WorldWideScience

Sample records for welding technique preliminary

  1. Joining of beryllium by braze welding technique: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Banaim, P.; Abramov, E. [Ben-Gurion Univ. of the Negev, Beersheba (Israel); Zalkind, S.; Eden, S.

    1998-01-01

    Within the framework of some applications, there is a need to join beryllium parts to each other. Gas Tungsten Arc Braze Welds were made in beryllium using 0.3 mm commercially Aluminum (1100) shim preplaced at the joint. The welds exhibited a tendency to form microcracks in the Fusion Zone and Heat Affected Zone. All the microcracks were backfilled with Aluminum. (author)

  2. NEW EXPLOSIVE WELDING TECHNIQUES

    OpenAIRE

    Lotous, V.; Dragobetskii, V.

    2015-01-01

    Purpose - analysis of the variety of factors of the physical phenomena accompanying the process of the power explosive effect for development of new processes of metal treatment: explosive film coating of hardening and updating of a superficial layer of an item. Industrial approbation of cladding techniques by explosion of item surfaces of complex configuration and determination of parameters of the process of the explosive welding of high-strength pig-iron (graphite of the spherical form) wi...

  3. SHADOW: a new welding technique

    Science.gov (United States)

    Kramer, Thorsten; Olowinsky, Alexander M.; Durand, Friedrich

    2002-06-01

    The new welding technique 'SHADOW ' is introduced. SHADOW means the use of a single pulse to generate a quasi continuous weld of several millimeters in length. HET processing time is defined by the pulse duration of the pulsed laser. At present, a state-of-the-art laser is capable of a maximum pulse duration of 20 ms. The variation of the laser power depend on time is a vital capability of the pulsed laser to adapt the energy deposition into the workpiece. Laser beam welds of several watch components were successfully performed. Similar metals like crowns and axes made out of stainless steel have been welded using pulsed laser radiation. Applying a series of about 130 single pulses for the crown-axis combination the total energy accumulates to 19.5 J. The use of the SHADOW welding technique reduces the energy to 2.5 J. While welding dissimilar metals like stainless steel and bras, the SHADOW welding reduces drastically the contamination as well as the distortion. Laser beam welding of copper has a low process reliability due to the high reflection and the high thermal conductivity. SHADOW welds of 3.6 mm length were performed on 250 micrometers thick copper plates with very high reproducibility. As a result, a pilot plant for laser beam welding of copper plates has been set up. The work to be presented has partly been funded by the European Commission in a project under the contract BRPR-CT-0634.

  4. A Review: Welding Of Dissimilar Metal Alloys by Laser Beam Welding & Friction Stir Welding Techniques

    Directory of Open Access Journals (Sweden)

    Ms. Deepika Harwani

    2014-12-01

    Full Text Available Welding of dissimilar metals has attracted attention of the researchers worldwide, owing to its many advantages and challenges. There is no denial in the fact that dissimilar welded joints offer more flexibility in the design and production of the commercial and industrial components. Many welding techniques have been analyzed to join dissimilar metal combinations. The objective of this paper is to review two such techniques – Laser welding and Friction stir welding. Laser beam welding, a high power density and low energy-input process, employs a laser beam to produce welds of dissimilar materials. Friction stir welding, a solid-state joining process, is also successfully used in dissimilar welding applications like aerospace and ship building industries. This paper summarizes the trends and advances of these two welding processes in the field of dissimilar welding. Future aspects of the study are also discussed.

  5. Techniques for laser welding polymeric devices.

    Science.gov (United States)

    Jones, I A

    2003-04-01

    Recent advances in laser techniques mean that lasers are now being considered as an alternative to vibration, ultrasonic, dielectric, hot plate or hot bar welding, and adhesive bonding of plastics. The techniques required to put laser welding methods into practice are described for medical devices, tubular systems, films and synthetic fabrics.

  6. Secondary ledeburite formation during various welding techniques

    Directory of Open Access Journals (Sweden)

    Tonkovič M.P.

    2015-01-01

    Full Text Available The occurrence and formation sequence of secondary ledeburite in the heat affected zone of chromium ledeburitic tool steel W.Nr. 1.2379 (OCR12 VM after welding with SAW, TIG, microplasma and laser welding techniques is presented in this paper. Special attention was paid on the behaviour of carbides. The occurrence of secondary ledeburite is a result of local enrichment of the austenite matrix with alloying elements, due to partial or complete dissolution of primary/eutectic carbides. The results show that the largest amount of secondary ledeburite is formed during submerged arc welding, followed by TIG and microplasma welding technique. Welding by laser technique, with appropriate technological parameters, could prevent secondary ledeburite formation.

  7. Innovative Tools Advance Revolutionary Weld Technique

    Science.gov (United States)

    2009-01-01

    The iconic, orange external tank of the space shuttle launch system not only contains the fuel used by the shuttle s main engines during liftoff but also comprises the shuttle s backbone, supporting the space shuttle orbiter and solid rocket boosters. Given the tank s structural importance and the extreme forces (7.8 million pounds of thrust load) and temperatures it encounters during launch, the welds used to construct the tank must be highly reliable. Variable polarity plasma arc welding, developed for manufacturing the external tank and later employed for building the International Space Station, was until 1994 the best process for joining the aluminum alloys used during construction. That year, Marshall Space Flight Center engineers began experimenting with a relatively new welding technique called friction stir welding (FSW), developed in 1991 by The Welding Institute, of Cambridge, England. FSW differs from traditional fusion welding in that it is a solid-state welding technique, using frictional heat and motion to join structural components without actually melting any of the material. The weld is created by a shouldered pin tool that is plunged into the seam of the materials to be joined. The tool traverses the line while rotating at high speeds, generating friction that heats and softens but does not melt the metal. (The heat produced approaches about 80 percent of the metal s melting temperature.) The pin tool s rotation crushes and stirs the plasticized metal, extruding it along the seam as the tool moves forward. The material cools and consolidates, resulting in a weld with superior mechanical properties as compared to those weld properties of fusion welds. The innovative FSW technology promises a number of attractive benefits. Because the welded materials are not melted, many of the undesirables associated with fusion welding porosity, cracking, shrinkage, and distortion of the weld are minimized or avoided. The process is more energy efficient, safe

  8. Friction Buttering: A New Technique for Dissimilar Welding

    Science.gov (United States)

    Karthik, G. M.; Mastanaiah, P.; Janaki Ram, G. D.; Kottada, Ravi Sankar

    2017-02-01

    This work offers a fresh perspective on buttering, a technique often considered for fusion welding of dissimilar metals. For the first time, buttering was attempted in solid state using friction deposition. Using this new "friction buttering" technique, fusion welding of two different dissimilar metal pairs (austenitic stainless steel/borated stainless steel and Al-Cu-Mg/Al-Zn-Mg-Cu) was successfully demonstrated. The results show that friction buttering can simplify a tough dissimilar welding problem into a routine fusion welding task.

  9. Reliable Welding of HSLA Steels by Square Wave Pulsing Using an Advanced Sensing (EDAP) Technique.

    Science.gov (United States)

    1986-04-30

    situation is the result of welding on A710 steel . (A similar effect on welding on HY80 ?) The following is offered by Woods and Milner (Ref. 12): "The...AD-R69 762 RELIABLE MELDING OF HSLA STEELS BY SQUARE MAVE PULSING 1/2 USING AN ADV NCED.. (U) APPLIED FUSION TECHNOLOGIES INC FORT COLLINS CO C...6 p . 0 Report 0001 AZ AD-A 168 762 I "RELIABLE WELDING OF HSLA STEELS BY SQUARE WAVE PULSING USING AN ADVANCED SENSING (EDAP) TECHNIQUE- Preliminary

  10. Effect of welding techniques on microstructure and mechanical properties of aluminium-lithium alloy welds

    Energy Technology Data Exchange (ETDEWEB)

    Madhusudhan Reddy, G.; Gokhale, A.A.; Saxena, V.K. [Defence Metallurgical Research Lab., Hyderabad (India); Prasad Rao, K.

    2000-07-01

    The tensile properties and fatigue crack growth behaviour of sheets of an Al-1.9Li-1.8Cu-1.0 Mg-0.1Zr alloy welded under different conditions were evaluated. The basic welding technique was constant current (CC) gas tungsten arc (GTA) welding. Two modifications viz. pulsed current (PC) and magnetic arc oscillation (AO) were introduced to study effects on microstructure and properties. Both PC and AO resulted in microstructural refinement in the fusion zone. The tensile residual stresses present in CC welds reduced when either PC or AO welding was used. The tensile strength and ductility increased, and fatigue crack growth rates lowered when PC or AO conditions replaced CC welding. (orig.)

  11. Review on Lossless Image Compression Techniques for Welding Radiographic Images

    Directory of Open Access Journals (Sweden)

    B. Karthikeyan

    2013-01-01

    Full Text Available Recent development in image processing allows us to apply it in different domains. Radiography image of weld joint is one area where image processing techniques can be applied. It can be used to identify the quality of the weld joint. For this the image has to be stored and processed later in the labs. In order to optimize the use of disk space compression is required. The aim of this study is to find a suitable and efficient lossless compression technique for radiographic weld images. Image compression is a technique by which the amount of data required to represent information is reduced. Hence image compression is effectively carried out by removing the redundant data. This study compares different ways of compressing the radiography images using combinations of different lossless compression techniques like RLE, Huffman.

  12. Description and Preliminary Training Evaluation of an Arc Welding Simulator. Research Report SRR 73-23.

    Science.gov (United States)

    Abrams, Macy L.; And Others

    A prototype arc welding training simulator was designed to provide immediate, discriminative feedback and the capacity for concentrated practice. Two randomly selected groups of welding trainees were compared to evaluate the simulator, one group being trained using the simulator and the other using conventional practice. Preliminary data indicated…

  13. 78 FR 21105 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Preliminary Results of Antidumping...

    Science.gov (United States)

    2013-04-09

    ... Carbon Steel Pipes and Tubes from Thailand: 2011- 2012 Administrative Review,'' dated concurrently with... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Thailand: Preliminary Results of Antidumping Duty Administrative Review; 2011- 2012 AGENCY: Import Administration,...

  14. The influence of the weld toe grinding and wig remelting weld toe rehabilitation techniques, on variable stresses, in case of cross fillet welds, reinforced with additional welding rows

    Directory of Open Access Journals (Sweden)

    Babis Claudiu

    2017-01-01

    Full Text Available Variable stresses where the load value varies between a maximum and a minimum value, or varies the position in time, cause after accumulating a large number of load cycles in those structures, the emergence of drug fatigue. Fatigue is characterized by failure on values of the applied stress from the load cycles, below the material flow, values which in case of static stress would not have caused problems. Knowing that the variable stressed structures are sensitive to stress concentrators, the paper aims to highlight the influence of two techniques to reduce stress concentrator weld toe grinding and WIG remelting weld toe, on the behavior of variable tensile test of cross corner welded specimens, reinforced with additional welding rows.

  15. Laser Welding and Syncristallization Techniques Comparison: In Vitro Study

    Directory of Open Access Journals (Sweden)

    C. Fornaini

    2012-01-01

    Full Text Available Background. Laser welding was first reported in 1967 and for many years it has been used in dental laboratories with several advantages versus the conventional technique. Authors described, in previous works, the possibility of using also chair-side Nd : YAG laser device (Fotona Fidelis III, =1064 nm for welding metallic parts of prosthetic appliances directly in the dental office, extra- and also intra-orally. Syncristallisation is a soldering technique based on the creation of an electric arc between two electrodes and used to connect implants to bars intra-orally. Aim. The aim of this study was to compare two different laser welding devices with a soldering machine, all of these used in prosthetic dentistry. Material and Methods. In-lab Nd : YAG laser welding (group A = 12 samples, chair-side Nd : YAG laser welding (group B = 12 samples, and electrowelder (group C = 12 samples were used. The tests were performed on 36 CrCoMo plates and the analysis consisted in evaluation, by microscopic observation, of the number of fissures in welded areas of groups A and B and in measurement of the welding strength in all the groups. The results were statistically analysed by means of one-way ANOVA and Tukey-Kramer multiple comparison tests. Results. The means and standard deviations for the number of fissures in welded areas were 8.12±2.59 for group A and 5.20±1.38 for group B. The difference was statistical significant (=0.0023 at the level 95%. On the other hand, the means and standard deviations for the traction tests were 1185.50±288.56 N for group A, 896.41±120.84 N for group B, and 283.58±84.98 N for group C. The difference was statistical significant (=0.01 at the level 95%. Conclusion. The joint obtained by welding devices had a significant higher strength compared with that obtained by the electrowelder, and the comparison between the two laser devices used demonstrated that the chair-side Nd : YAG, even giving a

  16. Laser welding and syncristallization techniques comparison: in vitro study.

    Science.gov (United States)

    Fornaini, C; Merigo, E; Vescovi, P; Meleti, M; Nammour, S

    2012-01-01

    Background. Laser welding was first reported in 1967 and for many years it has been used in dental laboratories with several advantages versus the conventional technique. Authors described, in previous works, the possibility of using also chair-side Nd : YAG laser device (Fotona Fidelis III, λ = 1064 nm) for welding metallic parts of prosthetic appliances directly in the dental office, extra- and also intra-orally. Syncristallisation is a soldering technique based on the creation of an electric arc between two electrodes and used to connect implants to bars intra-orally. Aim. The aim of this study was to compare two different laser welding devices with a soldering machine, all of these used in prosthetic dentistry. Material and Methods. In-lab Nd : YAG laser welding (group A = 12 samples), chair-side Nd : YAG laser welding (group B = 12 samples), and electrowelder (group C = 12 samples) were used. The tests were performed on 36 CrCoMo plates and the analysis consisted in evaluation, by microscopic observation, of the number of fissures in welded areas of groups A and B and in measurement of the welding strength in all the groups. The results were statistically analysed by means of one-way ANOVA and Tukey-Kramer multiple comparison tests. Results. The means and standard deviations for the number of fissures in welded areas were 8.12 ± 2.59 for group A and 5.20 ± 1.38 for group B. The difference was statistical significant (P = 0.0023 at the level 95%). On the other hand, the means and standard deviations for the traction tests were 1185.50 ± 288.56 N for group A, 896.41 ± 120.84 N for group B, and 283.58 ± 84.98 N for group C. The difference was statistical significant (P = 0.01 at the level 95%). Conclusion. The joint obtained by welding devices had a significant higher strength compared with that obtained by the electrowelder, and the comparison between the two laser devices used demonstrated that the chair-side Nd : YAG, even giving

  17. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  18. 76 FR 49437 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2011-08-10

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results... circular welded non-alloy steel pipe from Mexico. This administrative review covers mandatory respondents... Circumstances Review: Certain Circular Welded Non-Alloy Steel Pipe From Mexico, 75 FR 82374 (December 30,...

  19. 75 FR 77838 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary Results of the...

    Science.gov (United States)

    2010-12-14

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary... on circular welded non-alloy steel pipe (``CWP'') from the Republic of Korea (``Korea''). The period... Antidumping Duty Orders: Certain Circular Welded Non-Alloy Steel Pipe from Brazil, the Republic of...

  20. 75 FR 78216 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2010-12-15

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results... circular welded non-alloy steel pipe from Mexico. This administrative review covers mandatory respondents... Antidumping Duty Changed Circumstances Review: Certain Circular Welded Non-Alloy Steel Pipe and Tube...

  1. 77 FR 73015 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2012-12-07

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary... conducting an administrative review of the antidumping duty order on circular welded non-alloy steel pipe... merchandise subject to the order is circular welded non-alloy steel pipe and tube. The product is...

  2. Laser transmission welding of Clearweld-coated polyethylene glycol terephthalate by incremental scanning technique

    Science.gov (United States)

    Wang, Y. Y.; Wang, A. H.; Weng, Z. K.; Xia, H. B.

    2016-06-01

    Transmission laser welding using Incremental Scanning Technique(TWIST) mode and conventional contour welding mode were adopted to investigate laser transmission welding of 0.5 mm thick PET plate. A 1064 nm fiber laser was used to weld PET at the (TWIST) mode, and an 808 nm diode laser was applied to conduct the conventional contour welding. The Clearweld coating was used as laser absorbing material. The influences of laser parameters (i.e. defocusing distance, distance between two circles) on the quality of weld seams were analyzed by optical microscopy. Moreover, geometry and shear strength of the weld zone were tested to optimize laser parameters. Additionally, the water vapor permeability (WVP) of weld seams was measured to test hermetical capacity. Results show that the shear strength and hermetic capacity of weld seam by TWIST mode are at the same level in comparison with that of the conventional contour welding.

  3. Expulsion characterization in resistance spot welding by means of a hardness mapping technique

    Institute of Scientific and Technical Information of China (English)

    H.Ghazanfari; M.Naderi

    2014-01-01

    Expulsion is an undesired event during resistance spot welding because the weld quality deteriorates. It is the ejection of molten metal from the weld nugget which usually occurs due to applying a high current for a short welding time. Expulsion has a significant impact on the final yield strength of the weld, thus the detection and characterization of expulsion events is significant for the quality assurance of resistance spot welds. In this study, hardness mapping, using a scanning hardness machine, was used as a quality assurance technique for re-sistance spot welding. Hardness tests were conducted on a resistance spot welded sample to prepare a hardness map. The test results showed good correlation between the hardness map and metallographic cross sections. The technique also provided further fundamental understand-ing of the resistance spot welding process, especially regarding the occurrence of expulsion in the nugget.

  4. A preliminary study on the application of Friction Welding in structural repairs

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, D.; Santos, J.F. dos [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung; Blakemore, G.R. [Pressure Products Group, Aberdeen (United Kingdom); Gibson, D. [National Hyperbaric Centre, Aberdeen (United Kingdom)

    1998-11-01

    Friction Welding is characterised by the absence of a fusion zone associated with comparatively low temperatures in the weld. These features allow the application of this welding process in joining and repair of most engineering structures, especially in hazardous environments. This work presents a preliminary study on different friction welding processes, including the recently developed Friction Hydro-Pillar Processing (FHPP) and Friction Stitch Welding, as joining technologies for thick-walled structures. The use of these welding processes in different industrial applications, compared with the commonly used arc welding counterparts, as well as the influence of welding parameters on the weldment integrity are discussed. A brief description of a portable friction welding equipment and its possible implementation for FHPP are presented. Stud welds produced in the commissioning phase of this equipment have been analysed and tested to assess their quality. (orig.) [Deutsch] Da die Schweisszonentemperatur waehrend des Reibschweissvorganges vergleichsweise niedrig ist, bildet sich kein Schmelzbad aus. Anwendbar ist dieses Schweissverfahren zur Verbindung oder Reparatur der meisten Metallkonstruktionen, speziell in risikobehafteter Umgebung. Diese Arbeit enthaelt eine Vorstudie zu verschiedenen Reibschweissprozessen, einschliesslich der neu entwickelten Friction Hydro-Pillar Processing (FHPP)- und Friction Stitch Welding-Verfahren, als Fuegetechniken fuer dickwandige Strukturen. Die Anwendbarkeit dieser Schweissprozesse in verschiedenen Industrien, verglichen mit herkoemmlich verwendeten Lichtbogenschweissverfahren, sowie der Einfluss von Schweissparametern auf die Guete der Verbindung werden diskutiert. Praesentiert wird ausserdem eine tragbare Reibschweissmaschine und ihre moegliche Verwendung zum FHPP-Schweissen. Bolzenschweissungen, die waehrend der Inbetriebnahmephase dieser Maschine hergestellt wurden, sind zur Charakterisierung ihrer Qualitaet analysiert und

  5. Optimization of process parameters during vibratory welding technique using Taguchi's analysis

    Directory of Open Access Journals (Sweden)

    Pravin Kumar Singh

    2016-09-01

    Full Text Available With an aim to improve the mechanical properties of a weld joint, a new concept of vibratory setup has been designed which is capable to stir the molten weld pool before it solidifies during shielded metal arc welding (SMAW operation. Mechanical vibration having resonance frequency of 300 Hz and amplitude of 0.5 mm was transferred to the molten weld pool of 6 mm thick mild steel butt-welded joints during the welding operation. The experimental work was conducted at various ranges of frequencies, welding current and welding speed. Taguchi's analysis technique has been applied to optimize the process parameters; the response values for analysis are yield strength and micro-hardness. The test results showed that with the application of the vibratory treatment the values of hardness and tensile properties increased. The auxiliary vibrations induced into the weld pool resulted in increased micro-hardness of the weld metal which indicates the orientation of the crystal and refinement of grains took place. This study shows that vibration applied into the weld pool can be successfully improved the mechanical properties of welded joints. Thus this research attempt provided an alternative welding technique for grain refinement of weldments.

  6. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    Science.gov (United States)

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding.

  7. Multiaxial fatigue of aluminium friction stir welded joints: preliminary results

    Directory of Open Access Journals (Sweden)

    D. G. Hattingh

    2015-07-01

    Full Text Available The aim of the present research is to check the accuracy of the Modified Wöhler Curve Method (MWCM in estimating the fatigue strength of friction stir (FS welded tubular joints of Al 6082-T6 subjected to in-phase and out-of-phase multiaxial fatigue loading. The welded samples being investigated were manufactured by equipping an MTS I-STIR process development system with a retracting tool that was specifically designed and optimised for this purpose. These specimens were tested under proportional and non-proportional tension and torsion, the effect of non-zero mean stresses being also investigated. The validation exercise carried out by using the generated experimental results allowed us to prove that the MWCM (applied in terms of nominal stresses is highly accurate in predicting the fatigue strength of the tested FS welded joints, its usage resulting in estimates falling with the uniaxial and torsional calibration scatter bands.

  8. Sensors Array Technique for Monitoring Aluminum Alloy Spot Welding

    Institute of Scientific and Technical Information of China (English)

    王蕤; 罗震; 单平; 步贤政; 袁书现; 敖三三

    2010-01-01

    In this paper,the sensors array technique is applied to the quality detection of aluminum alloy spot welding.The sensors array has three forms,i.e.,linear magnetic sensors array,annular magnetic sensors array and cross magnetic sensors array.An algorithm based on principal component analysis is proposed to extract the signal eigenvalues.The three types of magnetic sensors array are used in the experiment of monitoring the signal.After the eigenvalues are extracted,they are used to build a relationship with ...

  9. 77 FR 73617 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results and Partial...

    Science.gov (United States)

    2012-12-11

    ... Value: Circular Welded Non-Alloy Steel Pipe From Mexico, 57 FR 42953 (September 17, 1992). Notification... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary...

  10. Synthetically Focused Imaging Techniques in Simulated Austenitic Steel Welds Using AN Ultrasonic Phased Array

    Science.gov (United States)

    Connolly, G. D.; Lowe, M. J. S.; Rokhlin, S. I.; Temple, J. A. G.

    2010-02-01

    In austenitic steel welds employed in safety-critical applications, detection of defects that may propagate during service or may have occurred during welding is particularly important. In this study, synthetically focused imaging techniques are applied to the echoes received by phased arrays in order to reconstruct images of the interior of a simulated austenitic steel weld, with application to sizing and location of simplified defects. Using a ray-tracing approach through a previously developed weld model, we briefly describe and then apply three focusing techniques. Results generated via both ray-tracing theory and finite element simulations will be shown.

  11. Sensors Array Technique for Monitoring Aluminum Alloy Spot Welding

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; LUO Zhen; SHAN Ping; BU Xianzheng; YUAN Shuxian; AO Sansan

    2010-01-01

    In this paper, the sensors array technique is applied to the quality detection of aluminum alloy spot weld-ing. The sensors array has three forms, i.e., linear magnetic sensors array, annular magnetic sensors array and cross magnetic sensors array. An algorithm based on principal component analysis is proposed to extract the signal eigen-values. The three types of magnetic sensors array are used in the experiment of monitoring the signal. After the eigen-values are extracted, they are used to build a relationship with the nugget information. The result shows that when the distance between the core of the array and the pole is 60 mm, the arrays work best. In this case, when the eigenvalues' range of the linear array is 0.006 5-0.015 1, the quality of the spots is eligible. To the annular and cross array, when the ranges are 0.082 9—0.131 6 and 0.085 1—0.098 2 respectively, the nugget quality is eligible.

  12. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2014-05-01

    Full Text Available Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research.

  13. Dissimilar material welding of rapidly solidified foil and stainless steel plate using underwater explosive welding technique

    Energy Technology Data Exchange (ETDEWEB)

    Hokamoto, Kazuyuki [Shock Wave and Condensed Matter Research Center, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan)], E-mail: hokamoto@mech.kumamoto-u.ac.jp; Nakata, Kazuhiro [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mori, Akihisa [Shock Wave and Condensed Matter Research Center, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Tsuda, Shota [Graduate School of Science and Technology, Kumamoto University (Japan); Tsumura, Takuya [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Inoue, Akihisa [Tohoku University, Sendai 980-8577 (Japan)

    2009-03-20

    Rapidly solidified amorphous and metallic glass thin foils clad on a stainless steel base plate is attempted by employing underwater shock wave assembly. The conditions of the explosive welding are numerically analyzed and discussed based on the earlier welding limits. The thin foils successfully welded along the length of 50 mm show clear waves typically found in explosively welded interface. The interfacial microstructure characterized through optical and scanning electron microscopes shows evidence of excessive melting generated due to the trapping of metal jet in limited area.

  14. Development of laser welding techniques for vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Strain, R.V.; Leong, K.H.; Smith, D.L. [Argonne National Laboratory, IL (United States)

    1996-10-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Bead-on-plate and butt welds were previously performed to depths of about 4 mm with a 6-kW CO{sub 2} laser on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys. These welds were made at a speed of 0.042 m/s using argon purging at a flow rate of 2.8 m{sup 3}/s. The purge was distributed with a diffuser nozzle aimed just behind the laser beam during the welding operation. The fusion zones of welds made under these conditions consisted of very fine, needle-shaped grains and were also harder than the bulk metal (230-270 dph, compared to {approx}180 dph for the bulk metal). A limited number of impact tests showed that the as-welded ductile-brittle transition temperatures (DBTT) was above room temperature, but heat treatment at 1000{degrees}C for 1 h in vacuum reduced the DBTT to <{minus}25{degrees}C. Activities during this reporting period focused on improvements in the purging system and determination of the effect of welding speed on welds. A 2-kW continuous YAG laser at Lumonics Corp. in Livonia, MI, was used to make 34 test welds for this study.

  15. Development of laser welding techniques for vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Strain, R.V.; Leong, K.H.; Smith, D.L.

    1996-04-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Lasers do not require a vacuum (as do electron beam welders) and the welds they produce high depth-to-width ratios. Scoping with a small pulsed 50 J YAG laser indicated that lasers could produce successful welds in vanadium alloy (V-5%Cr-5%Ti) sheet (1 mm thick) when the fusion zone was isolated from air. The pulsed laser required an isolating chamber filled with inert gas to produce welds that did not contain cracks and showed only minor hardness increases. Following the initial scoping tests, a series of tests were preformed with a 6 kW continuous CO{sub 2} laser. Successful bead-on-plate welds were made on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys to depths of about 4 mm with this laser.

  16. Laser penetration spike welding : A microlaser welding technique enabling novel product designs and constructions

    NARCIS (Netherlands)

    Dijken, DK; Hoving, W; De Hosson, JTM

    2003-01-01

    A novel method for laser penetration microspot welding of sheet metal is presented. With this so called "laser spike-welding," large gap tolerances are allowed. Depending on the ratio of laser spot radius to top plate thickness, gaps of 100% of the top layer thickness and more can be bridged. With c

  17. Laser penetration spike welding : A microlaser welding technique enabling novel product designs and constructions

    NARCIS (Netherlands)

    Dijken, D.K; Hoving, W.; de Hosson, J.T.M.

    A novel method for laser penetration microspot welding of sheet metal is presented. With this so called "laser spike-welding," large gap tolerances are allowed. Depending on the ratio of laser spot radius to top plate thickness, gaps of 100% of the top layer thickness and more can be bridged. With

  18. FFTF report: FFTF piping installation and welding techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, J.

    1975-03-14

    The main sodium piping with a diameter of 16'' or 28 '' is being installed at the FFTF construction site starting in December 1974. The supplier and authority demarcations are: Combustion Engineering supplies the reactor vessel, guard vessel and adjoining pipes and uses the machine welding equipment ''Dimetrics''; for the piping system of the primary and secondary loops the pipes manufactured by Rollmet at HUICO, Pasco, were delivered and prefabricated there, as far as compatible with the installation. ''Astroarc'' welding machines are used by Bechtel for the piping prefabrication in the weld laboratory as well as on site at the construction site. Technical welding problems occurring during the course of the installation at the construction site and several during this time are described. At present 6 weld seams in the reactor and 14 weld seams in the secondary loop are accepted. The requirement exists to carry out as many welds as possible automatically, in order to produce sodium pipe welds of high technical quality and which are reproducible. The welding equipment is described.

  19. New technique of skin embedded wire double-sided laser beam welding

    Science.gov (United States)

    Han, Bing; Tao, Wang; Chen, Yanbin

    2017-06-01

    In the aircraft industry, double-sided laser beam welding is an approved method for producing skin-stringer T-joints on aircraft fuselage panels. As for the welding of new generation aluminum-lithium alloys, however, this technique is limited because of high hot cracking susceptibility and strengthening elements' uneven distributions within weld. In the present study, a new technique of skin embedded wire double-sided laser beam welding (LBW) has been developed to fabricate T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys using eutectic alloy AA4047 filler wire. Necessary dimension parameters of the novel groove were reasonably designed for achieving crack-free welds. Comparisons were made between the new technique welded T-joint and conventional T-joint mainly on microstructure, hot crack, elements distribution features and mechanical properties within weld. Excellent crack-free microstructure, uniform distribution of silicon and superior tensile properties within weld were found in the new skin embedded wire double-sided LBW T-joints.

  20. Characterization of 2.25Cr1Mo welded ferritic steel plate by using diffractometric and ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cernuschi, F.; Ghia, S. [Ente Nazionale per l`Energia Elettrica, Milan (Italy); Albertini, G.; Ceretti, M.; Rustichelli, F. [Ancona Univ. (Italy). Ist. di Fisica Medica; Castelnuovo, A.; Depero, L. [Univ. degli studi, Brescia.Fac. di ingegneria, dip. di ingegneria meccanica (Italy); Giamboni, S.; Gori, M. [Centro Elettrotecnico Sperimentale Italiano (CESI), Milan (Italy)

    1995-12-01

    Four different techniques (X-ray and neutron diffraction, ultrasonic birefringence and incremental hole drilling method) were applied for evaluating residual stress in a butt-welded ferritic steel palte. Measurements were carried out both before and after welding. Effects of post-welding heat treatment is also considered. A comparison between results obtained by using four different techniques is done.

  1. A Study of Friction Stir Welded 2195 Al-Li Alloy by the Scanning Reference Electrode Technique

    Science.gov (United States)

    Donford, M. D.; Ding, R. J.

    1998-01-01

    A study of the corrosion of friction stir welded 2195 Al-Li alloy has been carried out using the scanning reference electrode technique (SRET). The results are compared to those obtained from a study of heterogeneously welded samples.

  2. Explosive welding technique for joining aluminum and steel tubes

    Science.gov (United States)

    Wakefield, M. E.

    1975-01-01

    Silver sheet is wrapped around aluminum portion of joint. Mylar powder box is wrapped over silver sheet. Explosion welds silver to aluminum. Stainless-steel tube is placed over silver-aluminum interface. Mylar powder box, covered with Mylar tape, is wrapped around steel member. Explosion welds steel to silver-aluminum interface.

  3. Laser welding and syncristallization techniques comparison: "Ex vivo" study.

    Science.gov (United States)

    Fornaini, Carlo; Meleti, Marco; Vescovi, Paolo; Merigo, Elisabetta; Rocca, Jean-Paul

    2013-12-30

    Stabilization of implant abutments through electric impulses at high voltage for a very short time (electrowelding) was developed in the Eighties. In 2009, the same procedure was performed through the use of laser (laser welding) The aim of this study is to compare electrowelding and laser welding for intra-oral implant abutments stabilization on "ex vivo models" (pig jaws). Six bars were welded with two different devices (Nd:YAG laser and Electrowelder) to eighteen titanium implant abutment inserted in three pig jaws. During the welding process, thermal increase was recorded, through the use of k-thermocouples, in the bone close to the implants. The strength of the welded joints was evaluated by a traction test after the removal of the implants. For temperature measurements a descriptive analysis and for traction test "values unpaired t test with Welch's correction" were performed: the significance level was set at PLaser welding gives a lower thermal increase than Electrowelding at the bone close to implants (Mean: 1.97 and 5.27); the strength of laser welded joints was higher than that of Electrowelding even if nor statistically significant. (Mean: 184.75 and 168.29) CONCLUSION: Electrowelding seems to have no advantages, in term of thermal elevation and strength, while laser welding may be employed to connect titanium implants for immediate load without risks of thermal damage at surrounding tissues.

  4. Welding technique studies on the "West-East" pipeline project

    Institute of Scientific and Technical Information of China (English)

    Sui Yongli; Du Zeyu; Huang Fuxiang; Qi Lichun

    2006-01-01

    This paper described the work of welding process design for the "West-East" pipeline project, which is high pressure, large diameter and heavy wall thickness. According to the different geographical situation, climate, culture and the flexibility of the welding methods, this work recommended the semi-automatic process at the east and middle sections and automatic process at the west section of the pipeline project. The manual process is recommended on the tie-in joints and repairs. The double joint pipe and the 3 joint pipe are recommended at the water net place and some in-ditch welding place to reduce the welding volume. Also the special redesigned bevels are recommended for the automatic process and the semiautomatic process. Through all destructive tests, the results shows the welds are meet the requirements of related standards,specifications and design documents.

  5. Subtask 12B2: Development of laser welding techniques for vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Strain, R.V.; Leong, K.H.; Keppler, E.E.; Smith, D.L. [Argonne National Laboratory, IL (United States)

    1995-03-01

    The development of techniques for joining vanadium alloys will be required for the construction of fusion devices utilizing the desirable properties of these alloys. The primary objective of this program is to develop of laser welding techniques for vanadium alloys, particularly for the manufacture of welded materials testing specimens. Laser welding is potentially advantageous because of its flexibility and the reduced amount of material effected by the weld. Lasers do not require a vacuum (as does electron beam welders) and the welds they produce have large depth-to-width ratios. Results of scoping tests using a small, pulsed laser (50 joule, YAG laser) indicated that lasers could produce successful welds in vanadium alloy (V-5%Cr-5%Ti) sheet (1-mm thick) when the fusion zone was isolated from air. The pulsed laser required an isolating chamber filled with inert gas to produce welds that did not contain cracks and showed only minor hardness increases. Successful bead-on-plate welds have been made to depths of about 4-mm using a 6 kW continuous CO{sub 2} laser with argon purging. 2 figs.

  6. Defocusing Techniques for Multi-pass Laser Welding of Austenitic Stainless Steel

    Science.gov (United States)

    Karhu, Miikka; Kujanpää, Veli

    This study introduces an experimental work carried out in multi-pass laser welding with cold filler wire and laser-arc hybrid welding of thick section austenitic stainless steel. As it has been demonstrated earlier, hybrid and cold wire welding with a keyhole-mode can offer very efficient way to produce multi-pass welds in narrow gap thick section joints. However, when multi-pass welding is applied to one pass per layer method without e.g. scanning or defocusing, the used groove width needs to be very narrow in order to ensure the proper melting of groove side walls and thus to avoid lack of fusion/cold-run defects. As a consequence of the narrow groove, particularly in thick section joints, the accessibility of an arc torch or a wire nozzle into the very bottom of a groove in root pass welding can be considerably restricted. In an alternative approach described in this paper, a power density of a laser beam spot was purposely dispersed by using a defocusing technique. In groove filling experiments, a power density of defocused laser beam was kept in the range, which led the welding process towards to conduction limited regime and thus enabled to achieve broader weld cross-sections. The object was to study the feasibility of defocusing as a way to fill and bridge wider groove geometries than what can be welded with focused keyhole-mode welding with filler addition. The paper covers the results of multi-pass welding of up to 60 mm thick joints with single side preparations.

  7. Welding of Attachments in Orthodontics: Technique Recommendations based on a Literature Search

    Directory of Open Access Journals (Sweden)

    Vinod Pattabiraman

    2014-01-01

    Full Text Available Joining of fixed appliance components has several applications in orthodontics. Joining attachments to archwires allows the clinician to transfer the point of force application to a location that is more advantageous from a biomechanical standpoint. Although several methods of joining attachments have been proposed, resistance spot welding and soldering have been the most commonly used procedures. Despite its common use, the literature regarding spot welding has been scarce and the technique improperly applied. The aim of this article is to describe the theory behind the use of electric spot welders and achieving an optimum weld joint. Recommendations have been made for the correct application of the parameters involved in electric resistance spot welding so that a clinically useful weld joint can be obtained.

  8. A non-conventional technique for evaluating welded joints based on the electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Santos, T.G.; Sorger, G., E-mail: telmo.santos@fct.unl.pt, E-mail: lgs18243@campus.fct.unl.pt [Universidade Nova de Lisboa, UNIDEMI, Departamento de Engenharia Mecanica e Industrial, Faculdade de Ciencias e Tecnologia, Caparica (Portugal); Vilaca, P., E-mail: pedro.vilaca@aalto.fi [Aalto Univ., Dept. of Engineering Design and Production, School of Engineering, Aalto (Finland); Miranda, R., E-mail: rmiranda@fct.unl.pt [Universidade Nova de Lisboa, UNIDEMI, Departamento de Engenharia Mecanica e Industrial, Faculdade de Ciencias e Tecnologia, Caparica (Portugal)

    2015-01-15

    Recent studies showed that electrical conductivity is a valuable technique to identify the different zones of solid-state welded joints with a good correlation with the microstructure and hardness. This is a relevant result since this technique is fast and, in some cases, non destructive, The concept was applied to other welding processes such as the ones involving fusion to a wide range of materials, For this, a comprehensive study was performed using friction stir welding, tungsten inert gas (TlG) and gas metal arc (MAG) welding processes in either bead on plate or butt joints in: carbon steel, magnesium and titanium, Eddy current nondestructive testing (NDT) was used to measure the electrical conductivity at different depths in transverse sections of the processed materials. The profiles were compared to the hardness profiles in the same sections. As a result, a correlation was observed in most materials welded by solid state and by fusion processes. The variation of the electrical conductivity closely follows that measured in the hardness. Another interesting conclusion is that, even for fusion welding of carbon steels, the technique has potential to complement the hardness measurements and microstructural observations, allowing the identification of the distinct zones of welds in materials commonly used in industry. (author)

  9. Development of Evaluation Technique of GMAW Welding Quality Based on Statistical Analysis

    Institute of Scientific and Technical Information of China (English)

    FENG Shengqiang; TERASAKI Hidenri; KOMIZO Yuichi; HU Shengsun; CHEN Donggao; MA Zhihua

    2014-01-01

    Nondestructive techniques for appraising gas metal arc welding(GMAW) faults plays a very important role in on-line quality controllability and prediction of the GMAW process. On-line welding quality controllability and prediction have several disadvantages such as high cost, low efficiency, complication and greatly being affected by the environment. An enhanced, efficient evaluation technique for evaluating welding faults based on Mahalanobis distance(MD) and normal distribution is presented. In addition, a new piece of equipment, designated the weld quality tester(WQT), is developed based on the proposed evaluation technique. MD is superior to other multidimensional distances such as Euclidean distance because the covariance matrix used for calculating MD takes into account correlations in the data and scaling. The values of MD obtained from welding current and arc voltage are assumed to follow a normal distribution. The normal distribution has two parameters: the meanm and standard deviations of the data. In the proposed evaluation technique used by the WQT, values of MD located in the range from zero tom+3s are regarded as “good”. Two experiments which involve changing the flow of shielding gas and smearing paint on the surface of the substrate are conducted in order to verify the sensitivity of the proposed evaluation technique and the feasibility of using WQT. The experimental results demonstrate the usefulness of the WQT for evaluating welding quality. The proposed technique can be applied to implement the on-line welding quality controllability and prediction, which is of great importance to design some novel equipment for weld quality detection.

  10. Welding.

    Science.gov (United States)

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  11. Ultrapulse welding: A new joining technique. [for automotive industry

    Science.gov (United States)

    Anderson, D. G.

    1972-01-01

    The ultrapulse process is a resistance welding process that utilizes unidirectional current of high magnitude for a very short time with a precisely controlled dynamic force pulse. Peak currents of up to 220,000 amperes for two to ten milliseconds are used with synchronized force pulses of up to nine thousand pounds. The welding current passing through the relatively high resistance of the interface between the parts that are being joined results in highly localized heating. Described is the UPW process as it applies to the automotive industry.

  12. Gingiva laser welding: preliminary study on an ex vivo porcine model.

    Science.gov (United States)

    Rasca, Emilia; Nyssen-Behets, Catherine; Tielemans, Marc; Peremans, André; Hendaoui, Nordine; Heysselaer, Daniel; Romeo, Umberto; Nammour, Samir

    2014-08-01

    The use of lasers to fuse different tissues has been studied for 50 years. As none of these experiments concerned the oral soft tissues, our objective was to assess the feasibility of laser gingiva welding. Porcine full-thickness gingival flaps served to prepare calibrated samples in the middle of which a 2 cm long incision was closed, either by conventional suture or by laser tissue welding (LTW). To determine the irradiation conditions yielding the best tensile strength, 13 output power values, from 0.5 to 5 W, delivered either at 10 Hz or in continuous wave mode, were tested on six indocyanine green (ICG) concentrations, from 8% to 13% (588 samples). Then, some samples served to compare the tensile strength between the laser welded and the sutured gingiva; the other samples were histologically processed in order to evaluate the thermal damage extent. The temperature rise during the LTW was measured by thermocouples. Another group of 12 samples was used to measure the temperature elevation by thermal camera. In the laser welding groups, the best tensile strength (plaser welded gingiva at 4.5 W, 10 Hz, and 9% ICG solution. The mean temperature was 74±5.4°C at the upper surface and 42±8.9°C at the lower surface. The damaged zone averaged 333 μm at the upper surface. The 808 nm diode laser associated with ICG can achieve oral mucosa LTW, which is conceivable as a promising technique of gingival repair.

  13. Advanced Techniques for In-Situ Monitoring of Phase Transformations During Welding Using Synchrotron-Based X-Ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, J W; Palmer, T A; Zhang, W; DebRoy, T

    2005-06-05

    Understanding the evolution of microstructure in welds is an important goal of welding research because of the strong correlation between weld microstructure and weld properties. To achieve this goal it is important to develop a quantitative measure of phase transformations encountered during welding in order to ultimately develop methods for predicting weld microstructures from the characteristics of the welding process. To aid in this effort, synchrotron radiation methods have been developed at Lawrence Livermore National Laboratory (LLNL) for direct observation of microstructure evolution during welding. Using intense, highly collimated synchrotron radiation, the atomic structure of the weld heat affected and fusion zones can be probed in real time. Two synchrotron-based techniques, known as spatially resolved (SRXRD) and time resolved (TRXRD) x-ray diffraction, have been developed for these investigations. These techniques have now been used to investigate welding induced phase transformations in titanium alloys, low alloy steels, and stainless steel alloys. This paper will provide a brief overview of these methods and will discuss microstructural evolution during the welding of low carbon (AISI 1005) and medium carbon (AISI 1045) steels where the different levels of carbon influence the evolution of microstructures during welding.

  14. Case Study Regarding the Design of a Direct Current Electromagnet for the MIG Welding of Metallic Materials Part I: Description of the Welding Methods and Preliminary Calculus of the Electromagnet

    OpenAIRE

    2016-01-01

    The paper refers to the design of a direct current electromagnet, located on the head of a swan neck welding gun of a MIG welding equipment and used for magnetising the rotation space of two additional electric arches, in order to preheat the electrode wire and of the protective gas, partially turned into plasma jet. One describes the MIG welding method in which the electromagnet is used as well as its preliminary calculus.

  15. Case Study Regarding the Design of a Direct Current Electromagnet for the MIG Welding of Metallic Materials Part I: Description of the Welding Methods and Preliminary Calculus of the Electromagnet

    Directory of Open Access Journals (Sweden)

    Tudorel Ene

    2016-10-01

    Full Text Available The paper refers to the design of a direct current electromagnet, located on the head of a swan neck welding gun of a MIG welding equipment and used for magnetising the rotation space of two additional electric arches, in order to preheat the electrode wire and of the protective gas, partially turned into plasma jet. One describes the MIG welding method in which the electromagnet is used as well as its preliminary calculus.

  16. Welding in the dental office by fiber-delivered laser: a new technique.

    Science.gov (United States)

    Fornaini, Carlo; Bertrand, Caroline; Bonanini, Mauro; Rocca, Jean-Paul; Nammour, Sam

    2009-06-01

    The aim of this study is to demonstrate the ability of dentists to weld different metals during daily practice using a fiber-delivered laser normally used for dental surgery, and to evaluate the possibilities offered by this new technique. Laser welding is a common technique that has long been used in dental technician laboratories. It has many advantages over conventional techniques: it may be applied directly to master casts, and it avoids damage to the acrylic or ceramic portions close to the welded area. In addition, it may be applied on different types of metallic alloys, and it may provide a stronger attachment than other more traditional techniques. The cost, size, and limited flexibility of laser transmission systems using fixed lenses have restricted their use to dental technician laboratories. The authors detail their experience with welding using an Nd:YAG fiberoptic-delivered laser that is normally used for dental therapy. This work describes some clinical cases that demonstrate the ease of use of this technique to weld broken appliances for both prosthetic and orthodontic therapy. Dentists using this technique can carry out immediate restoration of metallic fixed, removable, and orthodontic broken prostheses in their own offices, thus reducing the time needed for such repairs.

  17. Preliminary impression techniques for microstomia patients.

    Science.gov (United States)

    Kumar, K Aswini; Bhat, Vinaya; Nair, K Chandrasekheran; Suresh, Reshma

    2016-01-01

    The Prosthetic rehabilitation of microstomia patients presents difficulties at all the stages. The difficulty starts with the preliminary impression making. This is due to the tongue rigidity and the decreased oral opening. A maximum oral opening which is smaller than the size of the tray can make prosthetic treatment challenging. Due to the restricted mouth opening, insertion and removal of the impression trays is extremely cumbersome and various modifications of the trays have been used in the past. Among these are the flexible trays and the sectional trays used with different modes of reassembling the segments extra orally after the impression is made. This article reviews the literature published from 1971 to 2015 concerning preliminary impression techniques used in making impressions for patients with microstomia based on various tray designs. An electronic search was performed across three databases (PubMed, Science Direct and Google Scolar) for relevant citations. The keywords/combinations used for the search were microstomia, limited/constricted/restricted mouth opening/oral access, trismus, sectional trays, impressions and prosthetic/prosthodontic rehabilitation. The search was limited to papers written in English which resulted in a total of 45 related articles of which 17 articles were included for discussion of this review.

  18. Preliminary impression techniques for microstomia patients

    Directory of Open Access Journals (Sweden)

    K Aswini Kumar

    2016-01-01

    Full Text Available The Prosthetic rehabilitation of microstomia patients presents difficulties at all the stages. The difficulty starts with the preliminary impression making. This is due to the tongue rigidity and the decreased oral opening. A maximum oral opening which is smaller than the size of the tray can make prosthetic treatment challenging. Due to the restricted mouth opening, insertion and removal of the impression trays is extremely cumbersome and various modifications of the trays have been used in the past. Among these are the flexible trays and the sectional trays used with different modes of reassembling the segments extra orally after the impression is made. This article reviews the literature published from 1971 to 2015 concerning preliminary impression techniques used in making impressions for patients with microstomia based on various tray designs. An electronic search was performed across three databases (PubMed, Science Direct and Google Scolar for relevant citations. The keywords/combinations used for the search were microstomia, limited/constricted/restricted mouth opening/oral access, trismus, sectional trays, impressions and prosthetic/prosthodontic rehabilitation. The search was limited to papers written in English which resulted in a total of 45 related articles of which 17 articles were included for discussion of this review.

  19. Metallic glass coating on metals plate by adjusted explosive welding technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.D. [LTCS and Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China); Liu, K.X., E-mail: kliu@pku.edu.cn [LTCS and Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Chen, Q.Y.; Wang, J.T. [LTCS and Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China); Yan, H.H.; Li, X.J. [Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024 (China)

    2009-09-15

    Using an adjusted explosive welding technique, an aluminum plate has been coated by a Fe-based metallic glass foil in this work. Scanning electronic micrographs reveal a defect-free metallurgical bonding between the Fe-based metallic glass foil and the aluminum plate. Experimental evidence indicates that the Fe-based metallic glass foil almost retains its amorphous state and mechanical properties after the explosive welding process. Additionally, the detailed explosive welding process has been simulated by a self-developed hydro-code and the bonding mechanism has been investigated by numerical analysis. The successful welding between the Fe-based metallic glass foil and the aluminum plate provides a new way to obtain amorphous coating on general metal substrates.

  20. Metallic glass coating on metals plate by adjusted explosive welding technique

    Science.gov (United States)

    Liu, W. D.; Liu, K. X.; Chen, Q. Y.; Wang, J. T.; Yan, H. H.; Li, X. J.

    2009-09-01

    Using an adjusted explosive welding technique, an aluminum plate has been coated by a Fe-based metallic glass foil in this work. Scanning electronic micrographs reveal a defect-free metallurgical bonding between the Fe-based metallic glass foil and the aluminum plate. Experimental evidence indicates that the Fe-based metallic glass foil almost retains its amorphous state and mechanical properties after the explosive welding process. Additionally, the detailed explosive welding process has been simulated by a self-developed hydro-code and the bonding mechanism has been investigated by numerical analysis. The successful welding between the Fe-based metallic glass foil and the aluminum plate provides a new way to obtain amorphous coating on general metal substrates.

  1. Development of a pseudo phased array technique using EMATs for DM weld testing

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Adam C., E-mail: adam.cobb@swri.org; Fisher, Jay L., E-mail: adam.cobb@swri.org [Southwest Research Institute, Sensor Systems and Nondestructive Technology Department, 6220 Culebra Road, San Antonio, TX 78238-5166 (United States); Shiokawa, Nobuyuki; Hamano, Toshiaki; Horikoshi, Ryoichi; Ido, Nobukazu [IHI Corporation, Nuclear Power Operations, Yokohama Engineering Center, 1, Shin-Nakahara-cho, Isogo-ku, Yokohama 235-8501 (Japan)

    2015-03-31

    Ultrasonic inspection of dissimilar metal (DM) welds in piping with cast austenitic stainless steel (CASS) has been an area ongoing research for many years given its prevalence in the petrochemical and nuclear industries. A typical inspection strategy for pipe welds is to use an ultrasonic phased array system to scan the weld from a sensor located on the outer surface of the pipe. These inspection systems generally refract either longitudinal or shear vertical (SV) waves at varying angles to inspect the weld radially. In DM welds, however, the welding process can produce a columnar grain structure in the CASS material in a specific orientation. This columnar grain structure can skew ultrasonic waves away from their intended path, especially for SV and longitudinal wave modes. Studies have shown that inspection using the shear horizontal (SH) wave mode significantly reduces the effect of skewing. Electromagnetic acoustic transducers (EMATs) are known to be effective for producing SH waves in field settings. This paper presents an inspection strategy that seeks to reproduce the scanning and imaging capabilities of a commercial phase array system using EMATs. A custom-built EMAT was used to collect data at multiple propagation angles, and a processing strategy known as the synthetic aperture focusing technique (SAFT) was used to combine the data to produce an image. Results are shown using this pseudo phased array technique to inspect samples with a DM weld and artificial defects, demonstrating the potential of this approach in a laboratory setting. Recommendations for future work to transition the technique to the field are also provided.

  2. Development of a pseudo phased array technique using EMATs for DM weld testing

    Science.gov (United States)

    Cobb, Adam C.; Fisher, Jay L.; Shiokawa, Nobuyuki; Hamano, Toshiaki; Horikoshi, Ryoichi; Ido, Nobukazu

    2015-03-01

    Ultrasonic inspection of dissimilar metal (DM) welds in piping with cast austenitic stainless steel (CASS) has been an area ongoing research for many years given its prevalence in the petrochemical and nuclear industries. A typical inspection strategy for pipe welds is to use an ultrasonic phased array system to scan the weld from a sensor located on the outer surface of the pipe. These inspection systems generally refract either longitudinal or shear vertical (SV) waves at varying angles to inspect the weld radially. In DM welds, however, the welding process can produce a columnar grain structure in the CASS material in a specific orientation. This columnar grain structure can skew ultrasonic waves away from their intended path, especially for SV and longitudinal wave modes. Studies have shown that inspection using the shear horizontal (SH) wave mode significantly reduces the effect of skewing. Electromagnetic acoustic transducers (EMATs) are known to be effective for producing SH waves in field settings. This paper presents an inspection strategy that seeks to reproduce the scanning and imaging capabilities of a commercial phase array system using EMATs. A custom-built EMAT was used to collect data at multiple propagation angles, and a processing strategy known as the synthetic aperture focusing technique (SAFT) was used to combine the data to produce an image. Results are shown using this pseudo phased array technique to inspect samples with a DM weld and artificial defects, demonstrating the potential of this approach in a laboratory setting. Recommendations for future work to transition the technique to the field are also provided.

  3. A Preliminary Report on the Strength and Metallography of a Bimetallic Friction Stir Weld Joint Between AA6061 and MIL-DTL-46100E High Hardness Steel Armor

    Science.gov (United States)

    2012-11-26

    bimetallic friction stir weld joint between AA6061 and MIL-DTL-46100E High Hardness steel armor. ABSTRACT One half inch thick plates of 6061-T6 aluminum...alloy and High Hardness steel armor (MIL- STD-46100) were successfully joined by the friction stir welding (FSW) process using a tungsten-rhenium...4. TITLE AND SUBTITLE A preliminary report on the strength and metallography of a bimetallic friction stir weld joint between AA6061 and MIL-DTL

  4. Impact of different welding techniques on biological effect markers in exhaled breath condensate of 58 mild steel welders.

    Science.gov (United States)

    Hoffmeyer, Frank; Raulf-Heimsoth, Monika; Lehnert, Martin; Kendzia, Benjamin; Bernard, Sabine; Berresheim, Hans; Düser, Maria; Henry, Jana; Weiss, Tobias; Koch, Holger M; Pesch, Beate; Brüning, Thomas

    2012-01-01

    Total mass and composition of welding fumes are predominantly dependent on the welding technique and welding wire applied. The objective of this study was to investigate the impact of welding techniques on biological effect markers in exhaled breath condensate (EBC) of 58 healthy welders. The welding techniques applied were gas metal arc welding with solid wire (GMAW) (n=29) or flux cored wire (FCAW) (n=29). Welding fume particles were collected with personal samplers in the breathing zone inside the helmets. Levels of leukotriene B(4) (LTB(4)), prostaglandin E(2) (PGE(2)), and 8-isoprostane (8-iso-PGF(2α)) were measured with immunoassay kits and the EBC pH was measured after deaeration. Significantly higher 8-iso-PGF(2α) concentrations and a less acid pH were detected in EBC of welders using the FCAW than in EBC of welders using the GMAW technique. The lowest LTB(4) concentrations were measured in nonsmoking welders applying a solid wire. No significant influences were found in EBC concentrations of PGE(2) based upon smoking status or type of welding technique. This study suggests an enhanced irritative effect in the lower airways of mild steel welders due to the application of FCAW compared to GMAW, most likely associated with a higher emission of welding fumes.

