WorldWideScience

Sample records for welding fume inhalation

  1. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    Science.gov (United States)

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  2. [Inhalation exposure to welding fumes of arc welders in processing Cr-Ni steel in large chemical industry].

    Science.gov (United States)

    Dyrba, B C; Richter, K H

    1989-05-01

    For clearing up the inhalative load by welding fumes and gases of arc welders in industrial workshops mainly working on Cr-Ni-steels the following welding processes were studied: tungsten inert-gas (TIG), electrode-by-hand (EH), metal inert-gas (MIG), and plasma cutting (plasma). From the total load by welding fumes follows the rank TIG less than EH less than plasma less than MIG. Observing the maximum allowable concentration (MACD) for the total welding fume, no MACD for Cr and Ni was found exceeded. Regarding the welding gases ozone and CO no limit values were exceeded. From the results conclusions were made.

  3. Design, construction, and characterization of a novel robotic welding fume generator and inhalation exposure system for laboratory animals.

    Science.gov (United States)

    Antonini, James M; Afshari, Aliakbar A; Stone, Sam; Chen, Bean; Schwegler-Berry, Diane; Fletcher, W Gary; Goldsmith, W Travis; Vandestouwe, Kurt H; McKinney, Walter; Castranova, Vincent; Frazer, David G

    2006-04-01

    Respiratory effects observed in welders have included lung function changes, metal fume fever, bronchitis, and a possible increase in the incidence of lung cancer. Many questions remain unanswered regarding the causality and possible underlying mechanisms associated with the potential toxic effects of welding fume inhalation. The objective of the present study was to construct a completely automated, computer-controlled welding fume generation and inhalation exposure system to simulate real workplace exposures. The system comprised a programmable six-axis robotic welding arm, a water-cooled arc welding torch, and a wire feeder that supplied the wire to the torch at a programmed rate. For the initial studies, gas metal arc welding was performed using a stainless steel electrode. A flexible trunk was attached to the robotic arm of the welder and was used to collect and transport fume from the vicinity of the arc to the animal exposure chamber. Undiluted fume concentrations consistently ranged from 90-150 mg/m(3) in the animal chamber during welding. Temperature and humidity remained constant in the chamber during the welding operation. The welding particles were composed of (from highest to lowest concentration) iron, chromium, manganese, and nickel as measured by inductively coupled plasma atomic emission spectroscopy. Size distribution analysis indicated the mass median aerodynamic diameter of the generated particles to be approximately 0.24 microm with a geometric standard deviation (sigma(g)) of 1.39. As determined by transmission and scanning electron microscopy, the generated aerosols were mostly arranged as chain-like agglomerates of primary particles. Characterization of the laboratory-generated welding aerosol has indicated that particle morphology, size, and chemical composition are comparable to stainless steel welding fume generated in other studies. With the development of this novel system, it will be possible to establish an animal model using

  4. Occupational rhinitis due to steel welding fumes.

    Science.gov (United States)

    Castano, Roberto; Suarthana, Eva

    2014-12-01

    Exposure to welding fumes is a recognized respiratory hazard. Occupational asthma but not occupational rhinitis has been documented in workers exposed to steel welding fumes. We report a 26-year-old male with work-related rhinitis symptoms as well as lower airways symptoms suggestive of occupational asthma and metal fume fever associated with exposure to steel welding fumes. The diagnosis of occupational rhinitis was confirmed by specific inhalation challenge. © 2014 Wiley Periodicals, Inc.

  5. Increase in oxidative stress levels following welding fume inhalation: a controlled human exposure study.

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Sauvain, Jean-Jacques; Suarez, Guillaume; Wild, Pascal; Danuser, Brigitta; Riediker, Michael

    2016-06-10

    Tungsten inert gas (TIG) welding represents one of the most widely used metal joining processes in industry. It has been shown to generate a large majority of particles at the nanoscale and to have low mass emission rates when compared to other types of welding. Despite evidence that TIG fume particles may produce reactive oxygen species (ROS), limited data is available for the time course changes of particle-associated oxidative stress in exposed TIG welders. Twenty non-smoking male welding apprentices were exposed to TIG welding fumes for 60 min under controlled, well-ventilated settings. Exhaled breathe condensate (EBC), blood and urine were collected before exposure, immediately after exposure, 1 h and 3 h post exposure. Volunteers participated in a control day to account for oxidative stress fluctuations due to circadian rhythm. Biological liquids were assessed for total reducing capacity, hydrogen peroxide (H2O2), malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations at each time point. A linear mixed model was used to assess within day and between day differences. Significant increases in the measured biomarkers were found at 3 h post exposure. At 3 h post exposure, we found a 24 % increase in plasma-H2O2 concentrations ([95%CI: 4 % to 46 %], p = 0.01); a 91 % increase in urinary-H2O2 ([2 % to 258 %], p = 0.04); a 14 % increase in plasma-8-OHdG ([0 % to 31 %], p = 0.049); and a 45 % increase in urinary-8-OHdG ([3 % to 105 %], p = 0.03). Doubling particle number concentration (PNC) exposure was associated with a 22 % increase of plasma-8-OHdG at 3 h post exposure (p = 0.01). A 60-min exposure to TIG welding fume in a controlled, well-ventilated setting induced acute oxidative stress at 3 h post exposure in healthy, non-smoking apprentice welders not chronically exposed to welding fumes. As mass concentration of TIG welding fume particles is very low when compared to other types of welding, it is

  6. Aerosol characterization and pulmonary responses in rats after short-term inhalation of fumes generated during resistance spot welding of galvanized steel

    Directory of Open Access Journals (Sweden)

    James M. Antonini

    Full Text Available Resistance spot welding is a common process to join metals in the automotive industry. Adhesives are often used as sealers to seams of metals that are joined. Anti-spatter compounds sometimes are sprayed onto metals to be welded to improve the weldability. Spot welding produces complex aerosols composed of metal and volatile compounds (VOCs which can cause lung disease in workers. Male Sprague-Dawley rats (n = 12/treatment group were exposed by inhalation to 25 mg/m3 of aerosol for 4 h/day × 8 days during spot welding of galvanized zinc (Zn-coated steel in the presence or absence of a glue or anti-spatter spray. Controls were exposed to filtered air. Particle size distribution and chemical composition of the generated aerosol were determined. At 1 and 7 days after exposure, bronchoalveolar lavage (BAL was performed to assess lung toxicity. The generated particles mostly were in the submicron size range with a significant number of nanometer-sized particles formed. The primary metals present in the fumes were Fe (72.5% and Zn (26.3%. The addition of the anti-spatter spray and glue did affect particle size distribution when spot welding galvanized steel, whereas they had no effect on metal composition. Multiple VOCs (e.g., methyl methacrylate, acetaldehyde, ethanol, acetone, benzene, xylene were identified when spot welding using either the glue or the anti-spatter spray that were not present when welding alone. Markers of lung injury (BAL lactate dehydrogenase and inflammation (total BAL cells/neutrophils and cytokines/chemokines were significantly elevated compared to controls 1 day after exposure to the spot welding fumes. The elevated pulmonary response was transient as lung toxicity mostly returned to control values by 7 days. The VOCs or the concentrations that they were generated during the animal exposures had no measurable effect on the pulmonary responses. Inhalation of galvanized spot welding fumes caused acute lung toxicity

  7. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes.

    Science.gov (United States)

    Sriram, Krishnan; Lin, Gary X; Jefferson, Amy M; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J; McKinney, Walter; Jackson, Mark; Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L; Roberts, Jenny R; Frazer, David G; Antonini, James M

    2015-02-03

    Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson's disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m(3); 3h/day × 5 d/week × 2 weeks) to fumes generated by gas-metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks. Published by Elsevier Ireland Ltd.

  8. Characterization of Stainless Steel Welding Fume Particles : Influence of Stainless Steel Grade, Welding Parameters and Particle Size

    OpenAIRE

    Mei, Nanxuan

    2016-01-01

    Welding is a widely used method to join two pieces of stainless steel. Since it produces a large amount of fume during the process, it can cause adverse health effects. The welding fume particles contain many elements. Among them Cr, Mn and Ni are of concern. These three elements can cause diseases if inhaled by humans, especially Cr(VI). In this project, welding fume particles are collected during welding of different stainless steel grades (austenitic AISI 304L and duplex LDX2101). Furtherm...

  9. Cognitive symptoms and welding fume exposure.

    Science.gov (United States)

    Ross, John A S; Macdiarmid, Jennifer I; Semple, Sean; Watt, Stephen J; Moir, Gill; Henderson, George

    2013-01-01

    Prevalence of moderate to severe cognitive symptoms is markedly higher in UK professional divers who have also worked as a welder (28%) than in either divers who have not welded (18%) or offshore workers who have worked neither as a diver nor as a welder (6%). To determine whether cognitive symptoms are related to welding fume exposure or diving. Three age-matched groups of male workers were studied using postal questionnaire: professional divers who had worked as a welder (PDW, n = 361), professional welders who had not dived (NDW, n = 352), and offshore oil field workers who had neither dived nor welded (NDNW, n =503). Health-related quality of life was assessed by the Short Form 12 questionnaire (SF12). Cognitive symptomatology was assessed using the Cognitive Failures Questionnaire (CFQ). A single variable for welding fume exposure (mg m(-3) days) was calculated, incorporating welding experience in different environments and using different welding techniques and respiratory protective equipment. The level of fume exposure during hyperbaric welding operations was measured during such work as ambient PM(10) (particles of 10 µm or less). Diving exposure was assessed as the number of dives performed plus the number of days spent working during saturation diving. Questionnaires were returned by 153 PDW, 108 NDW, and 252 NDNW. SF12 scores were the same in all groups and fell within normative values. Mean (95% CI) CFQ scores were higher in PDW [40.3 (37.7-42.9)] than in both NDW [34.6 (31.6-37.7)] and NDNW [32.1 (30.4-33.9)], but the scores in no groups fell outside the normative range. The mean PM(10) exposure during hyperbaric welding operations was 2.58 mg m(-3). The geometric mean mg m(-3) days (95% CI) for welding fume exposure in NDW [33 128 (24 625-44 567) n = 85] was higher than for that in PDW [10 904 (8103-14 673) n = 112]. For PDW the geometric mean (95% CI) diving exposure was 1491 [(1192-1866) n = 94] dives and days in saturation. In the general linear

  10. Pulmonary effects of welding fumes: review of worker and experimental animal studies.

    Science.gov (United States)

    Antonini, James M; Lewis, Anthony B; Roberts, Jenny R; Whaley, David A

    2003-04-01

    Approximately one million workers worldwide perform welding as part of their work duties. Electric arc welding processes produce metal fumes and gases which may be harmful to exposed workers. This review summarizes human and animals studies which have examined the effect of welding fume exposure on respiratory health. An extensive search of the scientific and occupational health literature was performed, acquiring published articles which examined the effects of welding on all aspects of worker and laboratory animal health. The databases accessed included PubMed, Ovid, NIOSHTIC, and TOXNET. Pulmonary effects observed in full-time welders have included metal fume fever, airway irritation, lung function changes, susceptibility to pulmonary infection, and a possible increase in the incidence of lung cancer. Although limited in most cases, animal studies have tended to support the findings from epidemiologic studies. Despite the numerous studies on welding fumes, incomplete information still exists regarding the causality and possible underlying mechanisms associated with welding fume inhalation and pulmonary disease. The use of animal models and the ability to control the welding fume exposure in toxicology studies could be utilized in an attempt to develop a better understanding of how welding fumes affect pulmonary health.

  11. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Frazer David

    2010-11-01

    Full Text Available Abstract Background Welding fumes consist of a wide range of complex metal oxide particles which can be deposited in all regions of the respiratory tract. The welding aerosol is not homogeneous and is generated mostly from the electrode/wire. Over 390,000 welders were reported in the U.S. in 2008 while over 1 million full-time welders were working worldwide. Many health effects are presently under investigation from exposure to welding fumes. Welding fume pulmonary effects have been associated with bronchitis, metal fume fever, cancer and functional changes in the lung. Our investigation focused on the generation of free radicals and reactive oxygen species from stainless and mild steel welding fumes generated by a gas metal arc robotic welder. An inhalation exposure chamber located at NIOSH was used to collect the welding fume particles. Results Our results show that hydroxyl radicals (.OH were generated from reactions with H2O2 and after exposure to cells. Catalase reduced the generation of .OH from exposed cells indicating the involvement of H2O2. The welding fume suspension also showed the ability to cause lipid peroxidation, effect O2 consumption, induce H2O2 generation in cells, and cause DNA damage. Conclusion Increase in oxidative damage observed in the cellular exposures correlated well with .OH generation in size and type of welding fumes, indicating the influence of metal type and transition state on radical production as well as associated damage. Our results demonstrate that both types of welding fumes are able to generate ROS and ROS-related damage over a range of particle sizes; however, the stainless steel fumes consistently showed a significantly higher reactivity and radical generation capacity. The chemical composition of the steel had a significant impact on the ROS generation capacity with the stainless steel containing Cr and Ni causing more damage than the mild steel. Our results suggest that welding fumes may cause acute

  12. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species.

    Science.gov (United States)

    Leonard, Stephen S; Chen, Bean T; Stone, Samuel G; Schwegler-Berry, Diane; Kenyon, Allison J; Frazer, David; Antonini, James M

    2010-11-03

    Welding fumes consist of a wide range of complex metal oxide particles which can be deposited in all regions of the respiratory tract. The welding aerosol is not homogeneous and is generated mostly from the electrode/wire. Over 390,000 welders were reported in the U.S. in 2008 while over 1 million full-time welders were working worldwide. Many health effects are presently under investigation from exposure to welding fumes. Welding fume pulmonary effects have been associated with bronchitis, metal fume fever, cancer and functional changes in the lung. Our investigation focused on the generation of free radicals and reactive oxygen species from stainless and mild steel welding fumes generated by a gas metal arc robotic welder. An inhalation exposure chamber located at NIOSH was used to collect the welding fume particles. Our results show that hydroxyl radicals (.OH) were generated from reactions with H2O2 and after exposure to cells. Catalase reduced the generation of .OH from exposed cells indicating the involvement of H2O2. The welding fume suspension also showed the ability to cause lipid peroxidation, effect O2 consumption, induce H2O2 generation in cells, and cause DNA damage. Increase in oxidative damage observed in the cellular exposures correlated well with .OH generation in size and type of welding fumes, indicating the influence of metal type and transition state on radical production as well as associated damage. Our results demonstrate that both types of welding fumes are able to generate ROS and ROS-related damage over a range of particle sizes; however, the stainless steel fumes consistently showed a significantly higher reactivity and radical generation capacity. The chemical composition of the steel had a significant impact on the ROS generation capacity with the stainless steel containing Cr and Ni causing more damage than the mild steel. Our results suggest that welding fumes may cause acute lung injury. Since type of fume generated, particle size

  13. Immunotoxicology of arc welding fume: worker and experimental animal studies.

    Science.gov (United States)

    Zeidler-Erdely, Patti C; Erdely, Aaron; Antonini, James M

    2012-01-01

    Arc welding processes generate complex aerosols composed of potentially hazardous metal fumes and gases. Millions of workers worldwide are exposed to welding aerosols daily. A health effect of welding that is of concern to the occupational health community is the development of immune system dysfunction. Increased severity, frequency, and duration of upper and lower respiratory tract infections have been reported among welders. Specifically, multiple studies have observed an excess mortality from pneumonia in welders and workers exposed to metal fumes. Although several welder cohort and experimental animal studies investigating the adverse effects of welding fume exposure on immune function have been performed, the potential mechanisms responsible for these effects are limited. The objective of this report was to review both human and animal studies that have examined the effect of welding fume pulmonary exposure on local and systemic immune responses.

  14. Immunotoxicology of arc welding fume: Worker and experimental animal studies

    Science.gov (United States)

    Zeidler-Erdely, Patti C.; Erdely, Aaron; Antonini, James M.

    2015-01-01

    Arc welding processes generate complex aerosols composed of potentially hazardous metal fumes and gases. Millions of workers worldwide are exposed to welding aerosols daily. A health effect of welding that is of concern to the occupational health community is the development of immune system dysfunction. Increased severity, frequency, and duration of upper and lower respiratory tract infections have been reported among welders. Specifically, multiple studies have observed an excess mortality from pneumonia in welders and workers exposed to metal fumes. Although several welder cohort and experimental animal studies investigating the adverse effects of welding fume exposure on immune function have been performed, the potential mechanisms responsible for these effects are limited. The objective of this report was to review both human and animal studies that have examined the effect of welding fume pulmonary exposure on local and systemic immune responses. PMID:22734811

  15. DNA strand breakage and lipid peroxidation after exposure to welding fumes in vivo.

    Science.gov (United States)

    Chuang, Cheng-Hung; Huang, Chong-En; Chen, Hsiu-Ling

    2010-01-01

    A remarkable number of complex aerosols are generated from welding processes. The objective of this study was to compare DNA damage and lipid peroxidation in plasma and in lung and in liver tissue of rats exposed to welding fumes in an exposure chamber with those of control animals. Three air samples from the chamber were also collected to assess the exposure dose for each exposure (total samplings = 18). Eight male Sprague-Dawley rats were exposed to welding fumes at a concentration of 1540.76 mg/m(3) for 10 min/day six times on day 1, day 3, day 7, day 15, day 30 and day 40. Lung, liver and kidney injury was measured following exposure, as well as in unexposed control rats (n = 4 at the beginning of the study). DNA strand breakage [tail moment (TMOM)] in exposed animals showed significant differences at day 1, day 4, day 7 and day 15 relative to the levels in control animals. Malondialdehyde (MDA, a lipid peroxidation product) levels increased gradually post-welding to 0.4 microM at 7 days. MDA and TMOM both reached maximum levels 7 days after the first exposure. At the start, an increasing trend in DNA strand breakage was more obvious than increases in MDA levels; MDA seemed to reflect long-term effects of exposure to welding fumes since it increased after 7 days and was sustained to 40 days in vivo. Significant differences in both MDA levels and DNA strand breakage were seen in lung, liver and kidney 40 days after the first fume inhalation. We conclude that acute exposure of rats to welding fumes causes noticeable oxidative damage and lipid peroxidation effects and that DNA damage may recover after long and repeat exposure. More chronic inhalation and low-dose studies are needed in order to further assess the effects of inhalation of welding fumes on DNA and to elucidate the possible causal mechanisms associated with the biologically damaging effects of welding fumes.

  16. Effects of pulmonary exposure to chemically-distinct welding fumes on neuroendocrine markers of toxicity.

    Science.gov (United States)

    Krajnak, K; Sriram, K; Johnson, C; Roberts, J R; Mercer, R; Miller, G R; Wirth, O; Antonini, J M

    2017-01-01

    Exposure to welding fumes may result in disorders of the pulmonary, cardiovascular, and reproductive systems. Welders are also at a greater risk of developing symptoms similar to those seen in individuals with idiopathic Parkinson's disease. In welders, there are studies that suggest that alterations in circulating prolactin concentrations may be indicative of injury to the dopamine (DA) neurons in the substantia nigra. The goal of these studies was to use an established model of welding particulate exposure to mimic the effects of welding fume inhalation on reproductive functions. Since previous investigators suggested that changes in circulating prolactin may be an early marker of DA neuron injury, movement disorders, and reproductive dysfunction, prolactin, hypothalamic tyrosine hydroxylase (TH) levels (a marker of DA synthesis), and other measures of hypothalamic-pituitary-gonadal (HPG) function were measured after repetitive instillation of welding fume particulates generated by flux core arc-hard surfacing (FCA-HS), manual metal arc-hard surfacing (MMA-HS) or gas metal arc-mild steel (GMA-MS) welding, or manganese chloride (MnCl2). Exposure to welding fume particulate resulted in the accumulation of various metals in the pituitary and testes of rats, along with changes in hypothalamic TH and serum prolactin levels. Exposure to particulates with high concentrations of soluble manganese (Mn) appeared to exert the greatest influence on TH activity levels and serum prolactin concentrations. Thus, circulating prolactin levels may serve as a biomarker for welding fume/Mn-induced neurotoxicity. Other reproductive measures were collected, and these data were consistent with epidemiological findings that prolactin and testosterone may serve as biomarkers of welding particulate induced DA neuron and reproductive dysfunction.

  17. Number size distribution of fine and ultrafine fume particles from various welding processes.

    Science.gov (United States)

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  18. Pulmonary fibrosis and exposure to steel welding fume.

    Science.gov (United States)

    Cosgrove, M P

    2015-12-01

    Arc welders who have been exposed to high concentrations of steel welding fume for prolonged periods of time may develop pulmonary fibrosis but the nature of the fibrotic changes has been debated over the last 80 years without any clear international consensus. To characterize the nature of the pulmonary fibrosis that develops in response to steel welding fume exposure and to provide a working hypothesis that would explain the findings of the existing research, to provide a platform for future research and to inform future occupational and clinical management of welders with pulmonary effects from welding fume. Review of the world literature on pulmonary fibrosis and welding of steel in all languages using PubMed, with further secondary search of references in the articles found in the primary search. Google and Reference Manager were used as further confirmatory search tools. Only case series and case reports were found but these provided consistent evidence that the consequence of exposure to steel welding fume at high levels for a prolonged period of time is a type of pulmonary fibrosis similar to, and possibly the same as, respiratory bronchiolitis which eventually develops into desquamative interstitial pneumonia with ongoing exposure. Steel welding fume may cause an occupational respiratory bronchiolitis which may develop into de squamative interstitial pneumonia with ongoing exposure. This concept may explain the difficulties in interpreting the wider literature on welding fume and lung function at lower exposures and may also explain the increased risk of lung cancer in welders. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Welding fume exposure and chronic obstructive pulmonary disease in welders.

    Science.gov (United States)

    Koh, D-H; Kim, J-I; Kim, K-H; Yoo, S-W

    2015-01-01

    Occupational exposure is estimated to contribute 15% to the burden of chronic obstructive pulmonary disease (COPD). Welding fumes are suspected to accelerate the decline of lung function and development of COPD. To examine the relationship between welding fume exposure and COPD in Korean shipyard welders. The study involved a group of male welders working at two shipyards who underwent an annual health examination in 2010. Subjects completed a questionnaire about smoking habits and occupational history and a pulmonary function test (PFT) was carried out with strict quality control measures. Welding fume exposure concentrations were estimated using 884 measurements taken between 2002 and 2009 in one of the shipyards. Multiple linear and logistic regression was employed to evaluate the association between cumulative fume exposure and lung function parameters, controlling for age, height and cigarette smoking. Two hundred and forty subjects participated, with a mean age of 48 and mean work duration of 15 years. The mean cumulative fume exposure was 7.7mg/m(3). The prevalence of COPD was 15%. FEV1 and FVC showed non-significant negative correlations with cumulative fume exposure. Odds ratios of COPD were significantly elevated for the middle (3.9; 95% CI 1.4-13.3) and high exposure groups (3.8; 95% CI 1.03-16.2) compared with the low fume exposure group. Our findings support an association between welding fume exposure and increased risk of COPD. Further prospective study is needed to investigate whether this is a causal relationship. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Manganese in occupational arc welding fumes--aspects on physiochemical properties, with focus on solubility.

    Science.gov (United States)

    Taube, Fabian

    2013-01-01

    Physicochemical properties, such as particle sizes, composition, and solubility of welding fumes are decisive for the bioaccessibility of manganese and thereby for the manganese cytotoxic and neurotoxic effects arising from various welding fumes. Because of the diverse results within the research on welding fume solubility, this article aims to review and discuss recent literature on physicochemical properties of gas metal arc welding, shielded metal arc welding, and flux-cored arc welding fumes, with focus on solubility properties. This article also presents a short introduction to the literature on arc welding techniques, health effects from manganese, and occupational exposure to manganese among welders.

  1. A study of the bio-accessibility of welding fumes.

    Science.gov (United States)

    Berlinger, Balázs; Ellingsen, Dag G; Náray, Miklós; Záray, Gyula; Thomassen, Yngvar

    2008-12-01

    The respiratory bio-accessibility of a substance is the fraction that is soluble in the respiratory environment and is available for absorption. In the case of respiratory exposure the amount of absorbed substance plays a main role in the biological effects. Extensive bio-accessibility studies have always been an essential requirement for a better understanding of the biological effects of different workplace aerosols, such as welding fumes. Fumes generated using three different welding techniques, manual metal arc (MMA) welding, metal inert gas (MIG) welding, and tungsten inert gas (TIG) welding were investigated in the present study. Each technique was used for stainless steel welding. Welding fumes were collected on PVC membrane filters in batches of 114 using a multiport air sampler. Three different fluids were applied for the solubility study: deionised water and two kinds of lung fluid simulants: lung epithelial lining fluid simulant (Gamble's solution) and artificial lung lining fluid simulant (Hatch's solution). In order to obtain sufficient data to study the tendencies in solubility change with time, seven different leaching periods were used (0.5, 1, 2, 4, 8, 16, 24 h), each of them with three replicates. The effect of dissolution temperature was also studied. The total amounts of selected metals in the three different welding fumes were determined after microwave-assisted digestion with the mixture of aqua regia and hydrofluoric acid. The most obvious observation yielded by the results is that the solubility of individual metals varies greatly depending on the welding technique, the composition of the leaching fluid and leaching time. This study shows that the most reasonable choice as a media for the bio-assessment of solubility might be Hatch's solution by a dissolution time of 24 h.

  2. Risk Communication Concerning Welding Fumes for the Primary Preventive Care of Welding Apprentices in Southern Brazil

    OpenAIRE

    Cezar-Vaz, Marta Regina; Bonow, Clarice Alves; Cezar Vaz, Joana

    2015-01-01

    This study’s aim was to assess the perceptions of welding apprentices concerning welding fumes being associated with respiratory and cardiovascular disorders and assess the implementation of risk communication as a primary prevention tool in the welding training process. This quasi-experimental, non-randomized study with before-and-after design was conducted with 84 welding apprentices in Southern Brazil. Poisson Regression analysis was used. Relative Risk was the measure used with a 95% co...

  3. The three dimensional distribution of chromium and nickel alloy welding fumes.

    Science.gov (United States)

    Mori, T; Matsuda, A; Akashi, S; Ogata, M; Takeoka, K; Yoshinaka, M

    1991-08-01

    In the present study, the fumes generated from manual metal arc (MMA) and submerged metal arc (SMA) welding of low temperature service steel, and the chromium and nickel percentages in these fumes, were measured at various horizontal distances and vertical heights from the arc in order to obtain a three dimensional distribution. The MMA welding fume concentrations were significantly higher than the SMA welding fume concentrations. The highest fume concentration on the horizontal was shown in the fumes collected directly above the arc. The fume concentration vertically was highest at 50 cm height and reduced by half at 150 cm height. The fume concentration at 250 cm height was scarcely different from that at 150 cm height. The distribution of the chromium concentration vertically was analogous to the fume concentration, and a statistically significant difference in the chromium percentages was not found at the different heights. The nickel concentrations were not statistically significant within the welding processes, but the nickel percentages in the SMA welding fumes were statistically higher than in the MMA welding fumes. The highest nickel concentration on the horizontal was found in the fumes collected directly above the arc. The highest nickel concentration vertically showed in the fume samples collected at 50 cm height, but the greater the height the larger the nickel percentage in the fumes.

  4. Pulmonary Adverse Effects of Welding Fume in Automobile Assembly Welders

    Directory of Open Access Journals (Sweden)

    Seyed Akbar Sharifian

    2011-02-01

    Full Text Available Welding is one of the key components of numerous manufacturing industries, which has potential physical and chemical health hazards. Many components of welding fumes can potentially affect the lung function. This study investigates the effects of welding fumes on lung function and respiratory symptoms among welders of an automobile manufacturing plant in Iran. This historical cohort study assesses 43 male welders and 129 office workers by a questionnaire to record demographic data, smoking habits, work history and respiratory symptoms as well as lung function status by spirometry. The average pulmonary function values of welders were lower relative to controls with dose-effect relationship between work duration and pulmonary function impairment. The prevalence of chronic bronchitis was higher in welders than controls. Our findings suggest that welders are at risk for pulmonary disease.

  5. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes.

    Science.gov (United States)

    Chang, Cali; Demokritou, Philip; Shafer, Martin; Christiani, David

    2013-01-01

    Welding fume particles have been well studied in the past; however, most studies have examined welding fumes generated from machine models rather than actual exposures. Furthermore, the link between physicochemical and toxicological properties of welding fume particles has not been well understood. This study aims to investigate the physicochemical properties of particles derived during real time welding processes generated during actual welding processes and to assess the particle size specific toxicological properties. A compact cascade impactor (Harvard CCI) was stationed within the welding booth to sample particles by size. Size fractionated particles were extracted and used for both off-line physicochemical analysis and in vitro cellular toxicological characterization. Each size fraction was analyzed for ions, elemental compositions, and mass concentration. Furthermore, real time optical particle monitors (DustTrak™, TSI Inc., Shoreview, Minn.) were used in the same welding booth to collect real time PM2.5 particle number concentration data. The sampled particles were extracted from the polyurethane foam (PUF) impaction substrates using a previously developed and validated protocol, and used in a cellular assay to assess oxidative stress. By mass, welding aerosols were found to be in coarse (PM 2.5–10), and fine (PM 0.1–2.5) size ranges. Most of the water soluble (WS) metals presented higher concentrations in the coarse size range with some exceptions such as sodium, which presented elevated concentration in the PM 0.1 size range. In vitro data showed size specific dependency, with the fine and ultrafine size ranges having the highest reactive oxygen species (ROS) activity. Additionally, this study suggests a possible correlation between welders' experience, the welding procedure and equipment used and particles generated from welding fumes. Mass concentrations and total metal and water soluble metal concentrations of welding fume particles may be

  6. SIMRAC welding occupational health and safety resources CD and booklet on welding fume

    CSIR Research Space (South Africa)

    Stanton, WD

    2003-07-01

    Full Text Available This project is presented in a Booklet on Welding Fume and on a CD-ROM with a broad range of health and safety information for welding and allied processes. This report, therefore, provides only an executive summary, background information...

  7. Size-separated particle fractions of stainless steel welding fume particles - A multi-analytical characterization focusing on surface oxide speciation and release of hexavalent chromium.

    Science.gov (United States)

    Mei, N; Belleville, L; Cha, Y; Olofsson, U; Odnevall Wallinder, I; Persson, K-A; Hedberg, Y S

    2018-01-15

    Welding fume of stainless steels is potentially health hazardous. The aim of this study was to investigate the manganese (Mn) and chromium (Cr) speciation of welding fume particles and their extent of metal release relevant for an inhalation scenario, as a function of particle size, welding method (manual metal arc welding, metal arc welding using an active shielding gas), different electrodes (solid wires and flux-cored wires) and shielding gases, and base alloy (austenitic AISI 304L and duplex stainless steel LDX2101). Metal release investigations were performed in phosphate buffered saline (PBS), pH 7.3, 37°, 24h. The particles were characterized by means of microscopic, spectroscopic, and electroanalytical methods. Cr was predominantly released from particles of the welding fume when exposed in PBS [3-96% of the total amount of Cr, of which up to 70% as Cr(VI)], followed by Mn, nickel, and iron. Duplex stainless steel welded with a flux-cored wire generated a welding fume that released most Cr(VI). Nano-sized particles released a significantly higher amount of nickel compared with micron-sized particle fractions. The welding fume did not contain any solitary known chromate compounds, but multi-elemental highly oxidized oxide(s) (iron, Cr, and Mn, possibly bismuth and silicon). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Exposure to welding fumes activates DNA damage response and redox-sensitive transcription factor signalling in Sprague-Dawley rats.

