#### Sample records for well temperature

1. Prediction of temperature profile in oil wells

International Nuclear Information System (INIS)

2000-01-01

A mathematical model has been developed to predict the temperature distribution in well bores either offshore or inshore. It is incorporate the different activities encountered during drilling operations. Furthermore, the effect of drill collar and casings and bit rotating in a well during completion has been considered. The two dimensional approach is presented in the form of a computer program which is adopted for solution of the finite difference equations describing the heat transmission in the well bore in the form of a direct solution technique. The power law model has been selected for drilling mud and its indices have been calculated. Comparing measured data, recorded for a period of 82 hours during different activities in a drilling operation for 15/20 A-4, an exploration well in the Central North Sea with calculated results, show there is a good agreement between the prediction and measured temperatures in the well bore

2. Equivalent Circulation Density Analysis of Geothermal Well by Coupling Temperature

Directory of Open Access Journals (Sweden)

Xiuhua Zheng

2017-02-01

Full Text Available The accurate control of the wellbore pressure not only prevents lost circulation/blowout and fracturing formation by managing the density of the drilling fluid, but also improves productivity by mitigating reservoir damage. Calculating the geothermal pressure of a geothermal well by constant parameters would easily bring big errors, as the changes of physical, rheological and thermal properties of drilling fluids with temperature are neglected. This paper researched the wellbore pressure coupling by calculating the temperature distribution with the existing model, fitting the rule of density of the drilling fluid with the temperature and establishing mathematical models to simulate the wellbore pressures, which are expressed as the variation of Equivalent Circulating Density (ECD under different conditions. With this method, the temperature and ECDs in the wellbore of the first medium-deep geothermal well, ZK212 Yangyi Geothermal Field in Tibet, were determined, and the sensitivity analysis was simulated by assumed parameters, i.e., the circulating time, flow rate, geothermal gradient, diameters of the wellbore, rheological models and regimes. The results indicated that the geothermal gradient and flow rate were the most influential parameters on the temperature and ECD distribution, and additives added in the drilling fluid should be added carefully as they change the properties of the drilling fluid and induce the redistribution of temperature. To ensure the safe drilling and velocity of pipes tripping into the hole, the depth and diameter of the wellbore are considered to control the surge pressure.

3. Application specific integrated circuit for high temperature oil well applications

Energy Technology Data Exchange (ETDEWEB)

Fallet, T.; Gakkestad, J.; Forre, G.

1994-12-31

This paper describes the design of an integrated BiCMOS circuit for high temperature applications. The circuit contains Pierce oscillators with automatic gain control, and measurements show that it is operating up to 266{sup o}C. The relative frequency variation up to 200 {sup o}C is less than 60 ppm caused mainly by the crystal element itself. 4 refs., 7 figs.

4. Methods and compositions for treating low temperature subterranean well formations

Energy Technology Data Exchange (ETDEWEB)

Chatterji, J.

1979-08-21

An aqueous composition is described for treating subterranean formations having temperatures of up to 120 F. The aqueous composition consists of water, a water-soluble organic gelling agent, an oxidizing agent to supply free radicals, and a reducing agent to accelerate the generation of free radicals. Reducing agents are water-soluble metal salts of the halides, sulfates, nitrates or mixtures thereof. Oxidizing agents are water-soluble peroxides, persulfates or mixtures thereof. Gelling agents may be sodium polyacrylate, polyacrylic acid, polysodium-2-acrylamide-3-propylsulfonate polyacrylamides or polymetharylamides that have been hydrolyzed from 0 to 70% and neturalized with ammonium or alkali metal hydroxides; or gums such as guar, locust bean, taaga tragacanth, hydroxyethyl guar, hydroxy-propyl guar, carboxymethyl guar or mixtures thereof. 22 claims.

5. Flushing wells during drilling in rocks with negative temperature

Energy Technology Data Exchange (ETDEWEB)

1982-01-01

Results are examined of experimental studies of cavern formation in loose sands cemented by ice. The new data obtained make it possible to have a substantiated plan for the indicators of the flushing fluid and its chemical treatment. Results are presented of studies of argillaceous solutions chemically treated and untreated, as well as water and diesel fuel. Comparison of the findings with the technological indicators of the argillaceous solutions indicated that with an increase in viscosity of the solution and its content of clay powder, the rates of ice destruction diminish. It was established that with a rise in viscosity, there is also an intensification of the ice destruction rate, if the rise in viscosity is accompanied by increase in water-output of the flushing fluid. It is namely the water-output of the flushing fluid which is one of the universal indicators for the suitability of the flushing fluid for drilling under the examined conditions.

6. Temperature and Pressure Effects on Drilling Fluid Rheology and ECD in Very Deep Wells

Energy Technology Data Exchange (ETDEWEB)

Rommetveit, R.; Bjoerkvoll, K.S.

1997-12-31

The rheological properties of drilling fluids are usually approximated to be independent of pressure and temperature. In many cases this is a good approximation. However, for wells with small margins between pore and fracture pressure, careful evaluations and analysis of the effects of temperature and pressure on well bore hydraulics and kick probability are needed. In this publication the effects of pressure and temperature are discussed and described for typical HPHT (High Pressure High Temperature) wells. Laboratory measurements show that rheology is very pressure and temperature dependent. The practical implications of these observations are illustrated through a series of calculations with an advanced pressure and temperature simulator. 10 refs., 15 figs.

7. Hot stuff : ultra-high temperature ESP system installed in SAGD wells

Energy Technology Data Exchange (ETDEWEB)

Anon.

2010-10-15

Ultra-temperature electrical submersible pumping (ESP) systems have been installed in steam-assisted gravity drainage (SAGD) wells for the first time at a thermal project in Christina Lake, Alberta. The Centrilift XP ESP production system that is being field tested can operate at fluid temperatures reaching 250 degrees C, higher than conventional systems, which is expected to result in an increase in production with a larger steam chamber and less viscous oil at higher steaming temperatures. The more robust system is expected to extend run life and lower operating costs. Years of research and development at specialized testing facilities went into creating the system. The unique testing facilities simulated the horizontal orientation and temperature cycling characteristics of SAGD wells and permitted the system to be tested at temperatures up to 300 degrees C. The new system is expected to lower infrastructure costs for SAGD wells that require high temperatures. 1 fig.

8. Research on calibration method of downhole optical fiber temperature measurement and its application in SAGD well

Science.gov (United States)

Lu, Zhiwei; Han, Li; Hu, Chengjun; Pan, Yong; Duan, Shengnan; Wang, Ningbo; Li, Shijian; Nuer, Maimaiti

2017-10-01

With the development of oil and gas fields, the accuracy and quantity requirements of real-time dynamic monitoring data needed for well dynamic analysis and regulation are increasing. Permanent, distributed downhole optical fiber temperature and pressure monitoring and other online real-time continuous data monitoring has become an important data acquisition and transmission technology in digital oil field and intelligent oil field construction. Considering the requirement of dynamic analysis of steam chamber developing state in SAGD horizontal wells in F oil reservoir in Xinjiang oilfield, it is necessary to carry out real-time and continuous temperature monitoring in horizontal section. Based on the study of the principle of optical fiber temperature measurement, the factors that cause the deviation of optical fiber temperature sensing are analyzed, and the method of fiber temperature calibration is proposed to solve the problem of temperature deviation. Field application in three wells showed that it could attain accurate measurement of downhole temperature by temperature correction. The real-time and continuous downhole distributed fiber temperature sensing technology has higher application value in the reservoir management of SAGD horizontal wells. It also has a reference for similar dynamic monitoring in reservoir production.

9. Economic impact of using nonmetallic materials in low to intermediate temperature geothermal well construction

Energy Technology Data Exchange (ETDEWEB)

1979-12-01

Four appendices are included. The first covers applications of low-temperature geothermal energy including industrial processes, agricultural and related processes, district heating and cooling, and miscellaneous. The second discusses hydrogeologic factors affecting the design and construction of low-temperature geothermal wells: water quality, withdrawal rate, water depth, water temperature, basic well designs, and hydrogeologic provinces. In the third appendix, properties of metallic and nonmetallic materials are described, including: specific gravity, mechanical strength properties, resistance to physical and biological attack, thermal properties of nonmetallics, fluid flow characteristics, corrosion resistance, scaling resistance, weathering resistance of nonmetallics, and hydrolysis resistance of nonmetallics. Finally, special considerations in the design and construction of low-temperature geothermal wells using nonmetallics materials are covered. These include; drilling methods, joining methods, methods of casing and screen installation, well cementing, and well development. (MHR)

10. Well-log based prediction of temperature models in the exploration of sedimentary settings

DEFF Research Database (Denmark)

Fuchs, Sven; Förster, Andrea; Wonik, Thomas

Temperature-depth distributions are pivotal in subsurface studies in academia as well as in georesources applications. In this regard, high-resolution temperature profiles, logged under equilibrium thermal borehole conditions, are the ultimate measure. However there are circumstances in which...

11. Temperature logging of groundwater in bedrock wells for geothermal gradient characterization in New Hampshire, 2012

Science.gov (United States)

Degnan, James; Barker, Gregory; Olson, Neil; Wilder, Leland

2012-01-01

The U.S. Geological Survey, in cooperation with the New Hampshire Geological Survey, measured the fluid temperature of groundwater in deep bedrock wells in the State of New Hampshire in order to characterize geothermal gradients in bedrock. All wells selected for the study had low water yields, which correspond to low groundwater flow from fractures. This reduced the potential for flow-induced temperature changes that would mask the natural geothermal gradient in the bedrock. All the wells included in this study were privately owned, and permission to use the wells was obtained from homeowners before logging.

12. Temperature dependence of the Rashba and Dresselhaus spin–orbit interactions in GaAs wells

International Nuclear Information System (INIS)

Wang, W.; Fu, J.Y.

2016-01-01

We have recently shown [Fu and Egues, Phys. Rev. B 91 (2015) 075408] unusual properties of the spin–orbit (SO) interaction in relatively wide quantum wells, e.g., the second subband Rashba term can vanish even in asymmetric configurations. Here we report our theoretical investigation on the temperature dependence of Rashba and Dresselhaus SO interactions in GaAs both relatively narrow and wide wells, having the electron occupancy of one and two subbands, respectively. We consider all relevant intra- and intersubband SO terms. We find that the variation of intrasubband couplings as temperatures range from 0.3 to 300 K could attain, ∼meV Å, the order of usual magnitudes for SO terms in GaAs wells. Moreover, we observe distinct behaviors of the SO interaction of the two subbands, as functions of temperature. On the other band, we find that the intersubband SO terms have a relatively weak temperature dependence.

13. Temperature dependence of the Rashba and Dresselhaus spin–orbit interactions in GaAs wells

Energy Technology Data Exchange (ETDEWEB)

Wang, W. [Department of Physics, Jining University, 273155 Qufu, Shandong (China); Fu, J.Y., E-mail: jiyongfu78@gmail.com [Department of Physics, Qufu Normal University, 273165 Qufu, Shandong (China); Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP (Brazil); Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil)

2016-02-01

We have recently shown [Fu and Egues, Phys. Rev. B 91 (2015) 075408] unusual properties of the spin–orbit (SO) interaction in relatively wide quantum wells, e.g., the second subband Rashba term can vanish even in asymmetric configurations. Here we report our theoretical investigation on the temperature dependence of Rashba and Dresselhaus SO interactions in GaAs both relatively narrow and wide wells, having the electron occupancy of one and two subbands, respectively. We consider all relevant intra- and intersubband SO terms. We find that the variation of intrasubband couplings as temperatures range from 0.3 to 300 K could attain, ∼meV Å, the order of usual magnitudes for SO terms in GaAs wells. Moreover, we observe distinct behaviors of the SO interaction of the two subbands, as functions of temperature. On the other band, we find that the intersubband SO terms have a relatively weak temperature dependence.

14. Data Acquisition for Low-Temperature Geothermal Well Tests and Long-Term Monitoring

Energy Technology Data Exchange (ETDEWEB)

Lienau, P J

1992-03-01

Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

15. Data acquisition for low-temperature geothermal well tests and long-term monitoring

Energy Technology Data Exchange (ETDEWEB)

Lienau, P.J.

1992-09-01

Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

16. Axillary Temperature, as Recorded by the iThermonitor WT701, Well Represents Core Temperature in Adults Having Noncardiac Surgery.

Science.gov (United States)

Pei, Lijian; Huang, Yuguang; Mao, Guangmei; Sessler, Daniel I

2018-03-01

Core temperature can be accurately measured from the esophagus or nasopharynx during general anesthesia, but neither site is suitable for neuraxial anesthesia. We therefore determined the precision and accuracy of a novel wireless axillary thermometer, the iThermonitor, to determine its suitability for use during neuraxial anesthesia and in other patients who are not intubated. We enrolled 80 adults having upper abdominal surgery with endotracheal intubation. Intraoperative core temperature was measured in distal esophagus and was estimated at the axilla with a wireless iThermonitor WT701 (Raiing Medical, Boston MA) at 5-minute intervals. Pairs of axillary and reference distal esophageal temperatures were compared and summarized using linear regression and repeated-measured Bland-Altman methods. We a priori determined that the iThermonitor would have clinically acceptable accuracy if most estimates were within ±0.5°C of the esophageal reference, and suitable precision if the limits of agreement were within ±0.5°C. There were 3339 sets of paired temperatures. Axillary and esophageal temperatures were similar, with a mean difference (esophageal minus axillary) of only 0.14°C ± 0.26°C (standard deviation). The Bland-Altman 95% limits of agreement were reasonably narrow, with the estimated upper limit at 0.66°C and the lower limit at -0.38°C, thus ±0.52°C, indicating good agreement across the range of mean temperatures from 34.9°C to 38.1°C. The absolute difference was within 0.5°C in 91% of the measurements (95% confidence interval, 88%-93%). Axillary temperature, as recorded by the iThermonitor WT701, well represents core temperature in adults having noncardiac surgery and thus appears suitable for clinical use.

17. A Comparison of Thermal Models for Temperature Profiles in Gas-Lift Wells

Directory of Open Access Journals (Sweden)

Langfeng Mu

2018-02-01

Full Text Available Gas lift is a simple, reliable artificial lift method which is frequently used in offshore oil field developments. In order to enhance the efficiency of production by gas lift, it is vital to exactly predict the distribution of temperature-field for fluid within the wellbore. A new mechanistic model is developed for computing flowing fluid temperature profiles in both conduits simultaneously for a continuous-flow gas-lift operation. This model assumes steady heat transfer in the formation, as well as steady heat transfer in the conduits. A micro-units discrete from the wellbore, whose heat transfer process is analyzed and whose heat transfer equation is set up according to the law of conservation of energy. A simplified algebraic solution to our model is conducted to analyze the temperature profile. Sensitivity analysis was conducted with the new model. The results indicate that mass flow rate of oil and the tubing overall heat transfer coefficient are the main factors that influence the temperature distribution inside the tubing and that the mass flow rate of oil is the main factor affecting temperature distribution in the annulus. Finally, the new model was tested in three various wells and compared with other models. The results showed that the new model is more accurate and provides significant references for temperature prediction in gas lift well.

18. Ground Source Heat Supply in Moscow Oblast: Temperature Potential and Sustainable Depth of Heat Wells

Science.gov (United States)

Vasil'ev, G. P.; Gornov, V. F.; Dmitriev, A. N.; Kolesova, M. V.; Yurchenko, V. A.

2018-01-01

The paper is devoted to a problem of increasing the efficiency of low-potential geothermal heat in heat pump systems of residential buildings the Moscow oblast of Russia, including Moscow. Estimates of a natural geothermal potential in the Moscow oblast (based on climatological data for the period from 1982 to 2011) are presented and a "Typical climatic year of natural soil temperature variations for the geoclimatic conditions of the Moscow oblast, including the city of Moscow" is proposed. Numerical simulation of the influence of geothermal energy potential and the depth of heat wells on the efficiency of ground source heat pump systems for the heat supply of residential buildings is carried out. Analysis of the numerical simulation showed that the operation of a heat pump system in a house heating mode under the geoclimatic conditions of the Moscow oblast leads to a temperature drop of the heat-exchange medium circulating through heat wells to 5-6°C by the end of the first 10 years of operation, and the process stabilizes by the 15th year of operation, and further changes in the heat-exchange medium temperature do not any longer significantly affect the temperature of the heat-exchange medium in the heat well. In this case, the exact dependence of the heat-exchange medium temperature drop on the depth is not revealed. Data on the economically expedient heat well depth for the conditions of the Moscow oblast ensuring a net present value for the whole residential building life cycle are presented. It is found that the heat well depth of 60 m can be considered as an endpoint for the Moscow oblast, and a further heat well deepening is economically impractical.

19. Improvement of temperature-stability in a quantum well laser with asymmetric barrier layers

DEFF Research Database (Denmark)

Zhukov, Alexey E.; Kryzhanovskaya, Natalia V.; Zubov, Fedor I.

2012-01-01

We fabricated and tested a quantum well laser with asymmetric barrier layers. Such a laser has been proposed earlier to suppress bipolar carrier population in the optical confinement layer and thus to improve temperature-stability of the threshold current. As compared to the conventional reference...

20. Room-temperature near-field reflection spectroscopy of single quantum wells

DEFF Research Database (Denmark)

Langbein, Wolfgang Werner; Hvam, Jørn Marcher; Madsen, Steen

1997-01-01

. This technique suppresses efficiently the otherwise dominating far-field background and reduces topographic artifacts. We demonstrate its performance on a thin, strained near-surface CdS/ZnS single quantum well at room temperature. The optical structure of these topographically flat samples is due to Cd...

1. Temperature control of thermal-gas-dynamical installation in cleaning oil-well tubes

Science.gov (United States)

Penner, V. A.; Martemyanov, D. B.; Pshenichnikova, V. V.

2017-08-01

The article provides the study results of cleaning oil-well tubes, the oil-well tube failure reasons for service by their types have been considered. The chemical method of cleaning oil-well tubes as the least expensive has been reviewed when acid solution moves to the interptube space mixing up with oil and liquidates paraffin and pitches deposits on the internal pipe surface. Except the chemical method of pipes cleaning the mechanical one was considered as well. Also the disadvantages -such as the low productivity of cleaning and design complexity- of this deposits removal method on the internal oil-well tube surface have been considered. An effective method for cleaning oil-well tubing from paraffin and pitches by the thermodynamic plant based on the aircraft engine has been introduced for the first time. The temperature distribution graph in the gas stream at the engine output has been given.

2. Enhanced UV luminescence from InAlN quantum well structures using two temperature growth

International Nuclear Information System (INIS)

Zubialevich, Vitaly Z.; Sadler, Thomas C.; Dinh, Duc V.; Alam, Shahab N.; Li, Haoning; Pampili, Pietro; Parbrook, Peter J.

2014-01-01

InAlN/AlGaN multiple quantum wells (MQWs) emitting between 300 and 350 nm have been prepared by metalorganic chemical vapor deposition on planar AlN templates. To obtain strong room temperature luminescence from InAlN QWs a two temperature approach was required. The intensity decayed weakly as the temperature was increased to 300 K, with ratios I PL (300 K)/I PL (T) max up to 70%. This high apparent internal quantum efficiency is attributed to the exceptionally strong carrier localization in this material, which is also manifested by a high Stokes shift (0.52 eV) of the luminescence. Based on these results InAlN is proposed as a robust alternative to AlGaN for ultraviolet emitting devices. - Highlights: • InAlN quantum wells with AlGaN barriers emitting in near UV successfully grown using quasi-2T approach. • 1 nm AlGaN capping of InAlN quantum wells used to avoid In desorption during temperature ramp to barrier growth conditions. • Strong, thermally resilient luminescence obtained as a result of growth optimization. • Promise of InAlN as an alternative active region for UV emitters demonstrated

3. Effect of the potential well on low temperature pressure broadening in CO-He

Science.gov (United States)

Palma, A.; Green, S.

1986-01-01

Previously reported low-temperature pressure-broadening calculations (Green, 1985) for CO-He interacting via an SCF-CI potential are compared with new calculations in which the attractive part of the potential is either reduced by half or eliminated entirely. Results demonstrate that the attractive well is responsible for low-temperature enhancement of pressure-broadening cross sections and suggest that agreement with recent experimental values at 4 K (Messer and DeLucia, 1984) can be obtained by a modest reduction, probably within the expected uncertainty, in the attractive part of the SCF-CI potential.

4. Temperature dependence of active photonic band gap in bragg-spaced quantum wells

International Nuclear Information System (INIS)

Hu Zhiqiang; Wang Tao; Yu Chunchao; Xu Wei

2011-01-01

A novel all-optical polarization switch of active photonic band gap structure based on non-resonant optical Stark effect bragg-spaced quantum wells was investigated and it could be compatible with the optical communication system. The theory is based on InGaAsP/InP Bragg-spaced quantum wells (BSQWs). Mainly through the design of the InGaAsP well layer component and InP barrier thickness to make the quantum-period cycle meet the bragg condition and the bragg frequency is equal to re-hole exciton resonance frequency. When a spectrally narrow control pulse is tuned within the forbidden gap, such BSQWs have been shown to exhibit large optical nonlinearities and ps recovery times, which can form T hz switch. However, the exciton binding energy of InGaAsP will be automatically separate at room temperature, so the effect of all-optical polarization switching of active photonic band gap bragg structure quantum wells can only be studied at low temperature. By a large number of experiments, we tested part of the material parameters of BSQWs in the temperature range 10-300K. On this basis, the InGaAsP and InP refractive index changes with wavelength, InP thermal expansion coefficient are studied and a relationship equation is established. Experimental results show that the bragg reflection spectra with temperature mainly is effected by InP refractive index changes with temperature. Our theoretical study and experiment are an instruction as a reference in the designs and experiments of future practical optical switches.

5. Temperature dependence of active photonic band gap in bragg-spaced quantum wells

Energy Technology Data Exchange (ETDEWEB)

Hu Zhiqiang; Wang Tao; Yu Chunchao; Xu Wei, E-mail: huzhiqianghzq@163.com [Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China)

2011-02-01

A novel all-optical polarization switch of active photonic band gap structure based on non-resonant optical Stark effect bragg-spaced quantum wells was investigated and it could be compatible with the optical communication system. The theory is based on InGaAsP/InP Bragg-spaced quantum wells (BSQWs). Mainly through the design of the InGaAsP well layer component and InP barrier thickness to make the quantum-period cycle meet the bragg condition and the bragg frequency is equal to re-hole exciton resonance frequency. When a spectrally narrow control pulse is tuned within the forbidden gap, such BSQWs have been shown to exhibit large optical nonlinearities and ps recovery times, which can form T hz switch. However, the exciton binding energy of InGaAsP will be automatically separate at room temperature, so the effect of all-optical polarization switching of active photonic band gap bragg structure quantum wells can only be studied at low temperature. By a large number of experiments, we tested part of the material parameters of BSQWs in the temperature range 10-300K. On this basis, the InGaAsP and InP refractive index changes with wavelength, InP thermal expansion coefficient are studied and a relationship equation is established. Experimental results show that the bragg reflection spectra with temperature mainly is effected by InP refractive index changes with temperature. Our theoretical study and experiment are an instruction as a reference in the designs and experiments of future practical optical switches.

6. Recovery Act: High-Temperature Circuit Boards for use in Geothermal Well Monitoring Applications

Energy Technology Data Exchange (ETDEWEB)

Hooker, Matthew [Composite Tehcnology Development, Inc., Lafayette, CO (United States); Fabian, Paul [Composite Tehcnology Development, Inc., Lafayette, CO (United States)

2013-05-01

The U.S. Department of Energy is leading the development of alternative energy sources that will ensure the long-term energy independence of our nation. One of the key renewable resources currently being advanced is geothermal energy. To tap into the large potential offered by generating power from the heat of the earth, and for geothermal energy to be more widely used, it will be necessary to drill deeper wells to reach the hot, dry rock located up to 10 km beneath the earth’s surface. In this instance, water will be introduced into the well to create a geothermal reservoir. A geothermal well produced in this manner is referred to as an enhanced geothermal system (EGS). EGS reservoirs are typically at depths of 3 to 10 km, and the temperatures at these depths have become a limiting factor in the application of existing downhole technologies. These high temperatures are especially problematic for electronic systems such as downhole data-logging tools, which are used to map and characterize the fractures and high-permeability regions in underground formations. Information provided by these tools is assessed so that underground formations capable of providing geothermal energy can be identified, and the subsequent drilling operations can be accurately directed to those locations. The mapping of geothermal resources involves the design and fabrication of sensor packages, including the electronic control modules, to quantify downhole conditions (300°C temperature, high pressure, seismic activity, etc.). Because of the extreme depths at which these measurements are performed, it is most desirable to perform the sensor signal processing downhole and then transmit the information to the surface. This approach necessitates the use of high-temperature electronics that can operate in the downhole environment. Downhole signal processing in EGS wells will require the development and demonstration of circuit boards that can withstand the elevated temperatures found at these

7. Propagation of Measurement-While-Drilling Mud Pulse during High Temperature Deep Well Drilling Operations

OpenAIRE

Li, Hongtao; Meng, Yingfeng; Li, Gao; Wei, Na; Liu, Jiajie; Ma, Xiao; Duan, Mubai; Gu, Siman; Zhu, Kuanliang; Xu, Xiaofeng

2013-01-01

Signal attenuates while Measurement-While-Drilling (MWD) mud pulse is transmited in drill string during high temperature deep well drilling. In this work, an analytical model for the propagation of mud pulse was presented. The model consists of continuity, momentum, and state equations with analytical solutions based on the linear perturbation analysis. The model can predict the wave speed and attenuation coefficient of mud pulse. The calculated results were compared with the experimental dat...

8. Temperature and current dependent electroluminescence measurements on colour-coded multiple quantum well light emitting diodes

Energy Technology Data Exchange (ETDEWEB)

Bergbauer, Werner [OSRAM Opto Semiconductors GmbH, Regensburg (Germany); FH Deggendorf (Germany); Laubsch, Ansgar; Peter, Matthias; Mayer, Tobias; Bader, Stefan; Oberschmid, Raimund; Hahn, Berthold [OSRAM Opto Semiconductors GmbH, Regensburg (Germany); Benstetter, Guenther [FH Deggendorf (Germany)

2008-07-01

As the efficiency and the luminous flux have been increased enormously in the last few years, today Light Emitting Diodes (LEDs) are even pushed to applications like general lighting and Home Cinema Projection. Still, InGaN/GaN heterostructure based LEDs suffer from loss-mechanisms like non-radiative defect and Auger recombination, carrier leakage and piezo-field induced carrier separation. To optimize the high current efficiency we evaluated the benefit of Multiple Quantum Well (MQW) compared to Single Quantum Well (SQW) LEDs. Temperature dependent electroluminescence of colour-coded structures with different Indium content in certain Quantum Wells was measured. The experiments demonstrated a strong temperature and current dependence of the MQW operation. The comparison between different LED structures showed effectively the increased LED performance of those structures which operate with a well adjusted MQW active area. Due to the enhanced carrier distribution in the high current range, these LEDs show a higher light output and additionally a reduced wavelength shift.

9. Temperature and current dependent electroluminescence measurements on colour-coded multiple quantum well light emitting diodes

International Nuclear Information System (INIS)

Bergbauer, Werner; Laubsch, Ansgar; Peter, Matthias; Mayer, Tobias; Bader, Stefan; Oberschmid, Raimund; Hahn, Berthold; Benstetter, Guenther

2008-01-01

As the efficiency and the luminous flux have been increased enormously in the last few years, today Light Emitting Diodes (LEDs) are even pushed to applications like general lighting and Home Cinema Projection. Still, InGaN/GaN heterostructure based LEDs suffer from loss-mechanisms like non-radiative defect and Auger recombination, carrier leakage and piezo-field induced carrier separation. To optimize the high current efficiency we evaluated the benefit of Multiple Quantum Well (MQW) compared to Single Quantum Well (SQW) LEDs. Temperature dependent electroluminescence of colour-coded structures with different Indium content in certain Quantum Wells was measured. The experiments demonstrated a strong temperature and current dependence of the MQW operation. The comparison between different LED structures showed effectively the increased LED performance of those structures which operate with a well adjusted MQW active area. Due to the enhanced carrier distribution in the high current range, these LEDs show a higher light output and additionally a reduced wavelength shift

10. On the Origin of Quasi-Periodic Temperature Variations in Kun-1 Well (Kunashir Island)

Science.gov (United States)

Demezhko, D. Yu.; Yurkov, A. K.

2017-12-01

The results of temperature monitoring in the 300-m kun-1 well (Kunashir Island) in 2011-2015 are considered. Quasi-periodic temperature variations with an amplitude of up to 0.3°C and a variation period of 14-26 h were added from November 2011 to the previously observed temperature variations caused by tidal deformations, free thermal convection, and deformation processes associated with the preparation and occurrence of tectonic earthquakes. Five cycles of such variations lasting from 2 to 6 months have been recorded. Each cycle was initiated by an earthquake with magnitude M > 2.5log( R), where R is the epicentral distance (km). According to their characteristics, the variations are unique and have not been described previously. Assumptions have been made about the possible connection of the registered variations with the inertial currents of the ocean or with hydrothermal processes in the Earth's subsurface. The phenomenon discovered requires further study not only as an object of fundamental science, but also as a feature of an earlier unknown type of geodynamic activity that can be a significant threat to the regional population.

11. Simulation of temperature-pressure profiles and wax deposition in gas-lift wells

Directory of Open Access Journals (Sweden)

Sevic Snezana

2017-01-01

Full Text Available Gas-lift is an artificial lift method in which gas is injected down the tubing- -casing annulus and enters the production tubing through the gas-lift valves to reduce the hydrostatic pressure of the formation fluid column. The gas changes pressure, temperature and fluid composition profiles throughout the production tubing string. Temperature and pressure drop along with the fluid composition changes throughout the tubing string can lead to wax, asphaltenes and inorganic salts deposition, increased emulsion stability and hydrate formation. This paper presents a new model that can sucesfully simulate temperature and pressure profiles and fluid composition changes in oil well that operates by means of gas-lift. This new model includes a pipe-in-pipe segment (production tubing inside production casing, countercurrent flow of gas-lift gas and producing fluid, heat exchange between gas-lift gas and the surrounding ambient – ground; and gas-lift gas with the fluid in the tubing. The model enables a better understanding of the multiphase fluid flow up the production tubing. Model was used to get insight into severity and locations of wax deposition. The obtained information on wax deposition can be used to plan the frequency and depth of wax removing operations. Model was developed using Aspen HYSYS software.

12. Low temperature carrier redistribution dynamics in InGaN/GaN quantum wells

Energy Technology Data Exchange (ETDEWEB)

Badcock, T. J., E-mail: Thomas.badcock@crl.toshiba.co.uk; Dawson, P.; Davies, M. J. [School of Physics and Astronomy, Photon Science Institute, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Kappers, M. J.; Massabuau, F. C.-P.; Oehler, F.; Oliver, R. A.; Humphreys, C. J. [Department of Materials Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

2014-03-21

We have studied the carrier recombination dynamics in an InGaN/GaN multiple quantum well structure as a function of emission energy and excitation density between temperatures of 10 K and 100 K. Under relatively low levels of excitation, the photoluminescence (PL) intensity and decay time of emission on the high energy side of the luminescence spectrum decrease strongly between 10 K and 50 K. In contrast, for emission detected on the low energy side of the spectrum, the PL intensity and decay time increase over the same temperature range. These results are consistent with a thermally activated carrier redistribution process in which the (temperature dependent) average timescale for carrier transfer into or out of a localised state depends on the energy of the given state. Thus, the transfer time out of shallow, weakly localised states is considerably shorter than the arrival time into more deeply localised states. This picture is consistent with carriers hopping between localisation sites in an uncorrelated disorder potential where the density of localised states decreases with increasing localisation depth, e.g., a exponential or Gaussian distribution resulting from random alloy disorder. Under significantly higher levels of excitation, the increased occupation fraction of the localised states results in a greater average separation distance between unoccupied localised states, causing a suppression of the spectral and dynamic signatures of the hopping transfer of carriers.

13. Does Brillouin light scattering probe the primary glass transition process at temperatures well above glass transition?

Science.gov (United States)

Voudouris, P; Gomopoulos, N; Le Grand, A; Hadjichristidis, N; Floudas, G; Ediger, M D; Fytas, G

2010-02-21

The primary alpha-relaxation time (tau(alpha)) for molecular and polymeric glass formers probed by dielectric spectroscopy and two light scattering techniques (depolarized light scattering and photon correlation spectroscopy) relates to the decay of the torsional autocorrelation function computed by molecular dynamics simulation. It is well known that Brillouin light scattering spectroscopy (BLS) operating in gigahertz frequencies probes a fast (10-100 ps) relaxation of the longitudinal modulus M*. The characteristic relaxation time, irrespective of the fitting procedure, is faster than the alpha-relaxation which obeys the non-Arrhenius Vogel-Fulcher-Tammann equation. Albeit, this has been noticed, it remains a puzzling finding in glass forming systems. The available knowledge is based only on temperature dependent BLS experiments performed, however, at a single wave vector (frequency). Using a new BLS spectrometer, we studied the phonon dispersion at gigahertz frequencies in molecular [o-terphenyl (OTP)] and polymeric [polyisoprene (PI) and polypropylene (PP)] glass formers. We found that the hypersonic dispersion does relate to the glass transition dynamics but the disparity between the BLS-relaxation times and tau(alpha) is system dependent. In PI and PP, the former is more than one order of magnitude faster than tau(alpha), whereas the two relaxation times become comparable in the case of OTP. The difference between the two relaxation times appears to relate to the "breadth" of the relaxation time distribution function. In OTP the alpha-relaxation process assumes a virtually single exponential decay at high temperatures well above the glass transition temperature, in clear contrast with the case of the amorphous bulk polymers.

14. High-Temperature Self-Healing and Re-Adhering Geothermal Well Cement Composites

Science.gov (United States)

Pyatina, T.; Sugama, T.; Boodhan, Y.; Nazarov, L.

2017-12-01

Self-healing cementitious materials are particularly attractive for the cases where damaged areas are difficult to locate and reach. High-temperature geothermal wells with aggressive environments impose most difficult conditions on cements that must ensure durable zonal isolation under repeated thermal, chemical and mechanical stresses. The present work evaluates matrix and carbon steel (CS) - cement interface self-healing and re-adhering properties of various inorganic cementitious composites under steam, alkali carbonate or brine environments at 270-300oC applicable to geothermal wells. The composite materials included blends based on Ordinary Portland Cement (OPC) and natural zeolites and alkali or phosphate activated composites of Calcium Aluminate Cement (CAC) with fly ash, class F. Class G cement blend with crystalline silica was used as a baseline. Compressive-strength and bond-strength recoveries were examined to evaluate self-healing and re-adhering properties of the composites after repeated crush tests followed by 5-day healing periods in these environments. The optical and scanning electron microscopes, X-ray diffraction, Fourier Transform infrared, Raman spectroscopy and EDX measurements were used to identify phases participating in the strengths recoveries and cracks filling processes. Amorphous silica-rich- and small-size crystalline phases played an important role in the healing of the tested composites in all environments. Possible ways to enhance self-healing properties of cementitious composites under conditions of geothermal wells were identified.

15. Optical detection of symmetric and antisymmetric states in double quantum wells at room temperature

Science.gov (United States)

Marchewka, M.; Sheregii, E. M.; Tralle, I.; Marcelli, A.; Piccinini, M.; Cebulski, J.

2009-09-01

We studied the optical reflectivity of a specially grown double quantum well (DQW) structure characterized by a rectangular shape and a high electron density at room temperature. Assuming that the QWs depth is known, reflectivity spectra in the mid-IR range allow to carry out the precise measurements of the SAS-gap values (the energy gap between the symmetric and anti-symmetric states) and the absolute energies of both symmetric and antisymmetric electron states. The results of our experiments are in favor of the existence of the SAS splitting in the DQWs at room temperature. Here we have shown that the SAS gap increases proportionally to the subband quantum number and the optical electron transitions between symmetric and antisymmetric states belonging to different subbands are allowed. These results were used for interpretation of the beating effect in the Shubnikov-de Haas (SdH) oscillations at low temperatures (0.6 and 4.2 K). The approach to the calculation of the Landau-levels energies for DQW structures developed earlier [D. Ploch , Phys. Rev. B 79, 195434 (2009)] is used for the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to explain the beating effect in the SdH oscillations, one should introduce two different quasi-Fermi levels characterizing the two electron subsystems regarding symmetry properties of their wave functions, symmetric and antisymmetric ones. These states are not mixed neither by electron-electron interaction nor probably by electron-phonon interaction.

16. Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well

International Nuclear Information System (INIS)

Jeon, Jun-Seo; Lee, Seung-Rae; Pasquinelli, Lisa; Fabricius, Ida Lykke

2015-01-01

High-temperature aquifer thermal energy storage system usually shows higher performance than other borehole thermal energy storage systems. Although there is a limitation in the widespread use of the HT-ATES system because of several technical problems such as clogging, corrosion, etc., it is getting more attention as these issues are gradually alleviated. In this study, a sensitivity analysis of recovery efficiency in two cases of HT-ATES system with a single well is conducted to select key parameters. For a fractional factorial design used to choose input parameters with uniformity, the optimal Latin hypercube sampling with an enhanced stochastic evolutionary algorithm is considered. Then, the recovery efficiency is obtained using a computer model developed by COMSOL Multiphysics. With input and output variables, the surrogate modeling technique, namely the Gaussian-Kriging method with Smoothly Clopped Absolute Deviation Penalty, is utilized. Finally, the sensitivity analysis is performed based on the variation decomposition. According to the result of sensitivity analysis, the most important input variables are selected and confirmed to consider the interaction effects for each case and it is confirmed that key parameters vary with the experiment domain of hydraulic and thermal properties as well as the number of input variables. - Highlights: • Main and interaction effects on recovery efficiency in HT-ATES was investigated. • Reliability depended on fractional factorial design and interaction effects. • Hydraulic permeability of aquifer had an important impact on recovery efficiency. • Site-specific sensitivity analysis of HT-ATES was recommended.

17. Propagation of Measurement-While-Drilling Mud Pulse during High Temperature Deep Well Drilling Operations

Directory of Open Access Journals (Sweden)

Hongtao Li

2013-01-01

Full Text Available Signal attenuates while Measurement-While-Drilling (MWD mud pulse is transmited in drill string during high temperature deep well drilling. In this work, an analytical model for the propagation of mud pulse was presented. The model consists of continuity, momentum, and state equations with analytical solutions based on the linear perturbation analysis. The model can predict the wave speed and attenuation coefficient of mud pulse. The calculated results were compared with the experimental data showing a good agreement. Effects of the angular frequency, static velocity, mud viscosity, and mud density behavior on speed and attenuation coefficients were included in this paper. Simulated results indicate that the effects of angular frequency, static velocity, and mud viscosity are important, and lower frequency, viscosity, and static velocity benefit the transmission of mud pulse. Influenced by density behavior, the speed and attenuation coefficients in drill string are seen to have different values with respect to well depth. For different circulation times, the profiles of speed and attenuation coefficients behave distinctly different especially in lower section. In general, the effects of variables above on speed are seen to be small in comparison.

18. Effective neutron temperature measurements in well moderated reactor by the reactivity coefficient method

International Nuclear Information System (INIS)

Raisic, N.; Klinc, T.

1968-11-01

The ratio of the reactivity changes of a nuclear reactor produced by successive introduction of two different neutron absorbers in the reactor core, has been measured and information on effective neutron temperature at a particular point obtained. Boron was used as a l/v absorber and cadmium as an absorber sensiti ve to neutron temperature. Effective neutron temperature distribution has been deduced by moving absorbers across the reactor core and observing the corresponding reactivity changes. (author)

19. STATIC{sub T}EMP: a useful computer code for calculating static formation temperatures in geothermal wells

Energy Technology Data Exchange (ETDEWEB)

Santoyo, E. [Universidad Nacional Autonoma de Mexico, Centro de Investigacion en Energia, Temixco (Mexico); Garcia, A.; Santoyo, S. [Unidad Geotermia, Inst. de Investigaciones Electricas, Temixco (Mexico); Espinosa, G. [Universidad Autonoma Metropolitana, Co. Vicentina (Mexico); Hernandez, I. [ITESM, Centro de Sistemas de Manufactura, Monterrey (Mexico)

2000-07-01

The development and application of the computer code STATIC{sub T}EMP, a useful tool for calculating static formation temperatures from actual bottomhole temperature data logged in geothermal wells is described. STATIC{sub T}EMP is based on five analytical methods which are the most frequently used in the geothermal industry. Conductive and convective heat flow models (radial, spherical/radial and cylindrical/radial) were selected. The computer code is a useful tool that can be reliably used in situ to determine static formation temperatures before or during the completion stages of geothermal wells (drilling and cementing). Shut-in time and bottomhole temperature measurements logged during well completion activities are required as input data. Output results can include up to seven computations of the static formation temperature by each wellbore temperature data set analysed. STATIC{sub T}EMP was written in Fortran-77 Microsoft language for MS-DOS environment using structured programming techniques. It runs on most IBM compatible personal computers. The source code and its computational architecture as well as the input and output files are described in detail. Validation and application examples on the use of this computer code with wellbore temperature data (obtained from specialised literature) and with actual bottomhole temperature data (taken from completion operations of some geothermal wells) are also presented. (Author)

20. Temperature measurement of geothermal wells by optical fiber sensor; Hikari fiber sensor wo mochiita chinetsusei no ondo bunpu keisoku

Energy Technology Data Exchange (ETDEWEB)

Matsushima, N; Sakaguchi, K [Geological Survey of Japan, Tsukuba (Japan)

1996-10-01

Experiments of temperature measurement were conducted in high temperature and high pressure geothermal wells using optical fiber sensor. A temperature measurement system using optical fiber sensor was applied to geothermal wells. Working availability was confirmed under the condition up to the depth of 1,750 m and the temperature of 240 centigrade. Observed values agreed well with those observed by the conventional temperature logging. Durability of the optical fiber sensor was also sufficient. The maximum standard deviations of measured values were 1.3 centigrade at the depth of 1,750 m at 195 centigrade for the loop-type sensor, and 3.7 centigrade at the depth of 365 m at about 200 centigrade for the single-end sensor. Although the accuracy was inferior to the conventional measurement using a thermo couple, it was enough to be applied to usual temperature logging. Furthermore, for this system, the temperature profile in the whole well can be monitored, simultaneously. Through the experiments, the detailed successive change of temperature profile accompanied with the water injection can be clearly illustrated. 3 refs., 7 figs.

1. Downhole Temperature Modeling for Non-Newtonian Fluids in ERD Wells

Directory of Open Access Journals (Sweden)

Dan Sui

2018-04-01

Full Text Available Having precise information of fluids' temperatures is a critical process during planning of drilling operations, especially for extended reach drilling (ERD. The objective of this paper is to develop an accurate temperature model that can precisely calculate wellbore temperature distributions. An established semi-transient temperature model for vertical wellbores is extended and improved to include deviated wellbores and more realistic scenarios using non-Newtonian fluids. The temperature model is derived based on an energy balance between the formation and the wellbore. Heat transfer is considered steady-state in the wellbore and transient in the formation through the utilization of a formation cooling effect. In this paper, the energy balance is enhanced by implementing heat generation from the drill bit friction and contact friction force caused by drillpipe rotation. A non-linear geothermal gradient as a function of wellbore inclination, is also introduced to extend the model to deviated wellbores. Additionally, the model is improved by considering temperature dependent drilling fluid transport and thermal properties. Transport properties such as viscosity and density are obtained by lab measurements, which allows for investigation of the effect of non-Newtonian fluid behavior on the heat transfer. Furthermore, applying a non-Newtonian pressure loss model enables an opportunity to evaluate the impact of viscous forces on fluid properties and thus the overall heat transfer. Results from sensitivity analysis of both drilling fluid properties and other relevant parameters will be presented. The main application area of this model is related to optimization of drilling fluid, hydraulics, and wellbore design parameters, ultimately leading to safe and cost efficient operations.

2. Combination of Well-Logging Temperature and Thermal Remote Sensing for Characterization of Geothermal Resources in Hokkaido, Northern Japan

Directory of Open Access Journals (Sweden)

Bingwei Tian

2015-03-01

Full Text Available Geothermal resources have become an increasingly important source of renewable energy for electrical power generation worldwide. Combined Three Dimension (3D Subsurface Temperature (SST and Land Surface Temperature (LST measurements are essential for accurate assessment of geothermal resources. In this study, subsurface and surface temperature distributions were combined using a dataset comprised of well logs and Thermal Infrared Remote sensing (TIR images from Hokkaido island, northern Japan. Using 28,476 temperature data points from 433 boreholes sites and a method of Kriging with External Drift or trend (KED, SST distribution model from depths of 100 to 1500 m was produced. Regional LST was estimated from 13 scenes of Landsat 8 images. Resultant SST ranged from around 50 °C to 300 °C at a depth of 1500 m. Most of western and part of the eastern Hokkaido are characterized by high temperature gradients, while low temperatures were found in the central region. Higher temperatures in shallower crust imply the western region and part of the eastern region have high geothermal potential. Moreover, several LST zones considered to have high geothermal potential were identified upon clarification of the underground heat distribution according to 3D SST. LST in these zones showed the anomalies, 3 to 9 °C higher than the surrounding areas. These results demonstrate that our combination of TIR and 3D temperature modeling using well logging and geostatistics is an efficient and promising approach to geothermal resource exploration.

3. Compositional disordering of GaAs/AlGaAs multiple quantum wells using ion bombardment at elevated temperatures

International Nuclear Information System (INIS)

Anderson, K.K.; Donnelly, J.P.; Wang, C.A.; Woodhouse, J.D.; Haus, H.A.

1988-01-01

A new method has been developed for compositional mixing of heterostructures by ion bombardment at elevated temperatures. Complete mixing of a 1-μm-thick GaAs/AlGaAs 40-period multiple quantum well layer has been achieved by bombardment with 380 keV Ne + ions for 1 h with the sample at 700 0 C. This temperature is much lower than the annealing temperatures used in other vacancy-enhanced disordering techniques, and even lower temperatures and shorter durations should be possible. Compositional disordering is verified by sputter-profile Auger electron spectroscopy and transmission electron microscopy. Complete mixing is also demonstrated by optical transmission spectra of the disordered material, which exhibit the same band edge as a uniform alloy with the average aluminum mole fraction of the multiple quantum well layer

4. Room temperature PL efficiency of InGaN/GaN quantum well structures with prelayers as a function of number of quantum wells

International Nuclear Information System (INIS)

Christian, George M.; Hammersley, Simon; Davies, Matthew J.; Dawson, Philip; Kappers, Menno J.; Massabuau, Fabien C.P.; Oliver, Rachel A.; Humphreys, Colin J.

2016-01-01

We report on the effects of varying the number of quantum wells (QWs) in an InGaN/GaN multiple QW (MQW) structure containing a 23 nm thick In0.05Ga0.95N prelayer doped with Si. The calculated conduction and valence bands for the structures show an increasing total electric field across the QWs with increasing number of QWs. This is due to the reduced strength of the surface polarisation field, which opposes the built-in field across the QWs, as its range is increased over thicker samples. Low temperature photoluminescence (PL) measurements show a red shifted QW emission peak energy, which is attributed to the enhanced quantum confined Stark effect with increasing total field strength across the QWs. Low temperature PL time decay measurements and room temperature internal quantum efficiency (IQE) measurements show decreasing radiative recombination rates and decreasing IQE, respectively, with increasing number of QWs. These are attributed to the increased spatial separation of the electron and hole wavefunctions, consistent with the calculated band profiles. It is also shown that, for samples with fewer QWs, the reduction of the total field across the QWs makes the radiative recombination rate sufficiently fast that it is competitive with the efficiency losses associated with the thermal escape of carriers. (copyright 2016 The Authors. Phys. Status Solidi C published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

5. Influence of electric field, hydrostatic pressure and temperature on the electric state in a Poschl-Teller quantum well

International Nuclear Information System (INIS)

Hakimyfard, A.; Barseghyan, M.G.; Kirakosyan, A.A.; Duque, C.A.

2010-01-01

Influence of the electric field and hydrostatic pressure on the electronic states in a Poschl-Teller quantum well is studied. In the framework of variational method the dependences of the ground state energy on the electric field and hydrostatic pressure are calculated for different values of the potential parameters and the temperature. It is shown that the increase in the electric field leads to the increase in the ground state energy, while the increase in the well width leads to the strengthening of the electric field effect. The ground state energy decreases with increasing pressure and increases with increasing temperature

6. Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells

Energy Technology Data Exchange (ETDEWEB)

Pastouret, Alan [Draka Cableteq USA, Inc., North Dighton, MA (United States); Gooijer, Frans [Draka Cableteq USA, Inc., North Dighton, MA (United States); Overton, Bob [Draka Cableteq USA, Inc., North Dighton, MA (United States); Jonker, Jan [Draka Cableteq USA, Inc., North Dighton, MA (United States); Curley, Jim [Draka Cableteq USA, Inc., North Dighton, MA (United States); Constantine, Walter [Draka Cableteq USA, Inc., North Dighton, MA (United States); Waterman, Kendall Miller [Draka Cableteq USA, Inc., North Dighton, MA (United States)

2015-11-13

High Temperature insulated wire and optical fiber cable is a key enabling technology for the Geothermal Technologies Program (GTP). Without insulated electrical wires and optical fiber, downhole temperature and pressure sensors, flow meters and gauges cannot communicate with the surface. Unfortunately, there are currently no insulated electrical wire or fiber cable constructions capable of surviving for extended periods of deployment in a geothermal well (240-325°C) or supercritical (374°C) reservoir. This has severely hindered engineered reservoir creation, management and utilization, as hot zones and cool water intrusions cannot be understood over time. The lack of a insulated electrical wire and fiber cable solution is a fundamental limitation to the viability of this energy source. The High Temperature Downhole Tools target specification is development of tools and sensors for logging and monitoring wellbore conditions at depths of up to 10,000 meters and temperatures up to 374oC. It well recognized in the industry that no current electronic or fiber cable can be successfully deployed in a well and function successfully for more a few days at temperatures over 240oC. The goal of this project was to raise this performance level significantly. Prysmian Group’s objective in this project was to develop a complete, multi-purpose cable solution for long-term deployment in geothermal wells/reservoirs that can be used with the widest variety of sensors. In particular, the overall project objective was to produce a manufacturable cable design that can perform without serious degradation: • At temperatures up to 374°C; • At pressures up to 220 bar; • In a hydrogen-rich environment; and • For the life of the well (> 5 years). This cable incorporates: • Specialty optical fibers, with specific glass chemistry and high temperature and pressure protective coatings for data communication and distributed temperature and pressure sensing, and • High-temperature

7. High-temperature explosive development for geothermal well stimulation. Final report

Energy Technology Data Exchange (ETDEWEB)

Schmidt, E.W.; Mars, J.E.; Wang, C.