  5. Al-Si-Mn Alloy Coating on Aluminum Substrate Using Cold Metal Transfer (CMT) Welding Technique

    Science.gov (United States)

    Rajeev, G. P.; Kamaraj, M.; Bakshi, S. R.

    2014-06-01

    The cold metal transfer (CMT) process was explored as a weld overlay technique for synthesizing Al-Si-Mn alloy coating on a commercially pure Al plate. The effect of welding speed on the bead geometry, deposition rate, and the dilution were studied and the best parameter was used to synthesize the coatings. The CMT process can be used to produce thick coatings (>2.5 mm) without porosity and with low dilution levels. The Vickers hardness number of the Al substrate increased from 28 in the bulk to 57 in the coating. It is suggested that the CMT process can be an effective and energy-efficient technique for depositing thick coatings and is useful in weld repair of aluminum alloy components.

  6. Evaluation on defect in the weld of stainless steel materials using nondestructive technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Kyung, E-mail: leejink@deu.ac.kr [Department of Mechanical Engineering, Dongeui University, Eomgwangno 176, Busanjingu, Busan 614-714 (Korea, Republic of); Bae, Dong Su [Department of Advanced Materials Engineering, Dongeui University, Eomgwangno 176, Busanjingu, Busan 614-714 (Korea, Republic of); Lee, Sang Pill [Department of Mechanical Engineering, Dongeui University, Eomgwangno 176, Busanjingu, Busan 614-714 (Korea, Republic of); Lee, Joon Hyun [School of Mechanical Engineering, Pusan National University, Busandaehakro 63beongil, Geumjeonggu, Busan 609-735 (Korea, Republic of)

    2014-10-15

    The objective of this study is to evaluate the elastic wave's characteristic on the crack in the weld of stainless steel materials using guided wave and acoustic emission, nondestructive tests. The stainless steel is expected as candidate of structural piping material under high temperature condition in nuclear fusion instrument, and a tungsten inert gas (TIG) weld technique was applied for making its jointing. The defect size of 20 mm was induced in the weld material. The guided wave, one of elastic waves, can propagate through very long pipe, and easily change to lots of modes by the defects in the structure. By analyzing the relationship between the mode conversion and the defects we can evaluate existing of the defects in weld material. In present study Nd-YAG laser was used to excite the guided wave by non-contact method, and AE technique was also used to clarify the mode conversion of guided wave by defect because lots of AE parameters of energy, count and amplitude can give more chances for analysis of mode conversion. The optimal AE parameters for the evaluation of the defects in weld zone using laser guided wave were derived.

  7. Inspection of pipeline girth welds with ultrasonic phased array technique

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A novel automatic ultrasonic system used for the inspection of pipeline girth welds is developed, in which a linear phased array transducer using electronic scan is adopted. Optimal array parameters are determined based on a mathematical model of acoustic field for linear phased array derived from Huygens' principle. The testing method and the system structure are introduced. The experimental results show that the phased array transducer system has the same detectability as that of conventional ultrasonic transducer system, but the system architecture can be simplified greatly, and the testing flexibility and the testing speed can be improved greatly.

  8. Optimization of Thermal Aspects of Friction Stir Welding – Initial Studies Using a Space Mapping Technique

    DEFF Research Database (Denmark)

    Larsen, Anders Astrup; Bendsøe, Martin P.; Schmidt, Henrik Nikolaj Blicher;

    2007-01-01

    The aim of this paper is to optimize a thermal model of a friction stir welding process. The optimization is performed using a space mapping technique in which an analytical model is used along with the FEM model to be optimized. The results are compared to traditional gradient based optimization...

  9. Optimization of Thermal Aspects of Friction Stir Welding – Initial Studies Using a Space Mapping Technique

    DEFF Research Database (Denmark)

    Larsen, Anders Astrup; Bendsøe, Martin P.; Schmidt, Henrik Nikolaj Blicher

    2007-01-01

    The aim of this paper is to optimize a thermal model of a friction stir welding process. The optimization is performed using a space mapping technique in which an analytical model is used along with the FEM model to be optimized. The results are compared to traditional gradient based optimization...

  10. ADAPTATION OF DEVELOPED TECHNIQUE OF THE METALWARE CONDITION ESTIMATION FOR THE WELDING-COVERED PARTS CONTROL

    Directory of Open Access Journals (Sweden)

    F. I. Panteleenko

    2012-01-01

    Full Text Available The technique of metalware condition estimation is worked out by authors. Questions of its adaptation to the quality assurance of restored and strengthened details and tools with the wearresistant coatings deposited are discussed. Magnetic and durometrie methods of nondestructive control used in order to estimate the exploitation reliability of details with welded coatings. Efficiency of this methods is confirmed.

  11. A novel post-weld-shift measurement and compensation technique in butterfly-type laser module packages

    Science.gov (United States)

    Hsu, Yi-Cheng, Sr.; Tsai, Y. C.; Hung, Y. S.; Cheng, W. H.

    2005-08-01

    One of the greatest challenges in the packaging of laser modules using laser welding technique is to use a reliable and accurate joining process. However, during welding, due to the material property difference between welded components, the rapid solidification of the welded region and the associated material shrinkage often introduced a post-weld-shift (PWS) between welded components. For a typical single-mode fiber application, if the PWS induced fiber alignment shift by the laser welding joining process is even a few micrometers, up to 50 % or greater loss in the coupled power may occur. The fiber alignment shift of the PWS effect in the laser welding process has a significant impact on the laser module package yield. Therefore, a detailed understanding of the effects of PWS on the fiber alignment shifts in laser-welded laser module packages and then the compensation of the fiber alignment shifts due to PWS effects are the key research subjects in laser welding techniques for optoelectronic packaging applications. Previously, the power losses due to PWS in butterfly-type laser module packages have been qualitatively corrected by applying the laser hammering technique to the direction of the detected shift. Therefore, by applying an elastic deformation to the welded components and by observing the corresponding power variation, the direction and magnitude of the PWS may be predicted. Despite numerous studies on improving the fabrication yields of laser module packaging using the PWS correction in laser welding techniques by a qualitative estimate, limited information is available for the quantitative understanding of the PWS induced fiber alignment shift which can be useful in designing and fabricating high-yield and high-performance laser module packages. The purpose of this paper is to present a quantitative probing of the PWS induced fiber alignment shift in laser-welded butterfly-type laser module packaging by employing a novel technique of a high

  12. Design strategy of intelligent CAD for welding positioner scheme design

    Institute of Scientific and Technical Information of China (English)

    林三宝; 杨春利; 吴林; 黎明

    2002-01-01

    Traditional CAD technique does not support the design processes such as function definition, conceptual design and preliminary design, which are most creative and play significant roles on the design quality. Because scheme design has close relationship with product structure, performance and technology cost, it is important for applying the intelligent CAD of scheme design to improve the quality and competitive level of the product. The definition and function of welding positioner are discussed in this paper. The new definition of welding positioner extends the research scope of welding positioner to welding fixture and welding positioning motion mechanism. The design process of welding fixture and positioning motion system is described, and the cased-based and knowledge-based design strategy of welding positioner scheme design intelligent CAD is then put forward, which lays foundation for developing proto-type system of welding positioner scheme design.

  13. Explosive welding combines with bottom-tow for new subsea pipeline construction technique

    Energy Technology Data Exchange (ETDEWEB)

    Redshaw, P.R.; Stalker, A.W.

    1979-01-01

    The bottom-tow technique for installing pipe strings on the seabed and the explosive welding tie-in method complement each other to provide a technically and economically attractive pipeline construction method applicable over a wide range of water depths and weather conditions, including marginal cases where other pipelaying methods would not normally be justified. By using the bottom-tow method, pipe strings up to 20 km long can be transported at an optimum towing speed of about 5 knots and positioned within 1.8 m of the specified tow route. Both techniques can be operated from a single, nonspecialized surface vessel in a variety of projects. By using the bottom-tow/explosive welding method, savings of at least 50% can be achieved, compared with conventional lay-barge techniques, particularly for 10 mi or longer pipelines.

  14. Electromagnetic experiment to map in situ water in heated welded tuff: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A.L.; Daily, W.D.

    1987-03-16

    An experiment was conducted in Tunnel Complex G at the Nevada Test Site to evaluate geotomography as a possible candidate for in situ monitoring of hydrology in the near field of a heater placed in densely welded tuff. Alterant tomographs of 200 MHz electromagnetic permittivity were made for a vertical and a horizontal plane. After the 1 kilowatt heater was turned on, the tomographs indicated a rapid and strong drying adjacent to the heater. Moisture loss was not symmetric about the heater, but seemed to be strongly influenced by heterogeneity in the rock mass. The linear character of many tomographic features and their spatial correlation with fractures mapped in boreholes are evidence that drying was most rapid along some fractures. When the heater was turned off, an increase in moisture content occurred around the heater and along the dry fractures. However, this process is much slower and the magnitude of the moisture increase much smaller than the changes observed during heating of the rock. The interpretation of the tomographs is preliminary until they can be processed without the restrictive assumption of straight ray paths for the signals through the highly heterogeneous rock mass. 15 refs., 4 figs.

  15. Preliminary stress corrosion cracking modeling study of a dissimilar material weld of alloy (INCONEL) 182 with Stainless Steel 316

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Omar F.; Mattar Neto, Miguel, E-mail: ofaly@ipen.br, E-mail: mmattar@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Schvartzman, Monica M.A.M., E-mail: monicas@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Dissimilar welds (DW) are normally used in many components junctions in structural project of PWR (Pressurized Water Reactors) in Nuclear Plants. One had been departed of a DW of a nozzle located at a Reactor Pressure Vessel (RPV) of a PWR reactor, that joins the structural vessel material with an A316 stainless steel safe end. This weld is basically done with Alloy 182 with a weld buttering of Alloy 82. It had been prepared some axial cylindrical specimens retired from the Alloy 182/A316 weld end to be tested in the slow strain rate test machine located at CDTN laboratory. Based in these stress corrosion susceptibility results, it was done a preliminary semi-empirical modeling application to study the failure initiation time evolution of these specimens. The used model is composed by a deterministic part, and a probabilistic part according to the Weibull distribution. It had been constructed a specific Microsoft Excel worksheet to do the model application of input data. The obtained results had been discussed according with literature and also the model application limits. (author)

  16. Advanced examination techniques applied to the qualification of critical welds for the ITER correction coils

    CERN Document Server

    Sgobba, Stefano; Libeyre, Paul; Marcinek, Dawid Jaroslaw; Piguiet, Aline; Cécillon, Alexandre

    2015-01-01

    The ITER correction coils (CCs) consist of three sets of six coils located in between the toroidal (TF) and poloidal field (PF) magnets. The CCs rely on a Cable-in-Conduit Conductor (CICC), whose supercritical cooling at 4.5 K is provided by helium inlets and outlets. The assembly of the nozzles to the stainless steel conductor conduit includes fillet welds requiring full penetration through the thickness of the nozzle. Static and cyclic stresses have to be sustained by the inlet welds during operation. The entire volume of helium inlet and outlet welds, that are submitted to the most stringent quality levels of imperfections according to standards in force, is virtually uninspectable with sufficient resolution by conventional or computed radiography or by Ultrasonic Testing. On the other hand, X-ray computed tomography (CT) was successfully applied to inspect the full weld volume of several dozens of helium inlet qualification samples. The extensive use of CT techniques allowed a significant progress in the ...

  17. Phased array ultrasonic testing of dissimilar metal welds using geometric based referencing delay law technique

    Science.gov (United States)

    Han, Taeyoung; Schubert, Frank; Hillmann, Susanne; Meyendorf, Norbert

    2015-03-01

    Phased array ultrasonic testing (PAUT) techniques are widely used for the non-destructive testing (NDT) of austenitic welds to find defects like cracks. However, the propagation of ultrasound waves through the austenitic material is intricate due to its inhomogeneous and anisotropic nature. Such a characteristic leads beam path distorted which causes the signal to be misinterpreted. By employing a reference block which is cutout from the mockup of which the structure is a dissimilar metal weld (DMW), a new method of PAUT named as Referencing Delay Law Technique (RDLT) is introduced. With the RDLT, full matrix capture (FMC) was used for data acquisition. To reconstruct the images, total focusing method (TFM) was used. After the focal laws were calculated, PAUT was then performed. As a result, the flaws are more precisely positioned with significantly increased signal-to-noise ratio (SNR).

  18. Ultrasonic Time of Flight Diffraction Technique for Weld Defects: A Review

    Directory of Open Access Journals (Sweden)

    K. Manjula

    2012-12-01

    Full Text Available To achieve the quality and safety in industrial applications, the damaged products must be detected. To do that NDT is used. In NDT, Ultrasonic Time-of-Flight Diffraction is a well-known technique for detecting the size and location of the defects. Nowadays the Time of Flight Diffraction (ToFD is used for inspecting the materials during production than that of radiography and other ultrasonic NDT procedures. ToFD technique can be used into many different ways. This study gives a review of various ultrasonic ToFD techniques for welding defects and aims at the usage of it.

  19. 小口径水平固定管组合焊技术探索%Study on Composite Welding Technique for Small-caliber Horizontal Fixed Tubes

    Institute of Scientific and Technical Information of China (English)

    孙炎; 黄凤虎

    2013-01-01

    This article studies composite welding technique for small-caliber horizontal fixed tubes from such angles as its cleaning before welding, welding fabrication, welding techniques (SMAW and TIG welding), processing parameter, welding operation, welding inspection so as to improve the welding quality.%文章针对小口径水平固定管组合焊,研究了其焊前清理、焊接装配、焊接方法(焊条电弧焊和TIG焊)、工艺参数、操作方法、焊接检验等方面技术,对提高焊接质量具有一定的应用价值。

  20. On qualification of TOFD technique for austenitic stainless steel welds inspection

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Ona, R. [Tecnatom, San Sebastian de los Reyes (Spain); Viggianiello, S.; Bleuze, A. [Metalscan, Saint-Remy (France)

    2006-07-01

    Time of Flight Diffraction (TOFD) technique is gaining ground as a solid method for detection and sizing of defects. It has been reported that TOFD technique provides good results on the inspection of fine grain steels. However, there are few results regarding the application and performance of this technique on austenitic stainless steels. A big challenge of these inspections is the coarse grain structure that produces low signal to noise ratio and may mask the diffraction signals. Appropriate transducer design, selection of technique parameters and analysis tools could overcome the actual difficulties. In this paper, the main design aspects and parameters of the TOFD technique for austenitic steels are presented. It follows the description of qualification tests carried out to validate the technique for inspecting stainless steels welds. To conclude, discussion of results from actual inspections is shown. (orig.)

  1. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  2. Preliminary study on pressure brazing and diffusion welding of Nb-1Zr to Inconel 718

    Science.gov (United States)

    Moore, T. J.

    1990-01-01

    Future space power systems may include Nb-1Zr/Inconel 718 dissimilar metal joints for operation at 1000 K for 60,000 h. The serviceability of pressure-brazed and diffusion-welded joints was investigated. Ni-based metallic glass foil filler metals were used for brazing. Ni and Fe foils were used as diffusion welding inter-layers. Joint soundness was determined by metallographic examination in the as-brazed and as-welded condition, after aging at 1000 K, and after thermal cycling. Brazed joints thermally cycled in the as-brazed condition and diffusion-welded joints were unsatisfactory because of cracking problems. Brazed joints may meet the service requirements if the joints are aged at 1000 K prior to thermal cycling.

  3. 77 FR 32539 - Circular Welded Carbon-Quality Steel Pipe From the United Arab Emirates: Preliminary...

    Science.gov (United States)

    2012-06-01

    .... \\14\\ See SeAH Vina comments dated December 5, 2011; see also Certain Circular Welded Non-Alloy Steel..., 1340 (Fed. Cir. 2009). \\36\\ See Narrow Woven Ribbons With Woven Selvedge From the People's Republic...

  4. Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Carsley, John; Carlson, Blair; Hartfield-Wunsch, Susan; Pilli, Siva Prasad

    2014-01-15

    A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.

  5. Robust Optimization of Thermal Aspects of Friction Stir Welding Using Manifold Mapping Techniques

    DEFF Research Database (Denmark)

    Larsen, Anders Astrup; Lahaye, Domenico; Schmidt, Henrik Nikolaj Blicher;

    2008-01-01

    and use the manifold mapping technique to solve the optimization problems using a fast analytical coarse and an expensive accurate fine model. The statistics of the response are calculated using Taylor expansions and are compared to Monte Carlo simulations. The results show that the use of manifold......The aim of this paper is to optimize a friction stir welding process taking robustness into account. The optimization problems are formulated with the goal of obtaining desired mean responses while reducing the variance of the response. We restrict ourselves to a thermal model of the process...

  6. Fatigue limits of titanium-bar joints made with the laser and the electric resistance welding techniques: microstructural characterization and hardness properties.

    Science.gov (United States)

    Degidi, Marco; Nardi, Diego; Morri, Alessandro; Sighinolfi, Gianluca; Tebbel, Florian; Marchetti, Claudio

    2017-09-01

    Fatigue behavior of the titanium bars is of utmost importance for the safe and reliable operation of dental implants and prosthetic constructions based on these implants. To date, however, only few data are available on the fatigue strength of dental prostheses made with electric resistance welding and laser welding techniques. This in-vitro study highlighted that although the joints made with the laser welding approach are credited of a superior tensile strength, joints made with electric resistance welding exhibited double the minimum fatigue strength with respect to the joints made with laser welding (120 vs 60 N).

  7. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  8. Stress Distribution in the Dissimilar Metal Butt Weld of Nuclear Reactor Piping due to the Simulation Technique for the Repair Welding

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hweeseung; Huh, Namsu [Seoul Nat' l Univ. of Science and Technology, Seoul (Korea, Republic of); Kim, Jinsu; Lee, Jinho [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-05-15

    During welding, the dissimilar metal butt welds of nuclear piping are typically subjected to repair welding in order to eliminate defects that are found during post-weld inspection. It has been found that the repair weld can significantly increase the tensile residual stress in the weldment, and therefore, accurate estimation of the weld residual stress due to repair weld, especially for dissimilar metal welds using Ni-based alloy 82/182 in nuclear components, is of great importance in order to assess susceptibility to primary water stress corrosion cracking. In the present study, the stress distributions of dissimilar metal butt welds in nuclear reactor piping subjected to repair weld were investigated based on detailed nonlinear finite element analyses. Particular emphasis was placed on the variation of the stress distribution in the dissimilar metal butt weld according to the finite element welding analysis sequence for the repair welding process.

  9. A study on the fatigue life prediction of the various gas-welded joints using a probabilistic statistics technique

    Science.gov (United States)

    Baek, Seung Yeb; Bae, Dong Ho

    2011-02-01

    Gas welding is a very important and useful technology in the fabrication of railroad cars and commercial vehicle structures. However, since the fatigue strength of gas-welded joints is considerably lower than that of the base of material due to stress concentration at the weld, the fatigue strength assessment of gas-welded joints is very important for the reliability and durability of railroad cars and establishment of criteria for long-life fatigue design. In this study, after evaluating the fatigue strength using a simulated specimen that satisfies not only the structural characteristics but also the mechanical condition of the actual structure, the fatigue design criteria are determined and applied to the fatigue design of the gas welded body structure. To save time and cost for the fatigue design, we investigated an accelerated life-prediction using a probabilistic statistics technique based on the theory of statistical reliability. The (Δσ a )R-Nf relationship was obtained from actual fatigue test data, including welding residual stress. On the basis of these results, the (Δσa)R-(Nf)ALP relationship that was derived from statistical probability analysis was compared with the actual fatigue test data. Therefore, it is expected that the accelerated life prediction will provide a useful method of determining the criteria for fatigue design and predicting a specific target life.

  10. Applying a nonlinear, pitch-catch, ultrasonic technique for the detection of kissing bonds in friction stir welds.

    Science.gov (United States)

    Delrue, Steven; Tabatabaeipour, Morteza; Hettler, Jan; Van Den Abeele, Koen

    2016-05-01

    Friction stir welding (FSW) is a promising technology for the joining of aluminum alloys and other metallic admixtures that are hard to weld by conventional fusion welding. Although FSW generally provides better fatigue properties than traditional fusion welding methods, fatigue properties are still significantly lower than for the base material. Apart from voids, kissing bonds for instance, in the form of closed cracks propagating along the interface of the stirred and heat affected zone, are inherent features of the weld and can be considered as one of the main causes of a reduced fatigue life of FSW in comparison to the base material. The main problem with kissing bond defects in FSW, is that they currently are very difficult to detect using existing NDT methods. Besides, in most cases, the defects are not directly accessible from the exposed surface. Therefore, new techniques capable of detecting small kissing bond flaws need to be introduced. In the present paper, a novel and practical approach is introduced based on a nonlinear, single-sided, ultrasonic technique. The proposed inspection technique uses two single element transducers, with the first transducer transmitting an ultrasonic signal that focuses the ultrasonic waves at the bottom side of the sample where cracks are most likely to occur. The large amount of energy at the focus activates the kissing bond, resulting in the generation of nonlinear features in the wave propagation. These nonlinear features are then captured by the second transducer operating in pitch-catch mode, and are analyzed, using pulse inversion, to reveal the presence of a defect. The performance of the proposed nonlinear, pitch-catch technique, is first illustrated using a numerical study of an aluminum sample containing simple, vertically oriented, incipient cracks. Later, the proposed technique is also applied experimentally on a real-life friction stir welded butt joint containing a kissing bond flaw. Copyright © 2016

  11. 爆炸焊接技术研究进展%Research Development of Explosive Welding Technique

    Institute of Scientific and Technical Information of China (English)

    王克鸿; 张德库; 张文军

    2011-01-01

    爆炸焊接是一种通过在金属表面施加可控的爆炸能量以实现金属连接的固态焊接方法.介绍了爆炸焊接的概念和发展历史,并对近几年国内外在爆炸焊接理论、试验和数值模拟以及应用等方面的研究进展进行了综述,提出了未来爆炸焊接技术发展的几个重要方面,并指出今后爆炸焊接技术的研究要着眼于非晶合金以及具有耐高温、耐腐蚀等优异性能材料的研究,以满足人们对材料性能的要求,并展望了爆炸焊接的发展趋势.%Explosion welding (EXW) is one of the joining methods consisting of a solid state welding process in which controlled explosive detonation on the surface of a metal. This paper introduces the conception and the history of the explosive welding technique. And then a bdef summary is given ,which is about the research development of explosive welding in the aspects such as theoretical analysis,trials and numerical simulation ,practical application. Some important aspects about the future development of explosive welding are pointed out. Future research of explosive welding technique shall focus on the development of non-crystal alloy and material with characteristics such as the ability of bearing high temperature and corruption to satisfy the requirement of new property.At last future developments in explosive welding are predicted and criticized in an outlook.

  12. Preliminary evaluation of collagen as a component in the thermally induced 'weld'

    Science.gov (United States)

    Lemole, G. M., Jr.; Anderson, R. Rox; DeCoste, Sue

    1991-06-01

    A simple thermodynamic approach to tissue 'welding' was studied. Fresh bovine tendon (67% type I collagen) was sectioned into disk shaped pieces, pairs of which were inserted between bowed glass coverslips and wrapped in aluminum foil. The packets were heated in a waterbath according to two protocols. In group I, packets were tested for four minutes at temperatures between 55-65 degree(s)C, in 1 degree(s)C intervals. In group II, the packets were kept at 62 degree(s)C for 4 minutes while the rate of cooling was altered. The force necessary to separate the tendon disks was then measured. The optimal temperature for tissue bonding (group I) was 62 degree(s)C (598 gm/in2). Stress values below 250 gm/in2 could be achieved without heat application and were considered non-welds. Group II showed that the faster the sample cools, the stronger the bond. Several conclusions can be postulated. The narrow temperature region necessary for tissue 'welding' strongly suggests that melting of type I collagen fibrils is involved. Bonding presumably occurs at 62 degree(s)C by allowing (alpha) -strands from the collagen super-helix molecule to form new, random connections. Group II results suggest that trans-incisional reannealing of unraveled helices does not play a role in tissue bonding. Rapid cooling allows less time for extended helix reformation; same-side a-helix reannealing may inhibit effective welds by reducing sites for trans-incisional visco-elastic bonding. Although the exact nature and optimization of thermal tissue 'welds' remains unclear, the behavior of collagen appears to play a central role.

  13. New explosive welding technique to weld aluminum alloy and stainless steel plates using a stainless steel intermediate plate

    Energy Technology Data Exchange (ETDEWEB)

    Hokamoto, K.; Fujita, M. (Kumamoto Univ. (Japan). Dept. of Mechanical Engineering); Izuma, T. (Asahi Chemical Industry Co., Ltd., Siga (Japan))

    1993-10-01

    Various aluminum alloys and stainless steel were explosively welded using a thin stainless steel intermediate plate inserted between the aluminum alloy driver and stainless steel base plates. At first. the velocity change of the driver plate with flying distance is calculated using finite-difference analysis. Since the kinetic energy lost by collision affects the amount of the fused layer generated at the interface between the aluminum alloy and stainless steel, the use of a thin stainless steel intermediate plate is effective for decreasing the energy dissipated by the collision. The interfacial zone at the welded interface is composed of a fine eutectic structure of aluminum and Fe[sub 4]Al[sub 13], and the explosive welding, process of this metal combination proceeds mainly by intensive deformation of the aluminum alloy. The weldable region for various aluminum alloys is decided by the change in collision velocity and kinetic energy lost by collision, and the weldable region is decreased with the increase in the strength of the aluminum alloy.

  14. Possible fabrication techniques and welding specifications for the external cylinder of the CMS coil

    CERN Document Server

    Castoldi, M; Desirelli, Alberto; Favre, G; Losasso, M; Sequeira-Lopes-Tavares, S; Sgobba, Stefano; Tardy, T; Levesy, B; Reytier, M

    2000-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments, which are being designed in the framework of the Large Hadron Collider (LHC) project at CERN. The design field of the CMS magnet is 4 T, the magnetic length is 12.5 m and the free aperture is 6 m in diameter. This is achieved with a 4 layer and 5 module superconducting Al- stabilized coil energized at a nominal current of 20 kA at 4.5 K. In the CMS coil the structural function is ensured, unlike in other existing Al-stabilized thin solenoids, both by the Al-alloy reinforced conductor and the external cylinder. The calculated stress level in the cylinder at operating conditions is particularly severe. In this paper the different possible fabrication techniques are assessed and compared and a possible welding specification for this component is given. (9 refs).

  15. Robust Optimization of Thermal Aspects of Friction Stir Welding Using Manifold Mapping Techniques

    DEFF Research Database (Denmark)

    Larsen, Anders Astrup; Lahaye, Domenico; Schmidt, Henrik Nikolaj Blicher

    2008-01-01

    The aim of this paper is to optimize a friction stir welding process taking robustness into account. The optimization problems are formulated with the goal of obtaining desired mean responses while reducing the variance of the response. We restrict ourselves to a thermal model of the process...... and use the manifold mapping technique to solve the optimization problems using a fast analytical coarse and an expensive accurate fine model. The statistics of the response are calculated using Taylor expansions and are compared to Monte Carlo simulations. The results show that the use of manifold...... mapping reduces the number of fine model evaluations required and that the Taylor expansion approach gives good results when compared to Monte Carlo simulations....

  16. Residual stress in a laser welded EUROFER blanket module assembly using non-destructive neutron diffraction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, D.J., E-mail: d.hughes@warwick.ac.uk [WMG, University of Warwick, Coventry CV4 7AL (United Kingdom); Koukovini-Platia, E. [CERN, CH-1211 Geneva 23 (Switzerland); Heeley, E.L. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2014-02-15

    Highlights: • Residual stresses were determined in a welded EUROFER blanket assembly with integrated cooling channels. • Good agreement was seen between experimentally determined and predicted stresses. • We show that microstructure changes that occur in EUROFER steels during welding must be considered for residual stress determination. • An experimental route is proposed for validation of predicted stresses in reactor components using non-destructive diffraction techniques. - Abstract: Whilst the structural integrity and lifetime considerations in welded joints for blanket modules can be predicted using finite element software, it is essential to prove the validity of these simulations. This paper provides detailed analysis for the first time, of the residual stress state in a laser-welded sample with integral cooling channels. State-of-the-art non-destructive neutron diffraction was employed to determine the triaxial stress state and to understand microstructural changes around the heat affected zone. Synchrotron X-ray diffraction was used to probe the variation of strain-free lattice reference parameter around the weld zone allowing correction of the neutron measurements. This paper details an important experimental route to validation of predicted stresses in complex safety-critical reactor components for future applications.

  17. Effect of the welding profile generated by the modified indirect electric arc technique on the fatigue behavior of 6061-T6 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ambriz, R.R., E-mail: ricraf74@gmail.com [Universite Lille Nord de France, F-59000 Lille (France); USTL, LML, F-59650 Villeneuve d' Ascq (France); CNRS, UMR 8107, F-59650 Villeneuve d' Ascq (France); Mesmacque, G. [Universite Lille Nord de France, F-59000 Lille (France); USTL, LML, F-59650 Villeneuve d' Ascq (France); CNRS, UMR 8107, F-59650 Villeneuve d' Ascq (France); Ruiz, A. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, A.P. 888, C.P. 58000, Morelia Michoacan (Mexico); Amrouche, A. [Universite Lille Nord de France, F-59000 Lille (France); USTL, LML, F-59650 Villeneuve d' Ascq (France); CNRS, UMR 8107, F-59650 Villeneuve d' Ascq (France); Lopez, V.H. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, A.P. 888, C.P. 58000, Morelia Michoacan (Mexico)

    2010-03-25

    This paper reports the effect of the welding profile generated by the modified indirect electric arc (MIEA) technique on the fatigue behavior of 6061-T6 welded joints. The calculations are based on the effect of the stress concentration factor produced by the characteristic geometry of the welding profile formed during the welding process. It was found that the fatigue life of welded samples using this welding technique was larger in comparison with data reported in the literature. Also, measurements of microhardness and tension testing were performed to account for the effect of different levels of fatigue damage on the mechanical properties of these welds. Experimental findings reveal that, with reference to undamaged samples, fatigue damage increases the microhardness in the weld metal and heat affected zone (HAZ) whereas it only produces a moderate increase in yield strength of approximately 14% for a 75% of fatigue damage. Tensile and fatigue tests indicate that the thermal affection undergone by the plates during fusion welding dictates failure in the HAZ under tension stress but not under fatigue. The failure mechanism under fatigue is discussed in terms of theoretical analyses and fractography.

  18. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Energy Technology Data Exchange (ETDEWEB)

    Kilinc, B., E-mail: bkilinc@sakarya.edu.tr; Durmaz, M.; Abakay, E. [Department of Metallurgical and Materials Engineering, Institute of Arts and Sciences, SakaryaUniversity, Esentepe Campus, 54187Sakarya (Turkey); Sen, U.; Sen, S. [Department of Metallurgical and Materials Engineering, Engineering Faculty, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey)

    2015-03-30

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe{sub 12}Nb{sub 5}B{sub 3} and Fe{sub 2}NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe{sub 2}B, NbB{sub 2}, NbFeB and Fe0,2 Nb{sub 0,8} phases. The hardness of the presence phases are changing between 1689±85 HV{sub 0.01}, and 181±7 HV{sub 0.1}. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe{sub 12}Nb{sub 5}B{sub 3} and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  19. Laser welding and syncristallization techniques comparison: “Ex vivo” study

    Science.gov (United States)

    Meleti, Marco; Vescovi, Paolo; Merigo, Elisabetta; Rocca, Jean-Paul

    2013-01-01

    Background and aims: Stabilization of implant abutments through electric impulses at high voltage for a very short time (electrowelding) was developed in the Eighties. In 2009, the same procedure was performed through the use of laser (laser welding) The aim of this study is to compare electrowelding and laser welding for intra-oral implant abutments stabilization on “ex vivo models” (pig jaws). Materials and methods: Six bars were welded with two different devices (Nd:YAG laser and Electrowelder) to eighteen titanium implant abutment inserted in three pig jaws. During the welding process, thermal increase was recorded, through the use of k-thermocouples, in the bone close to the implants. The strength of the welded joints was evaluated by a traction test after the removal of the implants. For temperature measurements a descriptive analysis and for traction test “values unpaired t test with Welch's correction” were performed: the significance level was set at PLaser welding gives a lower thermal increase than Electrowelding at the bone close to implants (Mean: 1.97 and 5.27); the strength of laser welded joints was higher than that of Electrowelding even if nor statistically significant. (Mean: 184.75 and 168.29) Conclusion: Electrowelding seems to have no advantages, in term of thermal elevation and strength, while laser welding may be employed to connect titanium implants for immediate load without risks of thermal damage at surrounding tissues. PMID:24511205

  20. Evaluation of laser welding techniques for hydrogen transmission. Final report, September 1977-November 1979

    Energy Technology Data Exchange (ETDEWEB)

    Mucci, J

    1980-05-01

    This program was established to determine the feasibility of laser beam welding as a fabrication method for hydrogen transmission and is a precursor in the effort to systematically provide the technological base necessary for large-scale, economic pipeline transmission of fuel for a hydrogen energy system. The study contributes to the technology base by establishing the effect of conventional weld processes and laser beam welding on the mechanical properties of two classes of steels in an air and high pressure gaseous hydrogen environment. Screening evaluation of the tensile, low-cycle fatigue and fracture toughness properties and metallurgical analyses provide the basis for concluding that laser beam welding of AISI 304L stainless steel and ASTM A106B carbon steel can produce weldments of comparable quality to those produced by gas-tungsten arc and electron beam welding and is at least equally compatible with 13.8 MPa (2000 psig) gaseous hydrogen environment.

  1. Small-scale explosive welding of aluminum

    Science.gov (United States)

    Bement, L. J.

    1972-01-01

    Welding technique uses very small quantities of explosive ribbon to accomplish small-scale lap-welding of aluminum plates. Technique can perform small controlled welding with no length limitations and requires minimal protective shielding.

  2. 75 FR 16439 - Certain Welded Carbon Steel Standard Pipe From Turkey: Preliminary Results of Countervailing Duty...

    Science.gov (United States)

    2010-04-01

    ... interest rates for comparable commercial loans. See 19 CFR 351.505(a). Where no company-specific benchmark... Benchmark (March 25, 2010). We then compared that interest rate with the interest rates that the company... rate for each company under review is de minimis. See the ``Preliminary Results of Review'' section...

  3. Qualification of final closure for disposal container II - applicability of TOFD and phased array technique for overpack welding

    Energy Technology Data Exchange (ETDEWEB)

    Asano, H.; Kawahara, K. [Radioactive Waste Management Funding and Research Center (RWMC) (Japan); Arakawa, T. [Ishikawajima-Harima Heavy Industries Co. Ltd. (Japan); Kurokawa, M. [Mitsubishi Heavy Industries Ltd. (Japan)

    2002-07-01

    With a focus on carbon steel, which is one of the candidate materials for the disposal container used in the geological disposal of high-level radioactive waste in Japan, the defect detection capabilities were examined regarding engineering defects of the TOFD technique, an ultrasonic testing method, and the phased array TOFD technique as non-destructive test techniques for the inspection of the weld of a carbon steel overpack. Regarding the TOFD technique, a measurement was conducted concerning the influence of the crossing angle of the ultrasonic beams on the capability of detect flaws, for examining the detection characteristics of the technique in relation to the lid structure of an overpack, and it was pointed out that it is appropriate to consider the lower tip of slit as the reference flaw. Based on the measurements and calculations regarding sound pressure distribution, projections about the scope covered by one test session were made and the optimum testing conditions were examined. Regarding the phased array TOFP technique, the detectability and quantification characteristics were investigated, and comparisons with those of the TOFD technique and the phased array UT technique were made. From the viewpoint of securing long-term corrosion resistance for an overpack, the ways of thinking for ensuring the quality and long-term integrity of the final sealing area of a disposal container were examined. This study stresses that identifying and defining the defects that are harmful to corrosion allowance is important as well as achieving improvements in the welding and testing techniques, and that the question to solve in particular from now on is how to establish effective means to detect defects on the weld surface and the near surface and how to approach the level of tolerance concerning the defects on and near the surface. (orig.)

  4. Welding Course Curriculum.

    Science.gov (United States)

    Genits, Joseph C.

    This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part…

  5. Improved diffusion welding and roll welding of titanium alloys

    Science.gov (United States)

    Holko, K. H.

    1973-01-01

    Auto-vacuum cleaning technique was applied to titanium parts prior to welding. This provides oxide-free welding surfaces. Diffusion welding can be accomplished in as little as five minutes of hot pressing. Roll welding can be accomplished with only ten percent deformation.

  6. Weldability and Welding Technique of 2101 Duplex Stainless Steel%2101双相不锈钢的焊接性能和焊接技术

    Institute of Scientific and Technical Information of China (English)

    刘长文; 邓钢; 曾广庭

    2012-01-01

    对2101双相不锈钢的焊接性能进行了分析,并提出了几个关键的焊接技术,最后以12.7mm厚2101双相不锈钢板为例,进行了该材料的焊接工艺评定。结果表明:在合理的焊接方法和焊接参数下,2101双相不锈钢具有良好的焊接性能。%Weldability of 2101 duplex stainless steel was analyzed, several key welding techniques were put forward, and finally welding procedure qualification was done taken 12. 7 mm 2101 duplex stainless steel plate as an example. The results show that 2101 duplex stainless steel has good welding performance under the condition of reasonable welding method and welding parameters.

  7. Process parameters optimization for friction stir welding of RDE-40 aluminium alloy using Taguchi technique

    Institute of Scientific and Technical Information of China (English)

    A.K.LAKSHMINARAYANAN; V.BALASUBRAMANIAN

    2008-01-01

    Taguchi approach was applied to determine the most influential control factors which will yield better tensile strength of the joints of friction stir welded RDE-40 aluminium alloy. In order to evaluate the effect of process parameters such as tool rotational speed, traverse speed and axial force on tensile strength of friction stir welded RDE-40 aluminium alloy, Taguchi parametric design and optimization approach was used. Through the Taguchi parametric design approach, the optimum levels of process parameters were determined. The results indicate that the rotational speed, welding speed and axial force are the significant parameters in deciding the tensile strength of the joint. The predicted optimal value of tensile strength of friction stir welded RDE-40 aluminium alloy is 303 MPa. The results were confirmed by further experiments.

  8. Enhancing Stud Arc Welding Technique Vai Utilizing FuzzyLogic Approach (FLA

    Directory of Open Access Journals (Sweden)

    Nabeel K. Abid AL-Sahib

    2013-01-01

    Full Text Available A fuzzy logic approach (FLA application in the process of stud arc welding environment was implemented under the condition of fuzziness input data. This paper is composed of the background of FLA, related research work review and points for developing in stud welding manufacturing. Then, it investigates thecase of developingstud arc welding process on the controversial certaintyof available equipment and human skills.Five parameters (welding time, sheet thickness, type of coating, welding current and stud shape were studied.A pair of parameter was selected asiteration whichis welding current and welding time and used for verification corresponding with tensile strength as output results and this willconsider it as schema for other cases.The testing result in the case of crisp (exact value verifyingied the uncertainty value of some criteria selected which open the concept to make the decision making process for some advance cases without implementation. This paper applied the proposed methodology using Matlab program, the graphic user interface (GUI fuzzy tool box for the case study of screw DABOTEKSTUD welding machine, for 6 mm diameter stud. The sheet materials are (K14358 and K52355 according to (USN standards, and the stud materials are (54NiCrMoS6 and 4OCrMnMoS8-6 according to (DIN standards.This given information is very inevitable for the conventional crisp determination of the tensile stress for the particular specimens experimented and also for verifying the tensile test value estimate in the case of changing to a fuzzy value for two of the input variables.

  9. Closure of skin incisions by laser-welding with a combination of two near-infrared diode lasers: preliminary study for determination of optimal parameters.

    Science.gov (United States)

    Hu, Liming; Lu, Zhihua; Wang, Biao; Cao, Junsheng; Ma, Xiaobo; Tian, Zhenhua; Gao, Zhijian; Qin, Li; Wu, Xiaodong; Liu, Yun; Wang, Lijun

    2011-03-01

    Laser welding has the potential to become an effective method for wound closure and healing without sutures. Closure of skin incisions by laser welding with a combination of two near-infrared lasers (980 and 1064 nm), was performed for the first time in this study. One centimeter long, full-thickness incisions were made on the Wistar rat's dorsal skin. The efficiencies of laser-welding with different parameters were investigated. Incision-healing, histology examination, and a tensile strength test of incisions were recorded. Laser welding with the irradiance level of 15.9 W∕cm(2) for both 980 and 1064-nm lasers and exposure time of 5 s per spot in continuous wave mode yielded a more effective closure and healing with minimal thermal damage, faster recovery, and stronger apposition in comparison with a suturing technique. The conclusion is that skin welding with a combination of two near-infrared diode lasers can be a good candidate for incision closure, and further investigations are in progress for clinical use.

  10. 75 FR 44763 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico; Extension of Time Limit for Preliminary...

    Science.gov (United States)

    2010-07-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico; Extension of Time... welded non- alloy steel pipe from Mexico. We also received review requests on November 30, 2009,...

  11. Inspection of thin-walled pipe welds using mechanized ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lozev, M.; Spencer, R. [Edison Welding Inst., Columbus, OH (United States); Hodgkinson, D. [TransCanada PipeLines Ltd., Calgary, AB (Canada)

    2004-07-01

    This paper investigated applications of high-frequency single/multiprobe techniques and phased-array (PA) technology for the inspection of thin-walled pipes welds. Ultrasonic testing (UT), modeling and simulation was used as an effective way of determining that the desired calibration reflectors and flaws in thin-walled pipes can be accurately sized. A laboratory experiment was conducted in which simple or complex flaws were virtually split on several segments. Beam profile monitoring and automated ultrasonic testing was performed for non-focused 5, 10 and 15 MHz single elements, a variety of focused MHz elements, and a 10 MHz 32 element linear PA probe. A Mephisto model was used to examine the various echo-formation mechanisms. Beam interactions and connected planar flaws were examined. Two calibration targets were used: (1) a 1.5 mm diameter side-drilled hole; and (2) a 4 per cent deep notch. A thin-walled pipe sample was designed for the validation of modeling results. A commercially available PA system and computer software program was used to create focal laws, as well as to steer the beam, collect data, and perform the analysis. Results of the notch tilt models showed that inspection angles of approximately 58 to 68 degrees were the least sensitive to tilt. Signal amplitude losses of less than 10 decibels were observed when compared with the reference notch. The PA model for complex flaws showed that signal loss arising from tilt and skew stabilized at approximately 10 degrees due to a loss of amplitude. Larger sound beams resulted in a greater echo-dynamic that increased masking effects. It was concluded that the most accurate UT simulations were achieved using a 10 MHz, 32-element linear PA technology. 4 refs., 2 tabs., 8 figs.

  12. Magnetic resonance imaging urodynamics: technique development and preliminary results

    Directory of Open Access Journals (Sweden)

    Gustavo Borghesi

    2006-06-01

    Full Text Available OBJECTIVES: In this preliminary study we report the development of the video urodynamic technique using magnetic resonance imaging (MRI. MATERIALS AND METHODS: We studied 6 women with genuine stress urinary incontinence, diagnosed by history and physical examination. Urodynamic examination was performed on multichannel equipment with the patient in the supine position. Coughing and Valsalva maneuvers were performed at volumes of 150, 250 and 350 mL. Simultaneously, MRI was carried out by using 1.5 T GE Signa CV/i high-speed scanner with real time fluoroscopic imaging possibilities. Fluoroscopic imaging was accomplished in the corresponding planes with T2-weighted single shot fast spin echo sequences at a speed of about 1 frame per second. Both studies were recorded and synchronized, resulting in a single video urodynamic examination. RESULTS: Dynamic MRI with cine-loop reconstruction of 1 image per second demonstrated the movement of all compartment of the relaxed pelvis during straining with the concomitant registration of abdominal and intravesical pressures. In 5 patients, urinary leakage was demonstrated during straining and the Valsalva leak point pressure (VLPP was determined as the vesical pressure at leak subtracted from baseline bladder pressure. Mean VLPP was 72.6 cm H2O (ranging from 43 to 122 cm H2O. CONCLUSIONS: The concept of MRI video urodynamics is feasible. In a clinical perspective, practical aspects represent a barrier to daily use and it should be recommended for research purposes.

  13. Recent Corrosion Research Trends in Weld Joints

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwan Tae; Kil, Sang Cheol [Korea Institute of Science and Technology Information, Seoul (Korea, Republic of); Hwang, Woon Suk [Inha University, Incheon (Korea, Republic of)

    2007-04-15

    The increasing interest in the corrosion properties of weld joints in the corrosive environment is placing stringent demands on the manufacturing techniques and performance requirements, and the manufacture employs the high quality and efficiency welding process to produce welds. Welding plays an important role in the fabrication of chemical plants, nuclear power plant, ship construction, and this has led to an increasing attention to the corrosion resistant weld joints. This paper covers recent technical trends of welding technologies for corrosion resistance properties including the COMPENDEX DB analysis of welding materials, welding process, and welding fabrications

  14. Development of the manufacture and process for DUPIC fuel elements; development of the quality evaluation techniques for end cap welds of DUPIC fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Tae; Choi, Myong Seon; Yang, Hyun Tae; Kim, Dong Gyun; Park, Jin Seok; Kim, Jin Ho [Yeungnam University, Kyongsan (Korea)

    2002-04-01

    The objective of this research is to set up the quality evaluation techniques for end cap welds of DUPIC fuel element. High temperature corrosion test and the SCC test for Zircaloy-4 were performed, and also the possibility of the ultrasonic test technique was verified for the quality evaluation and control of the laser welds in the DUPIC fuel rod end cap. From the evaluation of corrosion properties with measuring the weight gain and observing oxide film of the specimen that had been in the circumstance of steam(400 .deg. C, 1,500 psi) by max. 70 days later, the weight gain of the welded specimens was larger than original tube and the weight increasing rate increased with the exposed days. For the Development of techniques for ultrasonic test, semi-auto ultrasonic test system has been made based on immersion pulse-echo technique using spherically concentrated ultrasonic beam. Subsequently, developed ultrasonic test technique is quite sensible to shape of welds in the inside and outside of tube as well as crack, undercut and expulsion, and also this ultrasonic test, together with metallurgical fracture test, has good reliance as enough to be used for control method of welding process. 43 refs., 47 figs., 8 tabs. (Author)

  15. Tensometry technique for X-ray diffraction in applied analysis of welding; Tensometria por tecnica de difracao de raios X aplicada na analise de soldagens

    Energy Technology Data Exchange (ETDEWEB)

    Turibus, S.N.; Caldas, F.C.M.; Miranda, D.M.; Monine, V.I.; Assis, J.T., E-mail: snturibus@iprj.uerj.b [Universidade do Estado do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico

    2010-07-01

    This paper presents the analysis of residual stress introduced in welding process. As the stress in a material can induce damages, it is necessary to have a method to identify this residual stress state. For this it was used the non-destructive X-ray diffraction technique to analyze two plates from A36 steel jointed by metal inert gas (MIG) welding. The stress measurements were made by the sin{sup 2{psi}} method in weld region of steel plates including analysis of longitudinal and transverse residual stresses in fusion zone, heat affected zone (HAZ) and base metal. To determine the stress distribution along the depth of the welded material it was used removing of superficial layers made by electropolishing. (author)

  16. Predicting the geometry and location of defects in adhesive and spot-welded lap joints using steady-state thermographic techniques

    Science.gov (United States)

    Turler, Daniel; Orlando, Ernest

    1999-03-01

    Development of nondestructive evaluation (NDE) methods for spot-welded and adhesive-bonded sheet metal joints is essential for widespread use of lightweight materials and new construction techniques in automotive applications. An important objective of research in progress is development of NDE methods to identify and characterize critical flaws in welded and adhesive-bonded joints. We used steady-state heat- flow and thermographic imaging techniques to test welded and adhesive-bonded lap joints in steel and aluminum samples and in adhesive-bonded composite panels and to identify defective spot welds. The resulting surface-temperature maps or thermograms were used to detect voids and areas where the adhesive was not bonded. To better characterize defects in welds and adhesive layers, algorithms have been developed to post process temperature data, producing more accurate definition of the geometry and location of defects than in previous images. Classic heat-transfer theory was used to calculate the heat-flux equilibrium for each individual pixel on the thermograms. Convective and radiative surface heat- transfer coefficients were applied to compensate for the heat exchange between the sample and the environment. This post processing permits us to determine the locations of spot welds and the sizes of the weld nuggets in welded joints, and to clearly image voids in adhesive layers between joints. The effectiveness of the image-processing algorithms was investigated using data from laboratory experiments on test specimens with flaws of known size and location. In addition, the images of the defects produced with the new method were compared to results of two-dimensional heat transfer simulations through the same samples. The simulations were also used to determine boundary conditions for post-processing of images.

  17. Aluminum alloy weldability. Identification of weld solidification cracking mechanisms through novel experimental technique and model development

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, Nicolas

    2008-07-01

    The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated. Afterwards, cracking models are developed to propose mechanisms for solidification crack initiation and growth. Cracking Sensitivity. Building upon the concept that silicon improves weldability and that weldability can be defined by a critical strain rate, strain rate-composition combinations required for solidification crack formation in the Al- 6060/4043 system were determined using the newly developed Controlled Tensile Weldability (CTW) test utilizing local strain extensometer measurements. Results, presented in a critical strain rate - dilution map, show a crack - no crack boundary which reveals that higher local strain rates require higher 4043 filler dilution to avoid solidification cracking when arc welding Alloy 6060. Using the established crack - no crack boundary as a line of reference, additional parameters were examined and their influence on cracking characterized. These parameter influences have included studies of weld travel speed, weld pool contaminants (Fe, O, and H), and grain refiner additions (TiAl{sub 3} + Boron). Each parameter has been independently varied and its effect on cracking susceptibility quantified in terms of strain rate - composition combinations. Solidification Path. Solidification path of the Al-6060/4043 system was characterized using thermal analysis and phase identification. Increasing 4043 filler dilution from 0 to 16% in Alloy 6060 arc welds resulted in little effect on thermal arrests and microstructure, no effect on

  18. Fuzzy Logic-Based Techniques for Modeling the Correlation between the Weld Bead Dimension and the Process Parameters in MIG Welding

    Directory of Open Access Journals (Sweden)

    Y. Surender

    2013-01-01

    Full Text Available Fuzzy logic-based techniques have been developed to model input-output relationships of metal inert gas (MIG welding process. Both conventional and hierarchical fuzzy logic controllers (FLCs of Mamdani type have been developed, and their performances are compared. The conventional FLC suffers from the curse of dimensionality for handling a large number of variables, and a hierarchical FLC was proposed earlier to tackle this problem. However, in that study, both the structure and knowledge base of the FLC were not optimized simultaneously, which has been attempted here. Simultaneous optimization of the structure and knowledge base is a difficult task, and to solve it, a genetic algorithm (GA will have to deal with the strings having varied lengths. A new scheme has been proposed here to tackle the problem related to crossover of two parents with unequal lengths. It is interesting to observe that the conventional FLC yields the best accuracy in predictions, whereas the hierarchical FLC can be computationally faster than others but at the cost of accuracy. Moreover, there is no improvement of interpretability by introducing a hierarchical fuzzy system. Thus, there exists a trade-off between the accuracy obtained in predictions and computational complexity of various FLCs.

  19. Technique for the residual life assessment of high temperature components based on creep-rupture testing on welded miniature specimens

    Energy Technology Data Exchange (ETDEWEB)

    Garzillo, A.; Guardamagna, C.; Moscotti, L.; Ranzani, L. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-06-01

    Following the present trend in the development of advanced methodologies for residual life assessment of high temperature components operating in power plants, particularly in non destructive methods, a testing technique has been set up at ENEL-CRAM based on creep-rupture testa in an argon on welded miniature specimens. Five experimental systems for creep-rupture tests in an argon atmosphere have been set up which include high accuracy systems, vacuum chambers and exrwnsometer devices. With the aim of establishing and validating the suitability of the experimental methodology, creep-rupture and interrupted creep testing programmes have been performed on miniature specimens (2 mm diameter and 10 mm gauge lenght). On the basis of experience gathered by various European research laboratories, a miniature specimen construction procedure has been developed using a laser welding technique for joining threaded heads to sample material. Low alloy ferritic steels, such as virgin 2.25CrlMo, 0.5Cr 0.5Mo 0.25V, and IN 738 superalloy miniature specimens have been investigated and the results, compared with those from standard specimens, show a regular trend in deformation vs time. Additional efforts to provide guidelines for material sampling from each plant component will be required in order to reduce uncertainties in residual life prediction.

  20. X-Ray diffraction technique applied to study of residual stresses after welding of duplex stainless steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Monin, Vladimir Ivanovitch; Assis, Joaquim Teixeira de [Instituto Politecnico do Rio e Janeiro (IPRJ), Nova Friburgo, RJ (Brazil); Lopes, Ricardo Tadeu; Turibus, Sergio Noleto; Payao Filho, Joao C., E-mail: sturibus@nuclear.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2014-08-15

    Duplex stainless steel is an example of composite material with approximately equal amounts of austenite and ferrite phases. Difference of physical and mechanical properties of component is additional factor that contributes appearance of residual stresses after welding of duplex steel plates. Measurements of stress distributions in weld region were made by X-ray diffraction method both in ferrite and austenite phases. Duplex Steel plates were joined by GTAW (Gas Tungsten Arc Welding) technology. There were studied longitudinal and transverse stress components in welded butt joint, in heat affected zone (HAZ) and in points of base metal 10 mm from the weld. Residual stresses measured in duplex steel plates jointed by welding are caused by temperature gradients between weld zone and base metal and by difference of thermal expansion coefficients of ferrite and austenite phases. Proposed analytical model allows evaluating of residual stress distribution over the cross section in the weld region. (author)

  1. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  2. Weld overlay cladding with iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, G.M. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    The author has established a range of compositions for these alloys within which hot cracking resistance is very good, and within which cold cracking can be avoided in many instances by careful control of welding conditions, particularly preheat and postweld heat treatment. For example, crack-free butt welds have been produced for the first time in 12-mm thick wrought Fe{sub 3}Al plate. Cold cracking, however, still remains an issue in many cases. The author has developed a commercial source for composite weld filler metals spanning a wide range of achievable aluminum levels, and are pursuing the application of these filler metals in a variety of industrial environments. Welding techniques have been developed for both the gas tungsten arc and gas metal arc processes, and preliminary work has been done to utilize the wire arc process for coating of boiler tubes. Clad specimens have been prepared for environmental testing in-house, and a number of components have been modified and placed in service in operating kraft recovery boilers. In collaboration with a commercial producer of spiral weld overlay tubing, the author is attempting to utilize the new filler metals for this novel application.