    Science.gov (United States)

    Krishnaraj, Jayaraman; Kowshik, Jaganathan; Sebastian, Robin; Raghavan, Sathees C; Nagini, Siddavaram

    2017-05-15

    Occupational exposure to welding fumes containing a complex mixture of genotoxic heavy metals, radiation, gases and nanoparticles poses a serious health hazard to welders. Since their categorization as possible carcinogens, welding fumes have gained increasing attention as high priority agents for risk assessment. The present study was undertaken to investigate the effects of welding fume inhalation on oxidative stress, DNA damage response (DDR), and nuclear factor erythroid 2-related factor-2 (Nrf2) and nuclear factor kappa B (NFκB) signalling in the lung tissues of male Sprague-Dawley rats . METHODS: Animals were divided into five groups. Group 1 animals served as control. Rats in groups 2-5 were exposed to 50mg/m 3 stainless steel (SS) welding fumes for 1h for 1day, 1 week, 2 weeks, and 4 weeks respectively. Reactive oxygen species (ROS) generation, 8-oxo-2'-deoxyguanosine (8-oxodG), xenobiotic-metabolizing enzymes (XMEs) and antioxidants were analysed. DNA damage sensors, DNA repair enzymes, inflammatory mediators, cell cycle progression, apoptosis and key players in Nrf2 and NFκB signalling were assessed by flow cytometry, quantitative real-time reverse transcriptase PCR, immunoblotting, immunohistochemistry and immunofluorescence. Rats exposed to welding fumes showed increased levels of chromium and ROS in lung tissues associated with accumulation of 8-oxodG and enhanced expression of XMEs and antioxidants. This was accompanied by upregulation of DNA damage sensors, cell cycle arrest in G1/S phase, overexpression of a multitude of DNA repair enzymes and caspase-mediated apoptosis. In addition, exposure to welding fumes induced activation of Nrf2 and NFκB signalling with enhanced expression of inflammatory mediators. The results of the present study unequivocally demonstrate that exposure of rats to SS welding fumes alters the expression of 37 genes involved in oxidative stress, detoxification, inflammation, DNA repair, cell cycle progression, and apoptosis

  9. Indirect Prediction of Welding Fume Diffusion inside a Room Using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Sujit Dahal

    2016-05-01

    Full Text Available Welding is an important and widely used process in the manufacturing and maintenance of various works involving metals and alloys. While welding has broad applications, the welding fume generated during the process has impacts on workers’ health, which needs to be addressed. One of the major steps that can be undertaken to take care of this issue is the use of ventilation, which requires knowledge of characteristics and dispersion of the welding fume in the workers’ breathing zone. It is difficult to assess welding fume dispersion from manual measurement due to numerous welding processes and sufficient data requirement. Numerical prediction of welding fume is dubious due to several errors. This paper considers the use of numerically predicted CO2 concentrations to indirectly predict welding fume distribution in workshops. This is based on the assumption that if the particles are sufficiently small size, they follow the diffusion pattern of gases. Experiments are carried out in a room with an opening and a welding fume generation system for measurement of CO2 and fume diffusion. The results show high possibility of predicting welding fume concentration based on Computational Fluid Dynamics (CFD simulated CO2 concentration with a correlation coefficient of 0.74.

  10. Synthetic Reference Materials Based on Polymer Films for the Control of Welding Fumes Composition

    Science.gov (United States)

    Kuznetsova, O. V.; Kuznetsova, A. N.; Begunova, L. A.

    2017-04-01

    Analysis of the current hygienic situation in the welding production showed that the intensification of welding processes involves the deterioration of air quality, which negatively affects the welders health. Welders are exposed to a variety of metal fumes, including manganese that may elevate the risk for neurological diseases. The control of metals concentration in the air of the working area is difficult due to the lack of reference materials. The creation of reference materials of welding fumes composition is a challenge due to chemical characteristics of their physical properties. Synthetic samples in a form of the polymer film containing powder particles of welding fumes were create. Studies on the selection of the polymer were done. Experiments proved that the qualitative materials of synthetic welding fumes are obtained by using polyvinyl alcohol. The metals concentration in the samples was determined by X-ray fluorescence analysis. The obtained data demonstrates indirectly the uniform distribution of welding fumes powder particles on the polymer film.

  11. Increased lung function decline in blue-collar workers exposed to welding fumes.

    Science.gov (United States)

    Thaon, Isabelle; Demange, Valérie; Herin, Fabrice; Touranchet, Annie; Paris, Christophe

    2012-07-01

    There is no consensus at the present time about the effect of welding on lung function decline. This study compared lung function decline between blue-collar workers exposed and not exposed to welding fumes in a French longitudinal cohort of 21,238 subjects aged 37 to 52 years at inclusion. Medical data, occupation, sector of activity, and spirometry were recorded twice by occupational physicians in 1990 and 1995. A job-exposure matrix was used to identify 503 male blue-collar workers exposed to welding fumes and 709 control subjects and to define the weekly duration of exposure to welding fumes. Baseline lung function parameters were higher in workers exposed to welding fumes than in control subjects. After a 5-year follow-up, welding-fume exposure was associated with a nonsignificant decline in FVC (P = .06) and FEV(1) (P = .07) after adjustment for age, pack-years, BMI, and baseline value of the parameter. A significant accelerated decline in FEV(1) (P = .046) was also observed in never smokers exposed to welding fumes. An “exposure-response” relationship was observed between FEV(1) decline and weekly duration of exposure to welding fumes in nonsmokers but not in smokers. Blue-collar workers exposed to welding fumes showed accelerated decline in lung function, which, in nonsmokers, was related to weekly duration of exposure.

  12. Systemic inflammatory responses following welding inhalation challenge test.

    Science.gov (United States)

    Kauppi, Paula; Järvelä, Merja; Tuomi, Timo; Luukkonen, Ritva; Lindholm, Tuula; Nieminen, Riina; Moilanen, Eeva; Hannu, Timo

    2015-01-01

    The aim of this study was to investigate inflammatory and respiratory responses to welding fume exposure in patients with suspected occupational asthma. Sixteen patients referred to the Finnish Institute of Occupational Health underwent mild steel (MS) and stainless steel (SS) welding challenge tests, due to suspicion of OA. Platelet count, leucocytes and their differential count, hemoglobin, sensitive CRP, lipids, glucose and fibrinogen were analyzed in addition to interleukin (IL)-1β, IL-6, IL-8, TNF-α, endothelin-1, and E-selectin in plasma samples. Peak expiratory flow (PEF), forced expiratory volume in 1 min (FEV 1 ) and exhaled nitric oxide (NO) measurements were performed before and after the challenge test. Personal particle exposure was assessed using IOM and a mini sampler. Particle size distribution was measured by an Electric Low Pressure Impactor (ELPI). The number of leukocytes, neutrophils, and platelets increased significantly, and the hemoglobin level and number of erythrocytes decreased significantly after both the MS and SS exposure tests. Five of the patients were diagnosed with OA, and their maximum fall in FEV 1 values was 0.70 l (±0.32) 4 h after SS exposure. MS welding generated an average inhalable particle mass concentration of 31.6, and SS welding of 40.2 mg/m 3 . The mean particle concentration measured inside the welding face shields by the mini sampler was 30.2 mg/m 3 and 41.7 mg/m 3 , respectively. Exposure to MS and SS welding fume resulted in a mild systemic inflammatory response. The particle concentration from the breathing zones correlated with the measurements inside the welding face shields.

  13. Risk Communication Concerning Welding Fumes for the Primary Preventive Care of Welding Apprentices in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Marta Regina Cezar-Vaz

    2015-01-01

    Full Text Available This study’s aim was to assess the perceptions of welding apprentices concerning welding fumes being associated with respiratory and cardiovascular disorders and assess the implementation of risk communication as a primary prevention tool in the welding training process. This quasi-experimental, non-randomized study with before-and-after design was conducted with 84 welding apprentices in Southern Brazil. Poisson Regression analysis was used. Relative Risk was the measure used with a 95% confidence interval and 5% (p ≤ 0.05 significance level. Significant association was found between perceptions of worsened symptoms of respiratory disorders caused by welding fumes and educational level (p = 0.049, the use of goggles to protect against ultraviolet rays (p = 0.023, and access to services in private health facilities without insurance coverage (p = 0.001. Apprentices younger than 25 years old were 4.9 times more likely to perceive worsened cardiovascular symptoms caused by welding fumes after risk communication (RR = 4.91; CI 95%: 1.09 to 22.2. The conclusion is that risk communication as a primary preventive measure in continuing education processes implemented among apprentices, who are future welders, was efficacious. Thus, this study confirms that risk communication can be implemented as a primary prevention tool in welding apprenticeships.

  14. Risk communication concerning welding fumes for the primary preventive care of welding apprentices in southern Brazil.

    Science.gov (United States)

    Cezar-Vaz, Marta Regina; Bonow, Clarice Alves; Vaz, Joana Cezar

    2015-01-19

    This study's aim was to assess the perceptions of welding apprentices concerning welding fumes being associated with respiratory and cardiovascular disorders and assess the implementation of risk communication as a primary prevention tool in the welding training process. This quasi-experimental, non-randomized study with before-and-after design was conducted with 84 welding apprentices in Southern Brazil. Poisson Regression analysis was used. Relative Risk was the measure used with a 95% confidence interval and 5% (p ≤ 0.05) significance level. Significant association was found between perceptions of worsened symptoms of respiratory disorders caused by welding fumes and educational level (p = 0.049), the use of goggles to protect against ultraviolet rays (p = 0.023), and access to services in private health facilities without insurance coverage (p = 0.001). Apprentices younger than 25 years old were 4.9 times more likely to perceive worsened cardiovascular symptoms caused by welding fumes after risk communication (RR = 4.91; CI 95%: 1.09 to 22.2). The conclusion is that risk communication as a primary preventive measure in continuing education processes implemented among apprentices, who are future welders, was efficacious. Thus, this study confirms that risk communication can be implemented as a primary prevention tool in welding apprenticeships.

  15. [Evaluation of measurement uncertainty of welding fume in welding workplace of a shipyard].

    Science.gov (United States)

    Ren, Jie; Wang, Yanrang

    2015-12-01

    To evaluate the measurement uncertainty of welding fume in the air of the welding workplace of a shipyard, and to provide quality assurance for measurement. According to GBZ/T 192.1-2007 "Determination of dust in the air of workplace-Part 1: Total dust concentration" and JJF 1059-1999 "Evaluation and expression of measurement uncertainty", the uncertainty for determination of welding fume was evaluated and the measurement results were completely described. The concentration of welding fume was 3.3 mg/m(3), and the expanded uncertainty was 0.24 mg/m(3). The repeatability for determination of dust concentration introduced an uncertainty of 1.9%, the measurement using electronic balance introduced a standard uncertainty of 0.3%, and the measurement of sample quality introduced a standard uncertainty of 3.2%. During the determination of welding fume, the standard uncertainty introduced by the measurement of sample quality is the dominant uncertainty. In the process of sampling and measurement, quality control should be focused on the collection efficiency of dust, air humidity, sample volume, and measuring instruments.

  16. Indirect Prediction of Welding Fume Diffusion inside a Room Using Computational Fluid Dynamics

    OpenAIRE

    Sujit Dahal; Taehyeung Kim; Kwangseog Ahn

    2016-01-01

    Welding is an important and widely used process in the manufacturing and maintenance of various works involving metals and alloys. While welding has broad applications, the welding fume generated during the process has impacts on workers’ health, which needs to be addressed. One of the major steps that can be undertaken to take care of this issue is the use of ventilation, which requires knowledge of characteristics and dispersion of the welding fume in the workers’ breathing zone. It is diff...

  17. Modeling of Fume Formation from Shielded Metal Arc Welding Process

    Science.gov (United States)

    Sivapirakasam, S. P.; Mohan, Sreejith; Santhosh Kumar, M. C.; Surianarayanan, M.

    2017-04-01

    In this study, a semi-empirical model of fume formation rate (FFR) from a shielded metal arc welding (SMAW) process has been developed. The model was developed for a DC electrode positive (DCEP) operation and involves the calculations of droplet temperature, surface area of the droplet, and partial vapor pressures of the constituents of the droplet to predict the FFR. The model was further extended for predicting FFR from nano-coated electrodes. The model estimates the FFR for Fe and Mn assuming constant proportion of other elements in the electrode. Fe FFR was overestimated, while Mn FFR was underestimated. The contribution of spatters and other mechanism in the arc responsible for fume formation were neglected. A good positive correlation was obtained between the predicted and experimental FFR values which highlighted the usefulness of the model.

  18. Systemic inflammatory responses following welding inhalation challenge test

    Directory of Open Access Journals (Sweden)

    Paula Kauppi

    2015-01-01

    Conclusions: Exposure to MS and SS welding fume resulted in a mild systemic inflammatory response. The particle concentration from the breathing zones correlated with the measurements inside the welding face shields.

  19. Development of Welding Fumes Health Index (WFHI) for Welding Workplace's Safety and Health Assessment.

    Science.gov (United States)

    Hariri, Azian; Paiman, Nuur Azreen; Leman, Abdul Mutalib; Md Yusof, Mohammad Zainal

    2014-08-01

    This study aimed to develop an index that can rank welding workplace that associate well with possible health risk of welders. Welding Fumes Health Index (WFHI) were developed based on data from case studies conducted in Plant 1 and Plant 2. Personal sampling of welding fumes to assess the concentration of metal constituents along with series of lung function tests was conducted. Fifteen metal constituents were investigated in each case study. Index values were derived from aggregation analysis of metal constituent concentration while significant lung functions were recognized through statistical analysis in each plant. The results showed none of the metal constituent concentration was exceeding the permissible exposure limit (PEL) for all plants. However, statistical analysis showed significant mean differences of lung functions between welders and non-welders. The index was then applied to one of the welding industry (Plant 3) for verification purpose. The developed index showed its promising ability to rank welding workplace, according to the multiple constituent concentrations of welding fumes that associates well with lung functions of the investigated welders. There was possibility that some of the metal constituents were below the detection limit leading to '0' value of sub index, thus the multiplicative form of aggregation model was not suitable for analysis. On the other hand, maximum or minimum operator forms suffer from compensation issues and were not considered in this study.

  20. Urinary β2 Microglobulin in Workers Exposed to Arc Welding Fumes

    Directory of Open Access Journals (Sweden)

    Khosro Sadeghniiat-Haghighi

    2011-11-01

    Full Text Available Welding is a process in which two or more metals are attached by the use of heat and, in some cases, pressure. Direct exposure and inhalation of welding fumes causes acute and chronic side effects in humans. Kidney damage is one of these important side effects. β2 microglobulin is an 11.8 kilodalton protein and levels increase in the case of some inflammatory and viral diseases, or kidney malfunction and autoimmune diseases. In this study measurements of β2 microglobulin were used as a criterion for assessing effects on the kidneys of workers exposed to welding fumes. The study population were electric arc welders in an industrial plant in Tehran, Iran. For control we selected workers who did not have any exposure to welding fumes. Both groups were selected on the basis of a questionnaire and the consideration of criteria for inclusion and exclusion. In the end 50 cases and 50 controls were chosen. A urine sample was collected from all participants and urinary pH was set to between 6-8 using NaOH (1M. Sample transportation to the laboratory complied with the related standards. The samples were assessed using the ORG 5BM kit. For quantitative assessment of β2 microglobulin we used the Enzyme-linked Immunosorbent Assay (ELISA method. The ages of the welders ranged from 21 to 48 years (mean=30.5±5.9 yrs and of controls from 23 to 56 years (mean=31.8±5.9 yrs. Mean employment duration was 7.86±5.01years (range 2 to 27 years for welders. Mean β2 microglobulin level was 0.10±0.096 μg/ml in welders and 0.11±0.06 in controls. This difference was not statistically significant (P=0.381. In conclusion we don't find that exposure to electric arc welding fumes cause a significant change in urinary β2 microglobulin compared to the control group.

  1. Assessment of the biological effects of welding fumes emitted from metal inert gas welding processes of aluminium and zinc-plated materials in humans.

    Science.gov (United States)

    Hartmann, L; Bauer, M; Bertram, J; Gube, M; Lenz, K; Reisgen, U; Schettgen, T; Kraus, T; Brand, P

    2014-03-01

    The aim of this study was to investigate biological effects and potential health risks due to two different metal-inert-gas (MIG) welding fumes (MIG welding of aluminium and MIG soldering of zinc coated steel) in healthy humans. In a threefold cross-over design study 12 male subjects were exposed to three different exposure scenarios. Exposures were performed under controlled conditions in the Aachener Workplace Simulation Laboratory (AWSL). On three different days the subjects were either exposed to filtered ambient air, to welding fumes from MIG welding of aluminium, or to fumes from MIG soldering of zinc coated materials. Exposure was performed for 6 h and the average fume concentration was 2.5 mg m(-3). Before, directly after, 1 day after, and 7 days after exposure spirometric and impulse oscillometric measurements were performed, exhaled breath condensate (EBC) was collected and blood samples were taken and analyzed for inflammatory markers. During MIG welding of aluminium high ozone concentrations (up to 250 μg m(-3)) were observed, whereas ozone was negligible for MIG soldering. For MIG soldering, concentrations of high-sensitivity CRP (hsCRP) and factor VIII were significantly increased but remained mostly within the normal range. The concentration of neutrophils increased in tendency. For MIG welding of aluminium, the lung function showed significant decreases in Peak Expiratory Flow (PEF) and Mean Expiratory Flow at 75% vital capacity (MEF 75) 7 days after exposure. The concentration of ristocetin cofactor was increased. The observed increase of hsCRP during MIG-soldering can be understood as an indicator for asymptomatic systemic inflammation probably due to zinc (zinc concentration 1.5 mg m(-3)). The change in lung function observed after MIG welding of aluminium may be attributed to ozone inhalation, although the late response (7 days after exposure) is surprising. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Manganese and welding fume exposure and control in construction.

    Science.gov (United States)

    Meeker, John D; Susi, Pam; Flynn, Michael R

    2007-12-01

    Overexposure to welding fume constituents, particularly manganese, is of concern in the construction industry due to the prevalence of welding and the scarcity of engineering controls. The control effectiveness of a commercially available portable local exhaust ventilation (LEV) unit was assessed. It consisted of a portable vacuum and a small bell-shaped hood connected by a flexible 2 inch (50.8 mm) diameter hose, in both experimental and field settings. The experimental testing was done in a semienclosed booth at a pipefitter training facility. Five paired trials of LEV control vs. no control, each approximately 1 hr in duration and conducted during two successive welds of 6 inch (152.4 mm) diameter carbon steel pipe were run in random order. Breathing zone samples were collected outside the welding hood during each trial. In the field scenario, full-shift breathing zone samples were collected from two pipefitters welding carbon steel pipe for a chiller installation on a commercial construction project. Eight days of full-shift sampling were conducted on both workers (n = 16), and the LEV was used by one of the two workers on an alternating basis for 7 of the days. All samples were collected with personal sample pumps calibrated at 2 L/min. Filter cassettes were analyzed for total particulate and manganese concentration by a certified laboratory. In the experimental setting, use of the portable LEV resulted in a 75% reduction in manganese exposure (mean 13 microg/m(3) vs. 51 microg/m(3); p 0.05). These results demonstrate that LEV use can reduce manganese exposure associated with welding tasks in construction.

  3. Manganese speciation of laboratory-generated welding fumes.

    Science.gov (United States)

    Andrews, Ronnee N; Keane, Michael; Hanley, Kevin W; Feng, H Amy; Ashley, Kevin

    The objective of this laboratory study was to identify and measure manganese (Mn) fractions in chamber-generated welding fumes (WF) and to evaluate and compare the results from a sequential extraction procedure for Mn fractions with that of an acid digestion procedure for measurement of total, elemental Mn. To prepare Mn-containing particulate matter from representative welding processes, a welding system was operated in short circuit gas metal arc welding (GMAW) mode using both stainless steel (SS) and mild carbon steel (MCS) and also with flux cored arc welding (FCAW) and shielded metal arc welding (SMAW) using MCS. Generated WF samples were collected onto polycarbonate filters before homogenization, weighing and storage in scintillation vials. The extraction procedure consisted of four sequential steps to measure various Mn fractions based upon selective solubility: (1) soluble Mn dissolved in 0.01 M ammonium acetate; (2) Mn (0,II) dissolved in 25 % (v/v) acetic acid; (3) Mn (III,IV) dissolved in 0.5% (w/v) hydroxylamine hydrochloride in 25% (v/v) acetic acid; and (4) insoluble Mn extracted with concentrated hydrochloric and nitric acids. After sample treatment, the four fractions were analyzed for Mn by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). WF from GMAW and FCAW showed similar distributions of Mn species, with the largest concentrations of Mn detected in the Mn (0,II) and insoluble Mn fractions. On the other hand, the majority of the Mn content of SMAW fume was detected as Mn (III,IV). Although the concentration of Mn measured from summation of the four sequential steps was statistically significantly different from that measured from the hot block dissolution method for total Mn, the difference is small enough to be of no practical importance for industrial hygiene air samples, and either method may be used for Mn measurement. The sequential extraction method provides valuable information about the oxidation state of Mn in samples

  4. Comparative microscopic study of human and rat lungs after overexposure to welding fume.

    Science.gov (United States)

    Antonini, James M; Roberts, Jenny R; Schwegler-Berry, Diane; Mercer, Robert R

    2013-11-01

    Welding is a common industrial process used to join metals and generates complex aerosols of potentially hazardous metal fumes and gases. Most long-time welders experience some type of respiratory disorder during their time of employment. The use of animal models and the ability to control the welding fume exposure in toxicology studies have been helpful in developing a better understanding of how welding fumes affect health. There are no studies that have performed a side-by-side comparison of the pulmonary responses from an animal toxicology welding fume study with the lung responses associated with chronic exposure to welding fume by a career welder. In this study, post-mortem lung tissue was donated from a long-time welder with a well-characterized work background and a history of extensive welding fume exposure. To simulate a long-term welding exposure in an animal model, Sprague-Dawley rats were treated once a week for 28 weeks by intratracheal instillation with 2mg of a stainless steel, hard-surfacing welding fume. Lung tissues from the welder and the welding fume-treated rats were examined by light and electron microscopy. Pathological analysis of lung tissue collected from the welder demonstrated inflammatory cell influx and significant pulmonary injury. The poor and deteriorating lung condition observed in the welder examined in this study was likely due to exposure to very high levels of potentially toxic metal fumes and gases for a significant number of years due to work in confined spaces. The lung toxicity profile for the rats treated with welding fume was similar. For tissue samples from both the welder and treated rats, welding particle accumulations deposited and persisted in lung structures and were easily visualized using light microscopic techniques. Agglomerates of deposited welding particles mostly were observed within lung cells, particularly alveolar macrophages. Analysis of individual particles within the agglomerates showed that these

  5. Designing, Constructing and Installing a Local Exhaust Ventilation System to Minimize Welders\\' Exposure to Welding Fumes

    Directory of Open Access Journals (Sweden)

    Sajad Zare

    2017-10-01

    Full Text Available Background & Aims of the Study: Welder’s exposure to welding fumes can cause occupational diseases. The current study sought to examine exposure to welding fumes among welders who work in the repair shop of Sarcheshmeh Copper Complex and design a local exhaust ventilation system to control exposure to welding fumes. Materials & Methods: This applied analytical study was conducted in the summer of 2016 among welders working in the repair shop of Sarcheshmeh Copper Complex. The study comprised three phases; in the first one, welders’ exposure to welding fumes was assessed at the beginning of the study. After that, a local exhaust ventilation system was designed and installed in the aforementioned repair shop. In the final stage, welders’ exposure to welding fumes was assessed again after installation of the ventilation system. The procedure recommended by NIOSH (method number 7300 was used for individual sampling of welders. Results: Based on the obtained findings, before installing the ventilation system, welding technicians were exposed to 0.3 mg/m3 of copper fumes and 0.04 mg/m3 of chromium fumes. Journeyman welders were also exposed to 2.16 mg/m3 of manganese fumes, while stellar welders were exposed to 6.9 mg/m3 of iron fumes. In the light of these measurements, a local exhaust ventilation system was designed and installed. Subsequently, measurement of exposure to welding fumes showed a significant reduction. That is, welding technicians were exposed to 0.17 mg/m3 and 0.015 mg/m3 of copper and chromium fumes respectively. Additionally, journeyman welders were exposed to 0.86 mg/m3 of manganese fumes, whereas stellar welders were exposed to 4.3 mg/m3 of iron fumes. Conclusions: A comparison of standard limits of exposure to welding fumes and the results obtained from measurements in sampling stations before and after the installation of the local exhaust ventilation system reveals that this controlling measure was very effective in the

  6. Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro.

    Science.gov (United States)

    McNeilly, Jane D; Heal, Mathew R; Beverland, Iain J; Howe, Alan; Gibson, Mark D; Hibbs, Leon R; MacNee, William; Donaldson, Ken

    2004-04-01

    Epidemiological studies have consistently reported a higher incidence of respiratory illnesses such as bronchitis, metal fume fever (MFF), and chronic pneumonitis among welders exposed to high concentrations of metal-enriched welding fumes. Here, we studied the molecular toxicology of three different metal-rich welding fumes: NIMROD 182, NIMROD c276, and COBSTEL 6. Fume toxicity in vitro was determined by exposing human type II alveolar epithelial cell line (A549) to whole welding fume, a soluble extract of fume or the "washed" particulate. All whole fumes were significantly toxic to A549 cells at doses >63 microg ml(-1) (TD 50; 42, 25, and 12 microg ml(-1), respectively). NIMROD c276 and COBSTEL 6 fumes increased levels of IL-8 mRNA and protein at 6 h and protein at 24 h, as did the soluble fraction alone, whereas metal chelation of the soluble fraction using chelex beads attenuated the effect. The soluble fraction of all three fumes caused a rapid depletion in intracellular glutathione following 2-h exposure with a rebound increase by 24 h. In addition, both nickel based fumes, NIMROD 182 and NIMROD c276, induced significant reactive oxygen species (ROS) production in A549 cells after 2 h as determined by DCFH fluorescence. ICP analysis confirmed that transition metal concentrations were similar in the whole and soluble fractions of each fume (dominated by Cr), but significantly less in both the washed particles and chelated fractions. These results support the hypothesis that the enhanced pro-inflammatory responses of welding fume particulates are mediated by soluble transition metal components via an oxidative stress mechanism.

  7. Assessment of the Biological Effects of Welding Fumes Emitted From Metal Active Gas and Manual Metal Arc Welding in Humans.

    Science.gov (United States)

    Dewald, Eva; Gube, Monika; Baumann, Ralf; Bertram, Jens; Kossack, Veronika; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas; Brand, Peter

    2015-08-01

    Emissions from a particular welding process, metal inert gas brazing of zinc-coated steel, induce an increase in C-reactive protein. In this study, it was investigated whether inflammatory effects could also be observed for other welding procedures. Twelve male subjects were separately exposed to (1) manual metal arc welding fumes, (2) filtered air, and (3) metal active gas welding fumes for 6 hours. Inflammatory markers were measured in serum before, and directly, 1 and 7 days after exposure. Although C-reactive protein concentrations remained unchanged, neutrophil concentrations increased directly after exposure to manual metal arc welding fumes, and endothelin-1 concentrations increased directly and 24 hours after exposure. After exposure to metal active gas and filtered air, endothelin-1 concentrations decreased. The increase in the concentrations of neutrophils and endothelin-1 may characterize a subclinical inflammatory reaction, whereas the decrease of endothelin-1 may indicate stress reduction.

  8. Exposure to fumes in typical New Zealand welding operations.

    Science.gov (United States)

    Dryson, E W; Rogers, D A

    1991-08-28

    Sixteen welders, welding under typical New Zealand conditions, had ambient air within their welding helmets sampled and analysed for ozone, nitrogen oxides, fluoride, carbon monoxide, aluminium, chromium, iron, nickel, zinc and total dust. Postshift urinary metals were also analysed, and a respiratory questionnaire completed for each welder. Levels above the New Zealand Workplace Exposure Standard (WES) were found for nitrogen dioxide in four welders (two TIG, one MMA and one plasma cutter), and for total chromium in one plasma cutter, who also had a nickel level of 24% of the WES. Dust levels were highest in the plasma cutters, with one reaching 8.67 mg/m3 (WES = 5 mg/m3). Urinary levels however did not indicate excessive short or long term uptake. Where efficient fume extraction was in use, levels of air contaminants were lower than with natural ventilation. Respiratory symptoms were reported by 67% of welders, 38% meeting criteria for chronic bronchitis (relative risk = 2.0). Smoking welders reported more symptoms than nonsmoking welders.

  9. Effects of Exposure to Welding Fume on Lung Function: Results from the German WELDOX Study.

    Science.gov (United States)

    Lehnert, M; Hoffmeyer, F; Gawrych, K; Lotz, A; Heinze, E; Berresheim, H; Merget, R; Harth, V; Van Gelder, R; Hahn, J-U; Hartwig, A; Weiß, T; Pesch, B; Brüning, T

    2015-01-01

    The association between exposure to welding fume and chronic obstructive pulmonary disease (COPD) has been insufficiently clarified. In this study we assessed the influence of exposure to welding fume on lung function parameters. We investigated forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, and expiratory flow rates in 219 welders. We measured current exposure to respirable particles and estimated a worker's lifetime exposure considering welding techniques, working conditions and protective measures at current and former workplaces. Multiple regression models were applied to estimate the influence of exposure to welding fume, age, and smoking on lung function. We additionally investigated the duration of working as a welder and the predominant welding technique. The findings were that age- and smoking-adjusted lung function parameters showed no decline with increasing duration, current exposure level, and lifetime exposure to welding fume. However, 15% of the welders had FEV1/FVC below the lower limit of normal, but we could not substantiate the presence of an association with the measures of exposure. Adverse effects of cigarette smoking were confirmed. In conclusion, the study did not support the notion of a possible detrimental effect of exposure to welding fume on lung function in welders.

  10. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-03-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm(-3), with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  11. Profiling Mild Steel Welding Processes to Reduce Fume Emissions and Costs in the Workplace

    Science.gov (United States)

    Keane, Michael J.; Siert, Arlen; Chen, Bean T.; Stone, Samuel G.

