetic analysis of the experimental data shows that OH-(H2O)m is formed primarily via a reaction of the hydrated electron with HNO3 inside the cluster, while proton transfer is not observed and NO3-(H2O)m is just a secondary product. The reaction enthalpy was determined using nanocalorimetry, revealing a quite exothermic charge transfer with -241 ± 69 kJ mol-1. Ab initio molecular dynamics simulations indicate that proton transfer is an allowed reaction pathway, but the overall thermochemistry favors charge transfer.

  6. Structural, electronic and elastic properties of RERu2 (RE=Pr and Nd) Laves phase intermetallic compounds

    Science.gov (United States)

    Shrivastava, Deepika; Sanyal, Sankar P.

    2016-05-01

    We have performed the first-principles calculations to study the structural, electronic and elastic properties of RERu2 (RE = Pr and Nd) Laves phase intermetallic compounds using full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT) within the generalized gradient approximation (GGA) for exchange and correlation potential. The optimized lattices constant are in reasonable agreement with available experimental data. The electronic properties are analyzed in terms of band structures, total and partial density of states, which confirm their metallic character. The calculated elastic constants infer that these compounds are mechanically stable in C15 (MgCu2 type) structure and found to be ductile in nature.

  7. Structural, electronic and elastic properties of REIr2 (RE = Sc, Y and La) Laves phase compounds under pressure

    Science.gov (United States)

    Shrivastava, D.; Sanyal, S. P.

    2017-02-01

    The structural, electronic and elastic properties of REIr2 (RE = Sc, Y and La) type Laves phase compounds in C15 structure have been studied using full-potential linearized augmented plane wave method with generalized gradient approximation based on density functional theory. The ground state properties such as lattice constants are in good agreement with the experimental results. The electronic properties such as band structures, total and partial density of states confirm their metallic character. The pressure dependent behavior of density of states are also calculated and found that they are structurally stable. The elastic constants calculated as a function of pressure for all REIr2 (RE = Sc, Y and La) type compounds. The others secondary elasticity parameters are also reported. The results show that all REIr2 (RE = Sc, Y and La) compounds are ductile according to the analysis of B0/ G H and Cauchy's pressure.

  8. Structural, electronic and elastic properties of RERu{sub 2} (RE=Pr and Nd) Laves phase intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Deepika, E-mail: deepika89shrivastava@gmail.com; Sanyal, Sankar P. [Department of Physics, Barkatullah university, Bhopal, 462026 (India)

    2016-05-06

    We have performed the first-principles calculations to study the structural, electronic and elastic properties of RERu{sub 2} (RE = Pr and Nd) Laves phase intermetallic compounds using full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT) within the generalized gradient approximation (GGA) for exchange and correlation potential. The optimized lattices constant are in reasonable agreement with available experimental data. The electronic properties are analyzed in terms of band structures, total and partial density of states, which confirm their metallic character. The calculated elastic constants infer that these compounds are mechanically stable in C15 (MgCu{sub 2} type) structure and found to be ductile in nature.

  9. The phase diagram of electron-doped La(2-x)Ce(x)CuO(4-δ).

    Science.gov (United States)

    Saadaoui, H; Salman, Z; Luetkens, H; Prokscha, T; Suter, A; MacFarlane, W A; Jiang, Y; Jin, K; Greene, R L; Morenzoni, E; Kiefl, R F

    2015-01-21

    Superconductivity is a striking example of a quantum phenomenon in which electrons move coherently over macroscopic distances without scattering. The high-temperature superconducting oxides (cuprates) are the most studied class of superconductors, composed of two-dimensional CuO2 planes separated by other layers that control the electron concentration in the planes. A key unresolved issue in cuprates is the relationship between superconductivity and magnetism. Here we report a sharp phase boundary of static three-dimensional magnetic order in the electron-doped superconductor La(2-x)Ce(x)CuO(4-δ), where small changes in doping or depth from the surface switch the material from superconducting to magnetic. Using low-energy spin-polarized muons, we find that static magnetism disappears close to where superconductivity begins and well below the doping level at which dramatic changes in the transport properties are reported. These results indicate a higher degree of symmetry between the electron and hole-doped cuprates than previously thought.

  10. Role of Inelastic Electron–Phonon Scattering in Electron Transport through Ultra-Scaled Amorphous Phase Change Material Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie; Xu, Xu; Anantram, M.P.

    2014-09-01

    The electron transport through ultra-scaled amorphous phase change material (PCM) GeTe is investigated by using ab initio molecular dynamics, density functional theory, and non-equilibrium Green’s function, and the inelastic electron–phonon scattering is accounted for by using the Born approximation. It is shown that, in ultra-scaled PCM device with 6 nm channel length, < 4 % of the energy carried by the incident electrons from the source is transferred to the atomic lattice before reaching the drain, indicating that the electron transport is largely elastic. Our simulation results show that the inelastic electron–phonon scattering, which plays an important role to excite trapped electrons in bulk PCM devices, exerts very limited influence on the current density value and the shape of current–voltage curve of ultra-scaled PCM devices. The analysis reveals that the Poole–Frenkel law and the Ohm’s law, which are the governing physical mechanisms of the bulk PCM devices, cease to be valid in the ultra-scaled PCM devices.

  11. Electronic structure of Chevrel-phase high-critical-field superconductors

    DEFF Research Database (Denmark)

    Andersen, Ole Krogh; Klose, W.; Nohl, H.

    1978-01-01

    Using muffin-tin orbitals and the atomic-sphere approximation, we have studied the band structures of Chevrel-phase molybdenum chalcogenides, MmMo6X8-x. Generally, these compounds exist for a broad variety of elements, M=Pb,Sn,Ag,Cu and X=S,Se,Te. m may be between 0 and 2, depending on the elemen...

  12. Liquid crystal multi-mode lenses and axicons based on electronic phase shift control.

    Science.gov (United States)

    Kirby, Andrew K; Hands, Philip J; Love, Gordon D

    2007-10-17

    We report on the principle of operation, construction and testing of a liquid crystal lens which is controlled by distributing voltages across the control electrodes, which are in turn controlled by adjusting the phase of the applied voltages. As well as (positive and negative) defocus, then lenses can be used to control tip/tilt, astigmatism, and to create variable axicons.

  13. Phase-I trigger readout electronics upgrade of the ATLAS liquid-argon calorimeters

    Science.gov (United States)

    Mori, Tatsuya

    2016-09-01

    This article gives an overview of the Phase-I Upgrade of the ATLAS LAr Calorimeter Trigger Readout. The design of custom developed hardware for fast real-time data processing and transfer are presented. Performance results from the prototype boards operated in the demonstrator system, first measurements of noise behavior and responses on the test pulses to the demonstrator system are shown.

  14. Phase contrast image simulations for electron holography of magnetic and electric fields

    DEFF Research Database (Denmark)

    Beleggia, Marco; Pozzi, Giulio

    2013-01-01

    representation of the magnetic vector potential, that enables us to simulate realistic phase images of fluxons. The aim of this paper is to review the main ideas underpinning our computational framework and the results we have obtained throughout the collaboration. Furthermore, we outline how to generalize...

  15. Modeling and control of three phase rectifier with electronic smoothing inductor

    DEFF Research Database (Denmark)

    Singh, Yash Veer; Rasmussen, Peter Omand; Andersen, Torben Ole

    2011-01-01

    controlled variable impedance. This increases power factor (PF) and reduces total harmonic distortions (THDs) in mains current. The ESI based rectifier enables compact and cost effective design of three phase electric drive as size of passive components is reduced significantly. In order to carry out...

  16. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    Science.gov (United States)

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-09-08

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  17. Denoising by coupled partial differential equations and extracting phase by backpropagation neural networks for electronic speckle pattern interferometry.

    Science.gov (United States)

    Tang, Chen; Lu, Wenjing; Chen, Song; Zhang, Zhen; Li, Botao; Wang, Wenping; Han, Lin

    2007-10-20

    We extend and refine previous work [Appl. Opt. 46, 2907 (2007)]. Combining the coupled nonlinear partial differential equations (PDEs) denoising model with the ordinary differential equations enhancement method, we propose the new denoising and enhancing model for electronic speckle pattern interferometry (ESPI) fringe patterns. Meanwhile, we propose the backpropagation neural networks (BPNN) method to obtain unwrapped phase values based on a skeleton map instead of traditional interpolations. We test the introduced methods on the computer-simulated speckle ESPI fringe patterns and experimentally obtained fringe pattern, respectively. The experimental results show that the coupled nonlinear PDEs denoising model is capable of effectively removing noise, and the unwrapped phase values obtained by the BPNN method are much more accurate than those obtained by the well-known traditional interpolation. In addition, the accuracy of the BPNN method is adjustable by changing the parameters of networks such as the number of neurons.

  18. Consistent Atomic Geometries and Electronic Structure of Five Phases of Potassium Niobate from Density-Functional Theory

    Directory of Open Access Journals (Sweden)

    Falko Schmidt

    2017-01-01

    Full Text Available We perform a comprehensive theoretical study of the structural and electronic properties of potassium niobate (KNbO3 in the cubic, tetragonal, orthorhombic, monoclinic, and rhombohedral phase, based on density-functional theory. The influence of different parametrizations of the exchange-correlation functional on the investigated properties is analyzed in detail, and the results are compared to available experimental data. We argue that the PBEsol and AM05 generalized gradient approximations as well as the RTPSS meta-generalized gradient approximation yield consistently accurate structural data for both the external and internal degrees of freedom and are overall superior to the local-density approximation or other conventional generalized gradient approximations for the structural characterization of KNbO3. Band-structure calculations using a HSE-type hybrid functional further indicate significant near degeneracies of band-edge states in all phases which are expected to be relevant for the optical response of the material.

  19. Nonlinear Hall effect as a signature of electronic phase separation in the semimetallic ferromagnet EuB(6).

    Science.gov (United States)

    Zhang, Xiaohang; Yu, Liuqi; von Molnár, Stephan; Fisk, Zachary; Xiong, Peng

    2009-09-04

    This work reports a study of the nonlinear Hall effect (HE) in the semimetallic ferromagnet EuB(6). A distinct switch in its Hall resistivity slope is observed in the paramagnetic phase, which occurs at a single critical magnetization over a wide temperature range. The observation is interpreted as the point of percolation for entities of a more conducting and magnetically ordered phase in a less ordered background. With an increasing applied magnetic field, the conducting regions either increase in number or expand beyond the percolation limit, hence increasing the global conductivity and effective carrier density. An empirical two-component model provides excellent scaling and a quantitative fit to the HE data and may be applicable to other correlated electron systems.

  20. Electronic phase separation in the slightly underdoped iron pnictide superconductor Ba1-xKxFe2As2.

    Science.gov (United States)

    Park, J T; Inosov, D S; Niedermayer, Ch; Sun, G L; Haug, D; Christensen, N B; Dinnebier, R; Boris, A V; Drew, A J; Schulz, L; Shapoval, T; Wolff, U; Neu, V; Yang, Xiaoping; Lin, C T; Keimer, B; Hinkov, V

    2009-03-20

    Here we present a combined study of the slightly underdoped novel pnictide superconductor Ba1-xKxFe2As2 by means of x-ray powder diffraction, neutron scattering, muon-spin rotation (microSR), and magnetic force microscopy (MFM). Static antiferromagnetic order sets in below T{m} approximately 70 K as inferred from the neutron scattering and zero-field-microSR data. Transverse-field microSR below Tc shows a coexistence of magnetically ordered and nonmagnetic states, which is also confirmed by MFM imaging. We explain such coexistence by electronic phase separation into antiferromagnetic and superconducting- or normal-state regions on a lateral scale of several tens of nanometers. Our findings indicate that such mesoscopic phase separation can be considered an intrinsic property of some iron pnictide superconductors.

  1. Electron phase and spin decoherence in the vicinity of the second subband edge in an asymmetrical quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Saveliev, I G [Ioffe Institute, Russian Academy of Sciences, 194021 St Petersburg (Russian Federation); Bykanov, D D [Ioffe Institute, Russian Academy of Sciences, 194021 St Petersburg (Russian Federation); Novikov, S V [Ioffe Institute, Russian Academy of Sciences, 194021 St Petersburg (Russian Federation); Polyanskaya, T A [Ioffe Institute, Russian Academy of Sciences, 194021 St Petersburg (Russian Federation); Ruda, H [University of Toronto, 170 College St, Toronto, ON, M5S 3E3 (Canada)

    2004-02-04

    Weak antilocalization of a two-dimensional electron gas formed at a In{sub 0.53}Ga{sub 0.47}As/InP heterointerface was studied. The Fermi level was varied from below, to above, the energy minimum of the second subband. A model for quantum coherence with two conducting subbands and fast intersubband scattering was used to extract the characteristic phase and spin decoherence rates from experimental magnetoresistance data. Taking into account the spatial inhomogeneity of the energy associated with the subband minimum, the first and second subband decoherence contributions were separated. It was shown that phase decoherence in the second subband is much faster than in the first subband and it decreases with increasing occupation of the second subband. By contrast, spin dephasing due to scattering in the second subband and intersubband scattering does not play a noticeable role.

  2. Demonstrator System for the Phase-I Upgrade of the Trigger Readout Electronics of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    FRAGNAUD, J; The ATLAS collaboration

    2014-01-01

    The trigger readout electronics of the ATLAS LAr Calorimeters will be improved for the Phase-I luminosity upgrade of the LHC to enhance the trigger feature extraction. Signals with higher spatial granularity will be digitized and processed by newly developed front-end and back-end components. In order to evaluate technical and performance aspects, a demonstrator system is being set up which is planned to be installed on the ATLAS detector during the upcoming LHC run. Results from system tests of the analog signal treatment, the trigger digitizer, the optical signal transmission and the FPGA-based back-end are reported.

  3. Electronic Structures and Alloying Behaviors of Ferrite Phases in High Co-Ni Secondary Hardened Martensitic Steels

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@The electronic structure of ferrite (tempered martensite phase) in high Co-Ni secondary hardened martensitic steel has been investigated. The local density of states (LDOS) of alloying elements in the steel displays the relationship between solid solubility and the shape of the LDOS. The bond order integral (BOI) between atoms in the steel shows that the directional bonding of the p orbital of Si or C leads to the brittleness of the steel. At last, ∑BOI between atoms demonstrate that C, Co, Mn, Cr, Mo, Si strengthen the alloyed steel through solid-solution effects.

  4. Experimental evaluation of the ‘transport-of-intensity’ equation for magnetic phase reconstruction in Lorentz transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, Amit, E-mail: akohn@post.tau.ac.il [Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel); Habibi, Avihay; Mayo, Martin [Department of Materials Engineering, Ben-Gurion University of the Negev, 84105 Beer Sheva (Israel)

    2016-01-15

    The ‘transport-of-intensity’ equation (TIE) is a general phase reconstruction methodology that can be applied to Lorentz transmission electron microscopy (TEM) through the use of Fresnel-contrast (defocused) images. We present an experimental study to test the application of the TIE for quantitative magnetic mapping in Lorentz TEM without aberration correction by examining sub-micrometer sized Ni{sub 80}Fe{sub 20} (Permalloy) elements. For a JEOL JEM 2100F adapted for Lorentz microscopy, we find that quantitative magnetic phase reconstructions are possible for defoci distances ranging between approximately 200 μm and 800 μm. The lower limit originates from competing sources of image intensity variations in Fresnel-contrast images, namely structural defects and diffraction contrast. The upper defocus limit is due to a numerical error in the estimation of the intensity derivative based on three images. For magnetic domains, we show quantitative reconstructions of the product of the magnetic induction vector and thickness in element sizes down to approximately 100 nm in lateral size and 5 nm thick resulting in a minimal detection of 5 T nm. Three types of magnetic structures are tested in terms of phase reconstruction: vortex cores, domain walls, and element edges. We quantify vortex core structures at a diameter of 12 nm while the structures of domain walls and element edges are characterized qualitatively. Finally, we show by image simulations that the conclusions of this experimental study are relevant to other Lorentz TEM in which spherical aberration and defocus are dominant aberrations. - Highlights: • Testing TIE for quantitative magnetic phase reconstruction in Lorentz TEM. • Quantitative magnetic phase reconstructions for defoci distances in 200–800 μm range. • Minimal detection of the product of the magnetic induction and thickness is 5 T nm. • Quantitative phase reconstruction for vortex core structures at 12 nm diameter. • Observations

  5. Native electrospray ionization and electron-capture dissociation for comparison of protein structure in solution and the gas phase.