  3. Characterisation of fume from hyperbaric welding operations

    Energy Technology Data Exchange (ETDEWEB)

    Ross, John A S; Semple, Sean [Environmental and Occupational Medicine, University of Aberdeen (United Kingdom); Duffin, Rodger [ELEGI Colt Laboratory, University of Edinburgh (United Kingdom); Kelly, Frank [Lung Biology Group, Kings College, University of London (United Kingdom); Seldmann, Joerg; Raab, Andrea, E-mail: j.a.ross@abdn.ac.u [Trace Element Speciation Laboratory, University of Aberdeen (United Kingdom)

    2009-02-01

    We report preliminary work characterising dust from hyperbaric welding trials carried out at increased pressure in a helium and oxygen atmosphere. Particle size and concentration were measured during welding. Samples for quartz and metal analysis and toxicity assessment were taken from a filter in the local fume extraction system. The residue of dust after metal extraction by nitric acid in hydrogen peroxide predominantly a non-metallic white powder assumed to be dust from welding rod coatings and thermal insulation material. Metallic analysis showed predominantly calcium, from the welding rod coating, and period 4 transition metals such as iron, manganese, magnesium and titanium (inductively coupled mass spectrometry, Agilent 7500c). The presence of zirconium indicated a contribution from grinding. The fume was nanoparticulate in nature with a mean particle diameter of 20-30 nm (MSI Inc WPS 1000XP). It showed an intermediate level of oxidative potential regarding the low-molecular weight respiratory tract lining fluid antioxidants ascorbate and glutathione and caused release of the inflammatory marker IL-8 in a human lung A 549 epithelial cell culture with no indication of cytotoxicity. The study findings have strong implications for the measurement techniques needed to assess fume exposure in hyperbaric welding and the provision of respiratory protection.

  4. Method for laser spot welding monitoring

    Science.gov (United States)

    Manassero, Giorgio

    1994-09-01

    As more powerful solid state laser sources appear on the market, new applications become technically possible and important from the economical point of view. For every process a preliminary optimization phase is necessary. The main parameters, used for a welding application by a high power Nd-YAG laser, are: pulse energy, pulse width, repetition rate and process duration or speed. In this paper an experimental methodology, for the development of an electrooptical laser spot welding monitoring system, is presented. The electromagnetic emission from the molten pool was observed and measured with appropriate sensors. The statistical method `Parameter Design' was used to obtain an accurate analysis of the process parameter that influence process results. A laser station with a solid state laser coupled to an optical fiber (1 mm in diameter) was utilized for the welding tests. The main material used for the experimental plan was zinc coated steel sheet 0.8 mm thick. This material and the related spot welding technique are extensively used in the automotive industry, therefore, the introduction of laser technology in production line will improve the quality of the final product. A correlation, between sensor signals and `through or not through' welds, was assessed. The investigation has furthermore shown the necessity, for the modern laser production systems, to use multisensor heads for process monitoring or control with more advanced signal elaboration procedures.

  5. Studies of residual stress measurement and analysis techniques for a PWR dissimilar weld joint

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Naoki, E-mail: naoki2_ogawa@mhi.co.jp [Mitsubishi Heavy Industries, Ltd., 2-1-1, Shinhama, Arai-cho, Takasago 676-8686 (Japan); Muroya, Itaru; Iwamoto, Youichi; Ohta, Takahiro; Ochi, Mayumi; Hojo, Kiminobu [Mitsubishi Heavy Industries, Ltd., 2-1-1, Shinhama, Arai-cho, Takasago 676-8686 (Japan); Ogawa, Kazuo [Japan Nuclear Energy Safety Organization, 3-17-1, Toranomon, Minato-ku, Tokyo 105-0001 (Japan)

    2012-02-15

    For evaluation of the PWSCC crack propagation behavior, a test model was produced using the same fabrication process of Japanese PWR plants and the stress distribution change was measured during a fabrication process such as a hydrostatic test, welding a main coolant pipe to the stainless steel safe end and an operation condition test. For confirmation of validity of the numerical estimation method of the stress distribution, FE analysis was performed to calculate the stress distributions for each fabrication process. From the validation procedure, a standard residual stress evaluation method was established. Furthermore for consideration of characteristics of PWSCC's propagation behavior of the dissimilar welding joint of the safe end nozzles, the influence coefficients at the deepest point for the stress intensity factors of axial cracks with large aspect ratio a/c (crack depth/half of surface crack length) was prepared. The crack shape was assumed a rectangular shape and the stress intensity factors at the deepest point of the crack were calculated with change of crack depth using FE analysis. By using these stress distribution and influence coefficients, a behavior of a PWSCC crack propagation at the safe end nozzles can be estimated easily and rationally.

  6. Challenges to Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    This report originates from the compulsory defense during my Ph.D. study at the Technical University of Denmark. Resistance welding is an old and well-proven technology. Yet the emergence of more and more new materials, new designs, invention off new joining techniques, and more stringent...... requirement in quality have imposed challenges to the resistance welding. More some research and development have to be done to adapt the old technology to the manufacturing industry of the 21st century. In the 1st part of the report, the challenging factors to the resistance welding are reviewed. Numerical...... simulation of resistance welding has been under development for many years. Yet it is no easy to make simulation results reliable and accurate because of the complexity of resistance welding process. In the 2nd part of the report numerical modeling of resistance welding is reviewed, some critical factors...

  7. Challenges to Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    This report originates from the compulsory defense during my Ph.D. study at the Technical University of Denmark. Resistance welding is an old and well-proven technology. Yet the emergence of more and more new materials, new designs, invention off new joining techniques, and more stringent...... requirement in quality have imposed challenges to the resistance welding. More some research and development have to be done to adapt the old technology to the manufacturing industry of the 21st century. In the 1st part of the report, the challenging factors to the resistance welding are reviewed. Numerical...... simulation of resistance welding has been under development for many years. Yet it is no easy to make simulation results reliable and accurate because of the complexity of resistance welding process. In the 2nd part of the report numerical modeling of resistance welding is reviewed, some critical factors...

  8. Preliminary Analysis of ULPC Light Curves Using Fourier Decomposition Technique

    CERN Document Server

    Ngeow, Chow-Choong; Kanbur, Shashi; Barrett, Brittany; Lin, Bin

    2013-01-01

    Recent work on Ultra Long Period Cepheids (ULPCs) has suggested their usefulness as a distance indicator, but has not commented on their relationship as compared with other types of variable stars. In this work, we use Fourier analysis to quantify the structure of ULPC light curves and compare them to Classical Cepheids and Mira variables. Our preliminary results suggest that the low order Fourier parameters of ULPCs show a continuous trend defined by Classical Cepheids after the resonance around 10 days. However their Fourier parameters also overlapped with those from Miras, which make the classification of long period variable stars difficult based on the light curves information alone.

  9. Experimental study of cyclic creep and high-cycle fatigue of welded joints of St3 steel by the DIC technique

    Energy Technology Data Exchange (ETDEWEB)

    Kibitkin, Vladimir V., E-mail: vvk@ispms.tsc.ru; Solodushkin, Andrey I., E-mail: s.ai@sibmail.com; Pleshanov, Vasily S., E-mail: vsp@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2015-10-27

    In the paper the mechanisms of plastic deformation and fracture of welded joints of steel St3 were investigated at high-cycle fatigue and cyclic creep by the digital image correlation (DIC) technique. The evolution of strain rate is studied for the following regions: base metal, HAZ, and fusion zone. This strain rate evolution can be considered as a mechanical response of material. Three stages of deformation evolution are shown: deformation hardening (I), fatigue crack initiation (II), and the last stage is related to main crack (III). Two criteria are offered to evaluate the current mechanical state of welded joints.

  10. FLUXES FOR MECHANIZED ELECTRIC WELDING,

    Science.gov (United States)

    WELDING FLUXES, WELDING ), (* WELDING , WELDING FLUXES), ARC WELDING , WELDS, STABILITY, POROSITY, WELDING RODS, STEEL, CERAMIC MATERIALS, FLUXES(FUSION), TITANIUM ALLOYS, ALUMINUM ALLOYS, COPPER ALLOYS, ELECTRODEPOSITION

  11. Studies of welded joints

    Directory of Open Access Journals (Sweden)

    J. M. Krupa

    2010-07-01

    Full Text Available Studies of a welded joint were described. The joint was made as a result of the reconstruction of a truss and one of the possible means to make a repair. The studies were of a simulation character and were targeted at the detection of welding defects and imperfections thatshould be eliminated in a real structure. A model was designed and on this model the tests and examinations were carried out. The modelwas made under the same conditions as the conditions adopted for repair. It corresponded to the real object in shape and dimensions, and in the proposed technique of welding and welding parameters. The model was composed of five plates joined together with twelve beads.The destructive and non-destructive tests were carried out; the whole structure and the respective welds were also examined visually. Thedefects and imperfections in welds were detected by surface methods of inspection, penetration tests and magnetic particle flaw detection.The model of the welded joint was prepared by destructive methods, a technique that would never be permitted in the case of a realstructure. For the investigations it was necessary to cut out the specimens from the welded joint in direction transverse to the weld run. The specimens were subjected to metallographic examinations and hardness measurements. Additionally, the joint cross-section was examined by destructive testing methods to enable precise determination of the internal defects and imperfections. The surface methods were applied again, this time to determine the severity of welding defects. The analysis has proved that, fabricated under proper conditions and with parameters of the welding process duly observed, the welded joint has good properties and repairs of this type are possible in practice.

  12. Laser welding and post weld treatment of modified 9Cr-1MoVNb steel.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z. (Nuclear Engineering Division)

    2012-04-03

    Laser welding and post weld laser treatment of modified 9Cr-1MoVNb steels (Grade P91) were performed in this preliminary study to investigate the feasibility of using laser welding process as a potential alternative to arc welding methods for solving the Type IV cracking problem in P91 steel welds. The mechanical and metallurgical testing of the pulsed Nd:YAG laser-welded samples shows the following conclusions: (1) both bead-on-plate and circumferential butt welds made by a pulsed Nd:YAG laser show good welds that are free of microcracks and porosity. The narrow heat affected zone has a homogeneous grain structure without conventional soft hardness zone where the Type IV cracking occurs in conventional arc welds. (2) The laser weld tests also show that the same laser welder has the potential to be used as a multi-function tool for weld surface remelting, glazing or post weld tempering to reduce the weld surface defects and to increase the cracking resistance and toughness of the welds. (3) The Vicker hardness of laser welds in the weld and heat affected zone was 420-500 HV with peak hardness in the HAZ compared to 240 HV of base metal. Post weld laser treatment was able to slightly reduce the peak hardness and smooth the hardness profile, but failed to bring the hardness down to below 300 HV due to insufficient time at temperature and too fast cooling rate after the time. Though optimal hardness of weld made by laser is to be determined for best weld strength, methods to achieve the post weld laser treatment temperature, time at the temperature and slow cooling rate need to be developed. (4) Mechanical testing of the laser weld and post weld laser treated samples need to be performed to evaluate the effects of laser post treatments such as surface remelting, glazing, re-hardening, or tempering on the strength of the welds.

  13. Preliminary PINC(Program for the Inspection of Nickel Alloy Components) RRT(Round Robin Test) - Pressurizer Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Cho; Kang, Sung Sik; Shin, Ho Sang; Chung, Ku Kab; Song, Myung Ho; Chung, Hae Dong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-06-15

    After several damages by PWSCC were found in the world, USNRC and PNNL(Pacific Northwest National Laboratory) started the research on PWSCC under the project name of PINC. The aim of the project was 1) to fabricate representative NDE mock-ups with flaws to simulate PWSCCs, 2) to identify and quantitatively assess NDE methods for accurately detecting, sizing and characterizing PWSCCs, 3) to document the range of locations and morphologies of PWSCCs and 4) to incorporate results with other results of ongoing PWSCC research programs, as appropriate. Korea nuclear industries have also been participating in the project. Thermally and mechanically cracked-four mockups were prepared and phased array and manual ultrasonic testing(UT) techniques were applied. The results and lessons learned from the preliminary RRT are summarized as follows: 1) Korea RRT teams performed the RRT successfully. 2) Crack detection probability of the participating organizations was an average 87%, 80% and 80% respectively. 3) RMS error of the crack sizing showed comparatively good results. 4) The lessons learned may be helpful to perform the PINC RRT and PSI /ISI in Korea in the future.

  14. The confusion technique untangled: its theoretical rationale and preliminary classification.

    Science.gov (United States)

    Otani, A

    1989-01-01

    This article examines the historical development of Milton H. Erickson's theoretical approach to hypnosis using confusion. Review of the literature suggests that the Confusion Technique, in principle, consists of a two-stage "confusion-restructuring" process. The article also attempts to categorize several examples of confusion suggestions by seven linguistic characteristics: (1) antonyms, (2) homonyms, (3) synonyms, (4) elaboration, (5) interruption, (6) echoing, and (7) uncommon words. The Confusion Technique is an important yet little studied strategy developed by Erickson. More work is urged to investigate its nature and properties.

  15. Preliminary Investigation into Pyrotechnic Chemical Products via Mass Spectrometry Techniques

    Science.gov (United States)

    2015-03-11

    via Mass Spectrometry Techniques 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jonathan Dilger, Eric...undesirable side reactions within the combustion. Mass spectrometry (MS) enables the rapid analysis of these products with instrumentation that offers...predicted by theory. 15. SUBJECT TERMS mass spectrometry , gas chromatography, pyrolysis, combustion products, pyrotechnics 16. SECURITY CLASSIFICATION OF

  16. Preliminary Assessment of the Nutrient Film Technique for Wastewater Treatment

    Science.gov (United States)

    1982-03-01

    of an experiment conducted at CRREL to de- tween an NFT system and a hydroponic plant system termine the feasibility of using the nutrient film tech...umre) Hydroponics Thin films Wastes (Sanitary engineering) \\Waslewater \\I MArWIASSACr a m evemww sb N nem y., d idenif, by block nm,6...) An experiment...was conducted to determine the feasibility of using a solar powered, self-regenerating plant growth system, called the nutrient film technique ( NFT

  17. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  18. An automatic tooth preparation technique: A preliminary study

    Science.gov (United States)

    Yuan, Fusong; Wang, Yong; Zhang, Yaopeng; Sun, Yuchun; Wang, Dangxiao; Lyu, Peijun

    2016-04-01

    The aim of this study is to validate the feasibility and accuracy of a new automatic tooth preparation technique in dental healthcare. An automatic tooth preparation robotic device with three-dimensional motion planning software was developed, which controlled an ultra-short pulse laser (USPL) beam (wavelength 1,064 nm, pulse width 15 ps, output power 30 W, and repeat frequency rate 100 kHz) to complete the tooth preparation process. A total of 15 freshly extracted human intact first molars were collected and fixed into a phantom head, and the target preparation shapes of these molars were designed using customised computer-aided design (CAD) software. The accuracy of tooth preparation was evaluated using the Geomagic Studio and Imageware software, and the preparing time of each tooth was recorded. Compared with the target preparation shape, the average shape error of the 15 prepared molars was 0.05–0.17 mm, the preparation depth error of the occlusal surface was approximately 0.097 mm, and the error of the convergence angle was approximately 1.0°. The average preparation time was 17 minutes. These results validated the accuracy and feasibility of the automatic tooth preparation technique.

  19. Percutaneous peritoneovenous shunt positioning: technique and preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Orsi, Franco; Grasso, Rosario Francesco; Bonomo, Guido; Marinucci, Irene [Division of Radiology, European Institute of Oncology, Milan (Italy); Monti, Cinzia [Institute of Radiology, University of Milan (Italy); Bellomi, Massimo [Division of Radiology, European Institute of Oncology, Milan (Italy); Institute of Radiology, University of Milan (Italy)

    2002-05-01

    Nine peritoneovenous shunts were positioned by percutaneous technique in seven patients with advanced malignancy causing severe refractory ascites, and in two patients with hepatic cirrhosis (one with hepatocarcinoma). In all patients the shunts were percutaneously placed through the subclavian vein in the angiographic suite under digital fluoroscopic guide. No complications directly related to the procedure occurred. The shunt was successfully positioned in all patients in 60 min average time. No patient showed symptoms related to pulmonary overload or to disseminated intravascular coagulation. All patients had a significant improvement of the objective symptoms related to ascites such as respiratory symptoms, dyspepsia, and functional impairment to evacuation describing an improvement of their quality of life. Maximum shunt patency was 273 days. Percutaneous placement of peritoneovenous shunt is a safe, fast, and inexpensive procedure, extremely useful in resolution of refractory ascites, reducing symptoms, and allowing effective palliation, with a great improvement in quality of life. (orig.)

  20. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    Science.gov (United States)

    Al-Sarraf, Z.; Lucas, M.

    2012-08-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  1. EM techniques for archaeological laboratory experiments: preliminary results

    Science.gov (United States)

    Capozzoli, Luigi; De Martino, Gregory; Giampaolo, Valeria; Raffaele, Luongo; Perciante, Felice; Rizzo, Enzo

    2015-04-01

    The electromagnetic techniques (EM) are based on the investigation of subsoil geophysical parameters and in the archaeological framework they involve in studying contrasts between the buried cultural structures and the surrounding materials. Unfortunately, the geophysical contrast between archaeological features and surrounding soils sometimes are difficult to define due to problems of sensitivity and resolution both related on the characteristic of the subsoil and the geophysical methods. For this reason an experimental activity has been performed in the Hydrogeosite laboratory addressed on the assessment of the capability of geophysical techniques to detect archeological remains placed in the humid/saturated subsoil. At Hydrogeosite Laboratory of CNR-IMAA, a large scale sand-box is located, consisting on a pool shape structures of 230m3 where archaeological remains have been installed . The remains are relative to a living environment and burial of Roman times (walls, tombs, roads, harbour, etc.) covered by sediments. In order to simulate lacustrine and wetland condition and to simulate extreme events (for example underwater landslide, fast natural erosion coast, etc.) the phreatic level was varied and various acquisitions for the different scenarios were performed. In order to analyze the EM behavior of the buried small archaeological framework, ground penetrating radar (GPR) and electrical resistivity tomographies were performed. With GPR, analysis in time domain and frequency domain were performed and coupled to information obtained through resistivity analysis with the support of numerical simulations used to compare the real data with those modeled. A dense grid was adopted for 400 and 900 MHz e-m acquisitions in both the directions, the maximum depth of investigation was limited and less than 3 meters. The same approach was used for ERT acquisition where different array are employed, in particular 3D configuration was used to carry out a 3D resistivity

  2. Bobbin-Tool Friction-Stir Welding of Thick-Walled Aluminum Alloy Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E C; Pastrnak, J W; Engel, J; Forrest, R S; Kokko, E; Ternan, K M; Waldron, D

    2007-06-06

    It was desired to assemble thick-walled Al alloy 2219 pressure vessels by bobbin-tool friction-stir welding. To develop the welding-process, mechanical-property, and fitness-for-service information to support this effort, extensive friction-stir welding-parameter studies were conducted on 2.5 cm. and 3.8 cm. thick 2219 Al alloy plate. Starting conditions of the plate were the fully-heat-treated (-T62) and in the annealed (-O) conditions. The former condition was chosen with the intent of using the welds in either the 'as welded' condition or after a simple low-temperature aging treatment. Since preliminary stress-analyses showed that stresses in and near the welds would probably exceed the yield-strength of both 'as welded' and welded and aged weld-joints, a post-weld solution-treatment, quenching, and aging treatment was also examined. Once a suitable set of welding and post-weld heat-treatment parameters was established, the project divided into two parts. The first part concentrated on developing the necessary process information to be able to make defect-free friction-stir welds in 3.8 cm. thick Al alloy 2219 in the form of circumferential welds that would join two hemispherical forgings with a 102 cm. inside diameter. This necessitated going to a bobbin-tool welding-technique to simplify the tooling needed to react the large forces generated in friction-stir welding. The bobbin-tool technique was demonstrated on both flat-plates and plates that were bent to the curvature of the actual vessel. An additional issue was termination of the weld, i.e. closing out the hole left at the end of the weld by withdrawal of the friction-stir welding tool. This was accomplished by friction-plug welding a slightly-oversized Al alloy 2219 plug into the termination-hole, followed by machining the plug flush with both the inside and outside surfaces of the vessel. The second part of the project involved demonstrating that the welds were fit for the intended

  3. Corrosion studies using potentiodynamic and EIS electrochemical techniques of welded lean duplex stainless steel UNS S82441

    Science.gov (United States)

    Brytan, Z.; Niagaj, J.; Reiman, Ł.

    2016-12-01

    The corrosion characterisation of lean duplex stainless steel (1.4662) UNS S82441 welded joints using the potentiodynamic test and electrochemical impedance spectroscopy in 1 M NaCl solution are discussed. The influence of autogenous TIG welding parameters (amount of heat input and composition of shielding gases like Ar and Ar-N2 and an Ar-He mixture), as well as A-TIG welding was studied. The influence of welding parameters on phase balance, microstructural changes and the protective properties of passive oxide films formed at the open circuit potential or during the anodic polarisation were studied. From the results of the potentiodynamic test and electrochemical impedance spectroscopy of TIG and A-TiG, welded joints show a lower corrosion resistance compared to non-welded parent metal, but introducing heat input properly during welding and applying shielding gases rich in nitrogen or helium can increase austenitic phase content, which is beneficial for corrosion resistance, and improves surface oxide layer resistance in 1 M NaCl solution.

  4. Mitchell′s technique for epispadias repair: Our preliminary experience

    Directory of Open Access Journals (Sweden)

    Sarin Yogesh

    2006-01-01

    Full Text Available Aim: We present here experience of a single surgeon with Mitchell′s procedure for correction of epispadias. Materials and Methods: Nine boys (mean age 5½ years, range 9 months to 16 years underwent Mitchell′s repair in Department of Pediatric Surgery over a period of 5½ (September 1999 to March 2005 for correction of epispadias. Six of these patients had come for the second stage of exstrophy-epispadias repair after primary bladder closure; the other three had incontinent penopubic epispadias. Results: The penis was cosmetically acceptable as regards to size, glans shape and peno-pubic angle in all the patients. However, there was a high incidence of penopubic fistula (44%. These patients with penopubic fistula also required postoperative urethral dilatations, at times repeated. One of the common factors to these subset patients was their younger age when Mitchell′s urethroplasty was performed. Limitations: The series is descriptive in nature, short in numbers and does not provide statistical comparison of Mitchell′s procedure with the previously done procedures. Conclusions: Mitchell′s complete penile disassembly technique for epispadias repair is more acceptable anatomical procedure that results in near-pendulous penis. However, when performed at young age, it is fraught with the complication of penopubic fistula similar to that as seen with Cantwell-Ransley′s procedure. Mitchell′s procedure creates a hypospadiac meatus initially and the meatal advancement is required as for any other distal penile/coronal hypospadias.

  5. Detection of irradiated chestnuts: preliminary study using three analytical techniques

    Science.gov (United States)

    Mangiacotti, Michele; Chiaravalle, Antonio Eugenio; Marchesani, Giuliana; De Sio, Antonio; Boniglia, Concetta; Bortolin, Emanuela; Onori, Sandro

    2009-07-01

    Irradiation of chestnuts has recently been considered as an alternative treatment to fumigation to reduce the considerable amount of the product normally lost during post-harvest period. The treatment is allowed in countries such as Korea and, in view of a possible extension to European countries, to permit the legal controls as required by the directive 1999/2/EC [ European Parliament and Council Directive, 1999/2/EC, on the approximation of the laws of the Member States concerning foods and food ingredients treated with ionising radiation. Official Journal of the European Communities. L 66/16 of 13.3.1999] and meet consumer consensus, reliable methods for detecting irradiated chestnuts have to be proposed. The aim of the present work was to test the efficacy of the European Standard EN 13751, EN 1788, EN 1787 and EN 13708 in detecting irradiated chestnuts. For this purpose, six sets of "Montella" chestnuts, a typical Italian variety recognized as a PGI (protected geographical indication), non-irradiated and irradiated at different doses in the 0.1-1 kGy range, were analysed by thermoluminescence (TL), photo-stimulated luminescence (PSL) (screening and calibrated PSL) and ESR techniques. PSL and TL analysis results revealed the low luminescence sensitivity of the chestnuts. Nevertheless, PSL screening data were in the intermediate band above the negative threshold (at all doses except at the lowest one) and TL analysis led to correct positive classifications even at the lowest dose tested (0.15 Gy). On the contrary, no radio-induced ESR signal could be registered with the irradiated samples of chestnut shell or pulp.

  6. Detection of irradiated chestnuts: preliminary study using three analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mangiacotti, Michele [Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia (Italy)], E-mail: izsfgchimica@infinito.it; Chiaravalle, Antonio Eugenio; Marchesani, Giuliana [Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia (Italy); De Sio, Antonio [La Dolce Irpinia Srl - Montella (AV) (Italy); Boniglia, Concetta [Department of Public Veterinary Health and Food Safety, Istituto Superiore di Sanita, Rome (Italy); Bortolin, Emanuela; Onori, Sandro [Department of Technology and Health, Istituto Superiore di Sanita, Rome (Italy)

    2009-07-15

    Irradiation of chestnuts has recently been considered as an alternative treatment to fumigation to reduce the considerable amount of the product normally lost during post-harvest period. The treatment is allowed in countries such as Korea and, in view of a possible extension to European countries, to permit the legal controls as required by the directive 1999/2/EC [/2/EC, on the approximation of the laws of the Member States concerning foods and food ingredients treated with ionising radiation. Official Journal of the European Communities. L 66/16 of 13.3.1999] and meet consumer consensus, reliable methods for detecting irradiated chestnuts have to be proposed. The aim of the present work was to test the efficacy of the European Standard EN 13751, EN 1788, EN 1787 and EN 13708 in detecting irradiated chestnuts. For this purpose, six sets of 'Montella' chestnuts, a typical Italian variety recognized as a PGI (protected geographical indication), non-irradiated and irradiated at different doses in the 0.1-1 kGy range, were analysed by thermoluminescence (TL), photo-stimulated luminescence (PSL) (screening and calibrated PSL) and ESR techniques. PSL and TL analysis results revealed the low luminescence sensitivity of the chestnuts. Nevertheless, PSL screening data were in the intermediate band above the negative threshold (at all doses except at the lowest one) and TL analysis led to correct positive classifications even at the lowest dose tested (0.15 Gy). On the contrary, no radio-induced ESR signal could be registered with the irradiated samples of chestnut shell or pulp.

  7. 铸铁焊补特殊工艺研究与应用实践%Study and application on special repair welding technique of iron-castings

    Institute of Scientific and Technical Information of China (English)

    邱葭菲

    2011-01-01

    在生产实际中常常会遇到铸铁件的焊接修复.冷焊工艺由于焊前不预热、劳动条件好、成本低、周期短等优点,已成为铸件焊补的首选工艺.在实践中发现,仅采用普通的冷焊工艺,其产生白口、淬硬组织和应力的倾向比热焊大,很难获得满意的焊补质量,若在焊补中采取一些特殊的工艺措施,能收到较好的效果.详细分析了自制铜钢焊条焊补法、水浸焊补法、栽丝焊补法、镶块焊补法以及镶边铺底过渡焊补法等特殊焊补工艺的原理、特点和适用范围,并列举了典型应用实例,对铸铁件的焊补修复具有参考价值.%In actual production,the cast-iron stocks often are repaired.Cold welding technology has become the preferred process for use in repair welding of iron-castings, due to non-preheat, low cost.short cycle and good labor coditions.lt is founded that it is diffcult for repair welding of iron-castings to obtain satisfied weld quality,only to use ordinary cold welding technology which is more sensitive to quench tissue,crack and welding stress than hot welding.If some special repair welding technique be used,high quality weld can be obtained.Based on many years of research and application experience,The paper analyses in detail the principle,process features and applicable scope of special repair welding techniques,such as the self-made iron-castings electrode by ordinary carbon steel electrode,water-cooling welding,planting bolt welding,filling groove with steel plate and surfacing groove face etc,some typical application examples are given.These special repair welding techniques have guiding funtion on repair welding of cast-iron stocks.

  8. Laser Welding Dissimilar Reflective Alloys

    Science.gov (United States)

    Mccay, M. H.; Gopinathan, S.; Kahlen, F.; Speigel, L.

    1993-01-01

    This project, jointly sponsored by Rocketdyne and CSTAR, involves the development of laser joining of materials which have heretofore been impractical to bond. Of particular interest are joints between stainless steel and copper and also aluminum 6061 to aluminum 2219. CSTAR has a unique opportunity in this area since both the process and development and diagnostics are of interest to industry. Initial results using the pulse tailored laser welding technique developed in CLA for joining crack sensitive materials have proven promising for the aluminum joints based upon metallurgical and electronic microprobe analysis. A declaration of success requires additional mechanical testing. A CW technique has been applied to the stainless-copper joining with some preliminary success. These joints are of significant interest for aeronautics and rocket propulsion applications and the project is expected to continue.

  9. First industrial application of the auto-adaptative MAG STT welding technique with laser joint tracking; Premiere application industrielle du soudage MAG STT avec suivi de joint auto-adaptatif au laser

    Energy Technology Data Exchange (ETDEWEB)

    Tran Tien, Th. [Institut de Soudure, 93 - Villepinte (France)

    2007-05-15

    The Welding Institute has participated to the plan of construction of the Large Hadron Collider. The hoops of the dipolar magnets are composed of two half cylinders 15 m in length in 10 mm 316LN austenitic stainless steel and are assembled around the magnet in a horizontal-vertical position. The Welding Institute has developed a software for carrying out the auto-adaptative welding technique with laser joint tracking, in using the MAG STT (Surface Tension Transfer) process. The modelling of the welding laws and the strategy of filling the joints in multi-paths absorb the physical tolerances of the preparation (clearance, poor alignment, root..) in dynamic welding condition too. (O.M.)

  10. Weld penetration and defect control

    Energy Technology Data Exchange (ETDEWEB)

    Chin, B.A.

    1992-05-15

    Highly engineered designs increasingly require the use of improved materials and sophisticated manufacturing techniques. To obtain optimal performance from these engineered products, improved weld properties and joint reliability are a necessarily. This requirement for improved weld performance and reliability has led to the development of high-performance welding systems in which pre-programmed parameters are specified before any welding takes place. These automated systems however lack the ability to compensate for perturbations which arise during the welding process. Hence the need for systems which monitor and control the in-process status of the welding process. This report discusses work carried out on weld penetration indicators and the feasibility of using these indicators for on-line penetration control.

  11. Biomonitoring for iron, manganese, chromium, aluminum, nickel and cadmium in workers exposed to welding fume: a preliminary study

    Directory of Open Access Journals (Sweden)

    Mulyana

    2015-05-01

    Full Text Available The control of exposure to welding fumes is increasing importance in promoting a healthy, safe and productive work environment. This study is a case-control design, random study was conducted among welder (56 subjects and non welder (39 subjects with more than 1 years experience in the same job task in an automotive parts manufactory within the industrial area at Cikarang in 2013. All subjects were completed physical examination, informed consent and questionnaire. Blood heavy metals were determined by Inductively-Coupled Plasma Mass Spectrometry (ICP-MS. Whole blood iron, manganese, chromium and lead in welder were higher than non-welder, but not different for aluminum, nickel and cadmium. In welder, chromium and manganese correlated with smoking status, cadmium correlated with age and smoking status. In multivariate analysis, wholeblood cadmium correlates with age and smoking status.

  12. Welding, Bonding and Fastening, 1984

    Science.gov (United States)

    Buckley, J. D. (Editor); Stein, B. A. (Editor)

    1985-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  13. Development of Temper Bead Welding Process for Weld Overlay of Dissimilar Welds

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, J. G.; Park, K. S.; Kim, Y. J. [Doosan Heavy Industries and Construction Co., Ltd., Seoul (Korea, Republic of)

    2008-10-15

    In recent years, the dissimilar weld metal used to connect stainless steel piping and low alloy steel or carbon steel components have experienced cracking in nuclear reactor piping systems. The cracking has been observed in several Pressurized Water Reactors in overseas. In Several cases, the cracking was repaired using structural weld overlays, a repair technique that has been in use in the U.S. in Boiling Water Reactors for over twenty years. Although weld overlays have been used primarily as a repair for flawed piping, they can also be applied at locations that have not yet exhibited any cracking, but are considered susceptible to cracking. The purpose of this research is to develop the temper bead weld process for the weld overlay of the dissimilar weld pipe. We developed equipment for the overlay system, applied Procedure Qualification(PQ) for the temper bead welding process.

  14. Intraoral Laser Welding (ILW) in Implant Prosthetic Dentistry: Case Report

    Science.gov (United States)

    Fornaini, Carlo; Merigo, Elisabetta; Cernavin, Igor; Lòpez de Castro, Gonzalo; Vescovi, Paolo

    2012-01-01

    The aim of this clinical study was to describe the possibility of using the Nd:YAG laser device utilized in the dental offices to weld metals intraorally. The authors, before applying this technique “in vivo” on human subjects, tested the “in vitro” metal welding efficacy of dental Nd:YAG device firstly by interferometry, SEM, and EDS and subsequently by thermal camera and thermocouples in order to record temperature changes during the welding process on bovine jaws. Four implants were inserted in the edentulous maxillary arch of a 67 years old male patient. Immediately after that, a bar previously made by the dental technician was intraorally welded to the abutments by Nd:YAG laser (Fidelis Plus III, Fotona, Slovenia) with these parameters: 9.90 mJ, 1 Hz, 15 msec, 0.6 mm spot. Then the prosthesis was connected to the bar with four OT Caps. This clinical study, even if preliminary, suggests that laser welding technique may be intraorally used without side effects. PMID:22924134

  15. Intraoral Laser Welding (ILW in Implant Prosthetic Dentistry: Case Report

    Directory of Open Access Journals (Sweden)

    Carlo Fornaini

    2012-01-01

    Full Text Available The aim of this clinical study was to describe the possibility of using the Nd:YAG laser device utilized in the dental offices to weld metals intraorally. The authors, before applying this technique “in vivo” on human subjects, tested the “in vitro” metal welding efficacy of dental Nd:YAG device firstly by interferometry, SEM, and EDS and subsequently by thermal camera and thermocouples in order to record temperature changes during the welding process on bovine jaws. Four implants were inserted in the edentulous maxillary arch of a 67 years old male patient. Immediately after that, a bar previously made by the dental technician was intraorally welded to the abutments by Nd:YAG laser (Fidelis Plus III, Fotona, Slovenia with these parameters: 9.90 mJ, 1 Hz, 15 msec, 0.6 mm spot. Then the prosthesis was connected to the bar with four OT Caps. This clinical study, even if preliminary, suggests that laser welding technique may be intraorally used without side effects.

  16. 78 FR 48647 - Certain Circular Welded Non-Alloy Steel Pipe from Mexico: Preliminary Results and Partial...

    Science.gov (United States)

    2013-08-09

    .... Although the HTSUS subheadings are provided for convenience and customs purposes, our written description... Electronic Service System (IA ACCESS). IA ACCESS is available to registered users at http://iaaccess.trade... electronic versions of the Preliminary Decision Memorandum are identical in content. Background...

  17. 75 FR 33262 - Certain Welded Carbon Steel Pipe and Tube from Turkey: Notice of Preliminary Results of...

    Science.gov (United States)

    2010-06-11

    ... to the exportation of the subject merchandise; and (2) the respondent has demonstrated that there are... distribution between the producer and the unaffiliated customer. See Honey from Argentina: Preliminary Results... (December 30, 2008) (``Honey from Argentina''). If the comparison-market sales are at a different LOT...

  18. 76 FR 33204 - Certain Welded Carbon Steel Pipe and Tube From Turkey; Notice of Preliminary Results of...

    Science.gov (United States)

    2011-06-08

    ... to the exportation of the subject merchandise; and (2) the respondent has demonstrated that there... Honey From Argentina: Preliminary Results of Antidumping Duty Administrative Review and Intent to Revoke Order in Part, 73 FR 79802, 79805 (December 30, 2008) (``Honey from Argentina''). If the...

  19. 76 FR 79651 - Stainless Steel Butt-Weld Pipe Fittings From Italy: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2011-12-22

    ... sales promotion and processing; (2) coordinated their production and pricing decisions; (3) shared..., 2010, through January 31, 2011. For these preliminary results, we found that one respondent made sales... sales. We initiated the review of both companies on March 31, 2011. See Initiation of Antidumping...

  20. TECHNOLOGICAL ISSUES IN MECHANISED FEED WIG/TIG WELDING SURFACING OF WELDING

    Directory of Open Access Journals (Sweden)

    BURCA Mircea

    2016-09-01

    manual welding tests in the light of using the process for welding surfacing being known that in such applications mechanised operations are recommended whenever possible given the latter strengths i.e. increased productivity and quality deposits. The research also aims at achieving a comparative a study between wire mechanised feed based WIG manual welding and the manual rod entry based manual welding in terms of geometry deposits, deposits aesthetics, operating technique, productivity, etc . In this regard deposits were made by means of two welding procedures, and subsequently welding surfacing was made with the optimum values of the welding parameters in this case.

  1. Effect of the surface preparation techniques on the EBSD analysis of a friction stir welded AA1100-B{sub 4}C metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J., E-mail: junfeng.guo@cnrc-nrc.gc.ca [University of Quebec at Chicoutimi, Chicoutimi (QC), G7H 2B1 (Canada); Aluminium Technology Centre, National Research Council Canada, Chicoutimi (QC), G7H 8C3 (Canada); Amira, S.; Gougeon, P. [Aluminium Technology Centre, National Research Council Canada, Chicoutimi (QC), G7H 8C3 (Canada); Chen, X.-G. [University of Quebec at Chicoutimi, Chicoutimi (QC), G7H 2B1 (Canada)

    2011-09-15

    Aluminum based metal matrix composites (MMCs) have been used in various automobile, aerospace and military industries. Yet characterization of the microstructure in these materials remains a challenge. In the present work, the grain structure in the matrix of B{sub 4}C particulate reinforced MMCs and their friction stir welds is characterized by using optical metallography and the electron backscatter diffraction (EBSD) technique. Optical metallography can partially reveal the grain structure in the matrix of AA1100-16 vol.% B{sub 4}C composite. The EBSD technique has been successfully applied to characterize the grain structure in the AA1100-16 vol.% B{sub 4}C friction stir welds, which provides a powerful tool to follow the microstructural evolution of MMC materials during friction stir welding (FSW). Both mechanical polishing and ion beam polishing are used for the EBSD sample preparation. The effect of the sample preparation on the EBSD data acquisition quality is studied. Some typical examples, such as the identification of grains and subgrains, grain size distribution, deformation fields and the texture components are given. - Highlights: {yields} EBSD has been used to characterize the grain structure of Al-B{sub 4}C MMCs. {yields} Mechanical and ion beam polishing are compared for EBSD sample preparation of MMCs. {yields} EBSD shows great advantages over optical microscopy for microtexture analysis of MMCs.

  2. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding

    OpenAIRE

    Torres López, Edwar A.; Ramirez, Antonio J

    2015-01-01

    Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW) has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized u...

  3. Welding of solid wood

    OpenAIRE

    Ivica Župčić; Goran Mihulja; Andrija Bogner; Ivica Grbac; Ivica @up~i}, Goran Mihulja, Andrija Bogner, Ivica Grbac,; Božidar Hrovat

    2008-01-01

    This paper presents the up-to-date knowledge and results of the application of wood welding techniques at the Faculty of Forestry University of Zagreb. Wood welding technologies have been developed as a new way of bonding timber by using high temperature generatedby friction and pressure. Timber is assembled without any adhesives. During the process the surface layer of timber (lignin), which is in direct contact with its counterpart, melts due to high pressure and temperature, which is usual...

  4. 基于压电换能器的新型超声波助焊技术%Ultrasonic Welding-promoting Technique Based on Piezoelectric Transducer

    Institute of Scientific and Technical Information of China (English)

    刘婷; 高椿明

    2012-01-01

    Using the mechanical effect of the ultrasonic wave, the ultrasonic welding-promoting technique has been presented. The ultrasonic wave generating device generates a high-frequency oscillation signal; a high-frequency mechanical vibration, converted by the piezoelectric transducer, transmits to the medium; the ultrasonic wave radiates forward in the solder solution, resulting in a strong pressure and an instant oscillation in the solder solution, lowering the surface tension of the solder solution, ensuring the expansion, flow and infiltration of the solder solution on the welding surface, so as to improving the infiltration of the solder solution. Experimental results show that the ultrasonic welding-promoting technique can enhance the infiltration of the solder solution on the wire and the welding quality has been significantly improved.%利用超声波的机械作用,将超声波应用到焊接技术中,提出一种超声波助焊技术.超声波发生装置发出高频振荡信号,通过压电换能器转换成高频机械振荡而传播到介质,超声波在焊锡溶液中向前辐射,产生较强的压力,使焊锡溶液在瞬间有较大的振荡速度,降低焊锡溶液的表面张力,确保焊锡溶液在被焊接物表面顺利扩展、流动、浸润,提高焊锡溶液的浸润度.实验结果表明,超声助焊能明显提高焊锡对导线的浸润,提高导线焊接质量.

  5. Welding Technician

    Science.gov (United States)

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  6. Verification of split spectrum technique for ultrasonic inspection of welded structures in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ericsson, L.; Stepinski, T. (Uppsala Univ., Dept. of Technology, Uppsala (Sweden))

    1992-10-01

    Ultrasonic nondestructive inspection of materials is often limited by the presence of backscattered echoes from the material structure. A digital signal processing technique for removal of this material noise, referred to as split spectrum processing (SSP), has been developed and verified using simple laboratory experiments during the last decade. However, application of the split spectrum processing algorithm to industrial conditions has been rarely reported. In the paper the results of the practical evaluation of the SSP technique are presented. A number of different ultrasonic transducers were used for acquiring echoes from artificial flaws as well as natural cracks. The flaws were located in test blocks employed by the Swedish Nuclear Power Companies as reference during ultrasonic inspection of nuclear reactor vessels. The acquired ultrasonic A-scan signals were processed off-line using specially developed algorithms on a personal computer (PC). The experiments show evidence that properly tuned SSP algorithms result in a considerable improvement of the signal to material noise ratio. The enhancements were similar irrespective of the features of the transducer used or the nature of the inspected flaw. The problems related to the development of self-tuning SSP algorithms for on-line processing of B-scans are discussed. (author).

  7. The use of fluorescence correlation spectroscopy (FCS) as an alternative biomarker detection technique: a preliminary study

    OpenAIRE

    Shahzad, Aamir; Knapp, Martin; Lang, Irene; Köhler, Gottfried

    2011-01-01

    Abstract Biomarkers are essential part of daily medical practice. Currently, biomarkers are being used both for diagnostic and prognostic purposes. There are many approaches e.g. ELISA by which biomarker levels are detected from patient samples. However, all these approaches are laborious, time consuming and expensive. There is therefore a general need for exploring new technique which can overcome these drawbacks. Here, we present a preliminary study for detection of serum biomarkers by fluo...

  8. EMAT weld inspection and weld machine diagnostic system for continuous coil processing lines

    Science.gov (United States)

    Latham, Wayne M.; MacLauchlan, Daniel T.; Geier, Dan P.; Lang, Dennis D.

    1996-11-01

    Weld breaks of steel coil during cold rolling and continuous pickling operations are a significant source of lost productivity and product yield. Babcock and Wilcox Innerspec Technologies has developed a weld process control system which monitors the key variables of the welding process and determines the quality of the welds generated by flash butt welding equipment. This system is known as the Temate 2000 Automated Flash Butt Weld Inspection and Weld Machine Diagnostic System. The Temate 2000 system utilizes electro- magnetic acoustic transducer (EMAT) technology as the basis for performing on-line, real-time, nondestructive weld quality evaluation. This technique accurately detects voids, laps, misalignment and over/under trim conditions in the weld. Results of the EMAT weld inspection are immediately presented to the weld machine operator for disposition. Welding process variables such as voltage, current, platen movements and upset pressures are monitored and collected with the high speed data acquisition system. This data is processed and presented in real-time display to indicate useful welding process information such as platen crabbing, upset force, peak upset current, and many others. Alarming for each variable is provided and allows detailed maintenance reports and summary information to be generated. All weld quality and process parameter data are stored, traceable to each unique weld, and available for post process evaluation. Installation of the Temate 2000 system in a major flat rolled steel mill has contributed to near elimination of weld breakage and increased productivity at this facility.

  9. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool.

  10. Residual stress in a laser welded EUROFER blanket module assembly using non-destructive neutron diffraction techniques

    CERN Document Server

    Hughes, D J; Heeley, E L

    2014-01-01

    Whilst the structural integrity and lifetime considerations in welded joints for blanket modules can be predicted using finite element software, it is essential to prove the validity of these simulations. This paper provides detailed analysis for the first time, of the residual stress state in a laser-welded sample with integral cooling channels. State-of-the-art non-destructive neutron diffraction was employed to determine the triaxial stress state and to understand microstructural changes around the heat affected zone. Synchrotron X-ray diffraction was used to probe the variation of strain-free lattice reference parameter around the weld zone allowing correction of the neutron measurements. This paper details an important experimental route to validation of predicted stresses in complex safety-critical reactor components for future applications.

  11. New measurement technique of ductility curve for ductility-dip cracking susceptibility in Alloy 690 welds

    Energy Technology Data Exchange (ETDEWEB)

    Kadoi, Kota, E-mail: kadoi@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Uegaki, Takanori; Shinozaki, Kenji; Yamamoto, Motomichi [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan)

    2016-08-30

    The coupling of a hot tensile test with a novel in situ observation technique using a high-speed camera was investigated as a high-accuracy quantitative evaluation method for ductility-dip cracking (DDC) susceptibility. Several types of Alloy 690 filler wire were tested in this study owing to its susceptibility to DDC. The developed test method was used to directly measure the critical strain for DDC and high temperature ductility curves with a gauge length of 0.5 mm. Minimum critical strains of 1.3%, 4.0%, and 3.9% were obtained for ERNiCrFe-7, ERNiCrFe-13, and ERNiCrFe-15, respectively. The DDC susceptibilities of ERNiCrFe-13 and ERNiCrFe-15 were nearly the same and quite low compared with that of ERNiCrFe-7. This was likely caused by the tortuosity of the grain boundaries arising from the niobium content of around 2.5% in the former samples. Besides, ERNiCrFe-13 and ERNiCrFe-15 indicated higher minimum critical strains even though these specimens include higher content of sulfur and phosphorus than ERNiCrFe-7. Thus, containing niobium must be more effective to improve the susceptibility compared to sulfur and phosphorous in the alloy system.

  12. Effects of implant angulation, material selection, and impression technique on impression accuracy: a preliminary laboratory study.

    Science.gov (United States)

    Rutkunas, Vygandas; Sveikata, Kestutis; Savickas, Raimondas

    2012-01-01

    The aim of this preliminary laboratory study was to evaluate the effects of 5- and 25-degree implant angulations in simulated clinical casts on an impression's accuracy when using different impression materials and tray selections. A convenience sample of each implant angulation group was selected for both open and closed trays in combination with one polyether and two polyvinyl siloxane impression materials. The influence of material and technique appeared to be significant for both 5- and 25-degree angulations (P impression accuracy. The open-tray technique was more accurate with highly nonaxially oriented implants for the small sample size investigated.

  13. Design of Friction Stir Spot Welding Tools by Using a Novel Thermal-Mechanical Approach

    Directory of Open Access Journals (Sweden)

    Zheng-Ming Su

    2016-08-01

    Full Text Available A simple thermal-mechanical model for friction stir spot welding (FSSW was developed to obtain similar weld performance for different weld tools. Use of the thermal-mechanical model and a combined approach enabled the design of weld tools for various sizes but similar qualities. Three weld tools for weld radii of 4, 5, and 6 mm were made to join 6061-T6 aluminum sheets. Performance evaluations of the three weld tools compared fracture behavior, microstructure, micro-hardness distribution, and welding temperature of welds in lap-shear specimens. For welds made by the three weld tools under identical processing conditions, failure loads were approximately proportional to tool size. Failure modes, microstructures, and micro-hardness distributions were similar. Welding temperatures correlated with frictional heat generation rate densities. Because the three weld tools sufficiently met all design objectives, the proposed approach is considered a simple and feasible guideline for preliminary tool design.

  14. Improvement of the bonding strength of Al/Cu transition joint made by single-shot explosive welding technique using Cu intermediate plate. Cu chukanzai wo mochiita doji bakusetsuho ni yoru Al/Cu izai tsugite no setsugo kyodo no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Izuma, T.; Niwatsukino, T. (Asahi Chemical Industry Co. Ltd., Tokyo (Japan)); Hokamoto, K.; Fujita, M. (Kumamoto University, Kumamoto (Japan))

    1994-02-01

    Improvement of the bonding strength of Al/Cu transition joints was tried by single-shot explosive welding technique using a Cu intermediate plate (Cu-IP). As the preliminary experiment, a relatively thin Al alloy plate (4 mm in thickness) and Cu plate (2.5 mm) were bonded by explosive welding to study the effect of bonding conditions on interfacial zone (IZ) structure and bonding strength. As a result, the thickness of IZs increased with an explosive mass involving reduction of bonding strengths, and the use of Cu-IP was effective in reducing the energy applied to IZ because the energy contributed to formation of IZ. As the fabrication experiment of practical Al/Cu transition joints, a pure Al plate and pure Cu plate of 20 mm in thickness and Cu-IPs of 1.0 and 1.5 mm were bonded by explosive welding. As a result, the IZ thickness was 20-70 [mu]m and 5 [mu]m without/with Cu-IP, respectively, and the joint showed the same tensile strength as the base Al plate, suggesting possible production of practical Al/Cu electrical transition joints. 8 refs., 12 figs., 3 tabs.

  15. Laser welding in a reduced gravity environment

    Science.gov (United States)

    Workman, Gary L.; Kaukler, William F.

    1992-01-01

    Preliminary results on the effects of reduced gravity on laser welding of stainless steel and other materials are reported. Laser welding experiments using a low power (10-18 watts) Nd-YAG laser have been performed on the NASA KC-135, which flies parabolic maneuvers to simulate reduced gravity conditions. Experiments on 0.005-0.010 inch thick stainless steel samples displayed a pronounced change in weld bead width, depth of penetration and surface ripple with changes in gravity level.

  16. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...... this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling...

  17. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling......Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...

  18. Magnetic Pulse Welding Technology

    Directory of Open Access Journals (Sweden)

    Ahmad K. Jassim

    2011-12-01

    Full Text Available In this paper, the benefits of using Magnetic Pulse machine which is belong to Non-conventional machine instead of conventional machine. Magnetic Pulse Technology is used for joining dissimilar metals, and for forming and cutting metals. It is a non contact technique. Magnetic field is used to generate impact magnetic pressure for welding and forming the work piece by converted the electrical energy to mechanical energy. It is enable us to design previously not possible by welding dissimilar materials and allowing to welds light and stronger materials together. It can be used to weld metallic with non metallic materials to created mechanical lock on ceramics, polymers, rubbers and composites. It is green process; there is no heat, no radiation, no gas, no smoke and sparks, therefore the emissions are negligible.

  19. Polyimide weld bonding for titanium alloy joints

    Science.gov (United States)

    Vaughan, R. W.; Kurland, R. M.

    1974-01-01

    Two weld bonding processes were developed for joining titanium alloy; one process utilizes a weld-through technique and the other a capillary-flow technique. The adhesive used for the weld-through process is similar to the P4/A5F system. A new polyimide laminating resin, BFBI/BMPM, was used in the capillary-flow process. Static property information was generated for weld-bonded joints over the temperature range of 219 K (-65 F) to 561 K (+550 F) and fatigue strength information was generated at room temperature. Significant improvement in fatigue strength was demonstrated for weld-bonded joints over spot-welded joints. A demonstration was made of the applicability of the weld-through weld-bonding process for fabricating stringer stiffened skin panels.

  20. Welding of aluminum with linear ribbon explosives.

    Science.gov (United States)

    Bement, L. J.

    1971-01-01

    A small-scale simplified, parallel plate process of welding aluminum with very small quantities of lead-sheathed linear ribbon RDX explosive is described. The results of the welding of five different alloys, obtained by using this technique, show that the weld strengths are up to 90% of the parent metal tensile strength.

  1. A study of processes for welding pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Weston, J. (ed.)

    1991-07-01

    A review was made of exisiting and potential processes for welding pipelines: fusion welding (arc, electron beam, laser, thermit) and forge welding (friction, flash, magnetically impelled arc butt, upset butt, explosive, shielded active gas, gas pressure). Consideration of J-lay operations gave indications that were reflections of the status of the processes in terms of normal land and offshore S-lay operation: forge welding processes, although having promise require considerable development; fusion welding processes offer several possibilities (mechanized GMA welding likely to be used in 1991-2); laser welding requires development in all pipeline areas: a production machine for electron beam welding will involve high costs. Nondestructive testing techniques are also reviewed. Demand for faster quality assessment is being addressed by speeding radiographic film processing and through the development of real time radiography and automatic ultrasonic testing. Conclusions on most likely future process developments are: SMAW with cellulosic electrodes is best for tie-ins, short pip runs; SMAW continues to be important for small-diameter lines, although mechanized GMA could be used, along with mechanical joining, MIAB, radial fraction, and flash butt; mechanized GMA welding is likely to predominate for large diameter lines and probably will be used for the first J-lay line (other techniques could be used too); and welding of piping for station facilities involves both shop welding of sub-assemblies and on-site welding of pipe and sub-assemblies to each other (site welding uses both SMAW and GMAW). Figs, tabs.

  2. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Z.; Chen, Y. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Haghshenas, M., E-mail: mhaghshe@uwaterloo.ca [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Nguyen, T. [Mechanical Systems Engineering, Conestoga College, Kitchener (Canada); Galloway, J. [Welding Engineering Technology, Conestoga College, Kitchener (Canada); Gerlich, A.P. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada)

    2015-06-15

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.

  3. New explosive seam welding concepts

    Science.gov (United States)

    Bement, L. J.

    1973-01-01

    Recently developed techniques provide totally-confined linear explosive seam welding and produce scarf joint with linear explosive seam welding. Linear ribbon explosives are utilized in making narrow, continuous, airtight joints in variety of aluminum alloys, titanium, copper, brass, and stainless steel.