    2015-01-01

    To provide quantitative information to choose the best welding processes for minimizing workplace emissions, nine gas metal arc welding (GMAW) processes for mild steel were assessed for fume generation rates, normalized fume generation rates (milligram fume per gram of electrode consumed), and normalized generation rates for elemental manganese, nickel, and iron. Shielded metal arc welding (SMAW) and flux-cored arc-welding (FCAW) processes were also profiled. The fumes were collected quantitatively in an American Welding Society-type fume chamber and weighed, recovered, homogenized, and analyzed by inductively coupled atomic emission spectroscopy for total metals. The processes included GMAW with short circuit, globular transfer, axial spray, pulsed spray, Surface Tension Transfer™, Regulated Metal Deposition™, and Cold Metal Transfer™ (CMT) modes. Flux-cored welding was gas shielded, and SMAW was a single rod type. Results indicate a wide range of fume emission factors for the process variations studied. Fume emission rates per gram of electrode consumed were highest for SMAW (~13 mg fume g−1 electrode) and lowest for GMAW processes such as pulsed spray (~1.5 mg g−1) and CMT (~1 mg g−1). Manganese emission rates per gram of electrode consumed ranged from 0.45 mg g−1 (SMAW) to 0.08 mg g−1 (CMT). Nickel emission rates were generally low and ranged from ~0.09 (GMAW short circuit) to 0.004 mg g−1 (CMT). Iron emission rates ranged from 3.7 (spray-mode GMAW) to 0.49 mg g−1 (CMT). The processes studied have significantly different costs, and cost factors are presented based on a case study to allow comparisons between processes in specific cost categories. Costs per linear meter of weld were $31.07 (SMAW), $12.37 (GMAW short circuit), and $10.89 (FCAW). Although no single process is the best for minimizing fume emissions and costs while satisfying the weld requirements, there are several processes that can minimize emissions. This study provides

  12. Profiling mild steel welding processes to reduce fume emissions and costs in the workplace.

    Science.gov (United States)

    Keane, Michael J; Siert, Arlen; Chen, Bean T; Stone, Samuel G

    2014-05-01

    To provide quantitative information to choose the best welding processes for minimizing workplace emissions, nine gas metal arc welding (GMAW) processes for mild steel were assessed for fume generation rates, normalized fume generation rates (milligram fume per gram of electrode consumed), and normalized generation rates for elemental manganese, nickel, and iron. Shielded metal arc welding (SMAW) and flux-cored arc-welding (FCAW) processes were also profiled. The fumes were collected quantitatively in an American Welding Society-type fume chamber and weighed, recovered, homogenized, and analyzed by inductively coupled atomic emission spectroscopy for total metals. The processes included GMAW with short circuit, globular transfer, axial spray, pulsed spray, Surface Tension Transfer™, Regulated Metal Deposition™, and Cold Metal Transfer™ (CMT) modes. Flux-cored welding was gas shielded, and SMAW was a single rod type. Results indicate a wide range of fume emission factors for the process variations studied. Fume emission rates per gram of electrode consumed were highest for SMAW (~13 mg fume g(-1) electrode) and lowest for GMAW processes such as pulsed spray (~1.5mg g(-1)) and CMT (~1mg g(-1)). Manganese emission rates per gram of electrode consumed ranged from 0.45 mg g(-1) (SMAW) to 0.08 mg g(-1) (CMT). Nickel emission rates were generally low and ranged from ~0.09 (GMAW short circuit) to 0.004 mg g(-1) (CMT). Iron emission rates ranged from 3.7 (spray-mode GMAW) to 0.49 mg g(-1) (CMT). The processes studied have significantly different costs, and cost factors are presented based on a case study to allow comparisons between processes in specific cost categories. Costs per linear meter of weld were $31.07 (SMAW), $12.37 (GMAW short circuit), and $10.89 (FCAW). Although no single process is the best for minimizing fume emissions and costs while satisfying the weld requirements, there are several processes that can minimize emissions. This study provides

  13. Peripheral neuropathy following intentional inhalation of naphtha fumes.

    Science.gov (United States)

    Tenenbein, M; deGroot, W; Rajani, K R

    1984-11-01

    Two adolescent native Canadians who presented with peripheral neuropathy secondary to the abuse of volatile hydrocarbons are described. They were initially thought to have been sniffing leaded gasoline fumes, but public health investigation revealed that they had been sniffing naphtha fumes. Naphtha contains a significant amount of n-hexane, a known inducer of neuropathy. Nerve conduction studies and nerve biopsy confirmed the diagnosis of naphtha abuse. These cases emphasize the need to specifically identify the formulation of hydrocarbons being abused.

  14. Peripheral neuropathy following intentional inhalation of naphtha fumes.

    OpenAIRE

    Tenenbein, M; DeGroot, W; Rajani, K R

    1984-01-01

    Two adolescent native Canadians who presented with peripheral neuropathy secondary to the abuse of volatile hydrocarbons are described. They were initially thought to have been sniffing leaded gasoline fumes, but public health investigation revealed that they had been sniffing naphtha fumes. Naphtha contains a significant amount of n-hexane, a known inducer of neuropathy. Nerve conduction studies and nerve biopsy confirmed the diagnosis of naphtha abuse. These cases emphasize the need to spec...

  15. [Case of polymer fume fever with interstitial pneumonia caused by inhalation of polytetrafluoroethylene (Teflon)].

    Science.gov (United States)

    Son, Masami; Maruyama, Eiichi; Shindo, Yuichiro; Suganuma, Nobukazu; Sato, Shinji; Ogawa, Masahiro

    2006-07-01

    A 30-year old man was admitted to our hospital with cough, slight fever, and dyspnea that he had developed several hours after inhaling the fumes produced from a Teflon-coated pan, after evaporation of the water in the pan. Chest radiography revealed diffuse infiltrations, and a computed tomography (CT) scan revealed patchy interstitial shadows in both lungs. In pulmonary function tests, the diffusing capacity of the lungs showed a moderate decrease. Leukocytosis and slight hypoxemia were observed. The patient recovered clinically in a few days without any specific treatment. We speculated that the pulmonary problems in this patient may have been induced by the products of thermal degradation of Teflon that were present in the fumes. When Teflon is heated, the fumes generated cause an influenza like syndrome (polymer fume fever) or cause severe toxic effects such as pulmonary edema, pneumonitis, and death in the exposed individual.

  16. Effects of welding fumes on nuclear air cleaning system carbon adsorber banks

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, P.W. [Duke Power Company, Huntersville, NC (United States)

    1997-08-01

    Standard Technical Specifications for nuclear air cleaning systems include requirements for surveillance tests following fire, painting, or chemical release in areas communicating with the affected system. To conservatively implement this requirement, many plants categorize welding as a chemical release process, and institute controls to ensure that welding fumes do not interact with carbon adsorbers in a filter system. After reviewing research data that indicated welding had a minimal impact on adsorber iodine removal efficiency, further testing was performed with the goal of establishing a welding threshold. It was anticipated that some quantity of weld electrodes could be determined that had a corresponding detrimental impact on iodine removal efficiency for the exposed adsorber. This value could be used to determine a conservative sampling schedule that would allow the station to perform laboratory testing to ensure system degradation did not occur without a full battery of surveillance tests. A series of tests was designed to demonstrate carbon efficiency versus cumulative welding fume exposure. Three series of tests were performed, one for each of three different types of commonly used weld electrodes. Carbon sampling was performed at baseline conditions, and every five pounds of electrode thereafter. Two different laboratory tests were performed for each sample; one in accordance with ASTM 3803/1989 at 95% relative humidity and 30 degrees C, and another using the less rigorous conditions of 70% relative humidity and 80 degrees C. Review of the test data for all three types of electrodes failed to show a significant correlation between carbon efficiency degradation and welding fume exposure. Accordingly, welding is no longer categorized as a `chemical release process` at McGuire Nuclear Station, and limits on welding fume interaction with ventilation systems have been eliminated. 4 refs., 3 figs., 1 tab.

  17. Influence of welding fume on systemic iron status.

    Science.gov (United States)

    Casjens, Swaantje; Henry, Jana; Rihs, Hans-Peter; Lehnert, Martin; Raulf-Heimsoth, Monika; Welge, Peter; Lotz, Anne; Gelder, Rainer Van; Hahn, Jens-Uwe; Stiegler, Hugo; Eisele, Lewin; Weiss, Tobias; Hartwig, Andrea; Brüning, Thomas; Pesch, Beate

    2014-11-01

    Iron is the major metal found in welding fumes, and although it is an essential trace element, its overload causes toxicity due to Fenton reactions. To avoid oxidative damage, excess iron is bound to ferritin, and as a result, serum ferritin (SF) is a recognized biomarker for iron stores, with high concentrations linked to inflammation and potentially also cancer. However, little is known about iron overload in welders. Within this study, we assessed the iron status and quantitative associations between airborne iron, body iron stores, and iron homeostasis in 192 welders not wearing dust masks. Welders were equipped with personal samplers in order to determine the levels of respirable iron in the breathing zone during a working shift. SF, prohepcidin and other markers of iron status were determined in blood samples collected after shift. The impact of iron exposure and other factors on SF and prohepcidin were estimated using multiple regression models. Our results indicate that respirable iron is a significant predictor of SF and prohepcidin. Concentrations of SF varied according to the welding technique and respiratory protection used, with a median of 103 μg l(-1) in tungsten inert gas welders, 125 μg l(-1) in those wearing air-purifying respirators, and 161 μg l(-1) in other welders. Compared to welders with low iron stores (SF < 25 μg l(-1)), those with excess body iron (SF ≥ 400 μg l(-1)) worked under a higher median concentration of airborne iron (60 μg m(-3) versus 148 μg m(-3)). Even though air concentrations of respirable iron and manganese were highly correlated, and low iron stores have been reported to increase manganese uptake in the gastrointestinal tract, no correlation was seen between SF and manganese in blood. In conclusion, monitoring SF may be a reasonable method for health surveillance of welders. Respiratory protection with air-purifying respirators can decrease iron exposure and avoid chronically higher SF in welders working with

  18. Effect Of Inhalation Exposure To Kerosene And Petrol-Fumes On ...

    African Journals Online (AJOL)

    Changes in total body weight, some anaemia-diagnostic indices (haematocrit or packed cell volume (PCV), haemoglobin (Hb) and total serum protein) were determined in rats (Wistar albino strain) after 2 weeks of 4 hours daily inhalation exposure to ungraded concentrations of kerosene and petrol fumes. The results ...

  19. A Scanning Transmission Electron Microscopy Method for Determining Manganese Composition in Welding Fume as a Function of Primary Particle Size.

    Science.gov (United States)

    Richman, Julie D; Livi, Kenneth J T; Geyh, Alison S

    2011-06-01

    Increasing evidence suggests that the physicochemical properties of inhaled nanoparticles influence the resulting toxicokinetics and toxicodynamics. This report presents a method using scanning transmission electron microscopy (STEM) to measure the Mn content throughout the primary particle size distribution of welding fume particle samples collected on filters for application in exposure and health research. Dark field images were collected to assess the primary particle size distribution and energy-dispersive X-ray and electron energy loss spectroscopy were performed for measurement of Mn composition as a function of primary particle size. A manual method incorporating imaging software was used to measure the primary particle diameter and to select an integration region for compositional analysis within primary particles throughout the size range. To explore the variation in the developed metric, the method was applied to 10 gas metal arc welding (GMAW) fume particle samples of mild steel that were collected under a variety of conditions. The range of Mn composition by particle size was -0.10 to 0.19 %/nm, where a positive estimate indicates greater relative abundance of Mn increasing with primary particle size and a negative estimate conversely indicates decreasing Mn content with size. However, the estimate was only statistically significant (p<0.05) in half of the samples (n=5), which all had a positive estimate. In the remaining samples, no significant trend was measured. Our findings indicate that the method is reproducible and that differences in the abundance of Mn by primary particle size among welding fume samples can be detected.

  20. Phase analysis of fume during arc weld brazing of steel sheets with protective coatings

    Directory of Open Access Journals (Sweden)

    J. Matusiak

    2016-04-01

    Full Text Available The article presents the results of research of the phase identification and of the quantitative phase analysis of fume generated during Cold Metal Transfer (CMT, ColdArc and Metal Inert Gas / Metal Active Gas (MIG / MAG weld brazing. Investigations were conducted for hot - dip coated steel sheets with zinc (Zn and zinc-iron (Zn - Fe alloy coatings. Arc shielding gases applied during the research-related tests were Ar + O2, Ar + CO2, Ar + H2 and Ar + CO2 + H2 gas mixtures. The analysis of the results covers the influence of the chemical composition of shielding gas on the chemical composition of welding fume.

  1. Total Fume and Metal Concentrations during Welding in Selected Factories in Jeddah, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mohammad Khalid Goknil

    2010-07-01

    Full Text Available Welding is a major industrial process used for joining metals. Occupational exposure to welding fumes is a serious occupational health problem all over the world. The degree of risk to welder’s health from fumes depends on composition, concentration, and the length of exposure. The aim of this study was to investigate workers’ welding fume exposure levels in some industries in Jeddah, Saudi Arabia. In each factory, the air in the breathing zone within 0.5 m from welders was sampled during 8-hour shifts. Total particulates, manganese, copper, and molybdenum concentrations of welding fumes were determined. Mean values of eight-hour average particulate concentrations measured during welding at the welders breathing zone were 6.3 mg/m3 (Factory 1, 5.3 mg/m3 (Factory 2, 11.3 mg/m3 (Factory 3, 6.8 mg/m3 (Factory 4, 4.7 mg/m3 (Factory 5, and 3.0 mg/m3 (Factory 6. Mean values of airborne manganese, copper, and molybdenum levels measured during welding were in the range of 0.010 mg/m3–0.477 mg/m3, 0.001 mg/m3–0.080 mg/m3 and 0.001 mg/m3–0.058 mg/m3 respectively. Mean values of calculated equivalent exposure values were: 1.50 (Factory 1, 1.56 (Factory 2, 5.14 (Factory 3, 2.21 (Factory 4, 2.89 (Factory 5, and 1.20 (Factory 6. The welders in factories 1, 2, 3, and 4 were exposed to welding fume concentration above the SASO limit value, which may increase the risk of respiratory health problems.

  2. Total fume and metal concentrations during welding in selected factories in Jeddah, Saudi Arabia.

    Science.gov (United States)

    Balkhyour, Mansour Ahmed; Goknil, Mohammad Khalid

    2010-07-01

    Welding is a major industrial process used for joining metals. Occupational exposure to welding fumes is a serious occupational health problem all over the world. The degree of risk to welder's health from fumes depends on composition, concentration, and the length of exposure. The aim of this study was to investigate workers' welding fume exposure levels in some industries in Jeddah, Saudi Arabia. In each factory, the air in the breathing zone within 0.5 m from welders was sampled during 8-hour shifts. Total particulates, manganese, copper, and molybdenum concentrations of welding fumes were determined. Mean values of eight-hour average particulate concentrations measured during welding at the welders breathing zone were 6.3 mg/m(3) (Factory 1), 5.3 mg/m(3) (Factory 2), 11.3 mg/m(3) (Factory 3), 6.8 mg/m(3) (Factory 4), 4.7 mg/m(3) (Factory 5), and 3.0 mg/m(3) (Factory 6). Mean values of airborne manganese, copper, and molybdenum levels measured during welding were in the range of 0.010 mg/m(3)-0.477 mg/m(3), 0.001 mg/m(3)-0.080 mg/m(3) and 0.001 mg/m(3)-0.058 mg/m(3) respectively. Mean values of calculated equivalent exposure values were: 1.50 (Factory 1), 1.56 (Factory 2), 5.14 (Factory 3), 2.21 (Factory 4), 2.89 (Factory 5), and 1.20 (Factory 6). The welders in factories 1, 2, 3, and 4 were exposed to welding fume concentration above the SASO limit value, which may increase the risk of respiratory health problems.

  3. IMPACT ON CONTRIBUTIONS FUMES FROM WELDING PROCEDURES WELDER HEALTH OPERATORS

    Directory of Open Access Journals (Sweden)

    Gheorghe AMZA

    2012-05-01

    Full Text Available This paper presents a series of investigations undertaken to establish the impact of gas welding results in fusion welding procedures and welders health operators who work in departments making welded construction. Are the main gases that occur in fusion welding and main effects of short-term and long on the human body.

  4. The Renal Toxicity of Welding Fumes in Heavy Equipment Manufacturer Workers

    Directory of Open Access Journals (Sweden)

    Mulyana

    2015-09-01

    Full Text Available Exposure to welding fumes in the workplace has been associated with decreasing renal function. We studied renal function parameters in men workers from heavy equipment manufacturer exposed to welding fumes. This study aimed to evaluate renal function status among worker exposed to welding fumes. A case-control design, random study, was conducted among welder (35 subjects and non welder (35 subjects with more than 1 years experience in the same job task in a heavy equipment manufacturer. All subjects were completed physical examination, informed consent, questionnaire and laboratory tests. Renal function was measured as creatinine serum using enzimatic method. Urinary heavy metals level was analyzed using inductively coupled plasma mass spectrometry. Comparisson analysis between group was performed to determined median level for each variable. Linear regression model was developed to predict renal function function parameter status urinary heavy metals level as variable. This study showed there were higher creatinine serum, chromium, iron, manganese and nickel in welder than non welder(p<0.05. After multivariate analysis, urinary nickel is a predictor for renal function status among welder. Exposure to welding fumes was significantly correlated with renal function status in welder. Nickel is the predictive variable for renal function. Although statistically significant but in clinical field needs carefully interpreting data.

  5. Alterations in cardiomyocyte function after pulmonary treatment with stainless steel welding fume in rats.

    Science.gov (United States)

    Popstojanov, Risto; Antonini, James M; Salmen, Rebecca; Ye, Morgan; Zheng, Wen; Castranova, Vincent; Fekedulegn, Desta B; Kan, Hong

    2014-01-01

    Welding fume is composed of a complex of different metal particulates. Pulmonary exposure to different welding fumes may exert a negative impact on cardiac function, although the underlying mechanisms remain unclear. To explore the effect of welding fumes on cardiac function, Sprague-Dawley rats were exposed by intratracheal instillation to 2 mg/rat of manual metal arc hard surfacing welding fume (MMA-HS) once per week for 7 wk. Control rats received saline. Cardiomyocytes were isolated enzymatically at d 1 and 7 postexposure. Intracellular calcium ([Ca(2+)]i) transients (fluorescence ratio) were measured on the stage of an inverted phase-contrast microscope using a myocyte calcium imaging/cell length system. Phosphorylation levels of cardiac troponin I (cTnI) were determined by Western blot. The levels of nonspecific inflammatory marker C-reactive protein (CRP) and proinflammatory cytokine interleukin-6 (IL-6) in serum were measured by enzyme-linked immunosorbent assay (ELISA). Contraction of isolated cardiomyocytes was significantly reduced at d 1 and d 7 postexposure. Intracellular calcium levels were decreased in response to extracellular calcium stimulation at d 7 postexposure. Changes of intracellular calcium levels after isoprenaline hydrochloride (ISO) stimulation were not markedly different between groups at either time point. Phosphorylation levels of cTnI in the left ventricle were significantly lower at d 1 postexposure. The serum levels of CRP were not markedly different between groups at either time point. Serum levels of IL-6 were not detectable in both groups. Cardiomyocyte alterations observed after welding fume treatment were mainly due to alterations in intracellular calcium handling and phosphorylation levels of cTnI.

  6. [Methodology and evaluation of exposure to fumes formed during welding of chromium-nickel steel].

    Science.gov (United States)

    Matczak, W; Chmielnicka, J

    1988-01-01

    Using various methods for determination of welding fumes components and taking into account a simultaneous determination of soluble compounds of chromium III and IV, hygienic evaluation in two working places employing different systems of MMA/SS welding, TIG/SS welding and padding was carried out. As it is indicated by the results, proper hygienic evaluation of working conditions is possible owing to the measurements of individual exposure of workers in the breathing zone, allowing for determination of chromium manganese, nickel, and, while applying low-hydrogen electrodes, also fluorides, in every test.

  7. Risk of ischemic heart disease following occupational exposure to welding fumes

    DEFF Research Database (Denmark)

    Mocevic, Emina; Kristiansen, Pernille; Bonde, Jens Peter

    2015-01-01

    PURPOSE: Air pollution has been linked to an increased risk of ischemic heart disease (IHD), but less is known about occupational exposure to welding fumes and the risk of IHD. The objective of this paper was to review the epidemiological evidence on causal links between welding fume exposure...... and risk of IHD and to investigate whether the risk of IHD depends on specific welding characteristics. METHODS: A systematic search in Medline 1979-2013 and EMBASE 1974-2013 identified 18 epidemiological studies with at least one risk estimate of IHD morbidity or mortality among workers exposed to welding...... to welding fumes was 1.09 [95 % confidence interval (CI) 1.00, 1.19]. We calculated a RR of 1.39 (95 % CI 0.96, 2.02) among studies using an internal reference group and 1.08 (95 % CI 0.99, 1.18) for studies using an external reference group. An increased risk was observed for acute myocardial infarction RR...

  8. Rapid detection of transition metals in welding fumes using paper-based analytical devices.

    Science.gov (United States)

    Cate, David M; Nanthasurasak, Pavisara; Riwkulkajorn, Pornpak; L'Orange, Christian; Henry, Charles S; Volckens, John

    2014-05-01

    Metals in particulate matter (PM) are considered a driving factor for many pathologies. Despite the hazards associated with particulate metals, personal exposures for at-risk workers are rarely assessed due to the cost and effort associated with monitoring. As a result, routine exposure assessments are performed for only a small fraction of the exposed workforce. The objective of this research was to evaluate a relatively new technology, microfluidic paper-based analytical devices (µPADs), for measuring the metals content in welding fumes. Fumes from three common welding techniques (shielded metal arc, metal inert gas, and tungsten inert gas welding) were sampled in two welding shops. Concentrations of acid-extractable Fe, Cu, Ni, and Cr were measured and independently verified using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results from the µPAD sensors agreed well with ICP-OES analysis; the two methods gave statistically similar results in >80% of the samples analyzed. Analytical costs for the µPAD technique were ~50 times lower than market-rate costs with ICP-OES. Further, the µPAD method was capable of providing same-day results (as opposed several weeks for ICP laboratory analysis). Results of this work suggest that µPAD sensors are a viable, yet inexpensive alternative to traditional analytic methods for transition metals in welding fume PM. These sensors have potential to enable substantially higher levels of hazard surveillance for a given resource cost, especially in resource-limited environments.

  9. Relationship between welding fume concentration and systemic inflammation after controlled exposure of human subjects with welding fumes from metal inert gas brazing of zinc-coated materials.

    Science.gov (United States)

    Brand, Peter; Bauer, Marcus; Gube, Monika; Lenz, Klaus; Reisgen, Uwe; Spiegel-Ciobanu, Vilia Elena; Kraus, Thomas

    2014-01-01

    It has been shown that exposure of subjects to emissions from a metal inert gas (MIG) brazing process of zinc-coated material led to an increase of high-sensitivity C-reactive protein (hsCRP) in the blood. In this study, the no-observed-effect level (NOEL) for such emissions was assessed. Twelve healthy subjects were exposed for 6 hours to different concentrations of MIG brazing fumes under controlled conditions. High-sensitivity C-reactive protein was measured in the blood. For welding fumes containing 1.20 and 1.50 mg m zinc, high-sensitivity C-reactive protein was increased the day after exposure. For 0.90 mg m zinc, no increase was detected. These data indicate that the no-observed-effect level for emissions from a MIG brazing process of zinc-coated material in respect to systemic inflammation is found for welding fumes with zinc concentrations between 0.90 and 1.20 mg m.

  10. Acute Inhalation Exposure to Titanium Ethanolate as a Possible Cause of Metal Fume Fever

    Directory of Open Access Journals (Sweden)

    M Ahmadimanesh

    2014-04-01

    Full Text Available Occupational inhalation exposure to noxious agents is not uncommon. Herein, we present a 26-year-old male student who had accidental acute inhalation exposure to a large quantity of titanium ethanolate and hydrogen chloride in chemistry lab. He was referred to the emergency department of our hospital with low-grade fever, dyspnea, headache, fatigue and myalgia. After 24 hrs of symptomatic treatment (oxygen therapy and acetaminophen, the fever was subsided and the patient discharged home in a good clinical condition. The presented symptoms could be interpreted as a form of metal fume fever. It can therefore be concluded that organo-metallic compound of titanium metal may have the potential to produce metal fume fever in human.

  11. The comparative assessment of welders’ exposure to welding fumes based on mass and number concentration

    Directory of Open Access Journals (Sweden)

    Javad Sajedifar

    2016-12-01

    Full Text Available Introduction: Nowadays, Shielded Metal Arc Welding (SMAW is the most widely used arc welding. During the welding operation, typically, various harmful agents such as fumes, gases, heat, sound and ultraviolet radiation are produced of which fume is the most important component from the viewpoint of occupational health. The present study aims to compare the number and the mass concentration emitted in SMAW to determine the most appropriate index of exposure to fumes in the welding processes. Material and Method: In this study, the portable laser aerosol spectrometer and dust monitor of GRIMM, model 1.106, was used to measure the number and mass concentration of fumes emitted from SMAW on 304 stainless steel with a thickness of 0.4 mm. Air sampling was performed at a distance of 41 cm representing the welder’s breathing zone. The measurements of number concentration (NC and mass concentration (MC were taken under the condition of 25 volt voltage and direct current of the electrode polarity. Result: The total NC and MC of welding fumes in welder’s breathing zone was 1140451 particles per liter and 1631.11 micrograms per cubic meter, respectively. The highest number concentration was found to correspond to the particles with 0.35 to 0.5 micrometer-sized distribution (NC1; 938976 particles per liter and the lowest was related to the particles with 5 to 6.5 micrometer-sized distribution (NC7; 288 particles per liter and the particles larger than 6.5 micrometer (NC8; 463 particles per liter. Moreover, the highest mass concentration was related to the particles with 0.35 to 0.5 micrometer-sized distribution (MC1; 450 micrograms per cubic meter and the particles larger than 6.5 micrometer (MC8; 355 micrograms per cubic meter. Conclusion: The findings indicated that there is no agreement between number and mass concentration as two particles assessment index, and as the particles’ size become smaller, the mismatch of them is becoming more apparent

  12. Altered ion transport in normal human bronchial epithelial cells following exposure to chemically distinct metal welding fume particles.

    Science.gov (United States)

    Fedan, Jeffrey S; Thompson, Janet A; Meighan, Terence G; Zeidler-Erdely, Patti C; Antonini, James M

    2017-07-01

    Welding fume inhalation causes pulmonary toxicity, including susceptibility to infection. We hypothesized that airway epithelial ion transport is a target of fume toxicity, and investigated the effects of fume particulates from manual metal arc-stainless steel (MMA-SS) and gas metal arc-mild steel (GMA-MS) on ion transport in normal human bronchial epithelium (NHBE) cultured in air-interface. MMA-SS particles, more soluble than GMA-MS particles, contain Cr, Ni, Fe and Mn; GMA-MS particles contain Fe and Mn. MMA-SS or GMA-MS particles (0.0167-166.7μg/cm 2 ) were applied apically to NHBEs. After 18h transepithelial potential difference (V t ), resistance (R t ), and short circuit current (I sc ) were measured. Particle effects on Na + and Cl¯ channels and the Na + ,K + ,2Cl¯-cotransporter were evaluated using amiloride (apical), 5-nitro-2-[(3-phenylpropyl)amino]benzoic acid (NPPB, apical), and bumetanide (basolateral), respectively. MMA-SS (0.0167-16.7μg/cm 2 ) increased basal V t . Only 16.7μg/cm 2 GMA-MS increased basal V t significantly. MMA-SS or GMA-MS exposure potentiated I sc responses (decreases) to amiloride and bumetanide, while not affecting those to NPPB, GMA-MS to a lesser degree than MMA-SS. Variable effects on R t were observed in response to amiloride, and bumetanide. Generally, MMA-SS was more potent in altering responses to amiloride and bumetanide than GMA-MS. Hyperpolarization occurred in the absence of LDH release, but decreases in V t , R t , and I sc at higher fume particulate doses accompanied LDH release, to a greater extent for MMA-SS. Thus, Na + transport and Na + ,K + ,2Cl¯-cotransport are affected by fume exposure; MMA-MS is more potent than GMA-MS. Enhanced Na + absorption and decreased airway surface liquid could compromise defenses against infection. Published by Elsevier Inc.

  13. The Study Of Histopathological Effects Of Welding Fumes On Spermatogenesis In Rat

    Directory of Open Access Journals (Sweden)

    Arab M R

    2005-07-01

    Full Text Available Background: Fumes generated during electric welding are one of air pollutants of working place in industrial companies, which can cause some clinical signs and diseases in worker, including mucosal irritation, changing of semen quality and cancer. Chronic exposure of workers with these fumes can cause reduce sperm motility and forward penetration and decrease in normal sperm count. Although a lot of researches were done in this field up to now, there is little information about histopathological effects of these fumes on germinal epithelium. The aim of this study was to identify structural changes of germinal epithelium in Rat as an experimental model after exposure to fumes of electric welding in exposure chamber. Material and Methods: A total number of 60 Sprague Dawley Rats were chosen and divided into experimental (40 and control (20 groups. Each of groups was subdivided into 2, 4, 6 and 8-week subgroups. The number of Rat in each subgroup of experimental and control group was 10 and 5 respectively. Animals were housed in standard situation. After adaptation experimental group were exposed to fumes of electric welding (AMA 2000 electrode, 100 Ampere, 0.1 cm/s speed of electrode welding for 2 hour/day and 5 day/week. The rate of air turn over in exposure chamber was fixed to 12-15/hour. The amount of O3, CO, CO2, NO + NO2 and particulate matter were measured by Galtec detectors and Cellulose acetate filter respectively. According to time table animals were killed and specimens from testis were taken and fixed in formaline buffer solution and processed routinely. Sections with 5-7 micrometer in thickness were stained by H-E, PAS, PNA and Alcian blue pH=2.5. The thickness of germinal epithelium was measured and data were analyzed by Kruskall Wallis test. Results: The results of this study showed a few quantitative and qualitative changes in germinal epithelium. Vasodilatation of vessels in tunica albuginea and interstitial tissue, decreasing of

  14. [Assessment of occupational exposure of welders based on determination of fumes and their components produced during stainless steel welding].