1978-03-31

A two-component, temperature-resistant liquid explosive called HITEX has been developed which is capable of withstanding 561/sup 0/K (550/sup 0/F) for 24 hours in a geothermal environment. The explosive is intended for the stimulation of nonproducing or marginally producing geothermal (hot dry rock, vapor-dominated or hydrothermal) reservoirs by fracturing the strata in the vicinity of a borehole. The explosive is inherently safe because it is mixed below ground downhole from two nondetonable liquid components. Development and safety tests included differential scanning calorimetry, thermal stability, minerals compatibility, drop-weight sensitivity, adiabatic compression, electrostatic discharge sensitivity, friction sensitivity, detonation arrest capability, cook-off tests, detonability at ambient and elevated pressure, detonation velocity and thin film propagation in a wedge.

8. Temperature dependent admittance spectroscopy of GaAs/AlGaAs single-quantum-well laser diodes (SQWLDs)

International Nuclear Information System (INIS)

Bengi, A.; Uslu, H.; Asar, T.; Altindal, S.; Cetin, S.S.; Mammadov, T.S.; Ozcelik, S.

2011-01-01

Research highlights: → It is well known the quantum-well (QW) lasers are the most important optoelectronic devices in many application fields. The temperature dependent I-V and C-V measurements allow us to understand the different aspects of conduction mechanisms of these devices. The C-V and G/ω-V measurements should be done over a wide range of temperature in order to have a better understanding of the nature of barrier height and conduction mechanisms. Therefore, in this study, the main electrical parameters of GaAs/Al x Ga 1-x As single quantum well (SQW) laser diodes were determined from the admittance spectroscopy C-V and G/ω-V method in the temperature range of 80-360 K. In addition, the capacitance and conductance values measured under both reverse and forward bias were corrected in order to eliminate the effect of R s to obtain the real diode capacitance. - Abstract: In this study, the main electrical parameters, such as doping concentration (N D ), barrier height (Φ CV ), depletion layer width (W D ), series resistance (R s ) and Fermi energy level (E F ), of GaAs/Al x Ga 1-x As single quantum well (SQW) laser diodes were investigated using the admittance spectroscopy (C-V and G/ω-V) method in the temperature range of 80-360 K. The reverse bias C -2 vs. V plots gives a straight line in a wide voltage region, especially in weak inversion region. The values of Φ CV at the absolute temperature (T = 0 K) and the temperature coefficient (α) of barrier height were found as 1.22 eV and -8.65 x 10 -4 eV/K, respectively. This value of α is in a close agreement with α of GaAs band gap (-5.45 x 10 -4 eV/K). Experimental results show that the capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics of the diode are affected by not only temperature but also R s . The capacitance-voltage-temperature (C-V-T) and conductance-voltage-temperature (G/ω-V-T) characteristics confirmed that temperature and R s of the diode have effects on the

9. Experimental investigation of quench and re-wetting temperatures of hot horizontal tubes well above the limiting temperature for solid–liquid contact

Energy Technology Data Exchange (ETDEWEB)

Takrouri, Kifah, E-mail: takroukj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Luxat, John, E-mail: luxatj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Hamed, Mohamed [Thermal Processing Laboratory (TPL), Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada)

2017-01-15

. The effects of initial surface temperature, water subcooling (in the range 15–80 °C) and jet velocity (in the range 0.15–1.60 m/s) on the quench process were investigated. The quench and the re-wetting temperature (the temperature at which the liquid establishes wet contact with the solid) were found to greatly depend on water subcooling. One of the main findings in this study is the existence of a critical water subcooling range within which any small change in water subcooling has a considerable effect on both the quench and the re-wetting temperatures. Empirical correlations have been developed and provided good fit of the experimental data and agreed well with correlations developed by other researchers for curved surfaces. The quench temperature was found to decrease by increasing surface curvature and solid thermal conductivity. However, the re-wetting temperature is a weak function of both variables. Effect of spatial location on the surface of the tube was also studied. The stagnation point showed higher quench and re-wetting temperatures compared to other locations on the tube surface.

10. Nonlinear intersubband absorption and refractive index changes in square and graded quantum well modulated by temperature and Hydrostatic pressure

International Nuclear Information System (INIS)

Ozturk, Emine; Sokmen, Ismail

2013-01-01

In this study, the effects of hydrostatic pressure and temperature on the linear and nonlinear intersubband transitions and the refractive index changes in the conduction band of square and graded quantum well (QW) are theoretically calculated within the framework of effective mass approximation. Results obtained show that the energy levels in different QWs and intersubband properties can be modified and controlled by the hydrostatic pressure and temperature. The modulation of the absorption coefficients and the refractive index changes which can be suitable for good performance optical modulators and various infrared optical device applications can be easily obtained by tuning the temperature and the hydrostatic pressure. - Highlights: ► Linear and nonlinear optical processes can be changed by pressure and temperature. ► Magnitude and energy of absorption peaks decrease as pressure increases. ► Refractive index changes in magnitude and energy decrease by increasing pressure. ► Energy differences are dependent on pressure, temperature and QW shapes. ► By increasing pressure we can obtain redshift in the optical transitions. ► For SQW, the absorption spectrum shows blueshift as the temperature increases. ► For GQW, the absorption spectrum shows redshift by temperature.

11. Analysis and investigation of temperature and hydrostatic pressure effects on optical characteristics of multiple quantum well slow light devices.

Science.gov (United States)

Abdolhosseini, Saeed; Kohandani, Reza; Kaatuzian, Hassan

2017-09-10

This paper represents the influences of temperature and hydrostatic pressure variations on GaAs/AlGaAs multiple quantum well slow light systems based on coherence population oscillations. An analytical model in non-integer dimension space is used to study the considerable effects of these parameters on optical properties of the slow light apparatus. Exciton oscillator strength and fractional dimension constants have special roles on the analytical model in fractional dimension. Hence, the impacts of hydrostatic pressure and temperature on exciton oscillator strength and fractional dimension quantity are investigated theoretically in this paper. Based on the achieved results, temperature and hydrostatic pressure play key roles on optical parameters of the slow light systems, such as the slow down factor and central energy of the device. It is found that the slope and value of the refractive index real part change with alterations of temperature and hydrostatic pressure in the range of 5-40 deg of Kelvin and 1 bar to 2 kbar, respectively. Thus, the peak value of the slow down factor can be adjusted by altering these parameters. Moreover, the central energy of the device shifts when the hydrostatic pressure is applied to the slow light device or temperature is varied. In comparison with previous reported experimental results, our simulations follow them successfully. It is shown that the maximum value of the slow down factor is estimated close to 5.5×10 4 with a fine adjustment of temperature and hydrostatic pressure. Meanwhile, the central energy shift of the slow light device rises up to 27 meV, which provides an appropriate basis for different optical devices in which multiple quantum well slow light is one of their essential subsections. This multiple quantum well slow light device has potential applications for use as a tunable optical buffer and pressure/temperature sensors.

12. Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well

DEFF Research Database (Denmark)

Jeon, Jun-Seo; Lee, Seung-Rae; Pasquinelli, Lisa

2015-01-01

., it is getting more attention as these issues are gradually alleviated. In this study, a sensitivity analysis of recovery efficiency in two cases of HT-ATES system with a single well is conducted to select key parameters. For a fractional factorial design used to choose input parameters with uniformity...... with Smoothly Clopped Absolute Deviation Penalty, is utilized. Finally, the sensitivity analysis is performed based on the variation decomposition. According to the result of sensitivity analysis, the most important input variables are selected and confirmed to consider the interaction effects for each case...

13. The thermal regime in the resurgent dome of Long Valley Caldera, California: Inferences from precision temperature logs in deep wells

Science.gov (United States)

Hurwitz, S.; Farrar, C.D.; Williams, C.F.

2010-01-01

Long Valley Caldera in eastern California formed 0.76Ma ago in a cataclysmic eruption that resulted in the deposition of 600km3 of Bishop Tuff. The total current heat flow from the caldera floor is estimated to be ~290MW, and a geothermal power plant in Casa Diablo on the flanks of the resurgent dome (RD) generates ~40MWe. The RD in the center of the caldera was uplifted by ~80cm between 1980 and 1999 and was explained by most models as a response to magma intrusion into the shallow crust. This unrest has led to extensive research on geothermal resources and volcanic hazards in the caldera. Here we present results from precise, high-resolution, temperature-depth profiles in five deep boreholes (327-1,158m) on the RD to assess its thermal state, and more specifically 1) to provide bounds on the advective heat transport as a guide for future geothermal exploration, 2) to provide constraints on the occurrence of magma at shallow crustal depths, and 3) to provide a baseline for future transient thermal phenomena in response to large earthquakes, volcanic activity, or geothermal production. The temperature profiles display substantial non-linearity within each profile and variability between the different profiles. All profiles display significant temperature reversals with depth and temperature gradients <50??C/km at their bottom. The maximum temperature in the individual boreholes ranges between 124.7??C and 129.5??C and bottom hole temperatures range between 99.4??C and 129.5??C. The high-temperature units in the three Fumarole Valley boreholes are at the approximate same elevation as the high-temperature unit in borehole M-1 in Casa Diablo indicating lateral or sub-lateral hydrothermal flow through the resurgent dome. Small differences in temperature between measurements in consecutive years in three of the wells suggest slow cooling of the shallow hydrothermal flow system. By matching theoretical curves to segments of the measured temperature profiles, we calculate

14. Temperature dependence of interband recombination energy in symmetric (In,Ga)N spherical quantum dot-quantum well

Energy Technology Data Exchange (ETDEWEB)

El Ghazi, Haddou, E-mail: hadghazi@gmail.com [LPS, Faculty of Science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco); Special Mathematics, CPGE, 267 Quartier complémentaire Ennahda 1, Rabat (Morocco); Jorio, Anouar [LPS, Faculty of Science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco)

2014-01-01

Within the framework of effective-mass approximation and finite parabolic potential barrier, single particle and ground-state interband recombination energies in Core|well|shell based on GaN|(In,Ga)N|GaN spherical QDQW are investigated as a function of the inner and the outer radii. The temperature dependency of effective-mass, band-gap energy and potential barrier is taken into account. Particle eigenvalue and band-gap energy competing effects are speculated to explain our numerical results which show that the interband recombination energy increases when the temperature increases. The results we obtained are in quite good agreement with the findings.

15. Temperature dependence of interband recombination energy in symmetric (In,Ga)N spherical quantum dot-quantum well

International Nuclear Information System (INIS)

2014-01-01

Within the framework of effective-mass approximation and finite parabolic potential barrier, single particle and ground-state interband recombination energies in Core|well|shell based on GaN|(In,Ga)N|GaN spherical QDQW are investigated as a function of the inner and the outer radii. The temperature dependency of effective-mass, band-gap energy and potential barrier is taken into account. Particle eigenvalue and band-gap energy competing effects are speculated to explain our numerical results which show that the interband recombination energy increases when the temperature increases. The results we obtained are in quite good agreement with the findings

16. Temperature and magnetic field effect on oscillations observed in GaInNAs/GaAs multiple quantum wells structures

International Nuclear Information System (INIS)

Khalil, H.M.; Mazzucato, S.; Ardali, S.; Celik, O.; Mutlu, S.; Royall, B.; Tiras, E.; Balkan, N.; Puustinen, J.; Korpijärvi, V.-M.; Guina, M.

2012-01-01

Highlights: ► We studied p-i-n GaInNAs MQW devices as function of temperature and magnetic field. ► Observed oscillations in the sample current–voltage curves at low temperature. ► Shift in oscillation position with magnetic field described by Landau level split. ► Resonant tunnelling and thermionic emission used to describe oscillations. - Abstract: The photoconductivity of p-i-n GaInNAs/GaAs multiple quantum well (MQW) mesa structures is investigated. When illuminated with photons at energy greater than the GaAs bandgap, a number of oscillations are observed in the current–voltage I–V characteristics. The amplitude and position of the oscillations is shown to depend upon the temperature, as well as upon the exciting wavelength and intensity. Due to the absence of the oscillations in the dark I–V and at temperatures above T = 200 K, we explain them in terms of photogenerated electrons escaping from quantum wells via tunnelling or thermionic emission. Magnetic fields up to B = 11 T were applied parallel to the planes of the QWs. A small voltage shift in the position of the oscillations was observed, proportional to the magnetic field intensity and dependent upon the temperature. Calculation of the Landau level energy separation (16 meV) agrees with the observed experimental data. Magneto-tunnelling spectroscopy probes in detail the nature of band- or impurity-like states responsible for resonances in first and second subbands, observing the I–V plot in dark condition and under illumination. The field-dependence of the amplitude of the oscillation peaks in I–V has the characteristic form of a quantum mechanical admixing effect. This enhancement is also probably due to the hole recombination with majority electrons tunnelling in the N-related states of the quantum wells.

17. Temperature and magnetic field effect on oscillations observed in GaInNAs/GaAs multiple quantum wells structures

Energy Technology Data Exchange (ETDEWEB)

Khalil, H.M., E-mail: hkhalia@essex.ac.uk [School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ, Colchester (United Kingdom); Mazzucato, S. [School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ, Colchester (United Kingdom); Ardali, S.; Celik, O.; Mutlu, S. [Anadolu University, Faculty of Science, Department of Physics, Yunus Emre Campus 26470, Eskisehir (Turkey); Royall, B. [School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ, Colchester (United Kingdom); Tiras, E. [Anadolu University, Faculty of Science, Department of Physics, Yunus Emre Campus 26470, Eskisehir (Turkey); Balkan, N. [School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ, Colchester (United Kingdom); Puustinen, J.; Korpijaervi, V.-M.; Guina, M. [Optoelectronics Research Centre, Tampere University of Technology, Korkeakoulunkatu 10, FI-33720 Tampere (Finland)

2012-06-05

Highlights: Black-Right-Pointing-Pointer We studied p-i-n GaInNAs MQW devices as function of temperature and magnetic field. Black-Right-Pointing-Pointer Observed oscillations in the sample current-voltage curves at low temperature. Black-Right-Pointing-Pointer Shift in oscillation position with magnetic field described by Landau level split. Black-Right-Pointing-Pointer Resonant tunnelling and thermionic emission used to describe oscillations. - Abstract: The photoconductivity of p-i-n GaInNAs/GaAs multiple quantum well (MQW) mesa structures is investigated. When illuminated with photons at energy greater than the GaAs bandgap, a number of oscillations are observed in the current-voltage I-V characteristics. The amplitude and position of the oscillations is shown to depend upon the temperature, as well as upon the exciting wavelength and intensity. Due to the absence of the oscillations in the dark I-V and at temperatures above T = 200 K, we explain them in terms of photogenerated electrons escaping from quantum wells via tunnelling or thermionic emission. Magnetic fields up to B = 11 T were applied parallel to the planes of the QWs. A small voltage shift in the position of the oscillations was observed, proportional to the magnetic field intensity and dependent upon the temperature. Calculation of the Landau level energy separation (16 meV) agrees with the observed experimental data. Magneto-tunnelling spectroscopy probes in detail the nature of band- or impurity-like states responsible for resonances in first and second subbands, observing the I-V plot in dark condition and under illumination. The field-dependence of the amplitude of the oscillation peaks in I-V has the characteristic form of a quantum mechanical admixing effect. This enhancement is also probably due to the hole recombination with majority electrons tunnelling in the N-related states of the quantum wells.

18. The proceedings of 1993-workshop on 'development and application of facilities for low temperature irradiation as well as controlled irradiation'

International Nuclear Information System (INIS)

1993-03-01

19. Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.

Science.gov (United States)

Vasudev, Pranai; Jiang, Jian-Hua; John, Sajeev

2016-06-27

We demonstrate the possibility of room-temperature, thermal equilibrium Bose-Einstein condensation (BEC) of exciton-polaritons in a multiple quantum well (QW) system composed of InGaAs quantum wells surrounded by InP barriers, allowing for the emission of light near telecommunication wavelengths. The QWs are embedded in a cavity consisting of double slanted pore (SP2) photonic crystals composed of InP. We consider exciton-polaritons that result from the strong coupling between the multiple quantum well excitons and photons in the lowest planar guided mode within the photonic band gap (PBG) of the photonic crystal cavity. The collective coupling of three QWs results in a vacuum Rabi splitting of 3% of the bare exciton recombination energy. Due to the full three-dimensional PBG exhibited by the SP2 photonic crystal (16% gap to mid-gap frequency ratio), the radiative decay of polaritons is eliminated in all directions. Due to the short exciton-phonon scattering time in InGaAs quantum wells of 0.5 ps and the exciton non-radiative decay time of 200 ps at room temperature, polaritons can achieve thermal equilibrium with the host lattice to form an equilibrium BEC. Using a SP2 photonic crystal with a lattice constant of a = 516 nm, a unit cell height of 2a=730nm and a pore radius of 0.305a = 157 nm, light in the lowest planar guided mode is strongly localized in the central slab layer. The central slab layer consists of 3 nm InGaAs quantum wells with 7 nm InP barriers, in which excitons have a recombination energy of 0.944 eV, a binding energy of 7 meV and a Bohr radius of aB = 10 nm. We take the exciton recombination energy to be detuned 35 meV above the lowest guided photonic mode so that an exciton-polariton has a photonic fraction of approximately 97% per QW. This increases the energy range of small-effective-mass photonlike states and increases the critical temperature for the onset of a Bose-Einstein condensate. With three quantum wells in the central slab layer

20. Low-temperature geothermal water in Utah: A compilation of data for thermal wells and springs through 1993

Energy Technology Data Exchange (ETDEWEB)

Blackett, R.E.

1994-07-01

The Geothermal Division of DOE initiated the Low-Temperature Geothermal Resources and Technology Transfer Program, following a special appropriation by Congress in 1991, to encourage wider use of lower-temperature geothermal resources through direct-use, geothermal heat-pump, and binary-cycle power conversion technologies. The Oregon Institute of Technology (OIT), the University of Utah Research Institute (UURI), and the Idaho Water Resources Research Institute organized the federally-funded program and enlisted the help of ten western states to carry out phase one. This first phase involves updating the inventory of thermal wells and springs with the help of the participating state agencies. The state resource teams inventory thermal wells and springs, and compile relevant information on each sources. OIT and UURI cooperatively administer the program. OIT provides overall contract management while UURI provides technical direction to the state teams. Phase one of the program focuses on replacing part of GEOTHERM by building a new database of low- and moderate-temperature geothermal systems for use on personal computers. For Utah, this involved (1) identifying sources of geothermal date, (2) designing a database structure, (3) entering the new date; (4) checking for errors, inconsistencies, and duplicate records; (5) organizing the data into reporting formats; and (6) generating a map (1:750,000 scale) of Utah showing the locations and record identification numbers of thermal wells and springs.

1. Modelling transient temperature distribution for injecting hot water through a well to an aquifer thermal energy storage system

Science.gov (United States)

Yang, Shaw-Yang; Yeh, Hund-Der; Li, Kuang-Yi

2010-10-01

Heat storage systems are usually used to store waste heat and solar energy. In this study, a mathematical model is developed to predict both the steady-state and transient temperature distributions of an aquifer thermal energy storage (ATES) system after hot water is injected through a well into a confined aquifer. The ATES has a confined aquifer bounded by aquicludes with different thermomechanical properties and geothermal gradients along the depth. Consider that the heat is transferred by conduction and forced convection within the aquifer and by conduction within the aquicludes. The dimensionless semi-analytical solutions of temperature distributions of the ATES system are developed using Laplace and Fourier transforms and their corresponding time-domain results are evaluated numerically by the modified Crump method. The steady-state solution is obtained from the transient solution through the final-value theorem. The effect of the heat transfer coefficient on aquiclude temperature distribution is appreciable only near the outer boundaries of the aquicludes. The present solutions are useful for estimating the temperature distribution of heat injection and the aquifer thermal capacity of ATES systems.

2. Continuous-Wave Operation of GaN Based Multi-Quantum-Well Laser Diode at Room Temperature

International Nuclear Information System (INIS)

Li-Qun, Zhang; Shu-Ming, Zhang; Hui, Yang; Lian, Ji; Jian-Jun, Zhu; Zong-Shun, Liu; De-Gang, Zhao; De-Sheng, Jiang; Li-Hong, Duan; Hai, Wang; Yong-Sheng, Shi; Su-Ying, Liu; Jun-Wu, Liang; Qing, Cao; Liang-Hui, Chen

2008-01-01

Room-temperature operation of cw GaN based multi-quantum-well laser diodes (LDs) is demonstrated. The LD structure is grown on a sapphire (0001) substrate by metalorganic chemical vapour deposition. A 2.5μm × 800μm ridge waveguide structure is fabricated. The electrical and optical characteristics of the laser diode under direct current injection at room temperature are investigated. The threshold current and voltage of the LD under cw operation are 110 mA and 10.5 V, respectively. Thermal induced series resistance decrease and emission wavelength red-shift are observed as the injection current is increased. The full width at half maximum for the parallel and perpendicular far field pattern (FFP) are 12° and 32°, respectively

3. Estimation of geological formation thermal conductivity by using stochastic approximation method based on well-log temperature data

International Nuclear Information System (INIS)

Cheng, Wen-Long; Huang, Yong-Hua; Liu, Na; Ma, Ran

2012-01-01

Thermal conductivity is a key parameter for evaluating wellbore heat losses which plays an important role in determining the efficiency of steam injection processes. In this study, an unsteady formation heat-transfer model was established and a cost-effective in situ method by using stochastic approximation method based on well-log temperature data was presented. The proposed method was able to estimate the thermal conductivity and the volumetric heat capacity of geological formation simultaneously under the in situ conditions. The feasibility of the present method was assessed by a sample test, the results of which shown that the thermal conductivity and the volumetric heat capacity could be obtained with the relative errors of −0.21% and −0.32%, respectively. In addition, three field tests were conducted based on the easily obtainable well-log temperature data from the steam injection wells. It was found that the relative errors of thermal conductivity for the three field tests were within ±0.6%, demonstrating the excellent performance of the proposed method for calculating thermal conductivity. The relative errors of volumetric heat capacity ranged from −6.1% to −14.2% for the three field tests. Sensitivity analysis indicated that this was due to the low correlation between the volumetric heat capacity and the wellbore temperature, which was used to generate the judgment criterion. -- Highlights: ► A cost-effective in situ method for estimating thermal properties of formation was presented. ► Thermal conductivity and volumetric heat capacity can be estimated simultaneously by the proposed method. ► The relative error of thermal conductivity estimated was within ±0.6%. ► Sensitivity analysis was conducted to study the estimated results of thermal properties.

4. Spectral properties of polarized light from semipolar grown InGaN quantum wells at low temperatures

Energy Technology Data Exchange (ETDEWEB)

Schade, L.; Schwarz, U.T. [Fraunhofer Institute for Applied Solid State Physics IAF, Freiburg (Germany); Department of Microsystems Engineering (IMTEK), University of Freiburg (Germany); Wernicke, T.; Ploch, S. [Institute of Solid State Physics, TU Berlin (Germany); Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Kneissl, M. [Institute of Solid State Physics, TU Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Berlin (Germany)

2012-03-15

The polarization dependent photoluminescence at low temperatures of strained semipolar and nonpolar InGaN quantum wells was studied as a function of the emission wavelength. We found for semipolar QWs that the maximum of the spectral resolved optical polarization is either red- or blue-shifted with respect to the maximum of the emission. In contrast, the nonpolar emission exhibits no clear maximum. We assign all effects to an inhomogeneous broadening of the emission caused by indium fluctuations and explain this behavior here in the light of the optical polarization switching. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

5. Ultra high-temperature solids-free insulating packer fluid for oil and gas production, steam injection and geothermal wells

Energy Technology Data Exchange (ETDEWEB)

Ezell, R.G.; Harrison, D.J. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Halliburton Energy Services, Calgary, AB (Canada)

2008-10-15

Uncontrolled heat transfer from production/injection tubing during thermal oil recovery via steam injection can be detrimental to the integrity of the casing and to the quality of the steam that is injected into the reservoir. An aqueous-based insulating packer fluid (IPF) was introduced to improve the steam injection process by controlling the total heat loss from the produced fluids to the surrounding wellbore, internal annuli and formation. The IPF was developed for elevated temperature environments through extensive investigation across multidisciplinary technology. The innovative system delivers performance beyond conventional systems of comparable thermal conductivity. Its density range and conductivity measurements were presented in this paper. High-temperature static aging tests showed superior gel integrity without any phase separation after exposure to temperatures higher than 260 degrees C. The new fluids are hydrate inhibitive, non-corrosive and pass oil and grease testing. They are considered to be environmentally sound by Gulf of Mexico standards. It was concluded that the new ultra high-performance insulating packer fluid (HTIPF) reduced the heat loss significantly by both conduction and convection. Heat transfer within the aqueous-based HTIPF was 97 per cent less than that of pure water. It was concluded that the HTIPF can be substituted for conventional packer fluids without compromising any well control issues. 21 refs., 1 tab., 4 figs.

6. Investigating Water Movement Within and Near Wells Using Active Point Heating and Fiber Optic Distributed Temperature Sensing

Directory of Open Access Journals (Sweden)

Frank Selker

2018-03-01

Full Text Available There are few methods to provide high-resolution in-situ characterization of flow in aquifers and reservoirs. We present a method that has the potential to quantify lateral and vertical (magnitude and direction components of flow with spatial resolution of about one meter and temporal resolution of about one day. A fiber optic distributed temperature sensor is used with a novel heating system. Temperatures before heating may be used to evaluate background geothermal gradient and vertical profile of thermal diffusivity. The innovation presented is the use of variable energy application along the well, in this case concentrated heating at equally-spaced (2 m localized areas (0.5 m. Relative to uniform warming this offers greater opportunity to estimate water movement, reduces required heating power, and increases practical length that can be heated. Numerical simulations are presented which illustrate expected behaviors. We estimate relative advection rates near the well using the times at which various locations diverge from a heating trajectory expected for pure conduction in the absence of advection. The concept is demonstrated in a grouted 600 m borehole with 300 heated patches, though evidence of vertical water movement was not seen.

7. Investigating Water Movement Within and Near Wells Using Active Point Heating and Fiber Optic Distributed Temperature Sensing.

Science.gov (United States)

Selker, Frank; Selker, John S

2018-03-29

There are few methods to provide high-resolution in-situ characterization of flow in aquifers and reservoirs. We present a method that has the potential to quantify lateral and vertical (magnitude and direction) components of flow with spatial resolution of about one meter and temporal resolution of about one day. A fiber optic distributed temperature sensor is used with a novel heating system. Temperatures before heating may be used to evaluate background geothermal gradient and vertical profile of thermal diffusivity. The innovation presented is the use of variable energy application along the well, in this case concentrated heating at equally-spaced (2 m) localized areas (0.5 m). Relative to uniform warming this offers greater opportunity to estimate water movement, reduces required heating power, and increases practical length that can be heated. Numerical simulations are presented which illustrate expected behaviors. We estimate relative advection rates near the well using the times at which various locations diverge from a heating trajectory expected for pure conduction in the absence of advection. The concept is demonstrated in a grouted 600 m borehole with 300 heated patches, though evidence of vertical water movement was not seen.

8. Nano-chemo-mechanical signature of conventional oil-well cement systems: Effects of elevated temperature and curing time

Energy Technology Data Exchange (ETDEWEB)

Krakowiak, Konrad J., E-mail: kjkrak@mit.edu [Civil and Environmental Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Thomas, Jeffrey J., E-mail: JThomas39@slb.com [Schlumberger-Doll Research Center, 1 Hampshire St., Cambridge, MA 02139-1578 (United States); Musso, Simone, E-mail: SMusso@slb.com [Schlumberger-Doll Research Center, 1 Hampshire St., Cambridge, MA 02139-1578 (United States); James, Simon, E-mail: james6@slb.com [Schlumberger Riboud Product Center, 1 rue Henri Becquerel, Clamart 92140 (France); Akono, Ange-Therese, E-mail: aakono@illinois.edu [Civil and Environmental Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Ulm, Franz-Josef, E-mail: ulm@mit.edu [Civil and Environmental Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

2015-01-15

With ever more challenging (T,p) environments for cementing applications in oil and gas wells, there is a need to identify the fundamental mechanisms of fracture resistant oil well cements. We report results from a multi-technique investigation of behavior and properties of API class G cement and silica-enriched cement systems subjected to hydrothermal curing from 30 °C to 200 °C; including electron probe microanalysis, X-ray diffraction, thermogravimetry analysis, electron microscopy, neutron scattering (SANS), and fracture scratch testing. The results provide a new insight into the link between system chemistry, micro-texture and micro-fracture toughness. We suggest that the strong correlation found between chemically modulated specific surface and fracture resistance can explain the drop in fracture properties of neat oil-well cements at elevated temperatures; the fracture property enhancement in silica-rich cement systems, between 110° and 175 °C; and the drop in fracture properties of such systems through prolonged curing over 1 year at 200 °C.

9. Zero-Bias Offsets in the Low-Temperature Dark Current of Quantum-Well Infrared Photodetectors

National Research Council Canada - National Science Library

Singh, Anjali

1999-01-01

.... In this environment, the detector arrays may need to be operated at temperatures lower then 77 K. At these temperatures, tunneling mechanisms such as Fowler-Nordheim and trap-assisted tunneling could dominate the dark current...

10. Low-temperature growth of well-aligned zinc oxide nanorod arrays on silicon substrate and their photocatalytic application

Directory of Open Access Journals (Sweden)

Azam A

2014-04-01

11. Luminescent N-polar (In,Ga)N/GaN quantum wells achieved by plasma-assisted molecular beam epitaxy at temperatures exceeding 700 °C

Science.gov (United States)

Chèze, C.; Feix, F.; Lähnemann, J.; Flissikowski, T.; Kryśko, M.; Wolny, P.; Turski, H.; Skierbiszewski, C.; Brandt, O.

2018-01-01

Previously, we found that N-polar (In,Ga)N/GaN quantum wells prepared on freestanding GaN substrates by plasma-assisted molecular beam epitaxy at conventional growth temperatures of about 650 °C do not exhibit any detectable luminescence even at 10 K. In the present work, we investigate (In,Ga)N/GaN quantum wells grown on Ga- and N-polar GaN substrates at a constant temperature of 730 °C . This exceptionally high temperature results in a vanishing In incorporation for the Ga-polar sample. In contrast, quantum wells with an In content of 20% and abrupt interfaces are formed on N-polar GaN. Moreover, these quantum wells exhibit a spatially uniform green luminescence band up to room temperature, but the intensity of this band is observed to strongly quench with temperature. Temperature-dependent photoluminescence transients show that this thermal quenching is related to a high density of nonradiative Shockley-Read-Hall centers with large capture coefficients for electrons and holes.

12. Effects of quantum well growth temperature on the recombination efficiency of InGaN/GaN multiple quantum wells that emit in the green and blue spectral regions

Energy Technology Data Exchange (ETDEWEB)

Hammersley, S.; Dawson, P. [School of Physics and Astronomy, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Kappers, M. J.; Massabuau, F. C.-P.; Sahonta, S.-L.; Oliver, R. A.; Humphreys, C. J. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

2015-09-28

InGaN-based light emitting diodes and multiple quantum wells designed to emit in the green spectral region exhibit, in general, lower internal quantum efficiencies than their blue-emitting counter parts, a phenomenon referred to as the “green gap.” One of the main differences between green-emitting and blue-emitting samples is that the quantum well growth temperature is lower for structures designed to emit at longer wavelengths, in order to reduce the effects of In desorption. In this paper, we report on the impact of the quantum well growth temperature on the optical properties of InGaN/GaN multiple quantum wells designed to emit at 460 nm and 530 nm. It was found that for both sets of samples increasing the temperature at which the InGaN quantum well was grown, while maintaining the same indium composition, led to an increase in the internal quantum efficiency measured at 300 K. These increases in internal quantum efficiency are shown to be due reductions in the non-radiative recombination rate which we attribute to reductions in point defect incorporation.

13. Effects of quantum well growth temperature on the recombination efficiency of InGaN/GaN multiple quantum wells that emit in the green and blue spectral regions

International Nuclear Information System (INIS)

Hammersley, S.; Dawson, P.; Kappers, M. J.; Massabuau, F. C.-P.; Sahonta, S.-L.; Oliver, R. A.; Humphreys, C. J.

2015-01-01

InGaN-based light emitting diodes and multiple quantum wells designed to emit in the green spectral region exhibit, in general, lower internal quantum efficiencies than their blue-emitting counter parts, a phenomenon referred to as the “green gap.” One of the main differences between green-emitting and blue-emitting samples is that the quantum well growth temperature is lower for structures designed to emit at longer wavelengths, in order to reduce the effects of In desorption. In this paper, we report on the impact of the quantum well growth temperature on the optical properties of InGaN/GaN multiple quantum wells designed to emit at 460 nm and 530 nm. It was found that for both sets of samples increasing the temperature at which the InGaN quantum well was grown, while maintaining the same indium composition, led to an increase in the internal quantum efficiency measured at 300 K. These increases in internal quantum efficiency are shown to be due reductions in the non-radiative recombination rate which we attribute to reductions in point defect incorporation

14. On the effect of ballistic overflow on the temperature dependence of the quantum efficiency of InGaN/GaN multiple quantum well light-emitting diodes

Energy Technology Data Exchange (ETDEWEB)

Prudaev, I. A., E-mail: funcelab@gmail.com; Kopyev, V. V.; Romanov, I. S.; Oleynik, V. L. [National Research Tomsk State University (Russian Federation)

2017-02-15

The dependences of the quantum efficiency of InGaN/GaN multiple quantum well light-emitting diodes on the temperature and excitation level are studied. The experiment is performed for two luminescence excitation modes. A comparison of the results obtained during photo- and electroluminescence shows an additional (to the loss associated with Auger recombination) low-temperature loss in the high-density current region. This causes inversion of the temperature dependence of the quantum efficiency at temperatures lower than 220–300 K. Analysis shows that the loss is associated with electron leakage from the light-emitting-diode active region. The experimental data are explained using the ballistic-overflow model. The simulation results are in qualitative agreement with the experimental dependences of the quantum efficiency on temperature and current density.

15. Digital archive of drilling mud weight pressures and wellbore temperatures from 49 regional cross sections of 967 well logs in Louisiana and Texas, onshore Gulf of Mexico basin

Science.gov (United States)

Burke, Lauri A.; Kinney, Scott A.; Kola-Kehinde, Temidayo B.

2011-01-01

This document provides the digital archive of in-situ temperature and drilling mud weight pressure data that were compiled from several historical sources. The data coverage includes the states of Texas and Louisiana in the Gulf of Mexico basin. Data are also provided graphically, for both Texas and Louisiana, as plots of temperature as a function of depth and pressure as a function of depth. The minimum, arithmetic average, and maximum values are tabulated for each 1,000-foot depth increment for temperature as well as pressure in the Texas and Louisiana data.

16. The role of temperature ramp-up time before barrier layer growth in optical and structural properties of InGaN/GaN multi-quantum wells

Science.gov (United States)

Xing, Yao; Zhao, Degang; Jiang, Desheng; Liu, Zongshun; Zhu, Jianjun; Chen, Ping; Yang, Jing; Liu, Wei; Liang, Feng; Liu, Shuangtao; Zhang, Liqun; Wang, Wenjie; Li, Mo; Zhang, Yuantao; Du, Guotong

2018-05-01

In InGaN/GaN multi-quantum wells (MQWs), a low temperature cap (LT-cap) layer is grown between the InGaN well layer and low temperature GaN barrier layer. During the growth, a temperature ramp-up and ramp-down process is added between LT-cap and barrier layer growth. The effect of temperature ramp-up time duration on structural and optical properties of quantum wells is studied. It is found that as the ramp-up time increases, the Indium floating layer on the top of the well layer can be diminished effectively, leading to a better interface quality between well and barrier layers, and the carrier localization effect is enhanced, thereby the internal quantum efficiency (IQE) of QWs increases surprisingly. However, if the ramp-up time is too long, the carrier localization effect is weaker, which may increase the probabilities of carriers to meet with nonradiative recombination centers. Meanwhile, more nonradiative recombination centers will be introduced into well layers due to the indium evaporation. Both of them will lead to a reduction of internal quantum efficiency (IQE) of MQWs.

17. Identification of temperature-dependent water quality changes during a deep well injection experiment in a pyritic aquifer

NARCIS (Netherlands)

Prommer, H.; Stuijfzand, P.J.

2005-01-01

Artificial recharge is a technique used increasingly to supplement drinking water supplies. To assess the potential water quality changes that occur during subsurface passage, a comprehensive deep-well injection experiment was carried out for a recharge scheme, where pretreated, aerobic surface

18. The effect of confinement on the temperature dependence of the excitonic transition energy in GaAs/AlxGa1-xAs quantum wells

International Nuclear Information System (INIS)

Silva, M A T da; Morais, R R O; Dias, I F L; Lourenco, S A; Duarte, J L; Laureto, E; Quivy, A A; Silva, E C F da

2008-01-01

We determined by means of photoluminescence measurements the dependence on temperature of the transition energy of excitons in GaAs/Al x Ga 1-x As quantum wells with different alloy concentrations (with different barrier heights). Using a fitting procedure, we determined the parameters which describe the behavior of the excitonic transition energy as a function of temperature according to three different theoretical models. We verified that the temperature dependence of the excitonic transition energy does not only depend on the GaAs material but also depends on the barrier material, i.e. on the alloy composition. The effect of confinement on the temperature dependence of the excitonic transition is discussed

19. Effect of variability in lighting and temperature environments for mature gilts housed in gestation crates on measures of reproduction and animal well-being.

Science.gov (United States)

Canaday, D C; Salak-Johnson, J L; Visconti, A M; Wang, X; Bhalerao, K; Knox, R V

2013-03-01

The effects of room temperature and light intensity before breeding and into early gestation were evaluated on the reproductive performance and well-being of gilts housed individually in crates. In eight replicates, estrus was synchronized in mature gilts (n = 198) and after last feeding of Matrix were randomly assigned to a room temperature of 15°C (COLD), 21°C (NEUTRAL), or 30°C (HOT) and a light intensity of 11 (DIM) or 433 (BRIGHT) lx. Estrous detection was performed daily and gilts inseminated twice. Blood samples were collected before and after breeding for determination of immune measures and cortisol concentrations. Gilt ADFI, BW, and body temperature were measured. On d 30 postbreeding, gilts were slaughtered to recover reproductive tracts to evaluate pregnancy and litter characteristics. There were no temperature × light intensity interactions for any response variable. Reproductive measures of follicle development, expression of estrus, ovulation rate, pregnancy rate (83.2%), litter size (14.3 ± 0.5), and fetal measures were not affected by temperature or lighting (P > 0.10). Gilts in COLD (37.6°C) had a lower (P postural changes (P 0.10) of light or interaction with temperature on other immune cells or measures. These results indicate that temperatures in the range of 15 to 30°C or light intensity at 11 to 433 lx do not impact reproduction during the follicular phase and into early gestation for mature gilts housed in gestation crates. However, room temperature does impact physiological, behavioral, and immune responses of mature gilts and should be considered as a potential factor that may influence gilt well-being during the first 30 d postbreeding.

20. Microbial water diversion technique-designed for near well treatment in low temperature sandstone reservoirs in the North Sea

Energy Technology Data Exchange (ETDEWEB)

Paulsen, J.E.; Vatland, A. [RF-Rogaland Research, Stavanger (Norway); Sorheim, R. [SINTEF, Oslo (Norway)] [and others

1995-12-31

A Norwegian Research Program on Improved Oil Recovery (IOR) in North Sea reservoirs was launched in 1992. Microbial methods, applied in this context, is a part of this program. The scope, the methodological approach, and results from the three first years are presented. Water profile control, using biomass to block high permeable zones of a reservoir, has been investigated using nitrate-reducing bacteria in the injected sea water as plugging agents. Emphasis has been put on developing a process that does not have disadvantages secondary to the process itself, such as souring and impairment of the overall injectivity of the field. Data from continuous culture studies indicate that souring may successfully be mitigated by adding nitrite to the injected seawater. The morphology and size of generic-nitrate-reducing seawater bacteria have been investigated. Screening of growth-promoting nutrients has been carried out, and some sources were detected as favorable. Transport and penetration of bacteria in porous media have been given special attention. Investigations with sand packs, core models, and pore micromodels have been carried out. The inherent problems connected with permeability contrasts and flow patterns, versus bacterial behavior, are believed to be critical for the success of this technology. Data from the transport and blocking experiments with the porous matrices confirm this concern. The technology is primarily being developed for temperatures less than 40{degrees}C.

1. Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells?

Science.gov (United States)

Melchior, Jan-Patrick; Majer, Günter; Kreuer, Klaus-Dieter

2016-12-21

Transport properties and hydration behavior of phosphoric acid/(benz)imidazole mixtures are investigated by diverse NMR techniques, thermogravimetric analysis (TGA) and conductivity measurements. The monomeric systems can serve as models for phosphoric acid/poly-benzimidazole membranes which are known for their exceptional performance in high temperature PEM fuel cells. 1 H- and 31 P-NMR data show benzimidazole acting as a strong Brønsted base with respect to neat phosphoric acid. Since benzimidazole's nitrogens are fully protonated with a low rate for proton exchange with phosphate species, proton diffusion and conduction processes must take place within the hydrogen bond network of phosphoric acid only. The proton exchange dynamics between phosphate and benzimidazole species pass through the intermediate exchange regime (with respect to NMR line separations) with exchange times being close to typical diffusion times chosen in PFG-NMR diffusion measurements (ms regime). The resulting effects, as described by the Kärger equation, are included into the evaluation of PFG-NMR data for obtaining precise proton diffusion coefficients. The highly reduced proton diffusion coefficient within the phosphoric acid part of the model systems compared to neat phosphoric acid is suggested to be the immediate consequence of proton subtraction from phosphoric acid. This reduces hydrogen bond network frustration (imbalance of the number of proton donors and acceptors) and therefore also the rate of structural proton diffusion, phosphoric acid's acidity and hygroscopicity. Reduced water uptake, shown by TGA, goes along with reduced electroosmotic water drag which is suggested to be the reason for PBI-phosphoric acid membranes performing better in fuel cells than other phosphoric-acid-containing electrolytes with higher protonic conductivity.

2. The effects of temperature on optical properties of InGaN/GaN multiple quantum well light-emitting diodes

Science.gov (United States)

Li, Yi; Zhu, Youhua; Huang, Jing; Deng, Honghai; Wang, Meiyu; Yin, HaiHong

2017-02-01

The effects of temperature on the optical properties of InGaN/GaN quantum well (QW) light-emitting diodes have been investigated by using the six-by-six K-P method taking into account the temperature dependence of band gaps, lattice constants, and elastic constants. The numerical results indicate that the increase of temperature leads to the decrease of the spontaneous emission rate at the same injection current density due to the redistribution of carrier density and the increase of the non-radiative recombination rate. The product of Fermi-Dirac distribution functions of electron fc n and hole ( 1 - fv U m ) for the transitions between the three lowest conduction subbands (c1-c3) and the top six valence subbands (v1-v6) is larger at the lower temperature, which indicates that there are more electron-hole pairs distributed on the energy levels. It should be noted that the optical matrix elements of the inter-band transitions slightly increase at the higher temperature. In addition, the internal quantum efficiency of the InGaN/GaN QW structure is evidently decreased with increasing temperature.

3. Temperature dependence of optical transitions in Al xGa1-xAs/GaAs quantum well structures grown by molecular beam epitaxy

International Nuclear Information System (INIS)

Caballero-Rosas, A.; Mejia-Garcia, C.; Contreras-Puente, G.; Lopez-Lopez, M.

2005-01-01

Quantum well (QW) structures of Al x Ga 1-x As/GaAs were characterized by photoluminescence technique as a function of the temperature between 10 and 300 K. The structures were grown on a 500 nm thick GaAs buffer layer with Molecular Beam Epitaxy technique. We have studied the properties of in-situ Cl 2 -etched GaAs surfaces and overgrown QW structures as a function of the etching temperature (70 and 200 deg. C). Several models were used to fit the experimental points. Best fit to experimental points was obtained with the Paessler model

4. Room Temperature Electroluminescence from Tensile-Strained Si0.13Ge0.87/Ge Multiple Quantum Wells on a Ge Virtual Substrate

Directory of Open Access Journals (Sweden)

Guangyang Lin

2016-09-01

Full Text Available Direct band electroluminescence (EL from tensile-strained Si0.13Ge0.87/Ge multiple quantum wells (MQWs on a Ge virtual substrate (VS at room temperature is reported herein. Due to the competitive result of quantum confinement Stark effect and bandgap narrowing induced by tensile strain in Ge wells, electroluminescence from Γ1-HH1 transition in 12-nm Ge wells was observed at around 1550 nm. As injection current density increases, additional emission shoulders from Γ2-HH2 transition in Ge wells and Ge VS appeared at around 1300–1400 nm and 1600–1700 nm, respectively. The peak energy of EL shifted to the lower energy side superquadratically with an increase of injection current density as a result of the Joule heating effect. During the elevation of environmental temperature, EL intensity increased due to a reduction of energy between L and Γ valleys of Ge. Empirical fitting of the relationship between the integrated intensity of EL (L and injection current density (J with L~Jm shows that the m factor increased with injection current density, suggesting higher light emitting efficiency of the diode at larger injection current densities, which can be attributed to larger carrier occupations in the Γ valley and the heavy hole (HH valance band at higher temperatures.

5. Growth mechanisms of plasma-assisted molecular beam epitaxy of green emission InGaN/GaN single quantum wells at high growth temperatures

International Nuclear Information System (INIS)

Yang, W. C.; Wu, C. H.; Tseng, Y. T.; Chiu, S. Y.; Cheng, K. Y.

2015-01-01

The results of the growth of thin (∼3 nm) InGaN/GaN single quantum wells (SQWs) with emission wavelengths in the green region by plasma-assisted molecular beam epitaxy are present. An improved two-step growth method using a high growth temperature up to 650 °C is developed to increase the In content of the InGaN SQW to 30% while maintaining a strong luminescence intensity near a wavelength of 506 nm. The indium composition in InGaN/GaN SQW grown under group-III-rich condition increases with increasing growth temperature following the growth model of liquid phase epitaxy. Further increase in the growth temperature to 670 °C does not improve the photoluminescence property of the material due to rapid loss of indium from the surface and, under certain growth conditions, the onset of phase separation

6. A Semi-Analytical Method for Rapid Estimation of Near-Well Saturation, Temperature, Pressure and Stress in Non-Isothermal CO2 Injection

Science.gov (United States)

LaForce, T.; Ennis-King, J.; Paterson, L.

2015-12-01

Reservoir cooling near the wellbore is expected when fluids are injected into a reservoir or aquifer in CO2 storage, enhanced oil or gas recovery, enhanced geothermal systems, and water injection for disposal. Ignoring thermal effects near the well can lead to under-prediction of changes in reservoir pressure and stress due to competition between increased pressure and contraction of the rock in the cooled near-well region. In this work a previously developed semi-analytical model for immiscible, nonisothermal fluid injection is generalised to include partitioning of components between two phases. Advection-dominated radial flow is assumed so that the coupled two-phase flow and thermal conservation laws can be solved analytically. The temperature and saturation profiles are used to find the increase in reservoir pressure, tangential, and radial stress near the wellbore in a semi-analytical, forward-coupled model. Saturation, temperature, pressure, and stress profiles are found for parameters representative of several CO2 storage demonstration projects around the world. General results on maximum injection rates vs depth for common reservoir parameters are also presented. Prior to drilling an injection well there is often little information about the properties that will determine the injection rate that can be achieved without exceeding fracture pressure, yet injection rate and pressure are key parameters in well design and placement decisions. Analytical solutions to simplified models such as these can quickly provide order of magnitude estimates for flow and stress near the well based on a range of likely parameters.

7. Intersubband optical absorption coefficients and refractive index changes in a graded quantum well under intense laser field: Effects of hydrostatic pressure, temperature and electric field

International Nuclear Information System (INIS)

Ungan, F.; Restrepo, R.L.; Mora-Ramos, M.E.; Morales, A.L.; Duque, C.A.

2014-01-01

The effects of hydrostatic pressure, temperature, and electric field on the optical absorption coefficients and refractive index changes associated with intersubband transition in a typical GaAs/Ga 0.7 Al 0.3 As graded quantum well under intense laser field have been investigated theoretically. The electron energy eigenvalues and the corresponding eigenfunctions of the graded quantum well are calculated within the effective mass approximation and envelope wave function approach. The analytical expressions of the optical properties are obtained using the compact density-matrix approach and the iterative method. The numerical results show that the linear and nonlinear optical properties depend strongly on the intense laser field and electric field but weakly on the hydrostatic pressure and temperature. Additionally, it has been found that the electronic and optical properties in a GaAs/Ga 0.7 Al 0.3 As graded quantum well under the intense laser field can be tuned by changing these external inputs. Thus, these results give a new degree of freedom in the devices applications

8. Intersubband optical absorption coefficients and refractive index changes in a graded quantum well under intense laser field: Effects of hydrostatic pressure, temperature and electric field

Energy Technology Data Exchange (ETDEWEB)

2014-02-01

The effects of hydrostatic pressure, temperature, and electric field on the optical absorption coefficients and refractive index changes associated with intersubband transition in a typical GaAs/Ga{sub 0.7}Al{sub 0.3}As graded quantum well under intense laser field have been investigated theoretically. The electron energy eigenvalues and the corresponding eigenfunctions of the graded quantum well are calculated within the effective mass approximation and envelope wave function approach. The analytical expressions of the optical properties are obtained using the compact density-matrix approach and the iterative method. The numerical results show that the linear and nonlinear optical properties depend strongly on the intense laser field and electric field but weakly on the hydrostatic pressure and temperature. Additionally, it has been found that the electronic and optical properties in a GaAs/Ga{sub 0.7}Al{sub 0.3}As graded quantum well under the intense laser field can be tuned by changing these external inputs. Thus, these results give a new degree of freedom in the devices applications.