  4. Technical specifications on the welding in fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Karino, Motonobu; Uryu, Mitsuru; Matsui, N.; Nakazawa, Fumio; Imanishi, Makoto; Koizumi; Kazuhiko; Sugawara, Junichi; Tanaka, Hideo

    1999-04-01

    The past specifications SGN of the welding in JNC was reexamined for the reprocessing plants in order to further promote the quality control. The specification first concerns the quality of raw materials, items of the quality tests, material management, and qualification standards of the welders. It extends over details of the welding techniques, welding design, welding testings, inspection and the judgment standards. (H. Baba)

  5. Preliminary study of an angiographic and angio-tomographic technique based on K-edge filters

    Energy Technology Data Exchange (ETDEWEB)

    Golosio, Bruno; Brunetti, Antonio [Dipartimento POLCOMING, Istituto di Matematica e Fisica, Università di Sassari, 07100 Sassari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari (Italy); Oliva, Piernicola; Carpinelli, Massimo [Dipartimento di Chimica e Farmacia, Università di Sassari, 07100 Sassari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari (Italy); Luca Masala, Giovanni [Dipartimento di Chimica e Farmacia, Università di Sassari, 07100 Sassari (Italy); Meloni, Francesco [Unità operativa di Diagnostica per immagini Asl n. 1, Ospedale Civile SS Annunziata, 07100 Sassari (Italy); Battista Meloni, Giovanni [Istituto di Scienze Radiologiche, Università di Sassari, 07100 Sassari (Italy)

    2013-08-14

    Digital Subtraction Angiography is commonly affected by artifacts due to the patient movements during the acquisition of the images without and with the contrast medium. This paper presents a preliminary study on an angiographic and angio-tomographic technique based on the quasi-simultaneous acquisition of two images, obtained using two different filters at the exit of an X-ray tube. One of the two filters (K-edge filter) contains the same chemical element used as a contrast agent (gadolinium in this study). This filter absorbs more radiation with energy just above the so called K-edge energy of gadolinium than the radiation with energy just below it. The other filter (an aluminium filter in this study) is simply used to suppress the low-energy contribution to the spectrum. Using proper calibration curves, the two images are combined to obtain an image of the contrast agent distribution. In the angio-tomographic application of the proposed technique two images, corresponding to the two filter types, are acquired for each viewing angle of the tomographic scan. From the two tomographic reconstructions, it is possible to obtain a three-dimensional map of the contrast agent distribution. The technique was tested on a sample consisting of a rat skull placed inside a container filled with water. Six small cylinders with 4.7 mm internal diameter containing the contrast medium at different concentrations were placed inside the skull. In the plain angiographic application of the technique, five out of six cylinders were visible, with gadolinium concentration down to 0.96%. In the angio-tomographic application, all six cylinders were visible, with gadolinium concentration down to 0.49%. This preliminary study shows that the proposed technique can provide images of the contrast medium at low concentration without most of the artifacts that are present in images produced by conventional techniques. The results encourage further investigation on the feasibility of a clinical

  6. A study on twin-tungsten TIG welding method

    Institute of Scientific and Technical Information of China (English)

    Leng Xuesong; Zhang Guangjun; Gao Hongming; Wu Lin

    2006-01-01

    A new twin-tungsten TIG (T-TIG) welding method was studied. This method differs from the conventional TIG method, it places two electrodes insulated from each other in the same welding torch, and a coupling arc is generated from the two electrodes. The coupling arc pressure was measured and preliminary welding experiment was made. The results show that the coupling arc can keep arc pressure at a low level compared with conventional TIG arc, and welding can be achieved under higher current and high travel speed with sound appearance of weld. Therefore, this new method can applied widely in high efficiency welding.

  7. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  8. The Effect of Tool Position for Aluminum and Copper at High Rotational Friction Stir Welding

    OpenAIRE

    Recep Çakır; Sare Çelik

    2015-01-01

    Friction Stir Welding (FSW) is a solid state welding process used for welding similar and dissimilar materials. This welding technique allows welding of Aluminum alloys which present difficulties in fusion joining and allows different material couples to be welded continuously. In this study, 1050 aluminum alloy and commercially pure copper to increase heat input were produced at high rotation rate (2440 rev/min) with four different pin position (0-1-1.5-2 mm) and three different weld speeds ...

  9. TIG-dressing of High Strength Steel Butt Welded Connections. Part 1: Weld Toe Geometry and Local Hardness

    NARCIS (Netherlands)

    Van Es, S.H.J.; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2014-01-01

    This paper presents the results of extensive measurements on weld toe geometry of as-welded and TIG-dressed butt welded connections in high strength steels S460, S690 and very high strength steels S890 and S1100. Descriptions of the measurement techniques and data analysis are presented. Four weld t

  10. TIG-dressing of high strength steel butt welded connections - Part 1: weld toe geometry and local hardness

    NARCIS (Netherlands)

    Es, S.H.J. van; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2013-01-01

    This paper presents the results of extensive measurements on weld toe geometry of as-welded and TIG-dressed butt welded connections in high strength steels S460, S690 and very high strength steels S890 and S1100. Descriptions of the measurement techniques and data analysis are presented. Four weld t

  11. [New welding processes and health effects of welding].

    Science.gov (United States)

    La Vecchia, G Marina; Maestrelli, Piero

    2011-01-01

    This paper describes some of the recent developments in the control technology to enhance capability of Pulse Gas Metal Arc Welding. Friction Stir Welding (FSW) processing has been also considered. FSW is a new solid-state joining technique. Heat generated by friction at the rotating tool softens the material being welded. FSW can be considered a green and energy-efficient technique without deleterious fumes, gas, radiation, and noise. Application of new welding processes is limited and studies on health effects in exposed workers are lacking. Acute and chronic health effects of conventional welding have been described. Metal fume fever and cross-shift decline of lung function are the main acute respiratory effects. Skin and eyes may be affected by heat, electricity and UV radiations. Chronic effects on respiratory system include chronic bronchitis, a benign pneumoconiosis (siderosis), asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders.

  12. Improvement of reliability of welding by in-process sensing and control (development of smart welding machines for girth welding of pipes). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hardt, D.E.; Masubuchi, K.; Paynter, H.M.; Unkel, W.C.

    1983-04-01

    Closed-loop control of the welding variables represents a promising, cost-effective approach to improving weld quality and therefore reducing the total cost of producing welded structures. The ultimate goal is to place all significant weld variables under direct closed-loop control; this contrasts with preprogrammed machines which place the welding equipment under control. As the first step, an overall strategy has been formulated and an investigation of weld pool geometry control for gas tungsten arc process has been completed. The research activities were divided into the areas of arc phenomena, weld pool phenomena, sensing techniques and control activities.

  13. WELDING TORCH

    Science.gov (United States)

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  14. Optimization of weld bead geometry in laser welding with filler wire process using Taguchi’s approach

    Science.gov (United States)

    dongxia, Yang; xiaoyan, Li; dingyong, He; zuoren, Nie; hui, Huang

    2012-10-01

    In the present work, laser welding with filler wire was successfully applied to joining a new-type Al-Mg alloy. Welding parameters of laser power, welding speed and wire feed rate were carefully selected with the objective of producing a weld joint with the minimum weld bead width and the fusion zone area. Taguchi approach was used as a statistical design of experimental technique for optimizing the selected welding parameters. From the experimental results, it is found that the effect of welding parameters on the welding quality decreased in the order of welding speed, wire feed rate, and laser power. The optimal combination of welding parameters is the laser power of 2.4 kW, welding speed of 3 m/min and the wire feed rate of 2 m/min. Verification experiments have also been conducted to validate the optimized parameters.

  15. Weld repair method for aluminum lithium seam

    Science.gov (United States)

    McGee, William Floyd (Inventor); Rybicki, Daniel John (Inventor)

    1998-01-01

    Aluminum-lithium plates are butt-welded by juxtaposing the plates and making a preliminary weld from the rear or root side of the seam. An initial weld is then made from the face side of the seam, which may cause a defect in the root portion. A full-size X-ray is made and overlain over the seam to identify the defects. The defect is removed from the root side, and rewelded. Material is then removed from the face side, and the cavity is rewelded. The procedure repeats, alternating from the root side to the face side, until the weld is sound.

  16. Local zone wise elastic and plastic properties of electron beam welded Ti-6Al-4V alloy using digital image correlation technique: A comparative study between uniform stress and virtual fields method

    Science.gov (United States)

    Saranath, K. M.; Ramji, M.

    2015-05-01

    Joining of materials using welding results in the formation of material zones with varying microstructure across the weld. Extraction of the mechanical properties of those individual heterogeneous zones are important in designing components and structures comprised of welds. In this study, the zone wise local extraction of the elastic and plastic properties of an electron beam welded Ti-6Al-4V titanium alloy has been carried out using both the uniform stress method (USM) and the virtual fields method (VFM) involving digital image correlation (DIC) technique. The surface strain field obtained using DIC technique from a transverse weld specimen tensile testing is used for extracting the zone wise strain evolution. Initially, using uniform stress assumption, zone wise full range stress-strain curves are extracted. In USM methodology, the elastic and plastic material models are fitted to the zone wise stress-strain curves and required parameters are extracted from it. But inherent disadvantage is lot of images need to be processed for the parameter extraction. Recently, VFM is gaining lot of popularity in characterization domain as it is robust, accurate and faster. VFM is based on the principle of virtual work where, the weak form of local equilibrium equations and kinematically admissible virtual displacement fields are utilized for parameter extraction. Hollomon's power law is used here as the hardening rule. Young's modulus, Poisson's ratio, yield stress, strength coefficient and strain hardening exponent are the parameters extracted zone wise using both USM and VFM. A Vicker's microhardness measurement is also conducted across the weld zone towards mapping the strength behavior. Fusion zone has reported higher yield strength, strength coefficient and Poisson's ratio. Young's modulus value is found decreasing from base metal towards the fusion zone. The trend observed in parameter variation across the weld zone obtained by both USM and VFM compares very well. Due

  17. TIG-dressing of High Strength Butt Welded Connection. Part 2: Physical Testing and Modelling

    NARCIS (Netherlands)

    Van Es, S.H.J.; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2014-01-01

    Weld improvement techniques are aimed at reducing the notch effects of welds and generally focus on two aspects: a change of geometry of the weld toe and a change of the weld residual stresses. In this paper, fatigue tests are discussed, performed on butt welded specimens in steel grades ranging

  18. TIG-dressing of high strength butt welded connection - Part 2: physical testing and modelling

    NARCIS (Netherlands)

    Es, S.H.J. van; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2013-01-01

    Weld improvement techniques are aimed at reducing the notch effects of welds and generally focus on two aspects: a change of geometry of the weld toe and a change of the weld residual stresses. In this paper, fatigue tests are discussed, performed on butt welded specimens in steel grades ranging

  19. TIG-dressing of high strength butt welded connection - Part 2: physical testing and modelling

    NARCIS (Netherlands)

    Es, S.H.J. van; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2013-01-01

    Weld improvement techniques are aimed at reducing the notch effects of welds and generally focus on two aspects: a change of geometry of the weld toe and a change of the weld residual stresses. In this paper, fatigue tests are discussed, performed on butt welded specimens in steel grades ranging fro

  20. TIG-dressing of High Strength Butt Welded Connection. Part 2: Physical Testing and Modelling

    NARCIS (Netherlands)

    Van Es, S.H.J.; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2014-01-01

    Weld improvement techniques are aimed at reducing the notch effects of welds and generally focus on two aspects: a change of geometry of the weld toe and a change of the weld residual stresses. In this paper, fatigue tests are discussed, performed on butt welded specimens in steel grades ranging fro

  1. Characteristics of Extra Narrow Gap Weld of HSLA Steel Welded by Single-Seam per Layer Pulse Current GMA Weld Deposition

    Science.gov (United States)

    Agrawal, B. P.; Ghosh, P. K.

    2017-03-01

    Butt weld joints are produced using pulse current gas metal arc welding process by employing the technique of centrally laid multi-pass single-seam per layer weld deposition in extra narrow groove of thick HSLA steel plates. The weld joints are prepared by using different combination of pulse parameters. The selection of parameter of pulse current gas metal arc welding is done considering a summarized influence of simultaneously interacting pulse parameters defined by a dimensionless hypothetical factor ϕ. The effect of diverse pulse parameters on the characteristics of weld has been studied. Weld joint is also prepared by using commonly used multi-pass multi-seam per layer weld deposition in conventional groove. The extra narrow gap weld joints have been found much superior to the weld joint prepared by multi-pass multi-seam per layer deposition in conventional groove with respect to its metallurgical characteristics and mechanical properties.

  2. Primary Water Stress Corrosion Cracks in Nickel Alloy Dissimilar Metal Welds: Detection and Sizing Using Established and Emerging Nondestructive Examination Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Braatz, Brett G.; Cumblidge, Stephen E.; Doctor, Steven R.; Prokofiev, Iouri

    2012-12-31

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (≈400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional and phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (≈900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for

  3. Polyimide adhesives for weld-bonding titanium

    Science.gov (United States)

    Vaughan, R. W.; Sheppard, C. H.; Baucom, R.

    1976-01-01

    Two weld bonding processes were developed for joining titanium alloy; one process utilizes a weld-through technique and the other a capillary-flow technique. The adhesive used for the weld-through process is similar to the P4/A5F system and a new adhesive system, CP/CFA, was used in the capillary-flow process. Static property information was generated for weld-bonded joints over the temperature range of 219K (-65 F) to 561K (550 F) and fatigue strength information was generated at room temperature. Significant improvement in fatigue strength was demonstrated for weld-bonded joints over spot-welded joints. A demonstration was made of the applicability of weld-bonding for fabricating stringer stiffened skin panels.

  4. Evolution of a Laser Hybrid Welding Map

    Science.gov (United States)

    Kaplan, Alexander F. H.; Frostevarg, Jan; Ilar, Torbjörn; Bang, Hee-Seon; Bang, Han-Sur

    Laser arc hybrid welding combines the advantages but also the complex physical mechanisms of gas metal arc welding and laser keyhole welding. From manifold mainly experimental but also theoretical research results a map with versatile functions was initiated for the first time. The purpose is to survey the overall context and to facilitate navigation to the various phenomena that are shown through case studies accompanied by theoretical explanations and guidelines for optimization. Though not complete, the map enables systematic and graphical navigation to relevant publications. Based on a fundamental structure of the map, which was decided early, it is inherently extendable in the future by adding existing and new knowledge, also from other research groups, enabling evolution. The fundament of the map structure comprises gouge thickness, joint type and metal grade, in coherence with product and weld designers' starting points. The next hierarchy level of the map offers options in the joint type as well as in hybrid welding techniques. The latter contains techniques like double-sided welding, pulse shaping management of the arc or laser, CMT arcs, tandem arcs, or remelting of undercuts. In addition to laser-arc hybrid welding, other hybrid laser techniques like multilayer hot-wire laser welding of narrow gaps or hybrid laser friction stir welding can be taken into account. At the other end of the hierarchy, the map offers via a database-like archive electronic navigation to research results like weld macrographs, high speed imaging or numerical simulation results of the welding process.

  5. Towards Real Time Diagnostics of Hybrid Welding Laser/GMAW

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Mcjunkin; Dennis C. Kunerth; Corrie Nichol; Evgueni Todorov; Steve Levesque; Feng Yu; Robert Danna Couch

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  6. Towards real time diagnostics of Hybrid Welding Laser/GMAW

    Energy Technology Data Exchange (ETDEWEB)

    McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I. [Idaho National Laboratory, Idaho Falls, ID 83415-3570 (United States); Todorov, E.; Levesque, S. [Edison Welding Institute, Columbus, OH (United States)

    2014-02-18

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  7. Prospectively gated axial CT coronary angiography: preliminary experiences with a novel low-dose technique

    Energy Technology Data Exchange (ETDEWEB)

    Klass, Oliver; Jeltsch, Martin; Feuerlein, Sebastian; Brunner, Horst; Brambs, Hans-Juergen; Hoffmann, Martin H.K. [University Hospital of Ulm, Department of Diagnostic and Interventional Radiology, Ulm (Germany); Nagel, Hans-Dieter [Philips Healthcare, Department of Science and Technology, Hamburg (Germany); Walker, Matthew J. [CT Clinical Science, Philips Healthcare, Cleveland, OH (United States)

    2009-04-15

    To assess image quality and radiation exposure with prospectively gated axial CT coronary angiography (PGA) compared to retrospectively gated helical techniques (RGH). Forty patients with suspected coronary artery disease (CAD) and a stable heart rate below 65 bpm underwent CT coronary angiography (CTCA) using a 64-channel CT system. The patient cohort consisted of 20 consecutive patients examined using a PGA technique and 20 patients examined using a standard RGH technique. Both groups were matched demographically according to age, gender, body mass index, and heart rate. For both groups, two independent observers assessed image quality for all coronary segments on an ordinal scale from 1 (nonassessable) to 5 (excellent quality). Image quality and radiation exposure were compared between patient groups. There were no significant differences in vessel-based image quality between the two groups (P > 0.05). Mean ({+-} SD) effective radiation exposure in the PGA group was 3.7 {+-} 0.8 mSv compared to 18.9 {+-} 3.8 mSv in the RGH group without ECG-based tube current modulation (P < 0.001). Preliminary experience shows PGA technique to be a promising approach for CTCA resulting in a substantial reduction in radiation exposure with image quality comparable to that of standard RGH technique. (orig.)

  8. 钨镍(W-Ni)的焊接性能及工艺%Welding Properties and Technique of Wolfram and Nickel

    Institute of Scientific and Technical Information of China (English)

    邓景泉; 张阳熠

    2011-01-01

    异种金属的有效连接在高新技术领域具有实际意义,采用电阻点焊方法焊接稀有金属钨片和镍丝.用SEM,HRTEM表征焊接接头的组织形貌,用拉伸试验机测定焊接件的抗剪切力.采用如下焊接工艺:第一阶段:预压力是100 N,使钨镍良好接触;第二阶段:保持预压力不变,施以预热电流1.1KA,400 ms,然后再施以焊接电流1.7KA,400 ms;第三阶段:保持100 N的电极压力60 ms;最后,撤去电极压力.HRTEM结果表明:钨镍之间通过高温原子扩散形成置换固溶体而形成有效的连接,且在钨镍界面上没有新相形成.SEM结果表明焊接接头的镍丝没有翘头,且边缘没有严重压扁现象.经上述工艺得到的焊接接头的抗剪切力约为40 N,符合焊接件技术要求.%Effective weldinrg of heterogeneity metals was of great pragmatic importance in modern hi-tech area.W plate and Ni thread were joined by using resistance spot-welding.SEM , HRTEM were used to characterize the microstructures of the welding-joint.The anti-shear forces of the welding-joint were messured with the tenaile experimental machine.The optimized welding technique was as folIows: the first stage pre-pressure 100 N; the second stage keeping pre-pressure, pre-heat current 1.1 kA, 400 ms and then welding current 1.7 kA, 400 ms; the third stage retaining pre-pressure for another 60 ms.The results of HRTEM showed that W and Ni were joined effectively through W and Ni atoms diffusion forming substitutional solid solution.There were no new phases or intermetallics between W and Ni on houndaries.SEM showed that the shape of the welding knot conformed to the technological requirements without severe deformation.The anti-shear force of the joint was about 40 N.

  9. Resistance welding equipment manufacturing capability for exports

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, V.S.; Raju, Y.S.; Somani, A.K.; Setty, D.S.; Rameswara Raw, A.; Hermantha Rao, G.V.S.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderbad (India)

    2010-07-01

    Indian Pressurised Heavy Water Reactor (PHWR) fuel bundle is fully welded and is unique in its design. Appendage welding, end closure welding, and end plate welding is carried out using resistance welding technique. Out of many joining processes available, resistance-welding process is reliable, environment friendly and best suitable for mass production applications. Nuclear Fuel Complex (NFC), an industrial unit is established in Hyderabad, under the aegis of the Dept of Atomic Energy to manufacture fuel for Pressurised Heavy Water Reactors. From inception, NFC has given importance for self-reliance and indigenization with respect to manufacturing process and equipment. Sintering furnaces, centreless grinders, appendage-welding machines, end-closure welding equipment and end-plate welding equipments, which were initially imported, are either indigenized or designed and manufactured in house. NFC has designed, manufactured a new appendage-welding machine for manufacturing 37 element fuel bundles. Recently NFC has bagged an order from IAEA through international bidding for design, manufacture, supply, erection and commissioning of end-closure welding equipment. The paper gives in detail the salient features of these welding equipment. (author)

  10. Study of the mechanical properties of welded joints by wet sub sea welding technique with tubular electrode; Estudo das propriedades mecanicas de juntas soldadas pela tecnica de soldagem subaquatica molhada com eletrodo tubular

    Energy Technology Data Exchange (ETDEWEB)

    Teichmann, Erwin Werner; Baixo, Carlos Eduardo Iconomos; Dutra, Jair Carlos [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Soldagem e Mecatronica - LABSOLDA]. E-mail: erwin@labsolda.ufsc.br; Santos, Valter Rocha dos [Centro Federal de Educacao Tecnologica (CEFET), Rio de Janeiro, RJ (Brazil); Teixeira, Jose Claudio [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1997-07-01

    Some experiments conducted at LABSOLDA/UFSC - a welding laboratory of Santa Catarina Univ., Florianopolis, Brazil - in order to identify mechanical properties, weld bead geometry and the quantity and dimensions of pores in weld beads produced by sub sea wet FCAW are described. Welding in shallow water with power source adjusted to operate in constant current characteristic mode and a set of parameters to establish an open arc transfer mode it was obtained weld beads with regular geometry and an acceptable profile, with low level of defects incidence, no pores and crack free. The tenacity measured by Charpy tests (0C) was 34 J and hardness of 119 HV-10 measured by Vickers tests. The methodology used in the experiments and the results obtained are discussed in the paper. (author)

  11. Explosive welding finds uses offshore

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    This article discusses an explosive welding procedure for pipeline repair. Unlike fusion welding, explosive welding does not leave a brittle area behind and will stop axial or longitudinal cracking of a pipeline. The metals are joined by cold impact pressure, which actually liquifies the metal at the point of impact. In explosive welding, the force of the circular explosion drives the two metals together with such an impact that a bonded wave pattern is set up. All surface defects and oxides are pushed ahead of the collision front, resulting in a metal-to-metal seal. Two techniques are reviewed: the Exploweld method and the Norabel method. Both methods do not reduce or expand the internal diameter of the welded surface.

  12. Performance Improvement of Friction Stir Welds by Better Surface Finish

    Science.gov (United States)

    Russell, Sam; Nettles, Mindy

    2015-01-01

    The as-welded friction stir weld has a cross section that may act as a stress concentrator. The geometry associated with the stress concentration may reduce the weld strength and it makes the weld challenging to inspect with ultrasound. In some cases, the geometry leads to false positive nondestructive evaluation (NDE) indications and, in many cases, it requires manual blending to facilitate the inspection. This study will measure the stress concentration effect and develop an improved phased array ultrasound testing (PAUT) technique for friction stir welding. Post-welding, the friction stir weld (FSW) tool would be fitted with an end mill that would machine the weld smooth, trimmed shaved. This would eliminate the need for manual weld preparation for ultrasonic inspections. Manual surface preparation is a hand operation that varies widely depending on the person preparing the welds. Shaving is a process that can be automated and tightly controlled.

  13. Fundamentals of evaluation and diagnostics of welded structures

    CERN Document Server

    Nedoseka, Anatoliy Yakovlevich

    2012-01-01

    Provides an essential guide to the key principles and problems involved in the analysis of welded structures. This title discusses design issues, key equations and calculations, and the effects of varied heat sources in relation to the temperature field in welding. It goes on to explore welding stresses and strains.$bFundamentals of evaluation and diagnostics of welded structures provides an essential guide to the key principles and problems involved in the analysis of welded structures. Chapter one discusses design issues, key equations and calculations, and the effects of varied heat sources in relation to the temperature field in welding. Chapter two goes on to explore welding stresses and strains. Fracture mechanics and the load-carrying capacity of welded structures are the focus of chapter three. Chapter four considers diagnostics and prediction of the residual life of welded structures, whilst acoustic emission techniques for the analysis of welded structures are reviewed in Chapter five. Finally, chap...

  14. Next generation high productivity submerged arc welding

    OpenAIRE

    LANGENOJA, MARKUS; Öhrvall Karlsson, Vincent

    2012-01-01

    The task of designing concepts for the next generation of submerged arc welding heads was given by ESAB. ESAB is a global company manufacturing welding equipment for a wide span of industries and uses. In October 2011, ESAB introduced a new technology called Integrated Cold Electrode™, abbreviated and trademarked as ICE™. ICE™ is a technique which utilizes three electrodes in a highly productive and stable process. The current state of the ICE™ technique focuses on welding thick plates with c...

  15. Milestones in welding technology

    Science.gov (United States)

    Dolby, Richard E.

    2013-09-01

    Sir Alan's PhD thesis describes his research into cracking during arc welding of armour steels. Throughout his career, he had a strong interest in defects of all types, how they formed in metallic structures and how the larger ones could be detected and sized by non-destructive techniques. He was also vitally concerned with how defects impacted on the engineering integrity of welded structures, particularly the risk of fracture in nuclear plant. This study presents a view of some of the major milestones in global welding technology that took place over the 60 or more years of Sir Alan's career and highlights those where he had a personal and direct involvement.

  16. TOFD Technique Applied to Weld Inspection of Special Strartures%TOFD技术在特殊结构焊缝检测中的应用

    Institute of Scientific and Technical Information of China (English)

    洪作友; 唐兴军

    2009-01-01

    The working principle of TOFD technique was described. The testing effects were compared between radiographic testing and ultrasonic testing method for the detection of volute plate and seam weld. The actual weld section showed that the planar defects, which were difficult to detect by conventional ultrasonic testing and radiographic testing method, were easy to TOFD technique, but there was some error for the porosity, inclusions and such as volume-like defects between TOFD testing and actual section. Due to its high defect detection rate,sensitive to planar defects, less limits by direction, fast testing speed, intuitive scanning image and with no radiation and so on, TOFD technique had good prospect on the safety evaluation at petrochemical installations and so on special equipments.%叙述了TOFD技术的工作原理.在蜗壳焊缝试板及焊缝检测中将超声波和射线检测技术进行了对比.焊缝的缺陷解剖试验表明,TOFD技术能检出常规超声和射线检测方法难以检出的平面状缺陷,对气孔、夹杂等体积状缺陷的检测结果与实际解剖结果有出入.鉴于TOFD技术缺陷检出率高,对面状缺陷灵敏、不受方向性限制、检测速度快、扫描图显示直观并且无辐射等优点,因此在石化装置等在役特种设备的安全评定中具有很好的推广价值.

  17. Study of Mechanical Properties and Characterization of Pipe Steel welded by Hybrid (Friction Stir Weld + Root Arc Weld) Approach

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yong Chae [ORNL; Sanderson, Samuel [MegaStir Technologies LLC; Mahoney, Murray [Consultant; Wasson, Andrew J [ExxonMobil, Upstream Research Company (URC); Fairchild, Doug P [ExxonMobil, Upstream Research Company (URC); Wang, Yanli [ORNL; Feng, Zhili [ORNL

    2015-01-01

    Friction stir welding (FSW) has recently attracted attention as an alternative construction process for gas/oil transportation applications due to advantages compared to fusion welding techniques. A significant advantage is the ability of FSW to weld the entire or nearly the entire wall thickness in a single pass, while fusion welding requires multiple passes. However, when FSW is applied to a pipe or tube geometry, an internal back support anvil is required to resist the plunging forces exerted during FSW. Unfortunately, it may not be convenient or economical to use internal backing support due to limited access for some applications. To overcome this issue, ExxonMobil recently developed a new concept, combining root arc welding and FSW. That is, a root arc weld is made prior to FSW that supports the normal loads associated with FSW. In the present work, mechanical properties of a FSW + root arc welded pipe steel are reported including microstructure and microhardness.

  18. Damage Tolerance Assessment of Friction Pull Plug Welds

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process developed and patented by The Welding Institute in Cambridge, England. Friction stir welding has been implemented in the aerospace industry in the fabrication of longitudinal welds in pressurized cryogenic propellant tanks. As the industry looks to implement friction stir welding in circumferential welds in pressurized cryogenic propellant tanks, techniques to close out the termination hole associated with retracting the pin tool are being evaluated. Friction pull plug welding is under development as a one means of closing out the termination hole. A friction pull plug weld placed in a friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite, plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size in the test or service environments. Test data relating residual strength capability to flaw size in two aluminum alloy friction plug weld configurations is presented.

  19. Weld penetration and defect control. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chin, B.A.

    1992-05-15

    Highly engineered designs increasingly require the use of improved materials and sophisticated manufacturing techniques. To obtain optimal performance from these engineered products, improved weld properties and joint reliability are a necessarily. This requirement for improved weld performance and reliability has led to the development of high-performance welding systems in which pre-programmed parameters are specified before any welding takes place. These automated systems however lack the ability to compensate for perturbations which arise during the welding process. Hence the need for systems which monitor and control the in-process status of the welding process. This report discusses work carried out on weld penetration indicators and the feasibility of using these indicators for on-line penetration control.

  20. Initial Development in Joining of ODS Alloys Using Friction Stir Welding

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Feng, Zhili [ORNL

    2007-08-01

    Solid-state welding of oxide-dispersion-strengthened (ODS) alloy MA956 sheets using friction stir welding (FSW) was investigated. Butt weld was successfully produced. The weld and base metals were characterized using optical microscopy, scanning electronic microscopy, transmission electronic microscopy, and energy dispersion x-ray spectrum. Microhardness mapping was also conducted over the weld region. Analyses indicate that the distribution of the strengthening oxides was preserved in the weld. Decrease in microhardness of the weld was observed but was insignificant. The preliminary results seem to confirm the envisioned feasibility of FSW application to ODS alloy joining. For application to Gen IV nuclear reactor heat exchanger, further investigation is suggested.

  1. ELECTRIC WELDING EQUIPMENT AND AUTOMATION OF WELDING IN CONSTRUCTION,

    Science.gov (United States)

    WELDING , *ARC WELDING , AUTOMATION, CONSTRUCTION, INDUSTRIES, POWER EQUIPMENT, GENERATORS, POWER TRANSFORMERS, RESISTANCE WELDING , SPOT WELDING , MACHINES, AUTOMATIC, STRUCTURES, WIRING DIAGRAMS, USSR.

  2. Syllabus in Trade Welding.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  3. ITER lip seal welding and cutting developments

    Energy Technology Data Exchange (ETDEWEB)

    Levesy, B.; Cordier, J.J.; Jokinen, T. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kujanpää, V.; Karhu, M. [VTT Technical Research Centre of Finland (Finland); Le Barbier, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Määttä, T. [VTT Technical Research Centre of Finland (Finland); Martins, J.P.; Utin, Y. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-10-15

    Highlights: • Different TIG and Laser welding techniques are tested. • Twin spot laser welding techniques is the best. • Limited heat input gives a stable weld pool in all positions. • Penetrations is achieved. • Lip seal welding and cutting with a robotic arm is successfully performed on a representative mock-up. - Abstract: The welded lip seals form part of the torus primary vacuum boundary in between the port plugs and the vacuum vessel, and are classified as Protection Important Component. In order to refurbish the port plugs or the in-vessel components, port plugs have to be removed from the machine. The lip seal design must enable up to ten opening of the vacuum vessel during the life time operation of the ITER machine. Therefore proven, remote reliable cutting and re-welding are essential, as these operations need to be performed in the port cells in a nuclear environment, where human presence will be restricted. Moreover, the combination of size of the components to be welded (∼10 m long vacuum compatible thin welds) and the congested environment close to the core of the machine constraint the type and size of tools to be used. This paper describes the lip seal cutting and welding development programme performed at the VTT Technical Research Centre, Finland. Potential cutting and welding techniques are analyzed and compared. The development of the cutting, TIG and laser welding techniques on samples are presented. Effects of lip seal misalignments and optimization of the 2 welding processes are discussed. Finally, the manufacturing and test of the two 1.2 m × 1 m representative mock-ups are presented. The set-up and use of a robotic arm for the mock-up cutting and welding operations are also described.

  4. Some Studies of Optimal Process Parameters For Solid Wire Gas Metal Arc Welding Using Neural Network Technique And Simulation Using Ansys

    Directory of Open Access Journals (Sweden)

    Saritprava Sahoo

    2013-08-01

    Full Text Available GMAW (Gas Metal Arc Welding is an arc welding process which is widely used in industry to join the metals. In this present work we have investigated the effect of varying welding parameters on the weld bead quality of Mild Steel flat having 12mm thickness. The chosen input parameters for the study are Welding Voltage, Welding Current and the travel speed of welding torch. The output parameters chosen are Weld Bead Width, Weld Bead Height, Depth of Penetration and Depth of Heat Affected Zone (HAZ. The four levels of experimental set-ups for each of the input parameters are considered and other process parameters are kept constant for the study. Hence the total numbers of experimental set-ups are 64 and the corresponding values of output parameters are found. As this is a Multi-Response Problem, it is being optimized to Single-Response Problem using Weighted Principal Components (WPC Method. Artificial Neural Networks (sANN, Error Back Propagation Procedure is being used for the prediction of optimal process parameters for GMAW process in this present work. The finite element analysis of residual stresses in butt welding of two similar plates is performed with the ANSYS software.

  5. Study on local vacuum electron beam welding of flange rim

    CERN Document Server

    He Cheng Dan; Ying Lei; Xu Qi Jin

    2002-01-01

    Local vacuum electron beam welding and its application prospect in military and civil industry are introduced. A home made local vacuum electron beam welding is completed. Its main technical parameters and key techniques are also presented

  6. Studies of corrosion properties and hydrogen embrittlement in laser welding of Zry-4; Estudio de las propiedades a la corrosion y a la frazilizacion por hidrogeno en soldaduras laser de zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Luis; Meyer, Gabriel; Corso, Hugo [Centro Atomico Bariloche, San Carlos de Bariloche (Argentina); Martinez, Roberto [Invap S.E., San Carlos de Bariloche (Argentina)

    1996-07-01

    This paper compares the preliminary results obtained from welding of Zircaloy-4 performed by TIG technique with the results obtained using laser welding of CO{sub 2} of 1500W and pulsed beams of Nd:YAG of 332W and 350W, aiming an eventual application to fuel element fabrication. The comparison between the results have proved that there exist no damage in the corrosion resistance properties and sensitivity to hydrogen embrittlement when the usual TIG technique have been replaced for laser welding techniques. A study about the possible diffusion of iron and tin using dispersive x-ray spectroscopy and SEM in heat affected zone produced by welding have also been presented.

  7. Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Siyan; Ding, Jie; Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn

    2015-02-15

    The interface region of welded A508–Alloy 52 M is characterized by scanning probe microscope (SPM) techniques, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM)/Energy Dispersive Spectroscopy (EDS) and scanning vibrate electrode technique (SVET). The regions along the welded A508–Alloy 52 M interface can be categorized into two types according to their different microstructures. In the type-I interface region, A508 and Alloy 52 M are separated by the fusion boundary, while in the type-II interface region, A508 and Alloy 52 M are separated by a martensite zone. A508, martensite zone and grain boundaries in Alloy 52 M are ferromagnetic while the Alloy 52 M matrix is paramagnetic. The Volta potentials measured by scanning Kelvin probe force microscopy (SKPFM) of A508, martensite zone and Alloy 52 M follow the order: V{sub 52} {sub M} > V{sub A508} > V{sub martensite}. The corrosion behavior of A508–Alloy 52 M interface region is galvanic corrosion, in which Alloy 52 M is cathode while A508 is anode. The martensite dissolves faster than Alloy 52 M, but slower than A508 in the test solution. - Highlights: • The A508–Alloy 52 M interface regions can be categorized into two types. • The chromium depleted region is observed along the Alloy 52 M grain boundary. • The Alloy 52 M grain boundaries which are close to the interface are ferromagnetic. • Martensite zone has lower Volta potential but higher corrosion resistance than A508.

  8. Process Parameters Optimization for Friction Stir Welding of Pure Aluminium to Brass (CuZn30 using Taguchi Technique

    Directory of Open Access Journals (Sweden)

    Elfar O. M. R.

    2016-01-01

    Full Text Available In this research, the friction stir welding of dissimilar commercial pure aluminium and brass (CuZn30 plates was investigated and the process parameters were optimized using Taguchi L9 orthogonal array. The considered process parameters were the rotational speed, traverse speed and pin offset. The optimum setting was determined with reference to ultimate tensile strength of the joint. The predicted optimum value of ultimate tensile strength was confirmed by experimental run using optimum parameters. Analysis of variance revealed that traverse speed is the most significant factor in controlling the joint tensile strength and pin offset also plays a significant role. In this investigation, the optimum tensile strength is 50% of aluminium base metal. Metallographic examination revealed that intermetallic compounds were formed in the interface of the optimum joint where the tensile failure was observed to take place.

  9. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    Science.gov (United States)

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  10. A new simulation model and its application in CO2 short-circuiting transfer welding

    Institute of Scientific and Technical Information of China (English)

    胡连海; 李桓; 李俊岳; 杨立军

    2002-01-01

    A new simulation model of CO2 short-circuiting transfer welding may be employed to develop a new pattern of welding machine and to predict welding process parameters to obtain the optimum welding technology properties. In this paper, a new simulating model is developed according to the AWP (adapting welding physics process) waveform control method. Good agreement is shown between the predicted and experimentally determined results. The model will make an important promotion in the development of CO2 arc welding technique.

  11. Preliminary studies for monitoring erosion in pipelines by the acoustic emission technique

    Energy Technology Data Exchange (ETDEWEB)

    Tiboni, G.B. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-graduacao em Engenharia Mecanica e de Materiais; Marquardt, T.A.S; SantaMaria, V.A.R.; Silva, C.H. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    The aim of this work is to present some applications of Acoustic Emission (AE), which is a powerful technique for nondestructive testing in Tribology, treated here as tests of friction, wear by contact fatigue, wear by slip and wear by erosion. In this work a special attention is given to solid particle erosion and hydro-abrasive erosion, problems found in almost every pipeline that lead to local loss of material and eventually rupture of the line. The technique of AE can be used as an efficient online tool when, primarily, to monitor tribological aspects such as the rate of wear of materials, as well as detect the spread of flaws in them. In wear by erosion, specifically, the parameters of RMS and acoustic energy are capable of correlation with the type of mechanism for removal of material. As a preliminary goal, erosive tests were performed with gas (air) without erosive particles, monitored by AE, varying the surface of the samples and the internal diameter the nozzle, taking the differences in signs of AE. Correlation between parameters of RMS and amplitude were noticed with the variables of the tests, such as roughness and fluid velocity. The RMS parameter showed a exponential correction with the fluid velocity, however the amplitude signals had a linear behavior. The knowledge of these parameters is essential for the development of a system that is able to quantify the wear rate of a pipeline without taking it out of operation. (author)

  12. Hybrid manufacturing processes for fusion welding and friction stir welding of aerospace grade aluminum alloys

    Science.gov (United States)

    Gegesky, Megan Alexandra

    Friction stir welding and processing can provide for joints in aerospace grade aluminum alloys that have preferable material properties as compared to fusion welding techniques. Aerospace grade aluminum alloys such as AA2024-T3 and AA7075-T6 are considered non-weldable by traditional fusion welding techniques. Improved mechanical properties over previously used techniques are usually preferable for aerospace applications. Therefore, by combining traditional fusion welding and friction stir processing techniques, it could be plausible to create more difficult geometries in manufactured parts instead of using traditional techniques. While this combination of fusion welding and friction stir processing is not a new technology, its introduction to aerospace grade aluminum alloys as well as non-weldable alloys, is new. This is brought about by a lowered required clamping force required by adding a fusion weld before a friction stir processing technique. The changes in properties associated with joining techniques include: microstructural changes, changes in hardness, tensile strength, and corrosion resistance. This thesis illustrates these changes for the non-weldable AA2024-T351 and AA7075-T651 as well as the weldable alloy AA5052-H32. The microhardness, tensile strength and corrosion resistance of the four processing states: base material, fusion welded material, friction stir welded material, and friction stir processed fusion welded material is studied. The plausibility of this hybrid process for the three different materials is characterized, as well as plausible applications for this joining technique.

  13. Development of Weld Overlay Technology for Dissimilar Welds in Pressurizer Nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. S.; Byeon, J. G.; Lee, J. B. [Doosan Heavy Industries and Construction Co., Daejeon (Korea, Republic of)

    2009-10-15

    As a result of Primary Water Stress Corrosion Cracking (PWSCC) in alloy 600, leaks in dissimilar metal welds of pressurizer nozzles were discovered recently in several US plants. The involved companies developed advanced repair techniques to prevent or repair PWSCC applying weld overlay procedures to dissimilar metal welds such as those between pipes and nozzles. Within 2 or 3 years, more than half of the nuclear power plants in Korea will have been in operation for more than 20 years. From this background, a weld overlay procedure has been developed in Korea for the dissimilar metal welds of pressurizer nozzles.

  14. Braze welding of cobalt with a silver–copper filler

    Directory of Open Access Journals (Sweden)

    Everett M. Criss

    2015-01-01

    Full Text Available A new method of joining cobalt by braze-welding it with a silver–copper filler was developed in order to better understand the residual stresses in beryllium–aluminum/silicon weldments which are problematic to investigate because of the high toxicity of Be. The base and filler metals of this new welding system were selected to replicate the physical properties, crystal structures, and chemical behavior of the Be–AlSi welds. Welding parameters of this surrogate Co–AgCu system were determined by experimentation combining 4-point bending tests and microscopy. Final welds are 5 pass manual TIG (tungsten inert gas, with He top gas and Ar back gas. Control of the welding process produces welds with full penetration melting of the cobalt base. Microscopy indicates that cracking is minimal, and not through thickness, whereas 4-point bending shows failure is not by base-filler delamination. These welds improve upon the original Be–AlSi welds, which do not possess full penetration, and have considerable porosity. We propose that utilization of our welding methods will increase the strength of the Be–AlSi weldments. The specialized welding techniques developed for this study may be applicable not only for the parent Be–AlSi welds, but to braze welds and welds utilizing brittle materials in general. This concept of surrogacy may prove useful in the study of many different types of exotic welds.

  15. Nondestructive Ultrasonic Inspection of Friction Stir Welds

    Science.gov (United States)

    Tabatabaeipour, M.; Hettler, J.; Delrue, S.; Van Den Abeele, K.

    Friction Stir Welding (FSW) is a relatively new solid-state welding procedure developed at The Welding Institute (TWI-UK) and the technique is widely employed for welding aluminum alloys in various applications. In order to examine the quality of the welds and to detect a variety of welding flaws such as wormholes and root-flaws, it is required to develop a methodical inspection technique that can be used for the identification and localization of such defects. The most prevalent and risky defect in this type of welding is the barely visible root flaw with a length varying from 100-700 μm. Due to the extreme characteristics of the flaw, off-the-shelf ultrasonic weld inspection methods are not always able to readily detect this type of minute defect feature. Here, we propose a novel approach to characterize root flaws using an oblique incident ultrasonic C-scan backscattering analysis. The implementation consists of an immersion ultrasonic testing method in pulse echo (i.e. backscatter) mode with a 3.5 MHz transducer, and makes use of an empirical procedure to engender of a shear wave dominated excitation at the root surface, and to properly gate the received signal for root flaw examination. By scanning the surface above the welded component, a C-scan image displaying the backscatter response from the root surface of the nugget zone can be obtained which allows a simple interpretation of the root flaw status of the weld.

  16. Welded Kimberlite?

    Science.gov (United States)

    van Straaten, B. I.; Kopylova, M. G.; Russell, J. K.; Scott Smith, B. H.

    2009-05-01

    Welding of pyroclastic deposits generally involves the sintering of hot glassy vesicular particles and requires the presence of a load and/or high temperatures. Welding can occur on various scales as observed in large welded pyroclastic flows, in small-volume agglutinated spatter rims, or as in coalesced clastogenic lava flows. In all these examples welding occurs mainly by reduction or elimination of porosity within the vesicular clasts and/or inter-clast pore space. The end result of welding in pyroclastic deposits is to produce dense, massive, coherent deposits. Here, we present a possible new end-member of the welding process: welding of non- vesicular pyroclasts in intra-crater kimberlite deposits. Kimberlite melt is a low-viscosity liquid carrying abundant crystals. Because of this, kimberlite eruptions generally produce non-vesicular pyroclasts. During welding, these pyroclast cannot deform by volume reduction to form typical fiamme. As a result, welding and compaction in kimberlites proceeds via the reduction of inter-clast pore space alone. The lack of porous pyroclasts limits the maximum amount of volumetric strain within pyroclastic kimberlite deposits to about 30%. This value is substantially lower than the limiting values for welding of more common felsic pyroclastic flows. The lower limit for volumetric strain in welded kimberlite deposits severely restricts the development of a fabric. In addition, pyroclastic kimberlite deposits commonly feature equant-shaped pyroclasts, and equant-shaped crystals. This, in turn, limits the visibility of the results of compaction and pore space reduction, as there are few deformable markers and elongate rigid markers that are able to record the strain during compaction. These features, together with the low viscosity of kimberlite magma and the stratigraphic position of these kimberlite deposits within the upper reaches of the volcanic conduit, call for careful interpretation of coherent-looking rocks in these

  17. Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool

    Science.gov (United States)

    Adams, Glynn; Venable, Richard; Lawless, Kirby

    2003-01-01

    Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.

  18. Effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded high strength aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, Tamil Nadu 608002 (India)], E-mail: visvabalu@yahoo.com; Ravisankar, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, Tamil Nadu 608002 (India); Reddy, G. Madhusudhan [Metal Joining Section, Defence Metallurgical Research Laboratory, Kanchanbag (P.O.), Hyderabad 560058 (India)

    2007-06-25

    This paper reveals the effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded AA7075 aluminium alloy. This alloy has gathered wide acceptance in the fabrication of light weight structures requiring high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding processes of high strength aluminium alloy are frequently gas tungsten arc welding (GTAW) process and gas metal arc welding (GMAW) process due to their comparatively easier applicability and better economy. Weld fusion zones typically exhibit coarse columnar grains because of the prevailing thermal conditions during weld metal solidification. This often results inferior weld mechanical properties and poor resistance to hot cracking. In this investigation, an attempt has been made to refine the fusion zone grains by applying pulsed current welding technique. Four different welding techniques have been used to fabricate the joints and they are: (i) continuous current GTAW (CCGTAW), (ii) pulsed current GTAW (PCGTAW), (iii) continuous current GMAW (CCGMAW) and (iv) pulsed current GMAW (PCGMAW) processes. As welded joint strength is much lower than the base metal strength and hence, a simple aging treatment has been given to improve the tensile strength of the joints. Current pulsing leads to relatively finer and more equi-axed grain structure in GTA and GMA welds. In contrast, conventional continuous current welding resulted in predominantly columnar grain structures. Post weld aging treatment is accompanied by an increase in tensile strength and tensile ductility.

  19. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guoping [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong [Univ. of Florida, Gainesville, FL (United States)

    2013-12-19

    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pin end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.

  20. Differences between Laser and Arc Welding of HSS Steels

    Science.gov (United States)

    Němeček, Stanislav; Mužík, Tomáš; Míšek, Michal

    Conventional welding processes often fail to provide adequate joints in high strength steels with multiphase microstructures. One of the promising techniques is laser beam welding: working without filler metal and with sufficient capacity for automotive and transportation industry (where the amount of AHSS steels increases each year, as well as the length of laser welds). The paper compares microstructures and properties of HSS (high strength steel) joints made by MAG (Metal Active Gas) and laser welding. The effects of main welding parameters (heat input, welding speed and others) are studied on multiphase TRIP 900 steel tubes and martensitic sheets DOCOL 1200, advanced materials for seat frames and other automotive components. Whereas the strength of conventional welds is significantly impaired, laser welding leaves strength of the base material nearly unaffected. As the nature of fracture changes during loading and depending on the welding method, failure mechanisms upon cross tension tests have been studied as well.

  1. Friction Stir Spot Welding of Advanced High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

    2009-11-13

    Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spot welding in advanced high strength steels.

  2. Heating coil welding technique for connection of large-diameter PE pipes using universally applicable, flexible taped joints; Heizwendelschweissverfahren fuer die Verbindung von PE-Grossrohren mittels universal anwendbarer, flexibler Wickelmuffen

    Energy Technology Data Exchange (ETDEWEB)

    Baudrit, Benjamin; Kraus, Eduard; Heidemeyer, Peter; Bastian, Martin [Sueddeutsche Kunststoff-Zentrum, Wuerzburg (Germany); Kern, Juergen; Neufeld, Wjatscheslaw [Frank und Krah Wickelrohr GmbH, Woelfersheim (Germany)

    2011-07-01

    This research project (Heating coil welding technique for connection of large-diameter PE pipes using universally applicable, flexible taped joints) was carried out by SKZ (Sueddeutsches Kunststoff-Zentrum) in close coopearation with Messrs. Frank and Krah Wickelrohr GmbH with the intention to develop a high-quality, economically efficient joining process for large-diameter pipes. The technique is based on the new technology of heating coil joints which permits the use of any desired joint geometries at acceptable cost. The new technique was validated for joints up to a diameter of 1,000 mm. With the welding parameters calculated in the project, even larger diameter joints are possible in theory.

  3. Residual stresses in welded plates

    Science.gov (United States)

    Bernstein, Edward L.

    1994-01-01

    The purpose of this project was to develop a simple model which could be used to study residual stress. The mechanism that results in residual stresses in the welding process starts with the deposition of molten weld metal which heats the immediately adjacent material. After solidification of weld material, normal thermal shrinkage is resisted by the adjacent, cooler material. When the thermal strain exceeds the elastic strain corresponding to the yield point stress, the stress level is limited by this value, which decreases with increasing temperature. Cooling then causes elastic unloading which is restrained by the adjoining material. Permanent plastic strain occurs, and tension is caused in the region immediately adjacent to the weld material. Compression arises in the metal farther from the weld in order to maintain overall static equilibrium. Subsequent repair welds may add to the level of residual stresses. The level of residual stress is related to the onset of fracture during welding. Thus, it is of great importance to be able to predict the level of residual stresses remaining after a weld procedure, and to determine the factors, such as weld speed, temperature, direction, and number of passes, which may affect the magnitude of remaining residual stress. It was hoped to use traditional analytical modeling techniques so that it would be easier to comprehend the effect of these variables on the resulting stress. This approach was chosen in place of finite element methods so as to facilitate the understanding of the physical processes. The accuracy of the results was checked with some existing experimental studies giving residual stress levels found from x-ray diffraction measurements.

  4. Welding Curtains

    Science.gov (United States)

    1984-01-01

    Concept of transparent welding curtains made of heavy duty vinyl originated with David F. Wilson, President of Wilson Sales Company. In 1968, Wilson's curtains reduced glare of welding arc and blocked ultraviolet radiation. When later research uncovered blue light hazards, Wilson sought improvement of his products. He contracted Dr. Charles G. Miller and James B. Stephens, both of Jet Propulsion Laboratory (JPL), and they agreed to undertake development of a curtain capable of filtering out harmful irradiance, including ultraviolet and blue light and provide protection over a broad range of welding operation. Working on their own time, the JPL pair spent 3 years developing a patented formula that includes light filtering dyes and small particles of zinc oxide. The result was the Wilson Spectra Curtain.

  5. A Morphing Technique Applied to Lung Motions in Radiotherapy: Preliminary Results

    Directory of Open Access Journals (Sweden)

    R. Laurent

    2010-01-01

    Full Text Available Organ motion leads to dosimetric uncertainties during a patient’s treatment. Much work has been done to quantify the dosimetric effects of lung movement during radiation treatment. There is a particular need for a good description and prediction of organ motion. To describe lung motion more precisely, we have examined the possibility of using a computer technique: a morphing algorithm. Morphing is an iterative method which consists of blending one image into another image. To evaluate the use of morphing, Four Dimensions Computed Tomography (4DCT acquisition of a patient was performed. The lungs were automatically segmented for different phases, and morphing was performed using the end-inspiration and the end-expiration phase scans only. Intermediate morphing files were compared with 4DCT intermediate images. The results showed good agreement between morphing images and 4DCT images: fewer than 2 % of the 512 by 256 voxels were wrongly classified as belonging/not belonging to a lung section. This paper presents preliminary results, and our morphing algorithm needs improvement. We can infer that morphing offers considerable advantages in terms of radiation protection of the patient during the diagnosis phase, handling of artifacts, definition of organ contours and description of organ motion.

  6. Preliminary survey on site-adaptation techniques for satellite-derived and reanalysis solar radiation datasets

    Energy Technology Data Exchange (ETDEWEB)

    Polo, J.; Wilbert, S.; Ruiz-Arias, J. A.; Meyer, R.; Gueymard, C.; Súri, M.; Martín, L.; Mieslinger, T.; Blanc, P.; Grant, I.; Boland, J.; Ineichen, P.; Remund, J.; Escobar, R.; Troccoli, A.; Sengupta, M.; Nielsen, K. P.; Renne, D.; Geuder, N.; Cebecauer, T.

    2016-07-01

    At any site, the bankability of a projected solar power plant largely depends on the accuracy and general quality of the solar radiation data generated during the solar resource assessment phase. The term 'site adaptation' has recently started to be used in the framework of solar energy projects to refer to the improvement that can be achieved in satellite-derived solar irradiance and model data when short-term local ground measurements are used to correct systematic errors and bias in the original dataset. This contribution presents a preliminary survey of different possible techniques that can improve long-term satellite-derived and model-derived solar radiation data through the use of short-term on-site ground measurements. The possible approaches that are reported here may be applied in different ways, depending on the origin and characteristics of the uncertainties in the modeled data. This work, which is the first step of a forthcoming in-depth assessment of methodologies for site adaptation, has been done within the framework of the International Energy Agency Solar Heating and Cooling Programme Task 46 'Solar Resource Assessment and Forecasting.'

  7. Welding in space and the construction of space vehicles by welding; Proceedings of the Conference, New Carrollton, MD, Sept. 24-26, 1991

    Science.gov (United States)

    The present conference discusses such topics in spacecraft welding as the NASA Long Duration Exposure Facility's evidence on material properties degradation, EVA/telerobotic construction techniques, welding of the superfluid helium on-orbit transfer flight demonstration tanks and hardware, electron-beam welding of aerospace vehicles, variable-polarity plasma arc keyhole welding of Al, aircraft experiments of low-gravity fusion welding, flash-butt welding of Al alloys, and a computer-aided handbook for space welding fabrication. Also discussed are the welded nozzle extension for Ariane launch vehicles, the existence of on-orbit cold-welding, structural materials performance in long-term space service, high-strength lightweight alloys, steels, and heat-resistant alloys for aerospace welded structures, the NASA-Goddard satellite repair program, and the uses of explosion welding and cutting in aerospace engineering.