    Science.gov (United States)

    Stanisławska, Magdalena; Janasik, Beata; Trzcinka-Ochocka, Małgorzata

    2011-01-01

    Occupational exposure to welding fumes is a known health hazard. The aim of this study was to determine concentrations of welding fumes components such as: iron, manganese, nickel and chromium (including chromium speciation) to assess exposure of stainless steel welders. The survey covered 14 workers of two metallurgic plants engaged in welding stainless steel (18% Cr and 8% Ni) by different techniques: manual metal arc (MMA), metal inert gas (MIG) and tungsten inert gas (TIG). Personal air samples were collected in the welders' breathing zone over a period of about 6-7 h (dust was collected on a membrane and glass filter) to determine time weighted average (TWA) concentration of welding fumes and its components. The concentrations of welding fumes (total particulate) were determined with use of the gravimetric method. Concentrations and welding fume components, such as: iron, manganese, nickel and chromium were determined by ICP-MS technique. The total hexavalent chromium was analyzed by applying the spectrophotometry method according to NIOSH. The water-soluble chromium species were analyzed by HPLC-ICP-MS. Time weighted average concentrations of the welding fumes and its components at the worker's breathing zone were (mg/m3): dust, 0.14-10.7; iron, 0.004-2.9; manganese, 0.001-1.12; nickel, < 0.001-0.2; and chromium <0.002-0.85 (mainly Cr(III) and insoluble Cr(VI)). The maximum admissible limits for workplace pollutants (TLV-TWA) were exceeded for manganese and for insoluble chromium Cr (VI). For Cr (III) the limit was exceeded in individual cases. The assessment of the workers' occupational exposure, based on the determined time weighted average (TWA) of fumes and their components, shows that the stainless steel welders worked in conditions harmful to their health owing to the significantly exceeded maximum admissible limits for manganese and the exceeded TLV value for insoluble chromium (VI).

  15. Manganese in exhaled breath condensate: a new marker of exposure to welding fumes.

    Science.gov (United States)

    Hulo, Sébastien; Chérot-Kornobis, Nathalie; Howsam, Mike; Crucq, Sébastien; de Broucker, Virginie; Sobaszek, Annie; Edme, Jean-Louis

    2014-04-07

    To evaluate manganese in exhaled breath condensate (Mn-EBC) as an indicator of exposure to fumes from metal inert gas welding process. We collected EBC and urine from 17 welders and 16 unexposed control subjects after 5 days exposure. Concentrations of manganese (Mn), nickel (Ni), iron (Fe) and chromium (Cr) were measured in EBC and urine samples and correlated with cumulative exposure indices for the working week (CIW) and for the total welding years (WY), based on duration of welding activity and atmospheric metal measurements. Concentrations of Mn and Ni in EBC were significantly higher among welders than controls whereas this difference was not significant for Mn in urine. Levels of Mn and Ni in EBC were not correlated with their respective levels in urine. The linear regressions found significant positive coefficients between Mn-EBC, Ni-EBC, Ni-U and Cr-U concentrations and the cumulative exposure indices. Taking into account tobacco use, statistical analysis showed the same trends except for the relationship between Mn-U and CIW. This pilot study showed that Mn-EBC, as well as Ni-EBC, can serve as reliable indices of occupational exposure to welding fumes and provide complimentary toxicokinetic information to that provided by urine analyses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Critical evaluation of sequential leaching procedures for the determination of Ni and Mn species in welding fumes.

    Science.gov (United States)

    Berlinger, B; Náray, M; Sajó, I; Záray, G

    2009-06-01

    In this work, welding fume samples were collected in a welding plant, where corrosion-resistant steel and unalloyed structural steel were welded by gas metal arc welding (GMAW) and manual metal arc welding (MMAW) techniques. The welding fumes were sampled with a fixed-point sampling strategy applying Higgins-Dewell cyclones. The following solutions were used to dissolve the different species of Ni and Mn: ammonium citrate solution [1.7% (m/v) diammonium hydrogen citrate and 0.5% (m/v) citric acid monohydrate] for 'soluble' Ni, 50:1 methanol-bromine solution for metallic Ni, 0.01 M ammonium acetate for soluble Mn, 25% acetic acid for Mn(0) and Mn(2+) and 0.5% hydroxylammonium chloride in 25% acetic acid for Mn(3+) and Mn(4+). 'Insoluble' Ni and Mn contents of the samples were determined after microwave-assisted digestion with the mixture of concentrated (cc). HNO(3), cc. HCl and cc. HF. The sample solutions were analysed by inductively coupled plasma quadrupole mass spectrometry and inductively coupled plasma atomic emission spectrometry. The levels of total Ni and Mn measured in the workplace air were different because of significant differences of the fume generation rates and the distributions of the components in the welding fumes between the welding processes. For quality control of the leaching process, dissolution of the pure stoichiometric Mn and Ni compounds and their mixtures weighing was investigated using the optimized leaching conditions. The results showed the adequacy of the procedure for the pure metal compounds. Based on the extraction procedures, the predominant oxidation states of Ni and Mn proved to be very different depending on the welding techniques and type of the welded steels. The largest amount of Mn in GMAW fumes were found as insoluble Mn (46 and 35% in case of corrosion-resistant steel and unalloyed structural steel, respectively), while MMAW fumes contain mainly soluble Mn, Mn(0) and Mn(2+) (78%) and Mn(3+) and Mn(4+) (54%) in case of

  17. Local exhaust ventilation for the control of welding fumes in the construction industry--a literature review.

    Science.gov (United States)

    Flynn, Michael R; Susi, Pam

    2012-08-01

    Arc welding is a common unit operation in the construction industry, where frequent changes in location and welding position make it more difficult to control fume exposures than in industries where fixed locations are the norm. Welders may be exposed to a variety of toxic airborne contaminants including manganese (Mn) and hexavalent chromium (CrVI). Local exhaust ventilation (LEV) is a well-known engineering control for welding fumes but has not been adopted widely in the construction industry. This literature review presents data on the performance of a variety of LEV systems for welding fume control from the construction (five references), shipyard (five references), and other industries. The studies indicate that LEV can reduce fume exposures to total particulate, Mn, and CrVI to levels below currently relevant standards. Field studies suggest that 40-50% or more reduction in exposure is possible with portable or fixed LEV systems relative to natural ventilation but that correct positioning of the hood and adequate exhaust flow rates are essential. Successful implementation of extraction guns for gas metal arc welding (GMAW) and flux core arc welding has been demonstrated, indicating that a successful balance between extraction airflow and shielding gas requirements is possible. Work practices are an important part of achieving successful control of fume exposures; in particular, positioning the hood close to the arc, checking exhaust flow rates, and avoiding the plume. Further research is needed on hood size effects for controlling welding fume with portable LEV systems and identifying and overcoming barriers to LEV use in construction.

  18. Control of exposure to hexavalent chromium concentration in shielded metal arc welding fumes by nano-coating of electrodes.

    Science.gov (United States)

    Sivapirakasam, S P; Mohan, Sreejith; Santhosh Kumar, M C; Thomas Paul, Ashley; Surianarayanan, M

    2018-02-20

    Background Cr(VI) is a suspected human carcinogen formed as a by-product of stainless steel welding. Nano-alumina and nano-titania coating of electrodes reduced the welding fume levels. Objective To investigate the effect of nano-coating of welding electrodes on Cr(VI) formation rate (Cr(VI) FR) from a shielded metal arc welding process. Methods The core welding wires were coated with nano-alumina and nano-titania using the sol-gel dip coating technique. Bead-on plate welds were deposited on SS 316 LN plates kept inside a fume test chamber. Cr(VI) analysis was done using an atomic absorption spectrometer (AAS). Results A reduction of 40% and 76%, respectively, in the Cr(VI) FR was observed from nano-alumina and nano-titania coated electrodes. Increase in the fume level decreased the Cr(VI) FR. Discussion Increase in fume levels blocked the UV radiation responsible for the formation of ozone thereby preventing the formation of Cr(VI).

  19. Welding fumes exposure decreases forced vital capacity but not height among welders

    Directory of Open Access Journals (Sweden)

    Titis Mariyamah

    2012-09-01

    Full Text Available AbstrakLatar belakang: Asap pengelasan antara lain dapat menyebabkan penurunan kapasitas vital paksa (KVP. Tujuan penelitian ini adalah untuk mengidentifi kasi beberapa faktor yang dapat berhubungan dengan KVP pada pengelas.Metode: Studi ini menggunakan desain potong lintang pada subjek pengelas di pabrik mobil sekitar Jakarta tahun 2012. Responden dipilih secara purposif. Pemeriksaan KVP menggunakan spirometri. Data pajanan asap didapatkan dari data yang dimiliki perusahaan. Data demografi , kebiasaan, dan pekerjaan diperoleh dengan wawancara.Hasil: Jumlah responden 124 dari 150, rentang umur 19-55 tahun dan telah bekerja antara 1-16 tahun. Data pajanan asap pada area pengelasan adalah 15 mg/m3, Pajanan asap pengelasan cenderung menurunkan kapasitas vital paksa [koefi sient regresi (r = -0,004, 95% interval kepercayaan (CI = -0,01;-0,00] dan makin tinggi tinggi badan cenderung KVP meningkat (r= 0,35; 95% CI = 0,02;0,05.Kesimpulan: Pajanan asap pengelasan cenderung menurunkan KVP, sebaliknya semakin tinggi tinggi badan cenderung meningkatkan KVP. (Health Science Indones 2012;1:41-4Kata kunci: pajanan asap pengelasan, tinggi badan, kapasitas vital paksaAbstractBackground: Welding fumes caused the decreasing of forced vital capacity (FVC. The study aimed to identify several factors related to FVC.Methods: The subject of this cross-sectional study consisted of welders in an automobile manufacture outskirt of Jakarta in 2012. We used purposive sampling selection. The assessments of FVC were using spirometri. Exposure fumes value of the workplace based on the assessements of the factory. Demographic and employment data was selected from interview.Results: A number 124 out of 150 welders which aged between 19-55 years who’s had 1-16 years worked. Exposure fumes value was 15 mg/m3 in the factory. The welding fume exposure decreased FVC [regressioncoeffi cient (r = -0.004; 95% confi dence interval (CI = -0.01;-0.00]. On the other site, those who had

  20. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace.

    Science.gov (United States)

    Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T

    2016-01-01

    Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr(6+)). Elemental manganese, nickel, chromium, iron emissions per unit length of weld, and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered, and analyzed by inductively coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr(6+). GMAW processes used were Surface Tension Transfer, Regulated Metal Deposition, Cold Metal Transfer, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr(6+) ranged from 50-7800 µg/min, and Cr(6+) generation rates per g electrode ranged from 1-270 µg/g. Elemental Cr generation rates spanned 13-330 µg/g. Manganese emission rates ranged from 50-300 µg/g. Nickel emission rates ranged from 4-140 µg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as five times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this

  1. Welding fumes exposure, body mass index and duration of smoking decrease physical fi tness among welders

    Directory of Open Access Journals (Sweden)

    Rudy Wahyu Perdana

    2012-09-01

    Full Text Available AbstrakLatar belakang: Pajanan asap pengelasan dapat mengganggu kesehatan, antara lain penurunan kebugaran jasmani. Penelitian ini bertujuan menganalisis efek pajanan asap pengelasan terhadap kebugaran jasmani pengelas.Metode: Penelitian menggunakan desain potong lintang dan subjek penelitian dipilih secara purposif di antara pengelas di suatu pabrik knalpot di sekitar Jakarta tahun 2012. Beberapa karakteristik demografi , riwayat pekerjaan, dan kebiasaan subjek diperloleh dengan wawancara. Kebugaran jasmani diperiksa dengan metode Queen’s College Step Test. Total pajanan asap dinilai menggunakan metode semi kuantitatif yaitu perkalian pajanan asap dengan masa kerja sebagai pengelas.Hasil: Subjek penelitian berjumlah 110 orang, yang berusia antara 19-55 tahun, dengan masa kerja 1-16 tahun. Pajanan asap diperusahaan sebesar 15 mg/m3 menurut data pemeriksaan rutin perusahaan tahun 2012. Umur dan aktivitas fi sik tidak berkorelasi terhadap tingkat kebugaran jasmani pengelas. Akan tetapi didapatkan korelasi negatif antara total pajanan asap, index massa tubuh (IMT, dan kebiasaan lama merokok terhadap tingkat kebugaran jasmani pengelas. Korelasi terhadap tingkat kebugaran jasmani pengelas tersebut adalah: total pajanan asap [koefi sien regresi (r = -0,07; 95% koefi sien interval (CI = -0,10; -0,04]; IMT (r =-0,38; 95% CI = -0,64;-0,09; dan kebiasaan lama merokok (r = -0,16; 95% CI = -0,28;-0,04Kesimpulan: Peningkatan pajanan asap pengelasan, index massa tubuh, dan lama merokok menurunkan tingkat kebugaran jasmani pengelas. (Health Science Indones 2012;1:37-40Kata kunci: pajanan asap, kebugaran jasmani, Queen’s College Step Test AbstractBackground: Welding fumes exposure caused health disorders, one of them are decreasing the level of physical fi tness. This study aimed to analyze the effect of welding fumes exposure with the level of welder’sphysical fi tness.Methods: This cross-sectional using purposive selected by sampling selection method

  2. Inflammatory response to acute exposure to welding fumes during the working day

    Directory of Open Access Journals (Sweden)

    Merja Järvelä

    2013-04-01

    Full Text Available Objectives: To investigate cardiorespiratory and inflammatory responses in male workers following exposure to welding fumes and airborne particles in actual workplace conditions. Materials and Methods: We measured blood leukocytes and their differential counts, platelet count, hemoglobin, sensitive C-reactive protein, fibrinogen, E-selectin, IL-(interleukin1β, IL-6, IL-8, tumor necrosis factor alpha (TNF-α and endothelin-1 in blood samples of twenty workers before and after their working day. We also studied peak expiratory flow (PEF, forced expiratory volume in one second (FEV1, and exhaled nitric oxide (NO. We assessed heart rate variability (HRV by obtaining 24-hour ambulatory electrocardiograms. Results: The total blood leukocytes and neutrophils increased after the work shift, whereas IL-1β and E-selectin decreased significantly. There were no tatistically significant changes in exhaled NO, FEV1, PEF or HRV. Conclusion: Occupational exposure to welding fumes and particles caused a slight, acute inflammatory effect estimated based on the increased values of leukocytes and neutrophils in blood and a decrease in the interleukin 1β and E-selectin values, but no changes in the pulmonary function (exhaled NO, FEV1, PEF or HRV during the working day were observed.

  3. A Cross-Sectional Study of the Cardiovascular Effects of Welding Fumes.

    Science.gov (United States)

    Li, Huiqi; Hedmer, Maria; Kåredal, Monica; Björk, Jonas; Stockfelt, Leo; Tinnerberg, Håkan; Albin, Maria; Broberg, Karin

    2015-01-01

    Occupational exposure to particulate air pollution has been associated with an increased risk of cardiovascular disease. However, the risk to welders working today remains unclear. We aimed to elucidate the cardiovascular effects of exposure to welding fumes. In a cross-sectional study, structured interviews and biological sampling were conducted for 101 welders and 127 controls (all non-smoking males) from southern Sweden. Personal breathing zone sampling of respirable dust was performed. Blood pressure (BP) and endothelial function (using peripheral arterial tonometry) were measured. Plasma and serum samples were collected from peripheral blood for measurement of C-reactive protein, low-density lipoprotein, homocysteine, serum amyloid A, and cytokines. Welders were exposed to 10-fold higher levels of particles than controls. Welders had significantly higher BP compared to controls, an average of 5 mm Hg higher systolic and diastolic BP (P ≤ 0.001). IL-8 was 3.4 ng/L higher in welders (P=0.010). Years working as a welder were significantly associated with increased BP (β=0.35, 95%CI 0.13 - 0.58, P=0.0024 for systolic BP; β=0.32, 95%CI 0.16 - 0.48, Pwelding and endothelial function, or other effect markers. A modest increase in BP was found among welders compared to controls suggesting that low-to-moderate exposure to welding fumes remains a risk factor for cardiovascular disease.

  4. Parental Occupational Exposure to Heavy Metals and Welding Fumes and Risk of Testicular Germ Cell Tumors in Offspring

    DEFF Research Database (Denmark)

    Togawa, Kayo; Le Cornet, Charlotte; Feychting, Maria

    2016-01-01

    BACKGROUND: Data are scarce on the association between prenatal/preconception environmental exposure and testicular germ cell tumor (TGCT) in offspring. We examined parental occupational exposures to heavy metals and welding fumes in relation to TGCT in offspring in a registry-based case-control ......BACKGROUND: Data are scarce on the association between prenatal/preconception environmental exposure and testicular germ cell tumor (TGCT) in offspring. We examined parental occupational exposures to heavy metals and welding fumes in relation to TGCT in offspring in a registry-based case...... registries. Information on parental occupations was retrieved from censuses. From this, we estimated prenatal/preconception exposures of chromium, iron, nickel, lead, and welding fumes (all three countries), and cadmium (Finland only) for each parent using job-exposure matrices specifying prevalence (P...... with presence of heavy metals/welding fumes (P × L > 0) and no dose-response relationship (Ptrend ≥ 0.32). A statistically significant elevated TGCT risk was found in paternal exposure category where both P and L of chromium were high (vs. no chromium; OR = 1.37, 95% confidence interval; 1.05-1.79). CONCLUSIONS...

  5. A Cross-Sectional Study of the Cardiovascular Effects of Welding Fumes.

    Directory of Open Access Journals (Sweden)

    Huiqi Li

    Full Text Available Occupational exposure to particulate air pollution has been associated with an increased risk of cardiovascular disease. However, the risk to welders working today remains unclear. We aimed to elucidate the cardiovascular effects of exposure to welding fumes.In a cross-sectional study, structured interviews and biological sampling were conducted for 101 welders and 127 controls (all non-smoking males from southern Sweden. Personal breathing zone sampling of respirable dust was performed. Blood pressure (BP and endothelial function (using peripheral arterial tonometry were measured. Plasma and serum samples were collected from peripheral blood for measurement of C-reactive protein, low-density lipoprotein, homocysteine, serum amyloid A, and cytokines.Welders were exposed to 10-fold higher levels of particles than controls. Welders had significantly higher BP compared to controls, an average of 5 mm Hg higher systolic and diastolic BP (P ≤ 0.001. IL-8 was 3.4 ng/L higher in welders (P=0.010. Years working as a welder were significantly associated with increased BP (β=0.35, 95%CI 0.13 - 0.58, P=0.0024 for systolic BP; β=0.32, 95%CI 0.16 - 0.48, P<0.001 for diastolic BP, adjusted for BMI but exposure to respirable dust was not associated with BP. No clear associations occurred between welding and endothelial function, or other effect markers.A modest increase in BP was found among welders compared to controls suggesting that low-to-moderate exposure to welding fumes remains a risk factor for cardiovascular disease.

  6. Selecting Processes to Minimize Hexavalent Chromium from Stainless Steel Welding: Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium in stainless steel welding fumes.

    Science.gov (United States)

    Keane, M; Siert, A; Stone, S; Chen, B; Slaven, J; Cumpston, A; Antonini, J

    2012-09-01

    Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium (Cr(6+)) in stainless steel welding fumes. The processes examined were gas metal arc welding (GMAW) (axial spray, short circuit, and pulsed spray modes), flux cored arc welding (FCAW), and shielded metal arc welding (SMAW). The Cr(6+) fractions were measured in the fumes; fume generation rates, Cr(6+) generation rates, and Cr(6+) generation rates per unit mass of welding wire were determined. A limited controlled comparison study was done in a welding shop including SMAW, FCAW, and three GMAW methods. The processes studied were compared for costs, including relative labor costs. Results indicate the Cr(6+) in the fume varied widely, from a low of 2800 to a high of 34,000 ppm. Generation rates of Cr(6+) ranged from 69 to 7800 μg/min, and Cr(6+) generation rates per unit of wire ranged from 1 to 270 μg/g. The results of field study were similar to the findings in the laboratory. The Cr(6+) (ppm) in the fume did not necessarily correlate with the Cr(6+) generation rate. Physical properties were similar for the processes, with mass median aerodynamic diameters ranging from 250 to 336 nm, while the FCAW and SMAW fumes were larger (360 and 670 nm, respectively). The pulsed axial spray method was the best choice of the processes studied based on minimal fume generation, minimal Cr(6+) generation, and cost per weld. This method is usable in any position, has a high metal deposition rate, and is relatively simple to learn and use.

  7. Risk of ischemic heart disease following occupational exposure to welding fumes: a systematic review with meta-analysis.

    Science.gov (United States)

    Mocevic, Emina; Kristiansen, Pernille; Bonde, Jens Peter

    2015-04-01

    Air pollution has been linked to an increased risk of ischemic heart disease (IHD), but less is known about occupational exposure to welding fumes and the risk of IHD. The objective of this paper was to review the epidemiological evidence on causal links between welding fume exposure and risk of IHD and to investigate whether the risk of IHD depends on specific welding characteristics. A systematic search in Medline 1979-2013 and EMBASE 1974-2013 identified 18 epidemiological studies with at least one risk estimate of IHD morbidity or mortality among workers exposed to welding fumes. Following an assessment of completeness of reporting, confounding, and bias, each risk estimate was characterized as more or less reliable. Pooled risk estimates were computed across studies by random effect meta-analyses. The weighted relative risk (RR) for IHD following exposure to welding fumes was 1.09 [95 % confidence interval (CI) 1.00, 1.19]. We calculated a RR of 1.39 (95 % CI 0.96, 2.02) among studies using an internal reference group and 1.08 (95 % CI 0.99, 1.18) for studies using an external reference group. An increased risk was observed for acute myocardial infarction RR = 1.69 (95 % CI 1.18, 2.42) and other IHDs RR = 1.06 (95 % CI 0.98, 1.14). There was too limited evidence to evaluate the risk of IHD related to specific welding characteristics. Several studies indicate that welding is associated with a moderately increased risk of IHD; however, bias and confounding cannot be ruled out with reasonable confidence.

  8. Assessment of the effect of welding fumes on welders' cognitive failure and health-related quality of life.

    Science.gov (United States)

    Rahmani, Abdolrasoul; Golbabaei, Farideh; Dehghan, Somayeh Farhang; Mazlomi, Adel; Akbarzadeh, Arash

    2016-09-01

    This study examined whether cognitive symptoms and health-related quality of life can be affected by welding fume exposure. Participants consisted of welders (n = 40) and welder assistants (n = 25) from welding units as the exposed group, and office workers (n = 44) as the non-exposed group. All participants were studied using ambient air monitoring and two types of questionnaires: the Cognitive Failures Questionnaire (CFQ) and the 36-item Short Form Health Survey (SF-36). Welders and welder assistants were exposed to higher concentrations of all airborne metals than office employees, except for aluminum and chromium (p health-related quality of life were not related to the measures of welding fume exposure and further research should be performed to find other influencing factors.

  9. Toenail as Non-invasive Biomarker in Metal Toxicity Measurement of Welding Fumes Exposure - A Review

    Science.gov (United States)

    Bakri, S. F. Z.; Hariri, A.; Ma'arop, N. F.; Hussin, N. S. A. W.

    2017-01-01

    Workers are exposed to a variety of heavy metal pollutants that are released into the environment as a consequence of workplace activities. This chemical pollutants are incorporated into the human by varies of routes entry and can then be stored and distributed in different tissues, consequently have a potential to lead an adverse health effects and/or diseases. As to minimize the impact, a control measures should be taken to avoid these effects and human biological marker is a very effective tool in the assessment of occupational exposure and potential related risk as the results is normally accurate and reproducible. Toenail is the ideal matrix for most common heavy metals due to its reliability and practicality compared to other biological samples as well as it is a non-invasive and this appears as a huge advantage of toenail as a biomarker. This paper reviews studies that measure the heavy metals concentration in toenail as non-invasive matrix which later may adapt in the investigation of metal fume emitted from welding process. The development of new methodology and modern analytical techniques has allowed the use of toenail as non-invasive approach. The presence of a heavy metal in this matrix reflects an exposure but the correlations between heavy metal levels in the toenail must be established to ensure that these levels are related to the total body burden. These findings suggest that further studies on interactions of these heavy metals in metal fumes utilizing toenail biomarker endpoints are highly warranted especially among welders.

  10. Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae.

    Science.gov (United States)

    Suri, Reetika; Periselneris, Jimstan; Lanone, Sophie; Zeidler-Erdely, Patti C; Melton, Geoffrey; Palmer, Keith T; Andujar, Pascal; Antonini, James M; Cohignac, Vanessa; Erdely, Aaron; Jose, Ricardo J; Mudway, Ian; Brown, Jeremy; Grigg, Jonathan

    2016-02-01

    Welders are at increased risk of pneumococcal pneumonia. The mechanism for this association is not known. The capacity of pneumococci to adhere to and infect lower airway cells is mediated by host-expressed platelet-activating factor receptor (PAFR). We sought to assess the effect of mild steel welding fumes (MS-WF) on PAFR-dependent pneumococcal adhesion and infection to human airway cells in vitro and on pneumococcal airway infection in a mouse model. The oxidative potential of MS-WF was assessed by their capacity to reduce antioxidants in vitro. Pneumococcal adhesion and infection of A549, BEAS-2B, and primary human bronchial airway cells were assessed by means of quantitative bacterial culture and expressed as colony-forming units (CFU). After intranasal instillation of MS-WF, mice were infected with Streptococcus pneumoniae, and bronchoalveolar lavage fluid (BALF) and lung CFU values were determined. PAFR protein levels were assessed by using immunofluorescence and immunohistochemistry, and PAFR mRNA expression was assessed by using quantitative PCR. PAFR was blocked by CV-3988, and oxidative stress was attenuated by N-acetylcysteine. MS-WF exhibited high oxidative potential. In A549 and BEAS-2B cells MS-WF increased pneumococcal adhesion and infection and PAFR protein expression. Both CV-3988 and N-acetylcysteine reduced MS-WF-stimulated pneumococcal adhesion and infection of airway cells. MS-WF increased mouse lung PAFR mRNA expression and increased BALF and lung pneumococcal CFU values. In MS-WF-exposed mice CV-3988 reduced BALF CFU values. Hypersusceptibility of welders to pneumococcal pneumonia is in part mediated by the capacity of welding fumes to increase PAFR-dependent pneumococcal adhesion and infection of lower airway cells. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  11. Response of the mouse lung transcriptome to welding fume: effects of stainless and mild steel fumes on lung gene expression in A/J and C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Antonini James M

    2010-06-01

    Full Text Available Abstract Background Debate exists as to whether welding fume is carcinogenic, but epidemiological evidence suggests that welders are an at risk population for the development of lung cancer. Recently, we found that exposure to welding fume caused an acutely greater and prolonged lung inflammatory response in lung tumor susceptible A/J versus resistant C57BL/6J (B6 mice and a trend for increased tumor incidence after stainless steel (SS fume exposure. Here, our objective was to examine potential strain-dependent differences in the regulation and resolution of the lung inflammatory response induced by carcinogenic (Cr and Ni abundant or non-carcinogenic (iron abundant metal-containing welding fumes at the transcriptome level. Methods Mice were exposed four times by pharyngeal aspiration to 5 mg/kg iron abundant gas metal arc-mild steel (GMA-MS, Cr and Ni abundant GMA-SS fume or vehicle and were euthanized 4 and 16 weeks after the last exposure. Whole lung microarray using Illumina Mouse Ref-8 expression beadchips was done. Results Overall, we found that tumor susceptibility was associated with a more marked transcriptional response to both GMA-MS and -SS welding fumes. Also, Ingenuity Pathway Analysis revealed that gene regulation and expression in the top molecular networks differed between the strains at both time points post-exposure. Interestingly, a common finding between the strains was that GMA-MS fume exposure altered behavioral gene networks. In contrast, GMA-SS fume exposure chronically upregulated chemotactic and immunomodulatory genes such as CCL3, CCL4, CXCL2, and MMP12 in the A/J strain. In the GMA-SS-exposed B6 mouse, genes that initially downregulated cellular movement, hematological system development/function and immune response were involved at both time points post-exposure. However, at 16 weeks, a transcriptional switch to an upregulation for neutrophil chemotactic genes was found and included genes such as S100A8, S100A9 and

  12. Exposure to welding fumes increases lung cancer risk among light smokers but not among heavy smokers: evidence from two case-control studies in Montreal.

    Science.gov (United States)

    Vallières, Eric; Pintos, Javier; Lavoué, Jérôme; Parent, Marie-Élise; Rachet, Bernard; Siemiatycki, Jack

    2012-08-01

    We investigated relationships between occupational exposure to gas and arc welding fumes and the risk of lung cancer among workers exposed to these agents throughout the spectrum of industries. Two population-based case-control studies were conducted in Montreal. Study I (1979-1986) included 857 cases and 1066 controls, and Study II (1996-2001) comprised 736 cases and 894 controls. Detailed job histories were obtained by interview and evaluated by an expert team of chemist-hygienists to estimate degree of exposure to approximately 300 substances for each job. Gas and arc welding fumes were among the agents evaluated. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer using logistic regression, adjusting for smoking history and other covariates. The two studies provided similar results, so a pooled analysis was conducted. Among all subjects, no significant association was found between lung cancer and gas welding fumes (OR = 1.1; 95% CI = 0.9-1.4) or arc welding fumes (OR = 1.0; 95% CI = 0.8-1.2). However, when restricting attention to light smokers, there was an increased risk of lung cancer in relation to gas welding fumes (OR = 2.9; 95% CI = 1.7-4.8) and arc welding fumes (OR = 2.3; 95% CI = 1.3-3.8), with even higher OR estimates among workers with the highest cumulative exposures. In conclusion, there was no detectable excess risk of lung cancer due to welding fumes among moderate to heavy smokers; but among light smokers we found an excess risk related to both types of welding fumes.

  13. Exposure to welding fumes increases lung cancer risk among light smokers but not among heavy smokers: evidence from two case–control studies in Montreal

    Science.gov (United States)

    Vallières, Eric; Pintos, Javier; Lavoué, Jérôme; Parent, Marie-Élise; Rachet, Bernard; Siemiatycki, Jack

    2012-01-01

    We investigated relationships between occupational exposure to gas and arc welding fumes and the risk of lung cancer among workers exposed to these agents throughout the spectrum of industries. Two population-based case–control studies were conducted in Montreal. Study I (1979–1986) included 857 cases and 1066 controls, and Study II (1996–2001) comprised 736 cases and 894 controls. Detailed job histories were obtained by interview and evaluated by an expert team of chemist–hygienists to estimate degree of exposure to approximately 300 substances for each job. Gas and arc welding fumes were among the agents evaluated. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer using logistic regression, adjusting for smoking history and other covariates. The two studies provided similar results, so a pooled analysis was conducted. Among all subjects, no significant association was found between lung cancer and gas welding fumes (OR = 1.1; 95% CI = 0.9–1.4) or arc welding fumes (OR = 1.0; 95% CI = 0.8–1.2). However, when restricting attention to light smokers, there was an increased risk of lung cancer in relation to gas welding fumes (OR = 2.9; 95% CI = 1.7–4.8) and arc welding fumes (OR = 2.3; 95% CI = 1.3–3.8), with even higher OR estimates among workers with the highest cumulative exposures. In conclusion, there was no detectable excess risk of lung cancer due to welding fumes among moderate to heavy smokers; but among light smokers we found an excess risk related to both types of welding fumes. PMID:23342253

  14. Exposure to welding fumes is associated with hypomethylation of the F2RL3 gene: a cardiovascular disease marker.

    Science.gov (United States)

    Hossain, Mohammad B; Li, Huiqi; Hedmer, Maria; Tinnerberg, Håkan; Albin, Maria; Broberg, Karin

    2015-12-01

    Welders are at risk for cardiovascular disease. Recent studies linked tobacco smoke exposure to hypomethylation of the F2RL3 (coagulation factor II (thrombin) receptor-like 3) gene, a marker for cardiovascular disease prognosis and mortality. However, whether welding fumes cause hypomethylation of F2RL3 remains unknown. We investigated 101 welders (median span of working as a welder: 7 years) and 127 unexposed controls (non-welders with no obvious exposure to respirable dust at work), age range 23-60 years, all currently non-smoking, in Sweden. The participants were interviewed about their work history, lifestyle factors and diseases. Personal sampling of respirable dust was performed for the welders. DNA methylation of F2RL3 in blood was assessed by pyrosequencing of four CpG sites, CpG_2 (corresponds to cg03636183) to CpG_5, in F2RL3. Multivariable linear regression analysis was used to assess the association between exposure to welding fumes and F2RL3 methylation. Welders had 2.6% lower methylation of CpG_5 than controls (pWelding fumes exposure and previous smoking were associated with F2RL3 hypomethylation. This finding links low-to-moderate exposure to welding fumes to adverse effects on the cardiovascular system, and suggests a potential mechanistic pathway for this link, via epigenetic effects on F2RL3 expression. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Genotoxic Evaluation of Mexican Welders Occupationally Exposed to Welding-Fumes Using the Micronucleus Test on Exfoliated Oral Mucosa Cells: A Cross-Sectional, Case-Control Study.