    Science.gov (United States)

    Zhang, Hao; Cui, Weidong; Gross, Michael L

    2013-11-15

    The importance of protein and protein-complex structure motivates improvements in speed and sensitivity of structure determination in the gas phase and comparison with that in solution or solid state. An opportunity for the gas phase measurement is mass spectrometry (MS) combined with native electrospray ionization (ESI), which delivers large proteins and protein complexes in their near-native states to the gas phase. In this communication, we describe the combination of native ESI, electron-capture dissociation (ECD), and top-down MS for exploring the structures of ubiquitin and cytochrome c in the gas phase and their relation to those in the solid-state and solution. We probe structure by comparing the protein's flexible regions, as predicted by the B-factor in X-ray crystallography, with the ECD fragments. The underlying hypothesis is that maintenance of structure gives fragments that can be predicted from B-factors. This strategy may be applicable in general when X-ray structures are available and extendable to the study of intrinsically disordered proteins.

  6. Transmission electron microscopy analysis of phase separation in GaInAsSb films grown on GaSb substrate.

    Science.gov (United States)

    Szczeszek, P; Amariei, A; Schöne, J; Zoulis, G; Vouroutzis, N; Polychroniadis, E K; Stróz, D

    2006-10-01

    The GaSb-based quaternary alloys are a good choice for thermophotovoltaic applications. The thermophotovoltaic cell converts infrared radiation to electricity, using the same principles as photovoltaic devices. The aim of the present work was the microstructural study of such an alloy, namely Ga(0.84)In(0.16)As(0.12)Sb(0.88). A thin film of the material was grown by metal organic vapour phase epitaxy on a (100)alpha-->[111]B (alpha = 2 degrees, 4 degrees, 6 degrees) GaSb substrate. The GaInAsSb alloy has an appropriate band gap, but suffers from a phase separation consisting of GaAs-rich and InSb-rich regions that is disadvantageous for cell efficiency. In this work, we employed a morphological approach to phase separation, with the use of conventional transmission electron microscopy and atomic force microscopy. The phase separation occurs in two different orientations: parallel to the growth direction (vertical) and inclined (lateral). After application of fast Fourier transformation filtering, the vertical periodicity was found to be lambda = 5 nm for the pair (black and white) of layers independently of the cut-off angle, whereas the lateral periodicity was related to it.

  7. Josephson-phase-controlled interplay between correlation effects and electron pairing in a three-terminal nanostructure

    Science.gov (United States)

    Domański, T.; Žonda, M.; Pokorný, V.; Górski, G.; Janiš, V.; Novotný, T.

    2017-01-01

    We study the subgap spectrum of the interacting single-level quantum dot coupled between two superconducting reservoirs, forming the Josephson-type circuit, and additionally hybridized with a metallic normal lead. This system allows for the phase-tunable interplay between the correlation effects and the proximity-induced electron pairing resulting in the singlet-doublet (0-π ) crossover and the phase-dependent Kondo effect. We investigate the spectral function, induced local pairing, Josephson supercurrent, and Andreev conductance in a wide range of system parameters by the numerically exact numerical renormalization group and quantum Monte Carlo calculations along with perturbative treatments in terms of the Coulomb repulsion and the hybridization term. Our results address especially the correlation effects reflected in dependencies of various quantities on the local Coulomb interaction strength as well as on the coupling to the normal lead. We quantitatively establish the phase-dependent Kondo temperature logTK(ϕ ) ∝cos2(ϕ /2 ) and show that it can be read off from the half-width of the zero-bias enhancement in the Andreev conductance in the doublet phase, which can be experimentally measured by the tunneling spectroscopy.

  8. The prediction of bacteria type and culture growth phase by an electronic nose with a multi-layer perceptron network

    Science.gov (United States)

    Gardner, J. W.; Craven, M.; Dow, C.; Hines, E. L.

    1998-01-01

    An investigation into the use of an electronic nose to predict the class and growth phase of two potentially pathogenic micro-organisms, Eschericha coli ( E. coli) and Staphylococcus aureus ( S. aureus), has been performed. In order to do this we have developed an automated system to sample, with a high degree of reproducibility, the head space of bacterial cultures grown in a standard nutrient medium. Head spaces have been examined by using an array of six different metal oxide semiconducting gas sensors and classified by a multi-layer perceptron (MLP) with a back-propagation (BP) learning algorithm. The performance of 36 different pre-processing algorithms has been studied on the basis of nine different sensor parameters and four different normalization techniques. The best MLP was found to classify successfully 100% of the unknown S. aureus samples and 92% of the unknown E. coli samples, on the basis of a set of 360 training vectors and 360 test vectors taken from the lag, log and stationary growth phases. The real growth phase of the bacteria was determined from optical cell counts and was predicted from the head space samples with an accuracy of 81%. We conclude that these results show considerable promise in that the correct prediction of the type and growth phase of pathogenic bacteria may help both in the more rapid treatment of bacterial infections and in the more efficient testing of new anti-biotic drugs.

  9. Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser.

    Science.gov (United States)

    Hunter, Mark S; Yoon, Chun Hong; DeMirci, Hasan; Sierra, Raymond G; Dao, E Han; Ahmadi, Radman; Aksit, Fulya; Aquila, Andrew L; Ciftci, Halilibrahim; Guillet, Serge; Hayes, Matt J; Lane, Thomas J; Liang, Meng; Lundström, Ulf; Koglin, Jason E; Mgbam, Paul; Rao, Yashas; Zhang, Lindsey; Wakatsuki, Soichi; Holton, James M; Boutet, Sébastien

    2016-11-04

    Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity and wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.

  10. Bond-order wave phase of the extended Hubbard model: Electronic solitons, paramagnetism, and coupling to Peierls and Holstein phonons

    Science.gov (United States)

    Kumar, Manoranjan; Soos, Zoltán G.

    2010-10-01

    The bond-order wave (BOW) phase of the extended Hubbard model (EHM) in one dimension (1D) is characterized at intermediate correlation U=4t by exact treatment of N -site systems. Linear coupling to lattice (Peierls) phonons and molecular (Holstein) vibrations are treated in the adiabatic approximation. The molar magnetic susceptibility χM(T) is obtained directly up to N=10 . The goal is to find the consequences of a doubly degenerate ground state (gs) and finite magnetic gap Em in a regular array. Degenerate gs with broken inversion symmetry are constructed for finite N for a range of V near the charge-density-wave boundary at V≈2.18t where Em≈0.5t is large. The electronic amplitude B(V) of the BOW in the regular array is shown to mimic a tight-binding band with small effective dimerization δeff . Electronic spin and charge solitons are elementary excitations of the BOW phase and also resemble topological solitons with small δeff . Strong infrared intensity of coupled molecular vibrations in dimerized 1D systems is shown to extend to the regular BOW phase while its temperature dependence is related to spin solitons. The Peierls instability to dimerization has novel aspects for degenerate gs and substantial Em that suppresses thermal excitations. Finite Em implies exponentially small χM(T) at low temperature followed by an almost linear increase with T . The EHM with U=4t is representative of intermediate correlations in quasi-1D systems such as conjugated polymers or organic ion-radical and charge-transfer salts. The vibronic and thermal properties of correlated models with BOW phases are needed to identify possible physical realizations.

  11. STRUCTURAL PHASE TRANSITION, ELASTIC AND ELECTRONIC PROPERTIES OF CuXSe2(X = In, Ga) CHALCOPYRITE

    Science.gov (United States)

    Bouguetaia, T.; Abidri, B.; Benbahi, B.; Rached, D.; Hiadsi, S.; Rabah, M.

    2012-04-01

    The structural, elastic and electronic properties of chalcopyrite compound CuInSe2 and CuGaSe2 have been investigated using the full-potential linearized muffin-tin orbital method (FP-LMTO) within the frame of density functional theory (DFT). In this approach, the local density approximation is used for the exchange-correlation potential using Perdew-Wang parametrization. The equilibrium lattice parameters, bulk modulus, transition pressure, elastic constants and their related parameters such as Poisson's ratio, Young modulus, shear modulus and Debye temperature were calculated and compared with available experimental and theoretical data. They are in reasonable agreement. In this paper the electronic properties are treated with GGA + U approach, which brings out the important role played by the d-state of noble metal (Cu) and give the correct nature of the energy band gap. Our obtained results show that both compounds exhibit semi-conductor behaviour with direct band gap.

  12. Dynamics of longitudinal phase-space modulations in an rf compressor for electron beams

    Directory of Open Access Journals (Sweden)

    M. Venturini

    2010-08-01

    Full Text Available Free-electron lasers operating in the UV or x-ray radiation spectrum require peak beam currents that are generally higher than those obtainable by present electron sources, thus making bunch compression necessary. Compression, however, may heighten the effects of collective forces and degrade the beam quality. In this paper we provide a framework for investigating some of these effects in rf compressors by focusing on the longitudinal dynamics of small-amplitude density perturbations, which have the potential to cause the disruptive appearance of the so-called microbunching instability. We develop a linear theory valid for low-to-moderate compression factors under the assumption of a 1D impedance model of longitudinal space charge and provide validation against macroparticle simulations.

  13. 6D phase space electron beam analysis and machine sensitivity studies for ELI-NP GBS

    Science.gov (United States)

    Giribono, A.; Bacci, A.; Curatolo, C.; Drebot, I.; Palumbo, L.; Petrillo, V.; Rossi, A. R.; Serafini, L.; Vaccarezza, C.; Vannozzi, A.; Variola, A.

    2016-09-01

    The ELI-NP Gamma Beam Source (GBS) is now under construction in Magurele-Bucharest (RO). Here an advanced source of gamma photons with unprecedented specifications of brilliance (>1021), monochromaticity (0.5%) and energy tunability (0.2-19.5 MeV) is being built, based on Inverse Compton Scattering in the head-on configuration between an electron beam of maximum energy 750 MeV and a high quality high power ps laser beam. These requirements make the ELI-NP GBS an advanced and challenging gamma ray source. The electron beam dynamics analysis and control regarding the machine sensitivity to the possible jitter and misalignments are presented. The effects on the beam quality are illustrated providing the basis for the alignment procedure and jitter tolerances.

  14. A theoretical study on the B3 phases of ZnSe: Structural and electronic properties

    Indian Academy of Sciences (India)

    KHOIROM KABITA; B INDRAJIT SHARMA

    2017-07-01

    A theoretical study on the structural stability and electronic properties of ZnSe is performed using the localized density approximation (LDA), generalized gradient approximation (GGA) and modified Becke– Johnson (mBJ)with Purdew–Burke–Ernzerhof (PBE-GGA) as the exchange correlation potential using full potentiallinearized augmented plane-wave method of density functional theory (DFT). The electronic structure calculation using the three approximations show that the LDA and the GGA methods underestimated the band gap while the band gap predicted by the mBJ is closer to the experimental result. The mBJ-GGA calculation shows a direct band-gap semiconductor of 2.5 eV. The total and partial densities of states of ZnSe are determined to study the energy band diagram.

  15. Nanocrystal Phase Identification by Lattice Fringe Fingerprinting from High Resolution Transmission Electron Microscope Images

    Science.gov (United States)

    Bjorge, Ruben; Seipel, Bjoern; Moeck, Peter; Fraundorf, Philip

    2006-05-01

    Lattice fringe fingerprinting is a novel and powerful method of identifying and characterizing nanocrystalline structures or materials based on images from direct space high-resolution transmission electron microscopy (HRTEM). We examine Fourier transformed HRTEM images of nanocrystals in certain orientations (i.e. lattice fringes and cross fringes) in order to obtain a lattice fringe fingerprint plot. Such plots are used to identify a crystalline nanoparticle by comparing the experimental data with data that are derived from a comprehensive database. A lattice fringe fingerprint plot is similar to a classical X-ray powder diffractogram, but an important advantage is that the intersection angles of lattice fringes give us additional information. When transmission electron microscope image acquisition and data interpretation are automated and connected to a comprehensive database (such as our Nano-Crystallography Database, http://nanocrystallography.research.pdx.edu/), fringe fingerprinting will be able to compete with powder X-ray diffraction in identifying unknown nanocrystals on a routine basis.

  16. A theoretical study on the B3 phases of ZnSe: Structural and electronic properties

    Science.gov (United States)

    Kabita, Khoirom; Sharma, B. Indrajit

    2017-07-01

    A theoretical study on the structural stability and electronic properties of ZnSe is performed using the localized density approximation (LDA), generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) with Purdew-Burke-Ernzerhof (PBE-GGA) as the exchange correlation potential using full potential linearized augmented plane-wave method of density functional theory (DFT). The electronic structure calculation using the three approximations show that the LDA and the GGA methods underestimated the band gap while the band gap predicted by the mBJ is closer to the experimental result. The mBJ-GGA calculation shows a direct band-gap semiconductor of 2.5 eV. The total and partial densities of states of ZnSe are determined to study the energy band diagram.

  17. Probing the symmetry and phase of localised surface plasmon resonances with modified electron probes

    CERN Document Server

    Guzzinati, Giulio; Lourenço--Martins, Hugo; Martin, Jerôme; Kociak, Mathieu; Verbeeck, Jo

    2016-01-01

    Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light at the nanoscale. While the field is progressing swiftly thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the symmetries of the plasmonic excitations cannot be accessed by direct measurements, leading to a partial and sometimes incorrect understanding of their properties. Here we overcome this limitation by deliberately shaping the wave--function of a free electron beam to match the symmetry of the plasmonic excitations in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles while filtering out modes with other symmetries. This method shows some resemblance to the widespread use of polarised light for the selective excitation of plasmon modes but adds the advanta...

  18. Tunable subpicosecond electron bunch train generation using a transverse-to-longitudinal phase space exchange technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.-E; /Fermilab; Piot, P.; Johnson, A.; /Fermilab /Northern Illinois U.; Lumpkin, A.H.; /Fermilab; Maxwell, T.J.; /Fermilab /Northern Illinois U.; Ruan, J.; Thurman-Keup, R.; /Fermilab

    2010-11-01

    We report on the experimental generation of a train of subpicosecond electron bunches. The bunch train generation is accomplished using a beamline capable of exchanging the coordinates between the horizontal and longitudinal degrees of freedom. An initial beam consisting of a set of horizontally-separated beamlets is converted into a train of bunches temporally separated with tunable bunch duration and separation. The experiment reported in this Letter unambiguously demonstrates the conversion process and its versatility.

  19. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device.

    Science.gov (United States)

    Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yi, Byong Yong; Yeo, Inhwan

    2016-07-01

    A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as "reference" images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was

  20. Full field residual stress determination using hole-drilling and electronic speckle pattern interferometry (ESPI with phase unwrapping method

    Directory of Open Access Journals (Sweden)

    Lyu B.I.