  8. EFFECT OF CARBON MIGRATION ON CREEP PROPERTIES OF Cr5Mo DISSIMILAR WELDED JOINTS WITH Ni-BASED AND AUSTENITIC WELD METAL

    Institute of Scientific and Technical Information of China (English)

    J.M. Gong; Y. Jiang; S.T. Tu

    2004-01-01

    In this paper, the effect of carbon migration on creep properties of Cr5Mo dissimilar welded joints with Ni-based (Inconel 182) and Cr23Ni13 (A302) austenitic weld metal was investigated. Carbon migration near the weld metal/ferritic steel interface of Cr5Mo dissimilar welded joints was analyzed by aging method. Local creep deformations of the dissimilar welded joints were measured by a long-term local creep deformation measuring technique. The creep rupture testing was performed for Cr5Mo dissimilar welded joints with Inconel 182 and A302 weld metal. The research results show that the maximum creep strain rate occurs in the decarburized zone located on heat affect zone (HAZ) of Cr5Mo ferritic steel. The creep rupture life of Cr5Mo dissimilar welded joints with A302 weld metal decreases due to carbon migration and is about 50% of that welded with Inconel 182 weld metal.

  9. Arthroscopic grafting of scaphoid nonunion - surgical technique and preliminary findings from 23 cases.

    Science.gov (United States)

    Cognet, J-M; Louis, P; Martinache, X; Schernberg, F

    2017-02-01

    We report our experience with the arthroscopic treatment of 23 cases of scaphoid nonunion. We explain the surgical technique and describe the different steps needed to achieve bone union. We report our initial clinical and radiological results. This was a prospective non-randomized study. Inclusion criteria were a scaphoid nonunion without radiocarpal arthritis, without any time limit and without any selection as to nonunion location. Before the operation, patients underwent an X-Ray and CT scan or MRI. Schernberg's classification was used to evaluate the location of the nonunion. Internal fixation was performed with a screw or K-wires. Bone grafts were taken from the dorsal side of the distal radius using a T-Lok™ bone marrow biopsy needle (Argon Medical Devices, Plano, TX, USA). A CT scan was performed 3 months after the operation to determine whether union was achieved. Pain, strength and range of motion were evaluated before and after the operation. The patients' smoking habits were also documented. The average follow-up was 17.3 months (4-41). There were 20 men and 3 women with an average age of 26 years (17-63). The average duration of nonunion before the operation was 17 months (6-60). Based on Schernberg's classification, there was one type I, 12 type II and 10 type III nonunions. Wrist strength increased from 32 to 41kg. Union was obtained in all patients after an average of 4 months (3-12). Numerous treatments have been described for treating scaphoid nonunion: Matti-Russe, Fisk-Fernadez bone graft, vascularized bone graft, bone substitutes, etc. The success rate varies depending on the technique and study design. We have described an arthroscopic technique for treating scaphoid nonunion with very promising preliminary results. Arthroscopic debridement is needed to ensure good quality bone at the graft site, while preserving extrinsic vascularization. Traction is used during the operation to restore the scaphoid height, once debridement has been

  10. Research on CMT welding of nickel-based alloy with stainless steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronius company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Effects of welding parameters, including welding current, welding speed, etc, on weld surface appearance were tested. Microstructure and mechanical properties of CMT weld were studied. The results show that the thickness of interface reaction layer of the nickel-based alloy is 14.3μm, which is only 4.33% of base material. The weld is made up of two phases,α-copper and iron-based solid solution. Rupture occurs initially at the welded seam near the edge of stainless steel in shear test. The maximum shear strength of the CuSi3 welded joint is 184.9MPa.

  11. Explosive welding of undersea pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Stalker, A.W.

    1978-02-01

    The phenomenon of explosive welding has been known informally for many years. A number of investigations reported the occurerence of solid phase bonds as an incidental effect when using high explosives in association with adjacent metal surfaces and probably the earliest formal record was the observation by Carl in 1944 of a bond between two copper discs in contact with a detonator. In 1957 Philipchuk reported what is now recognized as an explosive weld between aluminium channel sections and a steel die when carrying out explosive forming trials. Since then a great deal of development work has resulted in explosive welding becoming a well established manufacturing technique, particularly in the fields of cladding and the joining of tube/tubeplates. In more recent years the process has been extended to the welding of large diameter line pipe materials.

  12. Deformation control technique for welding stainless steel sheet expansion tank%不锈钢薄板溢流箱焊接变形控制工艺

    Institute of Scientific and Technical Information of China (English)

    石秋红; 张勤

    2013-01-01

    某公司建设工程中的304材质不锈钢薄板溢流箱有较大的焊接变形倾向,而产品对变形后的尺寸偏差要求非常严格.通过分析304材质的焊接性,对比不同焊接方法,选用了焊接变形较小的药芯焊丝CO2气体保护焊,并合理选用焊接材料与焊接工艺参数,根据溢流箱结构特点安排合适的焊缝焊接顺序.焊接效果证明此焊接工艺有效解决了不锈钢薄板溢流箱的焊接变形难题,降低了生产成本,提高了生产效率,满足了工程质量要求.%The production of X company's construction project has a quite strict dimensional deviation criterion after deformation. However, type 304 stainless sheet steel overflow tank has significant tendency of weld deformation. Therefore, in this paper, it performed analysis on the weld ability of type 304, and comparison among different welding methods. It chose flux-cored wire co2 shield welding which of little welding deformation, and chose reasonable welding parameters and materials. In addition, it also arranged suitable weld sequence in accordance with the structural features of overflow tank. The welding effect proved that this welding method can effectively resolve the welding deformation problems of stainless sheet steel overflow tank, reduced cost of production, improved production efficiency and met project quality requirements.

  13. BASIC THEORY AND APPLICATIONS OF WELDING ARC SPECTRAL INFORMATION

    Institute of Scientific and Technical Information of China (English)

    LI Junyue; XUE Haitao; LI Huan; SONG Yonglun

    2007-01-01

    Welding arc spectral information is a rising welding Information source. In some occasion, it can reflect many physical phenomena of welding process and solve many problems that cannot be done with arc electric information, acoustic information and other arc information. It is of important significance in developing automatic control technique of welding process and other similar process. Many years study work on welding arc spectral information of the anthor are discussed from three aspects of theory, method and application. Basic theory, view and testing methods of welding arc spectral information has been put forward. In application aspects, many applied examples, for example, monitoring of harmful gases in arc (such as hydrogen and nitrogen) with the method of welding arc spectral information; welding arc spectral imaging of thc welding pool which is used in automatic seam tracking; controlling of welding droplet transfer with welding arc spectral information and so on, are introduced. Especially, the successful application in real time controlling of welding droplet transfer in pulsed GMAW is introduced too. These application examples show that the welding arc spectral information has great applied significance and development potentialities. These content will play an important role in applying and spreading welding arc spectral information technology.

  14. Optimization of vibratory welding process parameters using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pravin Kumar; Kumar, S. Deepak; Patel, D.; Prasad, S. B. [National Institute of Technology Jamshedpur, Jharkhand (India)

    2017-05-15

    The current investigation was carried out to study the effect of vibratory welding technique on mechanical properties of 6 mm thick butt welded mild steel plates. A new concept of vibratory welding technique has been designed and developed which is capable to transfer vibrations, having resonance frequency of 300 Hz, into the molten weld pool before it solidifies during the Shielded metal arc welding (SMAW) process. The important process parameters of vibratory welding technique namely welding current, welding speed and frequency of the vibrations induced in molten weld pool were optimized using Taguchi’s analysis and Response surface methodology (RSM). The effect of process parameters on tensile strength and hardness were evaluated using optimization techniques. Applying RSM, the effect of vibratory welding parameters on tensile strength and hardness were obtained through two separate regression equations. Results showed that, the most influencing factor for the desired tensile strength and hardness is frequency at its resonance value, i.e. 300 Hz. The micro-hardness and microstructures of the vibratory welded joints were studied in detail and compared with those of conventional SMAW joints. Comparatively, uniform and fine grain structure has been found in vibratory welded joints.

  15. Marangoni driven free surface flows in liquid weld pools

    NARCIS (Netherlands)

    Saldi, Z.S.

    2012-01-01

    Extending the weldability of novel materials, and improving the weld quality by tailoring weld microstructures are key factors to obtain the welding techniques demanded in the modern manufacturing industries. This can be done, for example, by feeding chemical elements from a consumable wire into the

  16. Marangoni driven free surface flows in liquid weld pools

    NARCIS (Netherlands)

    Saldi, Z.S.

    2012-01-01

    Extending the weldability of novel materials, and improving the weld quality by tailoring weld microstructures are key factors to obtain the welding techniques demanded in the modern manufacturing industries. This can be done, for example, by feeding chemical elements from a consumable wire into the

  17. A Computer Aided System for Simulating Weld Metal Solidification Crack

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A computer-aided system for simulating weld solidification crack has been developed by which a welding engineer can carry out the welding solidification crack simulation on the basis of a commercial finite element analysis software package. Its main functions include calculating the heat generations of the moving arc, mesh generation, calculating stress-strain distributions with element rebirth technique.

  18. Femtosecond fiber laser welding of dissimilar metals.

    Science.gov (United States)

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2014-10-01

    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries.

  19. ARc Welding (Industrial Processing Series).

    Science.gov (United States)

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  20. Improving Fatigue Performance of AHSS Welds

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [ORNL; Yu, Xinghua [ORNL; ERDMAN III, DONALD L [ORNL; Wang, Yanli [ORNL; Kelly, Steve [ArcelorMittal USA; Hou, Wenkao [ArcelorMittal USA; Yan, Benda [ArcelorMittal USA; Wang, Zhifeng [Colorado School of Mines, Golden; Yu, Zhenzhen [Colorado School of Mines, Golden; Liu, Stephen [Colorado School of Mines, Golden

    2015-03-01

    Reported herein is technical progress on a U.S. Department of Energy CRADA project with industry cost-share aimed at developing the technical basis and demonstrate the viability of innovative in-situ weld residual stresses mitigation technology that can substantially improve the weld fatigue performance and durability of auto-body structures. The developed technology would be costeffective and practical in high-volume vehicle production environment. Enhancing weld fatigue performance would address a critical technology gap that impedes the widespread use of advanced high-strength steels (AHSS) and other lightweight materials for auto body structure light-weighting. This means that the automotive industry can take full advantage of the AHSS in strength, durability and crashworthiness without the concern of the relatively weak weld fatigue performance. The project comprises both technological innovations in weld residual stress mitigation and due-diligence residual stress measurement and fatigue performance evaluation. Two approaches were investigated. The first one was the use of low temperature phase transformation (LTPT) weld filler wire, and the second focused on novel thermo-mechanical stress management technique. Both technical approaches have resulted in considerable improvement in fatigue lives of welded joints made of high-strength steels. Synchrotron diffraction measurement confirmed the reduction of high tensile weld residual stresses by the two weld residual stress mitigation techniques.

  1. Resistance Welding of Thermoplastic Composites: Process and Performance

    OpenAIRE

    Shi, H.

    2014-01-01

    Compared to thermoset composites, thermoplastic composites are drawing more and more attention by aircraft industries not only due to their excellent material properties but also due to their potentials to reduce cycle time and structure cost by using low-cost manufacturing technologies such as welding. Resistance welding has been regarded as one of the most promising welding techniques owing to the low energy consumption, simplicity of welding operation and capability for scaling up. Previou...

  2. Investigation of high-frequency pipe welding

    Science.gov (United States)

    Konovalov, Nikolai A.; Lakhno, Nikolay I.; Gushchin, A. G.; Putryk, N. D.; Kovalenko, Vladimir I.; Galkina, V. A.; Veselovsky, Vladimir B.; Furmanov, Valeri B.; Kovika, Nikolai D.; Novikov, Leonid V.; Shcherbina, V. N.

    1993-01-01

    For investigation of a pipe welding process at high-frequency heating aimed at increasing of pipe quality and decreasing of spoilage, the use of high-speed recording and TV-technique is considered to be effective. The authors have created a visual inspection system for pipe welding process studies at a tube mill of the Novomoskovsk Pipe Plant.

  3. Research on overall assembling and welding process of steel box girder tuyere blocks of Taizhou Bridge

    Institute of Scientific and Technical Information of China (English)

    Yan Shiguang; Li Hongtao; Wang Chao

    2012-01-01

    This article presents in detail the assembling and welding process technique of the steel box girder tuyere blocks of Taizhou Bridge. The application of this process technique effectively solves the problem of welding stress release in tuyere block assembling and welding without increasing the number of turns of the blocks and overhead welding, thus avoiding possible structural deformation due to excessive accumulation of internal welding stress, greatly reducing the repeated deformation and correction work during assembling and welding, and ensuring the weld seam quality and overall dimensions of tuvere blocks of Taizhou Bridze.

  4. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    Directory of Open Access Journals (Sweden)

    Koray Yurtisik

    2013-09-01

    Full Text Available Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex microstructure without compromising the welding efficiency. 11.1 mm-thick standard duplex stainless steel plates were joined in a single-pass using this novel technique. Same plates were also subjected to conventional gas metal arc and plasma arc welding processes, providing benchmarks for the investigation of the weldability of the material. In the first place, the hybrid welding process enabled us to achieve less heat input compared to gas metal arc welding. Consequently, the precipitation of secondary phases, which are known to be detrimental to the toughness and corrosion resistance of duplex stainless steels, was significantly suppressed in both fusion and heat affected zones. Secondly, contrary to other keyhole techniques, proper cooling time and weld metal chemistry were achieved during the process, facilitating sufficient reconstructive transformation of austenite in the ferrite phase.

  5. Summary of preliminary contaminant impacts investigations in the Clinch River Basin, Virginia, using multiple bioassessment techniques

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 1992 multiple investigations were performed to collect preliminary information to direct future studies aimed at characterizing contaminant problems in the Clinch...

  6. Laser Welding in Electronic Packaging

    Science.gov (United States)

    2000-01-01

    The laser has proven its worth in numerous high reliability electronic packaging applications ranging from medical to missile electronics. In particular, the pulsed YAG laser is an extremely flexible and versatile too] capable of hermetically sealing microelectronics packages containing sensitive components without damaging them. This paper presents an overview of details that must be considered for successful use of laser welding when addressing electronic package sealing. These include; metallurgical considerations such as alloy and plating selection, weld joint configuration, design of optics, use of protective gases and control of thermal distortions. The primary limitations on use of laser welding electronic for packaging applications are economic ones. The laser itself is a relatively costly device when compared to competing welding equipment. Further, the cost of consumables and repairs can be significant. These facts have relegated laser welding to use only where it presents a distinct quality or reliability advantages over other techniques of electronic package sealing. Because of the unique noncontact and low heat inputs characteristics of laser welding, it is an ideal candidate for sealing electronic packages containing MEMS devices (microelectromechanical systems). This paper addresses how the unique advantages of the pulsed YAG laser can be used to simplify MEMS packaging and deliver a product of improved quality.

  7. Laser based spot weld characterization

    Science.gov (United States)

    Jonietz, Florian; Myrach, Philipp; Rethmeier, Michael; Suwala, Hubert; Ziegler, Mathias

    2016-02-01

    Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto, the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called "weld nugget" provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contact-free, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established.

  8. Double global optimum genetic algorithm-particle swarm optimization-based welding robot path planning

    Science.gov (United States)

    Wang, Xuewu; Shi, Yingpan; Ding, Dongyan; Gu, Xingsheng

    2016-02-01

    Spot-welding robots have a wide range of applications in manufacturing industries. There are usually many weld joints in a welding task, and a reasonable welding path to traverse these weld joints has a significant impact on welding efficiency. Traditional manual path planning techniques can handle a few weld joints effectively, but when the number of weld joints is large, it is difficult to obtain the optimal path. The traditional manual path planning method is also time consuming and inefficient, and cannot guarantee optimality. Double global optimum genetic algorithm-particle swarm optimization (GA-PSO) based on the GA and PSO algorithms is proposed to solve the welding robot path planning problem, where the shortest collision-free paths are used as the criteria to optimize the welding path. Besides algorithm effectiveness analysis and verification, the simulation results indicate that the algorithm has strong searching ability and practicality, and is suitable for welding robot path planning.

  9. Review on electromagnetic welding of dissimilar materials

    Science.gov (United States)

    Shanthala, K.; Sreenivasa, T. N.

    2016-12-01

    Electromagnetic welding (EMW) is a highspeed joining technique that is used to join similar or dissimilar metals, as well as metals to non-metals. This technique uses electromagnetic force to mainly join conductive materials. Unlike conventional joining processes, the weld interface does not melt, thus keeping the material properties intact. Extremely high velocity and strain rate involved in the process facilitate extending the EMW technique for joining several materials. In this paper, the research and progress in electromagnetic welding are reviewed from various perspectives to provide a basis for further research.

  10. Contamination and solid state welds.

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Bernice E.

    2007-05-01

    Since sensitivity to contamination is one of the verities of solid state joining, there is a need for assessing contamination of the part(s) to be joined, preferably nondestructively while it can be remedied. As the surfaces that are joined in pinch welds are inaccessible and thus provide a greater challenge, most of the discussion is of the search for the origin and effect of contamination on pinch welding and ways to detect and mitigate it. An example of contamination and the investigation and remediation of such a system is presented. Suggestions are made for techniques for nondestructive evaluation of contamination of surfaces for other solid state welds as well as for pinch welds. Surfaces that have good visual access are amenable to inspection by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Although other techniques are useful for specific classes of contaminants (such as hydrocarbons), DRIFT can be used most classes of contaminants. Surfaces such as the interior of open tubes or stems that are to be pinch welded can be inspected using infrared reflection spectroscopy. It must be demonstrated whether or not this tool can detect graphite based contamination, which has been seen in stems. For tubes with one closed end, the technique that should be investigated is emission infrared spectroscopy.

  11. Manufacturing of 25 mm heavy-wall linepipe using the high frequency induction (HFI) welding technique, a challenge for a pipe manufacturer

    Energy Technology Data Exchange (ETDEWEB)

    Tazedakis, Athanasios S.; Voudouris, Nikolaos G. [Corinth Pipeworks Thisvi Plant, Viotia, (Greece); Musslewhite, Mike [CPW America, Houston, TX, (United States)

    2010-07-01

    High frequency inductive welding is widely used in the pipeline industry to process longitudinally welded pipes from hot-rolled strip. Increased demand has caused CPW-Thisvi to expand HFI process limits from 20.6 mm to 25 mm for high grade applications. This paper reports on the development of this process and presents the technical specifications. The technology used to make possible the use of HFI up to X60 are described in detail. The theoretical analysis was performed using a finite element model. It was used to determine the new forming and welding parameters required to optimize production. The CPW also designed specifically heavy wall weld seam ultrasonic inspection for HFI pipes. Results showed properties which were homogenous and satisfied API 5L requirements. This study also showed the interesting potential of micro-alloyed steels.

  12. Seam Tracking Technology for Hyperbaric Underwater Welding

    Institute of Scientific and Technical Information of China (English)

    JIAO Xiangdong; YANG Yongyong; ZHOU Canfeng

    2009-01-01

    Automatic weld seam tracking technology to be used in hyperbaric underwater damaged pipeline repair welding is much more important, because of poor bevel preparation and severe working condition. A weld seam tracking system based on digital signal processing(DSP) passive light weld image processing technology has been established. A convenient charge coupled device(CCD) camera system was used in the high pressure environment with the help of an aperture and focus altering mechanism to guarantee overall image visibility in the scope of pressure below 0.7 MPa. The system can be used in the hyperbaric environment to pick up the real welding image of both the welding arc and the welding pool. The newly developed DSP technology was adopted to achieve the goal of system real time characteristics. An effective weld groove edge recognition technique including narrow interesting window opening, middle value wave filtering, Sobel operator weld edge detecting and edge searching in a defined narrow area was proposed to remove the guide error and system accuracy was ensured. The results of tracking simulation and real tracking application with arc striking have proved the validity and the accuracy of the mentioned system and the image processing method.

  13. Numerical simulation of friction stir welding

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav

    2014-01-01

    Full Text Available Friction stir welding is a solid-state welding technique that utilizes thermo-mechanical influence of the rotating welding tool on parent material resulting with monolith joint-weld. On the contact of welding tool and parent material, significant stirring and deformation of parent material appears, and during this process mechanical energy is partially transformed into heat. The paper describes the software for the numerical simulation of friction stir welding developed at Mechanical Engineering Faculty, University of Nis. Numerical solution for estimation of welding plates temperature is estimated using finite difference method-explicit scheme with adaptive grid, considering influence of temperature on material's conductivity, contact conditions between welding tool and parent material, material flow around welding tool etc. The calculated results are in good agreement with the experimental results. [Projekat Ministarstva nauke Republike Srbije, br. TR35034: The research of modern non-conventional technologies application in manufacturing companies with the aim of increase efficiency of use, product quality, reduce of costs and save energy and materials

  14. Advanced Laser Transmission Welding Strategies for Fibre Reinforced Thermoplastics

    Science.gov (United States)

    Wippo, V.; Jaeschke, P.; Brueggmann, M.; Suttmann, O.; Overmeyer, L.

    Laser transmission welding can be used to join endless fibre reinforced thermoplastics. The welding temperature is affected by the heat conduction along carbon fibresand depends on the local orientation of the fibres in the weld seam and the laser welding technique itself. In these investigations the heat development during the welding with quasi-static temperature fields, which is a combination of two laser welding techniques, is evaluated and compared to welding with a homogenized intensity distribution. In order to optimize the temperature distribution over the weld seam width for both linear and curved weld seams, different scanning structures have beenadapted. The experiments were conducted with a diode laser emitting at a wavelength of 940 nm and the process was monitored by aninfrared camera. The used thermoplastics consist of laminates based on unidirectional carbon fibre reinforced polyphenylenesulfide. With the developed scanning structures, a near-homogeneous temperature distribution was generated over the width of the weld seam for curved weld seams, which is not possible by welding with a homogenized laser radiation intensity distribution.

  15. Preliminary study on the mechanical behavior of friction spot welds Estudo preliminar do comportamento mecânico de soldas a ponto por fricção

    Directory of Open Access Journals (Sweden)

    José Antônio Esmerio Mazzaferro

    2009-09-01

    Full Text Available The Friction Spot Welding - FSpW is a solid-state process that allows joining two or more metal sheets in lap configuration with no residual keyhole as occurs in the Friction Stir Welding - FSW process. The present work reports part of the efforts made at GKSS Research Centre to better understand the complex phenomena that take place during FSpW of aluminum alloys and establish the mechanical response of the resulting joints. Over the recent years the research on modeling friction based welding processes has increased considerably. Most of the works related to this subject deal with the process mechanics. On the other hand, some investigations have shown how the process variables affect the mechanical properties of the joints, but it is very difficult to find quantitative results that can be readily used for mechanical design purposes. The aim of this work is to develop an analysis procedure based on the process characteristics that allows evaluating how the resulting geometry and microstructure affect the joint mechanical behavior. For this, the results of the mechanical tests obtained on AA2024-T3 aluminum alloy were used to calibrate and validate a numerical model that was used to predict the joint failure mode. The model reproduced the specimen geometry and load conditions adopted in the lap-shear and cross-tensile tests. The joint was considered as formed by three main regions (SZ - stir zone, TMAZ - thermo mechanically affected zone and HAZ - heat affected zone whose properties and dimensions were based in microhardness evaluation and macrographic analysis of welded specimens. It was observed a good agreement between the simulation results and experimental data. The numerical modeling of the joints allows the prediction of the joint mechanical properties, as well as to understand how a change in geometry and property of each region affects the final mechanical behavior. Based in the obtained results, the analysis procedure can be easily

  16. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  17. PET/MRI: a novel hybrid imaging technique. Major clinical indications and preliminary experience in Brazil.

    Science.gov (United States)

    Vitor, Taise; Martins, Karine Minaif; Ionescu, Tudor Mihai; Cunha, Marcelo Livorsi da; Baroni, Ronaldo Hueb; Garcia, Marcio Ricardo Taveira; Wagner, Jairo; Campos, Guilherme de Carvalho; Nogueira, Solange Amorim; Guerra, Elaine Gonçalves; Amaro, Edson

    2017-01-01

    In recent years, medical imaging with hybrid techniques has widely accepted and employed in clinical routine. PET/MRI offers significant advantages, including excellent contrast and resolution and reduced ionizing radiation, as compared to well-established PET/CT. Therefore, PET/MRI is a promising modality for oncologic imaging of some regions, such as brain, head and neck, liver and pelvis. This article set out to analyze clinical conditions that could benefit from PET/MRI imaging based on our caseload. The potential of PET/MRI to become the imaging modality of choice for assessment of neurologic and oncologic conditions associated with soft tissues is highlighted. Clinical aspects of PET/MRI and its application to clinical cases are illustrated with examples extracted from the authors' preliminary experience. RESUMO Nos últimos anos, imagens médicas com tecnologias híbridas tornaram-se amplamente aceitas e utilizadas na prática clínica. O PET/RM possui vantagens importantes, incluindo excelentes contrastes e resolução, e menor radiação ionizante, em comparação ao PET/TC. Por isto, é uma modalidade promissora para exames de imagem de pacientes oncológicos, para avaliar o cérebro, cabeça e pescoço, o fígado e a pelve. O objetivo deste artigo foi analisar as situações clínicas que se beneficiariam de exames de PET/RM a partir de uma casuística. Destacamos o potencial desta técnica se tornar o método de imagem de escolha para doenças neurológicas e oncológicas que envolvam partes moles. Os aspectos clínicos de PET/RM e sua aplicação aos casos clínicos são ilustrados com exemplos da experiência inicial dos autores.

  18. Neuro emotional technique effects on brain physiology in cancer patients with traumatic stress symptoms: preliminary findings.

    Science.gov (United States)

    Monti, Daniel A; Tobia, Anna; Stoner, Marie; Wintering, Nancy; Matthews, Michael; He, Xiao-Song; Doucet, Gaelle; Chervoneva, Inna; Tracy, Joseph I; Newberg, Andrew B

    2017-08-01

    The purpose of this study was to characterize the neurophysiological and clinical effects that may result from the neuro emotional technique (NET) in patients with traumatic stress symptoms associated with a cancer-related event. We hypothesized that self-regulatory processing of traumatic memories would be observable as physiological changes in key brain areas after undergoing the NET intervention and that these changes would be associated with improvement of traumatic stress symptoms. We enrolled 23 participants with a prior cancer diagnosis who expressed a distressing cancer-related memory that was associated with traumatic stress symptoms of at least 6 months in duration. Participants were randomized to either the NET intervention or a waitlist control condition. To evaluate the primary outcome of neurophysiological effects, all participants received functional magnetic resonance imaging (fMRI) during the auditory presentation of both a neutral stimulus and a description of the specific traumatic event. Pre/post-comparisons were performed between the traumatic and neutral condition, within and between groups. Psychological measures included the Impact of Event Scale (IES), State Trait Anxiety Index (STAI), Brief Symptom Inventory (BSI)-18, and Posttraumatic Cognitions Inventory (PTCI). The initial fMRI scans in both groups showed significant increases in the bilateral parahippocampus and brainstem. After NET, reactivity in the parahippocampus, brainstem, anterior cingulate, and insula was significantly decreased during the traumatic stimulus. Likewise, participants receiving the NET intervention had significant reductions (p < 0.05) compared to the control group in distress as measured by the BSI-18 global severity index, anxiety as measured by the STAI, and traumatic stress as measured by the IES and PTCI. This study is an initial step towards understanding mechanistic features of the NET intervention. Specifically, brain regions involved with traumatic

  19. Electron beam welding of copper lids. Status report up to 2001-12-31

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, Soeren; Ronneteg, Ulf

    2003-10-01

    The report describes a summary of achieved results from 21 lid welds and numerous test block welds, performed at SKB Canister Laboratory in Oskarshamn for the period 1999-02-12 to 2001-12-31. Good weld quality has been achieved and some welds fulfilled the preliminary interpretation criteria, but the weld process need to be further developed before process qualification. Many different parameter settings have been tested and the influence on the weld profile has been mapped and documented. Deformations of the canister after welding have been measured and found to be very small. The preliminary inspection methods of the weld quality works satisfactory for the need of the development of the weld process. The welding machine is a new design developed for welding of thick copper in reduced pressure and performs well, but suffers from teething problems, which has delayed the work with development of the weld process. The welding system needs to be further developed and improved to work more reliably in a production plant.

  20. Electron beam welding of copper lids. Status report up to 2001-12-31

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, Soeren; Ronneteg, Ulf

    2003-10-01

    The report describes a summary of achieved results from 21 lid welds and numerous test block welds, performed at SKB Canister Laboratory in Oskarshamn for the period 1999-02-12 to 2001-12-31. Good weld quality has been achieved and some welds fulfilled the preliminary interpretation criteria, but the weld process need to be further developed before process qualification. Many different parameter settings have been tested and the influence on the weld profile has been mapped and documented. Deformations of the canister after welding have been measured and found to be very small. The preliminary inspection methods of the weld quality works satisfactory for the need of the development of the weld process. The welding machine is a new design developed for welding of thick copper in reduced pressure and performs well, but suffers from teething problems, which has delayed the work with development of the weld process. The welding system needs to be further developed and improved to work more reliably in a production plant.

  1. An Approach to Maximize Weld Penetration During TIG Welding of P91 Steel Plates by Utilizing Image Processing and Taguchi Orthogonal Array

    Science.gov (United States)

    Singh, Akhilesh Kumar; Debnath, Tapas; Dey, Vidyut; Rai, Ram Naresh

    2016-06-01

    P-91 is modified 9Cr-1Mo steel. Fabricated structures and components of P-91 has a lot of application in power and chemical industry owing to its excellent properties like high temperature stress corrosion resistance, less susceptibility to thermal fatigue at high operating temperatures. The weld quality and surface finish of fabricated structure of P91 is very good when welded by Tungsten Inert Gas welding (TIG). However, the process has its limitation regarding weld penetration. The success of a welding process lies in fabricating with such a combination of parameters that gives maximum weld penetration and minimum weld width. To carry out an investigation on the effect of the autogenous TIG welding parameters on weld penetration and weld width, bead-on-plate welds were carried on P91 plates of thickness 6 mm in accordance to a Taguchi L9 design. Welding current, welding speed and gas flow rate were the three control variables in the investigation. After autogenous (TIG) welding, the dimension of the weld width, weld penetration and weld area were successfully measured by an image analysis technique developed for the study. The maximum error for the measured dimensions of the weld width, penetration and area with the developed image analysis technique was only 2 % compared to the measurements of Leica-Q-Win-V3 software installed in optical microscope. The measurements with the developed software, unlike the measurements under a microscope, required least human intervention. An Analysis of Variance (ANOVA) confirms the significance of the selected parameters. Thereafter, Taguchi's method was successfully used to trade-off between maximum penetration and minimum weld width while keeping the weld area at a minimum.

  2. Experimental and simulation study on the microstructure of TA15 titanium alloy laser beam welded joints

    Science.gov (United States)

    Zhan, Xiaohong; Peng, Qingyu; Wei, Yanhong; Ou, Wenmin

    2017-09-01

    Laser beam welding technique offers obvious advantages over other fusion welding processes in terms of joining titanium alloy. The microstructure of welded seam and heat affected zone resulted from diverse welding speeds and laser powers were investigated after simulating welding heat treatment. The analysis of the thermal transport properties successfully explained the morphology. Optimal process parameters were obtained. The simulation results were consistent with the corresponding experimental observations.

  3. Laser welding of stainless steel weld filler metals at high cooling rates

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J.M.; David, S.A.

    1988-01-01

    Several stainless steels were laser welded under conditions resulting in high cooling rates of the welds. Significant changes in the microstructures, compared to those produced by conventional welding techniques, were found. For alloys 304, 308, 309, 316 and 347, a general decrease in ferrite content with increasing cooling rate was found. For three alloys (304, 308, 347), a fully austenitic structure was obtained at the highest cooling rates. For alloys 312 and 446, the high cooling rates retarded the formation of austenite, resulting in higher ferrite contents and fully ferritic structures at the highest cooling rates. Only for alloy 310 was the microstructure after laser welding comparable to that found after conventional welding. The results are discussed in terms of their impact on the Schaeffler diagram and its applicability to laser welding. 11 refs., 7 figs.

  4. Role of heat equation in lap joint for welding process

    Science.gov (United States)

    Kumar, P.; Rohit, Sooraj

    2017-07-01

    Welding is predominantly used in industrial purposes and growth in their industry, which gives exact welding and more efficient. The major advantage of using this welding technique at initial stage it takes very low heat to weld the portion and gives a good result of low distortion in modules. In this context, two dissimilar metals copper and nickel are chosen for analysis in tungsten inert gas welding (TIG) in which length is 300 mm and breadth is 100 mm thickness 15 mm welded at room temperature a welded portion zone is formed simulation analysis has done on CATIA® and ANSYS®and MATLAB® code is generated for calculating temperatures at each node to calculate temperature at each node a new technique is used tri-diagonal matrix algorithm is used (TDMA) Steady state one dimension heat is calculated results compared between simulation analysis and analytical analysis temperature at each node is calculated both the temperatures are equal with error.

  5. Modelling of damage development and ductile failure in welded joints

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    This thesis focuses on numerical analysis of damage development and ductile failure in welded joints. Two types of welds are investigated here. First, a study of the localization of plastic flow and failure in aluminum sheets, welded by the relatively new Friction Stir (FS) Welding method, has been...... conducted ([P1], [P2], [P7]-[P9]). The focus in the thesis is on FS-welded 2xxx and 6xxx series of aluminum alloys, which are attractive, for example, to the aerospace industry, since the 2024 aluminum in particular, is typically classified as un-weldable by conventional fusion welding techniques. Secondly......, a study of the damage development in Resistance SpotWelded joints, when subject to the commonly used static shear-lab or cross-tension testing techniques, has been carried out ([P3]-[P6]). The focus in thesis is on the Advanced High Strength Steels, Dual-Phase 600, which is used in for example...

  6. Monitoring and Control of the Hybrid Laser-Gas Metal-Arc Welding Process

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D. C.; McJunkin, T. R.; Nichol, C. I.; Clark, D.; Todorov, E.; Couch, R. D.; Yu, F.

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  7. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Filacchioni, G. E-mail: gianni.filacchioni@casaccia.enea.it; Montanari, R.; Tata, M.E.; Pilloni, L

    2002-12-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program.

  8. Distortion Control during Welding

    NARCIS (Netherlands)

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ met

  9. Introduction to Welding.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  10. Modeling of fundamental phenomena in welds

    Energy Technology Data Exchange (ETDEWEB)

    Zacharia, T.; Vitek, J.M. [Oak Ridge National Lab., TN (United States); Goldak, J.A. [Carleton Univ., Ottawa, Ontario (Canada); DebRoy, T.A. [Pennsylvania State Univ., University Park, PA (United States); Rappaz, M. [Ecole Polytechnique Federale de Lausanne (Switzerland); Bhadeshia, H.K.D.H. [Cambridge Univ. (United Kingdom)

    1993-12-31

    Recent advances in the mathematical modeling of fundamental phenomena in welds are summarized. State-of-the-art mathematical models, advances in computational techniques, emerging high-performance computers, and experimental validation techniques have provided significant insight into the fundamental factors that control the development of the weldment. The current status and scientific issues in the areas of heat and fluid flow in welds, heat source metal interaction, solidification microstructure, and phase transformations are assessed. Future research areas of major importance for understanding the fundamental phenomena in weld behavior are identified.

  11. Laser welding in space

    Science.gov (United States)

    Kaukler, W. F.; Workman, G. L.

    1991-01-01

    Autogenous welds in 304 stainless steel were performed by Nd-YAG laser heating in a simulated space environment. Simulation consists of welding on the NASA KC-135 aircraft to produce the microgravity and by containing the specimen in a vacuum chamber. Experimental results show that the microgravity welds are stronger, harder in the fusion zone, have deeper penetration and have a rougher surface rippling of the weld pool than one-g welds. To perform laser welding in space, a solar-pumped laser concept that significantly increases the laser conversion efficiency and makes welding viable despite the limited power availability of spacecraft is proposed.

  12. “Effect of Tool Geometries on Thermal and Mechanical Behaviour of Friction Stir Welding Welds of Aluminum Alloy”

    Directory of Open Access Journals (Sweden)

    Kuber Singh Patel

    2016-06-01

    Full Text Available Friction stir welding is an advanced solid state joining technique, widely being used in various applications for joining aluminum alloys in aerospace, marine, automotive and many other applications of profitable importance. The welding parameters and tool pin profile play a major role in deciding the weld quality. It is an attempt to being made to analyze the effect of tool geometries, the effect of tool rotation and welding speeds on the mechanical properties of friction stir welded joints made for sample of profitable grade aluminum alloy and ANSYS is used to compare and prove the attempts made for various analyses

  13. Tool Forces Developed During Friction Stir Welding

    Science.gov (United States)

    Melendez, M.; Tang, W.; Schmidt, C.; McClure, J. C.; Nunes, A. C.; Murr, L. E.

    2003-01-01

    This paper will describe a technique for measuring the various forces and the torque that exist on the Friction Stir Welding pin tool. Results for various plunge depths, weld speeds, rotational speed, and tool configurations will be presented. Welds made on 6061 aluminum with typical welding conditions require a downward force of 2800 lbs. (12.5 kN) a longitudinal force in the direction of motion of 300 lbs (1.33 kN), a transverse force in the omega x v direction of 30 lbs (135 N). Aluminum 2195 under typical weld conditions requires a downward force of 3100 lbs. (1.38 kN), a longitudinal force of 920 lbs. (4.1 kN), and a transverse force of 45 lbs. (200 N) in the omega x v direction.

  14. Explosive Welding for Remote Applications

    Science.gov (United States)

    Bement, L. J.

    1985-01-01

    Explosive seam welding produces up to 100-percent joint strength. Ribbon explosive activated by remote energy source produces metallurgically sound joint. Success of technique verified for joints between like metals and joints between two different metals. Applications include structural assembly in toxic atmospheres and in radioactive or otherwise hazardous environments.

  15. Initial testing for the recommendation of improved gas metal arc welding procedures for HY-80 steel plate butt joints at Norfolk Naval Shipyard

    OpenAIRE

    Rice, Veronika J.

    2015-01-01

    Approved for public release; distribution is unlimited Hull cut welding proficiency is an essential skill maintained by personnel at naval shipyards. This thesis explores arc weld theory to develop ideal submarine hull butt joint designs and recommends preliminary testing to be used to develop improved butt joint welding procedures at Norfolk Naval Shipyard. Pulsed gas metal arc welding (GMAW-P) is the ideal process for shipboard hull welding applications, theoretically. Butt joint samples...

  16. Breast operative technique for single-stage reconstruction after conservative skin sparing and nipple sparing mastectomies: a preliminary study

    Directory of Open Access Journals (Sweden)

    Egidio Riggio

    2012-02-01

    Full Text Available The Authors present a novel technique of immediate breast reconstruction with definite implants after mastectomy conserving the nipple- areola complex and, less frequently, in skin-sparing mastectomy. The increase of indications for both oncologic and prophylactic nipple-sparing mastectomy has induced the research for a single-stage technique that could replace the two-stage reconstruction with expanders and/or autogenous reconstructions with flaps. The new techniques introduce modifications of the pocket coverage for the implants occurring in two ways: i autologous adaptation of muscle-fascia-fat-skin layers, ii application of alloplastic materials as the meshes. A series of 124 immediate reconstructions were performed from 2008 to 2011 using a continuous composite pocket made of pectoralis maior and serratus anterior muscle above, and skin-fat flap below. The innovation is represented by an extended electrosurgical scoring of the lower pole of the mammary pocket at two levels. The first is the deep-fascia and muscle layer; the second is the superfiacial fascial system. This operative technique represents an advancement of a prior procedure described by the Authors in 1998. This preliminary study would primarily describe the technique step by step. Discussion debates about alternative techniques in terms of either surgical details of technique or cosmetic results are still to be reached.

  17. 77 FR 34344 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final Results of the Antidumping...

    Science.gov (United States)

    2012-06-11

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final... circular welded non-alloy steel pipe (``CWP'') from the Republic of Korea (``Korea''). The review covers...: Background Following Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary Results...

  18. 78 FR 34342 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results and Partial Rescission of...

    Science.gov (United States)

    2013-06-07

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results and... duty order on certain circular welded non- alloy steel pipe from Mexico.\\1\\ This administrative review.... \\1\\ See Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results and...

  19. Parametric optimization of seam welding of stainless steel (SS 304) sheets

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Muthuraman Pandi; Sait, Abdullah Naveen; Ravichandran, Manickam [Chendhuran College of Engineering and Technology, Pudukkottai, Tamilnadu (India)

    2015-06-01

    In the present study, seam welding process parameters were optimized for joining 306 stainless steel plates. Welding pressure, welding speed and welding temperature combinations were carefully selected with the objective of producing a weld joint with maximum impact strength and hardness. Taguchi technique was applied for optimizing the selected welding parameters. The factors used in this study consisted of pressure, welding speed and welding temperature, each of which had three levels in the study. L{sub 27} orthogonal array and corresponding levels were selected according to the aforementioned factors and experimental tests were performed. Signal-to-noise (S/N) ratio was used to evaluate the experimental results. The results indicate that the welding speed has the greatest influence on impact strength, followed by welding pressure and temperature. Experiments have also been conducted to validate the optimized parameters.

  20. Inspection of thick welded joints using laser-ultrasonic SAFT.

    Science.gov (United States)

    Lévesque, D; Asaumi, Y; Lord, M; Bescond, C; Hatanaka, H; Tagami, M; Monchalin, J-P

    2016-07-01

    The detection of defects in thick butt joints in the early phase of multi-pass arc welding would be very valuable to reduce cost and time in the necessity of reworking. As a non-contact method, the laser-ultrasonic technique (LUT) has the potential for the automated inspection of welds, ultimately online during manufacturing. In this study, testing has been carried out using LUT combined with the synthetic aperture focusing technique (SAFT) on 25 and 50mm thick butt welded joints of steel both completed and partially welded. EDM slits of 2 or 3mm height were inserted at different depths in the multi-pass welding process to simulate a lack of fusion. Line scans transverse to the weld are performed with the generation and detection laser spots superimposed directly on the surface of the weld bead. A CCD line camera is used to simultaneously acquire the surface profile for correction in the SAFT processing. All artificial defects but also real defects are visualized in the investigated thick butt weld specimens, either completed or partially welded after a given number of passes. The results obtained clearly show the potential of using the LUT with SAFT for the automated inspection of arc welds or hybrid laser-arc welds during manufacturing.

  1. Welding of Prosthetic Alloys

    Directory of Open Access Journals (Sweden)

    Wojciechowska M.

    2015-04-01

    Full Text Available This paper presents the techniques of joining metal denture elements, used in prosthetic dentistry: the traditional soldering technique with a gas burner and a new technique of welding with a laser beam; the aim of the study was to make a comparative assessment of the quality of the joints in view of the possibility of applying them in prosthetic structures. Fractographic examinations were conducted along with tensile strength and impact strength tests, and the quality of the joints was assessed compared to the solid metal. The experiments have shown that the metal elements used to make dentures, joined by the technique which employs a laser beam, have better strength properties than those achieved with a gas burner.

  2. Monte Carlo Simulation of Alloy Design Techniques: Fracture and Welding Studied Using the BFS Method for Alloys

    Science.gov (United States)

    Bozzolo, Guillermo H.; Good, Brian; Noebe, Ronald D.; Honecy, Frank; Abel, Phillip

    1999-01-01

    Large-scale simulations of dynamic processes at the atomic level have developed into one of the main areas of work in computational materials science. Until recently, severe computational restrictions, as well as the lack of accurate methods for calculating the energetics, resulted in slower growth in the area than that required by current alloy design programs. The Computational Materials Group at the NASA Lewis Research Center is devoted to the development of powerful, accurate, economical tools to aid in alloy design. These include the BFS (Bozzolo, Ferrante, and Smith) method for alloys (ref. 1) and the development of dedicated software for large-scale simulations based on Monte Carlo- Metropolis numerical techniques, as well as state-of-the-art visualization methods. Our previous effort linking theoretical and computational modeling resulted in the successful prediction of the microstructure of a five-element intermetallic alloy, in excellent agreement with experimental results (refs. 2 and 3). This effort also produced a complete description of the role of alloying additions in intermetallic binary, ternary, and higher order alloys (ref. 4).

  3. Intraoral metal laser welding: a case report.

    Science.gov (United States)

    Fornaini, Carlo; Vescovi, Paolo; Merigo, Elisabetta; Rocca, Jean-Paul; Mahler, Patrick; Bertrand, Caroline; Nammour, Samir

    2010-03-01

    The possibility of laser welding of dental prostheses offers great advantages: first, the operator has the possibility of welding on the master model, which decreases the number of passages and thus the possibility of errors and damage, and secondly, the patient attends only a few sessions, and, due to the possibility of fixing the damaged prostheses, there is no need to resort to the technician's laboratory. In a previous study we described the experimental phases of intraoral welding, from the in vitro model on animal jaws with evaluations of the temperature variations during welding through thermal chamber and type K thermocouples. In this study we describe the intraoral welding in vivo on human subjects by using, as in the previous study, a fibre-delivered neodymium:yttrium-aluminum-garnet (Nd:YAG) laser. The in vivo phase allowed a restored prosthesis to be positioned and intraorally welded in the upper central sector with optimal results both in patient's comfort and in aesthetic effects. This first in vivo test confirmed that the use of a laser technique for the intraoral welding of metal prostheses is possible, with no particular problems and risks for the biological structures close to the welding zone.

  4. Microstructure modeling in weld metal

    Energy Technology Data Exchange (ETDEWEB)

    David, S.A.; Babu, S.S.

    1995-12-31

    Since microstructure development in the weld metal region is controlled by various physical processes, there is a need for integrated predictive models based on fundamental principles to describe and predict the effect of these physical processes. These integrated models should be based on various tools available for modeling microstructure development in a wide variety of alloy systems and welding processes. In this paper, the principles, methodology, and future directions of modeling thermochemical reactions in liquid, solidification, and solid state transformations are discussed with some examples for low-alloy steel, stainless steel, and Ni-base superalloy. Thermochemical deoxidation reactions in liquid low-alloy steel lead to oxide inclusion formation. This inclusion formation has been modeled by combining principles of ladle metallurgy and overall transformation kinetics. The model`s comparison with the experimental data and the ongoing work on coupling this inclusion model with the numerical models of heat transfer and fluid flow are discussed. Also, recent advances in theoretical and physical modeling of the solidification process are reviewed with regard to predicting the solidification modes, grain structure development, segregation effects, and nonequilibrium solidification in welds. The effects of solid state phase transformations on microstructure development and various methods of modeling these transformations are reviewed. Successful models, based on diffusion-controlled growth and plate growth theories, on microstructure development in low-alloy steel and stainless steel weld metals are outlined. This paper also addresses the importance of advanced analytical techniques to understand the solid state transformation mechanisms in welds.

  5. High frequency welded (ERW) casing

    Energy Technology Data Exchange (ETDEWEB)

    Duisberg, J. (Hoesch Roehrenwerke A.G., Hamm (Germany, F.R.))

    1980-09-01

    Due to the up-to-date standard in welding and testing techniques, the significance of ERW-casing is growing rapidly. The basic items of ERW-pipe are explained in detail. The forming mechanism, the high frequency welding by induction and contact welding processes is explained in detail as well as destructive and non-destructive testing methods. Finishing the ends as threading, thread control (gauging), power tight connection, pressure test and final quality control are rounding up the picture of the production of ERW-casing. Last but not least the test results from the joint strength- and collapse tests which are of outstanding interest for casings, are compared with API requirements in order to demonstrate compliance with API requirements.

  6. Characterization of Bond Strength of U-Mo Fuel Plates Using the Laser Shockwave Technique: Capabilities and Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Smith; D. L. Cottle; B. H. Rabin

    2013-09-01

    This report summarizes work conducted to-date on the implementation of new laser-based capabilities for characterization of bond strength in nuclear fuel plates, and presents preliminary results obtained from fresh fuel studies on as-fabricated monolithic fuel consisting of uranium-10 wt.% molybdenum alloys clad in 6061 aluminum by hot isostatic pressing. Characterization involves application of two complementary experimental methods, laser-shock testing and laser-ultrasonic imaging, collectively referred to as the Laser Shockwave Technique (LST), that allows the integrity, physical properties and interfacial bond strength in fuel plates to be evaluated. Example characterization results are provided, including measurement of layer thicknesses, elastic properties of the constituents, and the location and nature of generated debonds (including kissing bonds). LST provides spatially localized, non-contacting measurements with minimum specimen preparation, and is ideally suited for applications involving radioactive materials, including irradiated materials. The theoretical principles and experimental approaches employed in characterizing nuclear fuel plates are described, and preliminary bond strength measurement results are discussed, with emphasis on demonstrating the capabilities and limitations of these methods. These preliminary results demonstrate the ability to distinguish bond strength variations between different fuel plates. Although additional development work is necessary to validate and qualify the test methods, these results suggest LST is viable as a method to meet fuel qualification requirements to demonstrate acceptable bonding integrity.

  7. Prediction of Welding Deformation and Residual Stresses in Fillet Welds Using Indirect Couple Field FE Method

    Directory of Open Access Journals (Sweden)

    Asifa Khurram

    2013-03-01

    Full Text Available Fillet welds are extensively used in shipbuilding, automobile and other industries. Heat concentrated at a small area during welding induces distortions and residual stresses, affecting the structural strength. In this study, indirect coupled-field method is used to predict welding residual stresses and deformation in a fillet joint due to welding on both sides. 3-D nonlinear thermal finite element analysis is performed in ANSYS software followed by a structural analysis. Symmetrical boundary conditions are applied on half of the model for simplification. Results of FE structure analysis predict residual stresses in the specimen. A comparison of simulation results with experimental values proves the authenticity of the technique. The present study can be extended for complex structures and welding techniques.

  8. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy.

    Science.gov (United States)

    Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo

    2013-12-18

    Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

  9. Galvanic Corrosion Behavior of Microwave Welded and Post-weld Heat-Treated Inconel-718 Joints

    Science.gov (United States)

    Bansal, Amit; Sharma, Apurbba Kumar; Kumar, Pradeep

    2017-05-01

    In the present study, corrosion behavior of microwave welded Inconel-718 at various conditions was investigated. Welding of Inconel-718 in 980 °C solution-treated condition was performed using microwave hybrid heating technique. The microwave welds were subjected to post-heat treatment for improving its microstructure and mechanical properties by solubilizing the Nb-enriched Laves phase. The microstructural features of the fabricated welds at various conditions were investigated through scanning electron microscopy. The electrochemical testing results revealed that Inconel-718 welds were galvanic corroded when they were anodically polarized in 3.5 wt.% NaCl solution at 28 °C. The difference in the corrosion potentials between the base metal (BM) and fusion zone (FZ) in an Inconel-718 weld was the main factor for galvanic corrosion. The highest corrosion was occurred in the as-welded/aged weldments, followed by 980 °C solution-treated and aged weldments, as-welded specimen, and 1080 °C solution-treated and aged (1080STA) weldments. The least galvanic corrosion was occurred in the 1080STA specimens due to almost uniform microstructure developed in the weldment after the treatment. Thus, it was possible to minimize the galvanic corrosion in the microwave welded Inconel-718 by 1080STA treatment which resulted in reducing the difference in corrosion potentials between the BM and the FZ.

  10. Behavior of a crack within a Dissimilar Metal Weld Part by using an Overlay Weld

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Soo; Lee, Ho Jin; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    In recent years, the dissimilar metal welds, Alloy 82/182 welds, used to connect the stainless steel piping and low alloy steel or carbon steel components in a nuclear reactor piping system have experienced a cracking due to a primary water stress corrosion (PWSCC).It is well known that one reason for the cracking is the residual stress by the weld. But, it is difficult to estimate the weld residual stress exactly due to the many parameters for the welding process. In this paper, a Butt model weld specimen was manufactured and the residual stresses of the weld specimen were measured by the X-Ray method and a Hole Drilling Technique. These results were compared with the results of the Butt FEM Model to confirm the confidence of the FEM input. Also, an analysis of the Crack FEM models made by the ABAQUS Code was performed to estimate the behavior of a crack within a Dissimilar Metal Weld Part (DMWP) when an overlay weld on the DMWP was done.

  11. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Sabina Luisa Campanelli

    2013-12-01

    Full Text Available Friction Stir Welding (FSW is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

  12. Welded solar cell interconnection

    Science.gov (United States)

    Stofel, E. J.; Browne, E. R.; Meese, R. A.; Vendura, G. J.

    1982-01-01

    The efficiency of the welding of solar-cell interconnects is compared with the efficiency of soldering such interconnects, and the cases in which welding may be superior are examined. Emphasis is placed on ultrasonic welding; attention is given to the solar-cell welding machine, the application of the welding process to different solar-cell configurations, producibility, and long-life performance of welded interconnects. Much of the present work has been directed toward providing increased confidence in the reliability of welding using conditions approximating those that would occur with large-scale array production. It is concluded that there is as yet insufficient data to determine which of three methods (soldering, parallel gap welding, and ultrasonic welding) provides the longest-duration solar panel life.

  13. Low temperature friction stir welding of P91 steel

    Directory of Open Access Journals (Sweden)

    Prasad Rao Kalvala

    2016-08-01

    Full Text Available Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds (100 and 1000 RPM to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior (by impression creep tests. The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below Ac1 temperature of P91 steel while it was above Ac3 with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.

  14. The Studies of the Welding Processes and Procedures on the West-East Pipeline Project

    Institute of Scientific and Technical Information of China (English)

    SuiYongli; HuangFuxiang; ZhaoHaihong; YinChanghua

    2004-01-01

    The West-East pipeline project attracted the attention from all over the world for its long distance, huge diameter, complex geographic conditions, and diversified welding techniques being applied. In this paper the detail welding process and procedures used in the project are discussed and the distinguished achievements on welding techniques of China pipeline construction are described.

  15. Preliminary Phytochemical screening of the Ethanolic extract of Dioscorea villosa Tubers and Estimation of Diosgenin by HPTLC Technique.

    Directory of Open Access Journals (Sweden)

    Anitha Roy

    2013-09-01

    Full Text Available In the present study, simple phytochemical screening procedures were carried out to find the various constituents present in the ethanolic extract of Dioscorea villosa tubers. Further,estimation of Diosgenin in Dioscorea villosa tubers, was carried out by HPTLC technique. The preliminary screening showed presence of proteins, flavonoids tannins, alkaloids, phenolic compounds saponins and glycosides. The extract was chromatographed on silica gel GF254 plates with Toluene: Ethyl Acetate: Acetic Acid: Formic Acid (4: 3: 1:1 as mobile phase. Detection and quantification were performed by densitrometric scanning, at 366 nm. The average recovery of diosgenin was found to be 0.48 %. The HPTLC technique has provided a good resolution of diosgenin from other constituents present in the ethanolic extract.