    Directory of Open Access Journals (Sweden)

    Ana Cecilia Jara-Ettinger

    Full Text Available An estimated 800,000 people worldwide are occupationally exposed to welding-fumes. Previous studies show that the exposure to such fumes is associated with damage to genetic material and increased cancer risk. In this study, we evaluate the genotoxic effect of welding-fumes using the Micronucleus Test on oral mucosa cells of Mexican welders.We conducted a cross-sectional, matched case-control study of n = 66 (33 exposed welders, and 33 healthy controls. Buccal mucosa smears were collected and stained with acridine orange, observed under 100x optical amplification with a fluorescence lamp, and a single-blinded observer counted the number of micronuclei and other nuclear abnormalities per 2,000 observed cells. We compared the frequencies of micronuclei and other nuclear abnormalities, and fitted generalised linear models to investigate the interactions between nuclear abnormalities and the exposure to welding-fumes, while controlling for smoking and age.Binucleated cells and condensed-chromatin cells showed statistically significant differences between cases and controls. The frequency of micronuclei and the rest of nuclear abnormalities (lobed-nuclei, pyknosis, karyolysis, and karyorrhexis did not differ significantly between the groups. After adjusting for smoking, the regression results showed that the occurrence of binucleated cells could be predicted by the exposure to welding-fumes plus the presence of tobacco consumption; for the condensed-chromatin cells, our model showed that the exposure to welding-fumes is the only reliable predictor.Our findings suggest that Mexican welders who are occupationally exposed to welding-fumes have increased counts of binucleated and condensed-chromatin cells. Nevertheless, the frequencies of micronuclei and the rest of nuclear abnormalities did not differ between cases and controls. Further studies should shed more light on this subject.

  16. Preparation and certification of two new bulk welding fume reference materials for use in laboratories undertaking analysis of occupational hygiene samples.

    Science.gov (United States)

    Butler, Owen; Musgrove, Darren; Stacey, Peter

    2014-01-01

    Workers can be exposed to fume, arising from welding activities, which contain toxic metals and metalloids. Occupational hygienists need to assess and ultimately minimize such exposure risks. The monitoring of the concentration of particles in workplace air is one assessment approach whereby fume, from representative welding activities, is sampled onto a filter and returned to a laboratory for analysis. Inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry are generally employed as instrumental techniques of choice for the analysis of such filter samples. An inherent difficulty, however, with inductively coupled plasma-based analytical techniques is that they typically require a sample to be presented for analysis in the form of a solution. The efficiency of the required dissolution step relies heavily upon the skill and experience of the analyst involved. A useful tool in assessing the efficacy of this dissolution step would be the availability and subsequent analysis of welding fume reference materials with stated elemental concentrations and matrices that match as closely as possible the matrix composition of welding fume samples submitted to laboratories for analysis. This article describes work undertaken at the Health and Safety Laboratory to prepare and certify two new bulk welding fume reference materials that can be routinely used by analysts to assess the performance of the digestion procedures they employ in their laboratories.

  17. Characterization of the morphological properties of welding fume particles by transmission electron microscopy and digital image analysis.

    Science.gov (United States)

    Farrants, G; Schüler, B; Karlsen, J; Reith, A; Langård, S

    1989-09-01

    The morphological characteristics of welding fume particles have been determined using transmission electron microscopy (TEM) and automatic image analysis (AIA). Two personal samples and one background sample were collected using a new, easy to handle sampling method, during tungsten inert gas (TIG) and manual metal arc (MMA) welding on Inconel in the same shop. The collection method gave samples which were suitable for TEM and AIA. Electron micrographs were taken in a transmission electron microscope and further analyzed using an image analysis unit. Aggregates composed of many individual particles were analyzed both for the parameters of the aggregate and for the parameters of the individual particles by using an algorithm based on a grain boundary reconstruction technique. The morphological parameters allowed the welding fume's particulate matter to be divided into three types - here called small, medium, and large - with a somewhat unclear distinction between medium and large. Medium and large particles occur either as individual particles or as clusters of approximately spherical particles with average diameters of 0.07 and 0.15 microm, respectively. Small particles occur almost exclusively as long chains or lace-like structures of aggregates of particles, often in the range of 5-10 microm. The aggregates have an average projected area of 2.6 x 10-3 microm2 and are composed of several hundred individual particles.

  18. Pneumococcal infection of respiratory cells exposed to welding fumes; Role of oxidative stress and HIF-1 alpha.

    Science.gov (United States)

    Grigg, Jonathan; Miyashita, Lisa; Suri, Reetika

    2017-01-01

    Welders are more susceptible to pneumococcal pneumonia. The mechanisms are yet unclear. Pneumococci co-opt the platelet activating factor receptor (PAFR) to infect respiratory epithelial cells. We previously reported that exposure of respiratory cells to welding fumes (WF), upregulates PAFR-dependent pneumococcal infection. The signaling pathway for this response is unknown, however, in intestinal cells, hypoxia-inducible factor-1 α (HIF 1α) is reported to mediate PAFR-dependent infection. We sought to assess whether oxidative stress plays a role in susceptibility to pneumococcal infection via the platelet activating factor receptor. We also sought to evaluate the suitability of nasal epithelial PAFR expression in welders as a biomarker of susceptibility to infection. Finally, we investigated the generalisability of the effect of welding fumes on pneumococcal infection and growth using a variety of different welding fume samples. Nasal epithelial PAFR expression in welders and controls was analysed by flow cytometry. WF were collected using standard methodology. The effect of WF on respiratory cell reactive oxygen species production, HIF-1α expression, and pneumococcal infection was determined using flow cytometry, HIF-1α knockdown and overexpression, and pneumococcal infection assays. We found that nasal PAFR expression is significantly increased in welders compared with controls and that WF significantly increased reactive oxygen species production, HIF-1α and PAFR expression, and pneumococcal infection of respiratory cells. In unstimulated cells, HIF-1α knockdown decreased PAFR expression and HIF-1α overexpression increased PAFR expression. However, in knockdown cells pneumococcal infection was paradoxically increased and in overexpressing cells infection was unaffected. Nasal epithelial PAFR expression may be used as a biomarker of susceptibility to pneumococcal infection in order to target individuals, particularly those at high risk such as welders

  19. Evaluation of the Pulmonary Toxicity of a Fume Generated from a Nickel-, Copper-Based Electrode to be Used as a Substitute in Stainless Steel Welding

    Science.gov (United States)

    Antonini, James M; Badding, Melissa A; Meighan, Terence G; Keane, Michael; Leonard, Stephen S; Roberts, Jenny R

    2014-01-01

    Epidemiology has indicated a possible increase in lung cancer among stainless steel welders. Chromium (Cr) is a primary component of stainless steel welding fume. There is an initiative to develop alternative welding consumables [nickel (Ni)- and copper (Cu)-based alloys] that do not contain Cr. No study has been performed to evaluate the toxicity of fumes generated from Ni- and Cu-based consumables. Dose–response and time-course effects on lung toxicity of a Ni- and Cu-based welding fume (Ni–Cu WF) were examined using an in vivo and in vitro bioassay, and compared with two other well-characterized welding fumes. Even though only trace amounts of Cr were present, a persistent increase in lung injury and inflammation was observed for the Ni–Cu WF compared to the other fumes. The difference in response appears to be due to a direct cytotoxic effect by the Ni–Cu WF sample on lung macrophages as opposed to an elevated production of reactive oxygen species (ROS). PMID:25392698

  20. Human biomonitoring of chromium and nickel from an experimental exposure to manual metal arc welding fumes of low and high alloyed steel.

    Science.gov (United States)

    Bertram, Jens; Brand, Peter; Schettgen, Thomas; Lenz, Klaus; Purrio, Ellwyn; Reisgen, Uwe; Kraus, Thomas

    2015-05-01

    The uptake and elimination of metals from welding fumes is currently not fully understood. In the Aachen Workplace Simulation Laboratory (AWSL) it is possible to investigate the impact of welding fumes on human subjects under controlled exposure conditions. In this study, the uptake and elimination of chromium or chromium (VI) respectively as well as nickel was studied in subjects after exposure to the emissions of a manual metal arc welding process using low or high alloyed steel. In this present study 12 healthy male non-smokers, who never worked as welders before, were exposed for 6h to welding fumes of a manual metal arc welding process. In a three-fold crossover study design, subjects were exposed in randomized order to either clean air, emissions from welding low alloyed steel, and emissions from welding high alloyed steel. Particle mass concentration of the exposure aerosol was 2.5mg m(-3). The content of chromium and nickel in the air was determined by analysing air filter samples on a high emission scenario. Urine analysis for chromium and nickel was performed before and after exposure using methods of human biomonitoring. There were significantly elevated chromium levels after exposure to welding fumes from high alloyed steel compared to urinary chromium levels before exposure to high alloyed welding fumes, as well as compared to the other exposure scenarios. The mean values increased from 0.27 µg l(-1) to 18.62 µg l(-1). The results were in good agreement with already existing correlations between external and internal exposure (German exposure equivalent for carcinogenic working materials EKA). The variability of urinary chromium levels was high. For urinary nickel no significant changes could be detected at all. Six-hour exposure to 2.5mg m(-3) high alloyed manual metal arc welding fumes lead to elevated urinary chromium levels far higher (7.11-34.16 µg l(-1)) than the German biological exposure reference value (BAR) of 0.6 µg l(-1) directly after

  1. Determination of Informal Sector as Urban Pollution Source : Fume Characterization of Small-scale Manual Metal Arc Welding using Factor Analysis in Bandung City

    Directory of Open Access Journals (Sweden)

    A. Nastiti

    2012-04-01

    Full Text Available In developing countries, the informal sector, particularly small-scale welding activities, are considered to be an important contributor to urban air pollution although studies in this sector are limited. This study aims to identify the composition of small-scale welding fume in order to further investigate the effects and set control strategies and urban pollution abatement policies. Breathing zone air samples were collected from 30 mild steel manual metal arc welders and 17 non-welders in Bandung City, West Java, Indonesia. The respirable particulates in air samples were analyzed using gravimetric method, and Instrumental Neutron Activation Analysis (INAA was employed to identify characteristic of welding fume. It was found that respirable particulates concentration in welders (range : 315.6 and 3,735.93 µgm-3; average 1,545.436 µgm-3 were significantly higher than in non-welders (range : 41.84 and 1,688.03 µgm-3; average : 375.783 µgm-3. Welders’ breathing zones contain Fe>Na>K>Mn>Al >Cr>Ti>Cl>Br>I>Zn>Sb>V>Co>Sc; while non-welders’ breathing zones contain Cr>F>Al>Ti>Na>Br>I>Mn>Cl>Co>Zn>Sc. Inter-species correlation analysis conducted using Statgraphic Ver. 4.0 shows that Fe (range : n.d. – 775.19 µgm-3; average: 0.1674 µgm-3, Co (range : n.d. – 0.51 µgm-3; average: 0.000082 µgm-3, Mn (range : 0.39 – 148.37 µgm-3; average: 0.0374 µgm-3, Na (range: 0.17 and 623.85 µgm-3; average: 0.0973 µgm-3 and K (range : n.d. – 301.15 µgm-3; average: 0.0535 µgm-3 were emitted from welding activity, and thus are considered as components of welding fume which contribute to urban air pollution. Although welding fume and the identified species in welding fume were still below permissible limit, small-scale welding activities have great potential in emitting higher fume concentration due to due to high variability of welding activities, such as welding frequency, materials being welded, and varied environmental conditions

  2. The particle size distribution, density, and specific surface area of welding fumes from SMAW and GMAW mild and stainless steel consumables.

    Science.gov (United States)

    Hewett, P

    1995-02-01

    Particle size distributions were measured for fumes from mild steel (MS) and stainless steel (SS); shielded metal arc welding (SMAW) and gas metal arc welding (GMAW) consumables. Up to six samples of each type of fume were collected in a test chamber using a micro-orifice uniform deposit (cascade) impactor. Bulk samples were collected for bulk fume density and specific surface area analysis. Additional impactor samples were collected using polycarbonate substrates and analyzed for elemental content. The parameters of the underlying mass distributions were estimated using a nonlinear least squares analysis method that fits a smooth curve to the mass fraction distribution histograms of all samples for each type of fume. The mass distributions for all four consumables were unimodal and well described by a lognormal distribution; with the exception of the GMAW-MS and GMAW-SS comparison, they were statistically different. The estimated mass distribution geometric means for the SMAW-MS and SMAW-SS consumables were 0.59 and 0.46 micron aerodynamic equivalent diameter (AED), respectively, and 0.25 micron AED for both the GMAW-MS and GMAW-SS consumables. The bulk fume densities and specific surface areas were similar for the SMAW-MS and SMAW-SS consumables and for the GMAW-MS and GMAW-SS consumables, but differed between SMAW and GMAW. The distribution of metals was similar to the mass distributions. Particle size distributions and physical properties of the fumes were considerably different when categorized by welding method. Within each welding method there was little difference between MS and SS fumes.

  3. A comparison of cytotoxicity and oxidative stress from welding fumes generated with a new nickel-, copper-based consumable versus mild and stainless steel-based welding in RAW 264.7 mouse macrophages.

    Science.gov (United States)

    Badding, Melissa A; Fix, Natalie R; Antonini, James M; Leonard, Stephen S

    2014-01-01

    Welding processes that generate fumes containing toxic metals, such as hexavalent chromium (Cr(VI)), manganese (Mn), and nickel (Ni), have been implicated in lung injury, inflammation, and lung tumor promotion in animal models. While federal regulations have reduced permissible worker exposure limits to Cr(VI), this is not always practical considering that welders may work in confined spaces and exhaust ventilation may be ineffective. Thus, there has been a recent initiative to minimize the potentially hazardous components in welding materials by developing new consumables containing much less Cr(VI) and Mn. A new nickel (Ni) and copper (Cu)-based material (Ni-Cu WF) is being suggested as a safer alternative to stainless steel consumables; however, its adverse cellular effects have not been studied. This study compared the cytotoxic effects of the newly developed Ni-Cu WF with two well-characterized welding fumes, collected from gas metal arc welding using mild steel (GMA-MS) or stainless steel (GMA-SS) electrodes. RAW 264.7 mouse macrophages were exposed to the three welding fumes at two doses (50 µg/ml and 250 µg/ml) for up to 24 hours. Cell viability, reactive oxygen species (ROS) production, phagocytic function, and cytokine production were examined. The GMA-MS and GMA-SS samples were found to be more reactive in terms of ROS production compared to the Ni-Cu WF. However, the fumes from this new material were more cytotoxic, inducing cell death and mitochondrial dysfunction at a lower dose. Additionally, pre-treatment with Ni-Cu WF particles impaired the ability of cells to phagocytize E. coli, suggesting macrophage dysfunction. Thus, the toxic cellular responses to welding fumes are largely due to the metal composition. The results also suggest that reducing Cr(VI) and Mn in the generated fume by increasing the concentration of other metals (e.g., Ni, Cu) may not necessarily improve welder safety.

  4. Biomonitoring for iron, manganese, chromium, aluminum, nickel and cadmium in workers exposed to welding fume: a preliminary study

    Directory of Open Access Journals (Sweden)

    Mulyana

    2015-05-01

    Full Text Available The control of exposure to welding fumes is increasing importance in promoting a healthy, safe and productive work environment. This study is a case-control design, random study was conducted among welder (56 subjects and non welder (39 subjects with more than 1 years experience in the same job task in an automotive parts manufactory within the industrial area at Cikarang in 2013. All subjects were completed physical examination, informed consent and questionnaire. Blood heavy metals were determined by Inductively-Coupled Plasma Mass Spectrometry (ICP-MS. Whole blood iron, manganese, chromium and lead in welder were higher than non-welder, but not different for aluminum, nickel and cadmium. In welder, chromium and manganese correlated with smoking status, cadmium correlated with age and smoking status. In multivariate analysis, wholeblood cadmium correlates with age and smoking status.

  5. Oxidative stress, telomere shortening, and DNA methylation in relation to low-to-moderate occupational exposure to welding fumes.

    Science.gov (United States)

    Li, Huiqi; Hedmer, Maria; Wojdacz, Tomasz; Hossain, Mohammad Bakhtiar; Lindh, Christian H; Tinnerberg, Håkan; Albin, Maria; Broberg, Karin

    2015-10-01

    Evidence suggests that exposure to welding fumes is a risk factor for lung cancer. We examined relationships between low-to-moderate occupational exposure to particles from welding fumes and cancer-related biomarkers for oxidative stress, changes in telomere length, and alterations in DNA methylation. We enrolled 101 welders and 127 controls (all currently nonsmoking men) from southern Sweden. We performed personal sampling of respirable dust and measured 8-oxodG concentrations in urine using a simplified liquid chromatography tandem mass spectrometry method. Telomere length in peripheral blood was measured by quantitative polymerase chain reaction. Methylation status of 10 tumor suppressor genes was determined by methylation-sensitive high-resolution melting analysis. All analyses were adjusted for age, body mass index, previous smoking, passive smoking, current residence, and wood burning stove/boiler at home. Welders were exposed to respirable dust at 1.2 mg/m(3) (standard deviation, 3.3 mg/m(3); range, 0.1-19.3), whereas control exposures did not exceed 0.1 mg/m(3) (P < 0.001). Welders and controls did not differ in 8-oxodG levels (β = 1.2, P = 0.17) or relative telomere length (β = -0.053, P = 0.083) in adjusted models. Welders showed higher probability of adenomatous polyposis coli (APC) methylation in the unadjusted model (odds ratio = 14, P = 0.014), but this was not significant in the fully adjusted model (P = 0.052). Every working year as a welder was associated with 0.0066 units shorter telomeres (95% confidence interval -0.013 to -0.00053, P = 0.033). Although there were no clear associations between concentrations of respirable dust and the biomarkers, there were modest signs of associations between oxidative stress, telomere alterations, DNA methylation, and occupational exposure to low-to-moderate levels of particles. © 2015 Wiley Periodicals, Inc.

  6. Assessment of occupational exposure to welding fumes by inductively coupled plasma-mass spectroscopy and by the alkaline Comet assay.

    Science.gov (United States)

    Botta, Céline; Iarmarcovai, Gwenaëlle; Chaspoul, Florence; Sari-Minodier, Irène; Pompili, Jocelyne; Orsière, Thierry; Bergé-Lefranc, Jean-Louis; Botta, Alain; Gallice, Philippe; De Méo, Michel

    2006-05-01

    Welding fumes are classified as possibly carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer. In the current study, blood and urine concentrations of aluminum (Al), cadmium (Cd), cobalt (Co), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) were monitored by inductively coupled plasma-mass spectrometry (ICP-MS) in 30 welders and in 22 controls. In addition, DNA damage was examined in the lymphocytes of these subjects by the alkaline Comet assay. Two biological samples were taken from the welders at the beginning (BW) and at the end (EW) of a work week. In controls, collection of samples was limited to BW. Blood concentrations of Cd, Co, Cr, Ni, and Pb were higher in the welders than in the control group while higher concentrations of Al, Cd, Co, Cr, Ni, and Pb were detected in welder urines. There was no significant difference in the metal concentrations for the BW and EW welder samples. Increased levels of DNA damage were found in lymphocytes from welders as compared to the controls, and 20/30 welders had higher levels of DNA lesions in the EW than in the BW samples. Age had a significant effect on DNA damage in the control group. Spearman's rank correlation analysis indicated that there were positive correlations between blood concentrations of Al, Co, Ni, and Pb and the levels of DNA damage. A negative correlation was found between DNA damage and Mn in blood, while there was a positive correlation between urinary Mn concentration and DNA damage. These data indicate that occupational exposure to welding fumes increases DNA damage in lymphocytes. Copyright (c) 2006 Wiley-Liss, Inc.

  7. Reduction in welding fume and metal exposure of stainless steel welders: an example from the WELDOX study.

    Science.gov (United States)

    Lehnert, Martin; Weiss, Tobias; Pesch, Beate; Lotz, Anne; Zilch-Schöneweis, Sandra; Heinze, Evelyn; Van Gelder, Rainer; Hahn, Jens-Uwe; Brüning, Thomas

    2014-07-01

    In a plant where flux-cored arc welding was applied to stainless steel, we investigated changes in airborne and internal metal exposure following improvements of exhaust ventilation and respiratory protection. Twelve welders were examined at a time in 2008 and in 2011 after improving health protection. Seven welders were enrolled in both surveys. Exposure measurement was performed by personal sampling of respirable welding fume inside the welding helmets during one work shift. Urine and blood samples were taken after the shift. Chromium (Cr), nickel (Ni), and manganese (Mn) were determined in air and biological samples. The geometric mean of respirable particles could be reduced from 4.1 mg/m(3) in 2008-0.5 mg/m(3) in 2011. Exposure to airborne metal compounds was also strongly reduced (Mn: 399 vs. 6.8 μg/m(3); Cr: 187 vs. 6.3 μg/m(3); Ni: 76 vs. 2.8 μg/m(3)), with the most striking reduction inside helmets with purified air supply. Area sampling revealed several concentrations above established or proposed exposure limits. Urinary metal concentrations were also reduced, but to a lesser extent (Cr: 14.8 vs. 4.5 μg/L; Ni: 7.9 vs. 3.1 μg/L). Although biologically regulated, the mean Mn concentration in blood declined from 12.8 to 8.9 μg/L. This intervention study demonstrated a distinct reduction in the exposure of welders using improved exhaust ventilation and welding helmets with purified air supply in the daily routine. Data from area sampling and biomonitoring indicated that the area background level may add considerably to the internal exposure.

  8. A Field Study on the Respiratory Deposition of the Nano-Sized Fraction of Mild and Stainless Steel Welding Fume Metals.

    Science.gov (United States)

    Cena, L G; Chisholm, W P; Keane, M J; Chen, B T

    2015-01-01

    A field study was conducted to estimate the amount of Cr, Mn, and Ni deposited in the respiratory system of 44 welders in two facilities. Each worker wore a nanoparticle respiratory deposition (NRD) sampler during gas metal arc welding (GMAW) of mild and stainless steel and flux-cored arc welding (FCAW) of mild steel. Several welders also wore side-by-side NRD samplers and closed-face filter cassettes for total particulate samples. The NRD sampler estimates the aerosol's nano-fraction deposited in the respiratory system. Mn concentrations for both welding processes ranged 2.8-199 μg/m3; Ni concentrations ranged 10-51 μg/m3; and Cr concentrations ranged 40-105 μg/m3. Cr(VI) concentrations ranged between 0.5-1.3 μg/m3. For the FCAW process the largest concentrations were reported for welders working in pairs. As a consequence this often resulted in workers being exposed to their own welding fumes and to those generated from the welding partner. Overall no correlation was found between air velocity and exposure (R2 = 0.002). The estimated percentage of the nano-fraction of Mn deposited in a mild-steel-welder's respiratory system ranged between 10 and 56%. For stainless steel welding, the NRD samplers collected 59% of the total Mn, 90% of the total Cr, and 64% of the total Ni. These results indicate that most of the Cr and more than half of the Ni and Mn in the fumes were in the fraction smaller than 300 nm.

  9. Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray.

    Science.gov (United States)

    Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael

    2016-07-01

    Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the "gold standard" for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing "monodisperse" aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in some test

  10. Lifetime occupational exposure to metals and welding fumes, and risk of glioma: a 7-country population-based case-control study.

    Science.gov (United States)

    Parent, Marie-Elise; Turner, Michelle C; Lavoué, Jérôme; Richard, Hugues; Figuerola, Jordi; Kincl, Laurel; Richardson, Lesley; Benke, Geza; Blettner, Maria; Fleming, Sarah; Hours, Martine; Krewski, Daniel; McLean, David; Sadetzki, Siegal; Schlaefer, Klaus; Schlehofer, Brigitte; Schüz, Joachim; Siemiatycki, Jack; van Tongeren, Martie; Cardis, Elisabeth

    2017-08-25

    Brain tumor etiology is poorly understood. Based on their ability to pass through the blood-brain barrier, it has been hypothesized that exposure to metals may increase the risk of brain cancer. Results from the few epidemiological studies on this issue are limited and inconsistent. We investigated the relationship between glioma risk and occupational exposure to five metals - lead, cadmium, nickel, chromium and iron- as well as to welding fumes, using data from the seven-country INTEROCC study. A total of 1800 incident glioma cases and 5160 controls aged 30-69 years were included in the analysis. Lifetime occupational exposure to the agents was assessed using the INTEROCC JEM, a modified version of the Finnish job exposure matrix FINJEM. In general, cases had a slightly higher prevalence of exposure to the various metals and welding fumes than did controls, with the prevalence among ever exposed ranging between 1.7 and 2.2% for cadmium to 10.2 and 13.6% for iron among controls and cases, respectively. However, in multivariable logistic regression analyses, there was no association between ever exposure to any of the agents and risk of glioma with odds ratios (95% confidence intervals) ranging from 0.8 (0.7-1.0) for lead to 1.1 (0.7-1.6) for cadmium. Results were consistent across models considering cumulative exposure or duration, as well as in all sensitivity analyses conducted. Findings from this large-scale international study provide no evidence for an association between occupational exposure to any of the metals under scrutiny or welding fumes, and risk of glioma.

  11. Occupational urticaria from welding polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Kanerva, L.; Estlander, T.; Jolanki, R.; Laehteenmaeki, M.T.Ke.; Keskinen, H. (Institute of Occupational Health, Helsinki (Finland))

    1991-05-01

    An urticarial reaction associated with high fever developed in a welder on four occasions while he was welding steel profiles filled with polyurethane. The fumes emitted during pyrolysis of polyurethane and inhaled by the patient probably caused the urticarial reaction. Provocation tests with two pyrolysis products, 4,4-diphenylmethane diisocyanate and 4,4-diaminophenylmethane, were negative. This case demonstrates the difficulty in detecting the cause of urticaria induced by airborne chemicals.

  12. Inhalants

    Science.gov (United States)

    ... of inhalants, visit http://www.drugabuse.gov/drugs-abuse/inhalants . Do people use inhalants for breathing problems? No, they use inhalers, which usually contain a type of steroid that reduces inflammation in the airways. Or they ...

  13. Inhalants

    Science.gov (United States)

    ... containers, or rags or clothing soaked with chemicals drunk or disoriented actions slurred speech nausea (feeling sick) ... functions choking—inhaling vomit after inhalant use injuries—accidents, including driving, while intoxicated Are inhalants addictive? It ...

  14. Welding.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  15. Inhalants

    Science.gov (United States)

    ... Science Adolescent Brain Comorbidity College-Age & Young Adults Criminal Justice Drugged Driving Drug Testing Drugs and the ... of Inhalants Statistics and Trends Swipe left or right to scroll. Monitoring the Future Study: Trends in ...

  16. An Evaluation of Welding Processes to Reduce Hexavalent Chromium Exposures and Reduce Costs by Using Better Welding Techniques

    OpenAIRE

    Keane, Michael J

    2014-01-01

    A group of stainless steel arc welding processes was compared for emission rates of fume and hexavalent chromium, and costs per meter length of weld. The objective was to identify those with minimal emissions and also compare relative labor and consumables costs. The selection included flux-cored arc welding (FCAW), shielded-metal arc welding (SMAW), and multiple gas metal arc welding (GMAW) processes. Using a conical chamber, fumes were collected, and fume generation rates and hexavalent chr...

  17. A Low-Cost, Effective, Fumes Exhaust System.

    Science.gov (United States)

    Jacobs, C. O.

    1979-01-01

    Discusses the importance of avoiding welding fumes. The sources of these fumes are presented in a table. Criticizes currently used ventilation systems and reviews the Occupational Safety and Health Act requirements. Describes a low-cost exhaust system developed for agricultural mechanics laboratories. (LRA)

  18. Systemic immune cell response in rats after pulmonary exposure to manganese-containing particles collected from welding aerosols.

    Science.gov (United States)

    Antonini, James M; Zeidler-Erdely, Patti C; Young, Shih-Houng; Roberts, Jenny R; Erdely, Aaron

    2012-01-01

    Welding fume inhalation affects the immune system of exposed workers. Manganese (Mn) in welding fume may induce immunosuppressive effects. The goal was to determine if Mn in welding fume alters immunity by reducing the number of circulating total leukocytes and specific leukocyte sub-populations. Sprague-Dawley rats were treated by intratracheal instillation (ITI) with either a single dose (2.00 mg/rat) or repeated doses (0.125 or 2.00 mg/rat for 7 weeks) with welding fumes that contained different levels of Mn. Additional rats were treated by ITI once a week for 7 weeks with the two doses of manganese chloride (MnCl₂). Bronchoalveolar lavage was performed to assess lung inflammation. Also, whole blood was recovered, and the number of circulating total leukocytes, as well as specific lymphocyte subsets, was determined by flow cytometry. The welding fume highest in Mn content significantly increased lung inflammation, injury, and production of inflammatory cytokines and chemokines compared to all other treatment groups. In addition, the same group expressed significant decreases in the number of circulating CD4⁺ and CD8⁺ T-lymphocytes after a single exposure, and significant reductions in the number of circulating total lymphocytes, primarily CD4⁺ and CD8⁺ T-lymphocytes, after repeated exposures (compared to control values). Repeated MnCl₂ exposure led to a trend of a reduction (but not statistically significant) in circulating total lymphocytes, attributable to the changes in the CD4⁺ T-lymphocyte population levels. The welding fume with the lower concentration of Mn had no significant effect on the numbers of blood lymphocytes and lymphocyte subsets compared to control values. Evidence from this study indicates that pulmonary exposure to certain welding fumes cause decrements in systemic immune cell populations, specifically circulating T-lymphocytes, and these alterations in immune cell number are not dependent exclusively on Mn, but likely a

  19. Personal exposure to metal fume, NO2, and O3 among production welders and non-welders.

    Science.gov (United States)

    Schoonover, Todd; Conroy, Lorraine; Lacey, Steven; Plavka, Julie

    2011-01-01

    The objective of this study was to characterize personal exposures to welding-related metals and gases for production welders and non-welders in a large manufacturing facility. Welding fume metals and irritant gases nitrogen dioxide (NO(2)) and ozone (O(3)) were sampled for thirty-eight workers. Personal exposure air samples for welding fume metals were collected on 37 mm open face cassettes and nitrogen dioxide and ozone exposure samples were collected with diffusive passive samplers. Samples were analyzed for metals using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and welding fume metal exposure concentrations were defined as the sum of welding-related metals mass per volume of air sampled. Welding fume metal exposures were highly variable among similar types of welding while NO(2) and O(3) exposure were less variable. Welding fume metal exposures were significantly higher 474 μg/m(3) for welders than non-welders 60 μg/m(3) (p=0.001). Welders were exposed to higher concentrations of NO(2) and O(3) than non-welders but the differences were not statistically significant. Welding fume metal exposure concentrations for welders performing gas metal arc welding (GMAW) and shielded metal arc welding (SMAW) were higher than welders performing gas tungsten arc welding (GTAW). Non-welders experienced exposures similar to GTAW welders despite a curtain wall barrier separating welding and non-welding work areas.