9. RPM-WEBBSYS: A web-based computer system to apply the rational polynomial method for estimating static formation temperatures of petroleum and geothermal wells

Science.gov (United States)

Wong-Loya, J. A.; Santoyo, E.; Andaverde, J. A.; Quiroz-Ruiz, A.

2015-12-01

A Web-Based Computer System (RPM-WEBBSYS) has been developed for the application of the Rational Polynomial Method (RPM) to estimate static formation temperatures (SFT) of geothermal and petroleum wells. The system is also capable to reproduce the full thermal recovery processes occurred during the well completion. RPM-WEBBSYS has been programmed using advances of the information technology to perform more efficiently computations of SFT. RPM-WEBBSYS may be friendly and rapidly executed by using any computing device (e.g., personal computers and portable computing devices such as tablets or smartphones) with Internet access and a web browser. The computer system was validated using bottomhole temperature (BHT) measurements logged in a synthetic heat transfer experiment, where a good matching between predicted and true SFT was achieved. RPM-WEBBSYS was finally applied to BHT logs collected from well drilling and shut-in operations, where the typical problems of the under- and over-estimation of the SFT (exhibited by most of the existing analytical methods) were effectively corrected.

10. A new look at the statistical assessment of approximate and rigorous methods for the estimation of stabilized formation temperatures in geothermal and petroleum wells

International Nuclear Information System (INIS)

Espinoza-Ojeda, O M; Santoyo, E; Andaverde, J

2011-01-01

Approximate and rigorous solutions of seven heat transfer models were statistically examined, for the first time, to estimate stabilized formation temperatures (SFT) of geothermal and petroleum boreholes. Constant linear and cylindrical heat source models were used to describe the heat flow (either conductive or conductive/convective) involved during a borehole drilling. A comprehensive statistical assessment of the major error sources associated with the use of these models was carried out. The mathematical methods (based on approximate and rigorous solutions of heat transfer models) were thoroughly examined by using four statistical analyses: (i) the use of linear and quadratic regression models to infer the SFT; (ii) the application of statistical tests of linearity to evaluate the actual relationship between bottom-hole temperatures and time function data for each selected method; (iii) the comparative analysis of SFT estimates between the approximate and rigorous predictions of each analytical method using a β ratio parameter to evaluate the similarity of both solutions, and (iv) the evaluation of accuracy in each method using statistical tests of significance, and deviation percentages between 'true' formation temperatures and SFT estimates (predicted from approximate and rigorous solutions). The present study also enabled us to determine the sensitivity parameters that should be considered for a reliable calculation of SFT, as well as to define the main physical and mathematical constraints where the approximate and rigorous methods could provide consistent SFT estimates

11. Spin relaxation dynamics of holes in intrinsic GaAs quantum wells studied by transient circular dichromatic absorption spectroscopy at room temperature.

Science.gov (United States)

Fang, Shaoyin; Zhu, Ruidan; Lai, Tianshu

2017-03-21

Spin relaxation dynamics of holes in intrinsic GaAs quantum wells is studied using time-resolved circular dichromatic absorption spectroscopy at room temperature. It is found that ultrafast dynamics is dominated by the cooperative contributions of band filling and many-body effects. The relative contribution of the two effects is opposite in strength for electrons and holes. As a result, transient circular dichromatic differential transmission (TCD-DT) with co- and cross-circularly polarized pump and probe presents different strength at several picosecond delay time. Ultrafast spin relaxation dynamics of excited holes is sensitively reflected in TCD-DT with cross-circularly polarized pump and probe. A model, including coherent artifact, thermalization of nonthermal carriers and the cooperative contribution of band filling and many-body effects, is developed, and used to fit TCD-DT with cross-circularly polarized pump and probe. Spin relaxation time of holes is achieved as a function of excited hole density for the first time at room temperature, and increases with hole density, which disagrees with a theoretical prediction based on EY spin relaxation mechanism, implying that EY mechanism may be not dominant hole spin relaxation mechanism at room temperature, but DP mechanism is dominant possibly.

12. Anaerobic fermentation combined with low-temperature thermal pretreatment for phosphorus-accumulating granular sludge: Release of carbon source and phosphorus as well as hydrogen production potential.

Science.gov (United States)

Zou, Jinte; Li, Yongmei

2016-10-01

Releases of organic compounds and phosphorus from phosphorus-accumulating granular sludge (PGS) and phosphorus-accumulating flocculent sludge (PFS) during low-temperature thermal pretreatment and anaerobic fermentation were investigated. Meanwhile, biogas production potential and microbial community structures were explored. The results indicate that much more soluble chemical oxygen demand (SCOD) and phosphorus were released from PGS than from PFS via low-temperature thermal pretreatment because of the higher extracellular polymeric substances (EPS) content in PGS and higher ratio of phosphorus reserved in EPS. Furthermore, PGS contains more anaerobes and dead cells, resulting in much higher SCOD and volatile fatty acids release from PGS than those from PFS during fermentation. PGS fermentation facilitated the n-butyric acid production, and PGS exhibited the hydrogen production potential during fermentation due to the presence of hydrogen-producing bacteria. Therefore, anaerobic fermentation combined with low-temperature thermal pretreatment can facilitate the recovery of carbon and phosphorus as well as producing hydrogen from PGS. Copyright © 2016 Elsevier Ltd. All rights reserved.

13. Proceedings of 1991-workshops of the working group on 'Development and application of facilities for low temperature irradiation as well as controlled irradiation'

International Nuclear Information System (INIS)

1992-09-01

14. The effect of junction temperature on the optoelectrical properties of InGaN/GaN multiple quantum well light-emitting diodes

International Nuclear Information System (INIS)

Wang, Jen-Cheng; Fang, Chia-Hui; Wu, Ya-Fen; Chen, Wei-Jen; Kuo, Da-Chuan; Fan, Ping-Lin; Jiang, Joe-Air; Nee, Tzer-En

2012-01-01

Thermal effects on the optoelectrical characteristics of green InGaN/GaN multiple quantum well (MQW) light-emitting diodes (LEDs) have been investigated in detail for a broad temperature range, from 30 °C to 100 °C. The current-dependent electroluminescence (EL) spectra, current–voltage (I–V) curves and luminescence intensity–current (L–I) characteristics of green InGaN/GaN MQW LEDs have been measured to characterize the thermal-related effects on the optoelectrical properties of the InGaN/GaN MQW LEDs. The experimental results show that both the forward voltages decreased with a slope of −3.7 mV/K and the emission peak wavelength increased with a slope of +0.02 nm/K with increasing temperature, indicating a change in the contact resistance between the metal and GaN layers and the existence of a band gap shrinkage effect. The junction temperature estimated from the forward voltage and the emission peak shift varied from 25.6 to 14.5 °C and from 22.4 to 35.6 °C, respectively. At the same time, the carrier temperature decreased from 371.2 to 348.1 °C as estimated from the slope of high-energy side of the emission spectra. With increasing injection current, there was found to be a strong current-dependent blueshift of −0.15 nm/mA in the emission peak wavelength of the EL spectra. This could be attributed to not only the stronger band-filling effect but also the enhanced quantum confinement effect that resulted from the piezoelectric polarization and spontaneous polarization in InGaN/GaN heterostructures. We also demonstrate a helpful and easy way to measure and calculate the junction temperature of InGaN/GaN MQW LEDs. - Highlights: ► We examine the effect of junction temperature on the optoelectrical properties. ► Not only the band-filling effect but also the quantum confinement effect. ► Piezoelectric polarization and the spontaneous polarization in InGaN/GaN structures. ► Carrier transport was responsible for the influences on the

15. Applying Petroleum the Pressure Buildup Well Test Procedure on Thermal Response Test—A Novel Method for Analyzing Temperature Recovery Period

Directory of Open Access Journals (Sweden)

Tomislav Kurevija

2018-02-01

Full Text Available The theory of Thermal Response Testing (TRT is a well-known part of the sizing process of the geothermal exchange system. Multiple parameters influence the accuracy of effective ground thermal conductivity measurement; like testing time, variable power, climate interferences, groundwater effect, etc. To improve the accuracy of the TRT, we introduced a procedure to additionally analyze falloff temperature decline after the power test. The method is based on a premise of analogy between TRT and petroleum well testing, since the origin of both procedures lies in the diffusivity equation with solutions for heat conduction or pressure analysis during radial flow. Applying pressure build-up test interpretation techniques to borehole heat exchanger testing, greater accuracy could be achieved since ground conductivity could be obtained from this period. Analysis was conducted on a coaxial exchanger with five different power steps, and with both direct and reverse flow regimes. Each test was set with 96 h of classical TRT, followed by 96 h of temperature decline, making for almost 2000 h of cumulative borehole testing. Results showed that the ground conductivity value could vary by as much as 25%, depending on test time, seasonal period and power fluctuations, while the thermal conductivity obtained from the falloff period provided more stable values, with only a 10% value variation.

16. The interference of flexible working times with the circadian temperature rhythm--a predictor of impairment to health and well-being?

Science.gov (United States)

Giebel, Ole; Wirtz, Anna; Nachreiner, Friedhelm

2008-04-01

In order to analyze whether impairments to health and well-being under flexible working hours can be predicted from specific characteristics of the work schedules, periodic components in flexible working hours and their interference with the circadian temperature rhythm were analyzed applying univariate and bivariate spectrum analyses to both time series. The resulting indicators of spectral power and phase shift of these components were then related to reported health impairments using regression analysis. The results show that a suppression of both the 24 and the 168 h components in the work schedules (i.e., a lack of periodicity) can be used to predict reported health impairments, and that if there are relatively strong 24 and 168 h components left in the work schedules, their phase difference with the temperature rhythm (as an indicator of the interference between working time and the circadian rhythm) further predicts impairment. The results indicate that the periodicity of working hours and the amount of (circadian) desynchronization induced by flexible work schedules can be used for predicting the impairing effects of flexible work schedules on health and well-being. The results can thus be used for evaluating and designing flexible shift rosters.

17. GaAsBi/GaAs multi-quantum well LED grown by molecular beam epitaxy using a two-substrate-temperature technique

Science.gov (United States)

Kisan Patil, Pallavi; Luna, Esperanza; Matsuda, Teruyoshi; Yamada, Kohki; Kamiya, Keisuke; Ishikawa, Fumitaro; Shimomura, Satoshi

2017-03-01

We report a GaAs0.96Bi0.04/GaAs multiple quantum well (MQW) light emitting diode (LED) grown by molecular beam epitaxy using a two-substrate-temperature (TST) technique. In particular, the QWs and the barriers in the intrinsic region were grown at the different temperatures of {T}{{GaAsBi}} = 350 °C and {T}{{GaAs}} = 550 ^\\circ {{C}}, respectively. Investigations of the microstructure using transmission electron microscopy (TEM) reveal homogeneous MQWs free of extended defects. Furthermore, the local determination of the Bi distribution profile across the MQWs region using TEM techniques confirm the uniform Bi distribution, while revealing a slightly chemically graded GaAs-on-GaAsBi interface due to Bi surface segregation. Despite this small broadening, we found that Bi segregation is significantly reduced (up to 18% reduction) compared to previous reports on Bi segregation in GaAsBi/GaAs MQWs. Hence, the TST procedure proves as a very efficient method to reduce Bi segregation and thus increase the quality of the layers and interfaces. These improvements positively reflect in the optical properties. Room temperature photoluminescence and electroluminescence (EL) at 1.23 μm emission wavelength are successfully demonstrated using TST MQWs containing less Bi content than in previous reports. Finally, LED fabricated using the present TST technique show current-voltage (I-V) curves with a forward voltage of 3.3 V at an injection current of 130 mA under 1.0 kA cm-2 current excitation. These results not only demonstrate that TST technique provides optical device quality GaAsBi/GaAs MQWs but highlight the relevance of TST-based growth techniques on the fabrication of future heterostructure devices based on dilute bismides.

18. Heat stress in urban areas. Indoor and outdoor temperatures in different urban structure types and subjectively reported well-being during a heat wave in the city of Leipzig

Energy Technology Data Exchange (ETDEWEB)

Franck, Ulrich; Roeder, Stefan; Schlink, Uwe [Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany). Core Facility Studies; Krueger, Michael [Leipzig Univ. (Germany). Inst. of Geography; Schwarz, Nina [Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany). Dept. of Computational Landscape Ecology; Grossmann, Katrin [Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany). Dept. of Urban and Environmental Sociology

2013-04-15

Climate projections for Leipzig suggest elevated minimum and maximum temperatures as well as more frequent days with high temperatures. Hence, climate change is threatening human well-being and health. People spend the majority of their time indoors. Therefore, indoor temperatures (especially during the night) are of special importance with respect to well-being and health. Indoor air temperature depends on outdoor air temperatures, but is for example modified by type of urban structure, housing area, and may be also influenced by differences in the behavior of the inhabitants. Especially in cities, outdoor air temperatures depend on urban structure e.g. housing density, building arrangement, unpaved areas, types of urban structures, urban green, and other factors. Hence, the questions arise how types of urban structures are related to inner-urban temperature differences and how outdoor air temperatures influence indoor temperatures in dependence on urban housing conditions. This work is a part of a pilot study conducted during the summer 2010 which gathered data from remote sensing, mobile measurements, stationary measurements of air temperatures and relative humidity in areas with different housing structures, and of indoor as well as outdoor temperatures in occupied apartments. Household-survey data reported the subjective perception of heat stress. The study resulted in rather complex relationships between type of housing areas, indoor and outdoor temperatures, morning and evening temperatures, indoor and outdoor temperatures as well as subjective heat perception. Green spaces and types of residential areas are related to air temperatures. More green resulted in lower temperatures. Temperatures have a tendency to increase with increasing story number and are significantly higher in the top floor. An indoor heat island effect corresponding to the outdoor effect could be shown for the homes: Distance to city center is a predicting variable for both outdoor and

19. Heat stress in urban areas: Indoor and outdoor temperatures in different urban structure types and subjectively reported well-being during a heat wave in the city of Leipzig

Directory of Open Access Journals (Sweden)

Ulrich Franck

2013-04-01

Full Text Available Climate projections for Leipzig suggest elevated minimum and maximum temperatures as well as more frequent days with high temperatures. Hence, climate change is threatening human well-being and health. People spend the majority of their time indoors. Therefore, indoor temperatures (especially during the night are of special importance with respect to well-being and health. Indoor air temperature depends on outdoor air temperatures, but is for example modified by type of urban structure, housing area, and may be also influenced by differences in the behavior of the inhabitants. Especially in cities, outdoor air temperatures depend on urban structure e.g. housing density, building arrangement, unpaved areas, types of urban structures, urban green, and other factors. Hence, the questions arise how types of urban structures are related to inner-urban temperature differences and how outdoor air temperatures influence indoor temperatures in dependence on urban housing conditions. This work is a part of a pilot study conducted during the summer 2010 which gathered data from remote sensing, mobile measurements, stationary measurements of air temperatures and relative humidity in areas with different housing structures, and of indoor as well as outdoor temperatures in occupied apartments. Household-survey data reported the subjective perception of heat stress. The study resulted in rather complex relationships between type of housing areas, indoor and outdoor temperatures, morning and evening temperatures, indoor and outdoor temperatures as well as subjective heat perception. Green spaces and types of residential areas are related to air temperatures. More green resulted in lower temperatures. Temperatures have a tendency to increase with increasing story number and are significantly higher in the top floor. An indoor heat island effect corresponding to the outdoor effect could be shown for the homes: Distance to city center is a predicting variable for

20. Influence of the annealing temperature on the optical transitions of InGaAsP-based quantum well structures investigated by photoreflectance spectroscopy

International Nuclear Information System (INIS)

Podhorodecki, A.; Kudrawiec, R.; Andrzejewski, J.; Misiewicz, J.; Wojcik, J.; Robinson, B.J.; Thompson, D.A.; Mascher, P.

2005-01-01

Photoreflectance (PR) and photoluminescence (PL) spectroscopies have been used to study the effect of the rapid thermal annealing (RTA) on InGaAsP-based quantum wells (QWs) which are the active part of a laser structure tailored at 1.5 μm. In the case of PL, it has been observed that the RTA enhances PL intensity and tunes the emission wavelength of the laser structure to blue. In case of PR due to its absorption character, we were able to study QW transitions related to excited states, besides the fundamental transition observed in PL. In addition, optical transitions related to other part of the laser structure have been observed in PR. It has been shown that there exists a ''critical'' annealing temperature (720 C) where the energy shift appears. We have observed a blueshift for both the ground and excited state transitions, but in the case of the ground state transitions the blueshift has been found to be bigger. The magnitude of this blueshift has been found to change linearly from 0 to ∝15 meV with the rise of temperature from 720 to 780 C. Below 720 C no significant change in the energy of the QW transitions is observed. In the case of PR transitions related to the other part of the laser structure, i.e., the quaternary InGaAsP barriers, it has been observed that after annealing PR features associated with these layers rather do not shift, they change only their line-shape. Also, it has been shown that RTA does not destroy the optical quality of the samples. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

1. The SLIMITRE system: T-P-CCL registry in high temperature oil wells; El sistema SLIMITRE: registro T-P-CCL en pozos petroleros de alta temperatura

Energy Technology Data Exchange (ETDEWEB)

Iglesias R, Eduardo and others [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

2001-07-01

PEMEX Exploration and Production (PEP), through its Management of Well Productivity of the Subdivision of Technology and Professional Development (GTDP) and of its Active Luna, faced the problematic of carrying out simultaneous recordings of temperature and pressure in high temperature flowing wells. Capitalizing the experience and know-how of the Gerencia de Geotermia (GG) of the Instituto de Investigaciones Electricas (IIE) in this field, it ordered the resolution of the described problematic, by means of the development of appropriate tools. In order to compliment this order, the GG of the IIE developed the SLIMETRE system, in close collaboration with the personnel of PEP involved in the project. This project framed in the Agreement of Collaboration for the rendering of services between PEMEX Exploration and Production and the Instituto de Investigaciones Electricas. In the sections that follow appear the main parameters of design, the architecture of the system is explained, the tools and the subsystem of data acquisition are described; the obtained results are exposed and the conclusions appear. [Spanish] Pemex Exploracion y Produccion (PEP), a traves de su Gerencia de Productividad de Pozos de la Subdireccion de Tecnologia y Desarrollo Profesional (GTDP) y de su Activo Luna, encaro la problematica de efectuar registros simultaneos de temperatura y presion en pozos fluyentes de alta temperatura. Capitalizando la experiencia y know-how de la Gerencia de Geotermia (GG) del Instituto de Investigaciones Electricas (IIE) en dicho campo, le encargo la resolucion de la problematica descrita, mediante el desarrollo de herramientas apropiadas. Para cumplimentar dicho encargo, la GG del IIE desarrollo el sistema SLIMETRE, en estrecha colaboracion con el personal de PEP involucrado en el proyecto. Este proyecto se enmarco en el Convenio de Colaboracion para la prestacion de servicios entre Pemex Exploracion y Produccion y el Instituto de Investigaciones Electricas. En

2. Well-posed two-temperature constitutive equations for stable dense fluid shock waves using molecular dynamics and generalizations of Navier-Stokes-Fourier continuum mechanics.

Science.gov (United States)

Hoover, Wm G; Hoover, Carol G

2010-04-01

Guided by molecular dynamics simulations, we generalize the Navier-Stokes-Fourier constitutive equations and the continuum motion equations to include both transverse and longitudinal temperatures. To do so we partition the contributions of the heat transfer, the work done, and the heat flux vector between the longitudinal and transverse temperatures. With shockwave boundary conditions time-dependent solutions of these equations converge to give stationary shockwave profiles. The profiles include anisotropic temperature and can be fitted to molecular dynamics results, demonstrating the utility and simplicity of a two-temperature description of far-from-equilibrium states.

3. BeZnCdSe quantum-well ridge-waveguide laser diodes under low threshold room-temperature continuous-wave operation

Energy Technology Data Exchange (ETDEWEB)

Feng, Jijun [Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System (Ministry of Education), School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093 (China); Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Akimoto, Ryoichi, E-mail: r-akimoto@aist.go.jp [Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)

2015-10-19

Low threshold current ridge-waveguide BeZnCdSe quantum-well laser diodes (LDs) have been developed by completely etching away the top p-type BeMgZnSe/ZnSe:N short-period superlattice cladding layer, which can suppress the leakage current that flows laterally outside of the electrode. The waveguide LDs are covered with a thick SiO{sub 2} layer and planarized with chemical-mechanical polishing and a reactive ion etching process. Room-temperature lasing under continuous-wave condition is achieved with the laser cavity formed by the cleaved waveguide facets coated with high-reflectivity dielectric films. For a 4 μm-wide green LD lasing around a wavelength of 535 nm, threshold current and voltage of 7.07 mA and 7.89 V are achieved for a cavity length of 300 μm, and the internal differential quantum efficiency, internal absorption loss, gain constant, and nominal transparency current density are estimated to be 27%, 4.09 cm{sup −1}, 29.92 (cm × μm)/kA and 6.35 kA/(cm{sup 2 }× μm), respectively. This compact device can realize a significantly improved performance with much lower threshold power consumption, which would benefit the potential application for ZnSe-based green LDs as light sources in full-color display and projector devices installed in consumer products such as pocket projectors.

4. Geothermal potential of northern Bavaria: Analysis of geothermal resources by evaluation of geophysical temperature logs in drinking water wells and deep wells; Geothermisches Potential Nordbayerns - Untersuchungen der geothermischen Verhaeltnisse durch Auswertung geophysikalischer Temperaturmessungen in Trinkwasser- und Tiefbohrungen

Energy Technology Data Exchange (ETDEWEB)

Bauer, W; Udluft, P [Lehr- und Forschungsbereich Hydrogeologie und Umwelt, Inst. fuer Geologie, Wuerzburg Univ. (Germany)

1997-12-01

The geothermal potential of northern Bavaria was investigated. Thermal water in the lower heat range may be used, e.g., for space heating, bath heating and agricultural purposes. Geophysical data were obtained from a number of drinking water wells with a depth of less than 150 m and a few deep wells of more than 150 m. The data are to serve as a decision aid for potential users of geothermal energy and reduce the exploration risk. (orig.) [Deutsch] Zielsetzung des Forschungsvorhabens ist die Bewertung des geothermischen Potentials Nordbayerns im Hinblick auf die Nutzung von Tiefenwasser zur Gewinnung von hydrothermaler Energie. Niedrigthermale Tiefenwaesser bieten sich z.B. als Energietraeger fuer Raumwaerme, Baederheizung and landwirtschaftliche Nutzung an. Die geothermischen Daten liegen in Form von geophysikalischen Temperaturmessungen aus zahlreichen Trinkwasserbohrungen mit weniger als 150 m Bohrtiefe und einigen Tiefbohrungen mit mehr als 150 m Bohrtiefe vor. Die Bewertung des geothermischen Potentials Nordbayerns soll als Planungsgrundlage fuer potentialle Erdwaermenutzer dienen und zu einer Minimierung des Explorationsrisikos beitragen. (orig.)

5. Temperature-dependent photoluminescence and contactless electroreflectance characterization of a ZnxCd1-xSe/Znx'Cdy'Mg1-x'-y'Se asymmetric coupled quantum well structure

International Nuclear Information System (INIS)

Wu, J.D.; Huang, Y.S.; Lin, D.Y.; Charles, W.O.; Shen, A.; Tamargo, M.C.; Tiong, K.K.

2011-01-01

Research highlights: → We report a detailed study of a ZnxCd 1-x Se/Znx'Cdy'Mg 1-x '-y'Se asymmetric coupled quantum well structure by using temperature-dependent photoluminescence (PL) and contactless electroreflectance (CER) techniques. → The PL peak position yielded information of the fundamental excitonic recombinations. → Analysis of the CER spectra led to the identification of various interband transitions. →Study of the temperature dependence of the excitonic transition energies indicated that main influence of temperature on the quantized transitions is through temperature dependence of the constituent material band gap in the well. - Abstract: Temperature-dependent photoluminescence (PL) and contactless electroreflectance (CER) were used to characterize a Zn x Cd 1-x Se/Zn x' Cd y' Mg 1-x'-y' Se asymmetric coupled quantum well (ACQW) structure in the range of 10-300 K. The PL peak position yielded information of the fundamental excitonic recombinations. A detailed analysis of the CER spectra led to the identification of various interband transitions. The intersubband transitions were then estimated and found to be in a good agreement with the previous report of Fourier-transform infrared absorption measurements. At low temperature, the PL spectra of the sample showed an asymmetric behavior with an exponential tail at the lower-energy side and were attributed to the localized excitonic recombinations due to potential fluctuations. Detailed study of the temperature dependence of the excitonic transition energies indicated that the main influence of temperature on the quantized transitions is through the temperature dependence of the band gap of the constituent material in the well.

6. The Influence of New Colored Light Stimulation Methods on Heart Rate Variability, Temperature, and Well-Being: Results of a Pilot Study in Humans

Directory of Open Access Journals (Sweden)

Daniela Litscher

2013-01-01

Full Text Available Changes of light intensity of different colors can shift many physiological parameters and conditions like melatonin, alertness, body temperature, heart rate (HR, and heart rate variability (HRV. The aim of this pilot study was to investigate acute temperature, HR, HRV, and state of mind reactivities after illumination with red (631 nm and blue (456 nm light (illuminance 140 lux for both. Seven healthy volunteers (5 females, 2 males; mean age ± SD 34.1 ± 11.9 years were investigated at the Medical University of Graz, using new color light panels. Significant decreases were found only after 10 min blue light stimulation in nose temperature (P=0.046, HR (P<0.05, and total HRV (P=0.029, in association with a significant alteration of the emotional state (stress level score, P=0.006. However, red light stimulation of the same persons did not induce the same effects in these parameters. The effect of blue light as environmental stimulation on human health is not clarified in detail and needs further investigations.

7. Influence of deposition substrate temperature on the morphology and molecular orientation of chloroaluminum phthalocyanine films as well the performance of organic photovoltaic cells

International Nuclear Information System (INIS)

Zheng, Yan-Qiong; Zhang, Jing; Yang, Fang; Wei, Bin; Zhang, Jianhua; Wang, Zixing; Komino, Takeshi; Adachi, Chihaya; Pu, Wenhong; Yang, Changzhu

2015-01-01

The dependence of the morphology of neat chloroaluminum phthalocyanine (ClAlPc) films on substrate temperature (T_s_u_b) during deposition is investigated by variable angle spectroscopic ellipsometry (VASE), x-ray diffraction (XRD), and atomic force microscopy (AFM) to obtain detailed information about the molecular orientation, phase separation, and crystallinity. AFM images indicate that both grain size and root mean square (RMS) roughness noticeably increase with T_s_u_b both in neat and blend films. Increasing T_s_u_b from room temperature to 420 K increases the horizontal orientation of the ClAlPc molecules with an increase of the mean molecular tilt angle from 60.13° (300 K) to 65.86° (420 K). The UV–vis absorption band of the corresponding films increases and the peak wavelength slightly red shifts with the T_s_u_b increase. XRD patterns show a clear diffraction peak at T_s_u_b over 390 K, implying the π-stacking of interconnected ClAlPc molecules at high T_s_u_b. Planar and bulk heterojunction (BHJ) photovoltaic cells containing pristine ClAlPc films and ClAlPc:C_6_0 blend films fabricated at T_s_u_b of 390 K show increases in the power conversion efficiency (η_P_C_E) of 28% (η_P_C_E = 3.12%) and 36% (η_P_C_E = 3.58%), respectively, relative to devices as-deposited at room temperature. The maximum short circuit current in BHJs is obtained at 390 K in the T_s_u_b range from 300 K to 450 K. (paper)

8. Hanford wells

International Nuclear Information System (INIS)

McGhan, V.L.; Myers, D.A.; Damschen, D.W.

1976-03-01

The Hanford Reservation contains about 2100 wells constructed from pre-Hanford Works to the present. As of Jan. 1976, about 1800 wells still exist, 850 of which were drilled to the groundwater table; 700 still contain water. This report provides the most complete documentation of these wells and supersedes all previous compilations, including BNWL-1739

9. Integrated assessment of variable density-viscosity groundwater flow for a high temperature mono-well aquifer thermal energy storage (HT-ATES) system in a geothermal reservoir

NARCIS (Netherlands)

Zeghici, Răzvan Mihai; Oude Essink, Gualbert H.P.; Hartog, Niels; Sommer, Wijb

2015-01-01

The use of groundwater systems for heat storage increasingly gains interest among water managers, policy makers and researchers as a way to increase the efficiency of energy production and to allow the re-use of waste heat. Typically, mono-well storage systems are thought to require the use of

10. Lowering temperature to increase chemical oxidation efficiency: the effect of temperature on permanganate oxidation rates of five types of well defined organic matter, two natural soils, and three pure phase products.

Science.gov (United States)

de Weert, J P A; Keijzer, T J S; van Gaans, P F M

2014-12-01

In situ chemical oxidation (ISCO) is a soil remediation technique to remove organic pollutants from soil and groundwater with oxidants, like KMnO4. However, also natural organic compounds in soils are being oxidized, which makes the technique less efficient. Laboratory experiments were performed to investigate the influence of temperature on this efficiency, through its effect on the relative oxidation rates - by permanganate - of natural organic compounds and organic pollutants at 16 and 15°C. Specific types of organic matter used were cellulose, oak wood, anthracite, reed - and forest peat, in addition to two natural soils. Dense Non-Aqueous Phase Liquid-tetrachloroethene (DNAPL-PCE), DNAPL trichloroethene (DNAPL-TCE) and a mixture of DNAPL-PCE, -TCE and -hexachlorobutadiene were tested as pollutants. Compared to 16°C, oxidation was slower at 5°C for the specific types of organic matter and the natural soils, with exception of anthracite, which was unreactive. The oxidation rate of DNAPL TCE was lower at 5°C too. However, at this temperature oxidation was fast, implying that no competitive loss to natural organic compounds will be expected in field applications by lowering temperature. Oxidation of DNAPL-PCE and PCE in the mixture proceeded at equal rates at both temperatures, due to the dissolution rate as limiting factor. These results show that applying permanganate ISCO to DNAPL contamination at lower temperatures will limit the oxidation of natural organic matter, without substantially affecting the oxidation rate of the contaminant. This will make such remediation more effective and sustainable in view of protecting natural soil quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

11. Temperature dependence of spin photocurrent spectra induced by Rashba- and Dresselhaus-type circular photogalvanic effect at inter-band excitation in InGaAs/AlGaAs quantum wells.

Science.gov (United States)

Yu, Jinling; Cheng, Shuying; Lai, Yunfeng; Zheng, Qiao; Zhu, Laipan; Chen, Yonghai; Ren, Jun

2015-10-19

Spin photocurrent spectra induced by Rashba- and Dresselhaus-type circular photogalvanic effect (CPGE) at inter-band excitation have been experimentally investigated in InGaAs/AlGaAs quantum wells at a temperature range of 80 to 290 K. It is found that, the sign of Rashba-type current reverses at low temperatures, while that of Dresselhaus-type remains unchanged. The temperature dependence of ratio of Rashba and Dresselhaus spin-orbit coupling parameters, increasing from -6.7 to 17.9, is obtained, and the possible reasons are discussed. We also develop a model to extract the Rashba-type effective electric field at different temperatures. It is demonstrated that excitonic effect will significantly influence the Rashba-type CPGE, while it has little effect on Dresselhaus-type CPGE.

12. Water temperature, salinity and other profiles from CTD taken from near-shore well in Puerto Morelos from 2014-03-27 to 2014-03-28 (NCEI Accession 0163741)

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — This is a 12-hr time series of CTD profiles of water temperature and salinity taken from near-shore well in Puerto Morelos from 2014-03-27 to 2014-03-28. Data were...

13. Water Well Locations - Conservation Wells

Data.gov (United States)

NSGIC Education | GIS Inventory — The conservation well layer identifies the permitted surface location of oil and gas conservation wells that have not been plugged. These include active, regulatory...

14. Potential Fluctuations at Low Temperatures in Mesoscopic-Scale SmTiO3/SrTiO3/SmTiO3 Quantum Well Structures.

Science.gov (United States)

Hardy, Will J; Isaac, Brandon; Marshall, Patrick; Mikheev, Evgeny; Zhou, Panpan; Stemmer, Susanne; Natelson, Douglas

2017-04-25

Heterointerfaces of SrTiO 3 with other transition metal oxides make up an intriguing family of systems with a bounty of coexisting and competing physical orders. Some examples, such as LaAlO 3 /SrTiO 3 , support a high carrier density electron gas at the interface whose electronic properties are determined by a combination of lattice distortions, spin-orbit coupling, defects, and various regimes of magnetic and charge ordering. Here, we study electronic transport in mesoscale devices made with heterostructures of SrTiO 3 sandwiched between layers of SmTiO 3 , in which the transport properties can be tuned from a regime of Fermi-liquid like resistivity (ρ ∝ T 2 ) to a non-Fermi liquid (ρ ∝ T 5/3 ) by controlling the SrTiO 3 thickness. In mesoscale devices at low temperatures, we find unexpected voltage fluctuations that grow in magnitude as T is decreased below 20 K, are suppressed with increasing contact electrode size, and are independent of the drive current and contact spacing distance. Magnetoresistance fluctuations are also observed, which are reminiscent of universal conductance fluctuations but not entirely consistent with their conventional properties. Candidate explanations are considered, and a mechanism is suggested based on mesoscopic temporal fluctuations of the Seebeck coefficient. An improved understanding of charge transport in these model systems, especially their quantum coherent properties, may lead to insights into the nature of transport in strongly correlated materials that deviate from Fermi liquid theory.

15. A Green Platform for Preparation of the Well-Defined Polyacrylonitrile: 60Co γ-ray Irradiation-Initiated RAFT Polymerization at Room Temperature

Directory of Open Access Journals (Sweden)

Shuangshuang Zhang

2017-01-01

Full Text Available 60Co γ-ray irradiation-initiated reversible addition–fragmentation chain transfer (RAFT polymerization at room temperature with 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN as the chain transfer agent was first applied to acrylonitrile (AN polymerization, providing a “green” platform for preparing polyacrylonitrile (PAN-based carbon fibers using an environment-friendly energy source. Various effects of dose rate, molar ratio of the monomer to the chain transfer agent, monomer concentration and reaction time on the AN polymerization behaviors were performed to improve the controllability of molecular the weight and molecular weight distribution of the obtained PAN. The feature of the controlled polymerization was proven by the first-order kinetics, linear increase of the molecular weight with the monomer conversion and a successful chain-extension experiment. The molecular weight and molecular weight distribution of PAN were characterized by size exclusion chromatography (SEC. 1H NMR and Matrix assisted laser desorption ionization/time of flight mass spectra (MALDI-TOF-MS confirmed the chain-end functionality of PAN, which also was supported by the successful chain-extension experiments of original PANs with acrylonitrile and styrene as the second monomers respectively.

16. Amazing wells

Energy Technology Data Exchange (ETDEWEB)

Ross, E.; Leschart, M.; Mahoney, J.; Smith, M.

2002-02-01

Six wells and a drilling rig, setting company, national and world records such as deepest well, longest horizontal well, and record setting completion technology are described. Steam assisted gravity drainage (SAGD) is mainly responsible for these outstanding successes. Discovered more than 20 years ago by a then Imperial oil scientist (Dr. Roger Butler) SAGD promises recovery rates of about 70 per cent for the right reservoir; more than twice the 25 to 30 per cent recovery rate with cyclic stimulation at Cold Lake and an average recovery rate of about 28 per cent for all Alberta light, medium and heavy oil wells. The seven facilities discussed in this article are : (1) Alberta Energy Company's Forest Hill oil sands project near Cold Lake, the first commercial SAGD operation where well pairs are producing 1,200-1,500 bbls per day; (2) Talisman Energy's Lovett River wells, which hold the company's depth record for a horizontal well in the Alberta Foothills; (3) Also owned by Talisman Energy in the Buchan Field in the North Sea, this well is famous for the fact that it was drilled with coiled tubing from a floating production vessel; : (4) in the Peco Field, south of Edson Alberta and owned by EOG Resources Canada, this well holds the Canadian offshore record for a single run using rotary steerable technology; (5) Burlington Resources Canada 's Burlington HZ Hinton 2-34-52-26 W5M well is best known for its record setting extended reach open hole coiled tubing job; (6) another Burlington Resources well holds the record for the deepest one-trip whipstock system ever run in Canada and milled successfully in one trip; and (7) a drilling rig in the Wabasca-Brintnell area of northern Alberta, owned by Canadian Natural Resources Limited, holds the record for drilling the largest number of horizontal holes in one year with the same rig.

17. Live Well

Science.gov (United States)

... Health Conditions Live Well Mental Health Substance Use Smoking Healthy Diet Physical Activity Family Planning Living with HIV: Travel ... to his or her health and well-being. Smoking - Tobacco use is the ... year. Healthy Diet - No matter your HIV status, healthy eating is ...

18. Hanford wells

International Nuclear Information System (INIS)

Chamness, M.A.; Merz, J.K.

1993-08-01

Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details

19. Consideration of the reservoir by the temperature history at the Hijiori HDR (hot dry rock) wells; Hijiori koon gantai no kokukosei ni okeru ondo rireki wo mochiita choryuso no kosatsu

Energy Technology Data Exchange (ETDEWEB)

Takahashi, W; Shinohara, N; Osato, K; Takasugi, S [GERD Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan)

1997-10-22

Hot dry rock (HDR) power generation has been promoted by NEDO since 1984 at Hijiori, Okura village, Mogami-gun, Yamagata Prefecture. Hydraulic fracture tests and circulation tests have been conducted using four wells named as SKG-2, HDR-1, HDR-2 and HDR-3. Based on these test results, flow models of Hijiori shallow and deep reservoirs have been proposed. Conventional circulation tests have been analyzed only using temperature profile data. In this paper, circulation tests are analyzed by numerical simulation, to discuss individual characteristics of the shallow and deep reservoirs. Injection flow, production flow and circulation days were inputted as past circulation test data, to discuss the characteristics of geological layers, especially the permeability data, by which the features of temperature profiles in each well can be explained. As a result, it was found that the extension of permeable zone affecting the temperature in the SKG-2 well equivalent to the shallow reservoir was larger than that in the HDR-1 well. It was also found that there was a large difference in the permeability between the HDR-2a and HDR-3 wells. 5 refs., 8 figs., 2 tabs.

20. Microcanonical-ensemble computer simulation of the high-temperature expansion coefficients of the Helmholtz free energy of a square-well fluid

Science.gov (United States)

Sastre, Francisco; Moreno-Hilario, Elizabeth; Sotelo-Serna, Maria Guadalupe; Gil-Villegas, Alejandro

2018-02-01

The microcanonical-ensemble computer simulation method (MCE) is used to evaluate the perturbation terms Ai of the Helmholtz free energy of a square-well (SW) fluid. The MCE method offers a very efficient and accurate procedure for the determination of perturbation terms of discrete-potential systems such as the SW fluid and surpass the standard NVT canonical ensemble Monte Carlo method, allowing the calculation of the first six expansion terms. Results are presented for the case of a SW potential with attractive ranges 1.1 ≤ λ ≤ 1.8. Using semi-empirical representation of the MCE values for Ai, we also discuss the accuracy in the determination of the phase diagram of this system.

1. Comparative study of the hydrostatic pressure and temperature effects on the impurity-related optical properties in single and double GaAs-Ga{sub 1-x}Al{sub x}As quantum wells

Energy Technology Data Exchange (ETDEWEB)

Odhiambo Oyoko, H. [Department of Physics, Westville Campus, University of KwaZulu-Natal, Private Bag X 54001, Durban 4000 (South Africa); Porras-Montenegro, N. [Departamento de Fisica, Universidad del Valle, AA 25360, Cali (Colombia); Lopez, S.Y. [Facultad de Educacion, Universidad de Antioquia, AA 1226, Medellin (Colombia); Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia)

2007-07-01

Using a variational technique within the effective mass approximation we have carried out a comparative study of the effect of hydrostatic pressure and temperature on the shallow-impurity related optical absorption spectra in GaAs-Ga{sub 1-x}Al{sub x}As single and double quantum wells. The results show a pressure dependent read-shift and a temperature dependent blue-shift in the optical absorption spectra. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

2. Militantly Well

DEFF Research Database (Denmark)

Vigh, Henrik Erdman

2015-01-01

futures that transcend conflict engagement and wartime suffering for young militiamen. It clarifies the positive prospects that are expected to lie beyond the known horrors of war. Though conflict and warfare may provide strange points of departure for talking about well-being, imaginaries of happiness...... stand out from a background of hardship and are talked about in both a quite concrete way, as a lack of insecurity, as well as in an abstract way, as realization of social being. However, for most of the people I talk to, happiness remains elusive and evades their desperate attempts to grasp it...

3. Dry well cooling device

International Nuclear Information System (INIS)

Suzuki, Hiroyuki.

1997-01-01

A plurality of blowing ports with introduction units are disposed to a plurality of ducts in a dry well, and a cooling unit comprising a cooler, a blower and an isolating valve is disposed outside of the dry well. Cooling air and the atmosphere in the dry well are mixed to form a cooling gas and blown into the dry well to control the temperature. Since the cooling unit is disposed outside of the dry well, the maintenance of the cooling unit can be performed even during the plant operation. In addition, since dampers opened/closed depending on the temperature of the atmosphere are disposed to the introduction units for controlling the temperature of the cooling gas, the temperature of the atmosphere in the dry well can be set to a predetermined level rapidly. Since an axial flow blower is used as the blower of the cooling unit, it can be contained in a ventilation cylinder. Then, the atmosphere in the dry well flowing in the ventilation cylinder can be prevented from leaking to the outside. (N.H.)

4. Wellness centrum

OpenAIRE

Krchňák, Petr

2016-01-01

Diplomová práce „Wellness centrum'' je zpracována ve formě prováděcí dokumentace obsahující všechny náležitosti dle platných norem a předpisů. Navržený objekt je řešen jako třípodlažní budova. Objekt slouží veřejnosti k rekreaci a sportu. V 1S je umístěno technické zázemí, zázemí pro zaměstnance, šatny a posilovna. V 1 NP se nachází kavárna a wellness. Ve 2NP se nachází kanceláře pro administrativu budovy, masáže, solárium, šatny a fitness sál. Budova je založena na základových patkách a nosn...

5. Wellness hotel

OpenAIRE

Bambas, Vratislav

2013-01-01

Novostavba Wellness hotelu. Objekt je částečně podsklepen. Hotel se skládá ze tří částí. Střední trakt je železobetonový skelet a má pět nadzemních podlaží. Tato část slouží jako vstupní hala a hlavní schodiště. Boční trakty mají čtyři nadzemní podlaží a jejich nosný systém je příčný stěnový, zděný, ze systému Porotherm. V suterénu se nachází zázemí hotelu a bazén. Do přízemí je umístěno restaurační zařízení. Ve druhém patře se nacházejí pokoje, posilovna a služby. V posledním patře jsou pouz...

6. Well acidizing

Energy Technology Data Exchange (ETDEWEB)

Street, E H

1980-01-23

The apparatus relates in particular to a well-treating process in which an aqueous acid solution having a pH of < 2 is injected into a subterranean reservoir in a manner such that materials that contain ferric ions are present in the acid and, as the acid reacts within the reservoir and attains a pH exceeding 3, tend to be precipitated as ferric ion-containing solid materials that may plug the pores of the reservoir. Such a precipitation is prevented by dissolving in the acid solution an amount of 5-sulfosalicylic acid which is at least sufficient to sequester significant proportions of ferric ions when the pH of the acid is from 0.5 to 3 but is less than enough to cause a significant salting-out of solid materials, and an amount of citric acid which is at least sufficient to sequester significant proportions of ferric ions when the pH of the acid is from 3 to 6 but is less than enough to precipitate a significant amount of calcium citrate. The amount of the 5-sulfosalicylic acid may be from 0.01 to 0.05 moles/l and the amount of citric acid is from 0.001 to 0.009 moles/l. 11 claims.

7. Systematic study on dynamic atomic layer epitaxy of InN on/in +c-GaN matrix and fabrication of fine-structure InN/GaN quantum wells: Role of high growth temperature

Science.gov (United States)

Yoshikawa, Akihiko; Kusakabe, Kazuhide; Hashimoto, Naoki; Hwang, Eun-Sook; Imai, Daichi; Itoi, Takaomi

2016-12-01

The growth kinetics and properties of nominally 1-ML (monolayer)-thick InN wells on/in +c-GaN matrix fabricated using dynamic atomic layer epitaxy (D-ALEp) by plasma-assisted molecular beam epitaxy were systematically studied, with particular attention given to the effects of growth temperature. Attention was also given to how and where the ˜1-ML-thick InN layers were frozen or embedded on/in the +c-GaN matrix. The D-ALEp of InN on GaN was a two-stage process; in the 1st stage, an "In+N" bilayer/monolayer was formed on the GaN surface, while in the 2nd, this was capped by a GaN barrier layer. Each process was monitored in-situ using spectroscopic ellipsometry. The target growth temperature was above 620 °C and much higher than the upper critical epitaxy temperature of InN (˜500 °C). The "In+N" bilayer/monolayer tended to be an incommensurate phase, and the growth of InN layers was possible only when they were capped with a GaN layer. The InN layers could be coherently inserted into the GaN matrix under self-organizing and self-limiting epitaxy modes. The growth temperature was the most dominant growth parameter on both the growth process and the structure of the InN layers. Reflecting the inherent growth behavior of D-ALEp grown InN on/in +c-GaN at high growth temperature, the embedded InN layers in the GaN matrix were basically not full-ML in coverage, and the thickness of sheet-island-like InN layers was essentially either 1-ML or 2-ML. It was found that these InN layers tended to be frozen at the step edges on the GaN and around screw-type threading dislocations. The InN wells formed type-I band line-up heterostructures with GaN barriers, with exciton localization energies of about 300 and 500 meV at 15 K for the 1-ML and 2-ML InN wells, respectively.

8. Encyclopedia of well logging

International Nuclear Information System (INIS)

Desbrandes, R.

1985-01-01

The 16 chapters of this book aim to provide students, trainees and engineers with a manual covering all well-logging measurements ranging from drilling to productions, from oil to minerals going by way of geothermal energy. Each chapter is a summary but a bibliography is given at the end of each chapter. Well-logging during drilling, wireline logging equipment and techniques, petroleum logging, data processing of borehole data, interpretation of well-logging, sampling tools, completion and production logging, logging in relief wells to kill off uncontrolled blowouts, techniques for high temperature geothermal energy, small-scale mining and hydrology, logging with oil-base mud and finally recommended logging programs are all topics covered. There is one chapter on nuclear well-logging which is indexed separately. (UK)

9. Development for fully organic, low solid and high temperature resistant well completion fluid%全有机低固相抗高温完并液体系开发

Institute of Scientific and Technical Information of China (English)

周文; 王贵松; 任艳增; 王滨

2012-01-01

The system composition of the fully organic and low solid content well completion fluid, which density is 1.65g/cm3 , was introduced. The compatibility of supporting treatment agent was evaluated, and sin- gle agent screening process was introduced. Meanwhile, it determines the ratio of the basic solution with high- density organic salts in this system m （formate and organic compound salt） ： m （salt crystallization inhibitors） ： m （water） 286 ： 44 ： 40 ： 100, as well as the screening and the evaluation of ancillary treatment agent- anti high temperature reservoir protective agent YH-YB01. The system is widely used in many scope of applica tion and is a good temperature resistance, low solid, high-density completion fluid system.%主要介绍了密度为1．65g／cm2的全有机低固相抗高温完井液体系的组成、单剂筛选过程和配套处理剂配伍性的评价。确定了体系中高密度有机盐基础溶液的配比，即m（甲酸盐）：m（有机复合盐）：m（盐结晶抑制剂）：m（水）为286：44：40：100，以及配套的处理剂——抗高温储层保护剂YH—YBO]的筛选和评价，该体系适用范围广泛，是一种良好的抗高温、低固相、高密度完井液体系。

10. Fibre-optical measurement of the time curve of layer temperatures in a well as a result of heat injection and heat extraction; Untersuchung der zeitlichen Entwicklung von Schichttemperaturen in einer Bohrung bei Waermeaus- und Waermeeinspeisung mit Hilfe faseroptischer Temperaturmessungen

Energy Technology Data Exchange (ETDEWEB)

Hurtig, E; Groswig, S; Kasch, M [GESO GmbH, Jena (Germany)

1997-12-01

The relations between the thermal processes around a 200 m deep geothermal well and the petrographic composition were studied using the fibre optic temperature sensing method. The heat injection and heat extraction properties depend on the petrographic properties (porosity, permeability) of the individual layers. Coarse sandy, water saturated layers have good properties, silts and clays have poor properties for het storage and heat extraction. Heat transport occurs in well defined layers with good hydraulic properties and can be explained by a convective heat transport model. (orig.) [Deutsch] Mit faseroptischen Temperaturmessungen in einer Erdwaermesonde (EWS)-Bohrung wurde der Zusammenhang zwischen den thermischen Prozessen unmittelbar um die EWS und dem petrographischen Aufbau untersucht. Das Waermeein- bzw. -ausspeisevermoegen haengt von der petrographischen Ausbildung der einzelnen Schichten ab (Porositaet, Kf-Wert). Grobsandige bis kiesige, wassergesaettigte Schichten haben guenstige, schluffig-tonige unguenstige Eigenschaften fuer die Waermeaus- bzw. -einspeisung. Der wesentliche Waermetransport erfolgt in definierten geringmaechtigen Schichten mit guten hydraulischen Eigenschaften. Der Waermetransport in poroesen, wassergefuellten Schichten kann mit einem konvektiven Waermetransportmodell erklaert werden. (orig.)

11. Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization

Science.gov (United States)

Wang, Chenglin; Wang, Mengye; Xie, Kunpeng; Wu, Qi; Sun, Lan; Lin, Zhiqun; Lin, Changjian

2011-07-01

Microarrays of N-doped flower-like TiO2 composed of well-defined multilayer nanoflakes were synthesized at room temperature by electrochemical anodization of Ti in NH4F aqueous solution. The TiO2 flowers were of good anatase crystallinity. The effects of anodizing time, applied voltage and NH4F concentration on the flower-like morphology were systematically examined. It was found that the morphologies of the anodized Ti were related to the anodizing time and NH4F concentration. The size and density of the TiO2 flowers could be tuned by changing the applied voltage. The obtained N-doped flower-like TiO2 microarrays exhibited intense absorption in wavelengths ranging from 320 to 800 nm. Under both UV and visible light irradiation, the photocatalytic activity of the N-doped flower-like TiO2 microarrays in the oxidation of methyl orange showed a significant increase compared with that of commercial P25 TiO2 film.

12. Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO{sub 2} composed of well-defined multilayer nanoflakes by Ti anodization

Energy Technology Data Exchange (ETDEWEB)

Wang Chenglin; Wang Mengye; Xie Kunpeng; Wu Qi; Sun Lan; Lin Changjian [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Lin Zhiqun, E-mail: sunlan@xmu.edu.cn, E-mail: cjlin@xmu.edu.cn [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)

2011-07-29

Microarrays of N-doped flower-like TiO{sub 2} composed of well-defined multilayer nanoflakes were synthesized at room temperature by electrochemical anodization of Ti in NH{sub 4}F aqueous solution. The TiO{sub 2} flowers were of good anatase crystallinity. The effects of anodizing time, applied voltage and NH{sub 4}F concentration on the flower-like morphology were systematically examined. It was found that the morphologies of the anodized Ti were related to the anodizing time and NH{sub 4}F concentration. The size and density of the TiO{sub 2} flowers could be tuned by changing the applied voltage. The obtained N-doped flower-like TiO{sub 2} microarrays exhibited intense absorption in wavelengths ranging from 320 to 800 nm. Under both UV and visible light irradiation, the photocatalytic activity of the N-doped flower-like TiO{sub 2} microarrays in the oxidation of methyl orange showed a significant increase compared with that of commercial P25 TiO{sub 2} film.

13. Sealing wells with gel

Energy Technology Data Exchange (ETDEWEB)

Lopez, E C

1967-10-01

A new system is being used in Mexico to temporarily plug producing wells. The temporary seal is a gel with a catalyst. The use of this temporary plug allows gas-lift wells to be taken off production in order to carry out emergency repairs. The gel solidifies by the action of the catalyst to a high temperature (70 - 150/sup 0/C). By locating the bottom of the tubing at the top of the production interval, the gel material will go into the permeable formation, and immediately set. When the gel has solidified, it seals off the horizon that must not be stimulated, and leaves the others exposed to the acid action. When the treatment is finished, the gel, by action of the catalyst, is liquefied and removed from the formation, being produced with the oil.

14. Utilisation des polymères organiques durant le forage et la cimentation des puits à haute température Using Organic Polymers During Drilling and Cementing of High Temperature Wells

Directory of Open Access Journals (Sweden)

Martin M.

2006-11-01

Full Text Available Dans les puits pétroliers, par suite de l'accroissement de la profondeur, des températures statiques de fond voisines de 250 °C seront probablement atteintes dans un très proche avenir. Dans les puits géothermiques à haute énergie, cette limite est déjà largement dépassée avec des températures pouvant aller jusque 400 °C. II est indispensable que les fluides de forage et les matériaux de cimentation alors mis en oeuvre possèdent des stabilités suffisantes. Pour les fluides de forage, à base d'eau et à base d'huile, il convient de prévenir, à l'aide d'additifs, les évolutions réversibles et irréversibles des caractéristiques de viscosité et de filtration durant le cycle ou pendant des arrêts de circulation de quelques heures. Ces additifs sont, pour la plupart, des polymères susceptibles de se disperser dans la phase liquide. Mais actuellement leur stabilité ne permet guère d'envisager l'utilisation des fluides à base d'eau au-delà de 260 °C et celle des fluides à base d'huile au-delà de 285 °C. Pour les cimentations, il peut être souhaitable de remplacer le ciment hydraulique habituellement employé par un matériau de masse volumique plus faible et/ou de durabilité accrue. Pendant toute la vie du puits, prévue pour 20 à 30 ans, ce matériau devra assurer l'étanchéité de l'annulaire et conserver sa résistance mécanique. II devra, de plus, supporter l'environnement parfois agressif des eaux de formation. Des recherches de laboratoire sur de nouveaux matériaux de cimentation ont été orientées vers des résines organiques et des composés à base d'organosiloxanes. Elles conduisent à sélectionner des formules stables jusqu'à 300 °C. Mais les possibilités de mise en oeuvre sur puits restent encore à étudier et le coût élevé des produits de base risque de limiter leur application. Static downhole temperatures of around 250°C will probably be reached in the very near future in oil wells as the

15. Well Monitoring System For EGS

Energy Technology Data Exchange (ETDEWEB)

Normann, Randy [Perma Works LLC, Pattonville, TX (United States); Glowka, Dave [Perma Works LLC, Pattonville, TX (United States); Normann, Charles [Perma Works LLC, Pattonville, TX (United States); Parker, James [Electrochemical Systems Inc, Knoxville, TN (United States); Caja, Josip [Electrochemical Systems Inc, Knoxville, TN (United States); Dustan, Don [Electrochemical Systems Inc, Knoxville, TN (United States); Caja, Mario [Electrochemical Systems Inc, Knoxville, TN (United States); Sariri, Kouros [Frequency Management Int. Inc., Huntington Beach, CA (United States); Beal, Craig [MajiQ Technologies Inc., Somerville, MA (United States)

2017-02-26

This grant is a collection of projects designed to move aircraft high temperature electronics technology into the geothermal industry. Randy Normann is the lead. He licensed the HT83SNL00 chip from Sandia National Labs. This chip enables aircraft developed electronics for work within a geothermal well logging tool. However, additional elements are needed to achieve commercially successful logging tools. These elements are offered by a strong list of industrial partners on this grant as: Electrochemical Systems Inc. for HT Rechargeable Batteries, Frequency Management Systems for 300C digital clock, Sandia National Labs for experts in high temperature solder, Honeywell Solid-State Electronics Center for reprogrammable high temperature memory. During the course of this project MagiQ Technologies for high temperature fiber optics.

16. Temperature metrology

Science.gov (United States)

Fischer, J.; Fellmuth, B.

2005-05-01

The majority of the processes used by the manufacturing industry depend upon the accurate measurement and control of temperature. Thermal metrology is also a key factor affecting the efficiency and environmental impact of many high-energy industrial processes, the development of innovative products and the health and safety of the general population. Applications range from the processing, storage and shipment of perishable foodstuffs and biological materials to the development of more efficient and less environmentally polluting combustion processes for steel-making. Accurate measurement and control of temperature is, for instance, also important in areas such as the characterization of new materials used in the automotive, aerospace and semiconductor industries. This paper reviews the current status of temperature metrology. It starts with the determination of thermodynamic temperatures required on principle because temperature is an intensive quantity. Methods to determine thermodynamic temperatures are reviewed in detail to introduce the underlying physical basis. As these methods cannot usually be applied for practical measurements the need for a practical temperature scale for day-to-day work is motivated. The International Temperature Scale of 1990 and the Provisional Low Temperature Scale PLTS-2000 are described as important parts of the International System of Units to support science and technology. Its main importance becomes obvious in connection with industrial development and international markets. Every country is strongly interested in unique measures, in order to guarantee quality, reproducibility and functionability of products. The eventual realization of an international system, however, is only possible within the well-functioning organization of metrological laboratories. In developed countries the government established scientific institutes have certain metrological duties, as, for instance, the maintenance and dissemination of national

17. Temperature metrology

International Nuclear Information System (INIS)

Fischer, J; Fellmuth, B

2005-01-01

The majority of the processes used by the manufacturing industry depend upon the accurate measurement and control of temperature. Thermal metrology is also a key factor affecting the efficiency and environmental impact of many high-energy industrial processes, the development of innovative products and the health and safety of the general population. Applications range from the processing, storage and shipment of perishable foodstuffs and biological materials to the development of more efficient and less environmentally polluting combustion processes for steel-making. Accurate measurement and control of temperature is, for instance, also important in areas such as the characterization of new materials used in the automotive, aerospace and semiconductor industries. This paper reviews the current status of temperature metrology. It starts with the determination of thermodynamic temperatures required on principle because temperature is an intensive quantity. Methods to determine thermodynamic temperatures are reviewed in detail to introduce the underlying physical basis. As these methods cannot usually be applied for practical measurements the need for a practical temperature scale for day-to-day work is motivated. The International Temperature Scale of 1990 and the Provisional Low Temperature Scale PLTS-2000 are described as important parts of the International System of Units to support science and technology. Its main importance becomes obvious in connection with industrial development and international markets. Every country is strongly interested in unique measures, in order to guarantee quality, reproducibility and functionability of products. The eventual realization of an international system, however, is only possible within the well-functioning organization of metrological laboratories. In developed countries the government established scientific institutes have certain metrological duties, as, for instance, the maintenance and dissemination of national

18. Well integrity in heavy oil wells : challenges and solutions

Energy Technology Data Exchange (ETDEWEB)

Taoutaou, S.; Osman, T.M.; Mjthab, M. [Schlumberger (Syrian Arab Republic); Succar, N. [Oudeh Petroleum, Damascus (Syrian Arab Republic)

2010-07-01

The Oudeh Petroleum Company (OPC) has used cyclic steam (the Huff and Puff technique) since 2006 to produce heavy oil from its OPC field that has an estimated 79.49 to 95.39 million cubic meters of oil contained in the Jurassic and Triassic reservoirs of the Butmah and Kurachine formations in Syria. Accumulations of oil and gas are present in the main Oudeh structure at depths between 1300 and 2250 meters. The Huff and Puff technique involves 3 phases. In the first phase which lasts about 1 month, steam is injected at 348 degrees C and 17.MPa to melt the wax condensate in the formation in order to decrease heavy oil viscosity. Phase 2 involves 3 soaking days. In phase 3, which lasts 2 to 3 months, the production rate is doubled compared to wells without steam. The cycle is then resumed once the pressure drops. The temperature cycling can compromise the well integrity through loss of hydraulic isolation in the cement sheath and thereby reduce hydrocarbon recovery. This paper described how the OPC has managed to achieved complete well integrity using an advanced cement system in more than 200 wells exposed to steam injection temperatures up to 348 degrees C and the associated high induced thermal stresses. The methodology for risk analysis of the cement sheath failure under steam stimulation was described along with the selection criteria for the advanced cement system to withstand temperature cycling. Two case histories involving a 50 well database were presented. 5 refs., 2 tabs., 13 figs.

19. Silicon Germanium Quantum Well Thermoelectrics

Science.gov (United States)

Davidson, Anthony Lee, III

Today's growing energy demands require new technologies to provide high efficiency clean energy. Thermoelectrics that convert heat to electrical energy directly can provide a method for the automobile industry to recover waste heat to power vehicle electronics, hence improving fuel economy. If large enough efficiencies can be obtained then the internal combustion engine could even be replaced. Exhaust temperature for automotive application range from 400 to 800 K. In this temperature range the current state of the art materials are bulk Si1-xGex alloys. By alternating layers of Si and Si1-xGex alloy device performance may be enhanced through quantum well effects and variations in material thermal properties. In this study, superlattices designed for in-plane operation with varying period and crystallinity are examined to determine the effect on electrical and thermal properties. In-plane electrical resistivity of these materials was found to be below the bulk material at a similar doping at room temperature, confirming the role of quantum wells in electron transport. As period is reduced in the structures boundary scattering limits electron propagation leading to increased resistivity. The Seebeck coefficient measured at room temperature is higher than the bulk material, additionally lending proof to the effects of quantum wells. When examining cross-plane operation the low doping in the Si layers of the device produce high resistivity resulting from boundary scattering. Thermal conductivity was measured from 77 K up to 674 K and shows little variation due to periodicity and temperature, however an order of magnitude reduction over bulk Si1-xGex is shown in all samples. A model is developed that suggests a combination of phonon dispersion effects and strong boundary scattering. Further study of the phonon dispersion effects was achieved through the examination of the heat capacity by combining thermal diffusivity with thermal conductivity. All superlattices show a

20. Model wells for nuclear well logging

International Nuclear Information System (INIS)

Tittle, C.W.

1989-01-01

Considerations needed in the design and construction of model wells for nuclear log calibration are covered, with special attention to neutron porosity logging and total γ-ray logging. Pulsed neutron decay-time and spectral γ-ray logging are discussed briefly. The American Petroleum Institute calibration facility for nuclear logs is a good starting point for similar or expanded facilities. A few of its shortcomings are mentioned; they are minor. The problem of fluid saturation is emphasized. Attention is given to models made of consolidated rock and those containing unconsolidated material such as Ottawa sand. Needed precautions are listed. A similarity method is presented for estimating the porosity index of formations that are not fully saturated. (author)

1. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

Directory of Open Access Journals (Sweden)

Nediljka Gaurina-Međimurec

1994-12-01

Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

2. Employee wellness program evaluation.

Science.gov (United States)

2008-12-01

Well-designed wellness programs can keep healthy employees healthy, support employees with : health risks to improve their health behaviors, and facilitate organizational efforts to achieve : workforce performance goals. : Productivity lost through a...

3. The wellness syndrome

DEFF Research Database (Denmark)

Mik-Meyer, Nanna

2015-01-01

Klumme. Wellness er blevet et syndrom, og dets symptomer er angst, selvbebrejdelser og skyldfølelse. Kommentar med udgangspunkt i: Carl Cederström & Andre Spicer, "The Wellness Syndrome" (Polity Books, 2015. 200 p.).......Klumme. Wellness er blevet et syndrom, og dets symptomer er angst, selvbebrejdelser og skyldfølelse. Kommentar med udgangspunkt i: Carl Cederström & Andre Spicer, "The Wellness Syndrome" (Polity Books, 2015. 200 p.)....

4. Total well dominated trees

DEFF Research Database (Denmark)

Finbow, Arthur; Frendrup, Allan; Vestergaard, Preben D.

cardinality then G is a total well dominated graph. In this paper we study composition and decomposition of total well dominated trees. By a reversible process we prove that any total well dominated tree can both be reduced to and constructed from a family of three small trees....

5. High-temperature superconductivity

International Nuclear Information System (INIS)

Lynn, J.W.

1990-01-01

This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

6. Quantum-Well Thermophotovoltaic Cells

Science.gov (United States)

Freudlich, Alex; Ignatiev, Alex

2009-01-01

Thermophotovoltaic cells containing multiple quantum wells have been invented as improved means of conversion of thermal to electrical energy. The semiconductor bandgaps of the quantum wells can be tailored to be narrower than those of prior thermophotovoltaic cells, thereby enabling the cells to convert energy from longer-wavelength photons that dominate the infrared-rich spectra of typical thermal sources with which these cells would be used. Moreover, in comparison with a conventional single-junction thermophotovoltaic cell, a cell containing multiple narrow-bandgap quantum wells according to the invention can convert energy from a wider range of wavelengths. Hence, the invention increases the achievable thermal-to-electrical energy-conversion efficiency. These thermophotovoltaic cells are expected to be especially useful for extracting electrical energy from combustion, waste-heat, and nuclear sources having temperatures in the approximate range from 1,000 to 1,500 C.

7. Detector for deep well logging

International Nuclear Information System (INIS)

1976-01-01

A substantial improvement in the useful life and efficiency of a deep-well scintillation detector is achieved by a unique construction wherein the steel cylinder enclosing the sodium iodide scintillation crystal is provided with a tapered recess to receive a glass window which has a high transmittance at the critical wavelength and, for glass, a high coefficient of thermal expansion. A special high-temperature epoxy adhesive composition is employed to form a relatively thick sealing annulus which keeps the glass window in the tapered recess and compensates for the differences in coefficients of expansion between the container and glass so as to maintain a hermetic seal as the unit is subjected to a wide range of temperature

8. temperature overspecification

Directory of Open Access Journals (Sweden)

Mehdi Dehghan

2001-01-01

Full Text Available Two different finite difference schemes for solving the two-dimensional parabolic inverse problem with temperature overspecification are considered. These schemes are developed for indentifying the control parameter which produces, at any given time, a desired temperature distribution at a given point in the spatial domain. The numerical methods discussed, are based on the (3,3 alternating direction implicit (ADI finite difference scheme and the (3,9 alternating direction implicit formula. These schemes are unconditionally stable. The basis of analysis of the finite difference equation considered here is the modified equivalent partial differential equation approach, developed from the 1974 work of Warming and Hyett [17]. This allows direct and simple comparison of the errors associated with the equations as well as providing a means to develop more accurate finite difference schemes. These schemes use less central processor times than the fully implicit schemes for two-dimensional diffusion with temperature overspecification. The alternating direction implicit schemes developed in this report use more CPU times than the fully explicit finite difference schemes, but their unconditional stability is significant. The results of numerical experiments are presented, and accuracy and the Central Processor (CPU times needed for each of the methods are discussed. We also give error estimates in the maximum norm for each of these methods.

9. Temperature indicating device

International Nuclear Information System (INIS)

Angus, J.P.; Salt, D.

1988-01-01

A temperature indicating device comprises a plurality of planar elements some undergoing a reversible change in appearance at a given temperature the remainder undergoing an irreversible change in appearance at a given temperature. The device is useful in indicating the temperature which an object has achieved as well as its actual temperature. The reversible change is produced by liquid crystal devices. The irreversible change is produced by an absorbent surface carrying substances e.g. waxes which melt at predetermined temperatures and are absorbed by the surface; alternatively paints may be used. The device is used for monitoring processes of encapsulation of radio active waste. (author)

10. Trions in quantum wells

CERN Document Server

Peeters, F M; Varga, K

2002-01-01

The ground-state energy of three-particle systems consisting of electrons and holes as found in semiconducting quantum wells is studied. The degree of confinement is determined by the quantum-well width and we can vary the dimensionality of the system from two to three dimensions. The energy levels of the system can further be altered by the application of an external magnetic field which is directed perpendicular to the well. Refs.5 (author)

11. Staying Well at Work.

Science.gov (United States)

Blai, Boris, Jr.

Employee wellness directly affects business/industry operations and costs. When employees are helped and encouraged to stay well, this people-positive policy results in triple benefits: reduced worker absenteeism, increased employee productivity, and lower company expenditures for health costs. Health care programs at the worksite offer these…

12. hand- dug well

African Journals Online (AJOL)

Misrak

wells at the vicinity of three major refuse dumpsite taking measurement of depth of the well, diameter, volume of water, distance ... The total coliform bacteria count shows that the water is exposed to serious and complex contaminations, which .... Bacterial plate count was carried out using the pour plate method with nutrient ...

13. Water Treatment Technology - Wells.

Science.gov (United States)

Ross-Harrington, Melinda; Kincaid, G. David

One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…

14. Pumping potential wells

Science.gov (United States)

Hershkowitz, N.; Forest, C.; Wang, E. Y.; Intrator, T.

1987-01-01

Nonmonotonic plasma potential structures are a common feature of many double layers and sheaths. Steady state plasma potential wells separating regions having different plasma potentials are often found in laboratory experiments. In order to exist, such structures all must find a solution to a common problem. Ions created by charge exchange or ionization in the region of the potential well are electrostatically confined and tend to accumulate and fill up the potential well. The increase in positive charge should eliminate the well. Nevertheless, steady state structures are found in which the wells do not fill up. This means that it is important to take into account processes which 'pump' ions from the well. As examples of ion pumping of plasma wells, potential dips in front of a positively biased electro collecting anode in a relatively cold, low density multidipole plasma is considered. Pumping is provided by ion leaks from the edges of the potential dip or by oscillating the applied potential. In the former case the two dimensional character of the problem is shown to be important.

15. Pumping potential wells

International Nuclear Information System (INIS)

Hershkowitz, N.; Forest, C.; Wang, E.Y.; Intrator, T.

1987-01-01

Nonmonotonic plasma potential structures are a common feature of many double layers and sheaths. Steady state plasma potential wells separating regions having different plasma potentials are often found in laboratory experiments. In order to exist, all such structures must find a solution to a common problem. Ions created by charge exchange or ionization in the region of the potential well are electrostatically confined and tend to accumulate and fill up the potential well. The increase in positive charge should eliminate the well. Nevertheless, steady state structures are found in which the wells do not fill up. This means that it is important to take into account processes which pump ions from the well. As examples of ion pumping of plasma wells, potential dips in front of a positively biased electron collecting anode in a relatively cold, low density, multidipole plasma are considered. Pumping is provided by ion leaks from the edges of the potential dip or by oscillating the applied potential. In the former case the two-dimensional character of the problem is shown to be important

16. Pumping potential wells

International Nuclear Information System (INIS)

Hershkowitz, N.; Forest, C.; Wang, E.Y.; Intrator, T.

1987-01-01

Nonmonotonic plasma potential structures are a common feature of many double layers and sheaths. Steady state plasma potential wells separating regions having different plasma potentials are often found in laboratory experiments. In order to exist, such structures all must find a solution to a common problem. Ions created by charge exchange or ionization in the region of the potential well are electrostatically confined and tend to accumulate and fill up the potential well. The increase in positive charge should eliminate the well, but steady state structures are found in which the wells do not fill up. This means that it is important to take into account processes which 'pump' ions from the well. As examples of ion pumping of plasma wells, potential dips in front of a positively biased electron collecting anode in a relatively cold, low density multidipole plasma are considered. Pumping is provided by ion leaks from the edges of the potential dip or by oscillating the applied potential. In the former case the two dimensional character of the problem is shown to be important. (author)

17. Well performance model

International Nuclear Information System (INIS)

Thomas, L.K.; Evans, C.E.; Pierson, R.G.; Scott, S.L.

1992-01-01

This paper describes the development and application of a comprehensive oil or gas well performance model. The model contains six distinct sections: stimulation design, tubing and/or casing flow, reservoir and near-wellbore calculations, production forecasting, wellbore heat transmission, and economics. These calculations may be performed separately or in an integrated fashion with data and results shared among the different sections. The model analysis allows evaluation of all aspects of well completion design, including the effects on future production and overall well economics

18. Optimizing well intervention routes

Energy Technology Data Exchange (ETDEWEB)

Paiva, Ronaldo O. [PETROBRAS S.A., Vitoria, ES (Brazil); Schiozer, Denis J.; Bordalo, Sergio N. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Centro de Estudo do Petroleo (CEPETRO)]. E-mail: denis@dep.fem.unicamp.br; bordalo@dep.fem.unicamp.br

2000-07-01

This work presents a method for optimizing the itinerary of work over rigs, i.e., the search for the route of minimum total cost, and demonstrates the importance of the dynamics of reservoir behaviour. The total cost of a route includes the rig expenses (transport, assembly and operation), which are functions of time and distances, plus the losses of revenue in wells waiting for the rig, which are also dependent of time. A reservoir simulator is used to evaluate the monetary influence of the well shutdown on the present value of the production curve. Finally, search algorithms are employed to determine the route of minimal cost. The Simulated Annealing algorithm was also successful in optimizing the distribution of a list of wells among different work over rigs. The rational approach presented here is recommended for management teams as a standard procedure to define the priority of wells scheduled for work over. (author)

19. Agricultural Drainage Well Intakes

Data.gov (United States)

Iowa State University GIS Support and Research Facility — Locations of surface intakes for registered agriculture drainage wells according to the database maintained by IDALS. Surface intakes were located from their...

20. Reptile wellness management.

Science.gov (United States)

Wilkinson, Stacey Leonatti

2015-05-01

Proper care and husbandry are the most important factors in keeping captive reptiles healthy. Improper nutrition, supplementation, caging, lighting, substrate, temperature, and humidity can all lead to stress and development of disease. Presented here are current recommendations for keeping captive reptiles. Care has moved away from sterile, spartan enclosures to larger, more naturalistic habitats. These habitats provide more space and choices for the reptile, leading to higher activity levels, reduced stress, and more opportunities to exhibit natural behaviors. Reptiles benefit from enrichment and are amenable to training in order to reduce stress and allow easier handling and veterinary care. Copyright © 2015 Elsevier Inc. All rights reserved.

1. Firemní wellness

OpenAIRE

Ondrušová, Denisa

2012-01-01

Předmětem bakalářské práce je návrh firemního wellness – „Hubnu v dubnu“ pro zvolenou firmu. Tato práce obsahuje všechny potřebné informace, které jsou nutné k vytvoření konkrétní nabídky firemního wellness. Finální návrh bude připraven pro zařazení do portfolia CESA VUT v Brně. The topic of this bachelor thesis is a draft of a company wellness program - "Hubnu v dubnu" for a selected company. This thesis contains all the necessary information required to create specific offer for company ...

2. Gratitude and Well Being

Science.gov (United States)

Sansone, Lori A.

2010-01-01

The word “gratitude” has a number of different meanings, depending on the context. However, a practical clinical definition is as follows—gratitude is the appreciation of what is valuable and meaningful to oneself; it is a general state of thankfulness and/or appreciation. The majority of empirical studies indicate that there is an association between gratitude and a sense of overall well being. However, there are several studies that indicate potential nuances in the relationship between gratitude and well being as well as studies with negative findings. In terms of assessing gratitude, numerous assessment measures are available. From a clinical perspective, there are suggested therapeutic exercises and techniques to enhance gratitude, and they appear relatively simple and easy to integrate into psychotherapy practice. However, the therapeutic efficacy of these techniques remains largely unknown. Only future research will clarify the many questions around assessment, potential benefits, and enhancement of gratitude. PMID:21191529

3. Single well techniques

International Nuclear Information System (INIS)

Drost, W.

1983-01-01

The single well technique method includes measurement of parameters of groundwater flow in saturated rock. For determination of filtration velocity the dilution of radioactive tracer is measured, for direction logging the collimeter is rotated in the probe linked with the compass. The limiting factor for measurement of high filtration velocities is the occurrence of turbulent flow. The single well technique is used in civil engineering projects, water works and subsurface drainage of liquid waste from disposal sites. The radioactive tracer method for logging the vertical fluid movement in bore-holes is broadly used in groundwater survey and exploitation. (author)

4. Well swab collar

Energy Technology Data Exchange (ETDEWEB)

1969-04-09

A well swab collar which can be hoisted to bring well fluids upward through a pipe string is described. An elastic swab is used to swab a pipe having a predetermined diameter. The swab consists of a circular shaped elastomer body having an outer diameter a little smaller than the inner diameter of the pipe. The body is divided into multiple swab elements by ring-shaped grooves in the body. The swab element has truncated conical surfaces directed radially at an outward angle, then downward and consequently at an angle inward and then downward. (19 claims)

International Nuclear Information System (INIS)

Davydov, A.V.

1975-01-01

The technical properties of well instruments for radioactive logging used in the radiometric logging complexes PKS-1000-1 (''Sond-1'') and PRKS-2 (''Vitok-2'') are described. The main features of the electric circuit of the measuring channels are given

6. Why Does Well

Science.gov (United States)

2010-01-01

There is something disappointing about life. It is messy and out of control. It seems the more one tries to put life in order, the more ordering there is to do. The more one seeks explanations, the more confusing things become. Life's an impossible task. Maybe one should just give up. Or, then again, one might as well keep trying. It's this…

7. Alive and Well.

Science.gov (United States)

1979-01-01

Suggests an approach to health education that addresses the innate human drive for physical, mental, and spiritual well-being and to the inherent potential to learn behaviors that facilitate it. This approach involves parents and teachers, because children's behaviors are deeply influenced by them. (Author/BEF)

8. Fracturing formations in wells

Energy Technology Data Exchange (ETDEWEB)

Daroza, R A

1964-05-15

This well stimulation method comprises introducing through the well bore a low-penetrating, dilatant fluid, and subjecting the fluid to sufficient pressure to produce fractures in the formation. The fluid is permitted to remain in contact with the formation so as to become diluted by the formation fluids, and thereby lose its properties of dilatancy. Also, a penetrating fluid, containing a propping agent suspended therein, in introduced into contact with the fractures at a pressure substantially reduced with respect to that pressure which would have been required, prior to the fracturing operation performed using the low-penetrating dilatant fluid. The propping agent is deposited within the fractures, and thereafter, fluid production is resumed from the fractured formation. (2 claims)

9. Oil well spill trough

International Nuclear Information System (INIS)

Wigington, J.R. Sr.

1992-01-01

This patent describes a process involving an oil well and rig having a casing, a platform on the rig extending around the casing. This patent describes improvement in pulling the tubing from the casing; disconnecting joints of tubing thereby; and spilling liquids from the casing, catching spilled liquids from the casing in a basin below the platform, draining the basin substantially simultaneously; connecting the drain hole to a tank, and reducing the pressure in the tank to less than atmospheric pressure. This paper also describes an oil well and rig having a casing; the rig having a platform extending around the casing. This patent describes improvement in a basin surrounding the casing and connected thereto, the basin below the platform, a drain connection in the lower part of the basin, a conduit connected to the drain, and means for applying a suction to the conduit

10. Wellness interventions for anesthesiologists.

Science.gov (United States)

2018-06-01

The review examines the different preventive measures that have been found to be useful to abolish or decrease the negative effects of burnout and increase resilience in anesthesiologists. Studies in anesthesiology cite autonomy, control of the work environment, professional relationships, leadership, and organizational justice as the most important factors in job satisfaction. Factors such as difficulty in balancing personal and professional life, poor attention to wellness, work alcoholism, and genetic factors increase an individual's susceptibility to burnout. Exposure to chronic or repeated stress instigates a spectrum of autonomic, endocrine, immunologic, and behavioral responses that activate the sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal axis. Investigating the difference in psychobiologic reactivity, as well as defining the psychological symptoms that are characteristic to individuals vulnerable to stress-induced illness, would enable scientists to better look into the modalities to eradicate the negative effects. Recent studies have shown that a combination of individual and structural changes in institutions can increase resilience in physicians. Burnout is a pathological syndrome that is triggered by constant levels of high stress. A combination of individual efforts as well as structural interventions can help to increase wellbeing in physicians.

11. Quantum well lasers

CERN Document Server

Zory, Jr, Peter S; Kelley, Paul

1993-01-01

This book provides the information necessary for the reader to achieve a thorough understanding of all aspects of QW lasers - from the basic mechanism of optical gain, through the current technolgoical state of the art, to the future technologies of quantum wires and quantum dots. In view of the growing importance of QW lasers, this book should be read by all those with an active interest in laser science and technology, from the advanced student to the experienced laser scientist.* The first comprehensive book-length treatment of quantum well lasers* Provides a detailed treatment

12. Drilling and well technology

Energy Technology Data Exchange (ETDEWEB)

Milheim, K. [Mining University Leoben Institute for Drilling Technology, (Austria)

1996-12-31

Over a billion dollars a year is lost by exploration and production companies drilling wells because of the lack of learn curve management (LMC) practices. This paper presents the importance of the LMC concept, what it is, why LMC has not yet been recognized as a major initiative for improving drilling cost performance. The paper discusses the different types of planning, problems with implementation of plans, the use and misuse of drilling results and data bases, and the lack of post analysis practices. The major point of the paper is to show the massive savings that can be achieved by valuing LMC, learning LMC and successfully implementing LMC. . 2 refs., 5 figs.

13. Modeling Quantum Well Lasers

Directory of Open Access Journals (Sweden)

Dan Alexandru Anghel

2012-01-01

Full Text Available In semiconductor laser modeling, a good mathematical model gives near-reality results. Three methods of modeling solutions from the rate equations are presented and analyzed. A method based on the rate equations modeled in Simulink to describe quantum well lasers was presented. For different signal types like step function, saw tooth and sinus used as input, a good response of the used equations is obtained. Circuit model resulting from one of the rate equations models is presented and simulated in SPICE. Results show a good modeling behavior. Numerical simulation in MathCad gives satisfactory results for the study of the transitory and dynamic operation at small level of the injection current. The obtained numerical results show the specific limits of each model, according to theoretical analysis. Based on these results, software can be built that integrates circuit simulation and other modeling methods for quantum well lasers to have a tool that model and analysis these devices from all points of view.

14. Well logging, atom and geology

International Nuclear Information System (INIS)

Serra, O.

1994-01-01

Well logging techniques exploit interactions of gamma photons and neutrons with atoms. Interactions of neutrons of different energies with atoms allow the detection and evaluation of the weight percentage of several elements composing the rocks (C, O, Si, Ca, Fe, S); spectrometry of gamma rays produced by thermal neutron absorption allows for the weight percentage determination of Si, Ca, Fe, S, Cl, H, Ti and Gd, etc. High resolution detectors (germanium doped by Li, at liquid nitrogen temperature) allow the recognition of more elements. Other techniques involving neutrons consist in determining the population in epithermal neutrons at a certain distance of the neutron source (measurement of the hydrogen index). By analyzing the intensity of the gamma flux produced by Compton scattering, the electronic and bulk densities of the rocks are measured. All these data lead to the detection and evaluation of ore deposits (uranium and potassium) and coal, and determination of the lithology, the main minerals composing the rocks, petrophysical properties... 1 fig

15. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

Energy Technology Data Exchange (ETDEWEB)

Stephen Wolhart

2003-06-01

The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

16. Design considerations for heated wells in gloveboxes

International Nuclear Information System (INIS)

Frigo, A. A.; Preuss, D. E.

1999-01-01

Heated wells in gloveboxes have been used for many years by the Argonne National Laboratory Chemical Technology Division for nuclear-technology, waste-management, chemical-technology, and analytical-chemistry research. These wells allow experiments to be isolated from the main working volume of the glovebox. In addition, wells, when sealed, allow experiments to be conducted under pressurized or vacuum conditions. Until recently, typical maximum operational temperatures were about 500 C. However, more recent research is requiring operational temperatures approaching 900 C. These new requirements pose interesting design challenges that must be resolved. Some problem areas include temperature effects on material properties, maintaining a seal, cooling selected areas, and minimizing stresses. This paper discusses issues related to these design challenges and the ways in which these issues have been resolved

17. Synthesis of mordenite in geothermal wells

Energy Technology Data Exchange (ETDEWEB)

Konoya, M [Geological Survey of Hokkaido, Japan

1970-03-01

A study of the possible synthesis of mordenite in geothermal wells was conducted. In 1966 as part of a series of exploratory geothermal investigations, a 500 m well was drilled which had a temperature at 250 m of 120/sup 0/C. The well has constant temperature and constant pressure and has been used to study alteration. Specimens which were placed in the well were tested for mordenite. Mordenite was synthesized when Benki clay and a 10% KOH solution were placed in a Teflon tube at 250 m (120/sup 0/C and 22.3 kg/cm/sup 2/) for three months. No mordenite was synthesized when obsidian powder was used. These results indicate the possibility of synthesis of zeolite and clay minerals in geothermal wells. Two figures and four tables are provided.

18. Determination of irradiation temperature using SiC temperature monitors

International Nuclear Information System (INIS)

1999-01-01

This paper describes a method for detecting the change in length of SiC temperature monitors and a discussion is made on the relationship between irradiation temperature and the recovery in length of SiC temperature monitors. The SiC specimens were irradiated in the experimental fast reactor JOYO' at the irradiation temperatures around 417 to 645degC (design temperature). The change in length of irradiated specimens was detected using a dilatometer with SiO 2 glass push rod in an infrared image furnace. The temperature at which recovery in macroscopic length begins was obtained from the annealing intersection temperature. The results of measurements indicated that a difference between annealing intersection temperature and the design temperature sometimes reached well over ±100degC. A calibration method to obtain accurate irradiation temperature was presented and compared with the design temperature. (author)

19. Spectral Noise Logging for well integrity analysis in the mineral water well in Asselian aquifer

Directory of Open Access Journals (Sweden)

R.R. Kantyukov

2017-06-01

Full Text Available This paper describes a mineral water well with decreasing salinity level according to lab tests. A well integrity package including Spectral Noise Logging (SNL, High-Precision Temperature (HPT logging and electromagnetic defectoscopy (EmPulse was performed in the well which allowed finding casing leaks and fresh water source. In the paper all logging data were thoroughly analyzed and recommendation for workover was mentioned. The SNL-HPT-EmPulse survey allowed avoiding well abandonment.

20. Stimulation Technologies for Deep Well Completions

Energy Technology Data Exchange (ETDEWEB)

Stephen Wolhart

2005-06-30

The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

1. Characterization of interfaces in semimagnetic quantum wells

International Nuclear Information System (INIS)

Schmitt, G.; Kuhn-Heinrich, B.; Zehnder, U.; Ossau, W.; Litz, T.; Waag, A.; Landwehr, G.

1995-01-01

The interfaces between nonmagnetic CdTe quantum wells and semimagnetic barriers of Cd 1-x Mn x Te were investigated for several well widths by low temperature photoluminescence and photoluminescence excitation spectroscopy. Specially designed Cd 1-x Mn x /CdTe/Cd 1-y Mg y Te structures enable us to distinguish the quality of semimagnetic normal and inverted interfaces. The normal interface shows to better structural quality than the inverted interface. (author)

2. Temperature Pill

Science.gov (United States)

1988-01-01

Ingestible Thermal Monitoring System was developed at Johns Hopkins University as means of getting internal temperature readings for treatments of such emergency conditions as dangerously low (hypothermia) and dangerously high (hyperthermia) body temperatures. ITMS's accuracy is off no more than one hundredth of a degree and provides the only means of obtaining deep body temperature. System has additional applicability in fertility monitoring and some aspects of surgery, critical care obstetrics, metabolic disease treatment, gerontology (aging) and food processing research. Three-quarter inch silicone capsule contains telemetry system, micro battery, and a quartz crystal temperature sensor inserted vaginally, rectally, or swallowed.

3. Parallel magnetotransport in multiple quantum well structures

International Nuclear Information System (INIS)

Sheregii, E.M.; Ploch, D.; Marchewka, M.; Tomaka, G.; Kolek, A.; Stadler, A.; Mleczko, K.; Strupinski, W.; Jasik, A.; Jakiela, R.

2004-01-01

The results of investigations of parallel magnetotransport in AlGaAs/GaAs and InGaAs/InAlAs/InP multiple quantum wells structures (MQW's) are presented in this paper. The MQW's were obtained by metalorganic vapour phase epitaxy with different shapes of QW, numbers of QW and levels of doping. The magnetotransport measurements were performed in wide region of temperatures (0.5-300 K) and at high magnetic fields up to 30 T (B is perpendicular and current is parallel to the plane of the QW). Three types of observed effects are analyzed: quantum Hall effect and Shubnikov-de Haas oscillations at low temperatures (0.5-6 K) as well as magnetophonon resonance at higher temperatures (77-300 K)

4. Feasibility study on internal well measurements

Energy Technology Data Exchange (ETDEWEB)

None

1977-07-01

Various problems concerning the logging of geothermal wells were discussed. The topics included chemical logging apparatus: high temperature fracture logging equipment; slope meters for assessing stratigraphic traps; bottom samplers and pressure testers; cable materials; and systems for data processing and retrieval.

5. Stimulation Technologies for Deep Well Completions

Energy Technology Data Exchange (ETDEWEB)

None

2003-09-30

The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a study to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. An assessment of historical deep gas well drilling activity and forecast of future trends was completed during the first six months of the project; this segment of the project was covered in Technical Project Report No. 1. The second progress report covers the next six months of the project during which efforts were primarily split between summarizing rock mechanics and fracture growth in deep reservoirs and contacting operators about case studies of deep gas well stimulation.

6. Kramers Turnover Theory for a Triple Well Potential

International Nuclear Information System (INIS)

Pollak, E.; Talkner, P.

2001-01-01

Kramers turnover theory is solved for a particle in a symmetric triple well potential for temperatures above the crossover temperature between tunneling and activated barrier crossing. Comparison with the turnover theory for a double well potential shows that the presence of the intermediate well always leads to a decrease of the reaction rate. At most though, the rate is a factor of two smaller than in the case of a double well potential. (author)

7. Geothermal Reservoir Well Stimulation Program: technology transfer

Energy Technology Data Exchange (ETDEWEB)

1980-05-01

A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

8. Hanford well custodians. Revision 1

International Nuclear Information System (INIS)

Schatz, A.L.; Underwood, D.J.

1995-01-01

The Hanford Site Groundwater Protection Management Program recognized the need to integrate monitoring well activities in a centralized manner. A key factor to Hanford Site well integration was the need to clearly identify a responsible party for each of the wells. WHC was asked to identify all wells on site, the program(s) using each well, and the program ultimately responsible for the well. This report lists the custodian and user(s) for each Hanford well and supplies a comprehensive list of all decommissioned and orphaned wells on the Hanford Site. This is the first update to the original report released in December 1993

9. Method and apparatus for wells

Energy Technology Data Exchange (ETDEWEB)

1968-12-17

A method of making the permeable portion of a prepacked sand control liner consists of first mixing a heat curable bonding material and particulate matter together in predetermined amounts. The mixture is immersed in a liquid wax bath having a temperature at least as great as the curing temperature of the bonding material. The bonding material is allowed to cure in order to bond the particulate matter together to form a consolidated permeable portion for use in a prepacked sand control liner, while maintaining the temperature of the bath at least the same as the curing temperature of the bonding material. The liquid wax is allowed to cool to solidify the consolidated permeable portion. The amount of the heat curable bonding material which is used varies from 3-1/2 to 10% by wt. (15 claims)

10. Horizontal wells in subsurface remediation

International Nuclear Information System (INIS)

Losonsky, G.; Beljin, M.S.

1992-01-01

This paper reports on horizontal wells which offer an effective alternative to vertical wells in various environmental remediation technologies. Hydrogeological advantages of horizontal wells over vertical wells include a larger zone of influence, greater screen length, higher specific capacity and lower groundwater screen entrance velocity. Because of these advantages, horizontal wells can reduce treatment time and costs of groundwater recovery (pump-and-treat), in situ groundwater aeration (sparging) and soil gas extraction (vacuum extraction). Horizontal wells are also more effective than vertical wells in landfill leachate collection (under-drains), bioremediation, and horizontal grout injection

11. Characterization of interfaces in semimagnetic quantum wells

Energy Technology Data Exchange (ETDEWEB)

Schmitt, G.; Kuhn-Heinrich, B.; Zehnder, U.; Ossau, W.; Litz, T.; Waag, A.; Landwehr, G. [Physikalishes Institut der Universitaet Wuerzburg am Hubland, Wuerzburg (Germany)

1995-12-31

The interfaces between nonmagnetic CdTe quantum wells and semimagnetic barriers of Cd{sub 1-x}Mn{sub x}Te were investigated for several well widths by low temperature photoluminescence and photoluminescence excitation spectroscopy. Specially designed Cd{sub 1-x}Mn{sub x}/CdTe/Cd{sub 1-y} Mg{sub y}Te structures enable us to distinguish the quality of semimagnetic normal and inverted interfaces. The normal interface shows to better structural quality than the inverted interface. (author). 5 refs, 2 figs, 1 tab.

12. Well data summary sheets. Vol. 33: North sea wells

Energy Technology Data Exchange (ETDEWEB)

NONE

1998-12-31

This 33rd volume of the `Well Data Summary sheets` includes data from seven recently released offshore wells from the North Sea. The wells Baron-2, S.E. Adda-1 and Skjold Flank-1 were presented in our `Well Data Summary Sheets, special volume`, published May 1, 1997. In volume 33, the wells Baron-2 and Skjold Flank-1 are updated with respect to information on sidewall cores. Information regarding all released well data, included in our well data summary sheets, are available on GEUS homepage: http://www.geus.dk/ or the departments homepage: http://www.geus.dk/departments/geol-info-data-centre/geoldata.htm/. A complete index of releases wells in volumes 17-33 is included. (au)

13. Designing for elevated temperature

International Nuclear Information System (INIS)

Boer, G.A. de

1982-01-01

The reasons for the application of higher process temperatures are explained. The properties of stainless steel are compared with those of other materials such as molybdenum. Factors influencing the choice of the material such as availability of material data at high temperature, controllability, and strength of heat-affected zone are discussed. The process of designing a structure for safe and economic high-temperature application is outlined: design-by-analysis in contrast to the design-by-rule which is general practice for low-temperature applications. The rules laid down in the ASME Pressure Vessel Code Case N47 are explained as well as the procedure for inelastic stress calculations. (author)

14. Resonant Tunnelling in Barrier-in-Well and Well-in-Well Structures

International Nuclear Information System (INIS)

Jiang-Hong, Yao; Zhang-Yan; Wei-Wu, Li; Yong-Chun, Shu; Zhan-Guo, Wang; Jing-Jun, Xu; Guo-Zhi, Jia

2008-01-01

A Schrödinger equation is solved numerically for a barrier in a quantum well and a quantum well in another well structure by the transfer matrix technique. Effect of structure parameters on the transmission probabilities is investigated in detail. The results suggest that symmetry plays an important role in the coupling effect between the quantum wells. The relationship between the width of the inner well and the resonant energy levels in well-in-well structures is also studied. It is found that the ground state energy and the second resonant energy decrease with increasing width of the inner well, while the first resonant energy remains constant

15. EcoWellness: The Missing Factor in Holistic Wellness Models

Science.gov (United States)

Reese, Ryan F.; Myers, Jane E.

2012-01-01

A growing body of multidisciplinary literature has delineated the benefits that natural environments have on physical and mental health. Current wellness models in counseling do not specifically address the impact of nature on wellness or how the natural world can be integrated into counseling. The concept of EcoWellness is presented as the…

16. Morphologically well-defined Gd0.1Ce0.9O1.95 embedded Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofiber with an enhanced triple phase boundary as cathode for low-temperature solid oxide fuel cells

Science.gov (United States)

Kim, Chanho; Park, Hyunjung; Jang, Inyoung; Kim, Sungmin; Kim, Kijung; Yoon, Heesung; Paik, Ungyu

2018-02-01

Controlling triple phase boundary (TPB), an intersection of the ionic conductor, electronic conductor and gas phase as a major reaction site, is a key to improve cell performances for low-temperature solid oxide fuel cells. We report a synthesis of morphologically well-defined Gd0.1Ce0.9O1.95 (GDC) embedded Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) nanofibers and their electrochemical performances as a cathode. Electrospun fibers prepared with a polymeric solution that contains crystalline Ba0.5Sr0.5Co0.8Fe0.2O3-δ particles in ∼200 nm size and Gd(NO3)3/Ce(NO3)3 precursors in an optimized weight ratio of 3 to 2 result in one dimensional structure without severe agglomeration and morphological collapse even after a high calcination at 1000 °C. As-prepared nanofibers have fast electron pathways along the axial direction of fibers, a higher surface area of 7.5 m2 g-1, and more oxygen reaction sites at TPBs than those of GDC/BSCF composite particles and core-shell nanofibers. As a result, the Gd0.1Ce0.9O1.95 embedded Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofiber cell shows excellent performances of the maximum power density of 0.65 W cm-2 at 550 °C and 1.02 W cm-2 at 600 °C, respectively.

17. Potential for offshore geothermal developments using deep gas wells

Energy Technology Data Exchange (ETDEWEB)

Teodoriu, C.; Falcone, G. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

2013-08-01

The development of geothermal resources is steadily increasing as operators meet the challenge of maximising the temperature difference between production and injection wells, while minimising the wellhead temperature of the latter. At present, the minimum working wellhead temperature reported for the heat-to-electricity conversion cycles is limited to about 80 C. The cycle efficiency can be improved by reducing the injection temperature, which is the temperature at which the fluid exits the process. This paper evaluates the potential for generating electricity with a subsea geothermal plant using the difference between downhole reservoir temperature and that of the cold seawater at the mud line. The temperature in the world's oceans is relatively constant, ranging from 0 to 4 C at around 400 meters water depth. The use of these lower offshore water temperatures may help boost geothermal energy development. Deep gas resources are considered to be held within reservoirs below 4600 meters (15000 feet) and are relatively undeveloped as the risks and costs involved in drilling and producing such resources are extremely high. These deep resources have high reservoir temperatures, which offer an opportunity for geothermal exploitation if a new development concept can be formulated. In particular, the well design and reservoir development plan should consider reutilising existing well stock, including dry and plugged and abandoned wells for geothermal application once the gas field has been depleted. The major risks considered in this study include alternative uses of wells in no flow or rapid depletion situations. Reutilisation of the wells of depleted gas reservoirs will invariably lead to lower geothermal development costs compared with starting a geothermal campaign by drilling new wells. In particular, the well design and reservoir development plan should consider reutilising existing well stock, including dry and plugged and abandoned wells for geothermal

18. Creating Wellness in Your Schools.

Science.gov (United States)

Tager, Mark J.

1983-01-01

Wellness programs emphasize positive motivation and usually include health awareness campaigns, behavior change programs, and cost containment strategies. Guides are offered for beginning wellness programs in school districts. (MLF)

19. Gas in your water well

International Nuclear Information System (INIS)

2011-03-01

In Alberta, the presence of carbon dioxide, methane or hydrogen sulphide in water wells is common. The aim of this paper is to provide information to private owners of water wells. It is stated in this document that spurting taps or a gurgling noise indicate that there is gas in your water well; you can determine which gas it is by collecting a sample and having it analyzed. In order to address the risks associated with the presence of gas in the water well, the well pit or well pump should be properly vented to avoid any oxygen deficiency in the atmosphere. It is also possible to get rid of the gas by lowering the pump intake. It is also mentioned that the development of coalbed methane in Alberta should not contaminate private wells since regulations aimed at avoiding this have been implemented. This paper provided useful information to help private owners manage the presence of gas in their water wells.

20. Nationwide rural well water survey

International Nuclear Information System (INIS)

Korkka-Niemi, K.; Sipilae, A.; Hatva, T.; Hiisvirta, L.; Lahti, K.; Alfthan, G.

1993-01-01

The quality of water in 1 421 drinking-water wells was monitored in a nationwide well water study. Samples were taken once from all wells, and during three seasons from 421 wells. The wells were selected in such a way that me sample would be as representative as possible of the quality of the drinking-water in households' own wells in rural areas. The study comprised general water quality parameters, influence of sampling season, and factors related to the type, the condition and the pollution of the wells. In part of the well waters selenium, radioactivity and pesticides were determined. The effect of plumbing materials on the quality of water was also examined. (33 refs., 148 figs., 71 tabs.)