  16. Electron beam welding of 8-inch thick 2-1/4 Cr-1 Mo. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Charles M.

    1980-08-01

    Electron beam welding procedures were developed and used to make sound welds in 8-inch thick 2-1/4 Cr-1 Mo in the horizontal position. A two-pass technique, one pass from each side, was developed for welding the 8-inch thickness. Techniques for eliminating various weld defects were developed. It was learned that the beam oscillation conditions strongly influenced welding performance. Procedures were developed for hard and soft vacuum operation, but hard vacuum was preferred. Procedures for starting and stopping the welding sequence were developed, along with a repair technique involving re-welding over a plug filled hole. The joint fit-up requirements were determined: a joint mismatch of 3/4 in. was welded, and a joint gap opening of 0.100 in. was welded without alteration of the welding procedure. It was shown that it is not necessary to demagnetize the material for successful welding, but that a special magnetic shield may be needed to protect the electron beam from stray magnetic fields. A demonstration weld failed to meet the NDE requirements of the ASME Boiler and Pressure Vessel Code due to poor base metal quality which adversely affected weld performance. The mechanical properties (hardness, strength, ductility, and impact), and the microstructure of electron beam welded 8-inch thick SA387 Grade 22 Class 2 were determined and appeared to be adequate.

  17. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plasti...... as a knowledge handbook for laser welding of plastic components. This document should provide the information for all aspects of plastic laser welding and help the design engineers to take all critical issues into consideration from the very beginning of the design phase....

  18. Split-body Processing and Fabrication Weld Manufacturing Technique of Super-long Coal Leveling Bar%超长平煤杆的分体加工组焊制造工艺技术

    Institute of Scientific and Technical Information of China (English)

    张小川; 陆博福

    2015-01-01

    Super-long coal leveling bar has been manufactured successfully by adopting split-body processing and fabrication weld moulding technique.The product quality was sufficient for technical requirement and the processing mode was economical and practical.%采用分体加工、组装焊接成型技术成功制造了超长平煤杆。产品质量符合技术要求,加工方式经济实用。

  19. Numerical Modeling of Weld Joint Corrosion

    Science.gov (United States)

    Lu, Yongxin; Jing, Hongyang; Han, Yongdian; Xu, Lianyong

    2016-03-01

    A numerical model is presented in this work that predicts the corrosion rate of weld joint. The model is able to track moving boundary of the corroding constituent of weld joint. The corrosion rates obtained from the model are compared with those estimated from mixed potential theory and two experimental techniques, namely immersion test and constant potential polarization test. The corrosion rate predicted using the model is within 10% of the estimate from the mixed potential theory, within 20% of that got from the immersion experiment and within 10% of that got from the constant potential polarization experiment for weld joint.

  20. MODELLING AND CHARACTERIZATION OF LASER WELDED INCOLOY 800 HT JOINTS

    Directory of Open Access Journals (Sweden)

    Sathiya Paulraj

    2016-06-01

    Full Text Available This study aims at finding the effect of laser welding speed on incoloy 800 HT. This alloy is one of the potential materials for Generation IV nuclear plants. Laser welding has several advantages over arc welding such as low fusion zone, low heat input and concentrated heat intensity. Three different welding speeds were chosen and CO2 laser welding was performed. 2D modeling and simulation were done using ANSYS 15 to find out the temperature distribution at different welding speeds and it was found that an increase in the welding speed decreased the temperature. Mechanical properties such as tensile strength, toughness and hardness were evaluated. The effect of welding speed on metallurgical characteristics was studied using optical microscopy (OM, Scanning Electron Microscopy (SEM with EDS, X-Ray Diffraction (XRD technique and fractographic analysis. From the results it was found that high welding speed (1400 mm/min decreased the joint strength. The M23C6 and Ni3Ti carbides were formed in a discrete chain and in a globular form along the grain boundaries of the weld region which increased the strength of the grain boundaries. Fractographic evaluations of the tested specimens for welding speed (1000 and 1200 mm/min showed deep and wide dimples indicating ductile failures.

  1. Laser powder technology for cladding and welding

    Science.gov (United States)

    Arnold, J.; Volz, R.

    1999-06-01

    Laser powder technology offers several advantages compared to conventional cladding and welding techniques and is attracting increasing industrial interest. The laser materials processing group of the German Aerospace Center at Stuttgart, Germany, is currently developing these new methods for application in industrial process engineering. Key areas of the work include the design and implementation of a modular working head that can be universally used for laser welding and surface treatment, the development of powder nozzles for cladding and welding, and the construction of new systems for special applications (e.g., for inner cladding). Some of these developments are described, as well as some important examples that highlight the potential of welding and surface treatment using laser powder techniques.

  2. Development of Weld Overlay System for Dissimilar Metal Alloy 82/182 Butt Welds

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. S.; Byeon, J. G.; Kim, Y. J. [Doosan Heavy Industries and Construction Co., Ltd., Changwon (Korea, Republic of)

    2008-10-15

    As a result of the alloy 600 PWSCC(Primary Water Stress Corrosion Cracking), leak in the dissimilar welds in pressurizer nozzle was discovered recently in several US plants and the advanced companies had developed repair techniques. 2 or 3 years from now, more than half of the nuclear power plants in the country will be operated more than 20 years. Therefore, we need to develop repair techniques of dissimilar welds in pressurizer nozzle. With above backgrounds, we have developed a Prototype of Repair System for dissimilar welds in pressurizer nozzle.

  3. Identification of the Quality Spot Welding used Non Destructive Test-Ultrasonic Testing: (Effect of Welding Time)

    Science.gov (United States)

    Sifa, A.; Endramawan, T.; Badruzzaman

    2017-03-01

    Resistance Spot Welding (RSW) is frequently used as one way of welding is used in the manufacturing process, especially in the automotive industry [4][5][6][7]. Several parameters influence the process of welding points. To determine the quality of a welding job needs to be tested, either by damaging or testing without damage, in this study conducted experimental testing the quality of welding or identify quality of the nugget by using Non-Destructive Test (NDT) –Ultrasonic Testing (UT), in which the identification of the quality of the welding is done with parameter thickness of worksheet after welding using NDT-UT with use same material worksheet and have more thickness of worksheet, the thickness of the worksheet single plate 1mm, with the capability of propagation Ultrasonic Testing (UT) standard limited> 3 mm [1], welding process parameters such as the time difference between 1-10s and the welding current of 8 KV, visually Heat Affected Zone ( HAZ ) have different results due to the length of time of welding. UT uses a probe that is used with a frequency of 4 MHz, diameter 10 mm, range 100 and the couplant used is oil. Identification techniques using drop 6dB, with sound velocity 2267 m / s of Fe, with the result that the effect of the Welding time affect the size of the HAZ, identification with the lowest time 1s show results capable identified joined through NDT - UT.

  4. A preliminary investigation of communication techniques for local and remote access to image databases

    Science.gov (United States)

    Ma, Mathias; Danielson, Ronald L.; Likens, William C.

    1988-01-01

    A software technique which allows users to examine images remotely while minimizing transmission time, is discussed. The technique provides a browsing capability, making it possible to roam over larger images, to zoom to various resolution levels, and to specify subregions of interest in the image to display at full resolution. The software permits analysts to remotely submit images for processing and to review the processing result. The capabilities of the technique under varying conditions and the speed at which imagery can be displayed over direct connect serial lines are discussed and examples of the imagery at various levels of resolution are presented.

  5. The Kinetics of Phase Transformation in Welds

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, J W; Wong, J; Palmer, T

    2002-02-06

    The fundamentals of welding-induced phase transformations in metals and alloys are being investigated using a combination of advanced synchrotron based experimental methods and modem computational science tools. In-situ experimental methods have been developed using a spatially resolved x-ray probe to enable direct observations of phase transformations under the real non- isothermal conditions experienced during welding. These experimental techniques represent a major step forward in the understanding of phase transformations that occur during welding, and are now being used to aid in the development of models to predict microstructural evolution under the severe temperature gradients, high peak temperatures and rapid thermal fluctuations characteristic of welds. Titanium alloys, stainless steels and plain carbon steels are currently under investigation, and the phase transformation data being obtained here cannot be predicted or measured using conventional metallurgical approaches. Two principal synchrotron-based techniques have been developed and refined for in-situ investigations of phase transformation dynamics in the heat-affected zone (HAZ) and fusion zone (FZ) of welds: Spatially Resolved X-Ray Diffraction (SRXRD) and Time Resolved X-Ray Diffraction (TRXRD). Both techniques provide real-time observations of phases that exist during welding, and both have been developed at the Stanford Synchrotron Radiation Laboratory (SSRL) using a high flux wiggler beam line. The SRXRD technique enables direct observations of the phases existing in the HAZ of quasi-stationary moving arc welds, and is used to map the HAZ phases by sequentially jogging the weld with respect to the x-ray beam while taking x-ray diffraction (XRD) patterns at each new location. These spatially resolved XRD patterns are collected in linear traverses perpendicular to the direction of weld travel. The XRD data contained in multiple traverses is later compiled to produce an areal map of the phases

  6. Weld repair of helium degraded reactor vessel material

    Energy Technology Data Exchange (ETDEWEB)

    Kanne, W.R. Jr.; Lohmeier, D.A.; Louthan, M.R. Jr.; Rankin, D.T.; Franco-Ferreira, E.A. (Westinghouse Savannah River Co., Aiken, SC (United States)); Bruck, G.J.; Madeyski, A.; Shogan, R.P.; Lessmann, G.G. (Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center)

    1990-01-01

    Welding methods for modification or repair of irradiated nuclear reactor vessels are being evaluated at the Savannah River Site. A low-penetration weld overlay technique has been developed to minimize the adverse effects of irradiation induced helium on the weldability of metals and alloys. This technique was successfully applied to Type 304 stainless steel test plates that contained 3 to 220 appm helium from tritium decay. Conventional welding practices caused significant cracking and degradation in the test plates. Optical microscopy of weld surfaces and cross sections showed that large surface toe cracks formed around conventional welds in the test plates but did not form around overlay welds. Scattered incipient underbead cracks (grain boundary separations) were associated with both conventional and overlay test welds. Tensile and bend tests were used to assess the effect of base metal helium content on the mechanical integrity of the low-penetration overlay welds. The axis of tensile specimens was perpendicular to the weld-base metal interface. Tensile specimens were machined after studs were resistance welded to overlay surfaces.

  7. Weld repair of helium degraded reactor vessel material

    Energy Technology Data Exchange (ETDEWEB)

    Kanne, W.R. Jr.; Lohmeier, D.A.; Louthan, M.R. Jr.; Rankin, D.T.; Franco-Ferreira, E.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Bruck, G.J.; Madeyski, A.; Shogan, R.P.; Lessmann, G.G. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

    1990-12-31

    Welding methods for modification or repair of irradiated nuclear reactor vessels are being evaluated at the Savannah River Site. A low-penetration weld overlay technique has been developed to minimize the adverse effects of irradiation induced helium on the weldability of metals and alloys. This technique was successfully applied to Type 304 stainless steel test plates that contained 3 to 220 appm helium from tritium decay. Conventional welding practices caused significant cracking and degradation in the test plates. Optical microscopy of weld surfaces and cross sections showed that large surface toe cracks formed around conventional welds in the test plates but did not form around overlay welds. Scattered incipient underbead cracks (grain boundary separations) were associated with both conventional and overlay test welds. Tensile and bend tests were used to assess the effect of base metal helium content on the mechanical integrity of the low-penetration overlay welds. The axis of tensile specimens was perpendicular to the weld-base metal interface. Tensile specimens were machined after studs were resistance welded to overlay surfaces.

  8. Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study

    Science.gov (United States)

    Bakan, Emine; Marcano, Diana; Zhou, Dapeng; Sohn, Yoo Jung; Mauer, Georg; Vaßen, Robert

    2017-06-01

    Dense, crack-free, uniform, and well-adhered environmental barrier coatings (EBCs) are required to enhance the environmental durability of silicon (Si)-based ceramic matrix composites in high pressure, high gas velocity combustion atmospheres. This paper represents an assessment of different thermal spray techniques for the deposition of Yb2Si2O7 EBCs. The Yb2Si2O7 coatings were deposited by means of atmospheric plasma spraying (APS), high-velocity oxygen fuel spraying (HVOF), suspension plasma spraying (SPS), and very low-pressure plasma spraying (VLPPS) techniques. The initial feedstock, as well as the deposited coatings, were characterized and compared in terms of their phase composition. The as-sprayed amorphous content, microstructure, and porosity of the coatings were further analyzed. Based on this preliminary investigation, the HVOF process stood out from the other techniques as it enabled the production of vertical crack-free coatings with higher crystallinity in comparison with the APS and SPS techniques in atmospheric conditions. Nevertheless, VLPPS was found to be the preferred process for the deposition of Yb2Si2O7 coatings with desired characteristics in a controlled-atmosphere chamber.

  9. Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study

    Science.gov (United States)

    Bakan, Emine; Marcano, Diana; Zhou, Dapeng; Sohn, Yoo Jung; Mauer, Georg; Vaßen, Robert

    2017-08-01

    Dense, crack-free, uniform, and well-adhered environmental barrier coatings (EBCs) are required to enhance the environmental durability of silicon (Si)-based ceramic matrix composites in high pressure, high gas velocity combustion atmospheres. This paper represents an assessment of different thermal spray techniques for the deposition of Yb2Si2O7 EBCs. The Yb2Si2O7 coatings were deposited by means of atmospheric plasma spraying (APS), high-velocity oxygen fuel spraying (HVOF), suspension plasma spraying (SPS), and very low-pressure plasma spraying (VLPPS) techniques. The initial feedstock, as well as the deposited coatings, were characterized and compared in terms of their phase composition. The as-sprayed amorphous content, microstructure, and porosity of the coatings were further analyzed. Based on this preliminary investigation, the HVOF process stood out from the other techniques as it enabled the production of vertical crack-free coatings with higher crystallinity in comparison with the APS and SPS techniques in atmospheric conditions. Nevertheless, VLPPS was found to be the preferred process for the deposition of Yb2Si2O7 coatings with desired characteristics in a controlled-atmosphere chamber.

  10. Improved design bases of welded joints in seawater

    DEFF Research Database (Denmark)

    Ólafsson, Ólafur Magnús

    The presented work aims to investigate and establish a precise, thorough and detailed database from series of experimental testing of submerged arc welded, SAW, specimens of various thicknesses typically applied in offshore structures and foundations. Additionally, the testing was performed in two...... welded joints were thereafter compared directly to the traditional SAW specimens in order to investigate the two different welding techniques. The laser hybrid welding technique offers great potential in lowering the cost of energy associated with offshore structures....... therefore received much attention from universities, research institutions along with industry as it is of significant practical importance for all fatigue loaded structures, such as e.g. marine structures. As-welded SAW specimens of three different thicknesses, manufactured by Lindoe Welding Technology A...

  11. Electrochemical Testing of Gas Tungsten Arc Welded and Reduced Pressure Electron Beam Welded Alloy 22

    Energy Technology Data Exchange (ETDEWEB)

    Day, S D; Wong, F M G; Gordon, S R; Wong, L L; Rebak, R B

    2003-09-07

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the Yucca Mountain waste package program has been the integrity of container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIG method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal to determine their relative corrosion behavior in SCW at 90 C (alkaline), 1 M HCl at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the electrochemical behavior in the three tested solutions.

  12. Comparison of warm laser shock peening and laser shock peening techniques in lengthening the fatigue life of welded joints made of aluminum alloy

    Science.gov (United States)

    Su, Chun; Zhou, Jianzhong; Meng, Xiankai; Sheng, Jie

    2017-07-01

    Welded joints made of 6061-T6 Al alloy were studied to evaluate warm laser shock peening (WLSP) and laser shock peening (LSP) processes. The estimation model of laser-induced surface residual stress was examined by means of experiments and numerical analysis. The high-cycle fatigue lives of welded joint specimens treated with WLSP and LSP were estimated by conducting tensile fatigue tests. The fatigue fracture mechanisms of these specimens are studied by surface integrity and fracture surface tests. Experimental results and analysis indicated that the fatigue life of the specimens processed by WLSP was higher than that with LSP. The large increase in fatigue life appeared to be the result of the larger residual stress, more uniform microstructure refinement and the lower surface roughness of the WLSP specimens.

  13. Coil Welding Aid

    Science.gov (United States)

    Wiesenbach, W. T.; Clark, M. C.

    1983-01-01

    Positioner holds coil inside cylinder during tack welding. Welding aid spaces turns of coil inside cylinder and applies contact pressure while coil is tack-welded to cylinder. Device facilitates fabrication of heat exchangers and other structures by eliminating hand-positioning and clamping of individual coil turns.

  14. Variable polarity arc welding

    Science.gov (United States)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  15. Instructional Guidelines. Welding.

    Science.gov (United States)

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  16. Automatic welding technologies for long-distance pipelines by use of all-position self-shielded flux cored wires

    Directory of Open Access Journals (Sweden)

    Zeng Huilin

    2014-10-01

    Full Text Available In order to realize the automatic welding of pipes in a complex operation environment, an automatic welding system has been developed by use of all-position self-shielded flux cored wires due to their advantages, such as all-position weldability, good detachability, arc's stability, low incomplete fusion, no need for welding protective gas or protection against wind when the wind speed is < 8 m/s. This system consists of a welding carrier, a guide rail, an auto-control system, a welding source, a wire feeder, and so on. Welding experiments with this system were performed on the X-80 pipeline steel to determine proper welding parameters. The welding technique comprises root welding, filling welding and cover welding and their welding parameters were obtained from experimental analysis. On this basis, the mechanical properties tests were carried out on welded joints in this case. Results show that this system can help improve the continuity and stability of the whole welding process and the welded joints' inherent quality, appearance shape, and mechanical performance can all meet the welding criteria for X-80 pipeline steel; with no need for windbreak fences, the overall welding cost will be sharply reduced. Meanwhile, more positive proposals were presented herein for the further research and development of this self-shielded flux core wires.

  17. Laser Welding Of Thin Sheet Of AISI 301 Stainless Steel

    Science.gov (United States)

    Vilar, R.; Miranda, R. M.

    1989-01-01

    Preliminary results of an investigation on laser welding of AISI 301 stainless steel thin sheet are presented. Welds were made with a CO2 continuous wave laser, varying power density and welding speed. The welds were studied by optical and electron scanning microscopy, X-ray diffraction and hardness tests. Experimental results show that under appropriate conditions, sound welds are obtained, with a negligeable heat affected zoneanda fine microstructure in the fusion zone. The fusion zone shows a cellular - dendritic microstructure, with austenite and ferrite as the major constituents. Ferrite, whose content is 5 to 7%, is predominantly intradendritic with both vermicular and acicular morphologies. However some interdendritic ferrite may also be present. The characteristics of the structure suggest that the solidification mode of AISI 301 stainless steel is essentially ferritic.

  18. Development of Alternative Technology to PWHT in Site Welding

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jin; Lee, B. S.; Jang, J. S.; Kim, K. H.; Park, S. D.; Yoon, J. H.; Kim, M. C.; Kim, K. B.; Sung, K. W

    2007-04-15

    ASME Section IX added requirements for qualification when using temper bead welding in the 2004 edition. The temper bead welding techniques which can satisfy the requirements of the Code are needed to use them in the site repair welding. The optimized welding parameters can be obtained when controlling the process to supercritically-reheat and to subcritically-reheat the coarse grain region sequently. The microstructures of SCFGCG obtained from the Gleegle simulated specimens and those of post weld heat treated coarse grain region are compared. The obtained both microstructures showed almost similar patterns. mid bead deposition technique Suggested in this study has a technical concept that the mid beads are deposited between the deposited initial beads repeatedly in a bead layer, which gives a lot of reheating effects on brittle microstructure in HAZ. This newly suggested technique is considered to have more effective tempering effect than the conventional temper bead technique which has concept to deposit one type of beads in a bead layer. The suggested modeling in this study can simulate well the SMAW process. Hence this modeling was used in analyzing the more complicated welding process of multi-layer welding. The modeling was used to analyze the tempering effect on the microstructures of HAZ by considering the patterns of overlapping of the reheating regions under the consequently deposited beads. When considering the crack path in the ever-matched weld metal condition, the interface may have a resistance against the crack propagation. A182 filler and A625 filler were used to make the weld specimens which have different weld metal conditions. The crack directed toward the under-matched weld metal may propagate across the fusion line easier than that of the even-matched weld metal condition.

  19. High Power Laser Welding. [of stainless steel and titanium alloy structures

    Science.gov (United States)

    Banas, C. M.

    1972-01-01

    A review of recent developments in high power, carbon dixoide laser welding is presented. Deep penetration welding in stainless steel to 0.5-in. thick, high speed welding in thin gage rimmed steel and gas shielded welding in Ti-6Al-4V alloy are described. The effects of laser power, power density, focusing optics, gas-shielding techniques, material properties and weld speed on weld quality and penetration are discussed. It is shown that laser welding performance in thin materials is comparable to that of electron beams. It is further shown that high quality welds, as evidenced by NDT, mechanical and metal-lographic tests, can be achieved. The potential of the laser for industrial welding applications is indicated.

  20. Measuring Three-Dimensional Thorax Motion Via Biplane Radiographic Imaging: Technique and Preliminary Results.

    Science.gov (United States)

    Baumer, Timothy G; Giles, Joshua W; Drake, Anne; Zauel, Roger; Bey, Michael J

    2016-01-01

    Measures of scapulothoracic motion are dependent on accurate imaging of the scapula and thorax. Advanced radiographic techniques can provide accurate measures of scapular motion, but the limited 3D imaging volume of these techniques often precludes measurement of thorax motion. To overcome this, a thorax coordinate system was defined based on the position of rib pairs and then compared to a conventional sternum/spine-based thorax coordinate system. Alignment of the rib-based coordinate system was dependent on the rib pairs used, with the rib3:rib4 pairing aligned to within 4.4 ± 2.1 deg of the conventional thorax coordinate system.

  1. Preliminary Tests of Cellular SiC/Iron Alloy Composite Produced by a Pressureless Infiltration Technique

    Directory of Open Access Journals (Sweden)

    Lipowska B.

    2017-03-01

    Full Text Available Preliminary tests aimed at obtaining a cellular SiC/iron alloy composite with a spatial structure of mutually intersecting skeletons, using a porous ceramic preform have been conducted. The possibility of obtaining such a composite joint using a SiC material with an oxynitride bonding and grey cast iron with flake graphite has been confirmed. Porous ceramic preforms were made by pouring the gelling ceramic suspension over a foamed polymer base which was next fired. The obtained samples of materials were subjected to macroscopic and microscopic observations as well as investigations into the chemical composition in microareas. It was found that the minimum width of a channel in the preform, which in the case of pressureless infiltration enables molten cast iron penetration, ranges from 0.10 to 0.17 mm. It was also found that the ceramic material applied was characterized by good metal wettability. The ceramics/metal contact area always has a transition zone (when the channel width is big enough, where mixing of the components of both composite elements takes place.

  2. Research on Welding Test of Grey Cast Iron and Low-Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Grey cast iron's welding itself is a complex proble m.So proper welding materials must be selected,complex welding techniques such as preheating before weldingslow cooling after welding etc,should be taken. However the carbon component in low-carbon steel is comparatively low,the carbo n of welded joint will diffuse to the low-carbon steel when it is welded with gr ey cast iron,which will cause the component of carbon greatly increased at the low-carbon steel side in HAZ,high carbon martensite and cracks ...

  3. TIG-dressing of High Strength Butt Welded Connection. Part 2: Physical Testing and Modelling

    OpenAIRE

    Van Es, S.H.J.; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2014-01-01

    Weld improvement techniques are aimed at reducing the notch effects of welds and generally focus on two aspects: a change of geometry of the weld toe and a change of the weld residual stresses. In this paper, fatigue tests are discussed, performed on butt welded specimens in steel grades ranging from S460 to S1100 in the TIG-dressed condition. The test results are compared with modelled fatigue strength according to the notch stress theory and similar specimens in the as-welded condition. The...

  4. Determination of the sensitization of two coatings by steel welding 308l by the EPR-Dl and Astm A-262 practice A techniques; Determinacion de la sensibilizacion de dos revestimientos por soldadura de acero 308L por las tecnicas EPR-DL y ASTM A-262 practica A

    Energy Technology Data Exchange (ETDEWEB)

    Arganis J, C. R.; Zenteno S, J. C.; Robles F, J. L.; Rodriguez M, E.; Vazquez P, A., E-mail: carlos.arganis@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    A stainless steel 308l coating was deposited by the shielded metal arc welding (SMAW) on steel A36 with a thickness of 4.726 mm in three layers. The sensitization was measured with the technique of Electrochemical Potentiodynamic Reactivation of Double-loop (EPR-Dl), using a portable cell and other of conventional window. The standard Astm A-262, practice A was used to verify the sensitization values. Two samples were used, a welding on a plate of 323 x 172 x 76.2 mm and the second welding on the end of a plate of 12.7 mm of thickness and 280 mm of longitude, with a post-welding process with gas tungsten arc welding (GTAW) with electrode ERNiCr{sub 3} and a process SMAW with electrode ENICRFe{sub 3}. The coating on the plate showed low values of sensitization grade (DOS) in all the points, indicating a very quick heat extraction and an inter dendritic structure type step. The second sample presented DOS values that are related with a structure of low sensitization and the influence of the heat of the post-welding process and a structure of recrystallized grains. (Author)

  5. Research on Phased Array Automatically Ultrasonic Testing Technique of Tube to Tube-sheet Welds in Heat Exchanger%换热器管板角焊缝相控阵自动超声检测技术研究

    Institute of Scientific and Technical Information of China (English)

    郭伟灿; 钱盛杰; 凌张伟

    2015-01-01

    在换热器的制作过程中,换热管与管板常采用焊接形式,焊缝的质量是保证换热器长期正常运行的关键。常规的超声检测方法具有系统复杂、检测效率低等缺点。因此,提出了相控阵超声检测技术,并开发了相控阵超声检测系统,以实现对管板角焊缝的自动超声检测。系统由周向步进电机实现周向扫查,纵向扫查采用相控阵探头电子线扫查,从而实现超声 C 扫描检测。通过带有气孔、未熔合等典型缺陷对检测系统进行试验研究。结果表明,该技术可以有效地检测出换热器管板角焊缝中的典型缺陷。%In the process of produce heat exchangers,heat exchanger′s tube and tube sheet conjunction adopt the form of welding,the quality of welding is the key insurance for the long and normal operation of the heat exchangers.The conventional ultrasonic testing method has many disadvantages like complicated system and low efficiency of detection.Thus,it puts forward the phased array ultrasonic testing technique and develops the ultrasonic testing system to accomplish the automatically ultrasonic testing of the tube to tube-sheet welds.The ultrasonic C-scan was carried out by the ultrasonic testing system with its circumfer-ential scanning by a mechanical scanning device while the axial electronic linear scanning by the phased array probe.At last,the tests on samples with typical flaws such as porosity flaws and the incomplete fu-sion flaws were performed by the ultrasonic testing system.Experiment results showed that the phased ar-ray ultrasonic technique could effectively detect the typical flaws in the tube to tube-sheet welds of heat exchanger.

  6. Perisciatic Ultrasound-Guided Infiltration for Treatment of Deep Gluteal Syndrome: Description of Technique and Preliminary Results.

    Science.gov (United States)

    Rosales, Julio; García, Nicolás; Rafols, Claudio; Pérez, Marcelo; Verdugo, Marco A

    2015-11-01

    The objective of this study was to describe a perisciatic ultrasound-guided infiltration technique for treatment of deep gluteal syndrome and to report its preliminary clinical results. A mixture of saline (20 mL), a local anesthetic (4 mL), and a corticosteroid solution (1 mL) was infiltrated in the perisciatic region between the gluteus maximus and pelvitrochanteric muscles. Relative pain relief was achieved in 73.7% of the patients, with average preprocedural and postprocedural visual analog scale scores of 8.3 and 2.8, respectively. Fifty percent of patients reported recurrence of discomfort, and the average duration of the therapeutic effect in these patients was 5.3 weeks.

  7. Short-term solar irradiance and irradiation forecasts via different time series techniques: A preliminary study

    CERN Document Server

    Join, Cédric; Fliess, Michel; Muselli, Marc; Nivet, Marie Laure; Paoli, Christophe; Chaxel, Frédéric

    2014-01-01

    This communication is devoted to solar irradiance and irradiation short-term forecasts, which are useful for electricity production. Several different time series approaches are employed. Our results and the corresponding numerical simulations show that techniques which do not need a large amount of historical data behave better than those which need them, especially when those data are quite noisy.

  8. A preliminary evaluation of certain NDA techniques for RH-TRU characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hartwell, J.K.; Yoon, W.Y.; Peterson, H.K. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    This report presents the results of modeling efforts to evaluate selected NDA assay methods for RH-TRU waste characterization. The target waste stream was Content Code 104/107 113-liter waste drums that comprise the majority of the INEL`s RH-TRU waste inventory. Two NDA techniques are treated in detail. One primary NDA technique examined is gamma-ray spectrometry to determine the drum fission and activation product content, and fuel sample inventory calculations using the ORIGEN code to predict the total drum inventory. A heavily shielded and strongly collimated HPGe spectrometer system was designed using MCNP modeling. Detection limits and expected precision of this approach were estimated by a combination of Monte Carlo modeling and synthetic gamma-ray spectrum generation. This technique may allow the radionuclide content of these wastes to be determined with relative standard deviations of 20 to 50% depending on the drum matrix and radionuclide. The INEL Passive/Active Neutron (PAN) assay system is the second primary technique considered. A shielded overpack for the 113-liter CC104/107 RH-TRU drums was designed to shield the PAN detectors from excessive gamma radiation. MCNP modeling suggests PAN detection limits of about 0.06 g {sup 235}U and 0.04 g {sup 239}Pu during active assays. 12 refs., 2 figs., 6 tabs.

  9. A novel technique for rat liver transplantation using Quick Linker system: a preliminary result.

    Science.gov (United States)

    Oldani, Graziano; Maestri, Marcello; Gaspari, Annalisa; Lillo, Ettore; Angelastri, Giacomo; Lenti, Luca Matteo; Rademacher, Johannes; Alessiani, Mario; Dionigi, Paolo

    2008-10-01

    The clinical success of liver transplantation is founded upon years of experimental research. Since Kamada and colleagues developed the "two-cuff" technique, the rat has become the best model for extensive investigations. Although the Kamada technique is technically complex and not easy to master, it is still the mainstay of orthotopic liver transplantation in rodents. We have developed a modified three-cuff version of this technique that facilitates anastomosis and markedly reduces warm ischemia time. The new technique involves a set of five microinstruments (the Quick-Linker system) designed and manufactured by our group. It was tested in male Lewis rats (group 1, donors n = 10, recipients n = 10). The graft was explanted as usual and standard cuffs were attached to the portal vein and the supra- and infrahepatic vena cavae. Corresponding vessels in the recipient were isolated, and Quicker-Linker holding rings were attached to each. The vessels were then clamped and the native organ removed. Once the graft was positioned in the recipient's abdomen, the holding rings attached to the recipient vessels and the cuffs applied to graft vessels were automatically aligned and joined with the aid of a special alignment tool. Warm ischemia times were always inferior to 6 minutes. Survival at postoperative day 10 was 80%. Liver function was well preserved in all of the surviving rats. The Quick-Linker technique significantly shortens warm ischemia time and allows rapid anastomosis that is relatively independent of operator skill. It can be considered a reliable option for microsurgeons looking for quick results and high success rates.

  10. Explosive welding could speed work on offshore pipelines

    Energy Technology Data Exchange (ETDEWEB)

    1974-06-01

    Explosive welding could speed the construction of offshore pipelines but must await the development of suitable standards. At the recent international conference on welding in offshore constructions (held in Newcastle upon Tyne, England, by the Welding Institute), the technique was shown to be capable of joining pipe of up to 32-in. (813 mm) diam and 0.1-in. (2.7 mm) wall thickness. One presentation, by T.J. Corbishley of Vickers Ltd.'s Underwater Engineering Unit, examined the potential of explosive welding and the expected performance of present in-service operations. The report indicates that the properties of the welded joints more than match those of the pipe, the explosives are comparatively insensitive to depth and can be remotely activated, and the welding speed is extremely high. These advantages will allow remote triggering of the charges from submersibles, reduced jointing and repair costs, and a means of taking energy to the sea in package form. The explosive technique: (1) does not require as accurate alignment and as close positioning of the pipe ends as the fusion welding process; (2) produces a weld in milliseconds; and (3) can produce a lap joint stronger than the pipe itself - providing a high-integrity weld joint. The technique is particularly valuable for saving time and money in end-capping operations as well as end-capping, jointing, and repair on the seabed with minimum support equipment both on the surface and on the seabed.

  11. Multifractal detrended fluctuation analysis of human EEG: preliminary investigation and comparison with the wavelet transform modulus maxima technique.

    Directory of Open Access Journals (Sweden)

    Todd Zorick

    Full Text Available Recently, many lines of investigation in neuroscience and statistical physics have converged to raise the hypothesis that the underlying pattern of neuronal activation which results in electroencephalography (EEG signals is nonlinear, with self-affine dynamics, while scalp-recorded EEG signals themselves are nonstationary. Therefore, traditional methods of EEG analysis may miss many properties inherent in such signals. Similarly, fractal analysis of EEG signals has shown scaling behaviors that may not be consistent with pure monofractal processes. In this study, we hypothesized that scalp-recorded human EEG signals may be better modeled as an underlying multifractal process. We utilized the Physionet online database, a publicly available database of human EEG signals as a standardized reference database for this study. Herein, we report the use of multifractal detrended fluctuation analysis on human EEG signals derived from waking and different sleep stages, and show evidence that supports the use of multifractal methods. Next, we compare multifractal detrended fluctuation analysis to a previously published multifractal technique, wavelet transform modulus maxima, using EEG signals from waking and sleep, and demonstrate that multifractal detrended fluctuation analysis has lower indices of variability. Finally, we report a preliminary investigation into the use of multifractal detrended fluctuation analysis as a pattern classification technique on human EEG signals from waking and different sleep stages, and demonstrate its potential utility for automatic classification of different states of consciousness. Therefore, multifractal detrended fluctuation analysis may be a useful pattern classification technique to distinguish among different states of brain function.

  12. Effect of welding parameters of Gas Metal Arc welding on weld bead geometry: A Review

    Directory of Open Access Journals (Sweden)

    Pushp Kumar Baghel

    2012-07-01

    Full Text Available Weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. This brief review illustrates the effect of pulse parameters on weld quality. The responsefactors, namely bead penetration, weld width, reinforcement height, weld penetration shape factor and weld reinforcement form factor as affected by arc voltage, wire feed rate, welding speed, gas flow rate and nozzle-toplate distance has also been analysed

  13. Welding Metallurgy and Processing Issues for Joining of Power Sources

    Energy Technology Data Exchange (ETDEWEB)

    Lienert, Thomas J. [Los Alamos National Laboratory; Reardon, Patrick T. [Los Alamos National Laboratory

    2012-08-14

    Weldability issues with the pertinent alloys have been reviewed and preliminary results of our work on Haynes 25 have been presented. Further results on the mechanical properties and metallography on the EB welds are imminent. Hot-ductility experiments will commence within a few weeks. Aging studies on the effects of heat treatment using the Gleeble are also planned. MST-6 has extensive background in the welding metallurgy of the pertinent alloys. We also have considerable experience with the various welding processes to be used.

  14. Welding development for V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    King, J.F.; Goodwin, G.M.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    A vanadium structure, cooled with helium, is a favored concept for an advanced breeding blanket for fusion systems. The objective of this task is to develop the metallurgical and technological base for the welding of thick sections of V-Cr-Ti. The subsize Charpy test results for electron beam weld metal from the V-5Cr-5Ti alloy has shown significant improvement in Charpy fracture energy compared to both gas tungsten arc weld metal and the base metal itself. These results are preliminary, however, and additional confirmation testing and analysis will be required to explain this improvement in properties.

  15. Techniques for fingerprint recovery on vegetable and fruit surfaces used in Slovenia--a preliminary study.

    Science.gov (United States)

    Trapecar, Matej; Vinkovic, Mojca Kern

    2008-12-01

    An examination was conducted to investigate whether certain dactyloscopic powders and reagents can recover latent fingerprints on vegetable and fruit surfaces (apple, banana, tomato and potato). Two fingerprint powders, Swedish Soot powder mixture (Swedish Black), Silver Special powder and cyanoacrylate fuming (CA), were investigated. The results have shown that detection with Swedish blackpowder is the most suitable procedure as the percentage finger marks which were of adequate quality for further examination, was higher than with any other technique examined.

  16. Remote Welding, NDE and Repair of DOE Standardized Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Eric Larsen; Art Watkins; Timothy R. McJunkin; Dave Pace; Rodney Bitsoi

    2006-05-01

    The U.S. Department of Energy (DOE) created the National Spent Nuclear Fuel Program (NSNFP) to manage DOE’s spent nuclear fuel (SNF). One of the NSNFP’s tasks is to prepare spent nuclear fuel for storage, transportation, and disposal at the national repository. As part of this effort, the NSNFP developed a standardized canister for interim storage and transportation of SNF. These canisters will be built and sealed to American Society of Mechanical Engineers (ASME) Section III, Division 3 requirements. Packaging SNF usually is a three-step process: canister loading, closure welding, and closure weld verification. After loading SNF into the canisters, the canisters must be seal welded and the welds verified using a combination of visual, surface eddy current, and ultrasonic inspection or examination techniques. If unacceptable defects in the weld are detected, the defective sections of weld must be removed, re-welded, and re-inspected. Due to the high contamination and/or radiation fields involved with this process, all of these functions must be performed remotely in a hot cell. The prototype apparatus to perform these functions is a floor-mounted carousel that encircles the loaded canister; three stations perform the functions of welding, inspecting, and repairing the seal welds. A welding operator monitors and controls these functions remotely via a workstation located outside the hot cell. The discussion describes the hardware and software that have been developed and the results of testing that has been done to date.

  17. Optically controlled welding system

    Science.gov (United States)

    Gordon, Stephen S. (Inventor)

    1989-01-01

    An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.

  18. Numerical aspects for efficient welding computational mechanics

    Directory of Open Access Journals (Sweden)

    Aburuga Tarek Kh.S.

    2014-01-01

    Full Text Available The effect of the residual stresses and strains is one of the most important parameter in the structure integrity assessment. A finite element model is constructed in order to simulate the multi passes mismatched submerged arc welding SAW which used in the welded tensile test specimen. Sequentially coupled thermal mechanical analysis is done by using ABAQUS software for calculating the residual stresses and distortion due to welding. In this work, three main issues were studied in order to reduce the time consuming during welding simulation which is the major problem in the computational welding mechanics (CWM. The first issue is dimensionality of the problem. Both two- and three-dimensional models are constructed for the same analysis type, shell element for two dimension simulation shows good performance comparing with brick element. The conventional method to calculate residual stress is by using implicit scheme that because of the welding and cooling time is relatively high. In this work, the author shows that it could use the explicit scheme with the mass scaling technique, and time consuming during the analysis will be reduced very efficiently. By using this new technique, it will be possible to simulate relatively large three dimensional structures.

  19. Influence of PWHT on Toughness of High Chromium and Nickel Containing Martensitic Stainless Steel Weld Metals

    Science.gov (United States)

    Divya, M.; Das, Chitta Ranjan; Mahadevan, S.; Albert, S. K.; Pandian, R.; Kar, Sujoy Kumar; Bhaduri, A. K.; Jayakumar, T.

    2015-06-01

    Commonly used 12.5Cr-5Ni consumable specified for welding of martensitic stainless steels is compared with newly designed 14.5Cr-5Ni consumable in terms of their suitability for repair welding of 410 and 414 stainless steels by gas tungsten arc welding process. Changes in microstructure and austenite evolution were investigated using optical, scanning electron microscopy, X-ray diffraction techniques and Thermo-Calc studies. Microstructure of as-welded 12.5Cr-5Ni weld metal revealed only lath martensite, whereas as-welded 14.5Cr-5Ni weld metal revealed delta-ferrite, retained austenite, and lath martensite. Toughness value of as-welded 12.5Cr-5Ni weld metal is found to be significantly higher (216 J) than that of the 14.5Cr-5Ni weld metal (15 J). The welds were subjected to different PWHTs: one at 923 K (650 °C) for 1, 2, 4 hours (single-stage PWHT) and another one at 923 K (650 °C)/4 h followed by 873 K (600 °C)/2 h or 873 K (600 °C)/4 h (two-stage heat treatment). Hardness and impact toughness of the weld metals were measured for these weld metals and correlated with the microstructure. The study demonstrates the importance of avoiding formation of delta-ferrite in the weld metal.

  20. Application of the LEPS technique for Quantitative Precipitation Forecasting (QPF in Southern Italy: a preliminary study

    Directory of Open Access Journals (Sweden)

    S. Federico

    2006-01-01

    Full Text Available This paper reports preliminary results for a Limited area model Ensemble Prediction System (LEPS, based on RAMS (Regional Atmospheric Modelling System, for eight case studies of moderate-intense precipitation over Calabria, the southernmost tip of the Italian peninsula. LEPS aims to transfer the benefits of a probabilistic forecast from global to regional scales in countries where local orographic forcing is a key factor to force convection. To accomplish this task and to limit computational time in an operational implementation of LEPS, we perform a cluster analysis of ECMWF-EPS runs. Starting from the 51 members that form the ECMWF-EPS we generate five clusters. For each cluster a representative member is selected and used to provide initial and dynamic boundary conditions to RAMS, whose integrations generate LEPS. RAMS runs have 12-km horizontal resolution. To analyze the impact of enhanced horizontal resolution on quantitative precipitation forecasts, LEPS forecasts are compared to a full Brute Force (BF ensemble. This ensemble is based on RAMS, has 36 km horizontal resolution and is generated by 51 members, nested in each ECMWF-EPS member. LEPS and BF results are compared subjectively and by objective scores. Subjective analysis is based on precipitation and probability maps of case studies whereas objective analysis is made by deterministic and probabilistic scores. Scores and maps are calculated by comparing ensemble precipitation forecasts against reports from the Calabria regional raingauge network. Results show that LEPS provided better rainfall predictions than BF for all case studies selected. This strongly suggests the importance of the enhanced horizontal resolution, compared to ensemble population, for Calabria for these cases. To further explore the impact of local physiographic features on QPF (Quantitative Precipitation Forecasting, LEPS results are also compared with a 6-km horizontal resolution deterministic forecast. Due

  1. Electrochemical Testing of Gas Tungsten ARC Welded and Reduced Pressure Electron Beam Welded Alloy 22

    Energy Technology Data Exchange (ETDEWEB)

    S. Daniel Day; Frank M.G. Wong; Steven R. Gordon; Lana L. Wong; Raul B. Rebak

    2006-05-08

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIC method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCI at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes.

  2. Guided implant surgery with modification of the technique involving the raising of a semicircular miniflap: a preliminary study.

    Science.gov (United States)

    Peñarrocha, María; Viña, José; Maestre, Laura; Peñarrocha, David; Balaguer, José

    2012-09-01

    An evaluation is made of pain, swelling and peri-implant attached mucosal width after implant-based rehabilitation involving guided surgery and a modification of the technique with the raising of a semicircular miniflap, in single and partial replacements. A case-control study was carried out. The study group consisted of 12 patients with the placement of 19 implants using a guided surgery and miniflap technique. The control group consisted of 12 patients with the placement of 22 implants using the conventional technique. Each patient scored postoperative swelling and pain by means of a visual analog scale (VAS). Attached vestibular mucosa width was evaluated 12 weeks after implant placement. Twelve operations were carried out in each group. Immediate aesthetics were established for all implants of the study group. One implant failed in each group. Maximum pain was recorded after 6 hours in both groups (mean VAS score 4 and 4.9 in the study and control group, respectively). Maximum swelling was recorded after 24 hours (mean VAS score 2.5) in the study group and on the second day (mean VAS score 3.4) in the control group. The mean attached vestibular mucosa width was 2.9 mm in the study group and 3.2 mm in the control group. In this preliminary study, guided implant surgery with a semicircular miniflap in single and partial replacements resulted in slightly less postoperative pain and swelling than with the conventional implant technique. The attached vestibular mucosa width was greater in the control group, though the differences were very small.

  3. A Neural Network Approach for GMA Butt Joint Welding

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2003-01-01

    squares has been used with the back-propagation algorithm for training the network, while a Bayesian regularization technique has been successfully applied for minimizing the risk of inexpedient over-training. Finally, a predictive closed-loop control strategy based on a so-called single-neuron self......This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...... penetration, when the gap width is varying during the welding process. The process modeling to facilitate the mapping from joint geometry and reference weld quality to significant welding parameters has been based on a multi-layer feed-forward network. The Levenberg-Marquardt algorithm for non-linear least...

  4. Measurement of Laser Weld Temperatures for 3D Model Input.

    Energy Technology Data Exchange (ETDEWEB)

    Dagel, Daryl; GROSSETETE, GRANT; Maccallum, Danny O.

    2016-10-01

    Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.

  5. Welding repair of a dissimilar weld and respective consequences for other German plants

    Energy Technology Data Exchange (ETDEWEB)

    Brummer, G. [High Energy Weapons (United States); Dauwel, W.; Wesseling, U. [Framatome ANP GmbH-NBTT, Erlangen (Germany); Ilg, U. [EnBW, Milano (Italy); Lauer, P.; Widera, M. [E.ON Kernkraft (Germany); Wachter, O. [RWE Power (Germany)

    2002-07-01

    During a regular refueling outage in a German nuclear power plant in year 2000, additional non-destructive examinations have been performed on request of the Authority, to fulfill some recommendations of the independent experts with regard to the retrospective application of the Basic Safety Concept for the ferritic main coolant piping of this plant. During these inspections, indications were found in a dissimilar weld between one of the fifteen MCL (main coolant lines) nozzles and the ECC (emergency core cooling) system piping. By means of on-site metallography and laboratory investigations on three boat samples taken from this weld, it could be shown that the indications were due to hot cracking in the surface layer of the weld. In the course of these investigations, at three locations at the circumference of the weld, dis-bonding defects were found between the ferritic base metal of the nozzle and the austenitic weld butter, which has been applied to join the nozzle to the austenitic safe-end. According to the results of the extensive investigations, the dis-bonding occurred during the manufacturing process after stress-relief heat-treatment of the buttering during the welding of the austenitic safe-end to the butter material. There was no evidence for any crack growth during operation of the plant. Due to the large size of the boat-samples, a weld repair was mandatory. This repair has been performed using the so-called temper-bead technique as specified in the ASME Code, without subsequent stress relief heat treatment, using an advanced automatic orbital TIG welding process. The welding has been successfully performed without the need of further repair work. For those dissimilar welds, all other plants, except one, had used Inconel welding material for buttering the ferritic nozzle instead of stainless steel welding metal. For metallurgical reasons, dis-bonding along the fusion line for Inconel buttered dissimilar welds is unlikely to occur. Nevertheless all

  6. Monitoring of martensite formation during welding by means of acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Bohemen, S.M.C. van; Hermans, M.J.M.; Ouden, G. den [Netherlands Institute for Metals Research, Delft University of Technology, Delft (Netherlands)

    2001-11-21

    The martensitic transformation during gas tungsten arc (GTA) welding of steel 42CrMo4 has been studied using the acoustic emission (AE) monitoring technique. Welds were produced under static conditions (spot welding) and under stationary conditions (travelling arc welding). After spot welding, the root mean square (RMS) value of the continuous acoustic emission was measured, revealing a peak that reflects the evolution of martensite formation during cooling of the spot weld. The RMS value was also measured during travelling arc welding at different heat inputs and corrected for the noise of the welding process to obtain the RMS value due to martensite formation. After welding, optical metallography was carried out to quantify the amount of martensite formed during cooling of the weld. An analysis of the results shows that the squared RMS value is proportional to the volume rate of martensite formation during welding, which is consistent with theory and in good agreement with the results obtained in the case of spot welding. The obtained results suggest that AE can be applied as a real time monitoring technique for the detection of martensite formation during steel welding. (author)

  7. MR imaging of the knee using fat suppression technique: a preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Jin Suck; Kim, Mi Hye; Cho, Jae Hyun; Park, Chang Yun; Lee, Yeon Hee [Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Yong Soo [Inje University College of Medicine, Kimhae (Korea, Republic of)

    1994-03-15

    The purpose of this study is to evaluate the usefulness of fat suppression technique for MR imaging of the knee. Twenty-eight knees of 26 patients were imaged at a 1.5 T MR system. Sagittal and coronal T2-weighted spin echo imaged (SET2) and sagittal fat suppression SET2(FSSE) were obtained in all cases. We used a chemical shift imaging method for fat suppression. We compared FSSE with SET2 in terms of the conspicuity of lesions of menisci, cruciate ligaments, cartilage, bone and soft tissue of the knee. Meniscal lesions were detected on FSSE and SET2 as well. FSSE depicted the lesion more conspicuously in 6 cases. For the depiction of ACL tear, SET2 was superior to FSSE in 5 cases. FSSE was better for the visualization of the normal structure of cartilage and it also depicted the cartilaginous lesions more conspicuously in 3 cases. Though bone bruise could be detected on both techniques, FSSE was better. FSSE could provide the improved delineation of menisci, cartilage, bone bruise and other soft tissues except the injuries of anterior cruciate ligament. Although FSSE is a reliable method, it can not replace SET2. It may be used as a complemental method in the imaging of the knee.

  8. Assessment of trabecular bone changes around endosseous implants using image analysis techniques: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Zuki, Mervet El [Dept. of Oral Medicine and Radiology, Benghazi University College of Dentistry, Benghazi (Libya); Omami, Galal [Oral Diagnosis and Polyclinics, Faculty of Dentistry, The University of Hong Kong (Hong Kong); Horner, Keith [Dept. of Oral Radiology, University Dental Hospital of Manchester, Manchester (United Kingdom)

    2014-06-15

    The objective of this study was to assess the trabecular bone changes that occurred around functional endosseous dental implants by means of radiographic image analysis techniques. Immediate preoperative and postoperative periapical radiographs of de-identified implant patients at the University Dental Hospital of Manchester were retrieved, screened for specific inclusion criteria, digitized, and quantified for structural elements of the trabecular bone around the endosseous implants, by using image analysis techniques. Data were analyzed using SPSS version 11.5. P values of less than 0.05 were considered statistically significant. A total of 12 implants from 11 patients were selected for the study, and 26 regions of interest were obtained. There was a significant increase in the bone area in terms of the mean distance between nodes (p=0.006) and a significant decrease in the marrow area in terms of the bone area (p=0.006) and the length of marrow spaces (p=0.032). It appeared that the bone around the implant underwent remodeling that resulted in a net increase in bone after implant placement.

  9. Preliminary experience with extraperitoneal endoscopic radical prostatectomy through duplication of the open technique

    Directory of Open Access Journals (Sweden)

    M. Tobias-Machado

    2005-06-01

    Full Text Available OBJECTIVE: To describe surgical and functional results with extraperitoneal laparoscopic radical prostatectomy with duplication of the open technique, from the experience obtained in the treatment of 28 initial cases. MATERIALS AND METHODS: In a 36-month period, we prospectively analyzed 28 patients diagnosed with localized prostate cancer undergoing extraperitoneal laparoscopic radical prostatectomy. RESULTS: Mean surgical time was 280 min, with mean blood loss of 320 mL. As intraoperative complications, there were 2 rectal lesions repaired with laparoscopic suture in 2 planes. There was no conversion to open surgery. Median hospital stay was 3 days, with return to oral diet in the first post-operative day in patients. As post-operative complications, there were 3 cases of extraperitoneal urinary fistula. Two of these cases were resolved by maintaining a Foley catheter for 21 days, and the other one by late endoscopic reintervention for repositioning the catheter. Five out of 18 previously potent patients evolved with erectile dysfunction. The diagnosis of prostate cancer was confirmed in all patients, with focal positive margin occurring in 3 cases. During a mean follow-up of 18 months, 2 patients presented increased PSA, with no clinical evidence of disease. CONCLUSION: Laparoscopic radical prostatectomy is a laborious and difficult procedure, with a long learning curve. Extraperitoneal access is feasible, and it is possible to practically duplicate the principles of open surgery. The present technique can possibly offer advantages in terms of decreased blood loss, preservation of erectile function and prevention of positive margins.

  10. The Preliminary Report on Rumen Protozoa Grazing Rate on Bacteria with a Fluorescence-Labeled Technique

    Institute of Scientific and Technical Information of China (English)

    WANG Meng-zhi; WANG Hong-rong; LI Guo-xiang; CAO Heng-chun; LU Zhan-jun

    2008-01-01

    Studies on the bacterial predation rate by rumen protozoa were carried out under laboratory conditions using a technique of fluorescence-labeled bacteria (FLB). Four Xuhuai goats were used in this experiment to obtain rumen protozoa and bacteria. Two groups were designed as follows: One group was the whole bacteria which were labeled using fluorescence through removing free bacteria from rumen fluid (WFLB); the other group was the bacteria which were labeled using fluorescence without removing free bacteria from rumen fluid (FLB). The result indicated that the bacterial predation rates of rumen Protozoa was 398.4 cells/(cell h) for the group WFLB, 230.4 cells/(cell h) for the group FLB, when the corresponding values expressed as bacteria-N, they were 2.15Pg N/(cell h) for the group WFLB, and 1.24Pg N/(cell h) for the group FLB, respectively. Extrapolating the assimilation quantity of nitrogen by ciliates on bacteria of Xuhuai goat, there were 103.2mg N/(d capita) for the group WFLB, and 59.5mg N/(d capita) for the group FLB, respectively. It was estimated that protein losses due to microbial recycling were 0.645g pro/(d capita) for the group WFLB and 0.372g pro/(d capita) for the group FLB, respectively. In addition, the fluorescence-labeled technique would be a potential assay for the determination of bacterial predation rate by rumen protozoa.

  11. Influence of the welding parameters on the heat affected zone for aluminium welding

    Directory of Open Access Journals (Sweden)

    Meseguer-Valdenebro José L.

    2016-01-01

    Full Text Available This work analyzes the Heat Affected Zone in an aluminum alloy welded assembly using the Metal Inert Gas welding technique. Making use of numerical simulations of the involved thermal processes, the aluminum alloy cooling curve is calculated and the extension of the Heat Affected Zone is evaluated. The connection between this last parameter, the cooling rate, and the maximum obtained temperature is assessed. Additionally, the response surface method is exploited to fit the dependence of the Heat Affected Zone with the welding parameters and to optimize these parameters in order to minimize that region.