  20. Welding.

    Science.gov (United States)

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  1. Estimation of regional pulmonary deposition and exposure for fumes from SMAW and GMAW mild and stainless steel consumables.

    Science.gov (United States)

    Hewett, P

    1995-02-01

    The particle size distributions and bulk fume densities for mild steel and stainless steel welding fumes generated using two welding processes (shielded metal arc welding [SMAW] and gas metal arc welding [GMAW]) were used in mathematical models to estimate regional pulmonary deposition (the fraction of each fume expected to deposit in each region of the pulmonary system) and regional pulmonary exposure (the fraction of each fume expected to penetrate to each pulmonary region and would be collected by a particle size-selective sampling device). Total lung deposition for GMAW fumes was estimated at 60% greater than that of SMAW fumes. Considering both the potential for deposition and the fume specific surface areas, it is likely that for equal exposure concentrations GMAW fumes deliver nearly three times the particle surface area to the lungs as SMAW fumes. This leads to the hypothesis that exposure to GMAW fumes constitutes a greater pulmonary hazard than equal exposure to SMAW fumes. The implications of this hypothesis regarding the design of future health studies of welders is discussed.

  2. Cow Dung Ingestion and Inhalation Dependence: A Case Report

    Science.gov (United States)

    Khairkar, Praveen; Tiple, Prashant; Bang, Govind

    2009-01-01

    Although abuse of several unusual inhalants had been documented, addiction to cow dung fumes or their ashes has not been reported in medical literature as yet. We are reporting a case of cow dung dependence in ingestion and inhalational form.

  3. Cost and Performance Report: Introduction and Validation of Chromium-Free Consumables for Welding Stainless Steels. Version 2

    Science.gov (United States)

    2015-04-01

    results in the formation of Cr (VI) in the welding fume. The Cr (VI) is a carcinogen and is considered a significant health hazard for the welding ...18 6.1.3 Field Demonstration Health and Safety Monitoring ..................................23 iii 6.2 Weld ...results in the formation of Cr(VI) in the welding fume. The Cr(VI) is a carcinogen and is considered a significant health hazard for the welding

  4. [New welding processes and health effects of welding].

    Science.gov (United States)

    La Vecchia, G Marina; Maestrelli, Piero

    2011-01-01

    This paper describes some of the recent developments in the control technology to enhance capability of Pulse Gas Metal Arc Welding. Friction Stir Welding (FSW) processing has been also considered. FSW is a new solid-state joining technique. Heat generated by friction at the rotating tool softens the material being welded. FSW can be considered a green and energy-efficient technique without deleterious fumes, gas, radiation, and noise. Application of new welding processes is limited and studies on health effects in exposed workers are lacking. Acute and chronic health effects of conventional welding have been described. Metal fume fever and cross-shift decline of lung function are the main acute respiratory effects. Skin and eyes may be affected by heat, electricity and UV radiations. Chronic effects on respiratory system include chronic bronchitis, a benign pneumoconiosis (siderosis), asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders.

  5. Fine particles in welding workshop; Hitsaamon pienhiukkaset

    Energy Technology Data Exchange (ETDEWEB)

    Haenninen, H.; Koskinen, A. [Helsinki Unviv. of Technology, Materials Sciences and Engineering, Espoo (Finland)

    2006-10-15

    The objectives of the project were to research ultra- fine particles developed in the welding and cutting processes, to classify the particles in the welding fume, as well as to assess how they transform in air and drift in the internal air. Also it was attempted to decrease the amount of ultra-fine particles in the welding processes and in the internal air. Experiments were performed in the laboratory environments so that the results are valid and comparable. The fine particles in the fumes were measured and sampled by cascade impactors (ELPI, DLPI), by SMPS and by filter samplers (personal and area). The composition, size, shape and activity of the particles were determined. During the project efficiency of personal welding helmets, fume extraction welding guns and MFI-precipitator were tested. Tests were carried out in the laboratory and in the industrial workshops. The three-year project started in the beginning of February 2003. (orig.)

  6. Introduction and Validation of Chromium-Free Consumables for Welding Stainless Steels. Version 2

    Science.gov (United States)

    2015-04-14

    significant health hazard for the welding personnel. In 2006, OSHA reduced the Permissible Exposure Limit (PEL) for Cr (VI) in welding fume from 52 to 5...steels results in the formation of Cr (VI) in the welding fume. The Cr (VI) is a carcinogen and is considered a significant health hazard for the... health hazard for the welding personnel. In 2006, the Occupational Safety and Health Administration (OSHA) reduced the permissible exposure limit (PEL

  7. Neurological risks associated with manganese exposure from welding operations--a literature review.

    Science.gov (United States)

    Flynn, Michael R; Susi, Pam

    2009-09-01

    Exposure to manganese dusts and fumes may cause a clinical neurological syndrome called manganism. Welders are frequently exposed to manganese-containing fumes generated by electric arcs and thermal torches. This paper reviews studies on the association between exposure to such welding fumes and neurological disease. Using the IRSST expert panel criteria, 78 cases of probable/possible, and 19 additional cases of possible occupational manganism were identified in the literature among manganese-exposed workers involved in welding processes. Epidemiological evidence linking welding exposures to Parkinson's disease is still controversial. Although more research is needed to clarify the risks of neurological impairment from welding, control measures including ventilation and adequate respiratory protection, should be implemented to minimize welding fume exposures. The significance of fume transport into the central nervous system via the olfactory nerve, which by-passes the blood-brain barrier, also needs to be assessed.

  8. Global metabolomic profiling reveals an association of metal fume exposure and plasma unsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Yongyue Wei

    Full Text Available Welding-associated air pollutants negatively affect the health of exposed workers; however, their molecular mechanisms in causing disease remain largely unclear. Few studies have systematically investigated the systemic toxic effects of welding fumes on humans.To explore the effects of welding fumes on the plasma metabolome, and to identify biomarkers for risk assessment of welding fume exposure.The two-stage, self-controlled exploratory study included 11 boilermakers from a 2011 discovery panel and 8 boilermakers from a 2012 validation panel. Plasma samples were collected pre- and post-welding fume exposure and analyzed by chromatography/mass spectrometry.Eicosapentaenoic or docosapentaenoic acid metabolic changes post-welding were significantly associated with particulate (PM2.5 exposure (p<0.05. The combined analysis by linear mixed-effects model showed that exposure was associated with a statistically significant decline in metabolite change of eicosapentaenoic acid [β(95% CI = -0.013(-0.022 ≈ -0.004; p = 0.005], docosapentaenoic acid n3 [β(95% CI = -0.010(-0.018 ≈ -0.002; p = 0.017], and docosapentaenoic acid n6 [β(95% CI = -0.007(-0.013 ≈ -0.001; p = 0.021]. Pathway analysis identified an association of the unsaturated fatty acid pathway with exposure (p Study-2011 = 0.025; p Study-2012 = 0.021; p Combined = 0.009. The functional network built by these fatty acids and their interactive genes contained significant enrichment of genes associated with various diseases, including neoplasms, cardiovascular diseases, and lipid metabolism disorders.High-dose exposure of metal welding fumes decreases unsaturated fatty acids with an exposure-response relationship. This alteration in fatty acids is a potential biological mediator and biomarker for exposure-related health disorders.

  9. Ultra fine particles from the welding process; Hitsaamon pienhiukkaset - HIPHI

    Energy Technology Data Exchange (ETDEWEB)

    Haenninen, H.; Kasurinen, H. [Helsinki Univ. of Technology, Otaniemi (Finland). Laboratory of Engineering Materials

    2004-07-01

    The objects of the project are to research ultra fine particles developed in the welding and cutting processes, to classify the particles in the welding fume, as well as to assess how they transform in air and drift in internal air. Also will be attempted to decrease the amount of ultra fine particles in welding processes and in internal air. Experiments will be performed in the laboratory environments so that the results are valid and comparable. The fine particles in the fumes will be measured and sampled by cascade impactors (ELPI, DLPI) and by SMPS by filter samplers (personal and area). The composition, size, shape and activity of the particles will be determined. During the project both personal welding helmets and fume extraction welding guns will be tested. Tests will be carried out in the laboratory and in industrial workshops. The three-year project started in the beginning of February 2003. (orig.)

  10. Exposure of welders to fumes, Cr, Ni, Cu and gases in Dutch industries

    NARCIS (Netherlands)

    Wal, J.F. van der

    1985-01-01

    The exposure of welders in Dutch industries to total particulate, chromium, nickel and copper fume during the welding of unalloyed, stainless and high alloyed steels has been investigated. The exposure to the gases NO2, NO and ozone is also discussed. The results are presented in tables and graphs.

  11. Selecting Processes to Minimize Hexavalent Chromium from Stainless Steel Welding

    Science.gov (United States)

    KEANE, M.; SIERT, A.; STONE, S.; CHEN, B.; SLAVEN, J.; CUMPSTON, A.; ANTONINI, J.

    2015-01-01

    Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium (Cr6+) in stainless steel welding fumes. The processes examined were gas metal arc welding (GMAW) (axial spray, short circuit, and pulsed spray modes), flux cored arc welding (FCAW), and shielded metal arc welding (SMAW). The Cr6+ fractions were measured in the fumes; fume generation rates, Cr6+ generation rates, and Cr6+ generation rates per unit mass of welding wire were determined. A limited controlled comparison study was done in a welding shop including SMAW, FCAW, and three GMAW methods. The processes studied were compared for costs, including relative labor costs. Results indicate the Cr6+ in the fume varied widely, from a low of 2800 to a high of 34,000 ppm. Generation rates of Cr6+ ranged from 69 to 7800 μg/min, and Cr6+ generation rates per unit of wire ranged from 1 to 270 μg/g. The results of field study were similar to the findings in the laboratory. The Cr6+ (ppm) in the fume did not necessarily correlate with the Cr6+ generation rate. Physical properties were similar for the processes, with mass median aerodynamic diameters ranging from 250 to 336 nm, while the FCAW and SMAW fumes were larger (360 and 670 nm, respectively). Conclusion: The pulsed axial spray method was the best choice of the processes studied based on minimal fume generation, minimal Cr6+ generation, and cost per weld. This method is usable in any position, has a high metal deposition rate, and is relatively simple to learn and use. PMID:26690276

  12. ARDS following inhalation of hydrochloric acid.

    Science.gov (United States)

    Bansal, D P; Ambegaonkar, Rahul; Radhika, P; Sharma, Manish

    2011-02-01

    The clinical spectrum of Inhalation injury can range from mild cough to a devastating ARDS. We herewith present a patient who is a goldsmith by occupation and his work consists of dissolving gold in Hydrochloric acid. He had accidentally inhaled fumes of Hydrochloric acid and presented with cough and breathlessness, later on required mechanical ventilation for ARDS and improved. This highlights the importance of not to neglect mild symptoms like cough and dyspnea in such a scenario which may have some hidden catastrophe.

  13. Evaluation of occupational exposure to toxic metals released in the process of aluminum welding.

    Science.gov (United States)

    Matczak, Wanda; Gromiec, Jan

    2002-04-01

    The objective of this study was to evaluate occupational exposure to welding fumes and its elements on aluminum welders in Polish industry. The study included 52 MIG/Al fume samples and 18 TIG/Al samples in 3 plants. Air samples were collected in the breathing zone of welders (total and respirable dust). Dust concentration was determined gravimetrically, and the elements in the collected dust were determined by AAS. Mean time-weighted average (TWA) concentrations of the welding dusts/fumes and their components in the breathing zone obtained for different welding processes were, in mg/m3: MIG/Al fumes mean 6.0 (0.8-17.8), Al 2.1 (0.1-7.7), Mg 0.2 (TIG/Al fumes 0.7 (0.3-1.4), Al 0.17 (0.07-0.50). A correlation has been found between the concentration of the main components and the fume/dust concentrations in MIG/Al and TIG/Al fumes. Mean percentages of the individual components in MIG/Al fumes/dusts were Al: 30 (9-56) percent; Mg: 3 (1-5.6) percent; Mn: 0.2 (0.1-0.3) percent; Cu: 0.2 (welding methods, the nature of welding-related operations, and work environment conditions.

  14. Inhaled Steroids

    Science.gov (United States)

    ... Medications Long-Term Control Medications Inhaled Steroids Inhaled Steroids Make an Appointment Ask a Question Refer Patient ... more about steroids? What are some common inhaled steroids? Common inhaled steroids include: Asmanex ® (mometasone) Alvesco ® (ciclesonide) ...

  15. Novel Approach for Welding Stainless Steel Using Cr-Free Welding Consumables

    Science.gov (United States)

    2004-12-31

    chromium in the 6+ oxidation state and is commonly referred to as chromate). Fumes containing Cr(VI) can cause lung cancer . Shielded Metal Arc...Fumes containing Cr(VI) can cause lung cancer .1,4. In shipbuilding operations, manual Shielded Metal Arc Welding (SMAW) of stainless steel is...Service, Canberra 1990. 6. E. Zumelzu and C. Cabezas , J. Mat. Proc. Tech. 57 (1996): p. 249. 7. S. A. Campbell, G. J. W. Radford, C. D. S. Tuck, and B

  16. An evaluation of welding processes to reduce hexavalent chromium exposures and reduce costs by using better welding techniques.

    Science.gov (United States)

    Keane, Michael J

    2014-01-01

    A group of stainless steel arc welding processes was compared for emission rates of fume and hexavalent chromium, and costs per meter length of weld. The objective was to identify those with minimal emissions and also compare relative labor and consumables costs. The selection included flux-cored arc welding (FCAW), shielded-metal arc welding (SMAW), and multiple gas metal arc welding (GMAW) processes. Using a conical chamber, fumes were collected, and fume generation rates and hexavalent chromium (Cr(6+)) were measured. GMAW processes used were short-circuit (SC) and pulsed-spray modes. Flux-cored welding used gas shielding. Costs were estimated per meter of a 6.3-mm thick horizontal butt weld. Emission rates of Cr(6+) were lowest for GMAW processes and highest for SMAW; several GMAW processes had less than 2% of the SMAW generation rate. Labor and consumable costs for the processes studied were again highest for SMAW, with those of several GMAW types about half that cost. The results show that use of any of the GMAW processes (and flux-cored welding) could substantially reduce fume and Cr(6+) emissions, and greatly reduce costs relative to SMAW.

  17. 222-S LABORATORY FUME HOOD TESTING STUDY

    Energy Technology Data Exchange (ETDEWEB)

    RUELAS, B.H.

    2007-03-26

    The 222-S Laboratory contains 155 active fume hoods that are used to support analytical work with radioactive and/or toxic materials. The performance of a fume hood was brought into question after employees detected odors in the work area while mixing chemicals within the subject fume hood. Following the event, testing of the fume hood was conducted to assess the performance of the fume hood. Based on observations from the testing, it was deemed appropriate to conduct performance evaluations of other fume hoods within the laboratory.

  18. Knowledge on the Health Effects of Welding Smoke, Use of PPE Among Electric-Arc Welders in Ilorin South, North Central Nigeria

    OpenAIRE

    Kayode Rasaq ADEWOYE; Ademola Olugbenga AWOYEMI; Demilade Olusola IBIRONGBE; Oluwole Adeyemi BABATUNDE; Tayo IBRAHIM

    2013-01-01

    INTRODUCTION: Electric arc welding and oxy-fuel gas welding are the commonest welding technologies used in small scale industries in Nigeria. Electric arc welders are exposed to serious health hazards like exposure to welding smoke. Health effects of such exposure include metal fume fever, and increased risk of chronic diseases and cancers. Exposure to welding smoke can be minimized by use of PPE. The aim of the study is to determine the knowledge of welders on health implication of welding s...

  19. Characterization of Particulate Fume and Oxides Emission from Stainless Steel Plasma Cutting.

    Science.gov (United States)

    Wang, Jun; Hoang, Tien; Floyd, Evan L; Regens, James L

    2017-04-01

    Plasma cutting is a metal fabrication process that employs an electrically conductive plasma arc to cut metals. The metal fume emitted from stainless steel plasma cutting may consist of hexavalent chromium (Cr6+), which is a carcinogen, and other toxicants. Overexposure to plasma cutting fume may cause pulmonary toxicity and other health effects. This study was to evaluate the effects of operation parameters (arc current and arc time) on the fume formation rates, Cr6+ and other oxides concentrations, particle size distributions (PSD), and particle morphology. A fume chamber and high-volume pump were used to collect fume produced from cutting ER308L stainless steel plates with arc currents varying between 20 and 50 A. The amount of fume collected on glass fiber filters was gravimetrically determined and normalized to arc time. Cr6+ and other oxides in the fume were analyzed using ion chromatography. PSD of the fume was examined using a scanning mobility particle sizer and an aerodynamic particle sizer for fine and coarse fractions, respectively. The particle morphology was imaged through a transmission electron microscope (TEM). Total fume generation rate increased with arc current and ranged from 16.5 mg min-1 at 20 A to 119.0 mg min-1 at 50 A. Cr6+ emissions (219.8-480.0 µg min-1) from the plasma cutting were higher than welding fume in a previous study. Nitrogen oxides level can be an indicator of oxidation level and Cr6+ formation (R = 0.93). Both PSD measurement and TEM images confirmed a multimodal size distribution. A high concentration of a fine fraction of particles with geometric mean sizes from 96 to 235 nm was observed. Higher arc current yielded more particles, while lower arc current was not able to penetrate the metal plates. Hence, the worker should optimize the arc current to balance cut performance and fume emission. The findings indicated that arc current was the dominant factor in fume emission from plasma cutting. Appropriate ventilation and

  20. CONTRIBUTIONS FROM SMOKE ON IMPACT OF WELDING PROCEDURES HEALTH OPERATORS WELDER

    Directory of Open Access Journals (Sweden)

    Gheorghe AMZA

    2012-05-01

    Full Text Available This paper presents research conducted on the contents of fumes resulting from welding processes with emphasis on micro various metallic and nonmetallic elements involved in these fumes. It also presents the main health effects of welders and operators working in the welding stations. Are risks that may occur due to micro chromium, nickel, iron, manganese, silicon, fluorine, zinc, aluminum, copper, cadmium, lead, molybdenum, cobalt, vanadium and others.

  1. Characterization of inhalable, thoracic, and respirable fractions and ultrafine particle exposure during grinding, brazing, and welding activities in a mechanical engineering factory.

    Science.gov (United States)

    Iavicoli, Ivo; Leso, Veruscka; Fontana, Luca; Cottica, Danilo; Bergamaschi, Antonio

    2013-04-01

    To investigate the emission sources of fine and ultrafine particles (UFPs) during brazing, welding, and grinding in a mechanical engineering factory and to characterize UFP exposure by measuring size distributions, number, and surface area concentrations. Samplings lasted 4 hours and were conducted during 5 days using the Grimm 1.109 portable aerosol spectrometer, the Grimm portable NanoCheck™ 1.320, the electrical low pressure impactor, and the nanoparticle aerosol monitor AeroTrak™ 9000. Higher concentrations of fine particles were observed in welding and grinding activities. The highest values of UFP number and alveolar surface area concentrations were detected in the welding booth. Potential emission sources of fine particles and UFPs can be identified by the multifaceted approach outlined in this study. This sampling strategy provides important data on key UFP metrics.

  2. Type I interferon and pattern recognition receptor signaling following particulate matter inhalation

    Directory of Open Access Journals (Sweden)

    Erdely Aaron

    2012-07-01

    Full Text Available Abstract Background Welding, a process that generates an aerosol containing gases and metal-rich particulates, induces adverse physiological effects including inflammation, immunosuppression and cardiovascular dysfunction. This study utilized microarray technology and subsequent pathway analysis as an exploratory search for markers/mechanisms of in vivo systemic effects following inhalation. Mice were exposed by inhalation to gas metal arc – stainless steel (GMA-SS welding fume at 40 mg/m3 for 3 hr/d for 10 d and sacrificed 4 hr, 14 d and 28 d post-exposure. Whole blood cells, aorta and lung were harvested for global gene expression analysis with subsequent Ingenuity Pathway Analysis and confirmatory qRT-PCR. Serum was collected for protein profiling. Results The novel finding was a dominant type I interferon signaling network with the transcription factor Irf7 as a central component maintained through 28 d. Remarkably, these effects showed consistency across all tissues indicating a systemic type I interferon response that was complemented by changes in serum proteins (decreased MMP-9, CRP and increased VCAM1, oncostatin M, IP-10. In addition, pulmonary expression of interferon α and β and Irf7 specific pattern recognition receptors (PRR and signaling molecules (Ddx58, Ifih1, Dhx58, ISGF3 were induced, an effect that showed specificity when compared to other inflammatory exposures. Also, a canonical pathway indicated a coordinated response of multiple PRR and associated signaling molecules (Tlr7, Tlr2, Clec7a, Nlrp3, Myd88 to inhalation of GMA-SS. Conclusion This methodological approach has the potential to identify consistent, prominent and/or novel pathways and provides insight into mechanisms that contribute to pulmonary and systemic effects following toxicant exposure.

  3. The Pozzolanic reaction of silica fume

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2012-01-01

    Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone. In the ......Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone....... In the present paper different aspects of the pozzolanic reaction of silica fume are investigated. These include chemical shrinkage, isothermal heat development and strength development. Key data for these are given and compared with theoretical calculations, and based on presented measurements the energy...... of activation of the pozzolanic reaction of silica fume is estimated. The results show that the pozzolanic reaction of silica fume has notable differences from Portland cement hydration....

  4. The time-dependent health and biochemical effects in rats exposed to stainless steel welding dust and its soluble form.

    Science.gov (United States)

    Halatek, Tadeusz; Stanislawska, Magdalena; Kaminska, Irena; Cieslak, Malgorzata; Swiercz, Radoslaw; Wasowicz, Wojciech

    2017-02-23

    Welding processes that generate fumes containing toxic metals, such as hexavalent chromium (Cr(VI)), manganese (Mn), and nickel (Ni), have been implicated in lung injury, inflammation, and lung tumor promotion in animal models. The principal objective of this study was to determine the dynamics of toxic effects of inhalation exposure to morphologically rated welding dust from stainless steel welding and its soluble form in TSE System with a dynamic airflow. We assessed the pulmonary toxicity of welding dust in Wistar rats exposed to 60.0 mg/m 3 of respirable-size welding dust (mean diameter 1.17 µm) for 2 weeks (6 h/day, 5 days/week); the aerosols were generated in the nose-only exposure chambers (NOEC). An additional aim included the study of the effect of betaine supplementation on oxidative deterioration in rat lung during 2 weeks of exposure to welding dust or water-soluble dust form. The animals were divided into eight groups (n = 8 per group): control, dust, betaine, betaine + dust, soluble-form dust, soluble-form dust + betaine, saline and saline + betaine groups. Rats were euthanized 1 or 2 weeks after the last exposure for assessment of pulmonary toxicity. Differential cell counts, total protein concentrations and cellular enzyme (lactate dehydrogenase-LDH) activities were determined in bronchoalveolar lavage (BAL) fluid, and corticosterone and thiobarbituric acid reactive substances (TBARS) concentrations were assessed in serum. The increase in polymorphonuclear (PMN) leukocytes in BAL fluid (a cytological index of inflammatory responses of the lung) is believed to reflect pulmonary toxicity of heavy metals. Biomarkers of toxicity assessed in bronchoalveolar fluids indicate that the level of the toxic effect depends mainly on the solubility of studied metal compounds; biomarkers that showed treatment effects included: total cell, neutrophil and lymphocyte counts, total protein concentrations, and cellular enzyme (lactate dehydrogenase) activity

  5. Control of Cr6+ emissions from gas metal arc welding using a silica precursor as a shielding gas additive.

    Science.gov (United States)

    Topham, Nathan; Wang, Jun; Kalivoda, Mark; Huang, Joyce; Yu, Kuei-Min; Hsu, Yu-Mei; Wu, Chang-Yu; Oh, Sewon; Cho, Kuk; Paulson, Kathleen

    2012-03-01

    Hexavalent chromium (Cr(6+)) emitted from welding poses serious health risks to workers exposed to welding fumes. In this study, tetramethylsilane (TMS) was added to shielding gas to control hazardous air pollutants produced during stainless steel welding. The silica precursor acted as an oxidation inhibitor when it decomposed in the high-temperature welding arc, limiting Cr(6+) formation. Additionally, a film of amorphous SiO(2) was deposited on fume particles to insulate them from oxidation. Experiments were conducted following the American Welding Society (AWS) method for fume generation and sampling in an AWS fume hood. The results showed that total shielding gas flow rate impacted the effectiveness of the TMS process. Increasing shielding gas flow rate led to increased reductions in Cr(6+) concentration when TMS was used. When 4.2% of a 30-lpm shielding gas flow was used as TMS carrier gas, Cr(6+) concentration in gas metal arc welding (GMAW) fumes was reduced to below the 2006 Occupational Safety and Health Administration standard (5 μg m(-3)) and the efficiency was >90%. The process also increased fume particle size from a mode size of 20 nm under baseline conditions to 180-300 nm when TMS was added in all shielding gas flow rates tested. SiO(2) particles formed in the process scavenged nanosized fume particles through intercoagulation. Transmission electron microscopy imagery provided visual evidence of an amorphous film of SiO(2) on some fume particles along with the presence of amorphous SiO(2) agglomerates. These results demonstrate the ability of vapor phase silica precursors to increase welding fume particle size and minimize chromium oxidation, thereby preventing the formation of hexavalent chromium.

  6. Effect of gasoline fumes on reproductive function in male albino rats.

    Science.gov (United States)

    Owagboriaye, Folarin O; Dedeke, Gabriel A; Ashidi, Joseph S; Aladesida, Adeyinka A; Olooto, Wasiu E

    2017-11-27

    The increase in the frequency of exposure to gasoline fumes and the growing incidence of infertility among humans has been a major concern and subject of discussion over the years in Nigeria. We therefore present the reproductive effect of gasoline fumes on inhalation exposure in 40 male albino rats. The rats were randomized into five experimental treatments (T) with eight rats per treatment. T1 (control) was exposed to distilled water while T2, T3, T4, and T5 were exposed to gasoline fumes in exposure chambers for 1, 3, 5, and 9 h daily respectively for 12 weeks. Serum level of testosterone, follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin, oxidative stress markers in the testicular tissue, epididymal sperm health assessment, and testicular histopathology of the rats were used as a diagnostic marker of reproductive dysfunction. Significant (p rats exposed to gasoline fume. Significant reductions (p rats were observed. Significant (p rats. Histopathologically, severe degenerative testicular architectural lesions characterized by alterations in all the generations of sperm cells and reduction of interstitial cells were seen in the exposed rats. Gasoline fume is thus said to interfere with spermatogenesis and impair fertility in male gonad.

  7. Effect of petroleum products inhalation on some haematological ...

    African Journals Online (AJOL)

    Haematotoxic implications of exposure to petroleum fumes through inhalation in human subjects were investigated. A total of 400 subjects (200 males and 200 females) aged between 18-30 years participated. Each gender was further categorized into two groups of 100 each for control and test, respectively. The test group ...

  8. Gas Metal Arc Welding Using Novel CaO-Added Mg Alloy Filler Wire

    OpenAIRE

    Minjung Kang; Youngnam Ahn; Cheolhee Kim

    2016-01-01

    Novel “ECO Mg” alloys, i.e., CaO-added Mg alloys, which exhibit oxidation resistance during melting and casting processes, even without the use of beryllium or toxic protection gases such as SF6, have recently been introduced. Research on ECO Mg alloys is still continuing, and their application as welding filler metals was investigated in this study. Mechanical and metallurgical aspects of the weldments were analysed after welding, and welding behaviours such as fume generation and droplet tr...

  9. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  10. Particulate and gaseous emissions when welding aluminum alloys.

    Science.gov (United States)

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  11. Cardiovascular effects in rats after intratracheal instillation of metal welding particles.

    Science.gov (United States)

    Zheng, Wen; Antonini, James M; Lin, Yen-Chang; Roberts, Jenny R; Kashon, Michael L; Castranova, Vincent; Kan, Hong

    2015-01-01

    Studies have indicated that pulmonary exposure to welding fumes can induce a series of adverse effects in the respiratory system, including infection, bronchitis, siderosis and decreased pulmonary function. Recent clinical and epidemiological studies have found that pulmonary exposure to welding fumes is also associated with a higher incidence of cardiovascular events. However, there is insufficient evidence to confirm a direct effect of welding fumes on the cardiovascular system. The present study investigated the effects of pulmonary exposure to welding fumes on the heart and the vascular system in rats. Two chemically distinct welding fumes generated from manual metal arc-hard surfacing (MMA-HS) and gas metal arc-mild steel (GMA-MS) welding were tested. Three groups of rats were instilled intratracheally with MMA-HS (2 mg/rat), GMA-MS (2 mg/rat) or saline as control once a week for seven weeks. On days 1 and 7 after the last treatment, basal cardiovascular function and the cardiovascular response to increasing doses of adrenoreceptor agonists were assessed. MMA-HS treatment reduced the basal levels of left ventricle end-systolic pressure and dP/dt(max) at 1 day post-treatment, and decreased dP/dt(min) in response to isoproterenol (ISO) at 7 days post-treatment. Unlike MMA-HS, GMA-MS only affected left ventricular end-diastolic pressure in response to ISO at 7 days post-treatment. Treatment with MMA-HS or GMA-MS did not alter heart rate and blood pressure. Our findings suggest that exposure to different welding fumes can induce different adverse effects on the cardiovascular system, and that cardiac contractility may be a sensitive indicator of cardiovascular dysfunction.

  12. 41 CFR 50-204.72 - Safe practices for welding and cutting on containers which have held combustibles.