    2010-06-01

    Full Text Available The hole-drilling strain gauge technique has become a standard method in measuring residual stresses [1]. Moiré interferometry combining hole-drilling method opens additional opportunity for full-field residual stress measurement using optical interferometry [2]. The optical moiré method has a non-contact feature comparing with strain gauge method. Yet Moiré interferometry suffers a drawback in its complicated grating preparation on one hand and it is difficult to be applied to work piece with complicated geometry on the other hand. Electronic speckle pattern interferometry (ESPI provides information about the displacement field of a surface and it can be conveniently used on asreceived surfaces without special surface preparation and can be applied to work piece with complicated geometry that may be unsuitable for applying strain gauge or gratings. Studies on combining ESPI with hole-drilling show that is feasible to obtain reasonable residual stress values [3, 4]. The purpose of this study was to demonstrate the detail of hole-drilling technique combining ESPI with phase unwrapping method to reveal the full field stress distribution and to measure the associated stress field on a thin specimen exerted by a uni-axial load. This study also demonstrates the noise reduction achieved by Gaussian low pass filter and a successful phase unwrapping resulted from five-step phase shifting and cellular automata method. Figure 1 shows the experimental setup of the ESPI system and the hole-drilling system. The light from a laser source is split into two beams. One split beam emerges from a PZT-stage to provide stepwise phase shifting and it further interferes with the other split image beam on the specimen surface to produce speckle patterns onto the CCD camera. By recording the speckle images of stepwise phase shifting before and after hole-drilling, the fringe patterns at each step can be obtained. Through a uniaxial loading fixture loads with

  1. Transverse to longitudinal phase space coupling in an electron beam for suppression of microbunching instability

    Science.gov (United States)

    Huang, Dazhang; Feng, Chao; Deng, Haixiao; Gu, Qiang; Zhao, Zhentang

    2016-10-01

    The microbunching instability developed during the beam compression process in the linear accelerator (LINAC) of a free-electron laser (FEL) facility has always been a problem that degrades the lasing performance, and even no FEL is able to be produced if the beam quality is destroyed too much by the instability. A common way to suppress the microbunching instability is to introduce extra uncorrelated energy spread by the laser heater that heats the beam through the interaction between the electron and laser beam, as what has been successfully implemented in the Linac Coherent Light Source and Fermi@Elettra. In this paper, a simple and effective scheme is proposed to suppress the microbunching instability by adding two transverse gradient undulators (TGU) before and after the magnetic bunch compressor. The additional uncorrelated energy spread and the density mixing from the transverse spread brought up by the first TGU results in significant suppression of the instability. Meanwhile, the extra slice energy spread and the transverse emittance can also be effectively recovered by the second TGU. The magnitude of the suppression can be easily controlled by varying the strength of the magnetic fields of the TGUs. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in the LINAC of an x-ray free-electron laser facility.

  2. Transverse to longitudinal phase space coupling in an electron beam for suppression of microbunching instability

    Directory of Open Access Journals (Sweden)

    Dazhang Huang

    2016-10-01

    Full Text Available The microbunching instability developed during the beam compression process in the linear accelerator (LINAC of a free-electron laser (FEL facility has always been a problem that degrades the lasing performance, and even no FEL is able to be produced if the beam quality is destroyed too much by the instability. A common way to suppress the microbunching instability is to introduce extra uncorrelated energy spread by the laser heater that heats the beam through the interaction between the electron and laser beam, as what has been successfully implemented in the Linac Coherent Light Source and Fermi@Elettra. In this paper, a simple and effective scheme is proposed to suppress the microbunching instability by adding two transverse gradient undulators (TGU before and after the magnetic bunch compressor. The additional uncorrelated energy spread and the density mixing from the transverse spread brought up by the first TGU results in significant suppression of the instability. Meanwhile, the extra slice energy spread and the transverse emittance can also be effectively recovered by the second TGU. The magnitude of the suppression can be easily controlled by varying the strength of the magnetic fields of the TGUs. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in the LINAC of an x-ray free-electron laser facility.

  3. Removal of Oxygen from Electronic Materials by Vapor-Phase Processes

    Science.gov (United States)

    Palosz, Witold

    1997-01-01

    Thermochemical analyses of equilibrium partial pressures over oxides with and without the presence of the respective element condensed phase, and hydrogen, chalcogens, hydrogen chalcogenides, and graphite are presented. Theoretical calculations are supplemented with experimental results on the rate of decomposition and/or sublimation/vaporization of the oxides under dynamic vacuum, and on the rate of reaction with hydrogen, graphite, and chalcogens. Procedures of removal of a number of oxides under different conditions are discussed.

  4. Phase-I Trigger Readout Electronics Upgrade of the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    Mori, Tatsuya; The ATLAS collaboration

    2015-01-01

    This document for NEC’2015 proceedings gives an overview of the Phase-I Upgrade on the ATLAS LAr Calorimeter Trigger Readout. The design of custom developed hardware for fast real-time data processing and transfer is also overviewed. Performance results from the prototype boards in the demonstrator system are shown. First measurements of noise levels and linearity on response from the demonstrator system are shown.

  5. Modeling and control of three phase rectifier with electronic smoothing inductor

    DEFF Research Database (Denmark)

    Singh, Yash Veer; Rasmussen, Peter Omand; Andersen, Torben Ole

    2011-01-01

    controlled variable impedance. This increases power factor (PF) and reduces total harmonic distortions (THDs) in mains current. The ESI based rectifier enables compact and cost effective design of three phase electric drive as size of passive components is reduced significantly. In order to carry out...... stability and voltage regulation studies, the average, small-signal, dynamic model and control strategy of the ESI is developed and validated by simulation and laboratory measurements....

  6. Electronic and magnetic phase diagram of superconductors, SmFeAsO1-xFx

    Science.gov (United States)

    Kamihara, Yoichi; Nomura, Takatoshi; Hirano, Masahiro; Kim, Jung Eun; Kato, Kenichi; Takata, Masaki; Kobayashi, Yasuhiro; Kitao, Shinji; Higashitaniguchi, Satoshi; Yoda, Yoshitaka; Seto, Makoto; Hosono, Hideo

    2010-03-01

    A crystallographic and magnetic phase diagram of SmFeAsO1-xFx is determined as a function of x in terms of temperature based on electrical transport and magnetization, synchrotron powder x-ray diffraction, 57Fe Mössbauer spectra (MS), and 149Sm nuclear resonant forward scattering (NRFS) measurements. MS revealed that the magnetic moments of Fe were aligned antiferromagnetically at ~144 K (TN(Fe)). The magnetic moment of Fe (MFe) is estimated to be 0.34 μB/Fe at 4.2 K for undoped SmFeAsO; MFe is quenched in superconducting F-doped SmFeAsO. 149Sm NRFS spectra revealed that the magnetic moments of Sm start to order antiferromagnetically at 5.6 K (undoped) and 4.4 K (TN(Sm)) (x=0.069). Results clearly indicate that the antiferromagnetic (AF) Sm sublattice coexists with the superconducting phase in SmFeAsO1-xFx below TN(Sm), while the AF Fe sublattice does not coexist with the superconducting phase.

  7. Report for simultaneous, multiple independently steered beam study for Airborne Electronically Steerable Phased Array (AESPA) program

    Science.gov (United States)

    1978-01-01

    Design concepts of an array for the formation of multiple, simultaneous, independently pointed beams for satellite communication links were investigated through tradeoffs of various approaches which were conceived as possible solutions to the problem. After the preferred approach was selected, a more detailed design was configured and is presented as a candidate system that should be given further consideration for development leading to a preliminary design. This array uses an attenuator and a phase shifter with every element. The aperture excitation necessary to form the four beams is calculated and then placed across the array using these devices. Pattern analysis was performed for two beam and four beam cases with numerous patterns being presented. Parameter evaluation shown includes pointing accuracy and beam shape, sidelobe characteristics, gain control, and beam normalization. It was demonstrated that a 4 bit phase shifter and a 6 bit, 30 dB attenuator were sufficient to achieve adequate pattern performances. The phase amplitude steered multibeam array offers the flexibility of 1 to 4 beams with an increase in gain of 6 dB if only one beam is selected.

  8. Thermochemistry of the Reaction of SF6 with Gas-Phase Hydrated Electrons: A Benchmark for Nanocalorimetry.

    Science.gov (United States)

    Akhgarnusch, Amou; Höckendorf, Robert F; Beyer, Martin K

    2015-10-01

    The reaction of sulfur hexafluoride with gas-phase hydrated electrons (H2O)n(-), n ≈ 60-130, is investigated at temperatures T = 140-300 K by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. SF6 reacts with a temperature-independent rate of 3.0 ± 1.0 × 10(-10) cm(3) s(-1) via exclusive formation of the hydrated F(-) anion and the SF5(•) radical, which evaporates from the cluster. Nanocalorimetry yields a reaction enthalpy of ΔHR,298K = 234 ± 24 kJ mol(-1). Combined with literature thermochemical data from bulk aqueous solution, these result in an F5S-F bond dissociation enthalpy of ΔH298K = 455 ± 24 kJ mol(-1), in excellent agreement with all high-level quantum chemical calculations in the literature. A combination with gas-phase literature thermochemistry also yields an experimental value for the electron affinity of SF5(•), EA(SF5(•)) = 4.27 ± 0.25 eV.

  9. Čerenkov emission of quasiparallel whistlers by fast electron phase-space holes during magnetic reconnection.

    Science.gov (United States)

    Goldman, M V; Newman, D L; Lapenta, G; Andersson, L; Gosling, J T; Eriksson, S; Markidis, S; Eastwood, J P; Ergun, R

    2014-04-11

    Kinetic simulations of magnetotail reconnection have revealed electromagnetic whistlers originating near the exhaust boundary and propagating into the inflow region. The whistler production mechanism is not a linear instability, but rather is Čerenkov emission of almost parallel whistlers from localized moving clumps of charge (finite-size quasiparticles) associated with nonlinear coherent electron phase space holes. Whistlers are strongly excited by holes without ever growing exponentially. In the simulation the whistlers are emitted in the source region from holes that accelerate down the magnetic separatrix towards the x line. The phase velocity of the whistlers vφ in the source region is everywhere well matched to the hole velocity vH as required by the Čerenkov condition. The simulation shows emission is most efficient near the theoretical maximum vφ=half the electron Alfven speed, consistent with the new theoretical prediction that faster holes radiate more efficiently. While transferring energy to whistlers the holes lose coherence and dissipate over a few local ion inertial lengths. The whistlers, however, propagate to the x line and out over many 10's of ion inertial lengths into the inflow region of reconnection. As the whistlers pass near the x line they modulate the rate at which magnetic field lines reconnect.

  10. First-Principles Investigation of Phase Stability, Electronic Structure and Optical Properties of MgZnO Monolayer

    Directory of Open Access Journals (Sweden)

    Changlong Tan

    2016-10-01

    Full Text Available MgZnO bulk has attracted much attention as candidates for application in optoelectronic devices in the blue and ultraviolet region. However, there has been no reported study regarding two-dimensional MgZnO monolayer in spite of its unique properties due to quantum confinement effect. Here, using density functional theory calculations, we investigated the phase stability, electronic structure and optical properties of MgxZn1−xO monolayer with Mg concentration x range from 0 to 1. Our calculations show that MgZnO monolayer remains the graphene-like structure with various Mg concentrations. The phase segregation occurring in bulk systems has not been observed in the monolayer due to size effect, which is advantageous for application. Moreover, MgZnO monolayer exhibits interesting tuning of electronic structure and optical properties with Mg concentration. The band gap increases with increasing Mg concentration. More interestingly, a direct to indirect band gap transition is observed for MgZnO monolayer when Mg concentration is higher than 75 at %. We also predict that Mg doping leads to a blue shift of the optical absorption peaks. Our results may provide guidance for designing the growth process and potential application of MgZnO monolayer.

  11. Design and testing of an integrated electronically controlled capacitor for integral and fractional horse power single phase induction motor

    Energy Technology Data Exchange (ETDEWEB)

    Faiz, Jawad [Tehran Univ., Dept. of Electrical and Computer Engineering, Tehran (Iran); Kasebi, F. [Tabriz Univ., Dept. of Electrical Engineering, Tabriz (Iran); Pillay, P. [Clarkson Univ., Dept. of Electrical and Computer Engineering, Potsdam, New York, NY (United States)

    2004-11-01

    This paper addresses a problem that occurs in many small appliances. As such, it is an important problem of energy utilization. To improve the performance of a single phase capacitor start/run induction motor, FET type power transistors could be used to replace a SCRH bridge. Such a configuration can lead to a simpler and more inexpensive circuit for the electronically controlled capacitor. In this paper, ICs and an OP-AMP are used to design an electronically controlled capacitor for a single phase induction motor. The design can compensate for the input voltage fluctuations that are present in the normal operation of the motor. In addition, an improvement in its performance can be obtained. At present, the use of a tachometer can be considered a disadvantage of the proposed scheme. Thus, a configuration that enables removal of the tachometer, while maintaining reasonable cost, is desirable. In addition, replacing the ac capacitor with one rated for dc can lead to a system reduction, in addition to a considerable reduction in the size of the circuit due to the use of integrated circuits. (Author)

  12. High-accuracy diagnostic tool for electron cloud observation in the LHC based on synchronous phase measurements

    Science.gov (United States)

    Esteban Müller, J. F.; Baudrenghien, P.; Mastoridis, T.; Shaposhnikova, E.; Valuch, D.

    2015-11-01

    Electron cloud effects, which include heat load in the cryogenic system, pressure rise, and beam instabilities, are among the main intensity limitations for the LHC operation with 25 ns spaced bunches. A new observation tool was proposed and developed to monitor the e-cloud activity and it has already been used successfully during the LHC run 1 (2010-2012) and it is being intensively used in operation during the start of the LHC run 2 (2015-2018). It is based on the fact that the power loss of each bunch due to e-cloud can be estimated using bunch-by-bunch measurement of the synchronous phase. The measurements were done using the existing beam phase module of the low-level rf control system. In order to achieve the very high accuracy required, corrections for reflection in the cables and for systematic errors need to be applied followed by a post-processing of the measurements. Results clearly show the e-cloud buildup along the bunch trains and its time evolution during each LHC fill as well as from fill to fill. Measurements during the 2012 LHC scrubbing run reveal a progressive reduction in the e-cloud activity and therefore a decrease in the secondary electron yield. The total beam power loss can be computed as a sum of the contributions from all bunches and compared with the heat load deposited in the cryogenic system.

  13. Two-color vibrational, femtosecond, fully resonant electronically enhanced CARS (FREE-CARS) of gas-phase nitric oxide

    Science.gov (United States)

    Stauffer, Hans U.; Roy, Sukesh; Schmidt, Jacob B.; Wrzesinski, Paul J.; Gord, James R.

    2016-09-01

    A resonantly enhanced, two-color, femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) approach is demonstrated and used to explore the nature of the frequency- and time-dependent signals produced by gas-phase nitric oxide (NO). Through careful selection of the input pulse wavelengths, this fully resonant electronically enhanced CARS (FREE-CARS) scheme allows rovibronic-state-resolved observation of time-dependent rovibrational wavepackets propagating on the vibrationally excited ground-state potential energy surface of this diatomic species. Despite the use of broadband, ultrafast time-resolved input pulses, high spectral resolution of gas-phase rovibronic transitions is observed in the FREE-CARS signal, dictated by the electronic dephasing timescales of these states. Analysis and computational simulation of the time-dependent spectra observed as a function of pump-Stokes and Stokes-probe delays provide insight into the rotationally resolved wavepacket motion observed on the excited-state and vibrationally excited ground-state potential energy surfaces of NO, respectively.