1. Ideas for Improving Retirement Wellness.

Science.gov (United States)

Rappaport, Anna M

Employers can and should take steps to support retirement and financial wellness. This article provides a framework for retirement wellness informed by research conducted or supported by the Society of Actuaries. Research insights about Americans' finances, planning, decisions, money management, debt, retiree income shocks and other areas point to ways employers can provide retirement wellness support as a vital part of an overall benefit program. The author suggests several key considerations employers should pay attention to in order to improve retirement wellness.

2. Insomnia and Well-Being

Science.gov (United States)

Hamilton, Nancy A.; Gallagher, Matthew W.; Preacher, Kristopher J.; Stevens, Natalie; Nelson, Christy A.; Karlson, Cynthia; McCurdy, Danyale

2007-01-01

Most Americans have occasional problems with insomnia. The relationship of insomnia to illness is well known. However, insomnia may also relate to lower levels of well-being. Although there are various definitions of well-being, one of the most clearly articulated and comprehensive models identifies 2 overarching constructs, psychological…

3. Spectroscopy of GaAs quantum wells

International Nuclear Information System (INIS)

West, L.C.

1985-07-01

A new type of optical dipole transition in GaAs quantum wells has been observed. The dipole occurs between two envelope states of the conduction band electron wavefunction, and is called a quantum well envelope state transition (QWEST). The QWEST is observed by infrared absorption in three different samples with quantum well thicknesses 65, 82, and 92 A and resonant energies of 152, 121, and 108 MeV, respectively. The oscillator strength is found to have values of over 12, in good agreement with prediction. The linewidths are seen as narrow as 10 MeV at room temperature and 7 MeV at low temperature, thus proving a narrow line resonance can indeed occur between transitions of free electrons. Techniques for the proper growth of these quantum well samples to enable observation of the QWEST have also been found using (AlGa)As compounds. This QWEST is considered to be an ideal material for an all optical digital computer. The QWEST can be made frequency matched to the inexpensive Carbon Dioxide laser with an infrared wavelength of 10 microns. The nonlinearity and fast relaxation time of the QWEST indicate a logic element with a subpicosecond switch time can be built in the near future, with a power level which will eventually be limited only by the noise from a lack of quanta to above approximately 10 microwatts. 64 refs., 35 figs., 6 tabs

4. Spectroscopy of GaAs quantum wells

Energy Technology Data Exchange (ETDEWEB)

West, L.C.

1985-07-01

A new type of optical dipole transition in GaAs quantum wells has been observed. The dipole occurs between two envelope states of the conduction band electron wavefunction, and is called a quantum well envelope state transition (QWEST). The QWEST is observed by infrared absorption in three different samples with quantum well thicknesses 65, 82, and 92 A and resonant energies of 152, 121, and 108 MeV, respectively. The oscillator strength is found to have values of over 12, in good agreement with prediction. The linewidths are seen as narrow as 10 MeV at room temperature and 7 MeV at low temperature, thus proving a narrow line resonance can indeed occur between transitions of free electrons. Techniques for the proper growth of these quantum well samples to enable observation of the QWEST have also been found using (AlGa)As compounds. This QWEST is considered to be an ideal material for an all optical digital computer. The QWEST can be made frequency matched to the inexpensive Carbon Dioxide laser with an infrared wavelength of 10 microns. The nonlinearity and fast relaxation time of the QWEST indicate a logic element with a subpicosecond switch time can be built in the near future, with a power level which will eventually be limited only by the noise from a lack of quanta to above approximately 10 microwatts. 64 refs., 35 figs., 6 tabs.

5. Crowdsourcing urban air temperatures from smartphone battery temperatures

Science.gov (United States)

Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

2014-05-01

Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

NARCIS (Netherlands)

Belfroid, S.P.C.; Wijhe, A. van

2017-01-01

Liquid loading is the mechanism that is associated with increased liquid hold-up and liquid back flow at lower gas flow rates in gas production wells. In laboratory, most liquid loading experiments are performed at fixed gas and liquid rates (mass flow controlled). In the field, the well behavior is

7. Wellness for Older Workers and Retirees. WBGH Worksite Wellness Series.

Science.gov (United States)

Levin, Robert C.

Company-sponsored wellness programs are particularly important for older employees inasmuch as they are at greater risk of disease and disability than are their younger counterparts and their health care and health insurance costs are generally higher. As the cost of retirement benefits rises, wellness programs for retirees are becoming…

8. Existential Well-Being Spirituality or Well-Being?

NARCIS (Netherlands)

Measures of spirituality often contain the dimension existential well-being (EWB). However, EWB has been found to overlap with emotional and psychological well-being. Using the Spiritual Attitude and Involvement List (SAIL), we have further investigated the overlap between aspects of spirituality

9. Tool for treating subterranean wells

International Nuclear Information System (INIS)

Muller, L.; Randermann, E.

1991-01-01

This paper describes a system for treating subterranean wells. It comprises: elongated treatment tool having inflatable packers, a support tube connected to one end of the tool operable to lower tool from a well head into a well and to supply liquid to tool, the tool providing valve means operable in response changes in tension ins aid tube and without rotating the tube sequentially: (a) inflate the packers to isolate one portion of the from the remaining portions thereof and to lock the against movement along the well; (b) inject treatment fluid supplied to the tool through support tube into the one portion of the well and (c) deflate the packers permitting further movement of tool along the well

10. Radioisotope techniques in oil wells

International Nuclear Information System (INIS)

Jain, Prabuddha

1998-01-01

Radioisotope techniques are quite useful in oil exploration and exploitation. Nuclear logging offers a way of gathering information on porosity, permeability, fluid saturations, hydrocarbon types and lithology. Some of the interesting applications in well drilling are determining depth of filtrate invasion, detection of lost circulation, drill-bit erosion control; primary cement measurements and well completions such as permanent tubular markers, perforation position marking, detection of channeling behind casing and gravel pack operations. Radioisotopes have been successfully used in optimizing production processes such as production profiling injection profiling, corrosion measurements and well to well tracer tests. (author)

11. Preserving Employee Privacy in Wellness.

Science.gov (United States)

Terry, Paul E

2017-07-01

The proposed "Preserving Employee Wellness Programs Act" states that the collection of information about the manifested disease or disorder of a family member shall not be considered an unlawful acquisition of genetic information. The bill recognizes employee privacy protections that are already in place and includes specific language relating to nondiscrimination based on illness. Why did legislation expressly intending to "preserve wellness programs" generate such antipathy about wellness among journalists? This article argues that those who are committed to preserving employee wellness must be equally committed to preserving employee privacy. Related to this, we should better parse between discussions and rules about commonplace health screenings versus much less common genetic testing.

12. Simplified Casing Program for Development Wells in Mahu Well Block

Directory of Open Access Journals (Sweden)

Lu Zongyu

2017-01-01

Full Text Available In the Mahu well block of Junggar basin, the complex formation has many sets of pressure system. Especially, the formation with microcracks in the middle layer is loose and the pressure bearing capacity is low. Lost circulation is prone to occur in this layer. At present, high investment and long drilling period were the main problems in the exploration and development process. The geostress 3D model of Mahu well block was established by means of logging and drilling data. The model provided the three-pressure profiles of Mahu well block for casing program optimization and safety drilling. Each well could be optimized the intermediate casing setting position. The intermediate casing was saved 160 meters long. The total of drilling speed was improved 5 times compared with the past drilling process. Slim hole drilling technology raised ROP 51.96% higher, and the average drilling period is shorten to 24.83 days.

13. The well-being questionnaire

DEFF Research Database (Denmark)

Pouwer, F; Snoek, Frank J; Van Der Ploeg, Henk M

2000-01-01

BACKGROUND: The Well-being Questionnaire (W-BQ) has been designed to measure psychological well-being in people with a chronic somatic illness and is recommended by the World Health Organization for widespread use. However, studies into the factor structure of this instrument are still limited...

14. Community College Employee Wellness Programs

Science.gov (United States)

Thornton, L. Jay; Johnson, Sharon

2010-01-01

This paper describes the prevalence and characteristics of employee wellness programs in public community colleges accredited by the Southern Association of Colleges and Schools (SACS). A random sample of 250 public community colleges accredited by SACS was mailed a 46-item employee-wellness program survey. The survey solicited program information…

15. IADC's well control accreditation program

International Nuclear Information System (INIS)

Kropla, S.M.

1997-01-01

WellCAP is a well control accreditation program devised and implemented by the International Association of Drilling Contractors (IADC). It is a worldwide comprehensive system that defines a well control training curriculum, establishes minimum standards and recommends guidelines for course structure. The program began in mid-1993 and is viewed as a means for training institutions to demonstrate industry recognition to customers, contractors and local governments. Schools can apply to have their courses accredited. The accreditation system is administered by a review panel. The application process requires that the school perform a detailed review of its curriculum and operations and bring them in line with the WellCAP curriculum and accreditation criteria. Currently, more than 75 schools around the world have requested application materials for WellCAP. To date fifteen schools have been fully accredited

16. ISLSCP II Sea Surface Temperature

Data.gov (United States)

National Aeronautics and Space Administration — Sea surface temperature (SST) is an important indicator of the state of the earth climate system as well as a key variable in the coupling between the atmosphere and...

Energy Technology Data Exchange (ETDEWEB)

Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

1979-02-01

Reservoir types are defined according to fluid phase and temperature, lithology, geologic province, pore geometry, and salinity and fluid chemistry. Improvements are needed in lithology and porosity definition, fracture detection, and thermal evaluation for more accurate interpretation. Further efforts are directed toward improving diagnostic techniques for relating rock characteristics and log response, developing petrophysical models for geothermal systems, and developing thermal evaluation techniques. The Geothermal Well Log Interpretation study and report has concentrated only on hydrothermal geothermal reservoirs. Other geothermal reservoirs (hot dry rock, geopressured, etc.) are not considered.

18. Well logging radioactive detector assembly

International Nuclear Information System (INIS)

Osburn, T.D.

1992-01-01

This patent describes a well logging instrument of the type having a radioactive logging sub having a sealed chamber and have a radioactive source for emitting radioactive energy into the well formation, the instrument having a radioactive energy detector for detecting gamma rays resulting from the emission of the radioactive energy into the well formation, and means for pressing the sub against the well of the well, an improved Dewar flask for the detector. It comprises: an inner housing formed of titanium and containing the detector; an outer housing formed of titanium, having a cylindrical side wall surrounding the inner housing and separated by a clearance which is evacuated, the outer housing being located within the sealed chamber in the sub of the instrument; a window section formed in the side wall of the outer housing adjacent the detector and on a side of the side wall closest to the wall of the well when the sub is pressed against the wall of the well; and wherein the inner housing has a cylindrical side wall that is of lesser wall thickness than the wall thickness of the side wall of the outer housing other than in the window section

19. Aerated drilling cutting transport analysis in geothermal well

Science.gov (United States)

Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

2017-12-01

Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

20. Geothermal Well Site Restoration and Plug and Abandonment of Wells

Energy Technology Data Exchange (ETDEWEB)

Rinehart, Ben N.

1994-08-01

A report is presented on the final phase of an energy research program conducted by the U.S. Department of Energy (DOE) involving two geothermal well sites in the State of Louisiana-the Gladys McCall site and the Willis Hulin site. The research program was intended to improve geothermal technology and to determine the efficacy of producing electricity commercially from geopressured resource sites. The final phase of the program consisted of plug and abandonment (P&A) of the wells and restoration of the well sites. Restoration involved (a) initial soil and water sampling and analysis; (b) removal and disposal of well pads, concrete, utility poles, and trash; (c) plugging of monitor and freshwater wells; and (d) site leveling and general cleanup. Restoration of the McCall site required removal of naturally occurring radioactive material (NORM), which was costly and time-consuming. Exhibits are included that provide copies of work permits and authorizations, P&A reports and procedures, daily workover and current conditions report, and cost and salvage reports. Site locations, grid maps, and photographs are provided.

1. The Medicare Annual Wellness Visit.

Science.gov (United States)

Colburn, Jessica L; Nothelle, Stephanie

2018-02-01

The Medicare Annual Wellness Visit is an annual preventive health benefit, which was created in 2011 as part of the Patient Protection and Affordable Care Act. The visit provides an opportunity for clinicians to review preventive health recommendations and screen for geriatric syndromes. In this article, the authors review the requirements of the Annual Wellness Visit, discuss ways to use the Annual Wellness Visit to improve the care of geriatric patients, and provide suggestions for how to incorporate this benefit into a busy clinic. Copyright © 2017 Elsevier Inc. All rights reserved.

2. Thermal activation of carriers from semiconductor quantum wells

International Nuclear Information System (INIS)

Johnston, M.B.; Herz, L.M.; Dao, L.V.; Gal, M.; Tan, H.H.; Jagadish, C.

1999-01-01

Full text: We have conducted a systematic investigation of the thermal excitation of carriers in confined states of quantum wells. Carriers may be injected into a sample containing a quantum well electrically or optically, once there they rapidly thermalise and are captured by the confined state of the quantum well. Typically electrons and holes recombine radiatively from their respective quantum well states. As a quantum well sample is heated from low temperatures (∼10K), phonon interactions increase which leads to carriers being excited from the well region into the higher energy, barrier region of the sample. Since carrier recombination from barrier regions is via non-radiative processes, there is strong temperature dependence of photoluminescence from the quantum well region. We measured quantum well photoluminescence as a function of excitation intensity and wavelength over the temperature range from 8K to 300K. In high quality InGaAs quantum wells we found unexpected intensity dependence of the spectrally integrated temperature dependent photoluminescence. We believe that this is evidence for by the existence of saturable states at the interfaces of the quantum wells

3. Well-posed optimization problems

CERN Document Server

Dontchev, Asen L

1993-01-01

This book presents in a unified way the mathematical theory of well-posedness in optimization. The basic concepts of well-posedness and the links among them are studied, in particular Hadamard and Tykhonov well-posedness. Abstract optimization problems as well as applications to optimal control, calculus of variations and mathematical programming are considered. Both the pure and applied side of these topics are presented. The main subject is often introduced by heuristics, particular cases and examples. Complete proofs are provided. The expected knowledge of the reader does not extend beyond textbook (real and functional) analysis, some topology and differential equations and basic optimization. References are provided for more advanced topics. The book is addressed to mathematicians interested in optimization and related topics, and also to engineers, control theorists, economists and applied scientists who can find here a mathematical justification of practical procedures they encounter.

4. Fremont Tree-Well Filter

Science.gov (United States)

Information about the SFBWQP Fremont Tree-Well Filter Spine project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

5. Private Well Water and Fluoride

Science.gov (United States)

... Private Wells Infant Formula Fluorosis Public Health Service Recommendation Water Operators & Engineers Water Fluoridation Additives Shortages of Fluoridation Additives Drinking Water Pipe Systems CDC-Sponsored Water Fluoridation Training Links to Other ...

6. 7 Steps to Aging Well

Science.gov (United States)

... Issue Past Issues Special Section 7 Steps to Aging Well Past Issues / Winter 2007 Table of Contents ... Exercise: A Guide from the National Institute on Aging is a publication from NIA that has strength, ...

7. The Lathrop Wells volcanic center

International Nuclear Information System (INIS)

Crowe, B.; Morley, R.

1992-01-01

The Lathrop Wells volcanic center is located 20 km south of the potential Yucca Mountain site, at the south end of the Yucca Mountain range. This paper discusses a detailed Study Plan which was prepared describing planned geochronology and field studies to assess the chronology of the Lathrop Wells volcanic center and other Quaternary volcanic centers in the region. A paper was published discussing the geomorphic and soil evidence for a late Pleistocene or Holoceno age for the main cone of the center. The purpose of this paper was to expose the ideas concerning the age of the Lathrop Wells center to scientific scrutiny. Additionally, field evidence was described suggesting the Lathrop Wells center may have formed from multiple eruptive events with significant intervals of no activity between events. This interpretation breaks with established convention in the volcanological literature that small volume basalt centers are monogenetic

8. Oil wells and gas wells: aspects of radiological safety

International Nuclear Information System (INIS)

Soares, S.M.V.O.

1987-01-01

The objective of the present work is to present and analyse the main radiological protection problems associated with non destructive inspections of oil wells, with the view of minimizing the dose to members of the public living in nearby urban zones. Problems related to the surveillance of such activities and the need for well formulated procedures are also discussed based on specific Brasilian regulations. Finally, some examples of radiological accidents that have occured in urban zones are described including the methodology employed for the rescue of Iridium-192 sources and for the estimate of radiation doses for workers and general public. (author) [pt

9. Method of installing well conductors

International Nuclear Information System (INIS)

Houser, D.M.

1991-01-01

This patent describes a method of installing a well conductor in a marine environment. It comprises sealing a well conductor with a watertight plug; submerging the conductor from an elevated platform; adding additional conductor lengths to the conductor as needed thereby forming a conductor string; adjusting the buoyancy of the string to control the lowering of the string to the sea floor; and drilling through the plug after the conductor string has achieved the desired penetration depth

10. Magnetic well for plasma confinement

International Nuclear Information System (INIS)

Valfells, A.; Chiu, Y.C.

1977-01-01

A multipole magnetic well for plasma confinement includes a plurality of current-carrying coils placed on planes corresponding to the facets of a regular polyhedron that can be symmetrically circumscribed about a sphere. The direction of current in the coils is such as to minimize the flux density at the center of the polyhedron, thereby providing a confinement well with three-dimensional symmetry having an increasing flux density in all directions from the center. 16 claims, 18 figures

11. Photoluminescence efficiency in AlGaN quantum wells

Energy Technology Data Exchange (ETDEWEB)

Tamulaitis, G.; Mickevičius, J. [Institute of Applied Research and Semiconductor Physics Department, Vilnius University, Sauletekio av. 9-III, Vilnius LT-10222 (Lithuania); Jurkevičius, J., E-mail: jonas.jurkevicius@ff.vu.lt [Institute of Applied Research and Semiconductor Physics Department, Vilnius University, Sauletekio av. 9-III, Vilnius LT-10222 (Lithuania); Shur, M.S. [Department of ECE and CIE, Rensselaer Polytechnic Institute (United States); Shatalov, M.; Yang, J.; Gaska, R. [Sensor Electronic Technology, Inc. (United States)

2014-11-15

Photoluminescence spectroscopy of AlGaN/AlGaN multiple quantum wells under quasi-steady-state conditions in the temperature range from 8 to 300 K revealed a strong dependence of droop onset threshold on temperature that was explained by the influence of carrier delocalization. The delocalization at room temperature results predominantly in enhancement of bimolecular radiative recombination, while being favorable for enhancement of nonradiative recombination at low temperatures. Studies of stimulated emission confirmed the strong influence of carrier localization on droop.

12. Magnetophonon resonance in double quantum wells

Science.gov (United States)

Ploch, D.; Sheregii, E. M.; Marchewka, M.; Wozny, M.; Tomaka, G.

2009-05-01

The experimental results obtained for the magnetotransport in pulsed magnetic fields in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells and different values of the electron density are reported. The magnetophonon resonance (MPR) was observed for both types of structures within the temperature range 77-125 K. Four kinds of LO phonons are taken into account to interpret the MPR oscillations in the DQW and a method of the Landau level calculation in the DQW is elaborated for this aim. The peculiarity of the MPR in the DQW is the large number of the Landau levels caused by SAS splitting of the electron states (splitting on the symmetric and anti-symmetric states) and the large number of the phonon assistance electron transitions between Landau levels. The significant role of the carrier statistics is shown too. The behavior of the electron states in the DQWs at comparably high temperatures has been studied using the MPR. It is shown that the Huang and Manasreh [Manasreh [Phys. Rev. B 54, 2044 (1996)] model involving screening of exchange interaction is confirmed.

13. Λ and Σ well depth

International Nuclear Information System (INIS)

Satoh, Eiji

1982-01-01

The Λ well depth was calculated by taking into account the effect of the ΛΣ conversion. Takahashi et al. obtained the separate type of potentials which described the hyperon-nucleon interaction up to p waves. Two types of the potentials among several types they obtained were used to calculate the Λ well depth. The G matrix was easily calculated, and the Λ well depth was obtained by integrating the G matrix in momentum space up to the Fermi surface. The effect of the ΛΣ conversion was given by an equation. The total Λ well depth was estimated to be 9.13 MeV and 49.36 MeV for each type of potential, respectively. It was concluded that the argument by Bodmer et al. was not correct. The Σ well depth was also calculated using the potential obtained by Takahashi et al. for I = 1/2 and the one obtained by Σ + p → Σ + p scattering data for I = 3/2. The obtained value 35.30 MeV may be overestimated, and the experimental value is expected to be in the range from 20 MeV to 30 MeV. (Ito, K.)

14. Optimization of well field management

DEFF Research Database (Denmark)

Hansen, Annette Kirstine

Groundwater is a limited but important resource for fresh water supply. Differ- ent conflicting objectives are important when operating a well field. This study investigates how the management of a well field can be improved with respect to different objectives simultaneously. A framework...... for optimizing well field man- agement using multi-objective optimization is developed. The optimization uses the Strength Pareto Evolutionary Algorithm 2 (SPEA2) to find the Pareto front be- tween the conflicting objectives. The Pareto front is a set of non-inferior optimal points and provides an important tool...... for the decision-makers. The optimization framework is tested on two case studies. Both abstract around 20,000 cubic meter of water per day, but are otherwise rather different. The first case study concerns the management of Hardhof waterworks, Switzer- land, where artificial infiltration of river water...

15. Modeling multi-lateral wells

Energy Technology Data Exchange (ETDEWEB)

Su, H. J.; Fong, W. S. [Chevron Petroleum Technology Company (United States)

1998-12-31

A method for modeling multi-lateral wells by using a computational scheme embedded in a general-purpose, finite difference simulator was described. The calculation of wellbore pressure profile for each lateral included the frictional pressure drop along the wellbore and proper fluid mixing at lateral connection points. To obtain a good production profile the Beggs and Brill correlation, a homogenous flow model, and the model proposed by Ouyang et al, which includes an acceleration term and accounts for the lubrication effect due to radial influx, were implemented. Well performance prediction results were compared using the three models. The impact of different tubing sizes on the well performance and the prediction contribution from each lateral were also studied. Results of the study in the hypothetical example and under normal field operating conditions were reviewed. 7 refs., 10 tabs., 3 figs.

16. Well drilling summary report for well 199-N-106A

International Nuclear Information System (INIS)

Walker, L.D.

1996-02-01

Past liquid waste disposal practices within the 100-N Area have resulted in the contamination of the underlying sediments and groundwater. The release of large volumes of liquid effluent to the 1301-N and 1325-N Liquid Waste Disposal Facilities caused the transport of 90 Sr and other contaminants to the groundwater. Further discussion of 100-N Area hydrogeology is provided in Hartman and Lindsey (1993). A pump-and-treat system combined with a vertical barrier is the preferred alternative for the N Springs Expedited Response Action. This document is a compilation of the data collected during the drilling of well 199-N-106A, an extraction well for the 100-N Pump-and-Treat Project

17. Health and Wellness Policy Ethics

Directory of Open Access Journals (Sweden)

Frank J. Cavico

2013-01-01

Full Text Available This perspective is an ethical brief overview and examination of “wellness” policies in the modern workplace using practical examples and a general application of utilitarianism. Many employers are implementing policies that provide incentives to employees who lead a “healthy” lifestyle. The authors address how these policies could adversely affect “non-healthy” employees. There are a wide variety of ethical issues that impact wellness policies and practices in the workplace. The authors conclude that wellness programs can be ethical, while also providing a general reflective analysis of healthcare challenges in order to reflect on the externalities associated with such policies in the workplace.

18. Environmental restoration using horizontal wells

International Nuclear Information System (INIS)

Looney, B.B.; Kaback, D.S.; Hazen, T.C.; Corey, J.C.

1992-01-01

This paper reports that under sponsorship from the U.S. Department of Energy, technical personnel from the Savannah River Laboratory and other DOE laboratories, universities and private industry have completed a full scale demonstration of environmental remediation using horizontal wells. The test successfully removed approximately 7250 kg of contaminants. A large amount of characterization and monitoring data was collected to aid in interpretation of the test and to provide the information needed for future environmental restorations that employ directionally drilled wells as extraction or delivery systems

19. Health and Wellness Policy Ethics

Science.gov (United States)

Cavico, Frank J.; Mujtaba, Bahaudin G.

2013-01-01

This perspective is an ethical brief overview and examination of “wellness” policies in the modern workplace using practical examples and a general application of utilitarianism. Many employers are implementing policies that provide incentives to employees who lead a “healthy” lifestyle. The authors address how these policies could adversely affect “non-healthy” employees. There are a wide variety of ethical issues that impact wellness policies and practices in the workplace. The authors conclude that wellness programs can be ethical, while also providing a general reflective analysis of healthcare challenges in order to reflect on the externalities associated with such policies in the workplace. PMID:24596847

20. Welling up asylum seekers’ memories

NARCIS (Netherlands)

Bernardt, Clemens; van Hoven, Bettina

2014-01-01

“Memories well up out of the depths of the unconscious and/or work away as (dis)enabling background. They are not static information, but are reworked in the light of current practice, and at the same time shape that practice” (Jones and Garde‐Hansen, 2012: 161).The aim of the forthcoming paper is

1. Environmental protection for subsea wells

International Nuclear Information System (INIS)

Diehl, R.J.; Osborne, R.S.; Elwood, J.

1991-01-01

This patent describes an apparatus for receiving and containing surplus fluid from a subsea well installation on the ocean floor including a subsea wellhead assembly disposed in an enclosed protective chamber. It comprises a fluid-carrying conduit connected to the exterior of the protective chamber in fluid communication with the interior of the protective chamber; an inflatable dracon disposed upon and against the ocean floor in protective relation thereto when deflated and releasably connected in fluid communication to an outlet of the conduit; and pressure-balanced relief valve means disposed in the conduit between the outlet and the protective chamber for communicating surplus fluid from the interior of such chamber to the dracon when the fluid pressure within such chamber exceeds a predetermined value. This patent describes a method of completing an underwater well. It comprises installing a hollow cylindrical silo body with attached conductor guide casing into the sea floor; drilling and casing a well through the silo body and conductor guide casing; installing a wellhead assembly on top of the drilled and cased well inside of the silo body; installing a pressure-containing lid on top of the silo body, forming an enclosed protective chamber and isolating the interior of the chamber from the surrounding hydrostatic head of the sea water

2. Wellness lessons from transportation companies.

Science.gov (United States)

2011-09-01

The purpose of this report is to describe wellness programs and offer two suggestions for improving how they are delivered to commercial drivers and operators. It is not a large sample empirical study from which generalizations can be made. Rather, t...

3. The Well Siblings of Schizophrenics.

Science.gov (United States)

Samuels, Laurel; Chase, Laura

1979-01-01

Explores the impact of having a schizophrenic sibling. Subjects functioned at high levels of adjustment. Separated from their families, there followed a period of reinvolvement, including responsibility for the ill sibling. Younger siblings expressed guilt over being well, whereas older siblings expressed guilt over earlier sibling rivalry.…

4. Spring valve for well completion

Energy Technology Data Exchange (ETDEWEB)

Gorbatov, P T

1966-07-22

A spring-loaded valve for well completion consists of a housing with a spring-loaded closing element. In order to protect the closing element from corrosion which might lower the pressure drop, the closing element is made in the form of a piston. It is tightly connected with sealing elements. The housing has orifices, overlapping the piston in the initial position.

5. Parenthood and Well-Being

NARCIS (Netherlands)

Roeters, Anne; Mandemakers, Jornt J.; Voorpostel, Marieke

2016-01-01

This study contributes to our knowledge on the association between parenthood and psychological well-being by examining whether pre-parenthood lifestyles (leisure and paid work) moderate the transition to parenthood. We expected that people with less active lifestyles would find it easier to

6. Evaluating an employee wellness program.

Science.gov (United States)

2013-12-01

What criteria should be used to evaluate the impact of a new employee wellness program when the initial vendor contract expires? Published academic literature focuses on return-on-investment as the gold standard for wellness program evaluation, and a recent meta-analysis concludes that wellness programs can generate net savings after one or two years. In contrast, surveys indicate that fewer than half of these programs report net savings, and actuarial analysts argue that return-on-investment is an unrealistic metric for evaluating new programs. These analysts argue that evaluation of new programs should focus on contract management issues, such as the vendor's ability to: (i) recruit employees to participate and (ii) induce behavior change. We compute difference-in-difference propensity score matching estimates of the impact of a wellness program implemented by a mid-sized employer. The analysis includes one year of pre-implementation data and three years of post-implementation data. We find that the program successfully recruited a broad spectrum of employees to participate, and it successfully induced short-term behavior change, as manifested by increased preventive screening. However, the effects on health care expenditures are positive (but insignificant). If it is unrealistic to expect new programs to significantly reduce healthcare costs in a few years, then focusing on return-on-investment as the gold standard metric may lead to early termination of potentially useful wellness programs. Focusing short-term analysis of new programs on short-term measures may provide a more realistic evaluation strategy.

7. Staying well in old age: Predicting older adults’ wellness

Directory of Open Access Journals (Sweden)

Sofia von Humboldt

2013-07-01

Full Text Available In an ageing world, the potential for ageing well in older people is still relatively unexplored.Literature has suggested that a sense of coherence (SOC is an important factor with regard to retaining a good quality of life in old age. To explore whether satisfaction with life (SWL, as well as sociodemographic, health- and lifestyle-related variables, are predictors of SOC in a community-dwelling sample of older adults and to assess significant differences in SOC amongst the four nationalities studied. Cross-national research encompassing a community-dwelling sample of 454 older adults aged 75 years and above was undertaken. Sense of coherence was assessed using the Orientation to Life Questionnaire and Satisfaction with Life (SWL was measured using the Satisfaction with Life Scale. Structural equation modelling was used to investigate a structural model of the self-reported SOC, comprising sociodemographic variables (age, gender, marital status, professional status, educational level, family’s annual income and standard of living arrangements, as well as SWL, lifestyle and health-related (physical activity and recent disease characteristics. Significant predictors were physical activity (β = 0.804; p < 0.001, recent disease (β = 0.501; p < 0.001 and SWL (β = 0.07; p = 0.004.These variables accounted for approximately 57.5%of the variability of SOC. Moreover, differences with regard to SOC were also found amongst the four nationality groups (F(3= 5.204; p = 0.002. Physical activity is the strongest predictor of self-reported SOC. Other predictors are the absence of a recent disease and SWL. The four nationalities presented significant differences with regard to SOC. This study highlighted the need for understanding the potential factors (in particular physical activity and further health-related characteristicsthat impact on older adults’ SOC.

8. 25 CFR 226.32 - Well records and reports.

Science.gov (United States)

2010-04-01

... Superintendent; a copy of electrical, mechanical or radioactive log, or other types of survey of the well bore... pressure or fluid sample surveys, temperature surveys, directional surveys, and the like; the materials and... such tests and surveys as may be required by the Superintendent to determine conditions in the well or...

9. High temperature storage loop :

Energy Technology Data Exchange (ETDEWEB)

Gill, David Dennis; Kolb, William J.

2013-07-01

A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

10. Well engineering in the nineties

International Nuclear Information System (INIS)

Schaafsma, M.G.

1993-01-01

Shell U.K. Exploration and Production, Operator in the U.K. sector of the North Sea for Shell and Esso, has adopted a corporate strategy in line with the 'Drilling in the Nineties' concept proposed by Shell International Petroleum Maatschappij B.V. (SIPM) for all Shell Operating Companies. Within Shell Expro the 'Drilling in the Nineties' concept has been broadened to incorporate the drilling, well services and equipment supply areas with the resultant name change to iWell Engineering in the Nineties'. (WIN 90's). This strategy has now been implemented and has substantially changed the modus operandi between operator and contractor with a strong emphasis on long term partnership relations with lead contractors. This paper summarises the strategy that has been developed, the implications of implementing this strategy; the implications to both a major operator and numerous contractor suppliers; the results to date; and the course of future partnership relations. (orig.)

11. Spacecraft Architecture and well being

Science.gov (United States)

Ören, Ayşe

2016-07-01

As we embark on a journey for new homes in the new worlds to lay solid foundations, we should consider not only the survival of frontiers but also well-being of those to live in zero gravity. As a versatile science, architecture encompasses abstract human needs as well. On our new different direction in the course of the Homo sapiens evolution, we can do this with designs addressing both our needs and senses. Well-being of humans can be achieved by creating environments supporting the cognitive and social stages in the evolution process. Space stations are going through their own evolution process. Any step taken can serve as a reference for further attempts. When studying the history of architecture, window designing is discussed in a later phase, which is the case for building a spaceship as well. We lean on the places we live both physically and metaphorically. The feeling of belonging is essential here, entailing trans-humanism, which is significant since the environment therein is like a dress comfortable enough to fit in, meeting needs without any burden. Utilizing the advent of technology, we can create moods and atmospheres to regulate night and day cycles, thus we can turn claustrophobic places into cozy or dream-like places. Senses provoke a psychological sensation going beyond cultural codes as they are rooted within consciousness, which allows designers to create a mood within a space that tells a story and evokes an emotional impact. Color, amount of light, sound and odor are not superficial. As much as intangible, they are real and powerful tools with a physical presence. Tapping into induction, we can solve a whole system based on a part thereof. Therefore, fractal designs may not yield good results unless used correctly in terms of design although they are functional, which makes geometric arrangement critical.

12. Well-Being and Objectivity

Directory of Open Access Journals (Sweden)

Jakub Bożydar Wiśniewski

2011-03-01

Full Text Available In this paper, I investigate the issue of whether there exists an objective element of well-being, completely independent of anyone’s desires, interests and preferences. After rejecting health-based and convention-based approaches to objectivity, I conclude that the element in question consists in respecting autonomy, voluntariness of every purposive agent and the principle of non-aggression.

13. Is supergravity well-posed?

International Nuclear Information System (INIS)

Isenberg, J.; Bao, D.; Yasskin, P.B.

1983-01-01

One rather fundamental question concerning supergravity remains unresolved: Is supergravity a well-posed field theory? That is, does a set of certain (Cauchy) data specified on some initial spacelike surface determine a unique, causally propagating spacetime solution of the supergravity field equations (at least in some finite neighborhood of the initial surface)? In this paper, the authors give a very brief report on work directed towards answering this question. (Auth.)

14. Implementing an effective wellness program

Energy Technology Data Exchange (ETDEWEB)

Dickson, N. [Bruce Power Inc., Toronto, ON (Canada)

2004-07-01

Bruce Power is one of the largest nuclear sites in the world, with more than 3,700 employees. The utility strives to be one of Canada's most dynamic and innovative teams. The values of Bruce Power include: safety first; profit through progress; openness; respect and recognition; and professional and personal integrity. With respect to health and safety, Bruce Power strives to have zero medically treated injuries. Details of the healthy workplace committee were presented as well as details of the health and wellness program. Charts of health and mental health screening strategies were presented. Other programs include: an excellent benefits package; flexible working hours; family care days; banked time; an electronic suggestion box; and station condition records. It was noted that there is a strong external focus on health and safety as well. Details of community involvement and sponsorship were presented, along with details of on-site fitness facilities and fitness membership subsidies. Details of the National Quality Institute certification were also provided, including physical environment; lifestyle behaviours; and psycho-social environment. The importance of strong leadership in encouraging feedback, team talk and continuous leadership development was emphasized. Strategies to strengthen leadership include new hiring criteria for managers; management days; first line manager academy; a mentoring program; and task observation and coaching. Communication strategies include articles in weekly newspapers; monthly safety meeting video segments; posters and electronic signs; and voice mail messages from the chief executive officer. Details of the Eat Smart and Weight Challenge certification were provided. The management at human resources faces the challenge of continual change, demographics, and the fact that wellness is difficult to measure. tabs., figs.

15. Performance and Feasibility Study of a Standing Column Well (SCW System Using a Deep Geothermal Well

Directory of Open Access Journals (Sweden)

Jeong-Heum Cho

2016-02-01

Full Text Available Deep geothermal heat pump systems have considerable energy saving potential for heating and cooling systems that use stable ground temperature and groundwater as their heat sources. However, deep geothermal systems have several limitations for real applications such as a very high installation cost and a lack of recognition as heating and cooling systems. In this study, we performed a feasibility assessment of a Standing Column Well (SCW system using a deep geothermal well, based on a real-scale experiment in Korea. The results showed that the temperature of the heat source increased up to 42.04 °C in the borehole after the heating experiment, which is about 30 °C higher than that of normal shallow geothermal wells. Furthermore, the coefficient of performance (COP of the heat pump during 3 months of operation was 5.8, but the system COP was only 3.6 due to the relatively high electric consumption of the pump. Moreover, the payback period of the system using a deep well for controlled horticulture in a glass greenhouse was calculated as 6 years compared with using a diesel boiler system.

16. Distributed temperature sensor testing in liquid sodium

Energy Technology Data Exchange (ETDEWEB)

Gerardi, Craig, E-mail: cgerardi@anl.gov; Bremer, Nathan; Lisowski, Darius; Lomperski, Stephen

2017-02-15

Highlights: • Distributed temperature sensors measured high-resolution liquid-sodium temperatures. • DTSs worked well up to 400 °C. • A single DTS simultaneously detected sodium level and temperature. - Abstract: Rayleigh-backscatter-based distributed fiber optic sensors were immersed in sodium to obtain high-resolution liquid-sodium temperature measurements. Distributed temperature sensors (DTSs) functioned well up to 400 °C in a liquid sodium environment. The DTSs measured sodium column temperature and the temperature of a complex geometrical pattern that leveraged the flexibility of fiber optics. A single Ø 360 μm OD sensor registered dozens of temperatures along a length of over one meter at 100 Hz. We also demonstrated the capability to use a single DTS to simultaneously detect thermal interfaces (e.g. sodium level) and measure temperature.

17. Horizontal well drilled to intersect existing vertical well

International Nuclear Information System (INIS)

Price, C.; Reynolds, J.

1991-01-01

Morse oilfield, in eastern Gray County of the Texas Panhandle, was originally developed between 1928 and 1937. It is but a very small part of the huge Texas Pandhandle field, which covers over 200,000 productive acres, containing 12,500 active wells with a cumulative production of one billion barrels of oil. The field produces from Permian age dolomites and the Pennsylvanian Granite Wash. This paper reports on multiple production techniques that have been used over the years with varying levels of success. Acidizing techniques in the late 1930s increased development, but the advent of hydraulic fracturing resulted in extensive development. The primary drive mechanism was solution-gas drive. Approximately one-fourth of Panhandle field has been subjected to gas injection, resulting in an estimated 50 million barrels of additional oil production. In 1955, waterflooding appeared to offer the most economical possibility of increasing ultimate recovery from the Brown Dolomite reservoir. The Morse Brown Dolomite pilot flood in Gray County and another Brown Dolomite pilot flood in Hutchinson County were the first two successful pilot floods in Panhandle field. The Morse flood has a total of 40 oil and 27 water injection wells on 500 flood acres. Morse field has a cumulative production of 15.7 million barrels of oil. The operating company, Future Petroleum Corp., a Dallas-based independent, believes that a third alternative using horizontal drilling has the potential to increase production. And it appears that the Brown Dolomite formation of Morse field offers the right combination of factors to attempt this type of venture

18. Device for measuring well twistings

Energy Technology Data Exchange (ETDEWEB)

Kostin, Yu S; Golubin, S V; Keller, V F; Merzheyevskiy, A B; Zdorov, V P

1982-01-01

The device for measuring the well twistings with the use of fluids (poured into a vessel and which leave an imprint on the walls), containing a housing and adapter, is distinguished by the fact that in order to improve the accuracy of measurement by obtaining a clear imprint, it is equipped with cylinder that is spring-loaded in relation to the adapter, forming a vessel for fluid with the adapter. The adapter is made of two parts, one of which is made of neutral metal in relation to the fluid, and the other, from active in relation to the same fluid.

19. Improvements to well scintillation counters

International Nuclear Information System (INIS)

Farukhi, M.R.; Mataraza, G.A.; Wimer, O.D.

1977-01-01

This invention relates to the field of ionising radiation detection. It concerns in particular scintillation detectors of the type that is commonly used in conjunction with a photomultiplier tube and that is used for monitoring radiation, for instance in the clinical measurements of isotopes. This invention enables well scintillation counters to be made, characterised by a high efficiency in measuring the thindown rate of radio-pharmaceutical solutions and to resolve the distribution of energy emanating from the radioactive source. It particularly consists in improving the uniformity of the luminous efficiency, the quality of the resolution and the efficiency whilst improving the reception of light [fr

20. Hinkler Well - Centipede uranium deposits

International Nuclear Information System (INIS)

Crabb, D.; Dudley, R.; Mann, A.W.

1984-01-01

The Hinkler Well - Centipede deposits are near the northeastern margin of the Archean Yilgarn Block on a drainage system entering Lake Way. Basement rocks are granitoids and greenstones. The rocks are deeply weathered and overlain by alluvism. Granitoids, the probable uranium source, currently contain up to 25 ppm uranium, in spite of the weathering. The host calcrete body is 33 km long and 2 km wide. Uranium up to 1000 ppm occurs in carnotite over a 15 km by 2.5 km area. (author)

1. Vapor-liquid equilibrium and critical asymmetry of square well and short square well chain fluids.

Science.gov (United States)

Li, Liyan; Sun, Fangfang; Chen, Zhitong; Wang, Long; Cai, Jun

2014-08-07

The critical behavior of square well fluids with variable interaction ranges and of short square well chain fluids have been investigated by grand canonical ensemble Monte Carlo simulations. The critical temperatures and densities were estimated by a finite-size scaling analysis with the help of histogram reweighting technique. The vapor-liquid coexistence curve in the near-critical region was determined using hyper-parallel tempering Monte Carlo simulations. The simulation results for coexistence diameters show that the contribution of |t|(1-α) to the coexistence diameter dominates the singular behavior in all systems investigated. The contribution of |t|(2β) to the coexistence diameter is larger for the system with a smaller interaction range λ. While for short square well chain fluids, longer the chain length, larger the contribution of |t|(2β). The molecular configuration greatly influences the critical asymmetry: a short soft chain fluid shows weaker critical asymmetry than a stiff chain fluid with same chain length.

2. Development of geothermal-well-completion systems. Final report

Energy Technology Data Exchange (ETDEWEB)

Nelson, E.B.

1979-01-01

Results of a three year study concerning the completion of geothermal wells, specifically cementing, are reported. The research involved some specific tasks: (1) determination of properties an adequate geothermal well cement must possess; (2) thorough evaluation of current high temperature oilwell cementing technology in a geothermal context; (3) basic research concerning the chemical and physical behavior of cements in a geothermal environment; (4) recommendation of specific cement systems suitable for use in a geothermal well.

3. Staying well in old age: Predicting older adults’ wellness

Directory of Open Access Journals (Sweden)

Sofia von Humboldt

2013-07-01

Full Text Available In an ageing world, the potential for ageing well in older people is still relatively unexplored. Literature has suggested that a sense of coherence (SOC is an important factor with regard to retaining a good quality of life in old age. To explore whether satisfaction with life (SWL, as well as sociodemographic, health- and lifestyle-related variables, are predictors of SOC in a community-dwelling sample of older adults and to assess significant differences in SOC amongst the four nationalities studied. Cross-national research encompassing a community-dwelling sample of 454 older adults aged 75 years and above was undertaken. Sense of coherence was assessed using the Orientation to Life Questionnaire and Satisfaction with Life (SWL was measured using the Satisfaction with Life Scale. Structural equation modelling was used to investigate a structural model of the self-reported SOC, comprising sociodemographic variables (age, gender, marital status, professional status, educational level, family’s annual income and standard of living arrangements, as well as SWL, lifestyle and health-related (physical activity and recent disease characteristics. Significant predictors were physical activity (β = 0.804; p < 0.001, recent disease (β = 0.501;p < 0.001 and SWL (β = 0.07; p = 0.004. These variables accounted for approximately 57.5% of the variability of SOC. Moreover, differences with regard to SOC were also found amongst the four nationality groups (F(3 = 5.204; p = 0.002. Physical activity is the strongest predictor of self-reported SOC. Other predictors are the absence of a recent disease and SWL. The four nationalities presented significant differences with regard to SOC. This study highlighted the need for understanding the potential factors (in particular physical activity and further health-related characteristics that impact on older adults’ SOC. In ’n wêreld wat aan die verouder is, is die potensiaal van bejaardes om goed te verouder

4. Computer Security: Well fought, FP!

CERN Multimedia

Stefan Lueders, Computer Security Team

2015-01-01

We are used to spam and phishing emails. But at the end of last year, a very special email struck one of our colleagues in the FP Department.   An accountant was gently asked in an email from “Rolf.Heuer@cern.ch” to prepare a financial transaction - in the strictest confidence. A phone call from the beneficiary to the accountant was made in an attempt to support this request. Despite being instructed not to talk to anyone, the e-mail, the phone conversation and the circumstances were all so suspicious that our colleague consulted his hierarchy, the internal audit service and us. Well done, FP Department! This is a rare case of an attempt at “social engineering”, i.e. luring someone into doing something detrimental to the Organization. The e-mail was fake. While it appeared to come from “Rolf.Heuer@cern.ch”, it actually came from an alleged fraudster outside CERN. The e-mail and the phone call showed that he was well prepared and dire...

5. Real-time well condition monitoring in extended reach wells

Energy Technology Data Exchange (ETDEWEB)

Kucs, R.; Spoerker, H.F. [OMV Austria Exploration and Production GmbH, Gaenserndorf (Austria); Thonhauser, G. [Montanuniversitaet Leoben (Austria)

2008-10-23

Ever rising daily operating cost for offshore operations make the risk of running into drilling problems due to torque and drag developments in extended reach applications a growing concern. One option to reduce cost related to torque and drag problems can be to monitor torque and drag trends in real time without additional workload on the platform drilling team. To evaluate observed torque or drag trends it is necessary to automatically recognize operations and to have a 'standard value' to compare the measurements to. The presented systematic approach features both options - fully automated operations recognition and real time analysis. Trends can be discussed between rig- and shore-based teams, and decisions can be based on up to date information. Since the system is focused on visualization of real-time torque and drag trends, instead of highly complex and repeated simulations, calculation time is reduced by comparing the real-time rig data against predictions imported from a commercial drilling engineering application. The system allows reacting to emerging stuck pipe situations or developing cuttings beds long before the situations become severe enough to result in substantial lost time. The ability to compare real-time data with historical data from the same or other wells makes the system a valuable tool in supporting a learning organization. The system has been developed in a joint research initiative for field application on the development of an offshore heavy oil field in New Zealand. (orig.)

6. Nuclear well logging in hydrology

International Nuclear Information System (INIS)

1971-01-01

The optimum development of regional and local groundwater resources requires a quantitative evaluation of its aquifers and aquicludes, and of the physical and chemical properties relevant to the recharge to and withdrawal of water from them. If an understanding of the groundwater regime is to be obtained, geological observations at outcrop must be augmented by subsurface measurements of the strata and the waters they contain. Measurements of many hydrological and geological parameters can be made in situ by nuclear geophysical well-logging methods. Very simply, well logging consists of lowering a measuring probe into a well and making a continuous record of the variations of a particular parameter with depth. In most circumstances, repetition of the measurements under differing hydrodynamic conditions results in a better definition of the flow regime in the aquifer. Nuclear well-logging techniques have for some years been capable of solving a number of the sub-surface measurement problems faced by hydrogeologists. However, the present usage of these methods varies from country to country and the literature concerning applications is scattered in the professional journals of several disciplines. The objective of this report is to include in a single reference volume descriptions of the physical principles of nuclear logging methods, their applications to hydrogeological problems and their limitations on a level suitable for the practising hydrologists with a limited knowledge of nuclear physics. The Working Group responsible for compiling the report recommended that it should cover a broad spectrum of hydrogeological investigations and problems. For example, it saw no valid reason to distinguish for the purposes of the report between well-logging applications for water-supply purposes and for water-flooding studies in the petroleum industry. Neutron measurements made for soil-moisture determinations in the unsaturated zone have been specifically omitted, however, as

7. Family Wellness, Not HIV Prevention

Science.gov (United States)

Swendeman, Dallas; Flannery, Diane

2010-01-01

HIV exceptionalism (and disease-specific programs generally) garner both unbalanced funding and the most talented personnel, distorting local health priorities. In support of HIV exceptionalism, the successful mobilization of significant global health sector resources was not possible prior to HIV. Both sides of the debate have merits; rather than perpetuating polarization, we suggest that sustained improvements in global health require creating a prevention infrastructure to meet multiple health challenges experienced by local communities. We propose four fundamental shifts in HIV and disease prevention: (1) horizontally integrating prevention at one site locally, with priorities tailored to local health challenges and managed by local community leaders; (2) using a family wellness metaphor for services, not disease prevention; (3) implementing evidence-based prevention programs (EBPP) based on common principles, factors, and processes, rather than replication of specific programs; and (4) utilizing the expertise of private enterprise to re-design EBPP into highly attractive, engaging, and accessible experiences. PMID:19148744

8. A neutron well logging system

International Nuclear Information System (INIS)

1980-01-01

A pulsed neutron well logging system using a sealed off neutron generator tube is provided with a programmable digital neutron output control system. The control system monitors the target beam current and compares a function of this current with a pre-programmed control function to develop a control signal for the neutron generator. The control signal is used in a series regulator to control the average replenisher current of the neutron generator tube. The programmable digital control system of the invention also provides digital control signals as a function of time to provide ion source voltages. This arrangement may be utilized to control neutron pulses durations and repetition rates or to produce other modulated wave forms for intensity modulating the output of the neutron generator as a function of time. (Auth.)

9. Monitoring Animal Well-being

DEFF Research Database (Denmark)

Gronskyte, Ruta

environment. In video surveillance, the behavior of humans and animals is monitored based on extremes: event is present/event is not present, objects behave normally/objects behave abnormally, action 1/action 2/action 3, etc. In nature, the motion of humans and animals is continuous with transitions from one...... action to another. The second aim of this thesis is to propose a method to monitor motion as a continuous process using common classification methods....... are handled. Ensuring the well-being of such large numbers of pigs using only personnel is a complicated task. Video surveillance of humans has been widely used to ensure safety and order in multiple situations. Methods have been developed to detect individual actions or abnormal behavior in small groups...

10. Confinement of a neutral plasma using nested electric potential wells

International Nuclear Information System (INIS)

Ordonez, C.A.