    Science.gov (United States)

    2010-07-01

    ... welding and cutting on containers which have held combustibles. 50-204.72 Section 50-204.72 Public... OF LABOR 204-SAFETY AND HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Gases, Vapors, Fumes, Dusts, and Mists § 50-204.72 Safe practices for welding and cutting on containers which have held...

  13. WOOD WELDING

    OpenAIRE

    Marcos Theodoro Muller; Rafael Rodolfo de Melo; Diego Martins Stangerlin

    2010-01-01

    The term "wood welding" designates what can be defined as "welding of wood surfaces". This new process, that it provides the joint of wood pieces without the use of adhesives or any other additional material, provokes growing interest in the academic environment, although it is still in laboratorial state. Linear friction welding induced bymechanical vibration yields welded joints of flat wood surfaces. The phenomenon of the welding occurs in less time than 10 seconds, with the temperature in...

  14. Inhalation Injuries

    Science.gov (United States)

    Inhalation injuries are acute injuries to your respiratory system and lungs. They can happen if you breathe in toxic substances, such as smoke (from fires), chemicals, particle pollution, and gases. Inhalation injuries can also be caused by extreme heat; these are a type of thermal injuries. ...

  15. Nicotine Oral Inhalation

    Science.gov (United States)

    Nicotine oral inhalation is used to help people stop smoking. Nicotine oral inhalation should be used together with a smoking ... Nicotine oral inhalation comes as a cartridge to inhale by mouth using a special inhaler. Follow the directions on ...

  16. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  17. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...

  18. Reduction of Defects in Al-6061 Friction Stir Welding and Verified by Radiography

    Science.gov (United States)

    Kumaravel, D.; Bupesh Raja, V. K., Dr; Potnuru, Chakravarthy; Polina, Navakanth

    2017-05-01

    Friction Stir Welding is a new innovating process of joining of two work pieces. It is an relatively a new joining process and highly useful in welding method, which can produce high strength weld without using any toxic materials like electrodes. In this method, weld is obtained by frictional produced between shoulder and work piece [1, 2]. Main parameters which are to be considered for FSW are spindle speed and feed rate. By providing suitable parameter during welding defects will not be occurring. Also, FSW is an eco-friendly process because there is no fumes production and no filler material. To get high quality of weld, then high heat should be generated. In this paper, Al-6061 material is welded by H-13 tool with different parameters and quality of weld is examined by using a non destructive testing method called Radiography.

  19. Experimental exposure of healthy subjects with emissions from a gas metal arc welding process--part II: biomonitoring of chromium and nickel.

    Science.gov (United States)

    Gube, Monika; Brand, Peter; Schettgen, Thomas; Bertram, Jens; Gerards, Kerstin; Reisgen, Uwe; Kraus, Thomas

    2013-01-01

    The objective of this study was to investigate whether there is a relationship between the external exposure dose of chromium and nickel caused by a metal active gas welding process with a solid high-alloyed steel welding wire and inner exposure of subjects. In order to perform welding fume exposure under controlled and standardized conditions, the investigations were conducted in the "Aachen Workplace Simulation Laboratory". To perform biological monitoring of chromium and nickel, blood and urine samples of 12 healthy male non-smokers who never worked as welders were collected before and after a 6-h exposure to ambient air (0 mg/m(3)) and to welding fumes of a metal active gas welding process once with a concentration of the welding fume of 1 mg/m(3) and once with a concentration of 2.5 mg/m(3). Although the internal exposure to chromium and nickel in this study was comparatively low, the subjects showed significantly increased concentrations of these metals in urine after exposure to welding fume compared to the values at baseline. Moreover, the observed increase was significantly dose dependent for both of the substances. For the biological monitoring of chromium and nickel in urine of subjects exposed to welding fumes, a dependency on exposure dose was seen under standardized conditions after a single exposure over a period of 6 h. Thus, this study contributes to a better understanding of the relationship between ambient and biological exposures from welding fumes and provides a good basis for evaluating future biological threshold values for these metals in welding occupation.

  20. Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure

    Directory of Open Access Journals (Sweden)

    Mills Nicholas

    2005-10-01

    Full Text Available Abstract This review considers the molecular toxicology of combustion-derived nanoparticles (CDNP following inhalation exposure. CDNP originate from a number of sources and in this review we consider diesel soot, welding fume, carbon black and coal fly ash. A substantial literature demonstrates that these pose a hazard to the lungs through their potential to cause oxidative stress, inflammation and cancer; they also have the potential to redistribute to other organs following pulmonary deposition. These different CDNP show considerable heterogeneity in composition and solubility, meaning that oxidative stress may originate from different components depending on the particle under consideration. Key CDNP-associated properties of large surface area and the presence of metals and organics all have the potential to produce oxidative stress. CDNP may also exert genotoxic effects, depending on their composition. CDNP and their components also have the potential to translocate to the brain and also the blood, and thereby reach other targets such as the cardiovascular system, spleen and liver. CDNP therefore can be seen as a group of particulate toxins unified by a common mechanism of injury and properties of translocation which have the potential to mediate a range of adverse effects in the lungs and other organs and warrant further research.

  1. 42 CFR 84.1146 - Lead fume test for dust, fume, and mist respirators; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Lead fume test for dust, fume, and mist respirators; minimum requirements. 84.1146 Section 84.1146 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  2. Inhaler technique

    DEFF Research Database (Denmark)

    Levy, M L; Dekhuijzen, P R N; Barnes, P J

    2016-01-01

    Health professionals tasked with advising patients with asthma and chronic obstructive pulmonary disease (COPD) how to use inhaler devices properly and what to do about unwanted effects will be aware of a variety of commonly held precepts. The evidence for many of these is, however, lacking or old...... and therefore in need of re-examination. Few would disagree that facilitating and encouraging regular and proper use of inhaler devices for the treatment of asthma and COPD is critical for successful outcomes. It seems logical that the abandonment of unnecessary or ill-founded practices forms an integral part...... of this process: the use of inhalers is bewildering enough, particularly with regular introduction of new drugs, devices and ancillary equipment, without unnecessary and pointless adages. We review the evidence, or lack thereof, underlying ten items of inhaler 'lore' commonly passed on by health professionals...

  3. Welding Technician

    Science.gov (United States)

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  4. Impact of different welding techniques on biological effect markers in exhaled breath condensate of 58 mild steel welders.

    Science.gov (United States)

    Hoffmeyer, Frank; Raulf-Heimsoth, Monika; Lehnert, Martin; Kendzia, Benjamin; Bernard, Sabine; Berresheim, Hans; Düser, Maria; Henry, Jana; Weiss, Tobias; Koch, Holger M; Pesch, Beate; Brüning, Thomas

    2012-01-01

    Total mass and composition of welding fumes are predominantly dependent on the welding technique and welding wire applied. The objective of this study was to investigate the impact of welding techniques on biological effect markers in exhaled breath condensate (EBC) of 58 healthy welders. The welding techniques applied were gas metal arc welding with solid wire (GMAW) (n=29) or flux cored wire (FCAW) (n=29). Welding fume particles were collected with personal samplers in the breathing zone inside the helmets. Levels of leukotriene B(4) (LTB(4)), prostaglandin E(2) (PGE(2)), and 8-isoprostane (8-iso-PGF(2α)) were measured with immunoassay kits and the EBC pH was measured after deaeration. Significantly higher 8-iso-PGF(2α) concentrations and a less acid pH were detected in EBC of welders using the FCAW than in EBC of welders using the GMAW technique. The lowest LTB(4) concentrations were measured in nonsmoking welders applying a solid wire. No significant influences were found in EBC concentrations of PGE(2) based upon smoking status or type of welding technique. This study suggests an enhanced irritative effect in the lower airways of mild steel welders due to the application of FCAW compared to GMAW, most likely associated with a higher emission of welding fumes.

  5. Welding and lung cancer in Central and Eastern Europe and the United Kingdom.

    Science.gov (United States)

    't Mannetje, Andrea; Brennan, Paul; Zaridze, David; Szeszenia-Dabrowska, Neonila; Rudnai, Peter; Lissowska, Jolanta; Fabiánová, Eleonóra; Cassidy, Adrian; Mates, Dana; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Fevotte, Joelle; Fletcher, Tony; Boffetta, Paolo

    2012-04-01

    Occupation as a welder has been associated with a 25%-40% increase in lung cancer risk. This study aims to elucidate to what extent confounding by smoking and asbestos drives this association and to evaluate the role of welding-related exposures such as chromium. The study included 2,197 male incident lung cancer cases and 2,295 controls from Romania, Hungary, Poland, Russia, Slovakia, the Czech Republic, and the United Kingdom from 1998 to 2001. Information on risk factors was collected through face-to-face interviews. Experts assessed exposure to 70 agents, and risk estimates were adjusted for smoking and occupational exposures. Occupation as a welder/flame cutter (prevalence controls: 3.7%) was associated with an odds ratio of 1.36 (95% confidence interval (CI): 1.00, 1.86) after adjustment for smoking and occupational exposures including asbestos. An odds ratio of 1.18 (95% CI: 1.01, 1.38) was found for welding fumes (prevalence controls: 22.8%), increasing to 1.38 for more than 25 exposure years (95% CI: 1.09, 1.75). A duration-response association was also observed for mild steel welding without chromium exposure. In this population, occupational exposure to welding fumes accounted for approximately 4% of lung cancer cases, to which both stainless and mild steel welding contributed equally. Given that welding remains a common task for many workers, exposure to welding fumes represents an important risk factor for lung cancer.

  6. Gas Metal Arc Welding Using Novel CaO-Added Mg Alloy Filler Wire

    Directory of Open Access Journals (Sweden)

    Minjung Kang

    2016-07-01

    Full Text Available Novel “ECO Mg” alloys, i.e., CaO-added Mg alloys, which exhibit oxidation resistance during melting and casting processes, even without the use of beryllium or toxic protection gases such as SF6, have recently been introduced. Research on ECO Mg alloys is still continuing, and their application as welding filler metals was investigated in this study. Mechanical and metallurgical aspects of the weldments were analysed after welding, and welding behaviours such as fume generation and droplet transfer were observed during welding. The tensile strength of welds was slightly increased by adding CaO to the filler metal, which resulted from the decreased grain size in the weld metal. When welding Mg alloys, fumes have been unavoidable so far because of the low boiling temperature of Mg. Fume reduction was successfully demonstrated with a wire composed of the novel ECO Mg filler. In addition, stable droplet transfer was observed and spatter suppression could be expected by using CaO-added Mg filler wire.

  7. Combustion fume structure and dynamics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Flagan, R.C.

    1995-06-29

    An investigation of the fundamental physical processes that govern the structures of fume particles that are produced from the vapor phase in a wide range of high temperature systems has been conducted. The key objective of this study has been to develop models of the evolution of fine particles of refractory materials that are produced from the vapor phase, with particular emphasis on those processes that govern the evolution of ash fumes produced from volatilized mineral matter during coal combustion. To accomplish this goal, the study has included investigations of a number of fundamental aspects of pyrogenous fumes: Structural characterization of agglomerate particles in terms of fractal structure parameters; the relationship between the structures of agglomerate particles and the aerodynamic drag forces they experience; coagulation kinetics of fractal-like particles; sintering of aerosol agglomerates past the early stage of neck formation and incorporating the simultaneous influences of several transport mechanisms.

  8. Ciclesonide Oral Inhalation

    Science.gov (United States)

    Ciclesonide oral inhalation is used to prevent difficulty breathing, chest tightness, wheezing, and coughing caused by asthma in adults ... Ciclesonide comes as an aerosol to inhale by mouth using an inhaler. Ciclesonide is usually inhaled twice ...

  9. Substance use - inhalants

    Science.gov (United States)

    Substance abuse - inhalants; Drug abuse - inhalants; Drug use - inhalants; Glue - inhalants ... Gases, such as butane (lighter fluid), computer cleaning spray, ... fast-drying glue, felt-tip marker, gasoline, nail polish remover, ...

  10. Survey of welding processes.

    Science.gov (United States)

    2003-07-01

    The current KYTC SPECIAL PROVISION NO. 4 WELDING STEEL BRIDGES prohibits the use of welding processes other than shielded metal arc welding (SMAW) and submerged arc welding (SAW). Nationally, bridge welding is codified under ANSI/AASHTO/AWS D1....

  11. Risk of lung cancer according to mild steel and stainless steel welding

    DEFF Research Database (Denmark)

    Sørensen, Anita Rath; Thulstrup, Ane Marie; Hansen, Johnni

    2007-01-01

    OBJECTIVES: Whether the elevated risk of lung cancer observed among welders is caused by welding emissions or by confounding from smoking or asbestos exposure is still not resolved. This question was addressed in a cohort with a long follow-up and quantified estimates of individual exposure...... to welding fume particulates. METHODS: Male metal workers employed at least 1 year at one or more Danish stainless or mild steel industrial companies from 1964 through 1984 were enrolled in a cohort. Data on occupational and smoking history were obtained by questionnaire in 1986. Welders in the cohort who...... started welding in 1960 or later (N=4539) were followed from April 1968 until December 2003, when information on cancer diagnosis was obtained from the Danish Cancer Registry. During the follow-up, 75 cases of primary lung cancer were identified. Lifetime accumulated exposure to welding fume particulates...

  12. Tiotropium Oral Inhalation

    Science.gov (United States)

    ... a specially designed inhaler. You will use the inhaler to breathe in the dry powder contained in the capsules. Tiotropium is usually inhaled once a day in the morning or evening. To help you remember to inhale ... only work if you use the inhaler it comes with to inhale the powder in ...

  13. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  14. Gas emission during welding with metal cored and self-shielded wire

    OpenAIRE

    Popović, Olivera; Prokić-Cvetković, Radica; Lukić, Uroš; Jovičić, Radomir; Burzić, Meri; Beljić, Biljana

    2015-01-01

    The use of flux cored and self-shielded wires as filler materials for gas metal arc welding is growing constantly due to increased productivity and efficiency, better weld quality and easer operation. On the other hand, one of the major drawbacks of these wires is the increased amount of fumes and gases and insufficient data of their harmful effects, especially in the case of self shielded wire. Therefore, in now days, one of the most important requirements is environmentally and health reque...

  15. Radon and Thoron Measured in Petrol and Gas-oil Exhaust Fumes by Using CR-39 and LR-115 II Nuclear Track Detectors: Radiation Doses to the Respiratory Tract of Mechanic Workers.

    Science.gov (United States)

    Misdaq, M A; Chaouqi, A; Ouguidi, J; Touti, R; Mortassim, A

    2015-06-01

    Mechanic workers are exposed to exhaust fumes when controlling vehicle engines in motion inside repair shops. To assess radiation doses due to radon short-lived progeny from the inhalation of exhaust fumes by mechanic workers, concentrations of these radionuclides were measured in petrol (gasoline) and gas-oil exhaust fumes by evaluating mean critical angles of etching of the CR-39 and LR-115 type II SSNTDs for alpha particles emitted by the radon and thoron decay series. Committed effective doses due to ²¹⁸Po and ²¹⁴Po short-lived radon decay products from the inhalation of petrol and gas-oil exhaust fumes by workers were evaluated. A maximum value of 1.35 mSv y⁻¹ due to radon short-lived decay products from the inhalation of gas-oil exhaust fumes by mechanic workers was found, which is lower than the (3-10 mSv y⁻¹) dose limit interval for workers.

  16. Persistence of Change: Fume Hood Campaign Lessons

    Science.gov (United States)

    Feder, Elah; Robinson, Jennifer; Wakefield, Sarah

    2012-01-01

    Purpose: Sustainability initiatives typically operate for a limited time period, but it is often unclear whether they have lasting effects. The purpose of this paper is to examine a laboratory fume hood campaign, in order to identify factors that might contribute or detract from long-term change persistence. Design/methodology/approach: The…

  17. High effective silica fume alkali activator

    Indian Academy of Sciences (India)

    Unknown

    ⋅03; C2S–27⋅90; C4AF–10⋅21. Figure 1. Development of compressive strength of mortars depending on the alkali activator used and the composition of the binder and the time of hardening. 1. Slag + NaOH; 2. Silica fume activator + slag; 3.

  18. WELDING TORCH

    Science.gov (United States)

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  19. Retractable Pin Tools for the Friction Stir Welding Process

    Science.gov (United States)

    1998-01-01

    Two companies have successfully commercialized a specialized welding tool developed at the Marshall Space Flight Center (MSFC). Friction stir welding uses the high rotational speed of a tool and the resulting frictional heat created from contact to crush, 'stir' together, and forge a bond between two metal alloys. It has had a major drawback, reliance on a single-piece pin tool. The pin is slowly plunged into the joint between two materials to be welded and rotated as high speed. At the end of the weld, the single-piece pin tool is retracted and leaves a 'keyhole,' something which is unacceptable when welding cylindrical objects such as drums, pipes and storage tanks. Another drawback is the requirement for different-length pin tools when welding materials of varying thickness. An engineer at the MSFC helped design an automatic retractable pin tool that uses a computer-controlled motor to automatically retract the pin into the shoulder of the tool at the end of the weld, preventing keyholes. This design allows the pin angle and length to be adjusted for changes in material thickness and results in a smooth hole closure at the end of the weld. Benefits of friction stir welding, using the MSFC retractable pin tool technology, include the following: The ability to weld a wide range of alloys, including previously unweldable and composite materials; provision of twice the fatigue resistance of fusion welds and no keyholes; minimization of material distortion; no creation of hazards such as welding fumes, radiation, high voltage, liquid metals, or arcing; automatic retraction of the pin at the end of the weld; and maintaining full penetration of the pin.

  20. Plasma arc welding weld imaging

    Science.gov (United States)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has a transparent shield cup disposed about the constricting nozzle, the cup including a small outwardly extending polished lip. A guide tube extends externally of the torch and has a free end adjacent to the lip. First and second optical fiber bundle assemblies are supported within the guide tube. Light from a strobe light is transmitted along one of the assemblies to the free end and through the lip onto the weld site. A lens is positioned in the guide tube adjacent to the second assembly and focuses images of the weld site onto the end of the fiber bundle of the second assembly and these images are transmitted along the second assembly to a video camera so that the weld site may be viewed continuously for monitoring the welding process.

  1. Chemical, physical, and toxicological characterization of fumes produced by heating tetrafluoroethene homopolymer and its copolymers with hexafluoropropene and perfluoro(propyl vinyl ether).

    Science.gov (United States)

    Seidel, W C; Scherer, K V; Cline, D; Olson, A H; Bonesteel, J K; Church, D F; Nuggehalli, S; Pryor, W A

    1991-01-01

    Submicrometer solid-particle (fume) aerosols with up to about 10(8) particles/cm3 are formed when dilute vapors of low molecular weight (MW) (ca. 5000-10,000) perfluoro polymers condense in air. The aerosol (e.g., 0.2 mg/m3) formed from these vapors is highly toxic to laboratory rats by inhalation (30-min exposure) when fresh but loses toxicity in minutes, apparently owing to coagulation. These fumes may result from (a) pyrolysis of tetrafluoroethene homopolymer or tetrafluoroethene-hexafluoropropene copolymer or (b) evaporation, at 200-320 degrees C, of isolated low MW polymer or low MW polymer present in perfluoro polymer resins. Some perfluoro polymer fume aerosols contain reactive functional groups, but others without detectable reactive groups are at least as toxic.

  2. Relationship between pulmonary and systemic markers of exposure to multiple types of welding particulate matter.

    Science.gov (United States)

    Erdely, Aaron; Salmen-Muniz, Rebecca; Liston, Angie; Hulderman, Tracy; Zeidler-Erdely, Patti C; Antonini, James M; Simeonova, Petia P

    2011-09-05

    Welding results in a unique and complex occupational exposure. Recent epidemiological studies have shown an increased risk of cardiovascular disease following welding fume exposure. In this study, we compared the induction of pulmonary and systemic inflammation following exposure to multiple types of welding fumes. Mice were exposed to 340μg of manual metal arc stainless steel (MMA-SS), gas metal arc-SS (GMA-SS) or GMA-mild steel (GMA-MS) by pharyngeal aspiration. Mice were sacrificed at 4 and 24h post-exposure to evaluate various parameters of pulmonary and systemic inflammation. Alterations in pulmonary gene expression by a custom designed TaqMan array showed minimal differences between the fumes at 4h. Conversely at 24h, gene expression changes were further increased by SS but not GMA-MS exposure. These findings were associated with the surrogate marker of systemic inflammation, liver acute phase gene induction. Interestingly, stress response genes in cardiovascular tissues were only increased following MMA-SS exposure. These effects were related to the initial level of pulmonary cytotoxicity, as measured by lactate dehydrogenase activity, which was greatest following MMA-SS exposure. In conclusion, varying types of welding fumes elicit quantitatively different systemic inflammatory and/or stress responses. Published by Elsevier Ireland Ltd.

  3. WELDING METHOD

    Science.gov (United States)

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  4. Determinants of occupational exposure to metals by gas metal arc welding and risk management measures: a biomonitoring study.

    Science.gov (United States)

    Persoons, Renaud; Arnoux, Damien; Monssu, Théodora; Culié, Olivier; Roche, Gaëlle; Duffaud, Béatrice; Chalaye, Denis; Maitre, Anne

    2014-12-01

    Welding fumes contain various toxic metals including chromium (Cr), nickel (Ni) and manganese (Mn). An assessment of the risk to health of local and systemic exposure to welding fumes requires the assessment of both external and internal doses. The aims of this study were to test the relevance in small and medium sized enterprises of a biomonitoring strategy based on urine spot-samples, to characterize the factors influencing the internal doses of metals in gas metal arc welders and to recommend effective risk management measures. 137 welders were recruited and urinary levels of metals were measured by ICP-MS on post-shift samples collected at the end of the working week. Cr, Ni and Mn mean concentrations (respectively 0.43, 1.69 and 0.27 μg/g creatinine) were well below occupational health guidance values, but still higher than background levels observed in the general population, confirming the absorption of metals generated in welding fumes. Both welding parameters (nature of base metal, welding technique) and working conditions (confinement, welding and grinding durations, mechanical ventilation and welding experience) were predictive of occupational exposure. Our results confirm the interest of biomonitoring for assessing health risks and recommending risk management measures for welders. Copyright © 2014. Published by Elsevier Ireland Ltd.

  5. Pemanfaatan Mikrobakteri Terhadap Beton Mutu Tinggi dengan Tambahan Silica Fume

    OpenAIRE

    Azwar Annas; Januarti Jaya Ekaputri; Triwulan Triwulan

    2016-01-01

    Beton mutu tinggi adalah beton yang kuat tekan tinggi sekitar 50 MPa – 100 MPa. Untuk meningkatkan kuat tekan, material pozollan seperti silica fume dan flyash biasanya digunakan untuk mengganti material beton Dalam laporan ini, beton mutu tinggi dengan silica fume sebagai pengganti semen dipelajari. Kadar silica fume yang digunakan adalah 0%, 5%, 7,5% dan 10%. Selain itu pengaruh dari mikrobakteri juga dipelajari. Faktor water per binder yang dipakai adalah 25% dari berat binder, dan untuk m...

  6. Flunisolide Oral Inhalation

    Science.gov (United States)

    Flunisolide oral inhalation is used to prevent difficulty breathing, chest tightness, wheezing, and coughing caused by asthma in adults ... Flunisolide comes as an aerosol to inhale by mouth. It usually is inhaled twice daily. Try to ...

  7. Fluticasone Oral Inhalation

    Science.gov (United States)

    Fluticasone oral inhalation is used to prevent difficulty breathing, chest tightness, wheezing, and coughing caused by asthma in adults ... Fluticasone comes as an aerosol to inhale by mouth using an inhaler and as a powder to ...

  8. Cytogenetic studies of stainless steel welders using the tungsten inert gas and metal inert gas methods for welding.

    Science.gov (United States)

    Jelmert, O; Hansteen, I L; Langård, S

    1995-03-01

    Cytogenetic damage was studied in lymphocytes from 23 welders using the Tungsten Inert Gas (TIG), and 21 welders using the Metal Inert Gas (MIG) and/or Metal Active Gas (MAG) methods on stainless steel (SS). A matched reference group I, and a larger reference group II of 94 subjects studied during the same time period, was established for comparison. Whole blood conventional cultures (CC), cultures in which DNA synthesis and repair were inhibited (IC), and the sister chromatid exchange (SCE) assay were applied in the study. For the CC a statistically significant decrease in chromosome breaks and cells with aberrations was found for both TIG/SS and MIG/MAG/SS welders when compared with reference group II. A non-significant decrease was found for the corresponding parameters for the two groups of welders when compared with their matched referents. A statistically significant negative association was found between measurements of total chromium (Cr) in inhaled air and SCE, and a weaker negative correlation with hexavalent Cr (Cr(VI)) in air. In conclusion, no cytogenetic damage was found in welders exposed to the TIG/SS and MIG/MAG/SS welding fumes with low content of Cr and Ni. On the contrary, a decline in the prevalence of chromosomal aberrations was indicated in the TIG/SS and MIG/MAG/SS welders, possibly related to the suggested enhancement of DNA repair capacity at slightly elevated exposures.

  9. Respiratory Symptoms and Lung Functional Impairments Associated with Occupational Exposure to Asphalt Fumes

    Directory of Open Access Journals (Sweden)

    M Neghab

    2015-04-01

    Full Text Available Background: Controversy exists as to the potential of asphalt fumes to induce respiratory symptoms and lung functional impairments. Objective: To examine the respiratory effects, if any, of occupational inhalation exposure to asphalt fumes. Methods: In this cross-sectional study, 74 asphalt workers and 110 unexposed employees were investigated. The prevalence of respiratory symptoms among subjects was investigated by a standard questionnaire. Additionally, the parameters of pulmonary function were measured both, prior to exposure and at the end of work-shift. Furthermore, to assess the extent to which workers were exposed to asphalt fumes, total particulate and the benzene-soluble fraction were measured in different worksites. Results: The mean levels of exposure to total particulate and benzene-soluble fraction in asphalt fumes were estimated to be 0.9 (SD 0.2 and 0.3 (SD 0.1 mg/m3, respectively. Mean values of FEV1, both prior to the exposure (89.58% [SD 18.69%] predicted value and at the end of shift (85.38% [SD 19.4%], were significantly (p<0.05 smaller than those of the comparison subjects (93.88% [SD 13.93%]. Similarly, pre-shift (87.05 [SD 8.57] and postexposure (89.95 [SD 6.85] FEV1/FVC ratio were both significantly (p<0.01 lower than those of the unexposed employees (107.56 [SD 9.64]. Moreover, the prevalence of respiratory symptoms such as cough and wheezing in exposed employees were 41% and 42%, respectively. The corresponding values for comparison subjects were 10.0% and 3.6%, respectively (p<0.001. The pattern of changes in parameters of lung function in asphalt workers was consistent with that of chronic obstructive lung disease. Conclusion: Significant decrements in the parameters of pulmonary function as well as, a significant increase in the prevalence of respiratory symptoms in asphalt paving workers compared to their unexposed counterparts provided evidence in favor of a significant association between exposure to

  10. Syllabus in Trade Welding.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  11. Metal Cutting Theory and Friction Stir Welding Tool Design

    Science.gov (United States)

    Payton, Lewis N.

    2003-01-01

    Friction Stir Welding (FSW) is a relatively new industrial process that was invented at The Weld Institute (TWI, United Kingdom) and patented in 1992 under research funded by in part by the National Aeronautics and Space Administration (NASA). Often quoted advantages of the process include good strength and ductility along with minimization of residual stress and distortion. Less well advertised are the beneficial effects of this solid state welding process in the field of occupational and environmental safety. It produces superior weld products in difficult to weld materials without producing any toxic fumes or solid waste that must be controlled as hazardous waste. In fact, it reduces noise pollution in the workspace as well. In the early days of FSW, most welding was performed on modified machine tools, in particular on milling machines with modified milling cutters. In spite of the obvious milling heritage of the process, the techniques and lessons learned from almost 250 years of successful metalworking with milling machines have not been applied in the field of modern Friction Stir Welding. The goal of the current research was to study currently successful FSW tools and parameterize the process in such a way that the design of new tools for new materials could be accelerated. Along the way, several successful new tooling designs were developed for current issues at the Marshall Space Flight Center with accompanying patent disclosures

  12. Increased risk of parkinsonism associated with welding exposure.

    Science.gov (United States)

    Racette, Brad A; Criswell, Susan R; Lundin, Jessica I; Hobson, Angela; Seixas, Noah; Kotzbauer, Paul T; Evanoff, Bradley A; Perlmutter, Joel S; Zhang, Jing; Sheppard, Lianne; Checkoway, Harvey

    2012-10-01

    Manganese (Mn), an established neurotoxicant, is a common component of welding fume. The neurological phenotype associated with welding exposures has not been well described. Prior epidemiologic evidence linking occupational welding to parkinsonism is mixed, and remains controversial. This was a cross-sectional and nested case-control study to investigate the prevalence and phenotype of parkinsonism among 811 shipyard and fabrication welders recruited from trade unions. Two reference groups included 59 non-welder trade workers and 118 newly diagnosed, untreated idiopathic PD patients. Study subjects were examined by a movement disorders specialist using the Unified Parkinson Disease Rating Scale motor subsection 3 (UPDRS3). Parkinsonism cases were defined as welders with UPDRS3 score ≥15. Normal was defined as UPDRS3welding. Adjusted prevalence ratios for parkinsonism were calculated in relation to quartiles of welding years. The overall prevalence estimate of parkinsonism was 15.6% in welding exposed workers compared to 0% in the reference group. Among welders, we observed a U-shaped dose-response relation between weighted welding exposure-years and parkinsonism. UPDRS3 scores for most domains were similar between welders and newly diagnosed idiopathic Parkinson disease (PD) patients, except for greater frequency of rest tremor and asymmetry in PD patients. This work-site based study among welders demonstrates a high prevalence of parkinsonism compared to nonwelding-exposed workers and a clinical phenotype that overlaps substantially with PD. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Submicron Particles during Macro- and Micro-Weldings Procedures in Industrial Indoor Environments and Health Implications for Welding Operators

    Directory of Open Access Journals (Sweden)

    Pasquale Avino

    2015-06-01

    Full Text Available One of the emerging risks in the engineering and electronic industries is the exposure of workers to ultrafine particles during (micro-welding operations, i.e., processes used for joining two metal parts heated locally, which constitute the base metal, with or without addition of another metal which is the filler metal, melted between the edges to be joined. The process is accompanied by formation of metallic fumes arising from the molten metal as well as by the emission of metal fumes of variable composition depending on the alloys welded and fused. The aim of this paper is to investigate the number, concentration and size distribution of submicron particles produced by (micro-welding processes. Particle number size distribution is continuously measured during (micro-welding operations by means of two instruments, i.e., Fast Mobility Particle Sizer and Nanoparticle Surface Area Monitor. The temporal variation of the particle number size distribution across the peaks evidences the strong and fast-evolving contribution of nucleation mode particles: peak values are maintained for less than 10 s. The implication of such contribution on human health is linked to the high deposition efficiency of submicronic particles in the alveolar interstitial region of the human respiratory system, where gas exchange occurs.