  14. Pressure-temperature phase diagram of the heavy-electron superconductor URu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Amitsuka, H. [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan)]. E-mail: amiami@phys.sci.hokudai.ac.jp; Matsuda, K. [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan); Kawasaki, I. [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan); Tenya, K. [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan); Yokoyama, M. [Faculty of Science, Ibaraki University, Mito 310-8512 (Japan); Sekine, C. [Faculty of Engineering, Muroran Institute of Technology, Muroran 050-8585 (Japan); Tateiwa, N. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195 (Japan); Kobayashi, T.C. [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Kawarazaki, S. [Department of Earth and Space Science, Osaka University, Toyonaka 560-0043 (Japan); Yoshizawa, H. [Neutron Science Laboratory, ISSP, University of Tokyo, Tokai 319-1106 (Japan)

    2007-03-15

    The pressure-temperature phase diagram of the heavy-electron superconductor URu{sub 2}Si{sub 2} has been reinvestigated by AC-susceptibility and elastic neutron-scattering (NS) measurements performed on a small single-crystalline rod (2mm in diameter, 6mm in length) in a Cu-Be clamp-type high-pressure cell (P<1.1GPa). At ambient pressure, this sample shows the weakest antiferromagnetic (AF) Bragg reflections reported so far, corresponding to the volume-averaged staggered moment of {mu}{sub o}{approx}0.011{mu}{sub B}/U. Under applied pressure, the AF scattering intensity exhibits a sharp increase at P{approx}0.7GPa at low temperatures. The saturation value of the AF scattering intensity above 0.7GPa corresponds to {mu}{sub o}{approx}0.41{mu}{sub B}/U, which is in good agreement with that ({approx}0.39{mu}{sub B}/U) observed above 1.5 GPa in our previous NS measurements. The superconductivity is dramatically suppressed by the evolution of AF phase, indicating that the superconducting state coexists only with the hidden order phase. The presence of parasitic ferro- and/or antiferromagnetic phases with transition temperatures T{sub 1}=120(5), T{sub 2}=36(3) and T{sub 3}=16.5(5)K and their relationship to the low-T ordered phases are also discussed.

  15. Onset of chaos in a single-phase power electronic inverter.

    Science.gov (United States)

    Avrutin, Viktor; Mosekilde, Erik; Zhusubaliyev, Zhanybai T; Gardini, Laura

    2015-04-01

    Supported by experiments on a power electronic DC/AC converter, this paper considers an unusual transition from the domain of stable periodic dynamics (corresponding to the desired mode of operation) to chaotic dynamics. The behavior of the converter is studied by means of a 1D stroboscopic map derived from a non-autonomous ordinary differential equation with discontinuous right-hand side. By construction, this stroboscopic map has a high number of border points. It is shown that the onset of chaos occurs stepwise, via irregular cascades of different border collisions, some of which lead to bifurcations while others do not.

  16. Onset of chaos in a single-phase power electronic inverter

    Energy Technology Data Exchange (ETDEWEB)

    Avrutin, Viktor, E-mail: Avrutin.Viktor@ist.uni-stuttgart.de [Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, 70550 Stuttgart (Germany); Department of Economics, Society and Politics, University of Urbino, via Saffi 42, 61029 Urbino (Italy); Mosekilde, Erik, E-mail: Erik.Mosekilde@fysik.dtu.dk [Department of Physics, The Technical University of Denmark, Fysikvej 309, 2800 Lyngby (Denmark); Zhusubaliyev, Zhanybai T., E-mail: Zhanybai@hotmail.com [Department of Computer Science, Southwest State University, 50 Years of October Str., 94, 305040 Kursk (Russian Federation); Gardini, Laura, E-mail: Laura.Gardini@uniurb.it [Department of Economics, Society and Politics, University of Urbino, via Saffi 42, 61029 Urbino (Italy)

    2015-04-15

    Supported by experiments on a power electronic DC/AC converter, this paper considers an unusual transition from the domain of stable periodic dynamics (corresponding to the desired mode of operation) to chaotic dynamics. The behavior of the converter is studied by means of a 1D stroboscopic map derived from a non-autonomous ordinary differential equation with discontinuous right-hand side. By construction, this stroboscopic map has a high number of border points. It is shown that the onset of chaos occurs stepwise, via irregular cascades of different border collisions, some of which lead to bifurcations while others do not.

  17. Extending the random-phase approximation for electronic correlation energies: the renormalized adiabatic local density approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian S.

    2012-01-01

    while chemical bond strengths and absolute correlation energies are systematically underestimated. In this work we extend the RPA by including a parameter-free renormalized version of the adiabatic local-density (ALDA) exchange-correlation kernel. The renormalization consists of a (local) truncation...... of the ALDA kernel for wave vectors q > 2kF, which is found to yield excellent results for the homogeneous electron gas. In addition, the kernel significantly improves both the absolute correlation energies and atomization energies of small molecules over RPA and ALDA. The renormalization can...

  18. The Trigger Readout Electronics for the Phase-I Upgrade of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Xu, Hao; The ATLAS collaboration

    2016-01-01

    For the Phase-I luminosity upgrade of the LHC a higher granularity trigger readout of the ATLAS Liquid Argon (LAr) Calorimeters is foreseen to enhance the trigger feature extraction and background rejection. The new readout system digitizes the detector signals, grouped into 34000 so-called Super Cells, with 12bit precision at 40MHz and transfers the data on optical links to the digital processing system, which computes the Super Cell transverse energies. In this paper, development and test results of the new readout system are presented.

  19. The trigger readout electronics for the Phase-I upgrade of the ATLAS Liquid Argon calorimeters

    Science.gov (United States)

    Xu, Hao

    2017-03-01

    For the Phase-I luminosity upgrade of the LHC a higher granularity trigger readout of the ATLAS Liquid Argon (LAr) Calorimeters is foreseen to enhance the trigger feature extraction and background rejection. The new readout system digitizes the detector signals, grouped into 34000 so-called Super Cells, with 12-bit precision at 40 MHz and transfers the data on optical links to the digital processing system, which computes the Super Cell transverse energies. In this paper, development and test results of the new readout system are presented.

  20. Electron work functions of ferrite and austenite phases in a duplex stainless steel and their adhesive forces with AFM silicon probe.

    Science.gov (United States)

    Guo, Liqiu; Hua, Guomin; Yang, Binjie; Lu, Hao; Qiao, Lijie; Yan, Xianguo; Li, Dongyang

    2016-02-12

    Local electron work function, adhesive force, modulus and deformation of ferrite and austenite phases in a duplex stainless steel were analyzed by scanning force microscopy. It is demonstrated that the austenite has a higher electron work function than the ferrite, corresponding to higher modulus, smaller deformation and larger adhesive force. Relevant first-principles calculations were conducted to elucidate the mechanism behind. It is demonstrated that the difference in the properties between austenite and ferrite is intrinsically related to their electron work functions.

  1. Accuracy of the phase space evolution dose calculation model for clinical 25 MeV electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Korevaar, Erik W. [Daniel den Hoed Cancer Center, University Hospital Rotterdam, PO Box 5201, 3008 AE Rotterdam (Netherlands). E-mail: korevaar at kfih.azr.nl; Akhiat, Abdelhafid; Heijmen, Ben J.M. [Daniel den Hoed Cancer Center, University Hospital Rotterdam, PO Box 5201, 3008 AE Rotterdam (Netherlands); Huizenga, Henk [Joint Center for Radiation Oncology Arnhem-Nijmegen, University Medical Center Nijmegen, PO Box 9101, 6500 HB Nijmegen (Netherlands)

    2000-10-01

    The phase space evolution (PSE) model is a dose calculation model for electron beams in radiation oncology developed with the aim of a higher accuracy than the commonly used pencil beam (PB) models and with shorter calculation times than needed for Monte Carlo (MC) calculations. In this paper the accuracy of the PSE model has been investigated for 25 MeV electron beams of a MM50 racetrack microtron (Scanditronix Medical AB, Sweden) and compared with the results of a PB model. Measurements have been performed for tests like non-standard SSD, irregularly shaped fields, oblique incidence and in phantoms with heterogeneities of air, bone and lung. MC calculations have been performed as well, to reveal possible errors in the measurements and/or possible inaccuracies in the interaction data used for the bone and lung substitute materials. Results show a good agreement between PSE calculated dose distributions and measurements. For all points the differences - in absolute dose - were generally well within 3% and 3 mm. However, the PSE model was found to be less accurate in large regions of low-density material and errors of up to 6% were found for the lung phantom. Results of the PB model show larger deviations, with differences of up to 6% and 6 mm and of up to 10% for the lung phantom; at shortened SSDs the dose was overestimated by up to 6%. The agreement between MC calculations and measurement was good. For the bone and the lung phantom maximum deviations of 4% and 3% were found, caused by uncertainties about the actual interaction data. In conclusion, using the phase space evolution model, absolute 3D dose distributions of 25 MeV electron beams can be calculated with sufficient accuracy in most cases. The accuracy is significantly better than for a pencil beam model. In regions of lung tissue, a Monte Carlo model yields more accurate results than the current implementation of the PSE model. (author)

  2. Accuracy of the phase space evolution dose calculation model for clinical 25 MeV electron beams

    Science.gov (United States)

    Korevaar, Erik W.; Akhiat, Abdelhafid; Heijmen, Ben J. M.; Huizenga, Henk

    2000-10-01

    The phase space evolution (PSE) model is a dose calculation model for electron beams in radiation oncology developed with the aim of a higher accuracy than the commonly used pencil beam (PB) models and with shorter calculation times than needed for Monte Carlo (MC) calculations. In this paper the accuracy of the PSE model has been investigated for 25 MeV electron beams of a MM50 racetrack microtron (Scanditronix Medical AB, Sweden) and compared with the results of a PB model. Measurements have been performed for tests like non-standard SSD, irregularly shaped fields, oblique incidence and in phantoms with heterogeneities of air, bone and lung. MC calculations have been performed as well, to reveal possible errors in the measurements and/or possible inaccuracies in the interaction data used for the bone and lung substitute materials. Results show a good agreement between PSE calculated dose distributions and measurements. For all points the differences - in absolute dose - were generally well within 3% and 3 mm. However, the PSE model was found to be less accurate in large regions of low-density material and errors of up to 6% were found for the lung phantom. Results of the PB model show larger deviations, with differences of up to 6% and 6 mm and of up to 10% for the lung phantom; at shortened SSDs the dose was overestimated by up to 6%. The agreement between MC calculations and measurement was good. For the bone and the lung phantom maximum deviations of 4% and 3% were found, caused by uncertainties about the actual interaction data. In conclusion, using the phase space evolution model, absolute 3D dose distributions of 25 MeV electron beams can be calculated with sufficient accuracy in most cases. The accuracy is significantly better than for a pencil beam model. In regions of lung tissue, a Monte Carlo model yields more accurate results than the current implementation of the PSE model.

  3. Investigations of vapour-phase deposited transition metal dichalcogenide films for future electronic applications

    Science.gov (United States)

    Gatensby, Riley; Hallam, Toby; Lee, Kangho; McEvoy, Niall; Duesberg, Georg S.

    2016-11-01

    Two-dimensional (2D) transitional metal dichalcogenides (TMDs) are of major interest to the research and electrical engineering community. A number of TMDs are semiconducting and have a wide range of bandgaps, they can exhibit n- or p-type behaviour, and the electronic structure changes with the number of layers. These exceptional properties hold much promise for a host of electrical applications including low- or high power field-effect transistors, sensors and diodes. Moreover, the unique optical properties of TMDs make them attractive for optoelectronic applications such as light-emitting diodes, photodiodes, and photovoltaic cells. A prerequisite for all of these applications is a synthesis route which is well controlled, scalable, reproducible and compatible with semiconductor industry process flows. Thermally assisted conversion (TAC), a variant of chemical vapour deposition, shows much promise for meeting these requirements. Herein we review the current progress and challenges of research on 2D semiconducting materials for electronics with a special focus on TAC produced TMD thin films.

  4. Kinetics of low energy electron attachment to some fluorinated alcohols in the gas phase

    Science.gov (United States)

    Wnorowski, K.; Wnorowska, J.; Kopyra, J.; Michalczuk, B.; Szamrej, I.; Barszczewska, W.

    2014-01-01

    Thermal electron attachment processes in the mixtures of CH3CH2OH, CF3CH2OH, CF3CF2CH2OH, (CF3)2CHOH and CH3CH(OH)CF3 with carbon dioxide have been investigated using an electron Pulsed Townsend technique. Measurements were carried out in the temperature range (298-413) K. The obtained rate coefficients depended on temperature in accordance to Arrhenius equation. From the fit to the experimental data points with function ln(k) = ln(A)-Ea/kBT the activation energies (Ea's) were determined. The rate coefficients at 298 K are equal to 3.2 × 10-13 cm3 s-1, 5.1 × 10-11 cm3 s-1, 1.1 × 10-10 cm3 s-1, 3.0 × 10-10 cm3 s-1 and 2.6 × 10-11 cm3 s-1 and activation energies are: 0.37 eV, 0.25 eV, 0.28 eV, 0.20 eV and 0.23 eV, respectively for CH3CH2OH, CF3CH2OH, CF3CF2CH2OH, (CF3)2CHOH and CH3CH(OH)CF3.

  5. Tests with beam setup of the TileCal Phase-II upgrade electronics

    CERN Document Server

    Hlaluku, Dingane Reward; The ATLAS collaboration

    2017-01-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC (HL-LHC) which will have an average luminosity 5-7 times larger than the nominal Run-2 value. The ATLAS Tile Calorimeter (TileCal) will undergo an upgrade to accommodate to the HL-LHC parameters. The TileCal electronics both on- and off-detector will be completely redesigned and a new readout architecture will be adopted. The photomultiplier signals will be digitised and transferred to the TileCal PreProcessors (PPr) located off-detector for every bunch crossing. Then, the PPr will provide preprocessed digital data to the first level trigger with improved spatial granularity and energy resolution with respect to the current analog trigger signals. We plan to insert one TileCal module instrumented with the new electronics in the real detector to evaluate and qualify the new readout and trigger concepts in the overall ATLAS data acquisition system. This new drawer, so-called Hybrid Demonstrator, must provide analog trigger signal fo...

  6. A phase contrast imaging–interferometer system for detection of multiscale electron density fluctuations on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E. M.; Rost, J. C.; Porkolab, M.; Marinoni, A. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Van Zeeland, M. A. [General Atomics, San Diego, California 92121 (United States)

    2016-11-15

    Heterodyne interferometry and phase contrast imaging (PCI) are robust, mature techniques for measuring low-k and high-k electron density fluctuations, respectively. This work describes the first-ever implementation of a combined PCI–interferometer. The combined system uses a single 10.6 μm probe beam, two interference schemes, and two detectors to measure electron density fluctuations at large spatiotemporal bandwidth (10 kHz electron-scale instabilities. Further, correlating our interferometer’s measurements with those from DIII-D’s pre-existing, toroidally separated interferometer allows core-localized, low-n MHD studies that may otherwise be inaccessible via external magnetic measurements. The combined diagnostic’s small port requirements and minimal access restrictions make it well-suited to the harsh neutron environments and limited port space expected in next-step devices.

  7. Localized electron states and phase separation at the LaAlO3/SrTiO3 interface

    Science.gov (United States)

    Satpathy, S.; Shanavas, K. V.

    2012-02-01

    Even though the 2D electron gas at the polar interfaces of LAO/STO has been studied extensively, an explanation for the observed magnetic centers or the coexistence of magnetism and superconductivity is still lacking. Earlier density-functional calculations have indicated the presence of multi-bands and two types of electrons at the interface [1]. Here we propose that a combination of lattice disorder, octahedral rotations, and Jahn-Teller distortion can lead to some of these electrons to be localized near the interface and form lattice polarons. Evidence for this is presented from detailed density-functional calculations, which indicate that the energy gain associated with JT distortion and impurity or disorder induced local potentials can offset the kinetic energy cost of localization. Our model studies [2] also show the possible existence of a phase separation, thereby providing a natural explanation for the coexistence of magnetism and superconductivity [3].[4pt] [1] Z. S. Popovi'c, S. Satpathy and R. M. Martin Phys. Rev. Lett., 101, 256801 (2008)[0pt] [2] B. R. K. Nanda and S. Satpathy Phys. Rev B, 83, 195114 (2011)[0pt] [3] L. Li et. al. Nature Physics, 7, 762 (2011); J. A. Bert et. al. ibid, 767 (2011);

  8. RT2016 Phase-I Trigger Readout Electronics Upgrade for the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    AUTHOR|(SzGeCERN)478829; The ATLAS collaboration

    2016-01-01

    For the Phase-I luminosity upgrade of the LHC, a higher granularity trigger readout of the ATLAS LAr Calorimeters is foreseen in order to enhance the trigger feature extraction and background rejection. The new readout system digitizes the detector signals, which are grouped into 34000 so-called Super Cells, with 12-bit precision at 40 MHz. The data is transferred via optical links to a digital processing system which extracts the Super Cell energies. A demonstrator version of the complete system has now been installed and operated on the ATLAS detector. The talk will give an overview of the Phase-I Upgrade of the ATLAS LAr Calorimeter readout and present the custom developed hardware including their role in real-time data processing and fast data transfer. This contribution will also report on the performance of the newly developed ASICs including their radiation tolerance and on the performance of the prototype boards in the demonstrator system based on various measurements with the 13 TeV collision data. R...