1997-01-01

A self-consistent, two-dimensional analysis is presented on confining a region of neutral plasma with a Penning/Malmberg type plasma trap using a nested well configuration. It is found that a neutral plasma region having disparate electron and ion temperatures or having high charge state ions can be confined with static fields. For confining a neutral region comprised of electrons and equal temperature low charge state ions, a quasistatic approach appears promising. copyright 1997 American Institute of Physics

11. PbSe Quantum Well VECSEL on Si

Science.gov (United States)

Fill, M.; Khiar, A.; Rahim, M.; Felder, F.; Zogg, H.

2011-12-01

Vertical external cavity surface emitting lasers in the wavelength region from 3-5 μm are presented. They are based on PbSe quantum wells grown on Si substrates. As host material Pb1-xEuxSe and Pb1-xSrxSe are used. With Pb1-xSrxSe as host material maximum operation temperatures of 325 K are achieved, while with Pb1-xEuxSe an operation temperature of 245 K could not be overcome. This may be explained by a band alignment transition from type I to type II with increasing temperature.

12. Development of CaO-swelling cements for cementing of natural gas underground storage wells in field trial (temperature range {<=} 60 C) and composition of CaO and MgO-swelling cements for a temperature range between 60 C-105 C. Final report; Entwicklung von CaO-Quellzementen fuer die Zementation von Erdgasspeicherbohrungen im Feldversuch (Temperaturbereich {<=} 60 C) sowie Formulierung von CaO- und MgO-Quellzementen fuer den Einsatz im Temperaturbereich 60 C-105 C. Abschlussbericht

Energy Technology Data Exchange (ETDEWEB)

Ghofrani, R.; Gheorghiu, A.S.; Radu, G.; Rogojinoiu, E.; Stan, M.; Miehe, H.

2000-11-01

The investigations conducted within the scope of this project are a consistent continuation of the work already performed at ITE, especially DGMK research projects 444-1, 444-2 and 444-3. These investigations should lead to a field trial of selected CaO-swelling cement recipes. Essential parameters examined within the course of this project include the HPHT-consistency behavior, HPHT-expansion behavior and the long-term stability behavior of CaO-swelling cements under similar conditions to those prevailing in the borehole. The swelling cement will be made up in correlation with the appropriate industrial make up method using the ITE-equipment; in accordance to the borehole conditions, the swelling cement slurry will be then treated in the ITE-Circulating Facility with respect to shear, temperature and pressure. The cement slurry treated in the ITE-Circulating Facility in accordance to the borehole conditions will be then experimentally investigated regarding the HPHT-consistency behavior and HPHT-expansion behavior. With respect to the long-term stability the swelling cement slurry treated in the Circulating Facility will be cured in autoclaves under appropriate pT-conditions. After evacuation from the autoclaves the compressive strength, the shear strength and the system permeability of the samples will be measured. With respect to the properties of a CaO-reference swelling cement recipe measured under the same experimental conditions, the ITE-make up method has been correlated to the common industrial make up methods LPHM, LPRM and HPRM; the alignment of the ITE-make up method with the planned industrial make up method for an appropriate cement job should make sure that the properties of a swelling cement measured in lab will be of practice relevance. For filling in and annular cementing of selected boreholes CaO-swelling cement recipes have been composed, optimized after experimental investigation results, and ultimately released to field usage after the results

13. Modeling of well drilling heating on crude oil using microwave

Energy Technology Data Exchange (ETDEWEB)

Muntini, Melania Suweni, E-mail: melania@physics.its.ac.id; Pramono, Yono Hadi; Yustiana [Physics Department, Institut Teknologi Sepuluh Nopember, Surabaya Kampus ITS, Sukolilo, Surabaya 60111 (Indonesia)

2016-03-11

As the world’s oil reserves are dwindling, some researchers have been prompted to make a breakthrough to further improve the efficiency of exploration and production. One of the technologies used is heating the crude oil. This paper presents the modeling results of heat treatment on crude oil using microwave energy. Modeling is conducted by assuming that the diameter of the well is 11,16 cm, the heat source is applied on the surface of the well, and the cut-off frequency in the air and on crude oil are 1,56 GHz. and 0.91 GHz, respectively. The energy generated by the microwave radiation is converted into heat energy which is absorbed by the crude oil. Consequently, this energy increases the temperature of crude oil through a heat transfer mechanism. The results obtained showed that the temperature of crude oil is about 200°C at a depth of 62.5cm, and at a distance of 3 cm from the center of the well. Temperature along the well follows an exponential function, which is from the center of the well in the direction radially outward from the cylinder axis. It has been observed that the temperature decreases as measured from the well surface along the cylinder.

14. Estimation of complete temperature fields from measured temperatures

International Nuclear Information System (INIS)

Clegg, S.T.; Roemer, R.B.

1984-01-01

In hyperthermia treatments, it is desirable to be able to predict complete tissue temperature fields from sampled temperatures taken at a few locations. This is a difficult problem in hyperthermia treatments since the tissue blood perfusion is unknown. An initial attempt to do this automatically using unconstrained optimization techniques to minimize the differences between steady state temperatures measured during a treatment and temperatures (at the same locations) predicted from treatment simulations has been previously reported. A second technique using transient temperatures following a step decrease in power has been developed. This technique, which appears to be able to better predict complete temperature fields is presented and both it and the steady state technique are applied to data from both simulated and experimental hyperthermia treatments. The results of applying the two techniques are compared for one-dimensional situations. One particularly important problem which the transient technique can solve (and the steady state technique does not seem to be able to do as well) is that of predicting the complete temperature field in situations where the true maximum and/or minimum temperatures present are not measured by the available instrumentation

15. Spatially indirect excitons in coupled quantum wells

Energy Technology Data Exchange (ETDEWEB)

Lai, Chih-Wei Eddy [Univ. of California, Berkeley, CA (United States)

2004-03-01

Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer)2 were

16. Cell agglomeration in the wells of a 24-well plate using acoustic streaming.

Science.gov (United States)

Kurashina, Yuta; Takemura, Kenjiro; Friend, James

2017-02-28

Cell agglomeration is essential both to the success of drug testing and to the development of tissue engineering. Here, a MHz-order acoustic wave is used to generate acoustic streaming in the wells of a 24-well plate to drive particle and cell agglomeration. Acoustic streaming is known to manipulate particles in microfluidic devices, and even provide concentration in sessile droplets, but concentration of particles or cells in individual wells has never been shown, principally due to the drag present along the periphery of the fluid in such a well. The agglomeration time for a range of particle sizes suggests that shear-induced migration plays an important role in the agglomeration process. Particles with a diameter of 45 μm agglomerated into a suspended pellet under exposure to 2.134 MHz acoustic waves at 1.5 W in 30 s. Additionally, BT-474 cells also agglomerated as adherent masses at the center bottom of the wells of tissue-culture treated 24-well plates. By switching to low cell binding 24-well plates, the BT-474 cells formed suspended agglomerations that appeared to be spheroids, fully fifteen times larger than any cell agglomerates without the acoustic streaming. In either case, the viability and proliferation of the cells were maintained despite acoustic irradiation and streaming. Intermittent excitation was effective in avoiding temperature excursions, consuming only 75 mW per well on average, presenting a convenient means to form fully three-dimensional cellular masses potentially useful for tissue, cancer, and drug research.

17. Distributed temperature sensor testing in liquid sodium

Energy Technology Data Exchange (ETDEWEB)

Gerardi, Craig; Bremer, Nathan; Lisowski, Darius; Lomperski, Stephen

2017-02-01

Rayleigh-backscatter-based distributed fiber optic sensors were immersed in sodium to obtain high-resolution liquid-sodium temperature measurements. Distributed temperature sensors (DTSs) functioned well up to 400°C in a liquid sodium environment. The DTSs measured sodium column temperature and the temperature of a complex geometrical pattern that leveraged the flexibility of fiber optics. A single Ø 360 lm OD sensor registered dozens of temperatures along a length of over one meter at 100 Hz. We also demonstrated the capability to use a single DTS to simultaneously detect thermal interfaces (e.g. sodium level) and measure temperature.

18. How well can centenarians hear?

Directory of Open Access Journals (Sweden)

Zhongping Mao

Full Text Available With advancements in modern medicine and significant improvements in life conditions in the past four decades, the elderly population is rapidly expanding. There is a growing number of those aged 100 years and older. While many changes in the human body occur with physiological aging, as many as 35% to 50% of the population aged 65 to 75 years have presbycusis. Presbycusis is a progressive sensorineural hearing loss that occurs as people get older. There are many studies of the prevalence of age-related hearing loss in the United States, Europe, and Asia. However, no audiological assessment of the population aged 100 years and older has been done. Therefore, it is not clear how well centenarians can hear. We measured middle ear impedance, pure-tone behavioral thresholds, and distortion-product otoacoustic emission from 74 centenarians living in the city of Shaoxing, China, to evaluate their middle and inner ear functions. We show that most centenarian listeners had an "As" type tympanogram, suggesting reduced static compliance of the tympanic membrane. Hearing threshold tests using pure-tone audiometry show that all centenarian subjects had varying degrees of hearing loss. More than 90% suffered from moderate to severe (41 to 80 dB hearing loss below 2,000 Hz, and profound (>81 dB hearing loss at 4,000 and 8,000 Hz. Otoacoustic emission, which is generated by the active process of cochlear outer hair cells, was undetectable in the majority of listeners. Our study shows the extent and severity of hearing loss in the centenarian population and represents the first audiological assessment of their middle and inner ear functions.

19. How Well Can Centenarians Hear?

Science.gov (United States)

Mao, Zhongping; Zhao, Lijun; Pu, Lichun; Wang, Mingxiao; Zhang, Qian; He, David Z. Z.

2013-01-01

With advancements in modern medicine and significant improvements in life conditions in the past four decades, the elderly population is rapidly expanding. There is a growing number of those aged 100 years and older. While many changes in the human body occur with physiological aging, as many as 35% to 50% of the population aged 65 to 75 years have presbycusis. Presbycusis is a progressive sensorineural hearing loss that occurs as people get older. There are many studies of the prevalence of age-related hearing loss in the United States, Europe, and Asia. However, no audiological assessment of the population aged 100 years and older has been done. Therefore, it is not clear how well centenarians can hear. We measured middle ear impedance, pure-tone behavioral thresholds, and distortion-product otoacoustic emission from 74 centenarians living in the city of Shaoxing, China, to evaluate their middle and inner ear functions. We show that most centenarian listeners had an “As” type tympanogram, suggesting reduced static compliance of the tympanic membrane. Hearing threshold tests using pure-tone audiometry show that all centenarian subjects had varying degrees of hearing loss. More than 90% suffered from moderate to severe (41 to 80 dB) hearing loss below 2,000 Hz, and profound (>81 dB) hearing loss at 4,000 and 8,000 Hz. Otoacoustic emission, which is generated by the active process of cochlear outer hair cells, was undetectable in the majority of listeners. Our study shows the extent and severity of hearing loss in the centenarian population and represents the first audiological assessment of their middle and inner ear functions. PMID:23755251

20. Suppressing Nonradiative Recombination in Crown-Shaped Quantum Wells

Energy Technology Data Exchange (ETDEWEB)

Park, Kwangwook [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ju, Gunwu [Gwangju Institute of Science and Technology; Korea Institute of Science and Technology; Na, Byung Hoon [Samsung Advanced Institute of Technology; Hwang, Hyeong-Yong [Gwangju Institute of Science and Technology; Jho, Young-Dahl [Gwangju Institute of Science and Technology; Myoung, NoSoung [Gwangju Institute of Science and Technology; Yim, Sang-Youp [Gwangju Institute of Science and Technology; Kim, Hyung-jun [Korea Institute of Science and Technology; Lee, Yong Tak [Gwangju Institute of Science and Technology

2018-02-06

We examined the structural and optical properties of a crown-shaped quantum well (CSQW) to suppress nonradiative recombination. To reduce carrier loss in defect traps at the well/barrier interface, the CSQW was designed to concentrate carriers in the central region by tailoring the bandgap energy. Temperature-dependent photoluminescence measurements showed that the CSQW had a high activation energy and low potential fluctuation. In addition, the long carrier lifetime of the CSQW at high temperatures can be interpreted as indicating a decrease in carrier loss at defect traps.

1. Salinization in a stratified aquifer induced by heat transfer from well casings

NARCIS (Netherlands)

van Lopik, J.H.; Hartog, N.; Zaadnoordijk, Willem Jan; Cirkel, D. Gijsbert; Raoof, A.

2015-01-01

The temperature inside wells used for gas, oil and geothermal energy production, as well as steam injection, is in general significantly higher than the groundwater temperature at shallower depths. While heat loss from these hot wells is known to occur, the extent to which this heat loss may result

2. Managing Temperature Effects in Nanoscale Adaptive Systems

CERN Document Server

Wolpert, David

2012-01-01

This book discusses new techniques for detecting, controlling, and exploiting the impacts of temperature variations on nanoscale circuits and systems.  It provides a holistic discussion of temperature management, including physical phenomena (reversal of the MOSFET temperature dependence) that have recently become problematic, along with circuit techniques for detecting, controlling, and adapting to these phenomena. A detailed discussion is also included of the general aspects of thermal-aware system design and management of temperature-induced faults. A new sensor system is described that can determine the temperature dependence as well as the operating temperature to improve system reliability.  A new method is presented to control a circuit’s temperature dependence by individually tuning pull-up and pull-down networks to their temperature-insensitive operating points. This method extends the range of supply voltages that can be made temperature-insensitive, achieving insensitivity at nominal voltage fo...

Energy Technology Data Exchange (ETDEWEB)

Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

1980-01-01

An in-depth study of the state of the art in Geothermal Well Log Interpretation has been made encompassing case histories, technical papers, computerized literature searches, and actual processing of geothermal wells from New Mexico, Idaho, and California. A classification scheme of geothermal reservoir types was defined which distinguishes fluid phase and temperature, lithology, geologic province, pore geometry, salinity, and fluid chemistry. Major deficiencies of Geothermal Well Log Interpretation are defined and discussed with recommendations of possible solutions or research for solutions. The Geothermal Well Log Interpretation study and report has concentrated primarily on Western US reservoirs. Geopressured geothermal reservoirs are not considered.

4. Polymer-cement geothermal-well-completion materials. Final report

Energy Technology Data Exchange (ETDEWEB)

Zeldin, A.N.; Kukacka, L.E.

1980-07-01

A program to develop high-temperature polymer cements was performed. Several formulations based on organic and semi-inorganic binders were evaluated on the basis of mechanical and thermal stability, and thickening time. Two optimized systems exhibited properties exceeding those required for use in geothermal wells. Both systems were selected for continued evaluation at the National Bureau of Standards and contingent upon the results, for field testing in geothermal wells.

5. Body temperature norms

Science.gov (United States)

Normal body temperature; Temperature - normal ... Morrison SF. Regulation of body temperature. In: Boron WF, Boulpaep EL, eds. Medical Physiology . 3rd ed. Philadelphia, PA: Elsevier; 2017:chap 59. Sajadi MM, Mackowiak ...

6. Production Well Performance Enhancement using Sonication Technology

Energy Technology Data Exchange (ETDEWEB)

Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

2005-12-31

The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: • Laboratory studies • Mathematical modeling • Sonic tool design and development • Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40°C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale

7. Active cooling of a down hole well tractor

DEFF Research Database (Denmark)

Soprani, Stefano; Nesgaard, Carsten

Wireline interventions in high temperature wells represent one of today’s biggest challenges for the oil and gas industry. The high wellbore temperatures, which can reach 200 °C, drastically reduce the life of the electronic components contained in the wireline downhole tools, which can cause...... the intervention to fail. Active cooling systems represent a possible solution to the electronics overheating, as they could maintain the sensitive electronics at a tolerable temperature, while operating in hotter environments. This work presents the design, construction and testing of an actively cooled downhole......-width-modulation circuit was developed to adapt the downhole power source to a suitable voltage for the thermoelectric cooler. The implementation of the active cooling system was supported by the study of the thermal interaction between the downhole tool and the well environment, which was relevant to define the heat...

8. RPC operation at high temperature

CERN Document Server

Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R

2003-01-01

The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

9. The Kelvin and Temperature Measurements

Science.gov (United States)

Mangum, B. W.; Furukawa, G. T.; Kreider, K. G.; Meyer, C. W.; Ripple, D. C.; Strouse, G. F.; Tew, W. L.; Moldover, M. R.; Johnson, B. Carol; Yoon, H. W.; Gibson, C. E.; Saunders, R. D.

2001-01-01

The International Temperature Scale of 1990 (ITS-90) is defined from 0.65 K upwards to the highest temperature measurable by spectral radiation thermometry, the radiation thermometry being based on the Planck radiation law. When it was developed, the ITS-90 represented thermodynamic temperatures as closely as possible. Part I of this paper describes the realization of contact thermometry up to 1234.93 K, the temperature range in which the ITS-90 is defined in terms of calibration of thermometers at 15 fixed points and vapor pressure/temperature relations which are phase equilibrium states of pure substances. The realization is accomplished by using fixed-point devices, containing samples of the highest available purity, and suitable temperature-controlled environments. All components are constructed to achieve the defining equilibrium states of the samples for the calibration of thermometers. The high quality of the temperature realization and measurements is well documented. Various research efforts are described, including research to improve the uncertainty in thermodynamic temperatures by measuring the velocity of sound in gas up to 800 K, research in applying noise thermometry techniques, and research on thermocouples. Thermometer calibration services and high-purity samples and devices suitable for “on-site” thermometer calibration that are available to the thermometry community are described. Part II of the paper describes the realization of temperature above 1234.93 K for which the ITS-90 is defined in terms of the calibration of spectroradiometers using reference blackbody sources that are at the temperature of the equilibrium liquid-solid phase transition of pure silver, gold, or copper. The realization of temperature from absolute spectral or total radiometry over the temperature range from about 60 K to 3000 K is also described. The dissemination of the temperature scale using radiation thermometry from NIST to the customer is achieved by

10. Well-log based prediction of thermal conductivity

DEFF Research Database (Denmark)

Fuchs, Sven; Förster, Andrea

Rock thermal conductivity (TC) is paramount for the determination of heat flow and the calculation of temperature profiles. Due to the scarcity of drill cores compared to the availability of petrophysical well logs, methods are desired to indirectly predict TC in sedimentary basins. Most...

11. Ion temperatures in TORTUR III

International Nuclear Information System (INIS)

Hendriks, F.B.

1985-12-01

Spatially resolved ion-energy distributions are presented for discharges in the TORTUR III tokamak. The measurements are performed in an active method, using a neutral hydrogen probing beam of 20-30 keV, to enhance charge-exchange processes along its path, as well as by the usual passive method. Ion temperatures can amount up to 1 keV

12. Borehole Stability in High-Temperature Formations

Science.gov (United States)

Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

2014-11-01

In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

13. Steam injections wells: topics to consider in casing design of steam injection wells; Revestimento para pocos de vapor

Energy Technology Data Exchange (ETDEWEB)

Conceicao, Antonio Carlos Farias [PETROBRAS, Recife, PE (Brazil). Gerencia de Perfuracao do Nordeste. Div. de Operacoes

1994-07-01

Steam injection is one of the processes used to increase production from very viscous oil reservoirs. A well is completed at a temperature of about 110 deg F and during steam injection that temperature varies around 600 deg F. Strain or breakdowns may occur to the casing, due to the critical conditions generated by the change of temperature. The usual casing design methods, do not take into account special environmental conditions, such as those which exist for steam injection. From the results of this study we come up to the conclusion that casing grade K-55, heavy weight with premium connections, without pre-stressing and adequately heated, is the best option for steam injection well completion for most of the fields in Brazil. (author)

CERN Document Server

Mallik, Samirnath

2016-01-01

High energy laboratories are performing experiments in heavy ion collisions to explore the structure of matter at high temperature and density. This elementary book explains the basic ideas involved in the theoretical analysis of these experimental data. It first develops two topics needed for this purpose, namely hadron interactions and thermal field theory. Chiral perturbation theory is developed to describe hadron interactions and thermal field theory is formulated in the real-time method. In particular, spectral form of thermal propagators is derived for fields of arbitrary spin and used to calculate loop integrals. These developments are then applied to find quark condensate and hadron parameters in medium, including dilepton production. Finally, the non-equilibrium method of statistical field theory to calculate transport coefficients is reviewed. With technical details explained in the text and appendices, this book should be accessible to researchers as well as graduate students interested in thermal ...

15. Monitoring of water quality of selected wells in Brno district

Directory of Open Access Journals (Sweden)

Marková Jana

2016-06-01

Full Text Available The article deals with two wells in the country of Brno-district (Brčálka well and Well Olšová. The aim of work was monitoring of elementary parameters of water at regular monthly intervals to measure: water temperature, pH values, solubility oxygen and spring yield. According to the client's requirements (Lesy města Brno laboratory analyzes of selected parameters were done twice a year and their results were compared with Ministry of Health Decree no. 252/2004 Coll.. These parameters: nitrate, chemical oxygen demand (COD, calcium and magnesium and its values are presented in graphs, for ammonium ions and nitrite in the table. Graphical interpretation of spring yields dependence on the monthly total rainfall and dependence of water temperature on ambient temperature was utilized. The most important features of wells include a water source, a landmark in the landscape, aesthetic element or resting and relaxing place. Maintaining wells is important in terms of future generations.

16. Double-well potential in annular Josephson junction

International Nuclear Information System (INIS)

Shaju, P.D.; Kuriakose, V.C.

2004-01-01

A double-well potential suitable for quantum-coherent vortex tunnelling can be created in an annular Josephson junction by inserting a microshort in the junction and by applying an in-plane dc magnetic field. Analysis shows that the intensity of the magnetic field determines the depth of the potential well and the strength of the microshort controls the potential barrier height while a dc bias across the junction tilts the potential well. At milli-Kelvin temperatures, the system is expected to behave as a quantum two-level system and may be useful in designing vortex qubits

17. Equilibration and nonclassicality of a double-well potential.

Science.gov (United States)

Campbell, Steve; De Chiara, Gabriele; Paternostro, Mauro

2016-01-29

A double well loaded with bosonic atoms represents an ideal candidate to simulate some of the most interesting aspects in the phenomenology of thermalisation and equilibration. Here we report an exhaustive analysis of the dynamics and steady state properties of such a system locally in contact with different temperature reservoirs. We show that thermalisation only occurs 'accidentally'. We further examine the nonclassical features and energy fluxes implied by the dynamics of the double-well system, thus exploring its finite-time thermodynamics in relation to the settlement of nonclassical correlations between the wells.

18. Dry well cooling systems in BWR type nuclear power plants

International Nuclear Information System (INIS)

1986-01-01

Purpose: To prevent the damages of pipeways due to salt damages at the surface of control rod drives in BWR type reactors. Constitution: In control rod drives and the lowermost area in the dry well in which surface corrosion and pitching have been resulted by the salt contents in air due to the increase in the humidity accompanying the lowering of the temperature, a blower is disposed to the upstream of the cooling coils and a portion of high temperature air returned to the lower cooler is replaced with a low temperature feed air to increase the feed temperature in the area. Further, by upwardly turning the downwarded feed air drawing port in which cold feed air has so far been descended as it is, the descendance of the cold air is suppressed. As a result, temperature lowering in the driving mechanisms and the lower area can be prevented to obtain a predetermined temperature, whereby the dewing on the surface can be prevented and thereby preventing the occurrence of corrosion and pitching. (Horiuchi, T.)

19. Selfconsistent calculations at finite temperatures

International Nuclear Information System (INIS)

Brack, M.; Quentin, P.

1975-01-01

Calculations have been done for the spherical nuclei 40 Ca, 208 Pb and the hypothetical superheavy nucleus with Z=114, A=298, as well as for the deformed nucleus 168 Yb. The temperature T was varied from zero up to 5 MeV. For T>3 MeV, some numerical problems arise in connection with the optimization of the basis when calculating deformed nuclei. However, at these high temperatures the occupation numbers in the continuum are sufficiently large so that the nucleus starts evaporating particles and no equilibrium state can be described. Results are obtained for excitation energies and entropies. (Auth.)

20. Well logging. Acquisition and applications; Diagraphies. Acquisition et applications

Energy Technology Data Exchange (ETDEWEB)

Serra, O.; Serra, L.

2001-07-01

This reference book on wire-line and LWD well logging covers all geophysical methods of underground survey in a synthetic, visual and dynamical way. It treats of: the physical principle of well logging measurements, the different types of existing probes, the factors that can influence the measurements, and the applications of these measurements. The following well-logging methods are reviewed: resistivity; electromagnetic wave propagation; magnetic susceptibility and magnetic field; spontaneous potential; nuclear logging: natural gamma radioactivity, density logging, photoelectric index, neutron emission probes, hydrogen index or neutron porosity, neutron induced gamma spectroscopy, neutron relaxation time, NMR; acoustic measurements: sonic logging, seismic profiles; texture, structure and stratigraphy data acquisition; borehole diameter measurement; temperature measurement; wire sampling methods; place and role of well-logging in petroleum exploration; well-logging programs. (J.S.)

1. Viscoelastic creep of high-temperature concrete

International Nuclear Information System (INIS)

Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.

1985-01-01

Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme

2. Nitrogen Monitoring of West Hackberry 117 Cavern Wells

Energy Technology Data Exchange (ETDEWEB)

Bettin, Giorgia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lord, David L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

2015-02-01

U.S. Strategic Petroleum Reserve (SPR) oil storage cavern West Hackberry 117 was tested under extended nitrogen monitoring following a successful mechanical integrity test in order to validate a newly developed hydrostatic column model to be used to differentiate between normal "tight" well behavior and small-leak behavior under nitrogen. High resolution wireline pressure and temperature data were collected during the test period and used in conjunction with the hydrostatic column model to predict the nitrogen/oil interface and the pressure along the entire fluid column from the bradenhead flange nominally at ground surface to bottom of brine pool. Results here and for other SPR caverns have shown that wells under long term nitrogen monitoring do not necessarily pressurize with a relative rate (P N2 /P brine) of 1. The theoretical relative pressure rate depends on the well configuration, pressure and the location of the nitrogen-oil interface and varies from well to well. For the case of WH117 the predicted rates were 0.73 for well A and 0.92 for well B. The measured relative pressurization rate for well B was consistent with the model prediction, while well A rate was found to be between 0.58-0.68. A number of possible reasons for the discrepancy between the model and measured rates of well A are possible. These include modeling inaccuracy, measurement inaccuracy or the possibility of the presence of a very small leak (below the latest calculated minimum detectable leak rate).

3. Summary: High Temperature Downhole Motor

Energy Technology Data Exchange (ETDEWEB)

Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

2017-10-01

Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at the surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.

4. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

Energy Technology Data Exchange (ETDEWEB)

Sugama, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pyatina, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

2014-11-14

This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na2O-Al2O3-SiO2-H2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS was crystalline analcime.

5. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

Energy Technology Data Exchange (ETDEWEB)

Sugama, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pyatina, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

2014-11-01

This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na2O-Al2O3-SiO2-H2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS was crystalline analcime.

6. Temperature-Triggered Colloidal Gelation through Well-Defined Grafted Polymeric Surfaces

Directory of Open Access Journals (Sweden)

Jan Maarten van Doorn

2017-06-01

Full Text Available Sufficiently strong interparticle attractions can lead to aggregation of a colloidal suspension and, at high enough volume fractions, form a mechanically rigid percolating network known as a colloidal gel. We synthesize a model thermo-responsive colloidal system for systematically studying the effect of surface properties, grafting density and chain length, on the particle dynamics within colloidal gels. After inducing an attraction between particles by heating, aggregates undergo thermal fluctuation which we observe and analyze microscopically; the magnitude of the variance in bond angle is larger for lower grafting densities. Macroscopically, a clear increase of the linear mechanical behavior of the gels on both the grafting density and chain length arises, as measured by rheology, which is inversely proportional to the magnitude of local bond angle fluctuations. This colloidal system will allow for further elucidation of the microscopic origins to the complex macroscopic mechanical behavior of colloidal gels including bending modes within the network.

7. A new cryostat for precise temperature control

Science.gov (United States)

Dong, B.; Zhou, G.; Liu, L. Q.; Zhang, X.; Xiong, L. Y.; Li, Q.

2013-09-01

Gifford-McMahon (GM) cryocoolers are often used in cryostat as cold sources. It has advantages of simple structure and low operating cost as well as disadvantages of vibration and temperature oscillation, which are fatal for some applications that are very sensitive to temperature stability at low temperature. To solve the problem, a thermal analysis model which is used to simulate heat transfer in the cryostat is built and discussed. According to the analysis results, a cryostat that can provide variable temperature (4-20 K) for the accurate temperature control experiments is designed and manufactured. In this cryostat, a polytetrafluoroethylene (PTFE) sheet is used as a thermal damper to reduce the temperature oscillation, with which, the temperature oscillation of the sample cooling holder is less than 4 mK at the 20 K region.

8. Temperature and electrical memory of polymer fibers

International Nuclear Information System (INIS)

Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe

2014-01-01

We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities

9. Seasonal temperature extremes in Potsdam

Science.gov (United States)

Kundzewicz, Zbigniew; Huang, Shaochun

2010-12-01

The awareness of global warming is well established and results from the observations made on thousands of stations. This paper complements the large-scale results by examining a long time-series of high-quality temperature data from the Secular Meteorological Station in Potsdam, where observation records over the last 117 years, i.e., from January 1893 are available. Tendencies of change in seasonal temperature-related climate extremes are demonstrated. "Cold" extremes have become less frequent and less severe than in the past, while "warm" extremes have become more frequent and more severe. Moreover, the interval of the occurrence of frost has been decreasing, while the interval of the occurrence of hot days has been increasing. However, many changes are not statistically significant, since the variability of temperature indices at the Potsdam station has been very strong.

10. Temperature and Humidity Control in Livestock Stables

DEFF Research Database (Denmark)

Hansen, Michael; Andersen, Palle; Nielsen, Kirsten M.

2010-01-01

The paper describes temperature and humidity control of a livestock stable. It is important to have a correct air flow pattern in the livestock stable in order to achieve proper temperature and humidity control as well as to avoid draught. In the investigated livestock stable the air flow...

11. Electronic ceramics in high-temperature environments

International Nuclear Information System (INIS)

Searcy, A.W.; Meschi, D.J.

1982-01-01

Simple thermodynamic means are described for understanding and predicting the influence of temperature changes, in various environments, on electronic properties of ceramics. Thermal gradients, thermal cycling, and vacuum annealing are discussed, as well as the variations of ctivities and solubilities with temperature. 7 refs

12. Temperature profiles from Salt Valley, Utah

Science.gov (United States)

Sass, J. H.; Lachenbruch, A. H.; Smith, E. P.

Temperature profiles were obtained in the nine drilled wells as part of a thermal study of the Salt Valley anticline, Paradox Basin, Utha. Thermal conductivities were also measured on 10 samples judged to be representative of the rocks encountered in the deepest hole. The temperature profiles and thermal conductivities are presented, together with preliminary interpretive remarks and suggestions for additional work.

13. temperature fluctuation inside inert atmosphere silos

African Journals Online (AJOL)

user

significant difference in the mean temperature at different position or sections of the silos and as well between the two silos. ... environment since the constituents are present normally in ... fungi, thereby reducing the production of mycotoxins;.

14. In-Flight Suppressant Deployment Temperatures

National Research Council Canada - National Science Library

Bein, Donald

2006-01-01

.... An assessment is made of the model output versus some aircraft measurement data, fire suppressant boiling point criterion, as well as the history of altitude/temperature at which fire suppressants have been deployed...

15. Temperature fluctuations superimposed on background temperature change

International Nuclear Information System (INIS)

Otto, James; Roberts, J.A.

2016-01-01

Proxy data allows the temperature of the Earth to be mapped over long periods of time. In this work the temperature fluctuations for over 200 proxy data sets were examined and from this set 50 sets were analyzed to test for periodic and quasi-periodic fluctuations in the data sets. Temperature reconstructions over 4 different time scales were analyzed to see if patterns emerged. Data were put into four time intervals; 4,000 years, 14,000 years, 1,000,000 years, and 3,000,000 years and analyzed with a goal to understanding periodic and quasi-periodic patterns in global temperature change superimposed on a “background” average temperature change. Quasi-periodic signatures were identified that predate the Industrial Revolution, during much of which direct data on temperature are not available. These data indicate that Earth temperatures have undergone a number of periodic and quasi-periodic intervals that contain both global warming and global cooling cycles. The fluctuations are superimposed on a background of temperature change that has a declining slope during the two periods, pre-ice age and post ice age with a transition about 12,000 BCE. The data are divided into “events” that span the time periods 3,000,000 BCE to “0” CE, 1,000,000 BCE to “0” CE, 12,000 BCE to 2,000 CE and 2,000 BCE to 2,000 CE. An equation using a quasi-periodic (frequency modulated sine waves) patterns was developed to analyze the date sets for quasi-periodic patterns. “Periodicities” which show reasonable agreement with the predictions of Milankovitch and other investigators were found in the data sets.

16. Hydrocarbon-based solution for drilling and damping wells

Energy Technology Data Exchange (ETDEWEB)

Orlov, G A; Davydova, A I; Dobroskok, B Ye; Kendis, M Sh; Salimov, M Kh; Zvagil' skiy, G Ye

1982-01-01

The proportions are, %: oil product 23-74.4; emulsifier 0.5-1.2; monoethanolamine 0.1-0.2 and the rest mineral water. The solution is prepared as follows: the oil product (a mixture of Romashkinskiy oilfield oil and bituminous distillate 1:1) is mixed with emulsifier (85%) and stabilizer (15%). Mineral water is gradually added to a density of 1.18 g/cm/sup 3/. Mixing stops upon reaching the desired value of breakdown voltage, characterizing a stable solution. This solution has a higher overall stability (electrostability 1.8-3.1 times higher) than the usual solution. Also it has higher structural mechanical properties at lesser viscosity. The solution remains rather stable even when clay powder is added at 700 g/1 added at temperatures up to 95/sup 0/. It breaks down at a clay powder content of 350 g/1 and a temperature of 70/sup 0/. The solution can be used for opening layers and damping wells, having 95/sup 0/ temperatures. It is useful for drilling horizons with unstable rock. The solution currently used is used for wells having 60/sup 0/ temperatures and for horizons that do not have unstable rock. Due to cheaper additives, the solution is 6.2 times cheaper per lm/sup 3/ than the one being used currently.

17. Maine River Temperature Monitoring

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — We collect seasonal and annual temperature measurements on an hourly or quarter hourly basis to monitor habitat suitability for ATS and other species. Temperature...

18. GISS Surface Temperature Analysis

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — The GISTEMP dataset is a global 2x2 gridded temperature anomaly dataset. Temperature data is updated around the middle of every month using current data files from...

19. Supersymmetry at high temperatures

International Nuclear Information System (INIS)

Das, A.; Kaku, M.

1978-01-01

We investigate the properties of Green's functions in a spontaneously broken supersymmetric model at high temperatures. We show that, even at high temperatures, we do not get restoration of supersymmetry, at least in the one-loop approximation

20. Dynamics of spins in semiconductor quantum wells under drift

International Nuclear Information System (INIS)

Idrish Miah, M.

2009-01-01

The dynamics of spins in semiconductor quantum wells under applied electric bias has been investigated by photoluminescence (PL) spectroscopy. The bias-dependent polarization of PL (P PL ) was measured at different temperatures. The P PL was found to decay with an enhancement of increasing the strength of the negative bias, with an exception occurred for a low value of the negative bias. The P PL was also found to depend on the temperature. The P PL in the presence of a transverse magnetic field was also studied. The results showed that P PL in the magnetic field oscillates under an applied bias, demonstrating that the dephasing of electron spin occurs during the drift transport in semiconductor quantum wells.

1. Dynamics of spins in semiconductor quantum wells under drift

Energy Technology Data Exchange (ETDEWEB)

Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

2009-09-15

The dynamics of spins in semiconductor quantum wells under applied electric bias has been investigated by photoluminescence (PL) spectroscopy. The bias-dependent polarization of PL (P{sub PL}) was measured at different temperatures. The P{sub PL} was found to decay with an enhancement of increasing the strength of the negative bias, with an exception occurred for a low value of the negative bias. The P{sub PL} was also found to depend on the temperature. The P{sub PL} in the presence of a transverse magnetic field was also studied. The results showed that P{sub PL} in the magnetic field oscillates under an applied bias, demonstrating that the dephasing of electron spin occurs during the drift transport in semiconductor quantum wells.

2. Barrier penetration effects on thermopower in semiconductor quantum wells

International Nuclear Information System (INIS)

Vaidya, R. G.; Sankeshwar, N. S.; Mulimani, B. G.

2014-01-01

Finite confinement effects, due to the penetration of the electron wavefunction into the barriers of a square well potential, on the low–temperature acoustic-phonon-limited thermopower (TP) of 2DEG are investigated. The 2DEG is considered to be scattered by acoustic phonons via screened deformation potential and piezoelectric couplings. Incorporating the barrier penetration effects, the dependences of diffusion TP and phonon drag TP on barrier height are studied. An expression for phonon drag TP is obtained. Numerical calculations of temperature dependences of mobility and TP for a 10 nm InN/In x Ga 1−x N quantum well for different values of x show that the magnitude and behavior of TP are altered. A decrease in the barrier height from 500 meV by a factor of 5, enhances the mobility by 34% and reduces the TP by 58% at 20 K. Results are compared with those of infinite barrier approximation

3. Development of an Improved Cement for Geothermal Wells

Energy Technology Data Exchange (ETDEWEB)

Trabits, George [Trabits Group, LLC, Wasilla, AK (United States)

2015-04-20

After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

4. Supersymmetry at finite temperature

International Nuclear Information System (INIS)

Clark, T.E.; Love, S.T.

1983-01-01

Finite-temperature supersymmetry (SUSY) is characterized by unbroken Ward identities for SUSY variations of ensemble averages of Klein-operator inserted imaginary time-ordered products of fields. Path-integral representations of these products are defined and the Feynman rules in superspace are given. The finite-temperature no-renormalization theorem is derived. Spontaneously broken SUSY at zero temperature is shown not to be restored at high temperature. (orig.)

5. Room temperature superconductors

International Nuclear Information System (INIS)

Sleight, A.W.

1995-01-01

If the Holy Grail of room temperature superconductivity could be achieved, the impact on could be enormous. However, a useful room temperature superconductor for most applications must possess a T c somewhat above room temperature and must be capable of sustaining superconductivity in the presence of magnetic fields while carrying a significant current load. The authors will return to the subject of just what characteristics one might seek for a compound to be a room temperature superconductor. 30 refs., 3 figs., 1 tab

6. Digital temperature meter

Energy Technology Data Exchange (ETDEWEB)

Glowacki, S

1982-01-01

Digital temperature meter for precise temperature measurements is presented. Its parts such as thermostat, voltage-frequency converter and digital frequency meter are described. Its technical parameters such as temperature range 50degC-700degC, measurement precision 1degC, measurement error +-1degC are given. (A.S.).

7. Rescaling Temperature and Entropy

Science.gov (United States)

Olmsted, John, III

2010-01-01

Temperature and entropy traditionally are expressed in units of kelvin and joule/kelvin. These units obscure some important aspects of the natures of these thermodynamic quantities. Defining a rescaled temperature using the Boltzmann constant, T' = k[subscript B]T, expresses temperature in energy units, thereby emphasizing the close relationship…

8. Geohydrologic reconnaissance of drainage wells in Florida

Science.gov (United States)

Kimrey, J.O.; Fayard, L.D.

1984-01-01

Drainage wells are used to inject surface waters directly into an aquifer, or shallow ground waters directly into a deeper aquifer, primarily by gravity. Such wells in Florida may be grouped into two broad types: (1) surface-water injection wells, and (2) interaquifer connector wells. Drainage wells of the first type are further categorized as either Floridan aquifer drainage wells or Biscayne aquifer drainage wells. Floridan aquifer drainage wells are commonly used to supplement drainage for urban areas in karst terranes of central and north Florida. Data are available for 25 wells in the Ocala, Live Oak, and Orlando areas that allow comparison of the quality of water samples from these Floridan aquifer drainage wells with allowable contaminant levels. Comparison indicates that maximum contaminant levels for turbidity, color, and iron, manganese, and lead concentrations are equaled or exceeded in some drainage-well samples, and relatively high counts for coliform bacteria are present in most wells. Biscayne aquifer drainage wells are used locally to dispose of stormwater runoff and other surplus water in southeast Florida, where large numbers of these wells have been permitted in Dade and Broward Counties. The majority of these wells are used to dispose of water from swimming pools or to dispose of heated water from air-conditioning units. The use of Biscayne aquifer drainage wells may have minimal effect on aquifer potability so long as injection of runoff and industrial wates is restricted to zones where chloride concentrations exceed 1,500 milligrams per liter. Interaquifer connector wells are used in the phosphate mining areas of Polk and Hillsborough Counties, to drain mines and recharge the Floridan aquifer. Water-quality data available from 13 connector wells indicate that samples from most of these wells exceed standards values for iron concentration and turbidity. One well yielded a highly mineralized water, and samples from 6 of the other 12 wells exceed

9. Biophysical control of leaf temperature

Science.gov (United States)

Dong, N.; Prentice, I. C.; Wright, I. J.

2014-12-01

and air temperature is generally neglected in terrestrial ecosystem and carbon cycle models. This is a significant omission that could lead to an over-estimation of the heat-stress vulnerability of carbon uptake in the wet tropics. Leaf energy balance theory is well established, and should be included in the next generation of models.

10. Improved waterflooding efficiency by horizontal wells

Energy Technology Data Exchange (ETDEWEB)

Popa, C. G. [Petroleum and Gas Univ., Ploesti (Romania); Clipea, M. [SNP Petrom SA, ICPT Campina (Romania)

1998-12-31

The influence of well pattern involving the use of horizontal wells on the overall efficiency of the waterflooding process was analyzed. Three different scenarios were examined: (1) a pattern of using two parallel horizontal wells, one for injection, the other for production, (2) a pattern of one horizontal well for water injection and several vertical wells for production, and (3) a pattern of using vertical wells for injection and one horizontal well for production. In each case, the waterflooding process was simulated using a two phase two dimensional numerical model. Results showed that the pressure loss along the horizontal section had a large influence on the sweep efficiency whether the horizontal well was used for injection or production. Overall, the most successful combination appeared to be using vertical wells for injection and horizontal wells for production. 4 refs., 1 tab., 15 figs.

11. Drilling and testing hot, high-pressure wells

Energy Technology Data Exchange (ETDEWEB)

MacAndrew, R. (Ranger Oil Ltd, Aberdeen (United Kingdom)); Parry, N. (Phillips Petroleum Company United Kingdom Ltd, Aberdeen (United Kingdom)); Prieur, J.M. (Conoco UK Ltd, Aberdeen (United Kingdom)); Wiggelman, J. (Shell UK Exploration and Production, Aberdeen (United Kingdom)); Diggins, E. (Brunei Shell Petroleum (Brunei Darussalam)); Guicheney, P. (Sedco Forex, Montrouge (France)); Cameron, D.; Stewart, A. (Dowell Schlumberger, Aberdeen (United Kingdom))

Meticulous planning and careful control of operations are needed to safely drill and test high-temperature, high-pressure (HTHP) wells. Techniques, employed in the Central Graben in the UK sector of the North Sea, where about 50 HTHP wells have been drilled, are examined. Three main areas of activity are covered in this comprehensive review: drilling safety, casing and cementation, and testing. The three issues at the heart of HTHP drilling safety are kick prevention, kick detection and well control. Kicks are influxes of reservoir fluid into the well. Test equipment and operations are divided into three sections: downhole, subsea and surface. Also details are given of how this North Sea experience has been used to help plan a jackup rig modification for hot, high-pressure drilling off Brunei. 16 figs., 32 refs.

12. Well-Being, Science, and Philosophy

OpenAIRE

Rodogno, Raffaele

2014-01-01

Academic research on well-being is pursued in multiple disciplines and currently exploding. Governments are also interested in the topic, as witnessed by their recent efforts to develop statistical measures of progress that include well-being indicators. Combined, this interest opens the door to the fruitful application of well-being research to society. Research on well-being, however, is not always well integrated across the disciplines that purport to study it. In particular, there is insu...

13. Review of Well Operator Files for Hydraulically Fractured Oil and Gas Production Wells: Well Design and Construction Fact Sheet

Science.gov (United States)

EPA reviewed a statistically representative sample of oil and gas production wells reported by nine service companies to help understand the role of well design and construction practices preventing pathways for subsurface fluid movement.

14. Fusion blanket high-temperature heat transfer

International Nuclear Information System (INIS)

Fillo, J.A.

1983-01-01

Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

15. Advances in high temperature chemistry 1

CERN Document Server

Eyring, Leroy

2013-01-01

Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

16. Weather Derivatives and Stochastic Modelling of Temperature

Directory of Open Access Journals (Sweden)

Fred Espen Benth

2011-01-01

Full Text Available We propose a continuous-time autoregressive model for the temperature dynamics with volatility being the product of a seasonal function and a stochastic process. We use the Barndorff-Nielsen and Shephard model for the stochastic volatility. The proposed temperature dynamics is flexible enough to model temperature data accurately, and at the same time being analytically tractable. Futures prices for commonly traded contracts at the Chicago Mercantile Exchange on indices like cooling- and heating-degree days and cumulative average temperatures are computed, as well as option prices on them.

17. Nonintrusive methodology for wellness baseline profiling

Science.gov (United States)

Chung, Danny Wen-Yaw; Tsai, Yuh-Show; Miaou, Shaou-Gang; Chang, Walter H.; Chang, Yaw-Jen; Chen, Shia-Chung; Hong, Y. Y.; Chyang, C. S.; Chang, Quan-Shong; Hsu, Hon-Yen; Hsu, James; Yao, Wei-Cheng; Hsu, Ming-Sin; Chen, Ming-Chung; Lee, Shi-Chen; Hsu, Charles; Miao, Lidan; Byrd, Kenny; Chouikha, Mohamed F.; Gu, Xin-Bin; Wang, Paul C.; Szu, Harold

2007-04-01

We develop an accumulatively effective and affordable set of smart pair devices to save the exuberant expenditure for the healthcare of aging population, which will not be sustainable when all the post-war baby boomers retire (78 millions will cost 1/5~1/4 GDP in US alone). To design an accessible test-bed for distributed points of homecare, we choose two exemplars of the set to demonstrate the possibility of translation of modern military and clinical know-how, because two exemplars share identically the noninvasive algorithm adapted to the Smart Sensor-pairs for the real world persistent surveillance. Currently, the standard diagnoses for malignant tumors and diabetes disorders are blood serum tests, X-ray CAT scan, and biopsy used sometime in the physical checkup by physicians as cohort-average wellness baselines. The loss of the quality of life in making second careers productive may be caused by the missing of timeliness for correct diagnoses and easier treatments, which contributes to the one quarter of human errors generating the lawsuits against physicians and hospitals, which further escalates the insurance cost and wasteful healthcare expenditure. Such a vicious cycle should be entirely eliminated by building an "individual diagnostic aids (IDA)," similar to the trend of personalized drug, developed from daily noninvasive intelligent databases of the "wellness baseline profiling (WBP)". Since our physiology state undulates diurnally, the Nyquist anti-aliasing theory dictates a minimum twice-a-day sampling of the WBP for the IDA, which must be made affordable by means of noninvasive, unsupervised and unbiased methodology at the convenience of homes. Thus, a pair of military infrared (IR) spectral cameras has been demonstrated for the noninvasive spectrogram ratio test of the spontaneously emitted thermal radiation from a normal human body at 37°C temperature. This invisible self-emission spreads from 3 microns to 12 microns of the radiation wavelengths

18. Temperature compensated photovoltaic array

Science.gov (United States)

Mosher, Dan Michael

1997-11-18

A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

19. Locality of Temperature

Science.gov (United States)

Kliesch, M.; Gogolin, C.; Kastoryano, M. J.; Riera, A.; Eisert, J.

2014-07-01

This work is concerned with thermal quantum states of Hamiltonians on spin- and fermionic-lattice systems with short-range interactions. We provide results leading to a local definition of temperature, thereby extending the notion of "intensivity of temperature" to interacting quantum models. More precisely, we derive a perturbation formula for thermal states. The influence of the perturbation is exactly given in terms of a generalized covariance. For this covariance, we prove exponential clustering of correlations above a universal critical temperature that upper bounds physical critical temperatures such as the Curie temperature. As a corollary, we obtain that above the critical temperature, thermal states are stable against distant Hamiltonian perturbations. Moreover, our results imply that above the critical temperature, local expectation values can be approximated efficiently in the error and the system size.

20. Low temperature monitoring system for subsurface barriers

Science.gov (United States)

Vinegar, Harold J [Bellaire, TX; McKinzie, II Billy John [Houston, TX

2009-08-18

A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

1. Short course on the temperature detector system

International Nuclear Information System (INIS)

Anderson, R.

1977-09-01

In the SLAC linac, a slow temperature rise may occur from the continuous scraping of the beam on the vacuum chamber wall. In places where this is likely to occur, surface temperature sensors are mounted on the outside of the vacuum chambers and are arranged to trip the beam if the temperature exceeds a preset level. In addition to vacuum chamber surface temperature measurements, water temperature measurements are made on the cooling water supply and return line of slits, collimators, water-cooled vacuum chambers, and dumps. In areas where the radiation levels are very high and where measurements have to be made in the radioactive cooling water lines, a stainless steel thermal well is welded into the pipe at each measuring location and a radiation-resistant immersion sensor is screwed into the well. Where the environment is less severe, similar but slightly less expensive sensors are used as direct immersion devices with no thermal wells. A discussion is given of: (1) temperature sensors; (2) temperature detector card types; (3) digital temperature readout; (4) detector card calibration; (5) line resistance equalization; and (6) operational and maintenance problems

2. Closure of shallow underground injection wells

International Nuclear Information System (INIS)

Veil, J.A.; Grunewald, B.