  12. Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Changheui [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)], E-mail: chjang@kaist.ac.kr; Lee, Jounghoon [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sung Kim, Jong; Eun Jin, Tae [Korea Power Engineering Company, 360-9 Mabuk-ri, Guseong-eup, Yongin-si, Gyeonggi-do 449-713 (Korea, Republic of)

    2008-09-15

    In several locations of pressurized water reactors, dissimilar metal welds using Inconel welding wires are used to join the low alloy steel components to stainless-steel pipes. Because of the existence of different materials and chemistry variation within welds, mechanical properties, such as tensile and fracture properties, are expected to show spatial variation. For design and integrity assessment of the dissimilar welds, these variations should be evaluated. In this study, dissimilar metal welds composed of low alloy steel, Inconel 82/182 weld, and stainless steel were prepared by gas tungsten arc welding and shielded metal arc welding techniques. Microstructures were observed using optical and electron microscopes. Typical dendrite structures were observed in Inconel 82/182 welds. Tensile tests using standard and mini-sized specimens and micro-hardness tests were conducted to measure the variation in strength along the thickness of the weld as well as across the weld. In addition, fracture toughness specimens were taken at the bottom, middle, and top of the welds and tested to evaluate the spatial variation along the thickness. It was found that while the strength is about 50-70 MPa greater at the bottom of the weld than at the top of the weld, fracture toughness values at the top of the weld are about 70% greater than those at the bottom of the weld.

  13. Preliminary results from osteosynthesis using Ender nails by means of a percutaneous technique, in humeral diaphysis fractures in adults☆

    Science.gov (United States)

    Godinho, Glaydson Gomes; França, Flávio de Oliveira; Freitas, José Márcio Alves; Santos, Flávio Márcio Lago; Correa, Guilherme de Almeida Sellos; Maia, Lucas Russo

    2015-01-01

    Objective To demonstrate the clinical and functional results from treatment of humeral diaphysis fractures using Ender nails. Methods Eighteen patients who underwent osteosynthesis of humeral diaphysis fractures using Ender nails were evaluated. In addition to the clinical and radiographic evaluations, patients with a minimum of one year of follow-up were assessed by means of the Constant, American Shoulder and Elbow Surgeons (ASES), Mayo Clinic and Simple Shoulder Value (SSV) functional scores, and in relation to the degree of satisfaction with the final result. The fixation technique used was by means of an anterograde percutaneous route. Results All the patients achieved fracture consolidation, after a mean of 2.9 months (ranging from 2 to 4 months). The mean Constant score was 85.7 (ranging from 54 to 100) and the mean ASES score was 95.9 (ranging from 76 to 100). All the patients achieved the maximum score on the Mayo Clinic scale. Conclusion Fixation of humeral diaphysis fractures using Ender nails by means of a percutaneous technique was shown to be a method with promising preliminary results. PMID:26417566

  14. A review of using computational fluid dynamic in simulating of friction stir welding and parametric studies

    OpenAIRE

    Hamza, Esam

    2016-01-01

    Friction Stir Welding (FSW) is still gradually evolving where it is newer than most thermomechanical processes and due to its ability to avoid many of the common defects in other welding techniques it has become largely used, particularly for those materials that are soft.[1]\\ud Since the invention of friction stir welding by The Welding Institute (TWI), Cambridge, UK, there have been many attempts to comprehend the physical phenomena that take place during this process. These phenomena can b...

  15. Microstructural Investigation and Evaluation of Mechanical Properties in Friction Stir Welded Joints

    Science.gov (United States)

    2011-08-01

    Properties in Friction Stir Welded Joints BRIAN JUSTUSSON MENTORS: DR. CONSTANTINE FOUNTZOULAS AND DR. CHIAN-FONG YEN U.S. ARMY RESEARCH LABORATORY...2011 4. TITLE AND SUBTITLE Microstructural Investigation And Evaluation Of Mechanical Properties In Friction Stir Welded Joints 5a. CONTRACT NUMBER...of the weldment can be costly and needs to be addressed. Friction Stir Welding (FSW) is a solid-state welding technique, which involves local softening

  16. Geophysical techniques in the historical center of Venice (Italy): preliminary results from HVSR and multichannel analysis of surface waves

    Science.gov (United States)

    Trevisani, Sebastiano; Rocca, Michele; Boaga, Jacopo

    2014-05-01

    This presentation aims to outline the preliminary findings related to an extensive seismic survey conducted in the historical center of Venice, Italy. The survey was conducted via noninvasive and low-cost seismic techniques based on surface waves analysis and microtremor methods, mainly using single station horizontal to vertical spectral ratio techninques (HVSR) and multichannel analysis of surface waves in passive (ReMI) and active (MASW) configurations. The importance and the fragility of the cultural heritage of Venice, coupled with its peculiar geological and geotechnical characteristics, stress the importance of a good knowledge of its geological architecture and seismic characteristics as an opportunity to improve restoration and conservation planning. Even if Venice is located in a relatively low seismic hazard zone, a local characterization of soil resonance frequencies and surficial shear waves velocities could improve the planning of engineering interventions, furnishing important information on possible local effects related to seismic amplification and possible coupling within buildings and soil resonance frequencies. In the specific we collected more than 50 HVSR single station noise measurements and several passive and active multichannel analysis of surface waves located in the historical center. In this work we report the characteristics of the conducted seismic surveys (instrumentation, sampling geometry, etc.) and the preliminary findings of our analysis. Moreover, we discuss briefly the practical issues, mainly of logistic nature, of conducting this kind of surveys in a peculiar and crowed historical center as represented by Venice urban contest. Acknowledgments Instrumentation acquired in relation to the project co-financed by Regione Veneto, POR-CRO, FESR, 2007-2013, action 1.1.1. "Supporto ad attività di ricerca, processi e reti di innovazione e alla creazione di imprese in settori a elevato contenuto tecnologico"

  17. Welding And Cutting A Nickel Alloy By Laser

    Science.gov (United States)

    Banas, C. M.

    1990-01-01

    Technique effective and energy-efficient. Report describes evaluation of laser welding and cutting of Inconel(R) 718. Notes that electron-beam welding processes developed for In-718, but difficult to use on large or complex structures. Cutting of In-718 by laser fast and produces only narrow kerf. Cut edge requires dressing, to endure fatigue.

  18. Totally confined explosive welding

    Science.gov (United States)

    Bement, L. J. (Inventor)

    1978-01-01

    The undesirable by-products of explosive welding are confined and the association noise is reduced by the use of a simple enclosure into which the explosive is placed and in which the explosion occurs. An infrangible enclosure is removably attached to one of the members to be bonded at the point directly opposite the bond area. An explosive is completely confined within the enclosure at a point in close proximity to the member to be bonded and a detonating means is attached to the explosive. The balance of the enclosure, not occupied by explosive, is filled with a shaped material which directs the explosive pressure toward the bond area. A detonator adaptor controls the expansion of the enclosure by the explosive force so that the enclosure at no point experiences a discontinuity in expansion which causes rupture. The use of the technique is practical in the restricted area of a space station.

  19. VPPA weld model evaluation

    Science.gov (United States)

    McCutcheon, Kimble D.; Gordon, Stephen S.; Thompson, Paul A.

    1992-07-01

    NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds.

  20. Development of automated welding process for field fabrication of thick walled pressure vessels. Fourth quarter technical progress report for period ending September 28, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Progress is reported in research aimed at optimizing an automated welding process for the field fabrication of thick-walled pressure vessels and for evaluating the welded joints. Information is included on the welding equipment, mechanical control of the process, joint design, filler wire optimization, in-process nondestructive testing of welds, and repair techniques. (LCL)

  1. Passive Visual Sensing in Automatic Arc Welding

    DEFF Research Database (Denmark)

    Liu, Jinchao

    the interference of the extremely strong arc light and controlling the exposure time of the camera on the y to capture dierent images for seam tracking and weld pool sensing. From the software side, we have designed a passive seam detection algorithm based on robust estimation techniques which can detect the seam...... industrial solutions for seam detection such as using laser scanners suer from several limitations. For instance, it must be positioned some distance ahead to the molten pool and may cause problem when dealing with shiny surfaces. Existing techniques for weld pool sensing mostly rely on auxiliary light......, interpreting the images captured in a passive way during welding is challenging and may heavily rely on sophisticated image analysis and machine learning techniques. This industrial PhD project has been founded to tackle this problem. For the last three years, we have explored dierent possibilities...

  2. Preliminary analysis of population genetic diversity of cultivated Laminaria japonica sporophyte via AFLP technique

    Science.gov (United States)

    Yi, Heng; Sui, Zhenghong; Bao, Zhenmin

    2010-03-01

    The amplified fragment length polymorphic DNA (AFLP) technique was adopted to estimate the population genetic polymorphism among 30 sporophytes of Laminaria japonica collected from a cultivating farm in Rongcheng, China. Three methods were used for genomic DNA extraction from Laminaria japonica sporophyte and only the products obtained using the improved genomic DNA extraction kit method proved qualified for AFLP analysis. The parameters of the method were optimized. Samples of forty milligrams and the cell lysis time of 120 min were suggested to replace the parameters recommended by the manufacturer. Thirty individuals of Laminaria japonica from the same cultivating site were investigated using one pair of selective primers. A total of 21 loci were obtained and 17 of them were polymorphic. The mean percent age of polymorphic loci of this population was 80.95%. The Nei’s gene diversity (H) within this population was 0.3028 and the average Shannon’s Information index (I) was 0.4498. A genetic distance matrix among different individuals was constructed as well. Through this study, an applicable AFLP genetic analysis working system for Laminaria japonica sporophyte was established. The results of this research also revealed a high level of genetic diversity within the studied population.

  3. The diagnostic rules of peripheral lung cancer preliminary study based on data mining technique

    Institute of Scientific and Technical Information of China (English)

    Yongqian Qiang; Youmin Guo; Xue Li; Qiuping Wang; Hao Chen; Duwu Cui

    2007-01-01

    Objective: To discuss the clinical and imaging diagnostic rules of peripheral lung cancer by data mining technique, and to explore new ideas in the diagnosis of peripheral lung cancer, and to obtain early-stage technology and knowledge support of computer-aided detecting (CAD). Methods: 58 cases of peripheral lung cancer confirmed by clinical pathology were collected. The data were imported into the database after the standardization of the clinical and CT findings attributes were identified. The data was studied comparatively based on Association Rules (AR) of the knowledge discovery process and the Rough Set (RS) reduction algorithm and Genetic Algorithm(GA) of the generic data analysis tool (ROSETTA), respectively. Results: The genetic classification algorithm of ROSETTA generates 5 000 or so diagnosis rules. The RS reduction algorithm of Johnson's Algorithm generates 51 diagnosis rules and the AR algorithm generates 123 diagnosis rules. Three data mining methods basically consider gender, age,cough, location, lobulation sign, shape, ground-glass density attributes as the main basis for the diagnosis of peripheral lung cancer. Conclusion: These diagnosis rules for peripheral lung cancer with three data mining technology is same as clinical diagnostic rules, and these rules also can be used to build the knowledge base of expert system. This study demonstrated the potential values of data mining technology in clinical imaging diagnosis and differential diagnosis.

  4. Bevacizumab loaded solid lipid nanoparticles prepared by the coacervation technique: preliminary in vitro studies

    Science.gov (United States)

    Battaglia, Luigi; Gallarate, Marina; Peira, Elena; Chirio, Daniela; Solazzi, Ilaria; Giordano, Susanna Marzia Adele; Gigliotti, Casimiro Luca; Riganti, Chiara; Dianzani, Chiara

    2015-06-01

    Glioblastoma, the most common primary brain tumor in adults, has an inauspicious prognosis, given that overcoming the blood-brain barrier is the major obstacle to the pharmacological treatment of brain tumors. As neoangiogenesis plays a key role in glioblastoma growth, the US Food and Drug Administration approved bevacizumab (BVZ), an antivascular endothelial growth factor antibody for the treatment of recurrent glioblastoma in patients whose the initial therapy has failed. In this experimental work, BVZ was entrapped in solid lipid nanoparticles (SLNs) prepared by the fatty-acid coacervation technique, thanks to the formation of a hydrophobic ion pair. BVZ activity, which was evaluated by means of four different in vitro tests on HUVEC cells, increased by 100- to 200-fold when delivered in SLNs. Moreover, SLNs can enhance the permeation of fluorescently labelled BVZ through an hCMEC/D3 cell monolayer—an in vitro model of the blood brain barrier. These results are promising, even if further in vivo studies are required to evaluate the effective potential of BVZ-loaded SLNs in glioblastoma treatment.

  5. Problems in repair-welding of duplex-treated tool steels

    Directory of Open Access Journals (Sweden)

    T. Muhič

    2009-01-01

    Full Text Available The present paper addresses problems in laser welding of die-cast tools used for aluminum pressure die-castings and plastic moulds. To extend life cycle of tools various surface improvements are used. These surface improvements significantly reduce weldability of the material. This paper presents development of defects in repair welding of duplex-treated tool steel. The procedure is aimed at reduction of defects by the newly developed repair laser welding techniques. Effects of different repair welding process parameters and techniques are considered. A microstructural analysis is conducted to detect defect formation and reveal the best laser welding method for duplex-treated tools.

  6. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  7. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  8. Manganese Content Control in Weld Metal During MAG Welding

    Science.gov (United States)

    Chinakhov, D. A.; Chinakhova, E. D.; Sapozhkov, A. S.

    2016-08-01

    The influence of the welding current and method of gas shielding in MAG welding on the content of manganese is considered in the paper. Results of study of the welded specimens of steels 45 when applying welding wire of different formulas and different types of gas shielding (traditional shielding and double-jet shielding) are given. It is found that in MAG welding the value of the welding current and the speed of the gas flow from the welding nozzle have a considerable impact on the chemical composition of the weld metal. The consumable electrode welding under double-jet gas shielding provides the directed gas-dynamics in the welding area and enables controlling the electrode metal transfer and the chemical composition of a weld.

  9. Heat sink welding of austenitic stainless steel pipes to control distortion and residual stress

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, H.; Albert, S.K.; Bhaduri, A.K. [Materials Technology Div., Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2007-07-01

    Construction of India's Prototype Fast Breeder Reactor (PFBR) involves extensive welding of austenitic stainless steels pipes of different dimensions. Due to high thermal expansion coefficient and poor thermal conductivity of this class of steels, welding can result in significant distortion of these pipes. Attempts to arrest this distortion can lead to high levels of residual stresses in the welded parts. Heat sink welding is one of the techniques often employed to minimize distortion and residual stress in austenitic stainless steel pipe welding. This technique has also been employed to repair welding of the piping of the Boiling Water Reactors (BWRs) subjected to radiation induced intergranular stress corrosion cracking (IGSCC). In the present study, a comparison of the distortion in two pipe welds, one made with heat sink welding and another a normal welds. Pipes of dimensions 350{phi} x 250(L) x 8(t) mm was fabricated from 316LN plates of dimensions 1100 x 250 x 8 mm by bending and long seam (L-seam) welding by SMAW process. Two fit ups with a root gap of 2 mm, land height of 1mm and a groove angle of 70 were prepared using these pipes for circumferential seam (C-seam) welding. Dimensions at predetermined points in the fit up were made before and after welding to check the variation in radius, circumference and and ovality of the pipes. Root pass for both the pipe fit up were carried out using conventional GTAW process with 1.6 mm AWS ER 16-8-2 as consumables. Welding of one of the pipe fit ups were completed using conventions GTAW process while the other was completed using heat sink welding. For second and subsequent layers of welding using this process, water was sprayed at the root side of the joint while welding was in progress. Flow rate of the water was {proportional_to}6 1/minute. Welding parameters employed were same as those used for the other pipe weld. Results of the dimensional measurements showed that there is no circumferential shrinkage in

  10. Self-calibration technique for structured light vision guided welding robot system%结构光视觉引导的焊接机器人系统自标定技术

    Institute of Scientific and Technical Information of China (English)

    郭新年; 白瑞林; 王秀平; 刘子腾

    2014-01-01

    To achieve the structured light vision guided welding robot system calibration, and solve the problem of complex, and difficult to make target in the existing calibration methods, a new self-calibration technique based on active vision is proposed. This self-calibration technique calibrates the camera inner parameter, rotating section of hand-eye matrix by controlling the robot 5 pure translational motions. And it calibrates the translation section of hand-eye matrix and the equa-tion of the light plane by controlling the robot 2 motions with revolving with three feature points in the scene without a specific target. The actual test results in the structured light vision guided welding robot system based on Denso robot show that the calibration approach is stable, and can reach the precision of ±0.93 mm. This self-calibration method to the structured light vision guided welding robot system with easy feature selection is simple, and has significance to the actual use in the field of industry.%为实现结构光视觉引导的焊接机器人系统的标定,解决现有标定方法复杂,标定靶标制作要求高等缺点,提出一种基于主动视觉的自标定方法。该标定方法对场景中3个特征点取像,通过精确控制焊接机器人进行5次平移运动,标定摄像机内参数和手眼矩阵旋转部分;通过进行2次带旋转运动,结合激光条在特征点平面的参数方程,标定手眼矩阵平移部分和结构光平面在摄像机坐标系下的平面方程;并针对不同焊枪长度进行修正。在以Denso机器人为主体构建的结构光视觉引导的焊接机器人系统上的测试结果稳定,定位精度可达到±0.93 mm。该标定方法简单,特征选取容易,对焊接机器人系统在实际工业现场的使用有重要意义。

  11. A density-adaptive SPH method with kernel gradient correction for modeling explosive welding

    Science.gov (United States)

    Liu, M. B.; Zhang, Z. L.; Feng, D. L.

    2017-05-01

    Explosive welding involves processes like the detonation of explosive, impact of metal structures and strong fluid-structure interaction, while the whole process of explosive welding has not been well modeled before. In this paper, a novel smoothed particle hydrodynamics (SPH) model is developed to simulate explosive welding. In the SPH model, a kernel gradient correction algorithm is used to achieve better computational accuracy. A density adapting technique which can effectively treat large density ratio is also proposed. The developed SPH model is firstly validated by simulating a benchmark problem of one-dimensional TNT detonation and an impact welding problem. The SPH model is then successfully applied to simulate the whole process of explosive welding. It is demonstrated that the presented SPH method can capture typical physics in explosive welding including explosion wave, welding surface morphology, jet flow and acceleration of the flyer plate. The welding angle obtained from the SPH simulation agrees well with that from a kinematic analysis.

  12. Comparative study of TIG and SMAW root welding passes on ductile iron cast weldability

    Directory of Open Access Journals (Sweden)

    J. Cárcel-Carrasco

    2017-01-01

    Full Text Available This work compares the weldability of ductile iron when: (I a root weld is applied with a tungsten inert gas (TIG process using an Inconel 625 source rod and filler welds are subsequently applied using coated electrodes with 97,6%Ni; and (II welds on ductile iron exclusively made using the manual shielded metal arc welding technique (SMAW. Both types of welds are performed on ductile iron specimen test plates that are subjected to preheat and post-weld annealing treatments. Samples with TIG root-welding pass shown higher hardness but slightly lower ductility and strength. Both types of welding achieved better ductile and strength properties than ones found in literature.

  13. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    Unlike in autogenous laser welding, hybrid laser welding of stainless steel could introduce grain boundary carbides due to low cooling rates. Formation of grain boundary carbides leads to reduced corrosion properties. Studies have initially been carried out on hybrid laser welding and subsequent...... laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser...... treated surface was investigated using a novel micro electrochemical technique with a tip resolution of ~1 mm. Results show that hybrid laser welding of 316L has increased corrosion susceptibility probably as a result of grain boundary carbide formation. However a suitable post laser treatment could...

  14. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    Unlike in autogenous laser welding, hybrid laser welding of stainless steel could introduce grain boundary carbides due to low cooling rates. Formation of grain boundary carbides leads to reduced corrosion properties. Studies have initially been carried out on hybrid laser welding and subsequent...... laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser...... treated surface was investigated using a novel micro electrochemical technique with a tip resolution of ~1 mm. Results show that hybrid laser welding of 316L has increased corrosion susceptibility probably as a result of grain boundary carbide formation. However a suitable post laser treatment could...

  15. Testing of welded seams in the light of new requirements. Rules, new joining techniques, new test methods, automation, code cases; Schweissnahtpruefung im Licht neuer Anforderungen. Regelwerke, neue Fuegetechniken, neue Prueftechniken, Automatisierung, Code Cases

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This proceedings CD contains 8 contributions on the following subjects: 1. Ultrasonic testing of welds using TOFD (A. Hecht); 2. Automated Ultrasonic Pipe Weld Inspection - Inspection of Welded Pipes in Accordance with New and Strict International Specifications (W.A.K. Deutsch); 3. Detection and analysis of longitudinal defects in welds of pipelines (K. Reber); 4. Ultrasonic inline inspection of pipelines for circumferential cracks (H. Willems); 6. Ultrasonic testing of welds at temperatures up to 200 C (A. Erhard); 7. Defect detection and defect size measurement in welds using ultrasonic phased arrays (W. Rathgeb); 8. Dry ultrasonic testing of laser-welded butt welds using guided SH waves illustrated by the example of tailored blanks (H.-J. Salzburger). Four papers are available as separate records in the ENERGY database. [German] Diese Berichtsband-CD enthaelt 8 Beitraege mit folgenden Themen: 1. Ultraschallpruefung an Schweissnaehten mittels TOFD (A. Hecht); 2. Automated Ultrasonic Pipe Weld Inspection - Inspection of Welded Pipes in Accordance with New and Strict International Specifications (W.A.K. Deutsch); 3. Detektion und Bewertung von Laengsfehlern an Schweissnaehten von Pipelines (K. Reber); 4. Inline-Pruefung von Pipelines auf Umfangrisse mittels Ultraschall (H. Willems); 6. Ultraschallschweissnahtpruefung bei Temperaturen bis 200 C (A. Erhard); 7. Fehlerauffindung und Fehlergroessenbestimmung mit der Gruppenstrahlertechnik bei der Schweissnahtpruefung (W. Rathgeb); 8. Trockene Ultraschallpruefung lasergeschweisster Stumpfschweissnaehte mittels gefuehrter SH-Wellen am Beispiel der Tailored Blanks (H.-J. Salzburger). Vier der Beitraege wurden separat fuer die ENERGY Datenbank aufgenommen.

  16. The fitness of copings constructed over UCLA abutments and the implant, constructed by different techniques: casting and casting with laser welding.

    Science.gov (United States)

    Costa, Elza Maria Valadares da; Hoçoya, Luciana Satie; Bottino, Marco Antônio

    2004-12-01

    The alternative for the reposition of a missing tooth is the osteointegrated implant being the passive adaptation between the prosthodontic structure and the implant a significant factor for the success of this experiment, a comparative study was done between the two methods for confectioning a single prosthodontic supported by an implant. To do so a screwed implant with a diameter of 3.75mm and a length of 10.0mm (3i Implant innovations, Brasil) was positioned in the middle of a resin block and over it we screwed 15 UCLA abutments shaped and anti-rotationable (137CNB, Conexão Sistemas de Próteses, Brasil) with a torque of 20N.cm without any laboratorial procedure (control group - CTRLG). From a silicon model 15 UCLA-type calcinatable compounds (56CNB, Conexão Sistemas de Próteses, Brasil) were screwed (20 N.cm), received a standard waxing (plain buccal surface) and were cast in titanium (casting group - CG) and other 15 compounds, UCLA - type shaped in titanium (137 CNB, Conexão Sistemas de Próteses, Brasil) received the same standard waxing. These last copings were cast in titanium separated from each other and were laser-welded to the respective abutments on their border (Laser-welding group - LWG). The border adaptation was observed in the implant/compound interface, under measurement microscope, on the y axis, in 4 vestibular, lingual, mesial and distal referential points previously marked on the block. The arithmetical means were obtained and an exploratory data analysis was performed to determine the most appropriate statistical test. Descriptive statistics data (µm) for Control (mean±standard deviation: 13.50 ± 21.80; median 0.00), for Casting (36.20±12.60; 37.00), for Laser (10.50 ±12.90; 3.00) were submitted to Kruskal-Wallis ANOVA, alpha = 5%. Results test showed that distorsion median values differ statistically (kw = 17.40; df =2; p = 0.001<0.05). Dunn's (5%) test show difference between Casting and the two others. on the y axis, the

  17. Explosive Welding of Pipes

    Science.gov (United States)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  18. Explosive welding of pipes

    Energy Technology Data Exchange (ETDEWEB)

    Drennov, O.; Burtseva, O.; Kitin, A. [Russian Federal Nuclear Center, Sarov (Russian Federation)

    2006-08-15

    Arrangement of pipelines for the transportation of oil and gas is a complicated problem. In this paper it is suggested to use the explosive welding method to weld pipes together. This method is rather new. This method can be advantageous (saving material and physical resources) comparing to its static analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. We suggest to perform explosive welding according to the following scheme: the ends of the 2 pipes are connected, the external surfaces are kept at a similar level. A cylindrical steel layer of diameter larger than the pipe diameter is set around the pipe joint and an explosive charge is placed on its external surface. The basic problem is the elimination of strains and reduction of pipe diameter in the area of the dynamic effect. The suggestion is to use water as filler: the volume of pipes in the area adjacent to the zone of explosive welding is totally filled with water. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gas dynamic and elastic-plastic calculations we determined non-deformed mass of water. Model experiments with pipes having radii R = 57 mm confirmed results of the calculations and the possibility in principle to weld pipes by explosion with use of water as filler.

  19. Characterization through nano indentation technique of mechanical properties of an aluminium alloy welded zone for hydrogen storage; Apport de la nanoindentation pour la caracterisation d'un cordon de soudure par faisceau d'electrons d'un reservoir d'hydrogene sous pression en alliage d'aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Delobelle, P.; Perreux, D.; Russo, C. [Universite de Franche-Comte, Institut FEMTO-ST, UMR 6174, Depart. LMARC, 25 - Besancon (France); Meunier, E. [CEA Valduc (DRMN/SMCM/LCSi), 21 - Is-sur-Tille (France); Decamps, B. [Laboratoire de Chimie Metallurgique des Terres Rares, UPR 209, 94 - Vitry-Thiais, (France)

    2008-07-01

    In this study we use the nano indentation technique which is a powerful tool to characterise the mechanical properties of a welded bond. The Berkovich indentation has the advantage to test small material volumes compared to the conventional tensile tests. The welded process with electrons beam of hydrogen vessels induces different regions and the aim of this study is to characterize the differences of the mechanical properties of the different zones of the weld. To identify the stress-strain curves of the tested material, F.E. inverse method has been used. After treatment, for one pass, the hardness of the melted zone is greater than those of the base material and for the two passes, the hardness is still lower than those of the base material. The interface zones present a hardness which is always higher than those of the weld. A relation of the Hall-Petch type which correlates the evolution of the hardness with the zinc concentration and the grain size has been proposed. Moreover a relation between the normalized hardness and the hydrogen concentration CH has been found. The parameters of the stress-strain curves of the four regions; base material, interface, one and two passes melted zones, have been deduced. The identified laws are used in a F.E. model of a welded sphere to model its radial deformation under internal pressure loading. (authors)

  20. 防错技术在汽车车架焊接过程中的应用%The Application of Error Proofing Technique in Automotive Frame Welding Process

    Institute of Scientific and Technical Information of China (English)

    张永红; 陈书强; 韩福生

    2012-01-01

    With the pursuit of zero defects, how to achieve zero defects management is crucial, and poka-yoke is the best way to achieve zero defect management. Giving priority to prevention is emphasized and the potential risks must be prevented firstly. The application of error proofing is an effective method, and it can eliminate the error from its root. Error proofing technique is widely used in automotive frame welding process. For the common errors in the process of frame welding, poka-yoke technique can eliminate the phenomenon of assembled incorrectly and omitted assembly to ensure the accuracy of products and improve the frame quality.%人们都在追求零缺陷,如何实现零缺陷管理至关重要,防错法是实现零缺陷管理的最佳途径。工作中强调预防为主的理念,先要预防可能存在的风险,防错技术的应用是预防风险的一种有效手段,它能从根源上杜绝错误的产生。防错技术在车架焊接过程中应用广泛,对于焊接过程中的常见错误,通过防错技术能消除其中的错装和漏装现象,保证产品精度,提升车架质量。

  1. Flexible solution of the fixturing problem in sheet metal laser butt welding

    Science.gov (United States)

    Olsen, Flemming O.

    1994-09-01

    In 20 years laser welding of sheet metal has been demonstrated as a possible high-tech metal joining process. However, the major obstacle to the introduction of laser welding in for example car body manufacturing has been and is the fixturing problem. In case of laser butt welding of 0.5 - 1 mm thick steel sheets, the maximum acceptable gab between the sheets to be welded is in the range of 40 - 50 micrometer. Out of this demand two major problems arise: (1) the high precision required in weld preparation in terms of precise shape of the two sheets to be welded. (2) the problem of maintaining a narrow gab under welding, where thermal distortions, even though they are relatively small in this process, still will open the gap as the welding beam proceeds along the seam. In this paper a unique technique to overcome these problems will be described. The results of the experimental work described in this paper demonstrates the technique in 2D welding, where high quality butt welds has been demonstrated with virtually no clamping forces applied by utilizing a special seam preparation technique. Possibilities in car body manufacturing and other 3D sheet metal assembly by means of the flexible laser welding technique will be discussed.

  2. The dual toning technique for melasma treatment with the 1064 nm Nd: YAG laser: A preliminary study

    Science.gov (United States)

    Kang, HY; Kim, JH; Goo, BC

    2011-01-01

    Background and Aims: Melasma is a treatment-resistant and acquired pigmentary facial skin condition of uncertain etiology particularly prevalent in the older Asian female. Traditional bleaching agents have offered some success. Intense pulsed light (IPL), fractionated nonablative and more recently ablative laser technology have also been used, but were associated with postoperative hyperpigmentation in the Asian skin. The present study examined the consecutive application of 2 modes of the 1064 nm Nd:YAG laser in the ‘dual toning’ process. Subjects and Methods: Thirty females, mean age 41.4 ± 11.96 yr, Fitzpatrick skin type IV, participated in the prospective uncontrolled study. All subjects were treated with the 1064 nm Nd:YAG laser, first with the 5 ns Q-switched mode, 1.2 J/cm2, 8 mm collimated handpiece with multiple passes and then immediately after with the micropulsed mode, 300 µs, 7.0 J/cm2, 5 mm handpiece, multiple passes. Mild and even erythema was the endpoint. Treatments were given every other week until maximum improvement was obtained. Improvement was rated at a final assessment 6 weeks after the final treatment on a 5 point scale where 1 was little or no improvement and 5 was maximum improvement. Results: At the final treatment session and at the 6-week assessment, 20 of the 30 patients (67%) saw a fair to excellent degree of improvement, 7 (23%) had visible improvement and little or no improvement was seen in 3 (10%) patients. There were no unexpected side effects in any patients. Conclusions: The dual toning technique using the 1064 nm Nd:YAG laser was safe and effective, and well-tolerated by all patents without anesthesia. Larger controlled studies are merited with more objective measurement techniques to confirm the results of this preliminary study. PMID:24155528

  3. Simulation of the welding of irradiated materials

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hua Tay

    1989-07-01

    Helium was uniformly implanted using the ''tritium trick'' technique to levels of 0.18, 2.5, 27, 105 and 256 atomic part per million (appm) for type 316 stainless steel, and 0.3 and 1 appm for Sandvik HT-9 (12 Cr-1MoVW). Both full penetration as well as partial penetration welds were then produced on control and helium-containing materials using the autogenous gas tungsten arc (GTA) welding process under full constraint conditions. For full penetration welds, both materials were successfully welded when they contained less than 0.3 appm helium. However, welds of both materials, when containing greater than 1 appm helium, were found to develop cracks during cooling of the weld. Transmission and scanning electron microscopy indicated that the HAZ cracking was caused by the growth and coalescence of grain boundary (GB) helium bubbles. This cracking occurred as a result of the combination of high temperatures and high shrinkage tensile stresses. The cracking in the fusion zone was found to result from the precipitation of helium along dendrite interfaces. A model based on the kinetics of diffusive cavity growth is presented to explain the observed results. The model proposes a helium bubble growth mechanism which leads to final intergranular rupture in the heat-affected zone. Results of the present study demonstrate that the use of conventional fusion welding techniques to repair materials degraded by exposure to irradiation environments may be difficult if the irradiation results in the generation of helium equal to or greater than 1 appm.

  4. Effects of Sealing Run Welding with Defocused Laser Beam on the Quality of T-joint Fillet Weld

    Science.gov (United States)

    Unt, Anna; Poutiainen, Ilkka; Salminen, Antti

    Fillet weld is the predominant weld type used for connecting different elements e.g. in shipbuilding, offshore and bridge structures. One of prevalent research questions is the structural integrity of the welded joint. Post weld improvement techniques are being actively researched, as high stress areas like an incomplete penetration on the root side or fluctuations in penetration depth cannot be avoided. Development of laser and laser-arc hybrid welding processes have greatly contributed to increase of production capacity and reduction of heat-induced distortions by producing single pass full penetration welds in thin- and medium thickness structural steel parts. Present study addresses the issue of how to improve the quality of the fillet welds by welding the sealing run on the root side with defocused laser beam. Welds having incomplete or excessive penetration were produced with several beam angles and laser beam spot sizes on surface. As a conclusion, significant decrease or even complete elimination of the seam irregularities, which act as the failure starting points during service, is achieved.

  5. Analysis of Friction Stir Welding of Aluminum Alloys and Optimization of Welding Parameters for Maximum Tensile Strength

    Directory of Open Access Journals (Sweden)

    Prof. S. K. Aditya

    2015-05-01

    Full Text Available The Friction Stir Welding (FSW process is an innovative technique to join metals in the plastic state thus not reaching the liquid state as it happen in traditional welding processes. This feature of the FSW proved that a modification can be done on the fatigue behavior and strength of the welding joints so, some of the leading companies to adopted the process for the manufacturing of Automotive, Locomotive, Shipping & Aerospace. The FSW is a variant of the linear friction welding process in which the material is being welded without bulk melting. The FSW parameters such as tool Rotational speed, Welding speed, Axial Force, Tool tilt angle, Welding Tool Shoulder Diameter, and Welded Plate thickness play a major role in determining the properties like Tensile strength, hardness, residual stress, HAZ etc. of the joints. Our objective is to optimize the welding parameters to achieve Max. Tensile Strength of Aluminium Alloys (especially on AA-2xxx, AA-5xxx under FSW. We only wish to optimize (by Taguchi and ANOVA method with three variable input parameters (Rotational speed in rpm, Translation speed in mm/min & Axial force in KN considering a cylindrical pin.

  6. Ultrasonic Inspection Technique and Qualification for Reactor Pressure Vessel Weld of Nuclear Power Plant%核电站反应堆压力容器焊缝的超声检测及验证

    Institute of Scientific and Technical Information of China (English)

    许远欢; 聂勇

    2013-01-01

      The ultrasonic inspection technique for reactor pressure vessel weld of nuclear power plant was described.The ultrasonic transmission characterization and the influence factors of defects detection and sizing are analyzed in detail .A serial of testing is done to verify the UT technique .The ultrasonic tech-nique can effectively detect and size the defects and has been qualified by the separate qualification cen -ter UK-IVC.The technique meets the requirement of ultrasonic inspection of in -service inspection rules for the mechanical components of PWR nuclear islands (RES-M 1997).%  通过对反应堆压力容器焊缝超声波传播特性以及超声波缺陷探测和定量影响因素的分析,并通过大量的试验测试研究,确定了反应堆压力容器焊缝超声检测技术。此反应堆压力容器超声检测技术,能有效地进行缺陷探测和缺陷定量,并通过了英国验证中心的第三方独立验证,满足核电站役前和在役检查规范(RSE-M 1997)的超声检测技术要求。

  7. Temperature control during laser vessel welding.

    Science.gov (United States)

    Springer, T A; Welch, A J

    1993-02-01

    A technique is described for the computer control of temperature during laser vessel welding. The technique is based on the use of thermal feedback from a calibrated IR sensor. The utilization of thermalfeedback makes it possible for welding to be performed at a quasiconstant temperature. An experimentalsystem based on this concept has been developed and evaluated in mock anastomoses with vasculartissue. A computer simulation of laser vessel welding with a one-dimensional heat conduction model hasbeen performed. Model parameters have been adjusted so that the relative effect of laser penetrationdepth and tissue dehydration as well as the role of thermal feedback in limiting the peak surfacetemperature can be studied. The results of the mock anastomoses are discussed in light of the computer model.

  8. Visual sensing of weld pool in variable polarity TIG welding of aluminium alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-jun; YAN Zhi-hong; WU Lin

    2006-01-01

    The passive visual sensing method was successfully applied to monitor the weld pool in TIG welding of aluminium alloy.In order to reduce the disturbance from the arc and acquire clear image, two techniques were used: one was the own-developed computer-controlled variable polarity power(VPP), the other was the composite filter technology. The VPP source did not have high-frequency electromagnetic interference from arc stabilizer in traditional AC welding power, and its output current wave was controlled by computer, so the imaging current and the imaging time could be adjusted easily. Filter spectral window was identified at 650 nm by analyzing the measured arc light spectral distribution. At the end, the high quality and clear images of welding pool of aluminium alloy were successfully acquired at low imaging current.

  9. Sturdy on Orbital TIG Welding Properties for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Changyoung; Hong, Jintae; Kim, Kahye; Huh, Sungho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    We developed a precision TIG welding system that is able to weld the seam between end-caps and a fuel cladding tube for the nuclear fuel test rod and rig. This system can be mainly classified into an orbital TIG welder (AMI, M-207A) and a pressure chamber. The orbital TIG welder can be independently used, and it consists of a power supply unit, a microprocessor, water cooling unit, a gas supply unit and an orbital weld head. In this welder, the power supply unit mainly supplies GTAW power for a welding specimen and controls an arc starting of high frequency, supping of purge gas, arc rotation through the orbital TIG welding head, and automatic timing functions. In addition, the pressure chamber is used to make the welded surface of the cladding specimen clean with the inert gas filled inside the chamber. To precisely weld the cladding tube, a welding process needs to establish a schedule program for an orbital TIG welding. Therefore, the weld tests were performed on a cladding tube and dummy rods under various conditions. This paper describes not only test results on parameters of the purge gas flow rates and the chamber gas pressures for the orbital TIG welding, but also test results on the program establishment of an orbital TIG welding system to weld the fuel test rods. Various welding tests were performed to develop the orbital TIG welding techniques for the nuclear fuel test rod. The width of HAZ of a cladding specimen welded with the identical power during an orbital TIG welding cycle was continuously increased from a welded start-point to a weld end-point because of heat accumulation. The welding effect of the PGFR and CGP shows a relatively large difference for FSS and LSS. Each hole on the cladding specimens was formed in the 1bar CGP with the 20L/min PGFR but not made in the case of the PGFR of 10L/min in the CGP of 2bar. The optimum schedule program of the orbital TIG welding system to weld the nuclear fuel test rod was established through the program

  10. Friction Stir.Welding is an advance metal joining process: A Review

    Directory of Open Access Journals (Sweden)

    Umasankar Das,

    2015-09-01

    Full Text Available The friction stir welding is recently developed solid state welding process which overcome the problem associated with fusion welding technology. The properties achieved by friction stir welding is better than that achieve by fusion welding technique It has been invented as a solid-state joining technique and initially applied to aluminum alloys. FSW is used to replace rivets joints in the aeronautical industry. Recently the aircraft and military industries widely have been using aluminum alloys particularly because of their fine strength to weight ratio. However in compare with steels they represent welding difficulties and also lower ductility. In last years it has been observed that Friction Stir Welding (FSW method represents better microstructure and mechanical properties than conventional methods in welding aluminum alloys. It has been widely investigated for mostly low melting materials, such as Al, Mg and Cu alloys. Aluminum is the most usable material in engineering application and a lot of improvement is needed in the area of its welding. The latest works on friction stir welding of aluminum have been directed towards improving the quality of weld, reducing defects and applying the process of FSW to aluminum for specific applications. This joining technique is energy efficient, environment friendly, and versatile. In particular, it can be used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding. FSW is considered to be the most significant development in metal joining in a last decade. The FSW of Aluminums and its alloys has been commercialized; and recent interest is focused on joining dissimilar materials. However, in order to commercialize the process, research studies are required to characterize and establish proper process parameters for FSW. This paper summarizes the trends and advances of this welding processes in the field of welding. Future aspects of

  11. Possibility of Underwater Explosive Welding for Making Large-Sized Thin Metal Plate Clad by Overlapping Plates

    Science.gov (United States)

    Hokamoto, Kazuyuki; Mori, Akihisa; Fujita, Masahiro

    The authors have developed a new method of explosive welding using underwater shock wave for the welding of thin plate on a substrate. Considering the size limitation of the welding area in using the technique, the possibility of overlapping thin plates to make large-sized welding area is investigated. In general, the results for the welding of Inconel 600 on 304 stainless steel show a macroscopically successful weld, but the microstructure shows some melting spots caused due to the trapping of metal jet during the welding process when the welding condition is changed. The welding process is discussed based on the experimental results in comparison with some numerically simulated results obtained by AUTODYN-2D code.

  12. Low temperature impact testing of welded structural wrought iron

    Science.gov (United States)

    Rogers, Zachary

    During the second half of the 19th century, structural wrought iron was commonly used in construction of bridges and other structures. Today, these remaining structures are still actively in use and may fall under the protection of historic preservation agencies. Continued use and protection leads to the need for inspection, maintenance, and repair of the wrought iron within these structures. Welding can be useful to achieve the appropriate repair, rehabilitation, or replacement of wrought iron members. There is currently very little published on modern welding techniques for historic wrought iron. There is also no pre-qualified method for this welding. The demand for welding in the repair of historic structural wrought iron has led to a line of research investigating shielded metal arc welding (SMAW) of historic wrought iron at the University of Colorado Denver. This prior research selected the weld type and other weld specifications to try and achieve a recognized specific welding procedure using modern SMAW technology and techniques. This thesis continues investigating SMAW of historic wrought iron. Specifically, this thesis addresses the toughness of these welds from analysis of the data collected from performing Charpy V-Notch (CVN) Impact Tests. Temperature was varied to observe the material response of the welds at low temperature. The wrought iron used in testing was from a historic vehicle bridge in Minnesota, USA. This area, and many other areas with wrought iron structures, can experience sustained or fluctuating temperatures far below freezing. Investigating the toughness of welds in historic wrought iron at these temperatures is necessary to fully understand material responses of the existing structures in need of maintenance and repair. It was shown that welded wrought iron is tougher and more ductile than non-welded wrought iron. In regards to toughness, welding is an acceptable repair method. Information on wrought iron, low temperature failure

  13. Fine welding with lasers.

    Science.gov (United States)

    MacLellan, D

    2008-01-01

    The need for micro joining metallic alloys for surgical instruments, implants and advanced medical devices is driving a rapid increase in the implementation of laser welding technology in research, development and volume production. This article discusses the advantages of this welding method and the types of lasers used in the process.

  14. Simulation of welding

    Institute of Scientific and Technical Information of China (English)

    Chuan-Song WU; Michael RETHMEIER; Christopher SCHWENK

    2011-01-01

    @@ Welding has become the most important materials processing technology in manufacturing, and has critical effects on the quality, reliability and life of products as well as production cost, efficiency and response speed to market.As various kinds of high performance metallic materials are widely used in engineering, there are more demands in manufacturing industry for advanced welding technology.

  15. Resistance spot welding and weldbonding of advanced high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G.; Gaul, H.; Rethmeier, M. [BAM Federal Institute for Materials Research and Testing, Berlin (Germany). Div. V.5 ' ' Safety of Joined Components' ' ; Thommes, H.; Hahn, O. [Paderborn Univ. (Germany). Fakultaet fuer Maschinenbau

    2010-11-15

    The resistance spot welding procedure is one of the most important joining techniques in lightweight car body shell mass production. Especially for newly developed high strength multiphase steels, also called advanced high strength steels (AHSS), and ultra high strength steels (UHSS), this joining technique has more advantages than other thermal and mechanical joining procedures for thin steel sheets. Additionally, the technique of adhesive bonding and its combination with the technique of resistance spot welding called weldbonding becomes more and more important. One of the targets of the contribution is to show the influence of joined advanced high strength steels on the process reliability for both the resistance spot welding process and the weldbonding process. Based on welding current ranges and on results of electrode wear tests, statements concerning the resistance spot weldability of some special AHSS will be given. The mechanical behaviour of spot welded and weldbonded joints for different AHSS will be studied. Furthermore, some statements regarding the fracture behaviour, the hardness and the fatigue behaviour of both spot welded and weldbonded joints for different AHSS will be given. Finally, some results on the mechanical properties of spot welded and weldbounded joints under corrosive attacks with be discussed. (orig.)

  16. Vacuum Gas Tungsten Arc Welding

    Science.gov (United States)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  17. Alternating-Polarity Arc Welding

    Science.gov (United States)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  18. The effect of welding fixtures on welding distortions

    OpenAIRE

    2007-01-01

    Purpose: of this paper is to examine the effect of welding fixture used to prevent the distortions duringcooling process utilizing a robot controlled gas metal arc welding method on cooling rate and distortions ofwelded structures.Design/methodology/approach: Using a specially designed welding fixture for a welded steel structure, sixdifferent types of AISI 1020 steel specimens are tested in three different welding speeds and two differentcooling conditions either at fixture or without using ...

  19. Measurement and Analysis of the Diffusible Hydrogen in Underwater Wet Welding Joint

    Directory of Open Access Journals (Sweden)

    Kong Xiangfeng

    2016-01-01

    Full Text Available The diffusible hydrogen in steel weldments is one of the main reasons that led to hydrogen assisted cracking. In this paper, the results of literatures survey and preliminary tests of the diffusible hydrogen in underwater wet welding joint were presented. A fluid-discharge method of for measuring the diffusible hydrogen in weldment was introduced in detail. Two kinds of underwater welding electrode diffusible hydrogen are 26.5 mL/100g and 35.5 mL/100g by fluid-discharge method, which are high levels. The diffusible hydrogen of underwater welding is higher than atmospheric welding, and the result is closely related to welding material. The best way to control the diffusible hydrogen is adjusting welding material and improving fluidity of slag.

  20. Laser-welded V-Cr-Ti alloys: Microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Smith, D.L.; Xu, Z.; Leong, K.H. [Argonne National Lab., IL (United States)

    1998-09-01

    A systematic study has been in progress at Argonne National Laboratory to examine the use of YaG or CO{sub 2} lasers to weld sheet materials of V-Cr-Ti alloys and to characterize the microstructural and mechanical properties of the laser-welded materials. In addition, several postwelding heat treatments are being applied to the welded samples to evaluate their benefits, if any, to the structure and properties of the weldments. Hardness measurements are made across the welded regions of different samples to evaluate differences in the characteristics of various weldments. Several weldments were used to fabricate specimens for four-point bend tests. Several additional weldments were made with a YaG laser; here, the emphasis was on determining the optimal weld parameters to achieve deep penetration in the welds. A preliminary assessment was then made of the weldments on the basis of microstructure, hardness profiles, and defects.

  1. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    Science.gov (United States)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data

  2. SG (steam generator) tube repair by explosive welding

    Energy Technology Data Exchange (ETDEWEB)

    Helmley, J.M. (Babcock and Wilcox Co., Lynchburg, VA (United States))

    1993-03-01

    Traditional joining techniques have limitations for bonding the ends of repair sleeves inside PWR cracked steam generator tubes. Explosive (kinetic) welding has been used as a successful alternative in over 5000 defective tubes. (author).

  3. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...... in the weld causing expulsion of the melt pool. Trailing beams were applied to melt additional material and ensure a melt pool. The method showed good results for increasing tolerances to impurities and reduction of scrapped parts from blowouts during laser welding....

  4. Rheomorphism of welded tuffs

    Science.gov (United States)

    Wolff, J. A.; Wright, J. V.

    1981-05-01

    Peralkaline welded tuffs from the islands of Gran Canaria, Canary Islands, and Pantelleria, Italy, show abundant evidence for post-depositional flow. It is demonstrated that rheomorphism, or secondary mass flowage, can occur in welded tuffs of ignimbrite and air-fall origin. The presence of a linear fabric is taken as the diagnostic criterion for the recognition of the process. Deposition on a slope is an essential condition for the development of rheomorphism after compaction and welding. Internal structures produced during rheomorphic flow can be studied by the methods of structural geology and show similar dispositions to comparable features in sedimentary slump sheets. It is shown that secondary flowage can occur in welded tuffs emplaced on gentle slopes, provided that the apparent viscosity of the magma is sufficiently low. Compositional factors favor the development of rheomorphism in densely welded tuffs of peralkaline type.

  5. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser...... treated surface was investigated using a novel micro electrochemical technique with a tip resolution of ~1 mm. Results show that hybrid laser welding of 316L has increased corrosion susceptibility probably as a result of grain boundary carbide formation. However a suitable post laser treatment could...

  6. IT Systems in Aid of Welding Processes Quality Management in the Automotive Industry

    Directory of Open Access Journals (Sweden)

    Restecka M.

    2016-12-01

    Full Text Available The most important issue for the producers nowadays is to meet the requirements of customers, satisfying their perceived but also the unperceived needs. In order to control the quality of welding processes correctly one must have knowledge of welding drawings, symbols, designs of welded joints, welding procedures, requirements set in codes and standards, also have knowledge of the techniques of inspection and testing connected with the automotive industry. The article shows ways to increase quality in the industry through the use of robotization and computerization. Presented examples and application of IT systems in aid of welding processes quality management in the automotive industry.

  7. Microstructural Aspects in FSW and TIG Welding of Cast ZE41A Magnesium Alloy

    Science.gov (United States)

    Carlone, Pierpaolo; Astarita, Antonello; Rubino, Felice; Pasquino, Nicola

    2016-04-01

    In this paper, magnesium ZE41A alloy plates were butt joined through friction stir welding (FSW) and Tungsten Inert Gas welding processes. Process-induced microstructures were investigated by optical and SEM observations, EDX microanalysis and microhardness measurements. The effect of a post-welded T5 heat treatment on FSW joints was also assessed. Sound joints were produced by means of both techniques. Different elemental distributions and grain sizes were found, whereas microhardness profiles reflect microstructural changes. Post-welding heat treatment did not induce significant alterations in elemental distribution. The FSW-treated joint showed a more homogeneous hardness profile than the as-welded FSW joint.

  8. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang Young; Ahn, Sung Ho; Heo, Sung Ho; Hong, Jin Tae; Kim, Ka Hye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses.

  9. Electron Beam Welding of Thick Copper Material

    Energy Technology Data Exchange (ETDEWEB)

    Broemssen, Bernt von [IVF Industriforskning och utveckling AB, Stockholm (Sweden)

    2002-08-01

    The purpose of this study was to review the two variants of the Electron Beam Welding (EBW) processes developed (or used) by 1- SKB, Sweden with assistance from TWI, England and 2 - POSIVA, Finland with assistance from Outokumpu, Finland. The aim was also to explain the principle properties of the EBW method: how it works, the parameters controlling the welding result but also giving rise to benefits, and differences between the EBW variants. The main conclusions are that both SKB and POSIVA will within a few years succeed to qualify their respective EBW method for welding of copper canisters. The Reduced Pressure EBW that SKB use today seems to be very promising in order to avoid root defects. If POSIVA does not succeed to avoid root defects with the high vacuum method and the beam oscillation technique it should be possible for POSIVA to incorporate the Reduced Pressure technique albeit with significant changes to the EBW equipment. POSIVA has possibly an advantage over SKB with the beam oscillation technique used, which gives an extra degree of freedom to affect the weld quality. The beam oscillation could be of importance for closing of the keyhole. Before EBW of lids, the material certification showing the alloy content (specifying min and max impurity percentages) and the mechanical properties should be checked. The welded material needs also to be tested for mechanical properties. If possible the weld should have a toughness level equal to that of the unwelded parent material. Specifically some conclusions are reported regarding the SKB equipment. Suggestions for further development are also given in the conclusion chapter.

  10. Residual stress analysis of an Overlay weld and a repair weld on the dissimilar Butt weld

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Soo, E-mail: kskim5@kaeri.re.k [Korea Atomic Energy Research Institute, 150, Dukjin-dong, Daejeon 305-353 (Korea, Republic of); Lee, Ho Jin; Lee, Bong Sang [Korea Atomic Energy Research Institute, 150, Dukjin-dong, Daejeon 305-353 (Korea, Republic of); Jung, In Chul; Park, Kwang Soo [Doosan Heavy Industries and Construction Co., 555 Gwigok Dong, Changwon 641-792 (Korea, Republic of)

    2009-12-15

    Both the experiment and FE analysis were performed to estimate the residual stresses at the parts of the dissimilar metal welds. The specimen of the dissimilar Butt welds was manufactured, and the residual stresses of this specimen were measured by the X-ray method and a Hole Drilling Technique. The values measured by two experimental methods showed a big deviation at the SUS 316L plate. Consequently, the experimental methods to estimate the residual stresses are not a superior method. The Butt FEM Model on this specimen was developed and analyzed by the ABAQUS Code. The results of the FE analysis were compared with those of the experimental methods. As a whole, the values of the Butt FEM Model showed a trend which was in agreement with the experimental values and the values of FE analysis were found reasonable. The Repair FEM Model and the Overlay FEM Model were developed and analyzed by the ABAQUS Code. The values of these results were also found reasonable data even if the experimental methods be not performed. Therefore, the residual stresses for the dissimilar metal welds can be estimated by an analysis with an appropriate FEM Model without the experimental methods.

  11. Welding method, and welding device for use therein, and method of analysis for evaluating welds

    NARCIS (Netherlands)

    Aendenroomer, A.J.; Den Ouden, G.; Xiao, Y.H.; Brabander, W.A.J.

    1995-01-01

    Described is a method of automatically welding pipes, comprising welding with a pulsation welding current and monitoring, by means of a sensor, the variations occurring in the arc voltage caused by weld pool oscillations. The occurrence of voltage variations with only frequency components below 100

  12. Thermoplastic welding apparatus and method

    Energy Technology Data Exchange (ETDEWEB)

    Matsen, Marc R.; Negley, Mark A.; Geren, William Preston; Miller, Robert James

    2017-03-07

    A thermoplastic welding apparatus includes a thermoplastic welding tool, at least one tooling surface in the thermoplastic welding tool, a magnetic induction coil in the thermoplastic welding tool and generally encircling the at least one tooling surface and at least one smart susceptor in the thermoplastic welding tool at the at least one tooling surface. The magnetic induction coil is adapted to generate a magnetic flux field oriented generally parallel to a plane of the at least one smart susceptor.

  13. Laser forming and welding processes

    CERN Document Server

    Yilbas, Bekir Sami; Shuja, Shahzada Zaman

    2013-01-01

    This book introduces model studies and experimental results associated with laser forming and welding such as laser induced bending, welding of sheet metals, and related practical applications. The book provides insight into the physical processes involved with laser forming and welding. The analytical study covers the formulation of laser induced bending while the model study demonstrates the simulation of bending and welding processes using the finite element method. Analytical and numerical solutions for laser forming and welding problems are provided.