  9. Radical electronic transformation of strongly coupled plasma at megabar pressure ionization, dielectrization and phase transitions

    Science.gov (United States)

    Fortov, Vladimir

    2007-06-01

    The work presents new results of investigation of pressure and temperature ionization of coupled nonideal plasmas generated as a result of multiple shock compression of metals, H2, He, noble gases, S, I, fullerene C60, H2O in the megabar pressure range. The highly time-resolved diagnostics permit us to measure thermodynamical, radiative and mechanical properties of high pressure condensed matter in a broad region of the phase diagram. This data in combination with exploding wire conductivity measurements demonstrate an ionization rate increase up to ten orders of magnitude as a result of compression of degenerate plasmas at p 104-107 bars. Shock compression of H2, Ar, He, Kr, Ne, Xe in initially gaseous and cryogenic liquid state allows measuring the electrical conductivity, Hall effect parameters, equation of state, and emission spectra of strongly nonideal plasma. Thermal and pressure ionization of strongly coupled states of matter is the most prominent effects under the experimental conditions. It was shown that plasma compression strongly deforms the ionization potentials, emission spectra and scattering cross-sections of the neutrals and ions in the strongly coupled plasmas. In contrast to the plasma compression the multiple shock compression of solid Li, Na, Ca shows ``dielectrization'' of the elements. Phase transitions in strongly nonideal plasmas are discussed.

  10. Evolution of Structural-Phase States in TiNi Surface Layers Synthesized by Electron Beam Treatment

    Directory of Open Access Journals (Sweden)

    L. L. Meisner

    2010-01-01

    Full Text Available The paper presents the results of X-ray diffraction analysis of nonequilibrium structural and elastic stress states in TiNi surface layers irradiated by low-energy electron beams. It is found that a surface layer with a mixed (2D columnar and 3D equiaxial submicrocrystalline structure is formed on the irradiated side of the TiNi specimens, and the volume fractions of the two structure types depend on the beam energy parameters and number of pulses. The B2 phase synthesized in the layer is characterized by lattice microstrain due to stresses of the first and second kinds (εI≈±1%, εII=0.25%, and the layer as such is an internal stress concentrator for underlying layers of the material. In the intermediate layer beneath the stress concentrator, relaxation of irradiation-induced internal stress takes place. It is shown that the main mechanism of the relaxation is partial B2→B19′ martensite transformation. The B19′ martensite phase in the intermediate layer decreases the microstrain in the conjugate B2 phase. The thickness of the layer in which the relaxation processes develop through the B2→B19′ martensite transformation is 10–15 μm.

  11. VO{sub 2} (A): Reinvestigation of crystal structure, phase transition and crystal growth mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Rao Popuri, Srinivasa [ICMCB, CNRS, UPR 9048, F-33608 Pessac (France); University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac (France); National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Plautius Andronescu Str. No. 1, 300224 Timisoara (Romania); Artemenko, Alla [ICMCB, CNRS, UPR 9048, F-33608 Pessac (France); University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac (France); Labrugere, Christine [CeCaMA, University of Bordeaux 1, ICMCB, 87 Avenue du Dr. A. Schweitzer, F-33608 Pessac (France); Miclau, Marinela [National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Plautius Andronescu Str. No. 1, 300224 Timisoara (Romania); Villesuzanne, Antoine [ICMCB, CNRS, UPR 9048, F-33608 Pessac (France); University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac (France); Pollet, Michaël, E-mail: pollet@icmcb-bordeaux.cnrs.fr [ICMCB, CNRS, UPR 9048, F-33608 Pessac (France); University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac (France)

    2014-05-01

    Well crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal reaction in the presence of V{sub 2}O{sub 5} and oxalic acid. With the advantage of high crystalline samples, we propose P4/ncc as an appropriate space group at room temperature. From morphological studies, we found that the oriented attachment and layer by layer growth mechanisms are responsible for the formation of VO{sub 2} (A) micro rods. The structural and electronic transitions in VO{sub 2} (A) are strongly first order in nature, and a marked difference between the structural transition temperatures and electronic transitions temperature was evidenced. The reversible intra- (LTP-A to HTP-A) and irreversible inter- (HTP-A to VO{sub 2} (M1)) structural phase transformations were studied by in-situ powder X-ray diffraction. Attempts to increase the size of the VO{sub 2} (A) microrods are presented and the possible formation steps for the flower-like morphologies of VO{sub 2} (M1) are described. - Graphical abstract: Using a single step and template free hydrothermal synthesis, well crystallized VO{sub 2} (A) microrods were prepared and the P4/ncc space group was assigned to the room temperature crystal structure. Reversible and irreversible phase transitions among different VO{sub 2} polymorphs were identified and their progressive nature was highlighted. Attempts to increase the microrods size, involving layer by layer formation mechanisms, are presented. - Highlights: • Highly crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal process. • The P4/ncc space group was determined for VO{sub 2} (A) at room temperature. • The electronic structure and progressive nature of the structural phase transition were investigated. • A weak coupling between structural and electronic phase transitions was identified. • Different crystallite morphologies were discussed in relation with growth mechanisms.

  12. Anderson localization and its ramifications disorder, phase coherence and electron correlations

    CERN Document Server

    Kettemann, S

    2003-01-01

    The phenomenon of localization of the electronic wave function in a random medium can be regarded as the key manifestation of quantum coherence in a condensed matter system. As one of the most remarkable phenomena in condensed matter physics discovered in the 20th century, the localization problem is an indispensable part of the theory of the quantum Hall effects and rivals superconductivity in its significance as a manifestation of quantum coherence at a macroscopic scale. The present volume, written by some of the leading experts in the field, is intended to highlight some of the recent progress in the field of localization, with particular emphasis on the effect of interactions on quantum coherence. The chapters are written in textbook style and should serve as a reliable and thorough introduction for advanced students or researchers already working in the field of mesoscopic physics.

  13. Gas Phase Dissociative Electron Attachment to Formamide Derivatives NMF and DMF

    Science.gov (United States)

    Li, Zhou; Dawley, M. Michele; Ptasinska, Sylwia

    2015-09-01

    Fragmentation of biomolecules, such as nucleobases, induced by low energy electrons can lead to the break of DNA strands. Dissociative electron attachment (DEA), which can occur due to low energy interactions, is initiated with the formation of transient negative ions which exhibit characteristic resonant profiles in the product ion yield. The consequent fragmentation process can either be as simple as a single bond cleavage or a relatively complex process involving multiple bond rearrangements. Measurements of resonant peaks in ion yields and identification of ion products provide information of the resonant energies of the parent molecules as well as the fragmentation pathways. N-methylformamide (NMF) and dimethylformamide (DMF) are both derivatives of formamide which is the simplest structure containing the peptide bond linkage. In this work we identified anion fragments and measured resonance profiles of produced anions due to DEA to NMF and DMF. The anionic species produced from the two molecules were compared as well as the resonant positions and ion yields. Based on this comparison, the DEA process to the two molecules bears similarities such as leading to breaking of peptide bonds (C-N), as well as discrepancies such as absence of OCN- in DEA to DMF. The selective property of H atom loss, which is reported in the DEA to formamide, is also justified in our experiment since no dehydrogenated DMF anion was detected. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Award Number DE-FC02-04ER15533.

  14. A three-phase model proposal for the evolution of scientific communication: from first print periodicals to current electronic communication system

    Directory of Open Access Journals (Sweden)

    Patrícia Bertin

    Full Text Available Scientific communication has undergone deep transformations, since the emergence of Internet. Aiming to provide further thought on the evolution of scientific communication, this paper features a historical overview of the scientific communication advances over the last twenty years through a three-phase model for the evolution of the electronic journal and the preprints services, and presents Brazilian contemporary panorama for scientific communication. The three-phase model presented in this work is an adaptation of that one proposed by Tenopir et al. (2003 to describe the patterns of journal use by scientists since 1990. The early evolutionary phase followed the emergence of the first digital journals and the creation of repositories in the Web for publishing preliminary versions of scientific literature on the author’s initiative; by that time, most academics reproved electronic publishing initiatives. From 1996 and forward, in the consolidation phase, electronic journals were commonly identical to their print counterparts; the acceptance of the electronic format began to increase, and preprint services got underway in several disciplines. The advanced evolutionary phase started with the world discussion on open access to scientific information. The comparison of the current electronic journal with that viewed by enthusiasts in the first years of the 1990s shows that some aspects still remain to be improved in electronic formal and informal communication, towards effective dissemination of scientific information.

  15. Aberration-corrected transmission electron microscopy of the intergranular phase in magnetic recording media.

    Science.gov (United States)

    Hossein-Babaei, Faraz; Koh, Ai Leen; Srinivasan, Kumar; Bertero, Gerardo A; Sinclair, Robert

    2012-05-09

    In perpendicular hard disk memory media, nanometric magnetic Co-rich grains are separated by a ∼1 nm thick nonmagnetic and preferably amorphous intergranular phase (IP). Attempts at observing the IP structure at high resolution using TEM have been obstructed by the superposition of lattice fringes from the crystalline grains extending into the IP region in images. Here we present the first images of a magnetic recording medium produced using a spherical aberration-corrected TEM showing the true amorphous IP structure in contrast to the crystalline grains, allowing the accurate determination of the grain-IP interface and the grain and IP dimensions. It is shown that these aberration-corrected TEM images are functionally superior for analyzing certain features of the ultrahigh capacity data recording media.

  16. Thermoelectric properties and electronic structure of the zintl-phase Sr(3)AlSb(3).

    Science.gov (United States)

    Zevalkink, Alex; Pomrehn, Gregory; Takagiwa, Yoshiki; Swallow, Jessica; Snyder, G Jeffrey

    2013-12-01

    The Zintl-phase Sr3 AlSb3 , which contains relatively earth-abundant and nontoxic elements, has many of the features that are necessary for good thermoelectric performance. The structure of Sr3 AlSb3 is characterized by isolated anionic units formed from pairs of edge-sharing tetrahedra. Its structure is distinct from previously studied chain-forming structures, Ca3 AlSb3 and Sr3 GaSb3 , both of which are known to be good thermoelectric materials. DFT predicts a relatively large band gap in Sr3 AlSb3 (Eg ≈1 eV) and a heavier band mass than that found in other chain-forming A3 MSb3 phases (A=Sr, Ca; M=Al, Ga). High-temperature transport measurements reveal both high resistivity and high Seebeck coefficients in Sr3 AlSb3 , which is consistent with the large calculated band gap. The thermal conductivity of Sr3 AlSb3 is found to be extremely low (≈ 0.55 W mK(-1) at 1000 K) due to the large, complex unit cell (56 atoms per primitive cell). Although the figure of merit (zT) has not been optimized in the current study, a single parabolic band model suggests that, when successfully doped, zT≈ 0.3 may be obtained at 600 K; this makes Sr3 AlSb3 promising for waste-heat recovery applications. Doping with Zn(2+) on the Al(3+) site has been attempted, but does not lead to the expected increase in carrier concentration.

  17. An investigation of using a phase-change material to improve the heat transfer in a small electronic module for an airborne radar application

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, K.W.

    1990-10-01

    Finding new and improved means of cooling small electronic packages are of great importance to today's electronic packaging engineer. Thermal absorption through the use of a material which changes phase is an attractive alternative. Taking advantage of the heat capacity of a material's latent heat of fusion is shown to absorb heat away from the electronics, thus decreasing the overall temperature rise of the system. The energy equation is formulated in terms of enthalpy and discretized using a finite-difference method. A FORTRAN program to solve the discretized equations is presented which can be used to analyze heat conduction in a rectangular region undergoing an isothermal phase change. An analysis of heat transfer through a miniature radar electronic module cooled by a phase-change reservoir is presented, illustrating the method's advantages over conventional heat sinks. 41 refs., 11 figs., 2 tabs.

  18. Bandgap engineering of Magnéli phase Ti{sub n}O{sub 2n−1}: Electron-hole self-compensation

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Mang [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); College of Science, China University of Petroleum, Qingdao, Shandong 266580 (China); Tan, Huaqiao; Sun, Zaicheng, E-mail: sunzc@ciomp.ac.cn [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Cheng, Daojian, E-mail: chengdj@mail.buct.edu.cn; Cao, Dapeng, E-mail: caodp@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China)

    2015-08-07

    An electron-hole self-compensation effect is revealed and confirmed in nitrogen doped Magnéli phase Ti{sub n}O{sub 2n−1} (n = 7, 8, and 9) by using hybrid density functional theory calculations. We found that the self-compensation effect between the free electrons in Magnéli phase Ti{sub n}O{sub 2n−1} (n = 7, 8, and 9) and the holes induced by p-type nitrogen doping could not only prevent the recombination of photo-generated electron-hole pairs, but also lead to an effective bandgap reduction. This novel electron-hole self-compensation effect may provide a new approach for bandgap engineering of Magnéli phase metal suboxides.

  19. Polarization induced water molecule dissociation below the first-order electronic-phase transition temperature

    CERN Document Server

    Arulsamy, Andrew Das; Elersic, Kristina; Modic, Martina; Subramani, Uma Shankar

    2011-01-01

    Hydrogen produced from the photocatalytic splitting of water is one of the reliable alternatives to replace the polluting fossil and the radioactive nuclear fuels. Here, we provide unequivocal evidence for the existence of blue- and red-shifting O$-$H covalent bonds within a single water molecule adsorbed on MgO surface as a result of asymmetric displacement polarizabilities. The adsorbed H-O-H on MgO gives rise to one weaker H-O bond, while the other O-H covalent bond from the same adsorbed water molecule compensates this effect with a stronger bond. The weaker bond (nearest to the surface), the interlayer tunneling electrons and the silver substrate are shown to be the causes for the smallest dissociative activation energy on MgO monolayer. The origin that is responsible to initiate the splitting mechanism is proven to be due to the changes in the polarizability of an adsorbed water molecule, which are further supported by the temperature-dependent static dielectric constant measurements for water below the...

  20. Trigger and readout electronics for the Phase-I upgrade of the ATLAS forward muon spectrometer

    CERN Document Server

    Moschovakos, Paris; The ATLAS collaboration

    2017-01-01

    The upgrades of the LHC accelerator and the experiments in 2019/20 and 2023/24 will increase the instantaneous and integrated luminosity, but also will drastically increase the data and trigger rates. To cope with the huge data flow while maintaining high muon detection efficiency and reducing fake muons found at Level-1, the present ATLAS small wheel muon detector will be replaced with a New Small Wheel (NSW) detector for high luminosity LHC runs. The NSW will feature two new detector technologies: resistive micromegas and small strip Thin Gap Chambers conforming a system of ~2.4 million readout channels. Both detector technologies will provide trigger and tracking primitives. A common readout path and a separate trigger path are developed for each detector technology. The electronics design of such a system will be implemented in about 8000 front-end boards, including the design of a number of custom radiation tolerant Application Specific Integrated Circuits (ASICs), capable of driving trigger and tracking...