1993-01-01

Shallow injection wells have long been used for disposing liquid wastes. Some of these wells have received hazardous or radioactive wastes. According to US Environmental Protection Agency (EPA) regulations, Class IV wells are those injection wells through which hazardous or radioactive wastes are injected into or above an underground source of drinking water (USDW). These wells must be closed. Generally Class V wells are injection wells through which fluids that do not contain hazardous or radioactive wastes are injected into or above a USDW. Class V wells that are responsible for violations of drinking water regulations or that pose a threat to human health must also be closed. Although EPA regulations require closure of certain types of shallow injection wells, they do not provide specific details on the closure process. This paper describes the regulatory background, DOE requirements, and the steps in a shallow injection well closure process: Identification of wells needing closure; monitoring and disposal of accumulated substances; filling and sealing of wells; and remediation. In addition, the paper describes a major national EPA shallow injection well enforcement initiative, including closure plan guidance for wells used to dispose of wastes from service station operations

3. Corrosion of well casings in compressed air energy storage environments

Energy Technology Data Exchange (ETDEWEB)

Elmore, R.P.; Stottlemyre, J.A.

1980-10-01

The goal of this study was to determine corrosive effects of compressed air energy storage (CAES) environments on several well casing materials to aid in material selections. A literature search on corrosion behavior of well casing material in similar environments revealed that corrosion rates of 0.20 to 0.25 mm/y might be expected. This information was employed in designing the laboratory study. Unstressed electrically isolate samples of various carbon steels were autoclaved at varying humidities, temperatures, and exposure durations to simulate anticipated environments in the well bore during CAES operation. All compressed air tests were run at 12.1 MPa. Temperatures varied from 323/sup 0/K to 573/sup 0/K, and humidity varied from 100% to completely dry air. The effects of salts in the humidified air were also studied. Results indicated that typical well casings of carbon steel as used in oil, gas, and water production wells adequately withstand the anticipated CAES reservoir environment. An acceptable corrosion rate arrived at by these laboratory simulations was between 0.0015 and 0.15 mm/y. Corrosion was caused by metal oxidation that formed a protective scale of iron oxide. Higher temperatures, humidity rates, or salinity content of the humid air increased corrosion. Corrosion also increased on a metal coupon in contact with a sandstone sample, possibly due to crevice corrosion. For each of these factors either singularly or collectively, the increased corrosion rates were still acceptable with the maximum measured at 0.15 mm/y. When coupons were reused in an identical test, the corrosion rates increased beyond the anticipated values that had been determined by extrapolation from one-time runs. Fine cracking of the protective scale probably occurred due to thermal variations, resulting in increased corrosion rates and a greater potential for particulates, which could plug the reservoir.

4. Geophysical well logging operations and log analysis in Geothermal Well Desert Peak No. B-23-1

Energy Technology Data Exchange (ETDEWEB)

Sethi, D.K.; Fertl, W.H.

1980-03-01

Geothermal Well Desert Peak No. B-23-1 was logged by Dresser Atlas during April/May 1979 to a total depth of 2939 m (9642 ft). A temperature of 209/sup 0/C (408/sup 0/F) was observed on the maximum thermometer run with one of the logging tools. Borehole tools rated to a maximum temperature of 204.4/sup 0/C (400/sup 0/F) were utilized for logging except for the Densilog tool, which was from the other set of borehole instruments, rated to a still higher temperature, i.e., 260/sup 0/C (500/sup 0/F). The quality of the logs recorded and the environmental effects on the log response have been considered. The log response in the unusual lithologies of igneous and metamorphic formations encountered in this well could be correlated with the drill cutting data. An empirical, statistical log interpretation approach has made it possible to obtain meaningful information on the rocks penetrated. Various crossplots/histograms of the corrected log data have been generated on the computer. These are found to provide good resolution between the lithological units in the rock sequence. The crossplotting techniques and the statistical approach were combined with the drill cutting descriptions in order to arrive at the lithological characteristics. The results of log analysis and recommendations for logging of future wells have been included.

5. High temperature interface superconductivity

International Nuclear Information System (INIS)

Gozar, A.; Bozovic, I.

2016-01-01

Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T_c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T_c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

6. Melting temperature of graphite

International Nuclear Information System (INIS)

Korobenko, V.N.; Savvatimskiy, A.I.

2001-01-01

Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

7. Temperature dependence of radiation chemistry of polymers

International Nuclear Information System (INIS)

Garrett, R.W.; Hill, D.J.T.; Le, T.T.; Milne, K.A.; O'Donnell, J.H.; Perera, S.M.C.; Pomery, P.J.

1990-01-01

Chemical reactions which occur during radiolysis of polymers usually show an increase in rate with increasing temperature that can be described by an Arrhenius relationship. The magnitude of the activation energy can vary widely and is affected by physical, as well as chemical, factors. Different reaction rates may be expected in crystalline and amorphous morphologies, and in glassy and rubbery regions. The temperature dependence of radiolysis reactions can be expected to show discontinuities at the glass and melting transitions, T g and T m . The ceiling temperature, T c , for polymerization/depolymerization will also affect the rate of degradation, especially for depropagation to monomer. The temperature for this effect depends on the molecular structure of the polymer. The temperature dependence of free radical reactions can be studied by cryogenic trapping and ESR spectroscopy during thermal profiling. Increased degradation rates at high dose rates can be due to increased temperatures resulting from energy absorption

8. Designing an accurate system for temperature measurements

Directory of Open Access Journals (Sweden)

Kochan Orest

2017-01-01

Full Text Available The method of compensation of changes in temperature field along the legs of inhomogeneous thermocouple, which measures a temperature of an object, is considered in this paper. This compensation is achieved by stabilization of the temperature field along the thermocouple. Such stabilization does not allow the error due to acquired thermoelectric inhomogeneity to manifest itself. There is also proposed the design of the furnace to stabilize temperature field along the legs of the thermocouple which measures the temperature of an object. This furnace is not integrated with the thermocouple mentioned above, therefore it is possible to replace this thermocouple with a new one when it get its legs considerably inhomogeneous.. There is designed the two loop measuring system with the ability of error correction which can use simultaneously a usual thermocouple as well as a thermocouple with controlled profile of temperature field. The latter can be used as a reference sensor for the former.

9. Temperature calculation in fire safety engineering

CERN Document Server

Wickström, Ulf

2016-01-01

This book provides a consistent scientific background to engineering calculation methods applicable to analyses of materials reaction-to-fire, as well as fire resistance of structures. Several new and unique formulas and diagrams which facilitate calculations are presented. It focuses on problems involving high temperature conditions and, in particular, defines boundary conditions in a suitable way for calculations. A large portion of the book is devoted to boundary conditions and measurements of thermal exposure by radiation and convection. The concepts and theories of adiabatic surface temperature and measurements of temperature with plate thermometers are thoroughly explained. Also presented is a renewed method for modeling compartment fires, with the resulting simple and accurate prediction tools for both pre- and post-flashover fires. The final chapters deal with temperature calculations in steel, concrete and timber structures exposed to standard time-temperature fire curves. Useful temperature calculat...

10. Rising Temperatures Reduce Global Wheat Production

Science.gov (United States)

Asseng, S.; Ewert, F.; Martre, P.; Rötter, R. P.; Lobell, D. B.; Cammarano, D.; Kimball, B. A.; Ottman, M. J.; Wall, G. W.; White, J. W.;

2015-01-01

Crop models are essential tools for assessing the threat of climate change to local and global food production. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 degrees C to 32? degrees C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each degree C of further temperature increase and become more variable over space and time.

11. Science.gov (United States)

2010-07-01

... of operations, and environmental protection. (b) When drilling operations are suspended or... transmit copies of logs and charts developed by well-logging operations, directional-well surveys, and core...

12. Wellness Model of Supervision: A Comparative Analysis

Science.gov (United States)

Lenz, A. Stephen; Sangganjanavanich, Varunee Faii; Balkin, Richard S.; Oliver, Marvarene; Smith, Robert L.

2012-01-01

This quasi-experimental study compared the effectiveness of the Wellness Model of Supervision (WELMS; Lenz & Smith, 2010) with alternative supervision models for developing wellness constructs, total personal wellness, and helping skills among counselors-in-training. Participants were 32 master's-level counseling students completing their…

13. Wellness of Counselor Educators: An Initial Look

Science.gov (United States)

Wester, Kelly L.; Trepal, Heather C.; Myers, Jane E.

2009-01-01

This study with 180 counselor educators showed that, overall, educators appeared to have high levels of wellness. However, differences related to academic rank, children in the home, gender, and marital status were found. Perceived stress and number of children were found to have a negative impact on wellness. Implications for wellness are…

14. Gratitude and Adolescent Athletes' Well-Being

Science.gov (United States)

Chen, Lung Hung; Kee, Ying Hwa

2008-01-01

Two cross-sectional studies were conducted to examine the relationships between gratitude and athletes' well-being. Study 1 examines the relationship between dispositional gratitude and well-being, while Study 2 investigates the relationship between sport-domain gratitude and well-being. In Study 1, 169 Taiwanese senior high school athletes (M =…

15. ''Terek-3'' a well flowmeter for hot water

Energy Technology Data Exchange (ETDEWEB)

Petrov, A; Bar-sliva, V

1979-01-01

For studying ther applicability of an injection well with injection of hot water (with temperature to 150-200/sup 0/C) it is necessary to have well flowmeters which have high sensitivity and performance capacity at this temperature. In developing the well remote flowmeter ''Terek-3'' the All-Union Scientific research and Planning-Design Institute for comprehensive automation of oil and gas industry made a decision to use a drive-less packer developed by the authors of the article for the well flowmeter ''Terek-1'' designed to study high-output wells. Because of the use of the drive-less packer, the sensitivity of the flowmeter was considerably improved and the lower limit of measurements were decreased to 60 m/sup 3//day. In order to reduce friction in the supports of the turbines, agate step bearings and cores were used made of steel 40KKhNM. The upper step bearing was installed in the instrument housing, and the lower in the body of the turbines. This reduces the possibility of its contamination in the measurement process. One should also bear in mind that with an increase in temperature, the viscosity of water diminshes (roughly 5-fold with temperature of 150/sup 0/C). Therefore, with a decrease in the influence of viscosity on the readings of the flowmeter in the instrument, a turbine was used suggested by V. I. Bar-Sliva. In this turbine the blades are separated from the step which guarantees not only the obtaining of the maximum moving momentum but also reduces the influence of the change in viscosity on the operation of the turbine. The impulse output signal obtained with rotation of the turbine with magnet is transmitted on a single-strand cable to a surface apparatus consisting of a condensator frequency meter and universal logging recorder N-381 which guarantees recording of the changed consumption on a diagram tape as a function of depth or time. Experimental samples of the well flowmeter ''Terek-3'' passed state inspection tests.

16. Chapter 6: Temperature

Science.gov (United States)

Jones, Leslie A.; Muhlfeld, Clint C.; Hauer, F. Richard; F. Richard Hauer,; Lamberti, G.A.

2017-01-01

Stream temperature has direct and indirect effects on stream ecology and is critical in determining both abiotic and biotic system responses across a hierarchy of spatial and temporal scales. Temperature variation is primarily driven by solar radiation, while landscape topography, geology, and stream reach scale ecosystem processes contribute to local variability. Spatiotemporal heterogeneity in freshwater ecosystems influences habitat distributions, physiological functions, and phenology of all aquatic organisms. In this chapter we provide an overview of methods for monitoring stream temperature, characterization of thermal profiles, and modeling approaches to stream temperature prediction. Recent advances in temperature monitoring allow for more comprehensive studies of the underlying processes influencing annual variation of temperatures and how thermal variability may impact aquatic organisms at individual, population, and community based scales. Likewise, the development of spatially explicit predictive models provide a framework for simulating natural and anthropogenic effects on thermal regimes which is integral for sustainable management of freshwater systems.

17. Student Well-being pada Remaja Jawa

Directory of Open Access Journals (Sweden)

Tri Na'imah

2017-10-01

Abstrak: Penelitian ini bertujuan untuk mendeskripsikan sumber student well-being pada remaja Jawa. Penelitian ini menggunakan pendekatan penelitian kuantitatif dan didukung dengan kualitatif. Lokasi penelitian di Banyumas dengan teknik cluster random sampling. Instrumen pengumpulan data menggunakan skala student well-being dan openquesioner sumber student well-being serta panduan wawancara. Analisis data kuantitatif menggunakan deskriptif. Hasil penelitian adalah: 1 Sumber-sumber student well-being adalah dimensi hubungan sosial, kognitif, emosi dan spiritual. 2 Faktor penghambat tercapainya student well-being adalah jika ada masalah dalam dimensi sosial, kognitif, emosi, fisik dan spiritual.

18. High temperature refrigerator

International Nuclear Information System (INIS)

Steyert, W.A. Jr.

1978-01-01

A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

19. Temperature control in vacuum

International Nuclear Information System (INIS)

Dearnaley, G.

1986-01-01

The patent concerns a method for controlling the temperature of silicon wafers (or samples), during ion beam treatment of the wafers, in a vacuum. The apparatus and method are described for irradiation and temperature control of the samples. The wafers are mounted on a drum which is rotated through the ion beam, and are additionally heated by infra-red lamps to achieve the desired temperature. (U.K.)

20. Low temperature carbonization

Energy Technology Data Exchange (ETDEWEB)

Abbott, A A

1934-01-10

A process is described in which coal is passed through a distillation chamber in one retort at a comparatively low temperature, then passing the coal through a distillation chamber of a second retort subjected to a higher temperature, thence passing the coal through the distillation chamber of a third retort at a still higher temperature and separately collecting the liquid and vapors produced from each retort.

1. Temperature measurement and control

CERN Document Server

Leigh, JR

1988-01-01

This book treats the theory and practice of temperature measurement and control and important related topics such as energy management and air pollution. There are no specific prerequisites for the book although a knowledge of elementary control theory could be useful. The first half of the book is an application oriented survey of temperature measurement techniques and devices. The second half is concerned mainly with temperature control in both simple and complex situations.

2. Maximal combustion temperature estimation

International Nuclear Information System (INIS)

Golodova, E; Shchepakina, E

2006-01-01

This work is concerned with the phenomenon of delayed loss of stability and the estimation of the maximal temperature of safe combustion. Using the qualitative theory of singular perturbations and canard techniques we determine the maximal temperature on the trajectories located in the transition region between the slow combustion regime and the explosive one. This approach is used to estimate the maximal temperature of safe combustion in multi-phase combustion models

3. Neutron ion temperature measurement

International Nuclear Information System (INIS)

Strachan, J.D.; Hendel, H.W.; Lovberg, J.; Nieschmidt, E.B.

1986-11-01

One important use of fusion product diagnostics is in the determination of the deuterium ion temperature from the magnitude of the 2.5 MeV d(d,n) 3 He neutron emission. The detectors, calibration methods, and limitations of this technique are reviewed here with emphasis on procedures used at PPPL. In most tokamaks, the ion temperature deduced from neutrons is in reasonable agreement with the ion temperature deduced by other techniques

4. Optical properties of ZnO/MgZnO quantum wells with graded thickness

International Nuclear Information System (INIS)

Lv, X Q; Liu, W J; Hu, X L; Chen, M; Zhang, B P; Zhang, J Y

2011-01-01

The optical properties of ZnO/Mg 0.1 Zn 0.9 O single quantum wells with graded well width were studied using temperature-dependent photoluminescence (PL) spectroscopy. The ratio of emission intensity between the well and barrier layers was found to increase monotonically when the sample temperature was increased from 78 to 210 K, indicating an efficient carrier transfer from the barrier to the well. The emission peak of the Mg 0.1 Zn 0.9 O barrier exhibited a blueshift first and then a redshift with increasing temperature, which was attributed to the repopulation of localized carriers in energy-tail states induced by alloy composition fluctuations. Such an anomalous temperature dependence of PL energy contributed to the carrier transfer. On the other hand, the emission from the well layer exhibited a transition behaviour from localized to free excitons with increasing temperature. A further analysis of the temperature-dependent emission peaks of different well widths revealed that the localization energy of excitons was related to the potential variation induced mainly by well width fluctuations. Moreover, by comparing experimental results with calculation, the separation between the quantum confinement regime and quantum-confined Stark regime was found to occur at a well width of about 3 nm.

5. Dry well storage of spent LWBR fuel

International Nuclear Information System (INIS)

Christensen, A.B.; Fielding, K.D.

1985-01-01

Recently, 50 dry wells were constructed at the Idaho Chemical Processing Plant (ICPP) to temporarily store the Light Water Breeder Reactor (LWBR) fuel. Over 400 dry wells of the same design are projected to be constructed in the next 5 yr at the ICPP to store unreprocessible fuels until a permanent repository becomes available. This summary describes the LWBR fuel storage dry wells and the enhancements made over the Peach Bottom fuel and Fermi blanket dry wells that have been in use for up to 4 yr. Dry well storage at the ICPP has historically been found to be a safe and efficient method of temporary fuel storage. The LWBR dry wells should be more reliable than the original dry wells and provide data not previously available

6. Nevada test site water-supply wells

International Nuclear Information System (INIS)

Gillespie, D.; Donithan, D.; Seaber, P.

1996-05-01

A total of 15 water-supply wells are currently being used at the Nevada Test Site (NTS). The purpose of this report is to bring together the information gleaned from investigations of these water-supply wells. This report should serve as a reference on well construction and completion, static water levels, lithologic and hydrologic characteristics of aquifers penetrated, and general water quality of water-supply wells at the NTS. Possible sources for contamination of the water-supply wells are also evaluated. Existing wells and underground nuclear tests conducted near (within 25 meters (m)) or below the water table within 2 kilometers (km) of a water-supply were located and their hydrogeologic relationship to the water-supply well determined

7. Well-Being, Science, and Philosophy

DEFF Research Database (Denmark)

Rodogno, Raffaele

2014-01-01

Academic research on well-being is pursued in multiple disciplines and currently exploding. Governments are also interested in the topic, as witnessed by their recent efforts to develop statistical measures of progress that include well-being indicators. Combined, this interest opens the door...... to the fruitful application of well-being research to society. Research on well-being, however, is not always well integrated across the disciplines that purport to study it. In particular, there is insufficient communication between the empirical study of well-being, and its normative/conceptual study as pursued...... in philosophy. This state of affairs is lamentable, as it robs science and public policy of the expertise of philosophers, a desirable tool when evaluating empirical claims about well-being promotion. In this article, I examine the reasons for this lack of communication. In particular, I reject the view...

8. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

Science.gov (United States)

Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

2013-04-01

Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

9. Static Formation Temperature Prediction Based on Bottom Hole Temperature

Directory of Open Access Journals (Sweden)

Changwei Liu

2016-08-01

Full Text Available Static formation temperature (SFT is required to determine the thermophysical properties and production parameters in geothermal and oil reservoirs. However, it is not easy to determine SFT by both experimental and physical methods. In this paper, a mathematical approach to predicting SFT, based on a new model describing the relationship between bottom hole temperature (BHT and shut-in time, has been proposed. The unknown coefficients of the model were derived from the least squares fit by the particle swarm optimization (PSO algorithm. Additionally, the ability to predict SFT using a few BHT data points (such as the first three, four, or five points of a data set was evaluated. The accuracy of the proposed method to predict SFT was confirmed by a deviation percentage less than ±4% and a high regression coefficient R2 (>0.98. The proposed method could be used as a practical tool to predict SFT in both geothermal and oil wells.

10. Potential hydrologic characterization wells in Amargosa Valley

International Nuclear Information System (INIS)

Lyles, B.; Mihevc, T.

1994-09-01

More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley

11. Effects of cryogenic irradiation on temperature sensors

International Nuclear Information System (INIS)

Courts, S.S.; Holmes, D.S.

1996-01-01

12. Design approach to sealant selection for the life of the well

NARCIS (Netherlands)

Bosma, M.; Ravi, K.; Driel, W.D. van; Schreppers, G.M.A.

1999-01-01

Recent experience in the field has demonstrated that the mechanical properties of the annular sealant are a critical factor in the success of a well. A demanding operational regime of the well such as High Pressure/High Temperature (HP/HT) and well interventions, e.g. pressure testing stimulation,

13. Transport studies in p-type double quantum well samples

International Nuclear Information System (INIS)

Hyndman, R.J.

2000-01-01

The motivation for the study of double quantum well samples is that the extra spatial degree of freedom can modify the ground state energies of the system, leading to new and interesting many body effects. Electron bi-layers have been widely studied but the work presented here is the first systematic study of transport properties of a p-type, double quantum well system. The samples, grown on the 311 plane, consisted of two 100A GaAs wells separated by a 30A AlAs barrier. The thin barrier in our structures, gives rise to very strong inter-layer Coulombic interactions but in contrast to electron double quantum well samples, tunnelling between the two wells is very weak. This is due to the large effective mass of holes compared with electrons. It is possible to accurately control the total density of a sample and the relative occupancy of each well using front and back gates. A systematic study of the magnetoresistance properties of the p-type bi-layers, was carried out at low temperatures and in high magnetic fields, for samples covering a range of densities. Considerable care was required to obtain reliable results as the samples were extremely susceptible to electrical shock and were prone to drift in density slowly over time. With balanced wells, the very low tunnelling in the p-type bi-layer leads to a complete absence of all odd integers in both resistance and thermopower except for the v=1 state, ( v 1/2 in each layer) where v is the total Landau level filling factor. Unlike other FQHE features the v=1 state strengthens with increased density as inter-layer interactions increase in strength over intra-layer interactions. The state is also destroyed at a critical temperature, which is much lower than the measured activation temperature. This is taken as evidence for a finite temperature phase transition predicted for the bi-layer v=1. From the experimental observations, we construct a phase diagram for the state, which agree closely with theoretical predictions

14. Understanding wellness center loyalty through lifestyle analysis.

Science.gov (United States)

Suresh, Satya; Ravichandran, Swathi; P, Ganesan

2011-01-01

Many changes taking place at a macro-level in Indian society along with the popularity of services that are native to India, such as Yoga and Ayurveda, have generated significant interest in wellness services. To assist wellness centers in gaining loyal clients, the goal of this study was to understand the influence of customer lifestyle factors on wellness center loyalty. The activities, interests, and opinions model was used to understand the lifestyles of wellness center clients. Data were collected from clients of five wellness centers. Regression results indicate that overworked individuals and those seeking a balance between work and family life would be the most loyal to wellness centers. Managerial implications of results are discussed.

15. Supporting wellness in adult online education

Directory of Open Access Journals (Sweden)

Jacklyn J. Thompson

2014-02-01

Full Text Available Online education cannot continue to grow at the current pace while ignoring a crucial component of campus support, wellness for adult online learners. This paper brings awareness to the concept of wellness as an important student support service in adult online education. It includes a summarized review of relevant literature and identifies specific wellness concerns of adult online learners. The paper also provides examples of how three American higher education institutions are addressing the issue of wellness promotion in online learning. It identifies areas for improvement in current wellness initiatives and offers recommended strategies for supporting adult online learner wellness to professional organizations, institutions, instructors, and distance learners.http://dx.doi.org/10.5944/openpraxis.6.1.100

16. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

International Nuclear Information System (INIS)

Charles M. Boyer II; Ronald J. MacDonald P.G.

2001-01-01

As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We are currently in the final stages of developing and testing our new Microsoft(trademark) Access/Excel based software. We will be processing this well data and identifying potential candidate wells that can be used in Phase 2 to validate these methodologies. Preparation of the final technical report is underway

17. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

International Nuclear Information System (INIS)

Charles M. Boyer II; Ronald J. MacDonald P.G.

2001-01-01

As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft(trademark) Access/Excel based software. We are continuing to process this well data and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway

18. Productivity and injectivity of horizontal wells

Energy Technology Data Exchange (ETDEWEB)

Aziz, Khalid

2000-03-06

One of the key issues addressed was pressure drop in long horizontal wells and its influence on well performance. Very little information is available in the literature on flow in pipes with influx through pipe walls. Virtually all of this work has been in small diameter pipes and with single-phase flow. In order to address this problem new experimental data on flow in horizontal and near horizontal wells have been obtained. Experiments were conducted at an industrial facility on typical 6 1/8 ID, 100 feet long horizontal well model. The new data along with available information in the literature have been used to develop new correlations and mechanistic models. Thus it is now possible to predict, within reasonable accuracy, the effect of influx through the well on pressure drop in the well.

19. High temperature materials; Materiaux a hautes temperatures

Energy Technology Data Exchange (ETDEWEB)

NONE

2003-07-01

The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

20. Role of well testing in civil engineering

International Nuclear Information System (INIS)

Banks, D.

1981-01-01

Purpose of well testing is to derive a value of the permeability of the geologic medium or to measure the velocity or quantity of fluid flow. The types of tests typically employed on civil engineering projects are simple borehole tests, packer or pressure tests in boreholes, permeameter tests, well pumping tests, and in-hole tests using well flow meters or tracer tests. New problem areas which demand new approaches are mentioned

1. Reasons for using workplace wellness services

DEFF Research Database (Denmark)

Persson, Roger; Cleal, Bryan; Jakobsen, Mette Øllgaard

2018-01-01

Aims: While workplace wellness services are proactively established to improve well-being and reduce sickness absence, knowledge of reasons for using these services remains sparse. This study investigates which factors determine use of an in-house wellness service at a large organization (the Dan...... for in terms of both positive and negative barriers. Use of the service for purposes of primary prevention and health promotion was, relatively speaking, lagging behind....

2. Reasons for using workplace wellness services

DEFF Research Database (Denmark)

Persson, Roger; Cleal, Bryan; Jakobsen, Mette Øllgaard

2017-01-01

AIMS: While workplace wellness services are proactively established to improve well-being and reduce sickness absence, knowledge of reasons for using these services remains sparse. This study investigates which factors determine use of an in-house wellness service at a large organization (the Dan...... for in terms of both positive and negative barriers. Use of the service for purposes of primary prevention and health promotion was, relatively speaking, lagging behind....

3. Feasibility of EGS Well Control Systems

Energy Technology Data Exchange (ETDEWEB)

Norann, Randy A [Perma Works LLC; Darlow, Richard [GeoTek Energy LLC

2015-02-03

This report covers the 8th major objective listed in Grant DE-FG36-08GO18185. This objective takes the information and experience gained from the development of 300°C well monitoring system and applies them to concepts envisioned for future geothermal well control systems supporting EGS power production. This report covers a large number of instrumentation and control system engineering issues for EGS wells while also providing a window into existing technology to address those issues.

4. Temperature controlled 'void' formation

International Nuclear Information System (INIS)

Dasgupta, P.; Sharma, B.D.

1975-01-01

The nucleation and growth of voids in structural materials during high temperature deformation or irradiation is essentially dependent upon the existence of 'vacancy supersaturation'. The role of temperature dependent diffusion processes in 'void' formation under varying conditions, and the mechanical property changes associated with this microstructure are briefly reviewed. (author)

5. Disorders of body temperature.

Science.gov (United States)

Gomez, Camilo R

2014-01-01

The human body generates heat capable of raising body temperature by approximately 1°C per hour. Normally, this heat is dissipated by means of a thermoregulatory system. Disorders resulting from abnormally high or low body temperature result in neurologic dysfunction and pose a threat to life. In response to thermal stress, maintenance of normal body temperature is primarily maintained by convection and evaporation. Hyperthermia results from abnormal temperature regulation, leading to extremely elevated body temperature while fever results from a normal thermoregulatory mechanism operating at a higher set point. The former leads to specific clinical syndromes with inability of the thermoregulatory mechanism to maintain a constant body temperature. Heat related illness encompasses heat rash, heat cramps, heat exhaustion and heat stroke, in order of severity. In addition, drugs can induce hyperthermia and produce one of several specific clinical syndromes. Hypothermia is the reduction of body temperature to levels below 35°C from environmental exposure, metabolic disorders, or therapeutic intervention. Management of disorders of body temperature should be carried out decisively and expeditiously, in order to avoid secondary neurologic injury. © 2014 Elsevier B.V. All rights reserved.

6. Domain walls at finite temperature

International Nuclear Information System (INIS)

Carvalho, C.A. de; Marques, G.C.; Silva, A.J. da; Ventura, I.

1983-08-01

It is suggested that the phase transition of lambda phi 4 theory as a function of temperature coincides with the spontaneous appearance of domain walls. Based on one-loop calculations, T sub(c) = 4M/√ lambda is estimated as the temperature for these domains to because energetically favored, to be compared with T sub(c) = 4.9M/√ lambda from effective potential calculations (which are performed directly in the broken phase). Domain walls, as well as other Types of fluctuations, disorder the system above T sub(c), leading to =0. The critical exponent for the specific heat above T sub(c) is computed; and α=2/3 + 0 (√ lambda) is obtained. (Author) [pt

7. Spin Splitting in Different Semiconductor Quantum Wells

International Nuclear Information System (INIS)

Hao Yafei

2012-01-01

We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

8. Geothermal wells: a forecast of drilling activity

Energy Technology Data Exchange (ETDEWEB)

Brown, G.L.; Mansure, A.J.; Miewald, J.N.

1981-07-01

Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

9. General well function for soil vapor extraction

Science.gov (United States)

Perina, Tomas

2014-04-01

This paper develops a well function applicable to extraction of groundwater or soil vapor from a well under the most common field test conditions. The general well function (Perina and Lee, 2006) [12] is adapted to soil vapor extraction and constant head boundary at the top. For groundwater flow, the general well function now applies to an extraction well of finite diameter with uniform drawdown along the screen, finite-thickness skin, and partially penetrating an unconfined, confined, and leaky aquifer, or an aquifer underneath a reservoir. With a change of arguments, the model applies to soil vapor extraction from a vadose zone with no cover or with leaky cover at the ground surface. The extraction well can operate in specified drawdown (pressure for soil vapor) or specified flowrate mode. Frictional well loss is computed as flow-only dependent component of the drawdown inside the extraction well. In general case, the calculated flow distribution is not proportional to screen length for a multiscreen well.

10. Well-faring towards Uncertain Futures

DEFF Research Database (Denmark)

Frederiksen, Martin Demant; Pedersen, Susanne Højlund; Meinert, Lotte

2011-01-01

The article explores how societal contexts create different possibilities for faring well towards the future for young marginalized people. Based on a comparative project including ethnographies from Brazil, Uganda, Georgia and Denmark the authors discuss well-faring as a time-oriented process...... based on individual as well as societal conditions. The article argues that in order to understand well-faring it is important to analyse how visions and strategies for the future are shaped in relation to local circumstances. Whether it is possible to envision the future as hopeless or hopeful...

11. On the Importance of Well-Being

DEFF Research Database (Denmark)

Rodogno, Raffaele

2008-01-01

central theories in normative ethics. I will focus on Scanlon’s discussion in particular because it affords us with two criteria for the assessment of the importance for a person of a value-concept such as well-being. I will claim that much of Scanlon’s case rests on the idea that well......Many among philosophers and non-philosophers would claim that well-being is important in moral theory because it is important to the individual whose well-being it is. The exact meaning of this claim, however, is in need of clarification. Having provided that, I will present a charge against it...

12. Sand control systems used in completing wells

Directory of Open Access Journals (Sweden)

Gabriel Wittenberger

2005-12-01

Full Text Available Expandable Tubular Technology is transforming the face of well completion and construction. This technology provides: a substantially higher hydrocarbon production rates from the reservoir, a reduced well drilling and construction costs, new possibilities for previously unreachable or uneconomic reservoirs, and step a change towards the single diameter well. ESS (Expandable Sand Screen has an unrivalled performance worldwide for delivering a reliable sand control in a wide range of applications. Well costs typically cut by over 20 %, and the productivity increases up to 70 %.

13. Health Promotion and Wellness Staffing Methods

National Research Council Canada - National Science Library

Thomsen, Kim

1999-01-01

.... Health promotion and wellness programs positively influence the military mission readiness and force protection, increase productivity, reduce health care costs, minimize illness and non-battle...

14. Characterization Well R-22 Geochemistry Report

International Nuclear Information System (INIS)

Patrick Longmire

2002-01-01

This report provides analytical results for groundwater collected during four characterization-sampling rounds conducted at well R-22 from March 2001 through March 2002. Characterization well R-22 was sampled from March 6 through 13, 2001; June 19 through 26, 2001; November 30 through December 10, 2001; and February 27 through March 7, 2002. The goal of the characterization efforts was to assess the hydrochemistry and to determine whether or not contaminants are present in the regional aquifer in the vicinity of the well. A geochemical evaluation of the analytical results for the well is also presented in this report

15. High temperature structural silicides

International Nuclear Information System (INIS)

Petrovic, J.J.

1997-01-01

Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

16. Novel room temperature ferromagnetic semiconductors

Energy Technology Data Exchange (ETDEWEB)

Gupta, Amita [KTH Royal Inst. of Technology, Stockholm (Sweden)

2004-06-01

Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous

17. Correlation Effects on the Coupled Plasmon Modes of a Double Quantum Well

DEFF Research Database (Denmark)

Hill, N. P. R.; Nicholls, J. T.; Linfield, E. H.

1997-01-01

At temperatures comparable to the Fermi temperature, we have measured a plasmon enhanced Coulomb drag in a GaAs/AlGaAs double quantum well electron system. This measurement provides a probe of the many-body corrections to the coupled plasmon modes, and we present a detailed comparison between exp...

18. Production of natural gas from methane hydrate by a constant downhole pressure well

International Nuclear Information System (INIS)

Ahmadi, Goodarz; Ji, Chuang; Smith, Duane H.

2007-01-01

Natural gas production from the dissociation of methane hydrate in a confined reservoir by a depressurizing downhole well was studied. The case that the well pressure was kept constant was treated, and two different linearization schemes in an axisymmetric configuration were used in the analysis. For different fixed well pressures and reservoir temperatures, approximate self similar solutions were obtained. Distributions of temperature, pressure and gas velocity field across the reservoir were evaluated. The distance of the decomposition front from the well and the natural gas production rate as functions of time were also computed. Time evolutions of the resulting profiles were presented in graphical forms, and their differences with the constant well output results were studied. It was shown that the gas production rate was a sensitive function of well pressure and reservoir temperature. The sensitivity of the results to the linearization scheme used was also studied

19. Superconducting critical temperature under pressure

Science.gov (United States)

González-Pedreros, G. I.; Baquero, R.

2018-05-01

The present record on the critical temperature of a superconductor is held by sulfur hydride (approx. 200 K) under very high pressure (approx. 56 GPa.). As a consequence, the dependence of the superconducting critical temperature on pressure became a subject of great interest and a high number of papers on of different aspects of this subject have been published in the scientific literature since. In this paper, we calculate the superconducting critical temperature as a function of pressure, Tc(P), by a simple method. Our method is based on the functional derivative of the critical temperature with the Eliashberg function, δTc(P)/δα2F(ω). We obtain the needed coulomb electron-electron repulsion parameter, μ*(P) at each pressure in a consistent way by fitting it to the corresponding Tc using the linearized Migdal-Eliashberg equation. This method requires as input the knowledge of Tc at the starting pressure only. It applies to superconductors for which the Migdal-Eliashberg equations hold. We study Al and β - Sn two weak-coupling low-Tc superconductors and Nb, the strong coupling element with the highest critical temperature. For Al, our results for Tc(P) show an excellent agreement with the calculations of Profeta et al. which are known to agree well with experiment. For β - Sn and Nb, we found a good agreement with the experimental measurements reported in several works. This method has also been applied successfully to PdH elsewhere. Our method is simple, computationally light and gives very accurate results.

20. Coming up: energy from hot water wells

Energy Technology Data Exchange (ETDEWEB)

Davis, B.

1982-06-17

Britain's first commercial exploitation of geothermal energy, located at Southampton, is discused. The project will use a large aquifer with a temperature of 70/sup 0/C to heat a large shopping mall and office complex; the first heat should be produced in 1985. Also discussed is geothermal energy in the USA, Italy, Japan, Mexico, New Zealand, El Salvadore, Iceland, France, Hungary, and the USSR. (MJF)

1. Schools Shape Up with Employee Wellness.

Science.gov (United States)

Kaldy, Joanne

1985-01-01

Increasingly, schools are beginning employee wellness programs, which encourage employees to make personal commitments to life-style changes that will increase their productivity and generally improve their health. This article provides an introduction to wellness programs, lists advantages, and tells how to start one and make it work. (DCS)

2. Harmonic pulse testing for well performance monitoring

NARCIS (Netherlands)

Fokker, Peter A.; Salina Borello, Eloisa; Verga, Francesca; Viberti, Dario

2018-01-01

Harmonic testing was developed as a form of well testing that can be applied during ongoing production or injection operations, as a pulsed signal is superimposed on the background pressure trend. Thus no interruption of well and reservoir production is needed before and during the test. If the

3. Measuring Well-Being and Progress

NARCIS (Netherlands)

L. D'Acci (Luca)

2010-01-01

textabstractWell-being is becoming a concept which is more and more involved in any world development consideration. A large amount of work is being carried out to study measurements of well-being, including a more holistic vision on the development and welfare of a country. This paper proposes

4. Environmental monitoring well housing and protection method

International Nuclear Information System (INIS)

Kenner, D.A.

1991-01-01

This patent describes a method for housing and protecting an environmental monitoring well having a well pipe disposed in a well bore with an upper and extending toward the surface of the ground. It comprises: placing an enclosure ins aid well bore around the upper end of the well pipe, the enclosure being of unitary construction and having an upper opening, a lower opening and an inwardly-protruding ledge between the upper opening and the lower opening, placing sealing means in the well bore between the outter surface of the well pipe and the inner surface of the enclosure, the sealing means being a composition distinct from the well pipe; placing on the ledge a flexible gasket having a shape substantially identical to the shape of the surface of the ledge; placing on the gasket within the enclosure a cover having an upper surface and a peripheral shape substantially identical to the shape of the interior of the enclosure, and attaching the cover to the enclosure so that the upper opening of the enclosure and the upper surface of the cover are substantially flush with the surface of the ground

5. Geothermal Reservoir Well Stimulation Program: technology transfer

Energy Technology Data Exchange (ETDEWEB)

1980-05-01

Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

6. Well-Founded Belief and Perceptual Justification

DEFF Research Database (Denmark)

Broncano-Berrocal, Fernando

2016-01-01

According to Alan Millar, justified beliefs are well-founded beliefs. Millar cashes out the notion of well-foundedness in terms of having an adequate reason to believe something and believing it for that reason. To make his account of justified belief compatible with perceptual justification he...

7. Conductance in double quantum well systems

International Nuclear Information System (INIS)

Hasbun, J E

2003-01-01

The object of this paper is to review the electronic conductance in double quantum well systems. These are quantum well structures in which electrons are confined in the z direction by large band gap material barrier layers, yet form a free two-dimensional Fermi gas within the sandwiched low band gap material layers in the x-y plane. Aspects related to the conductance in addition to the research progress made since the inception of such systems are included. While the review focuses on the tunnelling conductance properties of double quantum well devices, the longitudinal conductance is also discussed. Double quantum well systems are a more recent generation of structures whose precursors are the well known double-barrier resonant tunnelling systems. Thus, they have electronic signatures such as negative differential resistance, in addition to resonant tunnelling, whose behaviours depend on the wavefunction coupling between the quantum wells. As such, the barrier which separates the quantum wells can be tailored in order to provide better control of the device's electronic properties over their single well ancestors. (topical review)

8. Structural Validation of the Holistic Wellness Assessment

Science.gov (United States)

Brown, Charlene; Applegate, E. Brooks; Yildiz, Mustafa

2015-01-01

The Holistic Wellness Assessment (HWA) is a relatively new assessment instrument based on an emergent transdisciplinary model of wellness. This study validated the factor structure identified via exploratory factor analysis (EFA), assessed test-retest reliability, and investigated concurrent validity of the HWA in three separate samples. The…

9. Transparency and Oversight in Local Wellness Policies

Science.gov (United States)

Chriqui, Jamie F.; Chaloupka, Frank J.

2011-01-01

Background: Advocates have called for increased wellness policy transparency and oversight through the use of health advisory councils. This study examines (1) wellness policy transparency, (2) advisory council requirements, (3) factors associated with each, and (4) whether transparency or advisory council requirements are indicative of a stronger…

10. Research on Preventive Wellness in the Netherlands

NARCIS (Netherlands)

Jacques Vork; dr. Angelique Lombarts

2013-01-01

Chapter 39 in Health, Tourism and Hospitality: Spas, Wellness and Medical Travel, 2nd Edition takes an in-depth and comprehensive look at the growing health, wellness and medical tourism sectors in a global context. The book analyses the history and development of the industries, the way in which

11. Hospital Organization, Administration and Wellness Programming.

Science.gov (United States)

Fleming, Jeanne Hmura

1984-01-01

Hospital organization, administration and planning, and implementation program procedures are reviewed in this article. Hospitals and medical centers are changing their strategies in the area of wellness programming since they offer the appropriate facilities for these programs. Various types of wellness programs currently being promoted are…

12. Workplace Wellness Programs to Promote Cancer Prevention.

Science.gov (United States)

Soldano, Sharon K

2016-08-01

13. Transient well flow in vertically heterogeneous aquifers.

NARCIS (Netherlands)

Hemker, C.J.

1999-01-01

A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The

14. Conceptualising well-being for autistic persons.

Science.gov (United States)

Robeyns, Ingrid

2016-06-01

In the philosophy of well-being, there is hardly anything written on the lives of people with autism or on the question whether existing philosophical theories of well-being are suited for understanding how well the lives of autistic persons are going. This paper tries to make some progress towards filling this gap. I start by giving a concise account of autism, which highlights the huge heterogeneity among autistics. I discuss some basic features of autism, ask whether there are good reasons why we would need an account of well-being specifically for autistics and what philosophical well-being research could learn from being informed by autistic experiences and phenomenology. I then investigate to what extent the capability approach gives us a helpful theory of well-being for autistics, and what looking through an autism-lens can contribute to the further development of the capabilitarian well-being. In particular, I show that some capabilities that are crucially relevant for autistics are also relevant for the lives of non-autistic people. The final part of the paper looks at an important difficulty in using the capabilitarian account of well-being for autistics, namely: should the normative focus be on achievements (functionings) or real opportunities (capabilities)? Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

15. Studying employee well-being : Moving forward

NARCIS (Netherlands)

Ilies, R.; Pluut, Helen; Aw, S.S.Y.

2015-01-01

In this article, we attempt to integrate the commentaries to our position paper on intra-individual models of employee well-being (EWB; Ilies, R., Aw, S. S. Y., & Pluut, H. (2015). Intraindividual models of employee well-being: What have we learned and where do we go from here? European Journal of

16. Well-covered graphs and factors

DEFF Research Database (Denmark)

Randerath, Bert; Vestergaard, Preben D.

2006-01-01

A maximum independent set of vertices in a graph is a set of pairwise nonadjacent vertices of largest cardinality α. Plummer defined a graph to be well-covered, if every independent set is contained in a maximum independent set of G. Every well-covered graph G without isolated vertices has a perf...

17. Overview - Be Smart. Be Well. STD Videos

Centers for Disease Control (CDC) Podcasts

This video, produced by Be Smart. Be Well., raises awareness of Sexually Transmitted Diseases (STDs): 1) What are they? 2) Why they matter? and, 3) What can I do about them? Footage courtesy of Be Smart. Be Well., featuring CDC's Dr. John Douglas, Division of Sexually Transmitted Disease Prevention.

18. Supporting Wellness in Adult Online Education

Science.gov (United States)

Thompson, Jacklyn J.; Porto, Stella C. S.

2014-01-01

Online education cannot continue to grow at the current pace while ignoring a crucial component of campus support, wellness for adult online learners. This paper brings awareness to the concept of wellness as an important student support service in adult online education. It includes a summarized review of relevant literature and identifies…

19. The Anatomy of Subjective Well-being

NARCIS (Netherlands)

Praag, van B.M.S.; Frijters, P.; Ferrer-i-Carbonell, A.

2002-01-01

This paper contributes to the literature on Subjective Well-Being by taking into account different aspects of life, called domains, such as health, financial situation, job, leisure, housing, and environment. We postulate a two-Iayer model where individual total Subjective Well-Being depends on the

20. Autonomous teamwork and psychological well-being

NARCIS (Netherlands)

Mierlo, van H.; Rutte, C.G.; Seinen, B.; Kompier, M.A.J.

2001-01-01

Few studies investigated the assumed positive effects of autonomous groups on individual psychological well-being. In the present study we investigated the hypotheses that (1) group autonomy is positively related to psychological well-being, (2) this relationship is mediated by individual autonomy,

1. Design and testing of a heat transfer sensor for well exploration tools

DEFF Research Database (Denmark)

Soprani, Stefano; Just Nørgaard, Anders; Nesgaard, Carsten

2018-01-01

The exploration of oil, gas, and geothermal wells is moving towards increasingly harsher downhole environments, requiring more and more advanced drilling and intervention tools. The high downhole temperatures threaten the correct functionality of intervention equipment and of standard downhole...

2. Carrier Transfer between InGaAs/GaAs Quantum Wells Separated by Thick Barriers

DEFF Research Database (Denmark)

Borri, Paola; Gurioli, M.; Colocci, M.

1997-01-01

We have studied the carrier transfer between two adjacent wells of different width separated by a 100 nm thick barrier. At low temperatures (T 30 K: the transfer strongly increases, denoting that the thermal escape out of the QW...

3. Hot electron and real space transfer in double-quantum-well structures

International Nuclear Information System (INIS)

Okuno, Eiichi; Sawaki, Nobuhiko; Akasaki, Isamu; Kano, Hiroyuki; Hashimoto, Masafumi.

1991-01-01

The hot electron phenomena and real space transfer (RST) effect are studied in GaAs/AlGaAs double-quantum-well (DQW) structures, in which we have two kind of quantum wells with different widths. The drift velocity and the electron temperature at liquid helium temperature are investigated as a function of the external electric field applied parallel to the heterointerface. By increasing the field, the electron temperature rises and reaches a plateau in the intermediate region, followed by further rise in the high-field region. The appearance of the plateau is attributed to the RST effect between the two quantum wells. The threshold field for the appearance of the plateau is determined by the difference energy between the quantized levels in two wells. The energy loss rate as a function of the electron temperature indicates that the RST is assisted by LO phonon scattering. (author)

4. Can Facebook use induce well-being?

Science.gov (United States)

Liu, Chia-Yi; Yu, Chia-Ping

2013-09-01

Over the past few decades, the widespread phenomenon of Internet abuse has gained attention from the public, academia, and the media. In a departure from this negative viewpoint, however, researchers and educators have devoted considerable effort in attempting to understand the influence of online communication on people's psychological well-being. This study focuses specifically on Facebook, and proposes a research model to examine the relationships among Facebook use, online social support, general social support, and psychological well-being. Our results show that using Facebook helped college students to obtain online social support, and that online social support is an extension of general social support. However, although general social support contributes to well-being, online social support appears to have little direct effect on well-being. The relationship between online social support and well-being is mediated through the factor of general social support.

5. Pair production by a deep potential well

International Nuclear Information System (INIS)

Nikishov, A.I.

1987-01-01

Solutions are obtained for the Dirac and Klein-Gordon equations with a one-dimensional symmetric potential well, having a flat bottom and arbitrary depth, width and field strengths at the walls. Quasi-stationary solutions describing a pair production by the well and the inverse process are obtained. It is shown that if the pair production probability is small, it is expressed in terms of the pair production probability on one wall and the particle oscillation frequency in the well. If the well has a supercritical depth, the lower continuum contains positron resonance scattering states at energies close to the real part of the quasi-stationary level energy (Zeldovich's effect). The qualitative dependence of the positron penetration coefficient through the wall on its energy and the well depth is an evidence that the solution of the so called one-particle Dirac equation describes in fact a many-particle system with a charge of 0 or 1

6. Psychological wellness constructs: relationships and group differences

Directory of Open Access Journals (Sweden)

Liezl Gropp

2007-02-01

Full Text Available The objective of the study was to examine the relationships between several constructs that were hypothesised to be components underlying psychological wellness and to establish whether there were differences between managerial and non-managerial groups or between Black and White groups in respect of the wellness variables. The Personal Orientation Inventory (POI, Locus of Control Inventory (LOC, Sense of Coherence Scale (SOC, and the Bar-On EQ-I were administered to a random sample of 200 employees of a financial services company. Statistically significant differences were found between the groups on several of the wellness variables with the manager and White groups obtaining higher scores on these variables than their comparison groups. However, in respect of External Locus of Control, the non-manager and Black groups obtained the higher scores. Factor analytic results demonstrated that the wellness variables clustered in two correlated factors (r = 0,43 labeled psychological wellness and self-actualisation.

7. Geopressured-geothermal well activities in Louisiana

International Nuclear Information System (INIS)

John, C.J.

1992-10-01

Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing

8. Multiple group membership and well-being

DEFF Research Database (Denmark)

Sønderlund, Anders L.; Morton, Thomas A.; Ryan, Michelle K.

2017-01-01

multiple group membership and well-being, but only for individuals high in SIC. This effect was mediated by perceived identity expression and access to social support. Study 2 (N = 104) also found that multiple group memberships indirectly contributed to well-being via perceived identity expression......A growing body of research points to the value of multiple group memberships for individual well-being. However, much of this work considers group memberships very broadly and in terms of number alone. We conducted two correlational studies exploring how the relationship between multiple group...... and social support, as well as identity compatibility and perceived social inclusion. But, in this study the relationship between multiple group memberships and well-being outcomes was moderated by the perceived value and visibility of group memberships to others. Specifically, possessing multiple, devalued...

9. Equality of Opportunity for Well-Being

DEFF Research Database (Denmark)

Mahler, Daniel Gerszon; Ramos, Xavier

2017-01-01

A growing literature has tried to measure the extent to which individuals have equal opportunities to acquire income. At the same time, policy makers have doubled down on efforts to go beyond income when measuring well- being. We attempt to bridge these two areas by measuring the extent to which...... individuals have equal opportunities to achieve a high level of well-being. We use the German Socio-Economic Panel to measure well-being in four different ways including incomes. This makes it possible to determine if the way well-being is measured matters for identifying who the opportunity......-deprived are and for tracking inequality of opportunity over time. We find that, regardless of how well-being is measured, the same people are opportunity-deprived and equality of opportunity has improved over the past 20 years. This suggests that going beyond income has little relevance if the objective is to provide equal...

10. Staying Well in a Sea of Harm.

Science.gov (United States)

Deutsch, Ellen S

2018-03-01

Physician psychological wellness is an emergent outcome resulting from dynamic interactions among complex conditions. We may enhance opportunities for physician wellness by applying principles developed to improve another emergent outcome: patient safety. The Safety I approach to patient safety focuses on "what went wrong" and considers humans a liability. Safety II is a powerful complementary approach that focuses on "what went right" and values human creativity. These contrasting perspectives are described in the context of patient safety, but the underlying principles have relevance for physician psychological wellness. We can create conditions that interfere with wellness and conditions that support wellness. We can learn from exploring and reinforcing successes and improving routine processes; together, these approaches may have a greater cumulative positive impact than just addressing problems. In addition to learning from failures, there is much we can learn from success.