  14. Guidelines for Friction Stir Welding

    Science.gov (United States)

    2011-03-29

    in a large void at the termination point of the weld, the effects the exit hole will have on structural integrity must be considered. The...3.6 Cavity. A void -type discontinuity within a solid-state weld. See Figure 3.4. 3.7 Complex weld joint. A continuous weld...except as affected by corner radii. 3.61 Underfill . A depression resulting when the weld face is below the adjacent parent material surface. See

  15. Automatic welding quality classification for the spot welding based on the Hopfield associative memory neural network and Chernoff face description of the electrode displacement signal features

    Science.gov (United States)

    Zhang, Hongjie; Hou, Yanyan; Zhao, Jian; Wang, Lijing; Xi, Tao; Li, Yafeng

    2017-02-01

    To develop an automatic welding quality classification method for the spot welding based on the Chernoff face image created by the electrode displacement signal features, an effective pattern feature extraction method was proposed by which the Chernoff face images were converted to binary ones, and each binary image could be characterized by a binary matrix. According to expression categories on the Chernoff face images, welding quality was classified into five levels and each level just corresponded to a kind of expression. The Hopfield associative memory neural network was used to build a welding quality classifier in which the pattern feature matrices of some weld samples with different welding quality levels were remembered as the stable states. When the pattern feature matrix of a test weld is input into the classifier, it can be converged to the most similar stable state through associative memory, thus, welding quality corresponding to this finally locked stable state can represent the welding quality of the test weld. The classification performance test results show that the proposed method significantly improves the applicability and efficiency of the Chernoff faces technique for spot welding quality evaluation and it is feasible, effective and reliable.

  16. Corrosion behavior of a welded stainless-steel orthopedic implant.

    Science.gov (United States)

    Reclaru, L; Lerf, R; Eschler, P Y; Meyer, J M

    2001-02-01

    The corrosion behavior of combinations of materials used in an orthopedic implant: the spherical part (forged or forged and annealed) constituting the head, the weld (tungsten inert gas (TIG) or electron beam (EB) techniques), and the cylindrical part (annealed) constituting the shaft of a femoral prosthesis - has been investigated. Open-circuit potentials, potentiodynamic curves, Tafel slope, mixed potential theory and susceptibility to intergranular attack are electrochemical and chemical procedures selected for this work. Electrochemical measurements using a microelectrode have been made in the following zones: spherical part, cylindrical part, weld, and weld/sphere, and weld/shaft interfaces. To detect intergranular attack, the Strauss test has been used. At the interfaces, corrosion currents, measured (Icorr) and predicted (Icouple) are low, in the order of the pico- to nanoampere. The electrochemical behavior of the electron beam (EB) weld is better than that of the tungsten inert gas (TIG). Welds at interfaces can behave either anodically or cathodically. It is better if welds, which are sensitive parts of the femoral prosthesis, behave cathodically. In this way, the risk of starting localized corrosion (pitting, crevice or intergranular corrosion) from a galvanic couple, remains low. From this point of view, the sample with the EB weld offers the best behavior. All the other samples containing a TIG type of weld exhibit a less favorable behavior. The mechanical treatments (forged, and forged and annealed) of the steel sphere did not show any difference in the corrosion behavior. No intergranular corrosion has been observed at the weld/steel interface for unsensitized samples. With sensitized samples, however, a TIG sample has exhibited some localized intergranular corrosion at a distance of 500 microm along the weld/stainless steel (sphere) interface.

  17. Problems in laser repair welding of polished surfaces

    Directory of Open Access Journals (Sweden)

    A. Skumavc

    2014-10-01

    Full Text Available This paper presents problems in laser repair welding of the tools for injection moulding of plastics and light metals. Tools for injection moulding of the car headlamps are highly polished in order to get a desirable quality of the injected part. Different light metals, glasses, elastomers, thermoplastics and thermosetting polymers are injected into the die cavity under high pressures resulting in the surface damages of the tool. Laser welding is the only suitable repair welding technique due to the very limited sputtering during deposition of the filler metal. Overlapping of the welds results in inhomogeneous hardness of the remanufactured surface. Results have shown strong correlation between hardness and surface waviness after final polishing of the repair welded surface.

  18. Autofocus imaging: Experimental results in an anisotropic austenitic weld

    Science.gov (United States)

    Zhang, J.; Drinkwater, B. W.; Wilcox, P. D.; Hunter, A.

    2012-05-01

    The quality of an ultrasonic array image, especially for anisotropic material, depends on accurate information about acoustic properties. Inaccuracy of acoustic properties causes image degradation, e.g., blurring, errors in locating of reflectors and introduction of artifacts. In this paper, for an anisotropic austenitic steel weld, an autofocus imaging technique is presented. The array data from a series of beacons is captured and then used to statistically extract anisotropic weld properties by using a Monte-Carlo inversion approach. The beacon and imaging systems are realized using two separated arrays; one acts as a series of beacons and the other images these beacons. Key to the Monte-Carlo inversion scheme is a fast forward model of wave propagation in the anisotropic weld and this is based on the Dijkstra algorithm. Using this autofocus approach a measured weld map was extracted from an austenitic weld and used to reduce location errors, initially greater than 6mm, to less than 1mm.

  19. Gaz de France adopts low hydrogen, downhill welding

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    Gaz de France has become the first gas transmission pipeline operator to adopt the low-hydrogen, downhill welding technique made possible by the introduction of the Phillips 27PM electrodes. The use of these electrodes permits tie-in joints at road, railway, and river crossings, where optimum security demands a low-hydrogen-content weld metal. Welding of the 90-mile section from the Nozay compressor station to Le Mans involved some 1100 tie-in weld joints. Spie-Capag, contractor for the section, confirmed the 27PM electrode's success: The downhill welding method resulted in faster filling and capping passes than for cellulosic or uphill low-hydrogen electrodes, while the repair rate compared favorably with that for regular line joints.

  20. Hybrid/Tandem Laser-Arc Welding of Thick Low Carbon Martensitic Stainless Steel Plates =

    Science.gov (United States)

    Mirakhorli, Fatemeh

    High efficiency and long-term life of hydraulic turbines and their assemblies are of utmost importance for the hydropower industry. Usually, hydroelectric turbine components are made of thick-walled low carbon martensitic stainless steels. The assembly of large hydroelectric turbine components has been a great challenge. The use of conventional welding processes involves typical large groove design and multi-pass welding to fill the groove which exposes the weld to a high heat input creating relatively large fusion zone and heat affected zone. The newly-developed hybrid/tandem laser-arc welding technique is believed to offer a highly competitive solution to improve the overall hydro-turbine performance by combining the high energy density and fast welding speed of the laser welding technology with the good gap bridging and feeding ability of the gas metal arc welding process to increase the productivity and reduce the consumable material. The main objective of this research work is to understand different challenges appearing during hybrid laser-arc welding (HLAW) of thick gauge assemblies of low carbon 13%Cr- 4%Ni martensitic stainless steel and find a practical solution by adapting and optimizing this relatively new welding process in order to reduce the number of welding passes necessary to fill the groove gap. The joint integrity was evaluated in terms of microstructure, defects and mechanical properties in both as-welded and post-welded conditions. A special focus was given to the hybrid and tandem laser-arc welding technique for the root pass. Based on the thickness of the low carbon martensitic stainless steel plates, this work is mainly focused on the following two tasks: • Single pass hybrid laser-arc welding of 10-mm thick low carbon martensitic stainless steel. • Multi-pass hybrid/tandem laser-arc welding of 25-mm thick martensitic stainless steel.

  1. Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects

    Science.gov (United States)

    Katayama, Seiji; Kawahito, Yousuke; Mizutani, Masami

    The behavior and effect of a plasma plume on the weld penetration are greatly different between CO2 laser welding and YAG, disk or fiber laser welding. The effects of the power and the power density on the weld penetration are elucidated. Spattering leading to the formation of underfilled weld beads is controlled by inclining the laser beam. Porosity is formed from bubbles generated from the tip of the keyhole at low welding speed or from the middle part of the keyhole at high laser power density. Cracking easily occurs in pulsed spot welding of aluminum alloys.

  2. Inspection of plastic weld joints with terahertz imaging

    Science.gov (United States)

    Wietzke, S.; Krumbholz, N.; Jördens, C.; Baudrit, B.; Bastian, M.; Koch, M.

    2007-06-01

    Polymers cover the whole range from commodities to high-tech applications. Plastic products have also gained in importance for construction purposes. This draws the attention to joining techniques like welding. Common evaluation of the weld quality is mostly mechanical and destructive. Existing non-destructive techniques are mostly not entirely reliable or economically inefficient. Here, we demonstrate the potential of terahertz time-domain spectroscopy imaging as a non-destructive testing tool for the inspection of plastic weld joints. High-density polyethylene sheets welded in a lap joint with varying quality serve as samples for terahertz transmission measurements. Imperfections within the weld contact area can clearly be detected by displaying the transmitted intensity in a limited frequency range. Contaminations such as metal or sand are identified since they differ significantly from the polymer in the terahertz image. Furthermore, this new and promising technique is capable of detecting the boundaries of a weld contact area. Aside from revealing a contrast between a proper weld joint and no material connection, the size of an air gap between two plastic sheets can be determined by considering the characteristic frequency-dependent transmission through the structure: The spectral positions of the maxima and minima allow for the calculation of the air layer thickness.

  3. Effects of the laser beam superficial heat treatment on the gas Tungsten arc Ti-6al-4v welded metal microstructure

    Science.gov (United States)

    Voiculescu, I.; Dontu, Octavian; Geanta, V.; Ganatsios, S.

    2008-03-01

    The microstructure of the weld and the extent to which it is different from the thermo-mechanically processed base material is strongly influenced by the thermal cycle of welding. The mechanical properties of composite weld structures in titanium alloys depend on structural characteristics of each region (weld, base material and heat affected area), influenced by the specific thermal cycle imposed during welding and the subsequent post-weld heat treatment. In order to improve the as-welded metal toughness and ductility, the welded metal was subjected to various post weld laser heat treatments, above and below beta transus temperature in a shielding atmosphere of pure argon. Standard micro-hardness measurements and tensile strength techniques showed higher mechanical properties of the heat treated samples in different conditions with respect to the base metal. Metallographic investigations attribute this to the formation of α'phases in heat treated material, especially in the weld metal.

  4. Lamb Wave Line Sensing for Crack Detection in a Welded Stiffener

    OpenAIRE

    Yun-Kyu An; Jae Hong Kim; Hong Jae Yim

    2014-01-01

    This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as...

  5. Model of Layered Weld Formation Under Narrow Gap Pulse Welding

    Science.gov (United States)

    Krampit, A. G.

    2016-04-01

    The model parameters of narrow gap pulse welding can be divided into input, internal and output ones. The breadth of gap, that is, clearance breadth between upright edges is one of key parameters securing high quality of a weld joint. The paper presents theoretical outcomes for the model of layered weld formation under narrow gap pulse welding. Based on these studies is developed model of processes, which occur in the weld pool under pulse grove welding. It comprises the scheme of liquid metal motion in the weld pool, scheme of fusion with the side edge and in the bottom part, and the scheme of welding current impulse effect on the structure of a weld joint.

  6. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    Science.gov (United States)

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  7. Friction Stir Welding of Shipbuilding Steel with Primer

    Directory of Open Access Journals (Sweden)

    José Azevedo

    2016-03-01

    Full Text Available Abstract Friction Stir Welding has proven its merits for welding of aluminium alloys and is focused in expanding its material database to steel and titanium and also to assess new joint configurations. The use of welded structures in shipbuilding industry has a long tradition and continuously seeks for innovation in terms of materials and processes maintaining, or even, reducing costs. Several studies have been performed in the past years on FSW of steel. However, just recently were reported defect-free welds, free of martensite with stable parameters in steel without Primer. FSW of steel with primer has not been addressed. This work aims to fulfil a knowledge gap related to the use of friction stir for welding shipbuilding steel by analysing the effect of welding parameters on the metallurgical characteristics and mechanical properties of welds obtained with an innovative FSW tool in joining steel plates with a primer. Welds were performed in 4mm thick GL-A36 steel plates painted with a zinc based primer followed by a detailed microscopic, chemical and mechanical analysis. The results that matching fatigue properties are obtained using this technique, in FSW of shipbuilding steel with Primer.

  8. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2003-01-01

    Deals with the main commercially significant and commonly used welding processes. This title takes the student or novice welder through the individual steps involved in each process in an easily understood way. It covers many of the requirements referred to in European Standards including EN719, EN 729, EN 729 and EN 287.$bWelding processes handbook is a concise, explanatory guide to the main commercially significant and commonly-used welding processes. It takes the novice welder or student through the individual steps involved in each process in a clear and easily understood way. It is intended to provide an up-to-date reference to the major applications of welding as they are used in industry. The contents have been arranged so that it can be used as a textbook for European welding courses in accordance with guidelines from the European Welding Federation. Welding processes and equipment necessary for each process are described so that they can be applied to all instruction levels required by the EWF and th...

  9. Note: Resistance spot welding using a microgripper

    Science.gov (United States)

    Hwang, G.; Podrzaj, P.; Hashimoto, H.

    2013-10-01

    Interest in thin-film nanostructures as building blocks for nanoelectronics and nanoelectromechanical systems (NEMS) is increasing. Resistance spot welding (RSW) on a nano or micro scale can play a significant role; similar to that of its macro counterpart for forming connections in device assembly processes. This Note presents a novel micron scale RSW technique using a microgripper as mobile spot welding electrodes to assemble ultra-thin film nanostructures. As an example, assembly of three-dimensional helical nanobelt (HNB) based device was successfully demonstrated using the proposed system. The spot-welding process was fully monitored by the built-in capacitive micro force sensor of the microgripper. Experiments show that RSW, using the microgripper, provides a stable electrical contact with sufficient mechanical strength for the construction of devices such as HNB based devices demonstrated here.

  10. Application of explosive welding to heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, G.

    1983-10-01

    The subject is discussed under the headings: advantages of explosive welding; principle of explosive welding; explosive welding of tubes; metallurgy of explosive welds (micrographs; microhardness); tubular heat exchangers; plugging; sleeving; retubing; construction of new heat exchangers; thermal sleeves.

  11. Computational Analysis and Experimental Validation of the Friction-Stir Welding Behaviour of Ti-6Al-4V

    Science.gov (United States)

    2013-05-04

    investigated using various optical and scanning electron microscopy techni- ques, while the weld properties were investigated using microhardness ...measurements, transverse and all-weld tensile testing techniques, as well as surface profilometry. The main findings/observations made in refer- ences [16...formation in the centre of the weld. 9. Material microhardness within the weld nugget is typically found to be affected by the workpiece thickness

  12. Characterization of the mechanical properties and structural integrity of T-welded connections repaired by grinding and wet welding

    Energy Technology Data Exchange (ETDEWEB)

    Terán, G., E-mail: gteran@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Cuamatzi-Meléndez, R., E-mail: rcuamatzi@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Albiter, A., E-mail: aalbiter@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Maldonado, C., E-mail: cmzepeda@umich.mx [Instituto de Investigaciones Metalúrgicas, UMSNH, PO Box 52-B, 58000, México (Mexico); Bracarense, A.Q., E-mail: bracarense@ufmg.br [UFMG Departamento de Engeharia Mecánica Belo Horizonte, MG (Brazil)

    2014-04-01

    This paper presents an experimental methodology to characterize the structural integrity and mechanical properties of repaired T-welded connections using in fixed offshore structures. Grinding is employed to remove localized damage like cracking and corrosion and subsequent wet welding can be used to fill the grinded material. But it is important to define the grinding depth and profile in order to maintain structural integrity during the repair. Therefore, in this work different grinding depths were performed, for damage material removal, at the weld toe of the T-welded connections. The grinding was filled by wet welding in a hyperbaric chamber, simulating three different water depths: 50 m, 70 m and 100 m. The electrodes were coated with vinilic varnish, which is cheap and easy to apply. The characterization of the mechanical properties of the T-welded connections was done with standard tensile, hardness and Charpy tests; microstructure and porosity analysis were also performed. The samples were obtained from the welded connections in regions of the wet weld beads. The test results were compared with the mechanical properties of the T-welded connections welded in air conditions performed by other authors. The results showed that the wet welding technique performed in this work produced good mechanical properties of the repaired T-welded connection. The mechanical properties, measured in wet conditions, for 6 mm grinding depth, were similar for the 3 different water depths measured in air conditions. But for 10 mm grinding depth, the values of the mechanical properties measured in wet conditions were quite lower than that for air conditions for the 3 water depths. However a porosity analysis, performed with a Scanning Electronic Microscopy (SEM), showed that the level of porosity in the resulted wet weld beads is in the range of that published in the literature and some samples revealed lower level of porosity. The main resulting microstructure was polygonal

  13. Thermal stir welding apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2011-01-01

    A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  14. Thermal stir welding process

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2012-01-01

    A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  15. Fusion Welding Research.

    Science.gov (United States)

    2014-09-26

    RD-AlSO 253 FUSION WELDING RESEARCH(U) MASSACHUSETTS INST OF TECH L/I CAMBRIDGE DEPT OF MATERIALS SCIENCE AND ENGINEERING T W EAGAR ET AL. 30 RPR 85...NUMBER 12. GOV’ ACCESSION NO. 3. RECICIE-S CATALOG NUMBER 4. T TL V nd Subtitle) S. P OFRPR PERIOD COVERED 5t h A~nnual Technical Report Fusion Welding ...research S on welding processes. Studies include metal vapors in the arc, development of a high speed infrared temperature monitor, digital signal

  16. Review of Welding Terminology

    Directory of Open Access Journals (Sweden)

    Angelika Petrėtienė

    2011-04-01

    Full Text Available The paper discusses welding terms in accordance with the Lithuanian standard LST EN 1792 „Welding. The multilingual list of welding terms and similar processes”, „The Russian–Lithuanian dictionary of the terms of mechanical engineering technology and welding“ and the examples from postgraduates‘ final works. It analyses the infringement of lexical, word-building and morphological rules. First-year students should already be familiar with the standardized terms of their speciality. More active propagation of the terms should help to avoid terminology mistakes in various scientific spheres.

  17. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  18. Effective silver-assisted welding of YBCO blocks: mechanical versus electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Bartolome, E [Escola Universitaria Salesiana de Sarria (associated with the University Autonoma of Barcelona), Passeig Sant Joan Bosco 74, E-08017 Barcelona (Spain); Roa, J J; Segarra, M [Centro DIOPMA, Departamento Ciencia de los Materiales e IngenierIa Metalurgica, Instituto de Nanociencia y NanotecnologIa de la Universidad de Barcelona (IN2UB), Facultad de Quimica, Universidad de Barcelona, MartI i Franques 1, E-08028 Barcelona (Spain); Bozzo, B; Granados, X [Institut de Ciencia de Materials de Barcelona-CSIC, Campus UAB, E-08193 Bellaterra (Spain)

    2010-04-15

    Superconducting welding of bulk YBCO is a key technology allowing the fabrication of large, complex-shaped pieces for applications such as levitation, bearings or large magnets. Ideally, the electrical and mechanical properties of welds should be comparable to that of the joint grains. In this paper, we have investigated the correlation between the microstructural, mechanical and critical current density performances of melt-textured [001]-tilt YBCO welds fabricated by the silver welding technique. The hardness reduction across the weld, measured by nanoindentation, correlates linearly with the decrease of intergranular critical current density, measured at 77 K and self-field by magnetic Hall mapping. Remarkably, we show that high quality zero-angle welds could be fabricated with unaltered current and hardness performances across the joint, paving the way for the implementation of silver welds in large-scale systems.

  19. Simulation of hydrogen diffusion in welded joint of X80 pipeline steel

    Institute of Scientific and Technical Information of China (English)

    严春妍; 刘翠英; 张根元

    2014-01-01

    Hydrogen diffusion coefficients of different regions in the welded joint of X80 pipeline steel were measured using the electro-chemical permeation technique. Using ABAQUS software, hydrogen diffusion in X80 pipeline steel welded joint was studied in consideration of the inhomogeneity of the welding zone, and temperature-dependent thermo-physical and mechanical properties of the metals. A three dimensional finite element model was developed and a coupled thermo-mechanical-diffusion analysis was performed. Hydrogen concentration distribution across the welded joint was obtained. It is found that the postweld residual hydrogen exhibits a non-uniform distribution across the welded joint. A maximum equivalent stress occurs in the immediate vicinity of the weld metal. The heat affected zone has the highest hydrogen concentration level, followed by the weld zone and the base metal. Simulation results are well consistent with theoretical analysis.

  20. Application of artificial neural network to predict Vickers microhardness of AA6061 friction stir welded sheets

    Institute of Scientific and Technical Information of China (English)

    Vahid Moosabeiki Dehabadi; Saeede Ghorbanpour; Ghasem Azimi

    2016-01-01

    The application of friction stir welding (FSW) is growing owing to the omission of difficulties in traditional welding processes. In the current investigation, artificial neural network (ANN) technique was employed to predict the microhardness of AA6061 friction stir welded plates. Specimens were welded employing triangular and tapered cylindrical pins. The effects of thread and conical shoulder of each pin profile on the microhardness of welded zone were studied using tow ANNs through the different distances from weld centerline. It is observed that using conical shoulder tools enhances the quality of welded area. Besides, in both pin profiles threaded pins and conical shoulders increase yield strength and ultimate tensile strength. Mean absolute percentage error (MAPE) for train and test data sets did not exceed 5.4% and 7.48%, respectively. Considering the accurate results and acceptable errors in the models’ responses, the ANN method can be used to economize material and time.

  1. Resistance welding of carbon fibre reinforced polyetheretherketone composites using metal mesh and PEI film

    Institute of Scientific and Technical Information of China (English)

    闫久春; 王晓林; 秦明; 赵新英; 杨士勤

    2004-01-01

    Weldability of polyetheretherketone(PEEK) with polyetherimide(PEI) is tested. And carbon fiber reinforced PEEK laminates are resistance welded using stainless steel mesh heating element. The effects of the welding time and welding pressure on the lap shear strength of joints are investigated. Results show that PEEK can heal with PEI well in welding condition and the lap shear strength of PEEK/CF(carbon fibre) joint increases linearly with welding time, but reaches a maximum value when welding pressure ranging from 0.3MPa to 0.5MPa with constant welding time. The fracture characteristics of surface are analyzed by SEM techniques, and four types of fracture modes of lap shear joints are suggested.

  2. Characterization of Microstructure and Mechanical Properties of Resistance Spot Welded DP600 Steel

    Directory of Open Access Journals (Sweden)

    Ali Ramazani

    2015-09-01

    Full Text Available Resistance spot welding (RSW as a predominant welding technique used for joining steels in automotive applications needs to be studied carefully in order to improve the mechanical properties of the spot welds. The objectives of the present work are to characterize the resistance spot weldment of DP600 sheet steels. The mechanical properties of the welded joints were evaluated using tensile-shear and cross-tensile tests. The time-temperature evolution during the welding cycle was measured. The microstructures observed in different sites of the welds were correlated to thermal history recorded by thermocouples in the corresponding areas. It was found that cracks initiated in the periphery region of weld nuggets with a martensitic microstructure and a pull-out failure mode was observed. It was also concluded that tempering during RSW was the main reason for hardness decrease in HAZ.

  3. The Mechanical Behavior of Friction-Stir Spot Welded Aluminum Alloys

    Science.gov (United States)

    Güler, Hande

    2014-10-01

    Aluminum and alloys are widely used in the automotive industry due to the light weight, good formability, and malleability. Spot welding is the most commonly used joining method of these materials, but the high current requirements and the inconsistent quality of the final welds make this process unsuitable. An alternative welding technique, the friction-stir spot welding process, can also be successfully used in joining of aluminum and alloys. In this study, 1-mm-thick AA5754 Al-alloy plates in the H-111 temper conditions were joined by friction-stir spot welding using two different weld parameters such as tool rotational speed and dwell time. Mechanical properties of the joints were obtained with extensive hardness measurements and tensile shear tests. The effect of these parameters on the failure modes of welded joints was also determined.

  4. A population-based study on welding exposures at work and respiratory symptoms.

    Science.gov (United States)

    Lillienberg, L; Zock, J-P; Kromhout, H; Plana, E; Jarvis, D; Torén, K; Kogevinas, M

    2008-03-01

    manual welding stainless steel (PR = 1.92, 1.00-3.66). There was also an increase in the prevalence of wheeze in individuals welding painted metal (PR = 1.66, 0.99-2.78; PR = 1.83, 0.90-3.71). Welding with manual metal arc technique welding in galvanized material and stainless steel and chronic bronchitis symptoms. There was also an increased prevalence of wheeze and welding in painted metal. The results support that welding in coated material is a respiratory hazard underscoring the importance of preventive actions.

  5. Joining technologies for the 1990s: welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, J.D.; Stein, B.A.

    1986-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding. For individual titles see N86-11228 through N86-11255.

  6. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, J.D.; Stein, B.A.

    1986-01-01

    This book presents recent advances in joining technologies for the 1990s-welding, brazing, soldering, mechanical fastening, explosive welding, solid-state bonding, and adhesive bonding. A major consideration in the fabrication of any commercial, military, or space product is attachment systems which are safe and reliable. The subject matter covered includes technology developed in current research programs relevant to welding, bonding, and fastening of structural materials, for fabricating structures and mechanical systems use in the aerospace, automotive, and related industries. Specific topics include equipment, hardware and materials used when welding, brazing, and soldering; mechanical fastening; explosive welding; use of unique selected joining techniques; adhesive bonding; and nondestructive evaluation. ''The Factory of the Future'' is presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  7. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Science.gov (United States)

    Buckley, John D. (Editor); Stein, Bland A. (Editor)

    1986-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  8. Prediction of Weld Penetration in FCAW of HSLA steel using Artificial Neural Networks

    Science.gov (United States)

    Asl, Y. Dadgar; Mostafa, N. B.; Panahizadeh R., V.; Seyedkashi, S. M. H.

    2011-01-01

    Flux-cored arc welding (FCAW) is a semiautomatic or automatic arc welding process that requires a continuously-fed consumable tubular electrode containing a flux. The main FCAW process parameters affecting the depth of penetration are welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed. Shallow depth of penetration may contribute to failure of a welded structure since penetration determines the stress-carrying capacity of a welded joint. To avoid such occurrences; the welding process parameters influencing the weld penetration must be properly selected to obtain an acceptable weld penetration and hence a high quality joint. Artificial neural networks (ANN), also called neural networks (NN), are computational models used to express complex non-linear relationships between input and output data. In this paper, artificial neural network (ANN) method is used to predict the effects of welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed on weld penetration depth in gas shielded FCAW of a grade of high strength low alloy steel. 32 experimental runs were carried out using the bead-on-plate welding technique. Weld penetrations were measured and on the basis of these 32 sets of experimental data, a feed-forward back-propagation neural network was created. 28 sets of the experiments were used as the training data and the remaining 4 sets were used for the testing phase of the network. The ANN has one hidden layer with eight neurons and is trained after 840 iterations. The comparison between the experimental results and ANN results showed that the trained network could predict the effects of the FCAW process parameters on weld penetration adequately.

  9. Dissimilar steel welding and overlay covering with nickel based alloys using SWAM (Shielded Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) processes in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Arce Chilque, Angel Rafael [Centro Tecnico de Engenharia e Inovacao Empresarial Ltda., Belo Horizonte, MG (Brazil); Bracarense, Alexander Queiroz; Lima, Luciana Iglesias Lourenco [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Quinan, Marco Antonio Dutra; Schvartzman, Monica Maria de Abreu Mendonca [Nuclear Technology Development Centre (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Marconi, Guilherme [Federal Center of Technological Education (CEFET-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    This work presents the welding of dissimilar ferritic steel type A508 class 3 and austenitic stainless steel type AISI 316 L using Inconel{sup R} 600 (A182 and A82) and overlay covering with Inconel{sup R} 690 (A52) as filler metal. Dissimilar welds with these materials without defects and weldability problems such as hot, cold, reheat cracking and Ductility Dip Crack were obtained. Comparables mechanical properties to those of the base metal were found and signalized the efficiency of the welding procedure and thermal treatment selected and used. This study evidences the importance of meeting compromised properties between heat affected zone of the ferritic steel and the others regions presents in the dissimilar joint, to elaborate the dissimilar metal welding procedure specification and weld overlay. Metallographic studies with optical microscopy and Vickers microhardness were carried out to justified and support the results, showing the efficiency of the technique of elaboration of dissimilar metal welding procedure and overlay. The results are comparables and coherent with the results found by others. Some alternatives of welding procedures are proposed to attain the efficacy. Further studies are proposed like as metallographic studies of the fine microstructure, making use, for example, of scanning electron microscope (SEM adapted with an EDS) to explain looking to increase the resistance to primary water stress corrosion (PWSCC) in nuclear equipment. (author)

  10. Weld Joint Design for SFR Metallic Fuel Element Closures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Kim, Soo Sung; Woo, Yoon Myeng; Kim, Hyung Tae; Kim, Ki Hwan; Yoon, Kyung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The sodium-cooled fast reactor (SFR) system is among the six systems selected for Gen-IV promising systems and expected to become available for commercial introduction around 2030. In Korea, the R and D on SFR has been begun since 1997, as one of the national long-term nuclear R and D programs. The international collaborative research is under way on fuel developments within Advanced Fuel Project for Gen-IV SFR with the closed fuel cycle of full actinide recycling, while TRU bearing metallic fuel, U-TRU-Zr alloy fuel, was selected and is being developed. For the fabrication of SFR metallic fuel elements, the endplug welding is a crucial process. The sealing of endplug to cladding tube should be hermetically perfect to prevent a leakage of fission gases and to maintain a good reactor performance. In this study, the joint designs for endplug welding were investigated. For the irradiation test of SFR metallic fuel element, the TIG welding technique was adopted and the welding joint design was developed based on the welding conditions and parameters established. In order to make SFR metallic fuel elements, the weld joint design was developed based on the TIG welding technique.

  11. Preliminary Analysis of Low-Thrust Gravity Assist Trajectories by An Inverse Method and a Global Optimization Technique.

    Science.gov (United States)

    de Pascale, P.; Vasile, M.; Casotto, S.

    The design of interplanetary trajectories requires the solution of an optimization problem, which has been traditionally solved by resorting to various local optimization techniques. All such approaches, apart from the specific method employed (direct or indirect), require an initial guess, which deeply influences the convergence to the optimal solution. The recent developments in low-thrust propulsion have widened the perspectives of exploration of the Solar System, while they have at the same time increased the difficulty related to the trajectory design process. Continuous thrust transfers, typically characterized by multiple spiraling arcs, have a broad number of design parameters and thanks to the flexibility offered by such engines, they typically turn out to be characterized by a multi-modal domain, with a consequent larger number of optimal solutions. Thus the definition of the first guesses is even more challenging, particularly for a broad search over the design parameters, and it requires an extensive investigation of the domain in order to locate the largest number of optimal candidate solutions and possibly the global optimal one. In this paper a tool for the preliminary definition of interplanetary transfers with coast-thrust arcs and multiple swing-bys is presented. Such goal is achieved combining a novel methodology for the description of low-thrust arcs, with a global optimization algorithm based on a hybridization of an evolutionary step and a deterministic step. Low thrust arcs are described in a 3D model in order to account the beneficial effects of low-thrust propulsion for a change of inclination, resorting to a new methodology based on an inverse method. The two-point boundary values problem (TPBVP) associated with a thrust arc is solved by imposing a proper parameterized evolution of the orbital parameters, by which, the acceleration required to follow the given trajectory with respect to the constraints set is obtained simply through

  12. Friction stir welding tool

    Science.gov (United States)

    Tolle; Charles R. , Clark; Denis E. , Barnes; Timothy A.

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  13. Explosive Welding with Nitroguanidine.

    Science.gov (United States)

    Sadwin, L D

    1964-03-13

    By using the explosive nitroguanidine, continuous welds can be made between similar and dissimilar metals. Since low detonation pressures are attainable, pressure transfer media are not required between the explosive and the metal surface. The need for either a space or an angle between the metals is eliminated, and very low atmospheric pressures are not required. Successful welds have been made between tantalum and 4140 steel, 3003H14 aluminum and 4140 steel, and 304 stainless steel and 3003H14 aluminum.

  14. Laser Impact Welding

    OpenAIRE

    Daehn, Glenn S.; Lippold, John; Liu, Deijan; Taber, Geoff; Wang, Huimin

    2012-01-01

    Laser impact welding is a solid-state, collision-based welding process. In this process, laser-generated optical energy is converted to kinetic energy through the ablation at the surface and confinement of the gas generated between a flyer and backing plate. The launch of the flyer can be affected by many factors, for example, backing material, ablative layer, and flyer thickness. In this paper, the effect of three backing materials: glass, polycarbonate and cellophane tape, we...

  15. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    Science.gov (United States)

    Mazumder, B.; Yu, X.; Edmondson, P. D.; Parish, C. M.; Miller, M. K.; Meyer, H. M.; Feng, Z.

    2016-02-01

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygen-enriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  16. Investigations into the microstructure-toughness relation in high frequency induction welded pipes

    Energy Technology Data Exchange (ETDEWEB)

    Gungor, O. E.; Thibaux, P.; Liebeherr, M. [ArcelorMittal Global RnD Ghent, Zelzate, (Belgium); Yan, P.; Bhadeshia, H. K. D. H. [Material Science and Mettalurgy, University of Cambridge, (United Kingdom); Quidord, D. [ArcelorMittal Commercial FCE, Fos-sur-Mer, (France)

    2010-07-01

    High frequency induction is frequently used in the production of longitudinally welded pipes for gas transmission but there is some concern about the lower toughness of the weld metal. The HFI welds require in-line post-weld heat treatment (PWHT) to ensure better weld properties. This study investigated the effect of the high frequency induction (HFI) welding process and in-line post-weld heat treatment on weld properties. Tests were performed on HFI welded X65 pipes with a diameter of 24''. Mechanical properties of the pipes were evaluated using Charpy impact (V-notch) and tensile tests before and after PWHT. The EBSD technique was used to study the microtexture and grain structure of the welds. The results showed that the toughness of the bond line after PWHT was sufficiently high, but it is still lower than that of the base material. The coarse crystallographic grain size at the junction of the welds was found to be one of the main reasons for the low toughness.

  17. The Effect of Tool Position for Aluminum and Copper at High Rotational Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    Recep Çakır

    2015-12-01

    Full Text Available Friction Stir Welding (FSW is a solid state welding process used for welding similar and dissimilar materials. This welding technique allows welding of Aluminum alloys which present difficulties in fusion joining and allows different material couples to be welded continuously. In this study, 1050 aluminum alloy and commercially pure copper to increase heat input were produced at high rotation rate (2440 rev/min with four different pin position (0-1-1.5-2 mm and three different weld speeds (20-30-50 mm/min by friction stir welding. The influence of welding parameters on microstructure and mechanical properties of the joints was investigated. Tensile and bending tests and microhardness measurements were used to determine of mechanical properties. Nugget zone microstructures were investigated by optical microscope and scanning electron microscope (SEM and were analyzed in energy-dispersive X-ray spectroscopy (EDX. Depending on the XRD analysis results intermetallic phase was observed to form in the interfacial region. In the tensile test results, 83.55% weld performance was obtained in the friction stir welding merge of Al-Cu.

  18. Effect of tool rotational speed and penetration depth on dissimilar aluminum alloys friction stir spot welds

    Directory of Open Access Journals (Sweden)

    Joaquín M. Piccini

    2017-03-01

    Full Text Available In the last years, the automotive industry is looking for the use of aluminum parts in replace of steel parts in order to reduce the vehicles weight. These parts have to be joined, for instance, by welding processes. The more common welding process in the automotive industry is the Resistance Spot Welding (RSW technique. However, RSW of aluminum alloys has many disadvantages. Regarding this situation, a variant of the Friction Stir Welding process called Friction Stir Spot Welding (FSSW has been developed, showing a strong impact in welding of aluminum alloys and dissimilar materials in thin sheets. Process parameters affect the characteristics of the welded joints. However, the information available on this topic is scarce, particularly for dissimilar joints and thin sheets. The aim of this work was to study the effect of the rotational speed and the tool penetration depth on the characteristics of dissimilar FSS welded joints. Defects free joints have been achieved with higher mechanical properties than the ones reported. The maximum fracture load was 5800 N. It was observed that the effective joint length of the welded spots increased with the tool penetration depth, meanwhile the fracture load increased and then decreased. Finally, welding at 1200 RPM produced welded joints with lower mechanical properties than the ones achieved at 680 and 903 RPM.

  19. Closed-Loop Control System for Friction Stir Welding Retractable Pin Tool

    Science.gov (United States)

    Ding, R. Jeffrey; Romine, Peter L.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    NASA invention disclosure, NASA Case No. MFS-31413, entitled "System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus", (Patent Pending) authored by Jeff Ding, Dr Peter Romine and Pete Oelgoetz, addresses the precision control of the friction stir welding process. The closed-loop control system automatically adjusts the spinning welding pin, real-time, to maintain a precise penetration ligament (i.e., distance between pin-tip and weld panel backside surface). A specific pin length can be maintained while welding constant thickness or tapered material thickness weld panels. The closed-loop control system provides operator data and information relative to the exact position of the welding pin inside the weld joint. This paper presents the closed-loop RPT control system that operates using the auto-feedback of force signals sensed by the tip and shoulder of the welding pin. Significance: The FSW process can be successfully used in a production environment only if there is a method or technique that informs the FSW operator the precise location of the welding pin inside the weld joint. This is essential for applications in aerospace, automotive, pressure vessel, commercial aircraft and other industries.

  20. The Electrochemical Investigation of the Corrosion Rates of Welded Pipe ASTM A106 Grade B

    Directory of Open Access Journals (Sweden)

    Trinet Yingsamphancharoen

    2016-08-01

    Full Text Available The aim of this work was to investigate the corrosion rate of welded carbon steel pipe (ASTM (American Society for Testing and Materials A106 Grade B by GTAW under the currents of 60, 70, and 80 A. All welded pipes satisfied weld procedure specifications and were verified by a procedure qualification record. The property of used materials was in agreement with the ASME standard: section IX. The welded pipe was used for schematic model corrosion measurements applied in 3.5 wt % NaCl at various flow rates and analyzed by using the electrochemical technique with Tafel’s equation. The results showed the correlation between the flow rate and the corrosion rate of the pipe; the greater the flow rate, the higher corrosion rate. Moreover, the welded pipe from the welding current of 70 A exhibited higher tensile strength and corrosion resistance than those from currents of 60 and 80 A. It indicated that the welding current of 70 A produced optimum heat for the welding of A106 pipe grade B. In addition, the microstructure of the welded pipe was observed by SEM. The phase transformation and crystallite size were analyzed by XRD and Sherrer’s equation. The results suggested that the welding current could change the microstructure and phase of the welded pipe causing change in the corrosion rate.

  1. Hydrogen Regional Infrastructure Program In Pennsylvania Potential Applications of Friction Stir Welding to the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Brendlinger, Jennifer [Concurrent Technologies Corporation, Johnstown, PA (United States)

    2009-07-17

    Friction Stir Welding (FSW) is a solid-state welding technique developed by The Welding Institute (TWI) of Cambridge, UK in the early 1990’s. The process uses a non-consumable rotating tool to develop frictional heat and plastically deform workpieces to be joined, resulting in a solid-state weld on the trailing side of the advancing tool. Since the materials to be joined are not melted, FSW results in a finer grain structure and therefore enhanced properties, relative to fusion welds. And unlike fusion welding, a relatively small number of key process parameters exist for FSW: tool rotational speed, linear weld velocity and force perpendicular to the joining surface. FSW is more energy efficient than fusion welding and can be accomplished in one or two passes, versus many more passes required of fusion welding thicker workpieces. Reduced post-weld workpiece distortion is another factor that helps to reduce the cost of FSW relative to fusion welding. Two primary areas have been identified for potential impact on the hydrogen economy: FSW of metallic pipes for hydrogen transmission and FSW of aluminum pressure vessels for hydrogen storage. Both areas have been under active development and are explored in this paper.

  2. Experimental Evaluation and Characterization of Electron Beam Welding of 2219 AL-Alloy

    Directory of Open Access Journals (Sweden)

    Mohamed Sobih

    2016-01-01

    Full Text Available Aiming to reduce the weight of components, thus allowing a profit in terms of energy saving, automotive industry as well as aircraft industry extensively uses aluminum alloys. The most widely used joining technology in aircraft industry is riveting, while welding seems to be used in the car industry in the case of aluminum alloys. However, welding technology is characterized by many defects, such as gas porosity; oxide inclusions; solidification cracking (hot tearing; and reduced strength in both the weld and the heat affected zones which could limit its development. Many techniques are used for aluminum alloys welding, among them is electron beam welding (EBW, which has unique advantages over other traditional fusion welding methods due to high-energy density, deep penetration, large depth-to-width ratio, and small heat affected zone. The welding parameters that yield to optimal weld joint have been previously obtained. These optimal parameters were validated by welding a specimen using these parameters. To evaluate this optimal weld joint, complete, microstructural observations and characterization have been carried out using scanning electron microscopy, optical microscopy, and energy dispersive X-ray analysis. This evaluation leads to description and quantification of the solidification process within this weld joint.

  3. Taguchi analysis of dissimilar aluminum sheets joined by friction stir spot welding

    Directory of Open Access Journals (Sweden)

    Mustafa Kemal BİLİCİ

    2016-02-01

    Full Text Available In recent years, the welding of materials of new and complex structure constitutes a problem for the industry. The solid state welding method for joining of these materials were effective. Sheets produced from aluminum and aluminum alloys, especially in areas such as automotive, railway and defense industry have revealed the requirement of the application of solid state welding methods. The friction stir spot welding is one of the solid state welding method. Welding parameters is very important FSSW in order to obtain the maximum welding strength in FSSW. SKNK as parameters (tool rotational speed, depth, dive team, team and team inclination angle of standby time is selected. In this study has investigated the joining of AA2024-T3 and AA5754-H22 aluminum alloy sheets with FSSW technique by Taguchi analysis. “The highest -the better” quality control characteristic using the Analysis of Variance (ANOVA method were obtained the optimum welding parameters. The results have been analyzed both the graphical methods and numerical data. The most important parameters affecting the weld tensile strength were detected as tool rotation speed (44.74% and the team of waiting time (31.60%. Weld tensile strength by Taguchi analysis result conducted for comparing experiments the increased by 42% compared to the initial parameters.Keywords: Friction stir spot welding, Mechanical properties, Taguchi method, Optimization

  4. Microstructure and Mechanical Properties of Narrow Gap Laser-Arc Hybrid Welded 40 mm Thick Mild Steel

    Science.gov (United States)

    Zhang, Chen; Li, Geng; Gao, Ming; Zeng, XiaoYan

    2017-01-01

    Both laser-arc hybrid welding and narrow gap welding have potential for the fabrication of thick sections, but their combination has been seldom studied. In this research, 40 mm thick mild steel was welded by narrow gap laser-arc hybrid welding. A weld with smooth layer transition, free of visible defects, was obtained by nine passes at a 6 mm width narrow gap. The lower part of the weld has the lowest mechanical properties because of the lowest amount of acicular ferrite, but its ultimate tensile strength and impact absorbing energy is still 49% and 60% higher than those of base metal, respectively. The microhardness deviation of all filler layers along weld thickness direction is no more than 15 HV0.2, indicating that no temper softening appeared during multiple heat cycles. The results provide an alternative technique for improving the efficiency and quality of welding thick sections. PMID:28772469

  5. Microstructure and Mechanical Properties of Narrow Gap Laser-Arc Hybrid Welded 40 mm Thick Mild Steel

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2017-01-01

    Full Text Available Both laser-arc hybrid welding and narrow gap welding have potential for the fabrication of thick sections, but their combination has been seldom studied. In this research, 40 mm thick mild steel was welded by narrow gap laser-arc hybrid welding. A weld with smooth layer transition, free of visible defects, was obtained by nine passes at a 6 mm width narrow gap. The lower part of the weld has the lowest mechanical properties because of the lowest amount of acicular ferrite, but its ultimate tensile strength and impact absorbing energy is still 49% and 60% higher than those of base metal, respectively. The microhardness deviation of all filler layers along weld thickness direction is no more than 15 HV0.2, indicating that no temper softening appeared during multiple heat cycles. The results provide an alternative technique for improving the efficiency and quality of welding thick sections.

  6. A review on TIG welding for optimizing process parameters on dissimilar joints

    Directory of Open Access Journals (Sweden)

    Prashant Kumar Singh

    2015-02-01

    Full Text Available Tungsten Inert Gas Welding (TIG is relatively high strength welding technique. This technique are mostly used in fabrication and other industries to join the either similar or dissimilar materials. In particular, it can be used to join high-quality strength of metal and alloys.In this paper we discuss abouttheTungsten Inert Gas welding of joining heat treatableof stainless steel and mild steel.These welded joints have higher tensile strength to weight ratio and finer micro structure. Tungsten Inert Gas Weldingofdissimilar material such as stainless steel and mild steel have the potential to hold good mechanical and metallurgical properties.

  7. SLAM examination of solar cells and solar cell welds. [Scanning Laser Acoustic Microscope

    Science.gov (United States)

    Stella, P. M.; Vorres, C. L.; Yuhas, D. E.

    1981-01-01

    The scanning laser acoustic microscope (SLAM) has been evaluated for non-destructive examination of solar cells and interconnector bonds. Using this technique, it is possible to view through materials in order to reveal regions of discontinuity such as microcracks and voids. Of particular interest is the ability to evaluate, in a unique manner, the bonds produced by parallel gap welding. It is possible to not only determine the area and geometry of the bond between the tab and cell, but also to reveal any microcracks incurred during the welding. By correlating the SLAM results with conventional techniques of weld evaluation a more confident weld parameter optimization can be obtained.

  8. Design and Fabrication of Remote Welding Equipment in a Hot-Cell

    Directory of Open Access Journals (Sweden)

    Soosung Kim

    2013-01-01

    Full Text Available The remote welding equipment for nuclear fuel bundle fabrication in a hot-cell was designed and developed. To achieve this, a preliminary investigation of hands-on fuel fabrication outside a hot-cell was conducted with a consideration of the constraints caused by the welding in a hot-cell. Some basic experiments were also carried out to improve the end-plate welding process for nuclear fuel bundle fabrication. The resistance welding equipment using end-plate welding was also improved. It was found that the remote resistance welding was more suitable for joining an end-plate to end caps in a hot-cell. This paper presents an outline of the developed welding equipment for nuclear fuel bundle fabrication and reviews a conceptual design of remote welding equipment using a master-slave manipulator. Furthermore, the mechanical considerations and a mock-up simulation test were described. Finally, its performance test results were presented for a mock-up of the remote resistance welding equipment for nuclear fuel bundle fabrication.

  9. Influence of Hardening Model on Weld Residual Stress Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Jonathan; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden))

    2009-06-15

    This study is the third stage of a project sponsored by the Swedish Radiation Safety Authority (SSM) to improve the weld residual stress modelling procedures currently used in Sweden. The aim of this study was to determine which material hardening model gave the best agreement with experimentally measured weld residual stress distributions. Two girth weld geometries were considered: 19mm and 65mm thick girth welds with Rin/t ratios of 10.5 and 2.8, respectively. The FE solver ABAQUS Standard v6.5 was used for analysis. As a preliminary step some improvements were made to the welding simulation procedure used in part one of the project. First, monotonic stress strain curves and a mixed isotropic/kinematic hardening model were sourced from the literature for 316 stainless steel. Second, more detailed information was obtained regarding the geometry and welding sequence for the Case 1 weld (compared with phase 1 of this project). Following the preliminary step, welding simulations were conducted using isotropic, kinematic and mixed hardening models. The isotropic hardening model gave the best overall agreement with experimental measurements; it is therefore recommended for future use in welding simulations. The mixed hardening model gave good agreement for predictions of the hoop stress but tended to under estimate the magnitude of the axial stress. It must be noted that two different sources of data were used for the isotropic and mixed models in this study and this may have contributed to the discrepancy in predictions. When defining a mixed hardening model it is difficult to delineate the relative contributions of isotropic and kinematic hardening and for the model used it may be that a greater isotropic hardening component should have been specified. The kinematic hardening model consistently underestimated the magnitude of both the axial and hoop stress and is not recommended for use. Two sensitivity studies were also conducted. In the first the effect of using a

  10. Application of Ultrasonic Time of Flight Diffraction Inspection Techniques for T-type Welding Seam%超声TOFD检测技术在T型焊缝中的应用

    Institute of Scientific and Technical Information of China (English)

    王勇

    2016-01-01

    TOFD检测技术是一种高效快捷的检测焊缝的超声技术。文章采用TOFD检测方法对T型焊缝进行探伤,提出了TOFD对称扫查方法和非对称扫查方法,2种方法结合实现了对T型焊缝的全面检测。该TOFD检测方法探伤速度快,缺陷检出率高,能实时成像,并能对缺陷进行快速分析。%The ultrasonic Time of Flight Diffraction (TOFD) technique is a fast and efficient testing technology. The TOFD symmetric scanning method and asymmetric scanning method are proposed in this paper. The combination of TOFD symmetric and asymmetric scanning method are used to have a comprehensive inspection for T-type welding seam. These TOFD detection methods have faster detection speed and higher defect detection rate and can help to analyze defects quickly.

  11. Certification of a weld produced by friction stir welding

    Science.gov (United States)

    Obaditch, Chris; Grant, Glenn J

    2013-10-01

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  12. Measurement of local creep properties in stainless steel welds

    OpenAIRE

    Sakanashi, Y.; Gungor, S; Bouchard, J.

    2012-01-01

    A high temperature measurement system for creep deformation based on the digital image correlation (DIC) technique is described. The new system is applied to study the behaviour of a multi-pass welded joint in a high temperature tensile test and a load controlled creep test at 545°C. Spatially resolved tensile properties and time dependent creep deformation properties across a thick section type 316 stainless steel multi-pass welded joint are presented and discussed. Significantly lower creep...

  13. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications

    Science.gov (United States)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert

    2003-01-01

    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading

  14. Welding defects at friction stir welding

    Directory of Open Access Journals (Sweden)

    P. Podržaj

    2015-04-01

    Full Text Available The paper presents an overview of different types of defects at friction stir welding. In order to explain the reasons for their occurrence a short theoretical background of the process is given first. The main emphasis is on the parameters that influence the process. An energy supply based division of defects into three disjoint groups was used. The occurring defects are demonstrated on various materials.

  15. Nuclear Technology. Course 28: Welding Inspection. Module 28-3, Tungsten Inert Gas (TIG), Metal Inert Gas (MIG) and Submerged Arc Welding.

    Science.gov (United States)

    Espy, John

    This third in a series of ten modules for a course titled Welding Inspection presents the apparatus, process techniques, procedures, applications, associated defects, and inspection for the tungsten inert gas, metal inert gas, and submerged arc welding processes. The module follows a typical format that includes the following sections: (1)…

  16. Welding. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  17. Welding. Performance Objectives. Basic Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of eight terminal objectives for a basic welding course. The materials were developed for a 36-week (2 hours daily) course developed to teach the fundamentals of welding shop work, to become familiar with the operation of the welding shop…

  18. Corrosion of an austenite and ferrite stainless steel weld

    Directory of Open Access Journals (Sweden)

    BRANIMIR N. GRGUR

    2011-07-01

    Full Text Available Dissimilar metal connections are prone to frequent failures. These failures are attributed to the difference in the mechanical properties across the weld, the coefficients of thermal expansion of the two types of steels and the resulting creep at the interface. For the weld analyzed in this research, it was shown that corrosion measurements can be used for a proper evaluation of the quality of weld material and for the prediction of whether or not the material, after the applied welding process, can be in service without failures. It was found that the corrosion of the weld analyzed in this research resulted from the simultaneous activity of different types of corrosion. In this study, electrochemical techniques including polarization and metallographic analysis were used to analyze the corrosion of a weld material of ferrite and austenitic stainless steels. Based on surface, chemical and electrochemical analyses, it was concluded that corrosion occurrence was the result of the simultaneous activity of contact corrosion (ferrite and austenitic material conjuction, stress corrosion (originating from deformed ferrite structure and inter-granular corrosion (due to chromium carbide precipitation. The value of corrosion potential of –0.53 V shows that this weld, after the thermal treatment, is not able to repassivate a protective oxide film.

  19. Metal Cutting Theory and Friction Stir Welding Tool Design

    Science.gov (United States)

    Payton, Lewis N.

    2003-01-01

    Friction Stir Welding (FSW) is a relatively new industrial process that was invented at The Weld Institute (TWI, United Kingdom) and patented in 1992 under research funded by in part by the National Aeronautics and Space Administration (NASA). Often quoted advantages of the process include good strength and ductility along with minimization of residual stress and distortion. Less well advertised are the beneficial effects of this solid state welding process in the field of occupational and environmental safety. It produces superior weld products in difficult to weld materials without producing any toxic fumes or solid waste that must be controlled as hazardous waste. In fact, it reduces noise pollution in the workspace as well. In the early days of FSW, most welding was performed on modified machine tools, in particular on milling machines with modified milling cutters. In spite of the obvious milling heritage of the process, the techniques and lessons learned from almost 250 years of successful metalworking with milling machines have not been applied in the field of modern Friction Stir Welding. The goal of the current research was to study currently successful FSW tools and parameterize the process in such a way that the design of new tools for new materials could be accelerated. Along the way, several successful new tooling designs were developed for current issues at the Marshall Space Flight Center with accompanying patent disclosures

  20. Investigation into Interface Lifting Within FSW Lap Welds

    Energy Technology Data Exchange (ETDEWEB)

    K. S. Miller; C. R. Tolle; D. E. Clark; C. I. Nichol; T. R. McJunkin; H. B. Smartt

    2008-06-01

    Friction stir welding (FSW) is rapidly penetrating the welding market in many materials and applications, particularly in aluminum alloys for transportation applications. As this expansion outside the research laboratory continues, fitness for service issues will arise, and process control and NDE methods will become important determinants of continued growth. The present paper describes research into FSW weld nugget flaw detection within aluminum alloy lap welds. We present results for two types of FSW tool designs: a smooth pin tool and a threaded pin tool. We show that under certain process parameters (as monitored during welding with a rotating dynamometer that measures x, y, z, and torque forces) and tooling designs, FSW lap welds allow significant nonbonded interface lifting of the lap joint, while forming a metallurgical bond only within the pin region of the weld nugget. These lifted joints are often held very tightly together even though unbonded, and might be expected to pass cursory NDE while representing a substantial compromise in joint mechanical properties. The phenomenon is investigated here via radiographic and ultrasonic NDE techniques, with a copper foil marking insert (as described elsewhere) and by the tensile testing of joints. As one would expect, these results show that tool design and process parameters significantly affect plactic flow and this lifted interface. NDE and mechanical strength ramifications of this defect are discussed.