  1. Trigger and Readout Electronics for the Phase-I Upgrade of the ATLAS Forward Muon Spectrometer

    CERN Document Server

    Moschovakos, Paris; The ATLAS collaboration

    2017-01-01

    The upgrades of the LHC accelerator and the experiments in 2019/20 and 2023/24 will increase the instantaneous and integrated luminosity, but also will drastically increase the data and trigger rates. To cope with the huge data flow while maintaining high muon detection efficiency and reducing fake muons found at Level-1, the present ATLAS small wheel muon detector will be replaced with a New Small Wheel (NSW) detector for high luminosity LHC runs. The NSW will feature two new detector technologies: resistive micromegas (MM) and small strip Thin Gap Chambers (sTGC) conforming a system of ~2.4 million readout channels. Both detector technologies will provide trigger and tracking primitives. A common readout path and a separate trigger path are developed for each detector technology. The electronics design of such a system will be implemented in about 8000 front-end boards, including the design of a number of custom radiation tolerant Application Specific Integrated Circuits (ASICs), capable of driving trigger ...

  2. Development of inhomogeneous conduction electron spin polarization in the antiferroquadrupolar phase of UPd{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Schenck, A.; Gygax, F.N. [Institute for Particle Physics of ETH Zuerich, Villigen (Switzerland); McEwen, K.A. [Department of Physics and Astronomy, University College London, London (United Kingdom)

    2002-05-06

    We have measured the Knight shift and inhomogeneous line broadening of positive muons implanted in monocrystalline UPd{sub 3} from 2 K up to 300 K. We find two components in the transverse-field (H{sub ext}=0.6 T) precession signal with amplitude ratio 2:1, which is independent of temperature up to 300 K. The two signals are associated with two different muon sites with axial symmetry. Both the Knight shifts and the relaxation rates show pronounced anomalies at the critical temperatures of T{sub 2}{approx_equal}4.4 K, believed to reflect, inter alia, a magnetic transition, T{sub 1}{approx_equal}6.8 K and T{sub 0}{approx_equal}7.6 K, originating from antiferroquadrupolar ordering. Details depend on sample orientation and signal component. It is argued that the particular temperature dependence of both the Knight shift and the inhomogeneous line broadening of the stronger component below 10 K is associated with the contact hyperfine contribution to the Knight shift and reflects an inhomogeneous conduction electron spin polarization caused by the antiferroquadrupolar order. Additional zero-field {mu}SR measurements yield a very small temperature-independent relaxation rate consistent with the field inhomogeneity arising from the Pd nuclear dipole fields. In particular, below 4.5 K there is no evidence for additional static fields due to a magnetically ordered state. (author)

  3. Strongly aligned gas-phase molecules at Free-Electron Lasers

    CERN Document Server

    Kierspel, Thomas; Mullins, Terry; Robinson, Joseph; Aquila, Andy; Barty, Anton; Bean, Richard; Boll, Rebecca; Boutet, Sébastien; Bucksbaum, Philip; Chapman, Henry N; Christensen, Lauge; Fry, Alan; Hunter, Mark; Koglin, Jason E; Liang, Mengning; Mariani, Valerio; Morgan, Andrew; Natan, Adi; Petrovic, Vladimir; Rolles, Daniel; Rudenko, Artem; Schnorr, Kirsten; Stapelfeldt, Henrik; Stern, Stephan; Thøgersen, Jan; Yoon, Chun Hong; Wang, Fenglin; Trippel, Sebastian; Küpper, Jochen

    2015-01-01

    We demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the Linac Coherent Light Source. Chirped laser pulses, i. e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2,5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment of $\\left$ = 0.85 was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.

  4. Two Novel C3N4 Phases: Structural, Mechanical and Electronic Properties

    Directory of Open Access Journals (Sweden)

    Qingyang Fan

    2016-05-01

    Full Text Available We systematically studied the physical properties of a novel superhard (t-C3N4 and a novel hard (m-C3N4 C3N4 allotrope. Detailed theoretical studies of the structural properties, elastic properties, density of states, and mechanical properties of these two C3N4 phases were carried out using first-principles calculations. The calculated elastic constants and the hardness revealed that t-C3N4 is ultra-incompressible and superhard, with a high bulk modulus of 375 GPa and a high hardness of 80 GPa. m-C3N4 and t-C3N4 both exhibit large anisotropy with respect to Poisson’s ratio, shear modulus, and Young’s modulus. Moreover, m-C3N4 is a quasi-direct-bandgap semiconductor, with a band gap of 4.522 eV, and t-C3N4 is also a quasi-direct-band-gap semiconductor, with a band gap of 4.210 eV, with the HSE06 functional.

  5. A steep-slope transistor based on abrupt electronic phase transition

    Science.gov (United States)

    Shukla, Nikhil; Thathachary, Arun V.; Agrawal, Ashish; Paik, Hanjong; Aziz, Ahmedullah; Schlom, Darrell G.; Gupta, Sumeet Kumar; Engel-Herbert, Roman; Datta, Suman

    2015-08-01

    Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance transistors have experienced little success. Here, we demonstrate a pathway for harnessing the abrupt resistivity transformation across the insulator-to-metal transition in vanadium dioxide (VO2), to design a hybrid-phase-transition field-effect transistor that exhibits gate controlled steep (`sub-kT/q') and reversible switching at room temperature. The transistor design, wherein VO2 is implemented in series with the field-effect transistor's source rather than into the channel, exploits negative differential resistance induced across the VO2 to create an internal amplifier that facilitates enhanced performance over a conventional field-effect transistor. Our approach enables low-voltage complementary n-type and p-type transistor operation as demonstrated here, and is applicable to other insulator-to-metal transition materials, offering tantalizing possibilities for energy-efficient logic and memory applications.

  6. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Degao; Yang, Yang; Zhang, Peng [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Yang, Weitao, E-mail: weitao.yang@duke.edu [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2014-12-07

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N{sup 4}). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S{sup ^2}〉 are also developed and tested.

  7. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    Science.gov (United States)

    Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao

    2014-12-01

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N4). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as < hat{S}2rangle are also developed and tested.

  8. New electronic phase transitions in α -(BEDT-TTF){2}KHg(SCN){4}

    Science.gov (United States)

    Kartsovnik, M. V.; Andres, D.; Biberacher, W.; Grigoriev, P. D.; Schuberth, E. A.; Müller, H.

    2004-04-01

    α -(BEDT-TTF){2}KHg(SCN){4} is considered to be in the charge-density-wave (CDW) state below 8 K. We present new magnetoresistance data suggesting that the material undergoes a series of field-induced CDW (FICDW) transitions at pressures slightly exceeding the critical pressure Pc at which the zero-field CDW state is destroyed. Further, we argue that a novel kind of FICDW transitions, entirely determined by a superposition of the strong Pauli and quantizing orbital effects of magnetic field on the CDW wavevector, arises when the field is strongly tilted towards the conducting layers. These new transitions can take place even in the case of a relatively well nested Fermi surface. Finally we report on the superconducting (SC) state and its coexistence with the CDW in the title compound under quasi-hydrostatic pressure. Below Pc the material is most likely a heterogeneous SC/CDW mixture, with the SC phase persisting down to ambient pressure. The SC onset temperature appears to drastically increase upon entering the SC/CDW coexistence region. Key words. charge-transfer salt charge-density wave high magnetic field effects super-conductivity.

  9. Detecting phase-transitions in electronic lattice-models with DCA+

    Science.gov (United States)

    Staar, Peter; Maier, Thomas; Schulthess, Thomas; Computational Material Science Team

    2014-03-01

    The DCA+ algortihm was recently introduced to extend the dynamic cluster approximation (DCA) by introducing a self-energy with continuous momentum dependence. This removes artificial long-range correlations and thereby reduces the fermion sign problem as well as cluster shape dependencies. Here, we extend the DCA+ algorithm to the calculation of two-particle quantities by introducing irreducible vertex functions with continuous momentum dependence compatible with the DCA+ self-energy. This enables the study of phase transitions within the DCA+ framework in a much more controlled fashion than with the DCA. We validate the new method using a calculation of the superconducting transition temperature Tc in the attractive Hubbard model by reproducing previous high-precision finite size quantum Monte Carlo results. We then calculate Tc in the doped repulsive Hubbard model, for which previous DCA calculations could only access the weak-coupling (U = 4 t) regime for large clusters. We show that the new algorithm provides access to much larger clusters and thus asymptotic converged results for Tc for both the weak (U = 4 t) and intermediate (U = 7 t) coupling regimes, and thereby enables the accurate determination of the exact infinite cluster size result.

  10. A steep-slope transistor based on abrupt electronic phase transition.

    Science.gov (United States)

    Shukla, Nikhil; Thathachary, Arun V; Agrawal, Ashish; Paik, Hanjong; Aziz, Ahmedullah; Schlom, Darrell G; Gupta, Sumeet Kumar; Engel-Herbert, Roman; Datta, Suman

    2015-08-07

    Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance transistors have experienced little success. Here, we demonstrate a pathway for harnessing the abrupt resistivity transformation across the insulator-to-metal transition in vanadium dioxide (VO2), to design a hybrid-phase-transition field-effect transistor that exhibits gate controlled steep ('sub-kT/q') and reversible switching at room temperature. The transistor design, wherein VO2 is implemented in series with the field-effect transistor's source rather than into the channel, exploits negative differential resistance induced across the VO2 to create an internal amplifier that facilitates enhanced performance over a conventional field-effect transistor. Our approach enables low-voltage complementary n-type and p-type transistor operation as demonstrated here, and is applicable to other insulator-to-metal transition materials, offering tantalizing possibilities for energy-efficient logic and memory applications.

  11. Electron/gamma and alpha backgrounds in CRESST-II Phase 2

    CERN Document Server

    Strauss, R; Bento, A; Bucci, C; Canonica, L; Erb, A; Feilitzsch, F v; Iachellini, N Ferreiro; Gorla, P; Gütlein, A; Hauff, D; Jochum, J; Kiefer, M; Kluck, H; Kraus, H; Lanfranchi, J -C; Loebell, J; Münster, A; Petricca, F; Potzel, W; Pröbst, F; Reindl, F; Roth, S; Rottler, K; Sailer, C; Schäffner, K; Schieck, J; Scholl, S; Schönert, S; Seidel, W; Sivers, M v; Stodolsky, L; Strandhagen, C; Tanzke, A; Uffinger, M; Ulrich, A; Usherov, I; Wawoczny, S; Willers, M; Wüstrich, M; Zöller, A

    2014-01-01

    The experiment CRESST-II aims at the detection of dark matter with scintillating CaWO$_4$ crystals operated as cryogenic detectors. Recent results on spin-independent WIMP-nucleon scattering from the CRESST-II Phase 2 allowed to probe a new region of parameter space for WIMP masses below 3$\\,$GeV/c$^2$. This sensitivity was achieved after background levels were reduced significantly. We present extensive background studies of a CaWO$_4$ crystal, called TUM40, grown at the Technische Universit\\"at M\\"unchen. The average beta/gamma rate of 3.44/[kg$\\,$keV$\\,$day] (1-40$\\,$keV) and the total intrinsic alpha activity from natural decay chains of $3.08\\pm0.04\\,$mBq/kg are the lowest reported for CaWO$_4$ detectors. Contributions of gamma lines resulting from cosmogenic activation, external X-rays and intrinsic beta emitters are investigated in detail.

  12. On the use of a small-scale two-phase thermosiphon to cool high-power electronics

    Science.gov (United States)

    Schrage, D. S.

    1990-01-01

    An experimental and analytical investigation of the steady-state thermal-hydraulic operating characteristics of a small-scale two-phase thermosiphon cooling actual power electronics are presented. Boiling heat transfer coefficients and circulation mass velocities were measured while varying heat load and pressure. Both a plain and augmented riser structure, utilizing micro-fins and reentrant cavities, were simultaneously tested. The boiling heat transfer coefficients increased with both increasing heat load and pressure. The mass velocity increased with increasing pressure while both increasing and then decreasing with increasing heat load. The reentrant cavity enhancement factor, a ratio of the augmented-to-plain riser nucleate boiling heat transfer coefficients, ranged from 1 to 1.4. High-speed photography revealed bubbly, slug, churn, wispy-annular and annular flow patterns. The experimental mass velocity and heat transfer coefficient data were compared to an analytical model with average absolute deviations of 16.3 and 26.3 percent, respectively.

  13. Density functional for short-range correlation: Is the random phase approximation accurate for iso-electronic energy changes?

    Science.gov (United States)

    Yan, Zidan; Perdew, John P.; Kurth, Stefan

    2000-03-01

    Within a density functional context, the random phase approximation (RPA) for the correlation emergy makes a short-range error which is well-suited for correction by a local spin density or generalized gradient approximation (GGA). Here we construct a GGA for the short-range correction, following the same reliable procedure used earlier to construct the GGA for the whole exchange-correlation energy: real-space cutoff of the spurious long-range contribution to the gradient expansion of the hole around an electron. The resulting density functional is nearly local, and predicts a substantial correction to the RPA correlation energy of an atom but \\underlinevery small corrections to the RPA atomization energy of a molecule, which may by itself come close to "chemical accuracy", and to the RPA surface energy of a metal. A by-product of this work is a density functional for the system-averaged correlation hole within RPA.

  14. Electron Density Modification of Single Wall Carbon Nanotubes (SWCNT by Liquid-Phase Molecular Adsorption of Hexaiodobenzene

    Directory of Open Access Journals (Sweden)

    Hirofumi Kanoh

    2013-02-01

    Full Text Available Electron density of single wall carbon nanotubes (SWCNT is effectively modified by hexaiodobenzene (HIB molecules using liquid-phase adsorption. UV-Vis-NIR absorption spectra of the HIB-adsorbed SWCNT, especially in the NIR region, showed a disappearance of S11 transitions between the V1 valance band and the C1 conduction band of van Hove singularities which can be attributed to the effective charge transfer between HIB and the SWCNT. The adsorption of HIB also caused significant peak-shifts (lower frequency shift around 170 cm−1 and higher shift around 186 cm‑1 and an intensity change (around 100–150 cm−1 and 270–290 cm−1 in the radial breathing mode of Raman spectra. The charge transfer from SWCNT to HIB was further confirmed by the change in the C1s peak of X-ray photoelectron spectrum, revealing the oxidation of carbon in SWCNT upon HIB adsorption.

  15. How well do static electronic dipole polarizabilities from gas-phase experiments compare with density functional and MP2 computations?

    Energy Technology Data Exchange (ETDEWEB)

    Thakkar, Ajit J., E-mail: ajit@unb.ca; Wu, Taozhe [Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3 (Canada)

    2015-10-14

    Static electronic dipole polarizabilities for 135 molecules are calculated using second-order Møller-Plesset perturbation theory and six density functionals recently recommended for polarizabilities. Comparison is made with the best gas-phase experimental data. The lowest mean absolute percent deviations from the best experimental values for all 135 molecules are 3.03% and 3.08% for the LC-τHCTH and M11 functionals, respectively. Excluding the eight extreme outliers for which the experimental values are almost certainly in error, the mean absolute percent deviation for the remaining 127 molecules drops to 2.42% and 2.48% for the LC-τHCTH and M11 functionals, respectively. Detailed comparison enables us to identify 32 molecules for which the discrepancy between the calculated and experimental values warrants further investigation.

  16. Gas phase proton affinities of molecules in excited electronic states by ion cyclotron resonance spectroscopy. [Benzaldehyde, cyanobenzene, and pyridine

    Energy Technology Data Exchange (ETDEWEB)

    Freiser, B.S.; Beauchamp, J.L.