11. Groundwater monitoring for deep-well injection

International Nuclear Information System (INIS)

Chia, Y.; Chiu, J.

1994-01-01

A groundwater monitoring system for detecting waste migration would not only enhance confidence in the long-term containment of injected waste, but would also provide early warnings of contamination for prompt responses to protect underground sources of drinking water (USDWs). Field experiences in Florida have demonstrated monitoring water quality and fluid pressure changes in overlying formations is useful in detecting the upward migration of injected waste. Analytical and numerical solutions indicate changes in these two monitoring parameters can vary on the basis of hydrogeologic characteristics, operation conditions, and the distances from the injection well to the monitoring wells and to the preferential hydrologic conduits. To detect waste migration through defects around the wellbore or the leaky containment interval, groundwater monitoring wells should be placed as close as possible to an injection well. In the vertical direction, a monitoring well completed in a permeable interbed within the containment interval is expected to have the highest potential for detecting upward migration. Another acceptable horizon for groundwater monitoring is the lower portion of the buffer brine aquifer immediately above the containment interval. Monitoring wells in USDWs may be needed when waste has been detected in deeper formations or when leakage out of well casings poses a concern. A monitoring well open to the injection interval is of little value in alleviating the concerns of long-term upward migration. Moreover, the installation of the well could create additional preferential pathways. Complications in groundwater monitoring may arise at existing injection sites, especially with prior releases. It is also important to recognize that monitoring in the vicinity of the wellbore may not be effective for detecting waste migration through unidentified unplugged wells or undetected transmissive fractures

12. Financial Well-being in Active Ageing.

Science.gov (United States)

Rajola, Federico; Frigerio, Chiara; Parrichi, Monica

2014-01-01

In developed countries, economic and financial well-being is playing a crucial positive role in ageing and inclusion processes. Due to the complexity and pervasiveness of financial economy in the real life, more and more social as well as individual well-being are perceived as influenced by financial conditions. On the other hand, the demographic circumstances drive scholars as well as politicians to reflect on ageing dynamics. Bridging the two domains, the following research focuses on the role of the financial well-being as a mediating role of general well-being in elder people. The assumption is that elderly people have specific financial needs that sometimes are not covered by financial providers' offers. The motivation is mainly on the role of information asymmetries between elder consumers and financial institutions. On the dynamics of these asymmetries, the research will specifically investigate the role of financial literacy, as the ability of comprehension of elder people of their needs and of financial information. The applicative implication of this research work consists in finding the determinants of financial well-being for elders and the definition of their specific financial competencies, in order to 1) identify educational and regulatory guidelines for policy makers in charge of creating financial market transparency conditions, and to 2) support design of organizational mechanisms as well as financial product/services for this specific target of client. The following chapter presents preliminary explorative results of a survey delivered on 200 elder individuals (65-80 yrs.) leaving in Milan. Findings show that active elders consider the ability of managing personal wealth as one of the core determinant of well-being, although the economic and financial literacy is limited. Furthermore, the chapter proposes a research agenda for scholars interested in exploring the relationship between financial well-being and ageing.

13. Control of supply temperature

Energy Technology Data Exchange (ETDEWEB)

Madsen, H; Nielsen, T S; Soegaard, H T

1996-09-01

For many district heating systems, e.g. the system in Hoeje Taastrup, it is desirable to minimize the supply temperature from the heat production unit(s). Lower supply temperature implies lower costs in connection with the production and distribution of heat. Factors having impact on the heat demand are for instance solar radiation, wind speed, wind direction and a climate independent part, which is a function of the time of the day/week/year. By applying an optimization strategy, which minimizes the supply temperature, it is assumed that optimal economical operation can be obtained by minimizing the supply temperature and thereby the heat losses in the system. The models and methods described in this report take such aspects into account, and can therefore be used as elements in a more efficient minimization of the supply temperature. The theoretical part of this report describes models and methods for optimal on-line control of the supply temperature in district heating systems. Some of the models and methods have been implemented - or are going to be implemented - in the computer program PRESS which is a tool for optimal control of supply temperature and forecasting of heat demand in district heating systems. The principles for using transfer function models are briefly described. The ordinary generalized predictive control (OGPC) method is reviewed, and several extensions of this method are suggested. New controller, which is called the extended generalized predictive controller (XGPC), is described. (EG) 57 refs.

14. Statistical physics when the minimum temperature is not absolute zero

Science.gov (United States)

2018-04-01

In this paper, the nonzero minimum temperature is considered based on the third law of thermodynamics and existence of the minimal momentum. From the assumption of nonzero positive minimum temperature in nature, we deform the definitions of some thermodynamical quantities and investigate nonzero minimum temperature correction to the well-known thermodynamical problems.

15. Estimating relic magnetic fields from CMB temperature correlations

International Nuclear Information System (INIS)

Giovannini, Massimo

2009-01-01

The temperature and polarization inhomogeneities of the cosmic microwave background might bear the mark of predecoupling magnetism. The parameters of a putative magnetized background are hereby estimated, for the first time, from the observed temperature autocorrelation as well as from the measured temperature-polarization cross correlation.

16. Estimating relic magnetic fields from CMB temperature correlations

CERN Document Server

Giovannini, Massimo

2009-01-01

The temperature and polarization inhomogeneities of the Cosmic Microwave Background might bear the mark of pre-decoupling magnetism. The parameters of a putative magnetized background are hereby estimated from the observed temperature autocorrelation as well as from the measured temperature-polarization cross-correlation.

17. Proof of concept : Temperature sensing waders for environmental sciences

NARCIS (Netherlands)

Hut, R.W.; Tyler, S.; Van Emmerik, T.H.M.

2015-01-01

A prototype temperature sensing pair of waders is introduced and tested. The water temperature at the stream-bed is interesting both for scientist studying the hyporheic zone as well as for, e.g., fishers spotting good fishing locations. A temperature sensor incorporated in waders worn by members of

18. High temperature pipeline design

Energy Technology Data Exchange (ETDEWEB)

Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

2004-07-01

It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

19. Investigation into Methods for Predicting Connection Temperatures

Directory of Open Access Journals (Sweden)

K. Anderson

2009-01-01

Full Text Available The mechanical response of connections in fire is largely based on material strength degradation and the interactions between the various components of the connection. In order to predict connection performance in fire, temperature profiles must initially be established in order to evaluate the material strength degradation over time. This paper examines two current methods for predicting connection temperatures: The percentage method, where connection temperatures are calculated as a percentage of the adjacent beam lower-flange, mid-span temperatures; and the lumped capacitance method, based on the lumped mass of the connection. Results from the percentage method do not correlate well with experimental results, whereas the lumped capacitance method shows much better agreement with average connection temperatures. A 3D finite element heat transfer model was also created in Abaqus, and showed good correlation with experimental results.

20. Temperature evolution during compaction of pharmaceutical powders.

Science.gov (United States)

Zavaliangos, Antonios; Galen, Steve; Cunningham, John; Winstead, Denita

2008-08-01

A numerical approach to the prediction of temperature evolution in tablet compaction is presented here. It is based on a coupled thermomechanical finite element analysis and a calibrated Drucker-Prager Cap model. This approach is capable of predicting transient temperatures during compaction, which cannot be assessed by experimental techniques due to inherent test limitations. Model predictions are validated with infrared (IR) temperature measurements of the top tablet surface after ejection and match well with experiments. The dependence of temperature fields on speed and degree of compaction are naturally captured. The estimated transient temperatures are maximum at the end of compaction at the center of the tablet and close to the die wall next to the powder/die interface.

1. Temperature Dependence of Factors Controlling Isoprene Emissions

Science.gov (United States)

Duncan, Bryan N.; Yoshida, Yasuko; Damon, Megan R.; Douglass, Anne R.; Witte, Jacquelyn C.

2009-01-01

We investigated the relationship of variability in the formaldehyde (HCHO) columns measured by the Aura Ozone Monitoring Instrument (OMI) to isoprene emissions in the southeastern United States for 2005-2007. The data show that the inferred, regional-average isoprene emissions varied by about 22% during summer and are well correlated with temperature, which is known to influence emissions. Part of the correlation with temperature is likely associated with other causal factors that are temperature-dependent. We show that the variations in HCHO are convolved with the temperature dependence of surface ozone, which influences isoprene emissions, and the dependence of the HCHO column to mixed layer height as OMI's sensitivity to HCHO increases with altitude. Furthermore, we show that while there is an association of drought with the variation in HCHO, drought in the southeastern U.S. is convolved with temperature.

2. 2-D Temperature Mapping in Fluorocarbon Plasmas

Science.gov (United States)

Steffens, Kristen L.; Sobolewski, Mark A.

2005-09-01

Two-dimensional maps of rotational temperature in CF4 plasmas were determined using planar laser-induced fluorescence measurements of CF A2Σ+ - X2Π (1,0). Rotational temperatures are expected to be in equilibrium with gas temperatures under the present conditions. Experiments were performed in a capacitively-coupled, parallel-plate reactor at pressures from 27 Pa to 107 Pa and powers of 10 W to 30 W. The effects of electrode cooling and having a wafer present were also examined. Measured temperatures ranged between 273 K±15 K and 480 K±15 K. The strong temperature gradients found in these plasmas can have serious effects on density measurements that probe a single rotational level, as well as on reaction rate constants and interpretation of density gradients.

3. Well-being, capabilities and philosophical practice

Directory of Open Access Journals (Sweden)

Bulatović Aleksandra

2014-01-01

Full Text Available The concept of well being has become the main criterion to assess quality of life in contemporary society. Individual well-being describes the individual quality of life, while social well-being refers to quality of life in a society. Given that well-being has a multitude of dimensions, a unique definition of it is elusive to scholars. In this article social well-being is conceptualised as a dynamic process within the context set by social integration as one’s relationship to society and the community. This includes the quality of interaction between the individual and society and one’s ‘social actualisation’ understood as the realisation of one’s social capacities. Social actualisation also involves one’s ability to influence social processes and to benefit from social cohesion, which consists, in any society, of the quality, organisation and functioning of the social world. Hence the ability to impact society is an integral part of individual well being. This paper suggests that philosophical practice as a new paradigm in the humanities holds out promise for the improvement of both individual and social well-being. [Projekat Ministarstva nauke Republike Srbije, br. 47011: Crime in Serbia: Phenomenology, Risks and Possibilities for Social Intervention

4. Hanford well remediation and decommissioning plan

International Nuclear Information System (INIS)

Ledgerwood, R.K.

1993-01-01

Protection of Hanford Site groundwater resources and assessment of the effects of their use or contamination upon public safety are required by federal and state regulations and U.S. Department of Energy (DOE) policy, (DOE, 1989). Compliance with constraints applicable to the use of existing wells requires assessment as to the suitability for use and needs for rehabilitation, remediation or decommissioning of existing groundwater wells and other boreholes potentially affecting aquifers beneath the Hanford Site. Approximately 3,500 groundwater wells and vadose zone boreholes had been drilled on the Hanford Site prior to 1989, over 2,900 still exist. Most of these boreholes were drilled prior to 1987 and do not conform to presently accepted construction standards intended to protect groundwater resources. Approximately 260 wells have been installed since 1987. These wells were constructed to current standards for well construction which mandate seals between the permanent casing and the formation to prevent potential migration of contaminated liquid. Several programs presently construct and/or utilize existing and newly drilled wells to provide characterization and groundwater monitoring data. The programs are summarized

5. Pair formation by a deep potential well

International Nuclear Information System (INIS)

Nikishov, A.I.

1987-01-01

We obtain solutions of the Dirac and Klein-Gordon equations for a symmetric one-dimensional potential well with a flat bottom, and arbitrary depth, width, and field strength at the walls. Quasistationary solutions are found describing pair creation by the well, and the inverse process. It is shown that when the probability of pair creation by the well is small, it can be expressed in terms of the probability of pair creation at one of the walls and the oscillation frequency of the particle in the well. Among the states of the lower continuum, there are positron resonance scattering states for supercritical well depths. The energies of these states are close to the real part of the quasistationary energy level (the Zel'dovich effect). The qualitative dependence of the transmission coefficient of the positron through the well on its energy and the well width supports the idea that the solution of the so-called one-particle Dirac equation describes a many-particle system with charge 0 or 1

6. Impact of peer delivered wellness coaching.

Science.gov (United States)

Swarbrick, Margaret; Gill, Kenneth J; Pratt, Carlos W

2016-09-01

People receiving publicly funded behavioral health services for severe mental disorders have shorter lifespans and significantly impaired health-related quality of life compared to the general population. The aim of this article was to explore how peer wellness coaching (PWC), a manualized approach to pursue specific physical wellness goals, impacted goal attainment and overall health related quality of life. Deidentified archival program evaluation data were examined to explore whether peer delivered wellness coaching had an impact on 33 service recipients with regard to goal attainment and health-related quality of life. Participants were served by 1 of 12 wellness coach trainees from a transformation transfer initiative grant who had been trained in the manualized approach. Coaching participants and their coaches reported significant progress toward the attainment of individually chosen goals, 2 to 4 weeks after establishing their goals. After 8 to 10 weeks of peer delivered wellness coaching, improvements were evident in the self-report of physical health, general health, and perceived health. These improvements were sustained 90 days later. PWC is potentially a promising practice for helping people choose and pursue individual goals and facilitating positive health and wellness changes. Rigorous controlled research with larger samples is needed to evaluate the benefits of peer delivered wellness coaching. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

7. Kuwaiti oil wells blowout - aspects and effects

International Nuclear Information System (INIS)

Al-Jassim, F.

1992-01-01

When the Iraqi troops were forced to leave Kuwait, they left behind them the greatest oil catastrophe human beings have ever experienced. Fire plumes of tons of gases of principal pollutants, hydrocarbons, soot and associated metals were ejected up to a height of about 5 km. The retreating forces blew off about 1200 wells all over Kuwait fields. Of these 1200 wells, 614 are on fire. Four firefighting companies were hired to start work immediately after the liberation of Kuwaiti to control these wells. Three of these companies were from the U.S.A. and one from Canada. The number of these companies steadily increased along with logistical support. There are now 28 teams made up of private and multinational companies. This paper will concentrate on two main aspects. The first part will focus on the up-to-date engineering aspects of bringing the blown-out wells under control, focusing on oil well fires and the difficulties encountered, such as equipment availability, ordnance clearance and logistical support. The paper then describes the procedures used to control the wells, and the steps taken to reach this aim are presented. Finally the number of wells controlled, area-wise in different fields, with their original status, is also introduced. The second part will concentrate on the environmental aspects, covering the impact of the plumes on air quality, air pollution and health. The paper then discusses the effect on marine environment, vegetation and the soil. Finally, a forecast, conclusions and recommendations are presented. (author)

8. Well test analysis in fractured media

Energy Technology Data Exchange (ETDEWEB)

Karasaki, K.

1987-04-01

The behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. These models are based on the assumption that a fracture system under well test conditions may be represented by two concentric regions, one representing a small number of fractures that dominates flow near the well, and the other representing average conditions farther away from the well. Type curves are presented that can be used to find the flow parameters of these two regions and the extent of the inner concentric region. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented.

9. Temperature measurement device

International Nuclear Information System (INIS)

Oltman, B.G.; Eckerman, K.F.; Romberg, G.P.; Prepejchal, W.

1975-01-01

Thermoluminescent dosimeter (TLD) material is exposed to a known amount of radiation and then exposed to the environment where temperature measurements are to be taken. After a predetermined time period, the TLD material is read in a known manner to determine the amount of radiation energy remaining in the TLD material. The difference between the energy originally stored by irradiation and that remaining after exposure to the temperature ofthe environment is a measure of the average temperature of the environment during the exposure. (U.S.)

10. Finite temperature field theory

CERN Document Server

Das, Ashok

1997-01-01

This book discusses all three formalisms used in the study of finite temperature field theory, namely the imaginary time formalism, the closed time formalism and thermofield dynamics. Applications of the formalisms are worked out in detail. Gauge field theories and symmetry restoration at finite temperature are among the practical examples discussed in depth. The question of gauge dependence of the effective potential and the Nielsen identities are explained. The nonrestoration of some symmetries at high temperature (such as supersymmetry) and theories on nonsimply connected space-times are al

11. High temperature reaction kinetics

International Nuclear Information System (INIS)

Jonah, C.D.; Beno, M.F.; Mulac, W.A.; Bartels, D.

1985-01-01

During the last year the dependence of the apparent rate of OD + CO on water pressure was measured at 305, 570, 865 and 1223 K. An explanation was found and tested for the H 2 O dependence of the apparent rate of OH(OD) + CO at high temperatures. The isotope effect for OH(D) with CO was determined over the temperature range 330 K to 1225 K. The reason for the water dependence of the rate of OH(OD) + CO near room temperatures has been investigated but no clear explanation has been found. 1 figure

12. Thermal operator representation of finite temperature graphs

International Nuclear Information System (INIS)

Brandt, F.T.; Frenkel, J.; Das, Ashok; Espinosa, Olivier; Perez, Silvana

2005-01-01

Using the mixed space representation (t,p→) in the context of scalar field theories, we prove in a simple manner that the Feynman graphs at finite temperature are related to the corresponding zero temperature diagrams through a simple thermal operator, both in the imaginary time as well as in the real time formalisms. This result is generalized to the case when there is a nontrivial chemical potential present. Several interesting properties of the thermal operator are also discussed

13. Describing gluons at zero and finite temperature

International Nuclear Information System (INIS)

Maas, A.

2010-01-01

Any description of gluons requires a well-defined gauge. This is complicated non-perturbatively by Gribov copies. A possible method-independent gauge definition to resolve this problem is presented and afterwards used to study the properties of gluons at any temperature. It is found that only chromo-electric properties reflect the phase transition. From these the gauge-invariant phase transition temperature is determined for SU(2) and SU(3) Yang-Mills theory independently. (author)

14. Microelectronic temperature sensor; silicon temperature sensor

International Nuclear Information System (INIS)

Beitner, M.; Kanert, W.; Reichert, H.

1982-01-01

The goal of this work was to develop a silicon temperature sensor with a sensitivity and a reliability as high and a tolerance as small as possible, for use in measurement and control. By employing the principle of spreading-resistance, using silicon doped by neutron transmutation, and trimming of the single wafer tolerances of resistance less than +- 5% can be obtained; overstress tests yielded a long-term stability better than 0.2%. Some applications show the advantageous use of this sensor. (orig.) [de

15. Complex temperature dependence of coupling and dissipation of cavity magnon polaritons from millikelvin to room temperature

Science.gov (United States)

Boventer, Isabella; Pfirrmann, Marco; Krause, Julius; Schön, Yannick; Kläui, Mathias; Weides, Martin

2018-05-01

Hybridized magnonic-photonic systems are key components for future information processing technologies such as storage, manipulation, or conversion of data both in the classical (mostly at room temperature) and quantum (cryogenic) regime. In this work, we investigate a yttrium-iron-garnet sphere coupled strongly to a microwave cavity over the full temperature range from 290 K to 30 mK . The cavity-magnon polaritons are studied from the classical to the quantum regimes where the thermal energy is less than one resonant microwave quanta, i.e., at temperatures below 1 K . We compare the temperature dependence of the coupling strength geff(T ) , describing the strength of coherent energy exchange between spin ensemble and cavity photon, to the temperature behavior of the saturation magnetization evolution Ms(T ) and find strong deviations at low temperatures. The temperature dependence of magnonic disspation is governed at intermediate temperatures by rare-earth impurity scattering leading to a strong peak at 40 K . The linewidth κm decreases to 1.2 MHz at 30 mK , making this system suitable as a building block for quantum electrodynamics experiments. We achieve an electromagnonic cooperativity in excess of 20 over the entire temperature range, with values beyond 100 in the millikelvin regime as well as at room temperature. With our measurements, spectroscopy on strongly coupled magnon-photon systems is demonstrated as versatile tool for spin material studies over large temperature ranges. Key parameters are provided in a single measurement, thus simplifying investigations significantly.

16. Wave-packet dynamics in quantum wells

DEFF Research Database (Denmark)

Kuznetsov, A. V.; Sanders, G. D.; Stanton, C. J.

1995-01-01

It has been recently recognized that in bulk semiconductors the displacement current caused by ultrafast optical generation of ''polarized pairs'' in the applied de field is an important mechanism of charge transport in addition to the usual transport current. In quantum-well systems, this polari......It has been recently recognized that in bulk semiconductors the displacement current caused by ultrafast optical generation of ''polarized pairs'' in the applied de field is an important mechanism of charge transport in addition to the usual transport current. In quantum-well systems...... that the carriers in a quantum well can behave as an ensemble of classical particles and produce a transport like photocurrent....

17. The WHO-5 Well-Being Index

DEFF Research Database (Denmark)

Topp, C W; Østergaard, S D; Soendergaard, S

2015-01-01

BACKGROUND: The 5-item World Health Organization Well-Being Index (WHO-5) is among the most widely used questionnaires assessing subjective psychological well-being. Since its first publication in 1998, the WHO-5 has been translated into more than 30 languages and has been used in research studies...... is very high. CONCLUSIONS: The WHO-5 is a short questionnaire consisting of 5 simple and non-invasive questions, which tap into the subjective well-being of the respondents. The scale has adequate validity both as a screening tool for depression and as an outcome measure in clinical trials and has been...

18. The nucleolus is well-posed

Science.gov (United States)

Fragnelli, Vito; Patrone, Fioravante; Torre, Anna

2006-02-01

The lexicographic order is not representable by a real-valued function, contrary to many other orders or preorders. So, standard tools and results for well-posed minimum problems cannot be used. We prove that under suitable hypotheses it is however possible to guarantee the well-posedness of a lexicographic minimum over a compact or convex set. This result allows us to prove that some game theoretical solution concepts, based on lexicographic order are well-posed: in particular, this is true for the nucleolus.

19. Managing Danish pupils’ well-being

DEFF Research Database (Denmark)

The concept of well-being has become a key category of social and political imagination, cultivating new understandings of 'what it means to be a capable person' (Corsín Jiménez, 2008, 2). In 2015, the Danish Ministry of Education began conducting national, annual measurements of Danish pupils...... national objectives for pupils' well-being; 2) the Danish newspaper A4's interactive, online mapping of pupils' well-being at all Danish schools, developed from the same numbers (accessed through their juridical right to access government files) but using different calculative techniques and aimed...

20. Temperature measurements of shock-compressed deuterium

International Nuclear Information System (INIS)

Holmes, N.C.; Ross, M.; Nellis, W.J.

1994-11-01

The authors measured the temperatures of single and double-shocked D 2 and H 2 up to 85 GPa (0.85 Mbar) and 5,200 K. While single shock temperatures, at pressures to 23 GPa, agree well with previous models, the double shock temperatures are as much as 40% lower than predicted. This is believed to be caused by molecular dissociation, and a new model of the hydrogen EOS at extreme conditions has been developed which correctly predicts their observations. These data and model have important implications for programs which use condensed-phase hydrogen in implosion systems

1. Technology development for high temperature logging tools

Energy Technology Data Exchange (ETDEWEB)

Veneruso, A.F.; Coquat, J.A.

1979-01-01

A set of prototype, high temperature logging tools (temperature, pressure and flow) were tested successfully to temperatures up to 275/sup 0/C in a Union geothermal well during November 1978 as part of the Geothermal Logging Instrumentation Development Program. This program is being conducted by Sandia Laboratories for the Department of Energy's Division of Geothermal Energy. The progress and plans of this industry based program to develop and apply the high temperature instrumentation technology needed to make reliable geothermal borehole measurements are described. Specifically, this program is upgrading existing sondes for improved high temperature performance, as well as applying new materials (elastomers, polymers, metals and ceramics) and developing component technology such as high temperature cables, cableheads and electronics to make borehole measurements such as formation temperature, flow rate, high resolution pressure and fracture mapping. In order to satisfy critical existing needs, the near term goal is for operation up to 275/sup 0/C and 7000 psi by the end of FY80. The long term goal is for operation up to 350/sup 0/C and 20,000 psi by the end of FY84.

2. Temperature-induced plasticity in egg size and resistance of eggs to temperature stress in a soil arthropod.

NARCIS (Netherlands)

Liefting, M.; Weerenbeck, M.; van Dooremalen, J.A.; Ellers, J.

2010-01-01

Temperature is considered one of the most important mediators of phenotypic plasticity in ectotherms, resulting in predictable changes in egg size. However, the fitness consequences of temperature-induced plasticity in egg size are not well understood and are often assessed at mild temperatures,

3. Learning to Live Well with Celiac Disease

Science.gov (United States)

... Foundation Celiac Disease Foundation Read More "Celiac Disease" Articles Celiac Disease Changes Everything / What is Celiac Disease? / Symptoms, Diagnosis & Treatment / Four Inches and Seven Pounds… / Learning to Live Well with Celiac Disease / Living Gluten- ...

4. Students’ Well-Being Assessment at School

Directory of Open Access Journals (Sweden)

Nurul Hidayah

2016-04-01

Full Text Available This research aims at describing students’ well-being assessment at two private secondary schools in Sleman regency, Yogyakarta Special Province, Indonesia. The subjects of the research were 42 secondary school students in the area. This is an evaluative research by means of quantitative approach. The data collecting technique employed a focus group discussion (FGD while the instrument used an FGD guide book based on a School Well-being Model (Konu and Rimpela, 2002. The data were analyzed quantitatively by means of thematic analysis. The research finding showed that the students’ school well-being was psychologically high at dimension of health status, but low at dimension of having, loving, and being. Another important finding is that there was a tendency of verbal, physical, as well as sexual bullying done by their classmates and teachers personally.

5. Sediment–well interaction during depressurization

KAUST Repository

Shin, Hosung; Santamarina, Carlos

2016-01-01

production from hydrate accumulations in marine sediments. Sediment–well interaction is examined using a nonlinear finite element simulator. The hydro-mechanically coupled model represents the sediment as a Cam-Clay material, uses a continuous function

6. Silicon Germanium Quantum Well Solar Cell

Data.gov (United States)

National Aeronautics and Space Administration — A single crystal SiGe has enormous potentials for high performance chips and solar cells. This project seeks to fabricate a rudimentary but 1st cut quantum-well...

7. Workplace Wellness Programs Study: Final Report

OpenAIRE

Mattke, Soeren; Liu, Hangsheng; Caloyeras, John; Huang, Christina Y.; Van Busum, Kristin R.; Khodyakov, Dmitry; Shier, Victoria

2013-01-01

This article investigates the characteristics of workplace wellness programs, their prevalence, their impact on employee health and medical cost, facilitators of their success, and the role of incentives in such programs.

8. MARGINAL EXPENSE OIL WELL WIRELESS SURVEILLANCE MEOWS

Energy Technology Data Exchange (ETDEWEB)

Mason M. Medizade; John R. Ridgely; Donald G. Nelson

2004-11-01

A marginal expense oil well wireless surveillance system to monitor system performance and production from rod-pumped wells in real time from wells operated by Vaquero Energy in the Edison Field, Main Area of Kern County in California has been successfully designed and field tested. The surveillance system includes a proprietary flow sensor, a programmable transmitting unit, a base receiver and receiving antenna, and a base station computer equipped with software to interpret the data. First, the system design is presented. Second, field data obtained from three wells is shown. Results of the study show that an effective, cost competitive, real-time wireless surveillance system can be introduced to oil fields across the United States and the world.

9. DIRECTIONAL WELL TRAJECTORY DESIGN: THE THEORITICAL ...

African Journals Online (AJOL)

user

2016-10-04

Oct 4, 2016 ... record presentation of a desired complex directional well trajectory, also from which the overall angle change. (dogleg) is observed not to ... example; 23oNE means 23 degrees East from North, .... Azimuth Angles Selection.

10. Lead and Drinking Water from Private Wells

Science.gov (United States)

... type=”submit” value=”Submit” /> Healthy Water Home Lead and Drinking Water from Private Wells Recommend on ... remove lead from my drinking water? What is lead? Lead is a naturally occurring bluish-gray metal ...

11. Well Logging Equipment Updated in China

Institute of Scientific and Technical Information of China (English)

Xu Lili

1996-01-01

@@ As one of the ten principal disciplines in the petroleum industry, well logging has been developed for about 55years in China and is playing an increasingly important role in the country's oil and gas exploration and development.

12. Personality dimensions and subjective well-being.

Science.gov (United States)

Chico Librán, Eliseo

2006-05-01

This work examines the association between personality dimensions (extraversion and neuroticism) and subjective well-being. Subjective well-being is associated both with extraversion and neuroticism, and currently, neuroticism is generally considered the more important. A total of 368 students from the University of Rovira i Virgili completed the Extraversion and Neuroticism subscales of the revised Eysenck Personality Questionnaire (Eysenck, Eysenck, and Barrett, 1985), the Satisfaction with Life Scale (SWLS; Diener, Emmons, Larsen, and Griffin, 1985), and the Positive and Negative Affect Scale (Watson, Clark, and Tellegen, 1988). Regression analyses revealed the personality variable of neuroticism as one of the most important correlates of subjective well-being. Regression analyses also showed that 44% of the variance of subjective well-being was accounted for by neuroticism, whereas extraversion only explained 8% of the variance.

13. Temperatures of exploding nuclei

Energy Technology Data Exchange (ETDEWEB)

Serfling, V.; Schwarz, C.; Begemann-Blaich, M.; Fritz, S.; Gross, C.; Kleinevoss, U.; Kunze, W.D; Lynen, U.; Mahi, M.; Mueller, W.F.J.; Odeh, T.; Schnittker, M.; Trautmann, W.; Woerner, A.; Xi, H. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Bassini, R.; Iori, I.; Moroni, A.; Petruzzelli, F. [Milan Univ. (Italy). Ist. di Scienze Fisiche]|[Istituto Nazionale di Fisica Nucleare, Milan (Italy); Gaff, S.J.; Kunde, G.J. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy]|[Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.; Imme, G.; Maddalena, V.; Nociforo, C.; Raciti, G.; Riccobene, G.; Romano, F.P.; Saija, A.; Sfienti, C.; Verde, G. [Catania Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Catania (Italy); Moehlenkamp, T.; Seidel, W. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany); Ocker, B.; Schuettauf, A. [Frankfurt Univ. (Germany). Inst. fuer Kernphysik; Pochodzalla, J. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Trzcinski, A.; Zwieglinski, B. [Soltan Inst. for Nuclear Studies, Warsaw (Poland)

1998-01-01

Breakup temperatures in central collisions of {sup 197}Au+{sup 197}Au at bombarding energies E/A=50 to 200 MeV were determined with two methods. Isotope temperatures, deduced from double ratios of hydrogen, helium, and lithium isotopic yields, increase monotonically with bombarding energy from 5 MeV to 12 MeV, in qualitative agreement with a scenario of chemical freeze-out after adiabatic expansion. Excited-state temperatures, derived from yield ratios of states in {sup 4}He, {sup 5,6}Li, and {sup 8}Be, are about 5 MeV, independent of the projectile energy, and seem to reflect the internal temperature of fragments at their final separation from the system. (orig.)

14. Surface Temperature Data Analysis

Science.gov (United States)

Hansen, James; Ruedy, Reto

2012-01-01

Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

15. Temperature measurement device

International Nuclear Information System (INIS)

Fournier, Christian; Lions, Noel.

1975-01-01

The present invention relates to a temperature measuring system that can be applied in particular to monitoring the temperature of the cooling liquid metal of the outlet of the core assemblies of a fast reactor. Said device combines a long hollow metallic pole, at least partially dipped into the liquid metal and constituting a first thermocouple junction between said pole, and two metallic conductors of different nature, joined at one of their ends to constitute the second thermocouple junction. Said conductors suitably insulated are arranged inside a sheath. Said sheath made of the same metals as the pole extends inside the latter and is connected with the pole through a soldered joint. Said reliable system permits an instantaneous measurement of a quantity representing the variations in the recorded temperature and a measurement of the mean surrounding temperature that can be direcly used as a reference for calibrating the first one [fr

16. Elevated temperature fracture mechanics

International Nuclear Information System (INIS)

Tomkins, B.

1979-01-01

The application of fracture mechanics concepts to cracks at elevated temperatures is examined. Particular consideration is given to the characterisation of crack tip stress-strain fields and parameters controlling crack extension under static and cyclic loads. (author)

17. High temperature battery. Hochtemperaturbatterie

Energy Technology Data Exchange (ETDEWEB)

Bulling, M.

1992-06-04

To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

18. Systematic Evaluation of Salt Cavern Well Integrity

Science.gov (United States)

Roberts, B. L.; Lord, D. L.; Lord, A. S.; Bettin, G.; Sobolik, S. R.; Park, B. Y.

2017-12-01

The U.S. Strategic Petroleum Reserve (SPR) holds a reserve of crude oil ( 700 million barrels) to help ease any interruptions in oil import to the United States. The oil is stored in a set of 63 underground caverns distributed across four sites along the U.S. Gulf Coast. The caverns were solution mined into salt domes at each of the four sites. The plastic nature of the salt is beneficial for the storage of crude oil as it heals any fractures that may occur in the salt. The SPR is responsible for operating and maintaining the nearly 120 wells used to access the storage caverns over operational lifetimes spanning decades. Salt creep can induce deformation of the well casing which must be remediated to insure cavern and well integrity. This is particularly true at the interface between the plastic salt and the rigid caprock. The Department of Energy, the SPR Management and Operations contractor, and Sandia National Laboratories has developed a multidimensional well-grading system for the salt cavern access wells. This system is designed to assign numeric grades to each well indicating its risk of losing integrity and remediation priority. The system consists of several main components which themselves may consist of sub-components. The main components consider such things as salt cavern pressure history, results from geomechanical simulations modeling salt deformation, and measurements of well casing deformation due to salt creep. In addition, the geology of the salt domes and their overlying caprock is also included in the grading. These multiple factors are combined into summary values giving the monitoring and remediation priority for each well. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

19. Piezoelectric effect in strained quantum wells

International Nuclear Information System (INIS)

Dang, L.S.; Andre, R.; Cibert, J.

1995-01-01

This paper describes some physical aspects of the piezoelectric effect which takes place in strained semiconductor heterostructures grown along a polar axis. First we show how piezoelectric fields can be accurately measured by optical spectroscopy. Then we discuss about the origin of the non-linear piezoelectric effect reported recently for CdTe, and maybe for InAs as well. Finally we compare excitonic effects in piezoelectric and non-piezoelectric quantum wells. (orig.)

20. Transient well flow in vertically heterogeneous aquifers

Science.gov (United States)

Hemker, C. J.

1999-11-01

A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with

1. Recommended well drilling and testing program

International Nuclear Information System (INIS)

Long, J.; Wilson, C.

1978-07-01

A well drilling and testing program is recommended by Lawrence Berkeley Laboratory to identify the hydrology of deep basalts in the Pasco Basin. The ultimate objective of this program is to assist in determining the feasibility of locating a nuclear waste repository on the Hanford Reservation. The recommended program has been staged for maximum effectiveness. In the first stage, six wells have been identified for drilling and testing which, when coupled with existing wells, will provide sufficient data for a preliminary overview of basin hydrology and a preliminary determination of the hydrologic suitability of the deep basalt for a repository site. The rate at which the first stage wells are drilled and tested will depend upon the date at which a preliminary determination of site suitability is required. It was assumed that a preliminary determination of suitability would be required in 1980, in which case all six first stage wells would be drilled in FY 1979. If the results of the first stage analysis are favorable for repository siting, tentative repository sites can be identified and a second stage hydrology program can be implemented to provide the necessary details of the flow system. To accomplish this stage, a number of deep wells would be required at locations both inside and outside the basin, with specific sites to be identified as the work progresses to obtain maximum utility of existing data. A program is recommended for testing in each new well and for completion of testing in each existing well. Recommended tests include borehole geophysics, pressure and permeability testing, geochemical sampling, tracer testing, hydrofracturing and borehole fracture logging. The entire data collection program is oriented toward providing the information required to establish and verify an accurate numerical model of the Pasco Basin

2. Using informatics to capture older adults' wellness.

Science.gov (United States)

Demiris, George; Thompson, Hilaire J; Reeder, Blaine; Wilamowska, Katarzyna; Zaslavsky, Oleg

2013-11-01

3. New technique for landfill leachate well installation

International Nuclear Information System (INIS)

Hornsby, R.G.; Miller, M.S.

1991-01-01

The installation method fulfilled our expectations. The entire well installation took eight writing days to complete, for an average of two wells per day. It met our Health and Safety, waste volume, environmental risk and uniform sandpack expectations. Health and Safety concerns were minimal. We found that virtually all work could be completed using Level D protection. The volume of waste produced by the well installation was extremely low. The core samples and casing scrapings were the only well installation wastes directly produced. The waste containers which required sampling prior to disposal were: Decontaminated water (330 gallons), Personnel protective equipment and water (715 gallons), Soil cores (25 gallons), Land leachate (440 gallons). Each waste type was sampled and submitted to a laboratory for analyses of full Appendix 3 plus U.S. EPA toxicity parameters. The results verified that all of the wastes could be disposed of on-site. Since the only drilling wastes were the clay core samples and the very small amount of material adhering to the casing, contamination of the new clay cap did not occur. A uniform sandpack was guaranteed through the use of a presanded well screen. The loose sand added when the casing was removed served to fill any voids. All the leachate wells have water in them, and it appears that they will function adequately. We are in the process of constructing a treatment and storage facility to manage the liquids to be extracted for off-site disposal. The long-term effectiveness of the wells will be quantified. This well installation method should be considered in situations requiring the following: expedited installation; reduced Health and Safety concerns; reduced disposal costs; reduced potential for adverse environmental impact; and comparable installation costs. The choice of this method must include considerations of the subsurface geology and the nature of any manmade materials

4. Fire-fighting burning oil wells

International Nuclear Information System (INIS)

Newbury, Herbert; Risk, Stewart.

1993-01-01

A method of extinguishing burning oil wells is presented which involves dispensing liquid nitrogen to the burning site to prevent or inhibit oxygen from fuelling the flames. To carry out the method a remotely operated vehicle is described which is provided with a source of liquid nitrogen and an articulated deployment boom capable of supplying the liquid nitrogen to the site of a burning oil well. (Author)

5. San Bernardino National Wildlife Refuge Well 10

Energy Technology Data Exchange (ETDEWEB)

Ensminger, J.T.; Easterly, C.E.; Ketelle, R.H.; Quarles, H.; Wade, M.C.

1999-12-01

The U.S. Geological Survey (USGS), at the request of the U.S. Fish and Wildlife Service, evaluated the water production capacity of an artesian well in the San Bernardino National Wildlife Refuge, Arizona. Water from the well initially flows into a pond containing three federally threatened or endangered fish species, and water from this pond feeds an adjacent pond/wetland containing an endangered plant species.

6. Overview - Be Smart. Be Well. STD Videos

Centers for Disease Control (CDC) Podcasts

2010-03-15

This video, produced by Be Smart. Be Well., raises awareness of Sexually Transmitted Diseases (STDs): 1) What are they? 2) Why they matter? and, 3) What can I do about them? Footage courtesy of Be Smart. Be Well., featuring CDC's Dr. John Douglas, Division of Sexually Transmitted Disease Prevention.  Created: 3/15/2010 by National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP).   Date Released: 3/15/2010.

7. Magnetic surveys for locating abandoned wells

Science.gov (United States)

,

1995-01-01

Abandoned and unrecorded wells may act as conduits for the contamination of groundwater supplies by oil field brines and other pollutants. The casings of abandoned wells eventually develop leaks, which, if not properly plugged, can allow pollutants to reach freshwater aquifers that supply drinking water. Sources of pollutants include brine ponds, landfill sites, agricultural activities, industrial activities, illegal disposal sites, or accidental spills. The problem is particularly acute in regions where there are old petroleum fields or where water wells have been extensively used for agricultural irrigation. Even urban areas can contain wells that were abandoned and concealed during development. Carefully designed ground magnetic or aeromagnetic surveys can be used to locate abandoned wells by mapping the magnetic disturbances or "anomalies" produced by their steel well casings. The U.S. Geological Survey (USGS) can, at the request of other Federal, State, or local agencies, conduct, process, and interpret such surveys, or it can aid in the design and monitoring of contracts for such surveys.

8. Constructing a systems psychodynamic wellness model

Directory of Open Access Journals (Sweden)

Sanchen Henning

2012-03-01

Research purpose: The purpose of the research was to construct and refine the SPWM in order to understand psychological wellness at the individual, group and organisational levels. Motivation for the study: There is no psychological wellness model that integrates the principles of systems psychodynamics and positive psychology. Systems psychodynamics traditionally focuses on so-called negative behaviour whilst positive psychology tends to idealise positive behaviour. This research tried to merge these views in order to apply them to individual, group and organisational behaviour. Research design, approach and method: The researchers used qualitative, descriptive and conceptual research. They conducted an in-depth literature study to construct the model. They then refined it using the LP. Main findings: The researchers identified 39 themes. They categorised them into three different levels. Three first-level themes emerged as the highest level of integration: identity, hope and love. The nine second-level themes each consisted of three more themes. They were less complex and abstract than the first-level themes. The least complex 27 third-level themes followed. Practical/managerial implications: One can apply the SPWM as a qualitative diagnostic tool for understanding individual, group and organisational wellness and for consulting on systemic wellness. Contribution/value-add: The SPWM offers a model for understanding individual, group and organisational wellness and for consulting on systemic wellness.

9. Electronic properties in a quantum well structure of Weyl semimetal

International Nuclear Information System (INIS)

You, Wen-Long; Zhou, Jiao-Jiao; Wang, Xue-Feng; Oleś, Andrzej M.

2016-01-01

We investigate the confined states and transport of three-dimensional Weyl electrons around a one-dimensional external rectangular electrostatic potential. The confined states with finite transverse wave vector exist at energies higher than the half well depth or lower than the half barrier height. The rectangular potential appears completely transparent to the normal incident electrons but not otherwise. The tunneling transmission coefficient is sensitive to their incident angle and shows resonant peaks when their energy coincides with the confined spectra. In addition, for the electrons in the conduction (valence) band through a potential barrier (well), the transmission spectrum has a gap of width increasing with the incident angle. Interestingly, the electron linear zero-temperature conductance over the potential can approach zero when the Fermi energy is aligned to the top and bottom energies of the potential, when only electron beams normal to the potential interfaces can pass through. The considered structure can be used to collimate the Weyl electron beams.

10. Capacitance-voltage characteristics of quantum well structures

CERN Document Server

Moon, C R; Choe, B D

1999-01-01

The characteristics of the apparent carrier distribution (ACD) of quantum well (QW) structures are investigated using the self-consistent simulation and the capacitance-voltage (C-V) profiling techniques. The simulation results on the differential carrier distribution show that the change of position expectation value of two-dimensional electrons determines the full width at half maximum of 100 K ACD peaks when conduction band offset is DELTA E sub c = 160 meV and the QW width t sub w is greater than 120 A. The contribution of Debye averaging effects to the ACD peaks becomes important as t sub w and DELTA E sub c values decrease and the temperature is increased. The influence of Debye averaging effects on ACD peaks appears differently according to the location of each well in multiple QWs. These results indicate that the extraction of QW parameters from the C-V profile should be done with caution.

11. Combination thermal and radiation shield for well logging apparatus

International Nuclear Information System (INIS)

Wilson, B.F.

1984-01-01

A device for providing both thermal protection and radiation shielding for components such as radiation detectors within a well logging instrument comprises a thermally insulative flask containing a weldment filled with a mass of eutectic material which undergoes a change of state e.g. melting at a temperature which will provide an acceptable thermal environment for such components for extended time periods. The eutectic material which is preferably a bismuth (58%)/tin (42%) alloy has a specific gravity (> 8.5) facilitating its use as a radiation shield and is distributed around the radiation detectors so as to selectively impede the impinging of the detectors by radiation. The device is incorporated in a skid of a well logging instrument for measuring γ backscatter. A γ source is located either above or within the protective shielding. (author)

12. QCD at finite temperature

International Nuclear Information System (INIS)

Kikkawa, Keiji

1983-01-01

The varidity of the perturbation method in the high temperature QCD is discussed. The skeleton expansion method takes account of plasmon effects and eliminates the electric infrared singularity but not the magnetic one. A possibility of eliminating the latter, which was recently proposed, is examined by a gauge invariant skeleton expansion. The magnetic singularity is unable to be eliminated by the perturbation method. This implies that some non-perturbative approaches must be incorporated in the high temperature QCD. (author)

13. High-temperature superconductivity

International Nuclear Information System (INIS)

Ginzburg, V.L.

1987-07-01

After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

14. Temperature measuring device

Energy Technology Data Exchange (ETDEWEB)

Lauf, R.J.; Bible, D.W.; Sohns, C.W.

1999-10-19

Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

15. Sweating at low temperature

International Nuclear Information System (INIS)

Chalaye, H.; Launay, J.P.

1980-11-01

Tests of penetration liquids normally used between 10 and 40 0 C have shown that the arrangement of operationaal conditions (penetration and revealing times) was not sufficient to maintain their sensitivity below 10 0 C, thereby confirming that this temperature is a limit below which such products cannot be employed. The results achieved with a penetrant and a tracer specially devised for low temperatures (SHERWIN B 305 + D100) are satisfactory between 0 0 C and 15 0 C [fr

16. Drilling of gas and condensed gas wells

Energy Technology Data Exchange (ETDEWEB)

Geranin, M P; Chao, P L; Lomonosov, V V

1981-01-01

Cementing of boreholes drilled into underground gas fields and the requirements imposed on the grouting mortar are reviewed. Results are set forth from a study of the insulation capacity of cementing mortar used to increase the quality of reinforcements of boreholes at PKhG. Data are presented on the properties of different grouting mortars for boreholes at PKhG, including those that may be used at low temperatures. Information is also provided on the use of light mortar containing a CaCl/sub 2/ additive, grouting mortar with furfuryl alcohol added, and expanding grouting mortars.

17. Characterization Well R-7 Geochemistry Report

International Nuclear Information System (INIS)

Longmire, P.; Goff, F.

2002-01-01

This report provides analytical results for four groundwater-sampling rounds conducted at characterization well R-7. The goal of the characterization efforts was to assess the hydrochemistry and to determine if contaminants from Technical Area (TA)-2 and TA-21 of the Los Alamos National Laboratory (LANL or the Laboratory) are present in the regional aquifer in the vicinity of the well. Figure 1.0-1 shows the well's location in the narrow upper part of Los Alamos Canyon, between the inactive Omega West reactor and the mouth of DP Canyon. Well R-7 is in an excellent location to characterize the hydrology and groundwater chemistry in both perched groundwater and the regional aquifer near sites of known Laboratory effluent release, including radionuclides and inorganic chemicals (Stone et al. 2002, 72717). The Risk Reduction and Environmental Stewardship-Remediation (RRES-R) Program (formerly the Environmental Restoration [ER] Project) installed well R-7 as part of groundwater investigations to satisfy requirements of the ''Hydrogeologic Workplan'' (LANL 1998, 59599) and to support the Laboratory's ''Groundwater Protection Management Program Plan'' (LANL 1996, 70215). Well R-7 was designed primarily to provide geochemical or water quality and hydrogeologic data for the regional aquifer within the Puye Formation. This report also presents a geochemical evaluation of the analytical results for well R-7 and provides hydrogeochemical interpretations using analytical results for groundwater samples collected at the well. Discussion of other hydrogeochemical data collected within the east-central portion of the Laboratory, however, is deferred until they can be evaluated in the context of sitewide information collected from other RRES and Hydrogeologic Workplan characterization wells (R-8A, R-9, and R-9i). Once all deep groundwater investigations in the east-central portion of the Laboratory are completed, geochemical and hydrogeologic conceptual models for the Los Alamos

18. Study of hot carrier relaxation in quantum wells by subpicosecond Raman scattering

International Nuclear Information System (INIS)

Kim, Dai-sik; Yu, P.Y.

1990-03-01

Relaxation of hot carriers excited by subpicosecond laser pulses has been studied by Raman scattering in GaAs/AlAs multiple quantum wells with well widths varying between 100 and 1000 Angstrom. The hot phonon population observed by Raman scattering is found to decrease with the well width despite the fact that the hot electron temperature remains constant. The results are explained in terms of confinement of both electrons and optical phonons in quantum wells

19. Temperature in the throat

Directory of Open Access Journals (Sweden)

Dariush Kaviani

2016-09-01

Full Text Available We study the temperature of extended objects in string theory. Rotating probe D-branes admit horizons and temperatures a la Unruh effect. We find that the induced metrics on slow rotating probe D1-branes in holographic string solutions including warped Calabi–Yau throats have distinct thermal horizons with characteristic Hawking temperatures even if there is no black hole in the bulk Calabi–Yau. Taking the UV/IR limits of the solution, we show that the world volume black hole nucleation depends on the deformation and the warping of the throat. We find that world volume horizons and temperatures of expected features form not in the regular confining IR region but in the singular nonconfining UV solution. In the conformal limit of the UV, we find horizons and temperatures similar to those on rotating probes in the AdS throat found in the literature. In this case, we also find that activating a background gauge field form the U(1 R-symmetry modifies the induced metric with its temperature describing two different classes of black hole solutions.

20. Daily temperature variations on Mars

Science.gov (United States)

Ditteon, R.

1982-01-01

It is noted that for approximately 32% of the Martian surface area no values of thermal inertia or albedo can fit the thermal observations. These temperature anomalies do not correlate with elevation, geologic units, morphology, or atmospheric dust content. All regions having a Lambert albedo less than 0.18 can be well fit with the standard thermal model, but all areas with albedo greater than 0.28 are anomalous. A strong inverse correlation is seen between the magnitude of the anomaly and the thermal inertia. This correlation is seen as indicating that some surface property is responsible for the anomaly. In the anomalous region the temperatures are observed to be warmer in the morning and cooler late in the afternoon and to decrease more slowly during the night than the Viking model temperatures. It is believed that of all the physical processes likely to occur on Mars but not included in the Viking thermal model, only a layered soil can explain the observations. A possible explanation of the layering deduced from the infrared thermal mapper observations is a layer of aeolian deposited dust about one thermal skin depth thick (1 to 4 cm), covering a duricrust.