    1976-01-07

    Ion cyclotron resonance spectroscopy is proposed as a method to determine acid-base properties of molecules in excited electronic states. Proton affinity in the excited state can be determined from the proton affinity in the ground state plus the difference in excitation energies of the base and its conjugate acid. The difference in excitation energies may be determined by analyzing the absorption spectra of the base and the photodissociation spectra of its conjugate acid. Gas phase absorption spectra of benzaldehyde, cyanobenzene and pyradine and their respective conjugate acids were presented and discussed. The greatest increase of proton affinity was reported in the excitation state of benzaldehyde with lesser increases reported for the excitation states of cyanobenzene and pyridine. (DDA)

  17. Averaged electron collision cross sections for thermal mixtures of $\\alpha$-Alanine conformers in the gas phase

    CERN Document Server

    Fujimoto, Milton M; Tennyson, Jonathan

    2016-01-01

    A theoretical study of elastic electron collisions with 9 conformers of the gas-phase amino acid $\\alpha$-alanine (CH$_3$CH(NH$_2$)COOH) is performed. The eigenphase sums, resonance features, differential and integral cross sections are computed for each individual conformer. Resonance positions for the low-energy $\\pi^*$ shape resonance are found to vary from 2.6 eV to 3.1 eV and the resonance widths from 0.3 eV to 0.5 eV. Averaged cross sections for thermal mixtures of the 9 conformers are presented. Both theoretical and experimental population ratios are considered. Thermally-averaged cross sections obtained using the best theoretical estimates give reasonable agreement with the observed thermal cross sections. Excited conformers IIA and IIB make a large contribution to this average due to their large permanent dipole moments.

  18. Narrow gap TIG and electron beam weld inspection in austenitic stainless steel using pulse echo, TOFD and phased array ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, K.P.; Turner, J.L. [Phoenix Inspection Systems Limited, Warrington (United Kingdom)

    2004-07-01

    'Full-text:' Narrow gap Tungsten Inert Gas (TIG) and Electron Beam (EB) welding techniques are being considered for the splice joint welds on the austenitic stainless steel Vacuum Vessel in the next generation of experimental Fusion Power stations under the ITER programme. Under the programme there is a requirement to develop automated ultrasonic NDT techniques to inspect material up to 60 mm thick in both weld types. These narrow welds are difficult to inspect because of the steep fusion faces made more difficult in this project by the beam scattering effects of austenitic stainless steel welds and the very limited access from only one side of the vessel. The paper details the development of the combined Pulse Echo, TOFD and Phased Array techniques on behalf of ITER. The authors describe the philosophy behind the inspections, results and possible transfer of the technology to other sectors of industry. (author)

  19. Stellar electron-capture rates in pf-shell nuclei from quasiparticle random-phase approximation calculations

    CERN Document Server

    Sarriguren, P

    2013-01-01

    Electron-capture rates at different density and temperature conditions are evaluated for a set of pf-shell nuclei representative of the constituents in presupernova formations. The nuclear structure part of the problem is described within a quasiparticle random-phase approximation based on a deformed Skyrme Hartree-Fock selfconsistent mean field with pairing correlations and residual interactions in particle-hole and particle-particle channels. The energy distributions of the Gamow-Teller strength are evaluated and compared to benchmark shell-model calculations and experimental data extracted from charge-exchange reactions. The model dependence of the weak rates are discussed and the various sensitivities to both density and temperature are analyzed.

  20. Comparative Effectiveness of Different Phase Change Materials to Improve Cooling Performance of Heat Sinks for Electronic Devices

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2016-08-01

    Full Text Available This paper thermo-physically characterizes salt hydrate, paraffin wax and milk fat as phase change materials (PCMs. The three PCMs are compared in terms of improving heat sink (HS performance for cooling electronic packaging. An experimental study is carried out on commercially available finned HS with and without PCM under natural ventilation (NV and forced ventilation (FV at different heat loads (4 W to 10 W. The results indicate that integration of all of the PCMs into the HS improves its cooling performance; however, milk fat lags behind the other two PCMs in terms of cooling produced. A three-dimensional pressure-based conjugate heat transfer model has been developed and validated with experimental results. The model predicts the parametric influence of PCM melting range, thermal conductivity and density on HS thermal management performance. The HS cooling performance improves with increased density and conductivity while it deteriorates with the wider melting range of the PCMs.

  1. Demonstrator System for the Phase-I Upgrade of the Trigger Readout Electronics of the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    Chen, Kai; The ATLAS collaboration

    2014-01-01

    The trigger readout electronics of the ATLAS Liquid Argon Calorimeters are foreseen to be improved for the Phase-I luminosity upgrade of the LHC, in 2019, in order to enhance the trigger feature extraction. Signals with higher spatial granularity will be digitized and processed by newly developed front-end and back-end components. In order to evaluate technical and performance aspects, a demonstrator system is being developed, with the intention of installing it on the ATLAS detector for operation during the data-taking period beginning in 2015. Results from system tests of the analog signal treatment, the trigger digitizer, the optical signal transmission and the FPGA-based back-end modules will be reported.

  2. 电子全息实验中参考波相位变化对物波相位测量的影响%Effect of reference wave phase on phase measurement in electron holography experiments

    Institute of Scientific and Technical Information of China (English)

    杨阳; 姚湲; 王志宏; Habermeier H U; 禹日成

    2012-01-01

    In experiment of electron holography, the phenomenon that the simultaneous existence of plus and minus phases in two parts of La0.5Ca0.5MnO3 cross sectional sample, respectively, has been analyzed according to the electron holographic principle. We pointed out that this phenomenon was caused by phase disturbance of the reference wave which would influence the reconstructed phase diagram and distort the measured mean inner potential. We further studied the effect of such phase disturbance on the phase measurements in electron holography experiments and discussed several possible cases which have been confirmed by the experimental results. Our study indicates that the phenomena mentioned here are complex and sometimes results in a wrong understanding of the acquired phase diagram in electron holography experiments. It should be careful to distinguish the hologram formation status of the experiment to avoid such mistakes.%本文根据电子全息的成像原理,分析了在测量La0.5Ca0.5MnO3(LCMO)平均内势的实验中,出现全息相位图中样品两部分的相位分别高于和低于真空区相位的现象,并进一步研究了参考波的相位变化对物波相位测量的影响.

  3. High-accuracy diagnostic tool for electron cloud observation in the LHC based on synchronous phase measurements

    CERN Document Server

    Esteban Müller, J F; Shaposhnikova, E; Valuch, D; Mastoridis, T

    2014-01-01

    Electron cloud effects such as heat load in the cryogenic system, pressure rise and beam instabilities are among the main limitations for the LHC operation with 25 ns spaced bunches. A new observation tool was developed to monitor the e-cloud activity and has been successfully used in the LHC during Run 1 (2010-2012). The power loss of each bunch due to the e-cloud can be estimated using very precise bunch-by-bunch measurement of the synchronous phase shift. In order to achieve the required accuracy, corrections for reflection in the cables and some systematic errors need to be applied followed by a post-processing of the measurements. Results clearly show the e-cloud build-up along the bunch trains and its evolution during each LHC fill as well as from fill to fill. Measurements during the 2012 LHC scrubbing run reveal a progressive reduction in the e-cloud activity and therefore a decrease in the secondary electron yield (SEY). The total beam power loss can be computed as a sum of the contributions from all...

  4. The Role of 4-Hydroxyphenylpyruvate Dioxygenase in Enhancement of Solid-Phase Electron Transfer by Shewanella oneidensis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Turick, Charles E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Beliaev, Alex S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zakrajsek, Brian A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Reardon, Catherine L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lowy, Daniel A. [Nova Research Inc., Alexandria, VA (United States); Poppy, Tara E. [Univ. of South Carolina, Aiken, SC (United States); Maloney, Andrea [Winthrop Univ., Rock Hill, SC (United States); Ekechukwu, Amy A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2009-05-01

    ABSTRACT - While mechanistic details of dissimilatory metal reduction are far from being understood, it is postulated that the electron transfer to solid metal oxides is mediated by outer membrane associated c-type cytochromes and electron shuttling compounds. This study focuses on the production of homogensitate in Shewanella oneidensis MR-1, an intermediate of the tyrosine degradation pathway, which is a precursor of a redox cycling metabolite, pyomelanin. We determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase (4HPPD) and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. Inhibition of 4-HPPD activity with the specific inhibitor sulcotrione ([2-(2- chloro- 4- methane sulfonylbenzoyl)-1,3-cyclohexanedione), and deletion of melA, a gene encoding 4-HPPD, resulted in no pyomelanin production by S. oneidensis MR-1. Conversely, deletion of hmgA, which encodes the putative homogentisate 1,2-dioxygenase, resulted in pyomelanin overproduction. The efficiency and rates at which MR-1 reduces hydrous ferric oxide were directly linked to the ability of mutant strains to produce pyomelanin. Electrochemical studies with whole cells demonstrated that pyomelanin substantially increases the formal potential (E°') of S. oneidensis MR-1. Based on our findings, environmental production of pyomelanin likely contributes to an increased solid-phase metal reduction capacity in S. oneidensis MR-1.

  5. Grain refinement, hardening and metastable phase formation by high current pulsed electron beam (HCPEB) treatment under heating and melting modes

    Energy Technology Data Exchange (ETDEWEB)

    Grosdidier, T., E-mail: Thierry.grosdidier@univ-metz.f [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, CNRS 3143), Universite Paul Verlaine-Metz, Ile du Saulcy, 57045 Metz (France); Lab of Materials Modification by Laser, Ion and Electron Beams and School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zou, J.X. [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, CNRS 3143), Universite Paul Verlaine-Metz, Ile du Saulcy, 57045 Metz (France); Bolle, B. [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, CNRS 3143), ENIM, Ile du Saulcy, 57045 Metz (France); Hao, S.Z.; Dong, C. [Lab of Materials Modification by Laser, Ion and Electron Beams and School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2010-08-15

    High current pulsed electron beam is a recently developed technique for surface modification. The pulsed electron irradiation introduces concentrated energy depositions in the thin surface layer of the treated materials, giving rise to an extremely fast heating and subsequent rapid cooling of the surface together with the formation of dynamic stress waves. Improved surface properties (hardness, corrosion resistance) can be obtained under the 'melting' mode when the top surface is melted and rapidly solidified (10{sup 7} K/s). In steels, this is essentially the result of nanostructures formed from the highly undercooled melt, melt surface purification, strain hardening induced by the thermal stress waves as well as metastable phase selections in the rapidly solidified melted layers. The use of the 'heating' mode is less conventional, combining effects of the heavy deformation and recrystallization/recovery mechanisms. A detailed analysis of a FeAl alloy demonstrates grain size refinement, hardening, solid-state enhanced diffusion and texture modification without modification of the surface geometry.

  6. Electronic band structures of AV{sub 2} (A = Ta, Ti, Hf and Nb) Laves phase compounds

    Energy Technology Data Exchange (ETDEWEB)

    Charifi, Z; Baaziz, H [Physics Department, Faculty of Science and Engineering, University of M' sila, 28000 M' sila (Algeria); Reshak, Ali Hussain [Institute of Physical Biology, South Bohemia University, Nove Hrady 37333 (Czech Republic)], E-mail: maalidph@yahoo.co.uk

    2009-01-14

    First-principles density functional calculations, using the all-electron full potential linearized augmented plane wave method, have been performed in order to investigate the structural and electronic properties for Laves phase AV{sub 2} (A = Ta, Ti, Hf and Nb) compounds. The generalized gradient approximation and the Engel-Vosko-generalized gradient approximation were used. Our calculations show that these compounds are metallic with more bands cutting the Fermi energy (E{sub F}) as we move from Nb to Ta, Hf and Ti, consistent with the increase in the values of the density of states at the Fermi level N(E{sub F}). N(E{sub F}) is controlled by the overlapping of V-p/d, A-d and A-p states around the Fermi energy. The ground state properties of these compounds, such as equilibrium lattice constant, are calculated and compared with the available literature. There is a strong/weak hybridization between the states, V-s states are strongly hybridized with A-s states below and above E{sub F}. Around the Fermi energy we notice that V-p shows strong hybridization with A-p states.

  7. Magnetic state of f electrons in {delta}-phase of Pu-Ga alloys studied by Ga NMR

    Energy Technology Data Exchange (ETDEWEB)

    Verkhovskii, S. [Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Kovalevskaya Str. 18, 620041 Ekaterinburg (Russian Federation); Piskunov, Yu. [Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Kovalevskaya Str. 18, 620041 Ekaterinburg (Russian Federation)], E-mail: piskunov@imp.uran.ru; Mikhalev, K.; Buzlukov, A.; Arkhipov, V. [Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Kovalevskaya Str. 18, 620041 Ekaterinburg (Russian Federation); Zouev, Yu. [RFNC-VNII Technical Physics named after acad. E.I. Zababakhin, Snezhinsk (Russian Federation); Korolev, A. [Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Kovalevskaya Str. 18, 620041 Ekaterinburg (Russian Federation); Lekomtsev, S.; Svyatov, I. [RFNC-VNII Technical Physics named after acad. E.I. Zababakhin, Snezhinsk (Russian Federation); Pogudin, A.; Ogloblichev, V. [Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Kovalevskaya Str. 18, 620041 Ekaterinburg (Russian Federation)

    2007-10-11

    {sup 69}Ga nuclear magnetic resonance (NMR) line shift ({sup 69}K) and nuclear spin-lattice relaxation rate ({sup 69}T{sub 1}{sup -1}) are measured for Pu{sub 0.95}Ga{sub 0.05} alloy, stabilized in {delta}-phase, in the temperature range 10 and 650 K at magnetic field of 9.4 T. The shift and {sup 69}T{sub 1}{sup -1} are determined correspondingly by the static and fluctuating-in-time parts of the local magnetic fields arisen at Ga due to transferred hyperfine coupling with the nearest f electron environment of more magnetic Pu. At T > 200 K, the temperature dependent part of the shift {sup 69}K(T) scales macroscopic magnetic susceptibility {chi}(T), following the Curie-Weiss law, and the product ({sup 69}T{sub 1}T) increases with temperature proportionally (T + 255){sup 1.5(1)}. Both of the NMR observations are typical of the incoherent spin fluctuation regime of f electrons in nonmagnetic 3D Kondo lattice. An estimate of the effective magnetic moment {mu}{sub eff,5f}(g{sub e} = 2) = 0.15(5){mu}{sub B} per Pu atom points out a strong suppression of the spin magnetism in the alloy.

  8. THE ROLE OF 4-HYDROXYPHENYLPYRUVATE DIOXYGENASE IN ENHANCEMENT OF SOLID-PHASE ELECTRON TRANSFER BY SHEWANELLA ONEIDENSIS MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C; Amy Ekechukwu, A

    2007-06-01

    While mechanistic details of dissimilatory metal reduction are far from being understood, it is postulated that the electron transfer to solid metal oxides is mediated by outer membrane-associated c-type cytochromes and redox active electron shuttling compounds. This study focuses on the production of homogensitate in Shewanella oneidensis MR-1, an intermediate of tyrosine degradation pathway, which is a precursor of a redox cycling metabolite, pyomelanin. In this study, we determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase (4HPPD) and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. Inhibition of 4-HPPD activity with the specific inhibitor sulcotrione (2-(2-chloro-4-methane sulfonylbenzoyl)-1,3-cyclohexanedione), and deletion of melA, a gene encoding 4-HPPD, resulted in no pyomelanin production by S. oneidensis MR-1. Conversely, deletion of hmgA which encodes the putative homogentisate 1,2-dioxygenase, resulted in pyomelanin overproduction. The efficiency and rates, with which MR-1 reduces hydrous ferric oxide, were directly linked to the ability of mutant strains to produce pyomelanin. Electrochemical studies with whole cells demonstrated that pyomelanin substantially increases the formal potential (E{sup o}{prime}) of S. oneidensis MR-1. Based on this work, environmental production of pyomelanin likely contributes to an increased solid-phase metal reduction capacity in Shewanella oneidensis.

  9. Electronics for CMS Endcap Muon Level-1 Trigger System Phase-1 and HL LHC upgrades

    Science.gov (United States)

    Madorsky, A.

    2017-07-01

    To accommodate high-luminosity LHC operation at a 13 TeV collision energy, the CMS Endcap Muon Level-1 Trigger system had to be significantly modified. To provide robust track reconstruction, the trigger system must now import all available trigger primitives generated by the Cathode Strip Chambers and by certain other subsystems, such as Resistive Plate Chambers (RPC). In addition to massive input bandwidth, this also required significant increase in logic and memory resources. To satisfy these requirements, a new Sector Processor unit has been designed. It consists of three modules. The Core Logic module houses the large FPGA that contains the track-finding logic and multi-gigabit serial links for data exchange. The Optical module contains optical receivers and transmitters; it communicates with the Core Logic module via a custom backplane section. The Pt Lookup table (PTLUT) module contains 1 GB of low-latency memory that is used to assign the final Pt to reconstructed muon tracks. The μ TCA architecture (adopted by CMS) was used for this design. The talk presents the details of the hardware and firmware design of the production system based on Xilinx Virtex-7 FPGA family. The next round of LHC and CMS upgrades starts in 2019, followed by a major High-Luminosity (HL) LHC upgrade starting in 2024. In the course of these upgrades, new Gas Electron Multiplier (GEM) detectors and more RPC chambers will be added to the Endcap Muon system. In order to keep up with all these changes, a new Advanced Processor unit is being designed. This device will be based on Xilinx UltraScale+ FPGAs. It will be able to accommodate up to 100 serial links with bit rates of up to 25 Gb/s, and provide up to 2.5 times more logic resources than the device used currently. The amount of PTLUT memory will be significantly increased to provide more flexibility for the Pt assignment algorithm. The talk presents preliminary details of the hardware design program.

  10. The electronic phase diagram of the LaO(1-x)F(x)FeAs superconductor.

    Science.gov (United States)

    Luetkens, H; Klauss, H-H; Kraken, M; Litterst, F J; Dellmann, T; Klingeler, R; Hess, C; Khasanov, R; Amato, A; Baines, C; Kosmala, M; Schumann, O J; Braden, M; Hamann-Borrero, J; Leps, N; Kondrat, A; Behr, G; Werner, J; Büchner, B

    2009-04-01

    The competition of magnetic order and superconductivity is a key element in the physics of all unconventional superconductors, for example in high-transition-temperature cuprates, heavy fermions and organic superconductors. Here superconductivity is often found close to a quantum critical point where long-range antiferromagnetic order is gradually suppressed as a function of a control parameter, for example charge-carrier doping or pressure. It is believed that dynamic spin fluctuations associated with this quantum critical behaviour are crucial for the mechanism of superconductivity. Recently, high-temperature superconductivity has been discovered in iron pnictides, providing a new class of unconventional superconductors. Similar to other unconventional superconductors, the parent compounds of the pnictides show a magnetic ground state and superconductivity is induced on charge-carrier doping. In this Letter the structural and electronic phase diagram is investigated by means of X-ray scattering, muon spin relaxation and Mössbauer spectroscopy on the series LaO(1-x)F(x)FeAs. We find a discontinuous first-order-like change of the Néel temperature, the superconducting transition temperature and the respective order parameters. Our results strongly question the relevance of quantum critical behaviour in iron pnictides and prove a strong coupling of the structural orthorhombic distortion and the magnetic order both disappearing at the phase boundary to the superconducting state.

  11. LPG gaseous phase electronic port injection on performance, emission and combustion characteristics of Lean Burn SI Engine

    Science.gov (United States)

    Bhasker J, Pradeep; E, Porpatham

    2016-08-01

    Gaseous fuels have always been established as an assuring way to lessen emissions in Spark Ignition engines. In particular, LPG resolved to be an affirmative fuel for SI engines because of their efficient combustion properties, lower emissions and higher knock resistance. This paper investigates performance, emission and combustion characteristics of a microcontroller based electronic LPG gaseous phase port injection system. Experiments were carried out in a single cylinder diesel engine altered to behave as SI engine with LPG as fuel at a compression ratio of 10.5:1. The engine was regulated at 1500 rpm at a throttle position of 20% at diverse equivalence ratios. The test results were compared with that of the carburetion system. The results showed that there was an increase in brake power output and brake thermal efficiency with LPG gas phase injection. There was an appreciable extension in the lean limit of operation and maximum brake power output under lean conditions. LPG injection technique significantly reduces hydrocarbon and carbon monoxide emissions. Also, it extremely enhances the rate of combustion and helps in extending the lean limit of LPG. There was a minimal increase of NOx emissions over the lean operating range due to higher temperature. On the whole it is concluded that port injection of LPG is best suitable in terms of performance and emission for LPG fuelled lean burn SI engine.

  12. Electron Scattering and Doping Mechanisms in Solid-Phase-Crystallized In2O3:H Prepared by Atomic Layer Deposition.

    Science.gov (United States)

    Macco, Bart; Knoops, Harm C M; Kessels, Wilhelmus M M

    2015-08-01

    Hydrogen-doped indium oxide (In2O3:H) has recently emerged as an enabling transparent conductive oxide for solar cells, in particular for silicon heterojunction solar cells because its high electron mobility (>100 cm(2)/(V s)) allows for a simultaneously high electrical conductivity and optical transparency. Here, we report on high-quality In2O3:H prepared by a low-temperature atomic layer deposition (ALD) process and present insights into the doping mechanism and the electron scattering processes that limit the carrier mobility in such films. The process consists of ALD of amorphous In2O3:H at 100 °C and subsequent solid-phase crystallization at 150-200 °C to obtain large-grained polycrystalline In2O3:H films. The changes in optoelectronic properties upon crystallization have been monitored both electrically by Hall measurements and optically by analysis of the Drude response. After crystallization, an excellent carrier mobility of 128 ± 4 cm(2)/(V s) can be obtained at a carrier density of 1.8 × 10(20) cm(-3), irrespective of the annealing temperature. Temperature-dependent Hall measurements have revealed that electron scattering is dominated by unavoidable phonon and ionized impurity scattering from singly charged H-donors. Extrinsic defect scattering related to material quality such as grain boundary and neutral impurity scattering was found to be negligible in crystallized films indicating that the carrier mobility is maximized. Furthermore, by comparison of the absolute H-concentration and the carrier density in crystallized films, it is deduced that <4% of the incorporated H is an active dopant in crystallized films. Therefore, it can be concluded that inactive H atoms do not (significantly) contribute to defect scattering, which potentially explains why In2O3:H films are capable of achieving a much higher carrier mobility than conventional In2O3:Sn (ITO).

  13. Electronic Effects of 11β Substituted 17β-Estradiol Derivatives and Instrumental Effects on the Relative Gas Phase Acidity

    Science.gov (United States)

    Bourgoin-Voillard, Sandrine; Fournier, Françoise; Afonso, Carlos; Zins, Emilie-Laure; Jacquot, Yves; Pèpe, Claude; Leclercq, Guy; Tabet, Jean-Claude

    2012-12-01

    Numerous studies have highlighted the role of the proton donor characteristics of the phenol group of 17β-estradiol (E2) in its association with the estrogen receptor alpha (ERα). Since the substitutions at position C(11) have been reported to modulate this association, we hypothesized that such substitutions may modify the phenol acidity. Hence, phenol gas-phase acidity of nine C(11)-substituted E2-derivatives were evaluated using the extended Cooks' kinetic method, which is a method widely used to determine thermochemical properties by mass spectrometry. To enhance accuracy in data collection we recorded data from several instruments, including quadrupole ion trap, triple quadrupole, and hybrid QqTOF. Indeed, we report for the first time the use of the QqTOF instrument to provide a novel means to improve data accuracy by giving access to an intermediate effective temperature range. All experimental gas-phase acidity values were supported by theoretical calculations. Our results confirmed the ability of distant substituents at C(11) to modulate the phenol acidity through electrostatic interactions, electron withdrawing inductive effects, and mesomeric effects. However, no relationship was found between the phenol gas-phase acidity of investigated steroids and their binding affinity for ERα assessed in solution. Thus, our results highlight that the intrinsic properties of the hormone do not influence sufficiently the stabilization of the hormone/ERα complex. It is more likely that such stabilization would be more related to factors depending on the environment within the binding pocket such as hydrophobic, steric as well as direct intermolecular electrostatic effects between ERα residues and the substituted steroidal estrogens.

  14. Nanocompositional Electron Microscopic Analysis and Role of Grain Boundary Phase of Isotropically Oriented Nd-Fe-B Magnets

    Directory of Open Access Journals (Sweden)

    Gregor A. Zickler

    2017-01-01

    Full Text Available Nanoanalytical TEM characterization in combination with finite element micromagnetic modelling clarifies the impact of the grain misalignment and grain boundary nanocomposition on the coercive field and gives guidelines how to improve coercivity in Nd-Fe-B based magnets. The nanoprobe electron energy loss spectroscopy measurements obtained an asymmetric composition profile of the Fe-content across the grain boundary phase in isotropically oriented melt-spun magnets and showed an enrichment of iron up to 60 at% in the Nd-containing grain boundaries close to Nd2Fe14B grain surfaces parallel to the c-axis and a reduced iron content up to 35% close to grain surfaces perpendicular to the c-axis. The numerical micromagnetic simulations on isotropically oriented magnets using realistic model structures from the TEM results reveal a complex magnetization reversal starting at the grain boundary phase and show that the coercive field increases compared to directly coupled grains with no grain boundary phase independently of the grain boundary thickness. This behaviour is contrary to the one in aligned anisotropic magnets, where the coercive field decreases compared to directly coupled grains with an increasing grain boundary thickness, if Js value is > 0.2 T, and the magnetization reversal and expansion of reversed magnetic domains primarily start as Bloch domain wall at grain boundaries at the prismatic planes parallel to the c-axis and secondly as Néel domain wall at the basal planes perpendicular to the c-axis. In summary our study shows an increase of coercive field in isotropically oriented Nd-Fe-B magnets for GB layer thickness > 5 nm and an average Js value of the GB layer < 0.8 T compared to the magnet with perfectly aligned grains.

  15. Structural, electronic and elastic properties of the Laves phases WFe2, MoFe2, WCr2 and MoCr2 from first-principles

    Science.gov (United States)

    Lv, Z. Q.; Zhang, Z. F.; Zhang, Q.; Wang, Z. H.; Sun, S. H.; Fu, W. T.

    2016-06-01

    A theoretical analysis of the phase stability, electronic and mechanical properties, and Debye temperatures of the C14-type Laves phases (WFe2, MoFe2, WCr2 and MoCr2) has been presented from density functional theory. The phase stability follows the order: WFe2>MoFe2>WCr2>MoCr2. An exchange of electrons takes place between Fe and W/Mo atoms, and there is also electron transfer between Cr and W/Mo. The W-W and Mo-Mo bonds are of the valence character, while the Fe-W/Mo and Cr-W/Mo bonds are of ionic character. The bonding force of A-A is greater than that of A-B in C-14 AB2 type Laves phases (WFe2, MoFe2, WCr2 and MoCr2). The ductility of MoCr2 is higher than others. The hardness of WFe2 (14.1 GPa) is the highest, and the hardness of MoCr2 is the lowest. The incompressibility for these laves phases along c-axis is larger than that along a-axis. The Debye temperature (θD) of MoFe2 is 619 K, which is the highest in those phases. These laves phases also have high melting points, which follows the order: WFe2>MoFe2>WCr2>MoCr2.

  16. Relationships between the precipitation of α2 ordered phase and alloying elements/electron concentration in α+α2 titanium alloys

    Institute of Scientific and Technical Information of China (English)

    Jun Zhang; Yu Zhang; Li Li; Chunli Wang; Qingjiang Wang; Yuyin Liu

    2005-01-01

    Some experimental α+α2 alloys were prepared by the addition of tin or aluminum elements into Ti-55 alloy. These alloys were designed with varied electron concentration values and named as Sn-rich alloys and Al-rich alloys, respectively. The precipitation and growth of α2 ordered phase in the tested alloys under various heat treatment conditions were investigated. Some comparisons among the experimental results were performed and discussed in detail. Stronger precipitation and growth of α2 ordered phase were caused in Al-rich alloys but relatively weak change in Sn-rich alloys with increasing the electron concentration. The precipitation of α2 ordered phase in Al-rich alloys is stronger than that in Sn-rich alloys when the electron concentration value is the same for the two alloys.

  17. Examination of chemical elements partitioning between the γ and γ′ phases in CMSX-4 superalloy using EDS microanalysis and electron tomography

    Directory of Open Access Journals (Sweden)

    Kruk Adam

    2014-01-01

    Full Text Available In the present study, the partition of chemical elements between γ and γ′ phases in CMSX-4 was investigated using EDS microanalysis and electron tomography (FIB-SEM and STEM-EDS methods. The investigation has been performed for the superalloy after standard heat treatment and the ex-service CMSX-4 turbine blade after operation for 12 700 hours and 200 starts in industrial gas turbine. The results have shown that Co, Cr and Re partition to the γ matrix, Ni and W are present in both γ and γ′ phases, while Al, Ti and Ta strongly partition to the γ′ phase. The results show the abilities of new analytical electron microscopy and electron tomography methods to characterize the microstructure and chemical composition of single crystal superalloys at the nanoscale.

  18. Direct observation of electronic-liquid-crystal phase transitions and their microscopic origin in La1/3Ca2/3MnO3

    Science.gov (United States)

    Tao, J.; Sun, K.; Yin, W.-G.; Wu, L.; Xin, H.; Wen, J. G.; Luo, W.; Pennycook, S. J.; Tranquada, J. M.; Zhu, Y.

    2016-11-01

    The ground-state electronic order in doped manganites is frequently associated with a lattice modulation, contributing to their many interesting properties. However, measuring the thermal evolution of the lattice superstructure with reciprocal-space probes alone can lead to ambiguous results with competing interpretations. Here we provide direct observations of the evolution of the superstructure in La1/3Ca2/3MnO3 in real space, as well as reciprocal space, using transmission electron microscopic (TEM) techniques. We show that the transitions are the consequence of a proliferation of dislocations plus electronic phase separation. The resulting states are well described by the symmetries associated with electronic-liquid-crystal (ELC) phases. Moreover, our results resolve the long-standing controversy over the origin of the incommensurate superstructure and suggest a new structural model that is consistent with recent theoretical calculations.

  19. Multi-scale Full-orbit Analysis on Phase-space Behavior of Runaway Electrons in Tokamak Fields with Synchrotron Radiation

    CERN Document Server

    Wang, Yulei; Liu, Jian

    2016-01-01

    In this paper, the secular full-orbit simulations of runaway electrons with synchrotron radiation in tokamak fields are carried out using a relativistic volume-preserving algorithm. Detailed phase-space behaviors of runaway electrons are investigated in different dynamical timescales spanning 11 orders. When looking into the small timescale, i.e., the characteristic timescale imposed by Lorentz force, the severely deformed helical trajectory of energetic runaway electron is witnessed. A qualitative analysis of the neoclassical scattering, a kind of collisionless pitch-angle scattering phenomena, is provided when considering the coupling between the rotation of momentum vector and the background magnetic field. In large timescale up to one second, it is found that the initial condition of runaway electrons in phase space globally influences the pitch-angle scattering, the momentum evolution, and the loss-gain ratio of runaway energy evidently. However, the initial value has little impact on the synchrotron ene...

  20. Electronic and vibrational Raman spectroscopy of Nd0.5Sr0.5MnO3 through the phase transitions

    Indian Academy of Sciences (India)

    Md Motin Seikh; A K Sood; Chandrabhas Narayana

    2005-01-01

    Raman scattering experiments have been carried out on single crystals of Nd0.5Sr0.5MnO3 as a function of temperature in the range of 320–50 K, covering the paramagnetic insulator–ferromagnetic metal transition at 250 K and the charge-ordering antiferromagnetic transition at 150 K. The diffusive electronic Raman scattering response is seen in the paramagnetic phase which continue to exist even in the ferromagnetic phase, eventually disappearing below 150 K. We understand the existence of diffusive response in the ferromagnetic phase to the coexistence of the different electronic phases. The frequency and linewidth of the phonons across the transitions show significant changes, which cannot be accounted for only by anharmonic interactions.