  14. Fatal and non-fatal burn injuries with electrical weapons and explosive fumes.

    Science.gov (United States)

    Kroll, Mark W; Ritter, Mollie B; Williams, Howard E

    2017-08-01

    While generally reducing morbidity and mortality, electrical weapons have risks associated with their usage, including eye injuries and falls. With the presence of explosive fumes or fuels there also exists the possibility of burn injury. We searched for cases of fatal and non-fatal major burns with TASER® electrical weapon usage where there was a possibility that the weapon ignited the explosion. We confirmed 6 cases of fatal burn injury and 4 cases of major non-fatal burns out of 3.17 million field uses. The mean age was 35.5 ± 9.7 years which is consistent with the typical arrest-related death. Moderate, minor, and noninjurious fires - typically due to a cigarette lighters in a pocket, petrol, recreational inhalants, or body spray were also noted. The use of electrical weapons presents a small but real risk of death from fatal burn injury. It also presents a small risk of major non-fatal burn injury. The ignition of petrol fumes dominates these cases of major fatal and nonfatal burns. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  15. Maintenance and Testing of Fume Cupboard

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Falah H.; Al-Dahhan, Wedad H.; Al-Zuhairi, Ali Jassim; Rodda, Kabrena E.; Yousif, Emad

    2017-01-01

    Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories, as well as structural improvements made to improve safety and security, to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. This manuscript highlights the importance of periodic maintenance on fume cupboards, and is the fourth in a series of five case studies describing laboratory incidents, accidents, and laboratory improvements. In this study, we describe a situation in which the ventilation capacity of the fume cupboard in the undergraduate chemistry laboratories at Al-Nahrain University had decreased to an unacceptable level. The CSS Committee investigated and found the ducting system had been blocked by plastic sheets and dead birds. All the ducts have since been cleaned, and four extra ventilation fans have been installed to further increase ventilation capacity. By openly sharing what happened along with the lessons learned from the accident, we hope to minimize the possibility of another researcher being injured in a similar incident in the future.

  16. [Analysis on oil fume particles in catering industry cooking emission].

    Science.gov (United States)

    Tan, De-Sheng; Kuang, Yuan-Cheng; Liu, Xin; Dai, Fei-Hong

    2012-06-01

    By measuring the particulate matter of oil fume which is over 10 microm or below 10 microm separately and using microradiography and Electrical Low Pressure Impactor (ELPI), it is found out the distributing characteristic of oil fume particles in catering industry cooking emission. The result shows that the diameter of the oil fume particles which was sedimentated in the kitchen is between 10-400 microm, the concentration peak value is between 10-100 microm. The diameter of oil fume aerosol is mostly smaller than 1 microm, while the concentration peak value is between 0.063-0.109 microm. In addition, the mass concentration peak value is between 6.560-9.990 microm. Through the analysis to the physical characteristics of oil fume from catering industry cooking emissions, the eigenvalue of the oil fume has been found and the feature matter for monitoring the oil fume has been discovered to provide a reasonable standard for controlling and monitoring the catering industry cooking emission.

  17. Manganese exposures during shielded metal arc welding (SMAW) in an enclosed space.

    Science.gov (United States)

    Harris, Michael K; Ewing, William M; Longo, William; DePasquale, Christopher; Mount, Michael D; Hatfield, Richard; Stapleton, Randall

    2005-08-01

    The work reported here evaluates the effectiveness of various rates of dilution ventilation in controlling welder exposures to manganese in shielded metal arc welding (SMAW) fume when working in enclosed or restricted spaces. Personal and area monitoring using total and respirable sampling techniques, along with multiple analytical techniques, was conducted during the welding operations. With 2000 cubic feet per minute (CFM) (56.63 m3/min) dilution ventilation, personal breathing zone concentrations for the welder using 1/8 inches (3.18 mm) E6010 and E7018 mild steel electrodes were within 75% of the existing threshold limit value (TLV of 0.2 mg/m3 for total manganese and were five times greater than the 2001-2003 proposed respirable manganese TLV of 0.03 mg/m3. Manganese concentrations using high manganese content electrodes were five times greater than those for E6010 and E7018 electrodes. Area samples upstream and downstream of the welder using E6010 and E7018 electrodes exceeded 0.2 mg/m3 manganese. Concentrations inside and outside the welding helmet do not indicate diversion of welding fume by the welding helmet from the welder's breathing zone. There was close agreement between respirable manganese and total manganese fume concentrations. Total fume concentrations measured by gravimetric analysis of matched-weight, mixed cellulose ester filters were comparable to those measured via preweighed PVC filter media. This study indicates that 2000 CFM general dilution ventilation per 29 CFR 1910.252 (c)(2) may not be a sufficient means of controlling respirable manganese exposures for either welders or their helpers in restricted or enclosed spaces. In the absence of site-specific monitoring data indicating otherwise, it is prudent to employ respiratory protection or source capture ventilation for SMAW with E6010, E7018, and high manganese content electrodes rather than depending solely on 2000 CFM general dilution ventilation in enclosed spaces.

  18. Distortion Control during Welding

    OpenAIRE

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ methods to control welding distortion. In these methods local heating and/or cooling strategies are applied during welding. Additional heating and/or cooling sources can be implemented either stationa...

  19. Ipratropium Oral Inhalation

    Science.gov (United States)

    Ipratropium oral inhalation is used to prevent wheezing, shortness of breath, coughing, and chest tightness in people with chronic ... comes as a solution (liquid) to inhale by mouth using a nebulizer (machine that turns medication into ...

  20. WELDING PROCESS

    Science.gov (United States)

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  1. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  2. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  3. Asthma Inhalers: Which One's Right for You?

    Science.gov (United States)

    ... dose inhaler Metered dose inhaler with a spacer Dry powder inhaler Small and convenient to carry. Less convenient to ... t use a standard metered dose inhaler or dry powder inhaler. Other types include: Metered dose inhaler with a ...

  4. Evaluation of the molecular mechanisms associated with cytotoxicity and inflammation after pulmonary exposure to different metal-rich welding particles.

    Science.gov (United States)

    Shoeb, Mohammad; Kodali, Vamsi; Farris, Breanne; Bishop, Lindsey M; Meighan, Terence; Salmen, Rebecca; Eye, Tracy; Roberts, Jenny R; Zeidler-Erdely, Patti; Erdely, Aaron; Antonini, James M

    2017-08-01

    Welding generates a complex aerosol of incidental nanoparticles and cytotoxic metals, such as chromium (Cr), manganese (Mn), nickel (Ni), and iron (Fe). The goal was to use both in vivo and in vitro methodologies to determine the mechanisms by which different welding fumes may damage the lungs. Sprague-Dawley rats were treated by intratracheal instillation (ITI) with 2.0 mg of gas metal arc-mild steel (GMA-MS) or manual metal arc-stainless steel (MMA-SS) fumes or saline (vehicle control). At 1, 3, and 10 days, bronchoalveolar lavage (BAL) was performed to measure lung toxicity. To assess molecular mechanisms of cytotoxicity, RAW264.7 cells were exposed to both welding fumes for 24 h (0-100 μg/ml). Fume composition was different: MMA-SS (41% Fe, 29% Cr, 17% Mn, 3% Ni) versus GMA-MS (85% Fe, 14% Mn). BAL indicators of lung injury and inflammation were increased by MMA-SS at all time points and by GMA-MS at 3 and 10 days after exposure. RAW264.7 cells exposed to MMA-SS had elevated generation of reactive oxygen species (ROS), protein-HNE (P-HNE) adduct formation, activation of ERK1/2, and expression of cyclooxygenase-2 (COX-2) compared to GMA-MS and control. Increased generation of ROS due to MMA-SS exposure was confirmed by increased expression of Nrf2 and heme oxygenase-1 (HO-1). Results of in vitro studies provide evidence that stainless steel welding fume mediate inflammatory responses via activation of ROS/P-HNE/ERK1/2/Nrf2 signaling pathways. These findings were corroborated by elevated expression of COX-2, Nrf2, and HO-1 in homogenized lung tissue collected 1 day after in vivo exposure.

  5. Introduction to Welding.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  6. Distortion Control during Welding

    NARCIS (Netherlands)

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ

  7. Human biomonitoring of aluminium after a single, controlled manual metal arc inert gas welding process of an aluminium-containing worksheet in nonwelders.

    Science.gov (United States)

    Bertram, Jens; Brand, Peter; Hartmann, Laura; Schettgen, Thomas; Kossack, Veronika; Lenz, Klaus; Purrio, Ellwyn; Reisgen, Uwe; Kraus, Thomas

    2015-10-01

    Several existing field studies evaluate aluminium welding works but no thoroughly controlled exposure scenario for welding fume has been described yet. This study provides information about the uptake and elimination of aluminium from welding fumes under controlled conditions. In the Aachen Workplace Simulation Laboratory, we are able to generate welding fumes of a defined particle mass concentration. We exposed 12, until then occupationally unexposed participants with aluminium-containing welding fumes of a metal inert gas (MIG) welding process of a total dust mass concentration of 2.5 mg/m(3) for 6 h. Room air filter samples were collected, and the aluminium concentration in air derived. Urine and plasma samples were collected directly before and after the 6-h lasting exposure, as well as after 1 and 7 days. Human biomonitoring methods were used to determine the aluminium content of the samples with high-resolution continuum source atomic absorption spectrometry. Urinary aluminium concentrations showed significant changes after exposure compared to preexposure levels (mean t(1) (0 h) 13.5 µg/L; mean t(2) (6 h) 23.5 µg/L). Plasma results showed the same pattern but pre-post comparison did not reach significance. We were able to detect a significant increase of the internal aluminium burden of a single MIG aluminium welding process in urine, while plasma failed significance. Biphasic elimination kinetic can be observed. The German BAT of 60 µg/g creatinine was not exceeded, and urinary aluminium returned nearly to baseline concentrations after 7 days.

  8. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  9. Sustainability assessment of shielded metal arc welding (SMAW) process

    Science.gov (United States)

    Alkahla, Ibrahim; Pervaiz, Salman

    2017-09-01

    Shielded metal arc welding (SMAW) process is one of the most commonly employed material joining processes utilized in the various industrial sectors such as marine, ship-building, automotive, aerospace, construction and petrochemicals etc. The increasing pressure on manufacturing sector wants the welding process to be sustainable in nature. The SMAW process incorporates several types of inputs and output streams. The sustainability concerns associated with SMAW process are linked with the various input and output streams such as electrical energy requirement, input material consumptions, slag formation, fumes emission and hazardous working conditions associated with the human health and occupational safety. To enhance the environmental performance of the SMAW welding process, there is a need to characterize the sustainability for the SMAW process under the broad framework of sustainability. Most of the available literature focuses on the technical and economic aspects of the welding process, however the environmental and social aspects are rarely addressed. The study reviews SMAW process with respect to the triple bottom line (economic, environmental and social) sustainability approach. Finally, the study concluded recommendations towards achieving economical and sustainable SMAW welding process.

  10. Comparison of Effect of Metakaolin and silica Fume on Fly Ash Concrete Performance

    Directory of Open Access Journals (Sweden)

    Hou Yunfen

    2016-01-01

    Full Text Available Silica fume is a common mineral admixture used in HSC and HPC, but being its high price and shrinkage in concrete, its usage is under restrictions. As a new mineral admixture, metakaolin gets more and more attention. In order to compare the difference between silica fume and metakaolin, the effects of metakaolin and silica fume on concrete workability, compressive strength, and chloride penetration resistance are studied. It shows that incorporating with fly ash together, silica fume reduces the slump extension, but metakaolin can increases it; silica fume can increases early strength more than metakaolin can, but it isn’t useful for later and long-time strength; metakaolin not only can increase early strength, but also can improve long-time strength. Silica fume and metakaolin can increase the chloride penetration resistance. As a new mineral additive, metakaolin can play a role in concrete which silica fume does, even much better than silica fume.

  11. Multiple exposure to metals in eight types of welding.

    Science.gov (United States)

    Apostoli, P; Porru, S; Brunelli, E; Alessio, L

    1997-01-01

    This article evaluates multiple exposures to metals in different types of metal welding such as manual metal arc for mild and stainless steel, continuous wire, submerged arc, laser and brazing. Environmental monitoring was carried out in eight different occupational situations and the inductively coupled plasma mass spectrometry technique was adopted in order to characterize exposure to several elements simultaneously and with high accuracy. The results showed that up to 23 elements could be measured. The highest concentrations were found for Al, Mn, Fr, Ni, Cr, Cu and Zn. For some elements such as In, Nd, I, Rb the concentrations were very low. A qualitative and quantitative variation in fume composition was observed at a certain distance from the welding point, which should be to taken into account when evaluating indirect exposures. It would also be possible, with this technique, to identify specific elements in the mixture which could also be measured in biological fluids.

  12. Using fume silica as heavy metals' stabilizer for high alkali and porous MSWI baghouse ash.

    Science.gov (United States)

    Huang, Wu-Jang; Huang, Hung-Shao

    2008-03-21

    In this study, we have proved that heavy metals in high porous and alkali baghouse ash could be fixed effectively by fume silica powder alone, or with the incorporation of colloidal aluminum oxide (CAO). The optimum amount is about 100g of fume silica per kilogram of baghouse ash. Results have indicated that fume silica has a better fixation efficiency of lead in high porous baghouse ash. In addition, the reaction mechanism of fume silica is also discussed.

  13. Magnesium oxide as cause of metal fume fever

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, A.L.; Hartmann, W.; Buehlmann, A.A.

    1983-05-28

    Seven foundry workers are described who all developed pulmonary symptoms and in the majority of cases recurrent occupational fever; the onset of these episodes coincided with the introduction of a new founding technique resulting in exposure to magnesium oxide fumes. The foreman - most exposed because responsible for vaccination of the melted iron with metallic magnesium - developed disabling pneumopathy. The feverish episodes are interpreted as metal fume fever and in 6 patients the pneumopathy is considered to be due to alkalitoxic damage to the small airways and alveoli caused by the magnesium oxide fumes. The seventh patient suffered from allergic asthma bronchiale. Differentiation from hypersensitivity pneumonitis and from humidifier fever of nonallergic etiology is discussed.

  14. Emissions of fluorides from welding processes.

    Science.gov (United States)

    Szewczyńska, Małgorzata; Pągowska, Emilia; Pyrzyńska, Krystyna

    2015-11-01

    The levels of fluoride airborne particulates emitted from welding processes were investigated. They were sampled with the patented IOM Sampler, developed by J. H. Vincent and D. Mark at the Institute of Occupational Medicine (IOM), personal inhalable sampler for simultaneous collection of the inhalable and respirable size fractions. Ion chromatography with conductometric detection was used for quantitative analysis. The efficiency of fluoride extraction from the cellulose filter of the IOM sampler was examined using the standard sample of urban air particle matter SRM-1648a. The best results for extraction were obtained when water and the anionic surfactant N-Cetyl-N-N-N-trimethylammonium bromide (CTAB) were used in an ultrasonic bath. The limits of detection and quantification for the whole procedure were 8μg/L and 24μg/L, respectively. The linear range of calibration was 0.01-10mg/L, which corresponds to 0.0001-0.1mg of fluorides per m(3) in collection of a 20L air sample. The concentration of fluorides in the respirable fraction of collected air samples was in the range of 0.20-1.82mg/m(3), while the inhalable fraction contained 0.23-1.96mg/m(3) of fluorides during an eight-hour working day in the welding room. Copyright © 2015. Published by Elsevier B.V.

  15. Objective measurement of inhaler inhalation flow profile using acoustic methods

    Energy Technology Data Exchange (ETDEWEB)

    Lacalle, H.; Taylor, T.E.; Marco, S.; Reilly, R.B.

    2016-07-01

    Patients with asthma and chronic obstructive pulmonary diseases (COPD) are mostly treated with inhalers that deliver medication directly to their airways. Drug delivery from dry powder inhalers (DPIs) is very much reliant on the inhalation manoeuvre, specifically the peak inspiratory flow rate (PIFR), inspiratory capacity (IC) and inhalation rise time (IRT) of the inhalation. It has been widely reported that patients may not follow correct inhalation technique while using their inhaler. In this study, a novel acoustic method is proposed to accurately estimate inhalation flow profile using only one inhalation recording for calibration. An Ellipta DPI was placed inside an airtight container with a spirometer connected in order to measure inhalation flow parameters. An acoustic recording device (Inhaler Compliance Assessment (INCA)) was also attached to the DPI. Inhalation audio and flow signals were recorded simultaneously. The data were collected from 20 healthy subjects while performing inhaler inhalations at a range of inspiratory flow rates. A power law regression model was computed to obtain the relationship between the acoustic envelope of the inhalation and flow profile of each recording. Each model was tested on the remaining audio signals to estimate flow profile. The average estimation error was found to be 10.5±0.3% for estimating flow profile from audio signals. Inhalation flow profile parameters (PIFR, IC and IRT) could then be measured from the estimated flow profile with high accuracy giving information on user inhalation technique. This method may assist in improving patient inhaler adherence and overall disease control. (Author)

  16. Generation rate of carbon monoxide from CO2 arc welding.

    Science.gov (United States)

    Ojima, Jun

    2013-01-01

    CO poisoning has been a serious industrial hazard in Japanese workplaces. Although incomplete combustion is the major cause of CO generation, there is a risk of CO poisoning during some welding operations. The aim of the present study was to evaluate the generation rate of CO from CO2 arc welding under controlled laboratory conditions and estimate the ventilation requirements for the prevention of CO poisoning. Bead on plate welding was carried out with an automatic welding robot on a rolled steel base metal under several conditions. The concentration of emitted CO from the welding was measured by a real-time CO monitor in a well-ventilated laboratory that was free from ambient CO contamination. The generation rate of CO was obtained from the three measurements-the flow rate of the welding exhaust gas, CO concentration in the exhaust gas and the arcing time. Then the ventilation requirement to prevent CO poisoning was calculated. The generation rate of CO was found to be 386-883 ml/min with a solid wire and 331-1,293 ml/min with a flux cored wire respectively. It was found that the CO concentration in a room would be maintained theoretically below the OSHA PEL (50 ppm) providing the ventilation rate in the room was 6.6-25.9 m3/min. The actual ventilation requirement was then estimated to be 6.6-259 m3/min considering incomplete mixing. In order to prevent CO poisoning, some countermeasures against gaseous emission as well as welding fumes should be taken eagerly.

  17. Reprocessing weld and method

    Energy Technology Data Exchange (ETDEWEB)

    Killian, M.L.; Lewis, H.E.

    1993-08-03

    A process is described for improving the fatigue resistance of a small primary structural weld at a joint between structural members of a weldment, the weld having been made with the welding energy input of E[sub 1], the process comprising: applying a reprocessing weld on at least a portion of either one or both toes of the primary structural weld, thereby covering said toe portion, the reprocessing weld containing a filler metal and having a cross-sectional area which is less than the corresponding cross-sectional area of the primary structural weld, the reprocessing weld extending onto the face of the primary structural weld at one side of the toe portion covered and onto the structural member at the other side of the toe portion covered, and the total welding energy input, E[sub 2], used in said reprocessing the primary structural weld being less than the welding energy input E[sub 1] of the primary structural weld.

  18. Pediatric inhalation injury

    OpenAIRE

    Sen, Soman

    2017-01-01

    Smoke inhalation injury can cause severe physiologic perturbations. In pediatric patients, these perturbations cause profound changes in cardiac and pulmonary physiology. In this review, we examine the pathology, early management options, ventilator strategy, and long-term outcomes in pediatric patients who have suffered a smoke inhalation injury.

  19. Reasons for Inhalant Use.

    Science.gov (United States)

    Joe, George W.; Simpson, D. Dwayne

    1991-01-01

    Among 110 Mexican-American adolescents in a Texas drug abuse program, initial use of toxicant inhalants was related to availability and sensation-seeking, followed by psychological problems, parental and home problems, and peer influence. Quitting inhalant use was related to social pressures, attitude change, and perceived health risks. (Author/SV)

  20. Influence of Metal Transfer Stability and Shielding Gas Composition on CO and CO2 Emissions during Short-circuiting MIG/MAG Welding

    Directory of Open Access Journals (Sweden)

    Valter Alves de Meneses

    Full Text Available Abstract: Several studies have demonstrated the influence of parameters and shielding gas on metal transfer stability or on the generation of fumes in MIG/MAG welding, but little or nothing has been discussed regarding the emission of toxic and asphyxiating gases, particularly as it pertains to parameterization of the process. The purpose of this study was to analyze and evaluate the effect of manufacturing aspects of welding processes (short-circuit metal transfer stability and shielding gas composition on the gas emission levels during MIG/MAG welding (occupational health and environmental aspects. Using mixtures of Argon with CO2 and O2 and maintaining the same average current and the same weld bead volume, short-circuit welding was performed with carbon steel welding wire in open (welder’s breathing zone and confined environments. The welding voltage was adjusted to gradually vary the transfer stability. It was found that the richer the composition of the shielding gas is in CO2, the more CO and CO2 are generated by the arc. However, unlike fume emission, voltage and transfer stability had no effect on the generation of these gases. It was also found that despite the large quantity of CO and CO2 emitted by the arc, especially when using pure CO2 shielding gas, there was no high level residual concentration of CO and CO2 in or near the worker’s breathing zone, even in confined work cells.

  1. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  2. Inhalants in Peru.

    Science.gov (United States)

    Lerner, R; Ferrando, D

    1995-01-01

    In Peru, the prevalence and consequences of inhalant abuse appear to be low in the general population and high among marginalized children. Inhalant use ranks third in lifetime prevalence after alcohol and tobacco. Most of the use appears to be infrequent. Among marginalized children, that is, children working in the streets but living at home or children living in the street, the problem of inhalant abuse is a serious problem. Among children working in the streets but living at home, the lifetime prevalence rate for inhalant abuse is high, ranging from 15 to 45 percent depending on the study being cited. For children living in the streets, the use of inhalant is even more severe. As mentioned earlier in this chapter, most of these street children use inhalants on a daily basis. The lack of research on the problem of inhalant abuse is a serious impediment to development of intervention programs and strategies to address this problem in Peru. Epidemiologic and ethnographic research on the nature and extent of inhalant abuse are obvious prerequisites to targeted treatment and preventive intervention programs. The urgent need for current and valid data is underscored by the unique vulnerability of the youthful population at risk and the undisputed harm that results from chronic abuse of inhalants. Nonetheless, it is important to mention several programs that work with street children. Some, such as the Information and Education Center for the Prevention of Drug Abuse, Generation, and Centro Integracion de Menores en Abandono have shelters where street children are offered transition to a less marginal lifestyle. Teams of street educators provide the children with practical solutions and gain their confidence, as well as offer them alternative socialization experiences to help them survive the streets and avoid the often repressive and counterproductive environments typical of many institutions. Most of the children who go through these programs tend to abandon

  3. Welding Course Curriculum.

    Science.gov (United States)

    Genits, Joseph C.

    This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part…

  4. Instructional Guidelines. Welding.

    Science.gov (United States)

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  5. Hepatotoxic and Nephrotoxic Effects of Petroleum Fumes on Petrol ...

    African Journals Online (AJOL)

    The present study was conducted to evaluate the hepatotoxic and nephrotoxic effects of petroleum fumes on male and female petrol attendants. Investigations had been carried out on thirty (30) adult petrol attendants from different filling stations in Ibadan metropolis of Nigeria with ten (10) healthy adults as control. All the ...

  6. Effect of plasticizer and fumed silica on ionic conductivity behaviour ...

    Indian Academy of Sciences (India)

    The effect of addition of propylene carbonate (PC) and nano-sized fumed silica on the ionic conductivity behaviour of proton conducting polymer electrolytes containing different concentrations of hexafluorophosphoric acid (HPF6) in polyethylene oxide (PEO) has been studied. The addition of PC results in an increase in ...

  7. Moisture Diffusivity of Fiber Reinforced Silica Fume Mortars

    OpenAIRE

    Denarié, E.; Houst, Y.F.

    1995-01-01

    The moisture diffusivity is of considerable importance for quantitative assessments of creep and shrinkage as well as durability of cementitious material. For this reason, the influence of the composition of repair mortars on their effective moisture diffusivity as a function of the relative humidity of the surrounding air has been investigated. Silica fume,

  8. Pemanfaatan Mikrobakteri Terhadap Beton Mutu Tinggi dengan Tambahan Silica Fume

    Directory of Open Access Journals (Sweden)

    Azwar Annas

    2016-04-01

    Full Text Available Beton mutu tinggi adalah beton yang kuat tekan tinggi sekitar 50 MPa – 100 MPa. Untuk meningkatkan kuat tekan, material pozollan seperti silica fume dan flyash biasanya digunakan untuk mengganti material beton Dalam laporan ini, beton mutu tinggi dengan silica fume sebagai pengganti semen dipelajari. Kadar silica fume yang digunakan adalah 0%, 5%, 7,5% dan 10%. Selain itu pengaruh dari mikrobakteri juga dipelajari. Faktor water per binder yang dipakai adalah 25% dari berat binder, dan untuk membuat workabilitynya bagus maka digunakan superplasticizer. Kadar superplasticizer yang digunakan dicari lewat trial pengujian di laboratorium. Pengujian yang dilakukan pada umur 1, 3, 7, 14, 21, 28 adalah uji tekan pasta, mortar dan beton, selain itu pada benda uji beton umur 28 hari akan dilakukan uji split beton dan uji porositas. Dari hasil penelitian didapatkan kuat tekan beton tertinggi pada umur 28 hari (B7,5M adalah 69,71 MPa, sedangkan variasi silica fume yang paling optimum ada pada kadar 7,5%. Penambahan mikrobakteri tidak berpengaruh pada berat volume beton tetapi berpengaruh pada kuat tekan beton tersebut. Dengan penambahan mikrobakteri maka kuat tekan beton meningkat sebesar ± 30%. Sedangkan porositas total dan porositas tertutup yang terjadi pada beton semakin kecil, ini dibuktikan dengan hasil SEM terlihat bahwa bakteri mengisi area antara aggregat dan matrix beton.

  9. Mechanical Properties of Steel Fiber Reinforced Silica Fume Concrete

    African Journals Online (AJOL)

    This paper presents the investigations towards developing a better understanding on the contribution of steel fibers on the compressive, flexural, and splitting tensile strengths of steel fiber reinforced silica fume concrete. An extensive experimentation was carried out with w/cm ratio ranging from 0.25 to 0.40, and fiber ...

  10. Inhalation therapy in children

    Directory of Open Access Journals (Sweden)

    Jolanta Pietrzak

    2014-12-01

    Full Text Available Inhalation is a form of treatment used in respiratory diseases that allows medications to be administered directly to the affected site. Thanks to this, the administration of lower doses helps obtain a higher concentration in the target organ and eliminate or effectively reduce systemic adverse effects. For drug deposition in the respiratory system, we use inhalers (pressurised, dry powder, soft mist or nebulisers (jet, ultrasonic, vibrating mesh. In pressurised inhalers, spacers or holding chambers can be used to effectively synchronise inspiration with dose release. Inhalers are indicated in lower respiratory tract diseases, and the only contraindication is the inability to use the device. Nebulisers can be used in upper and lower respiratory tract diseases, but there are certain contraindications (among others: acute inflammation, flares of chronic diseases, circulatory insufficiency. The selection of an inhaler (or a shift to another device must be justified. It should be based on the knowledge of the properties and principles of individual inhalers, assessment of the child’s ability to use the device properly (including obtaining optimal inspiratory flows as well as on the preferences of patients and their guardians. It is significant to individually instruct the patient how to use an inhaler when this treatment is being implemented and to review the inhalation technique during each follow-up visit. Treatment benefits can be achieved when age, clinical condition, proper inhalation technique correlated with the abilities of patients are considered.

  11. Toxicological Investigation of Acute Carbon Monoxide Poisoning in Four Occupants of a Fuming Sport Utility Vehicle

    Directory of Open Access Journals (Sweden)

    Martin Nnoli

    2014-11-01

    Full Text Available Background: This toxicological investigation involves a report on the death of four occupants of a sport utility vehicle on one of the major busy Federal roads of Nigeria where they were held for up to three hours in a traffic jam while the car was steaming. Methods: Autopsy was executed using the standard procedure and toxicological analysis was done using simple spectrophotometric method to establish the level of carboxyhaemoglobin (HbCO in peripheral blood in the four occupants. Results: The autopsy report indicated generalized cyanosis, sub-conjuctival hemorrhages, marked laryngo-trachea edema with severe hyperemia with frothy fluid discharges characteristic of carbon monoxide poisoning. Toxicological report of the level of HbCO in part per million (ppm in the peripheral blood of the four occupants was A= 650 ppm; B= 500 ppm; C= 480 ppm, and D= 495 ppm against the maximum permissible level of 50 ppm. Conclusion: The sudden death of the four occupants was due to excessive inhalation of the carbon monoxide gas from the exhaust fumes leaking into the cabin of the car. The poor road network, numerous potholes, and traffic jam in most of roads in Nigeria could have exacerbated a leaky exhaust of the smoky second hand SUV car leading to the acute carbon monoxide poisoning.

  12. Physics of arc welding

    Science.gov (United States)

    Eagar, T. W.

    1982-05-01

    A discussion of the factors controlling the size and shape of the weld fusion zone is presented along with a description of current theories of heat and fluid flow phenomena in the plasma and the molten metal weld pool. Although experimental results confirm that surface tension, plasma jets, and weld pool convection all strongly influence the fusion zone shape; no comprehensive model is available from which to predict welding behavior. It is proposed that the lack of such an understanding is a major impediment to development of automated welding processes. In addition, sensors for weld torch positioning are reviewed in terms of the mechnical and electromagnetic energy spectra which have been used. New developments in this area are also needed in order to advance the technology of automated welding.

  13. Dual wire weld feed proportioner

    Science.gov (United States)

    Nugent, R. E.

    1968-01-01

    Dual feed mechanism enables proportioning of two different weld feed wires during automated TIG welding to produce a weld alloy deposit of the desired composition. The wires are fed into the weld simultaneously. The relative feed rates of the wires and the wire diameters determine the weld deposit composition.

  14. Albuterol Oral Inhalation

    Science.gov (United States)

    ... Corgard), and propranolol (Inderal); digoxin (Lanoxin); diuretics ('water pills'); epinephrine (Epipen, Primatene Mist); other inhaled medications used to relax the air passages such as metaproterenol and levalbuterol (Xopenex); and ...

  15. Levalbuterol Oral Inhalation

    Science.gov (United States)

    ... and propranolol (Inderal); digoxin (Digitek, Lanoxin); diuretics ('water pills'); epinephrine (Epipen, Primatene Mist); medications for colds; and other inhaled medications to relax the air passages such as metaproterenol (Alupent) and pirbuterol (Maxair). ...

  16. Umeclidinium Oral Inhalation

    Science.gov (United States)

    ... breath, coughing, and chest tightness caused by chronic obstructive pulmonary disease (COPD; a group of diseases that affect the lungs and airways, that includes chronic bronchitis and emphysema). Umeclidinium inhalation is in a class of medications ...

  17. Olodaterol Oral Inhalation

    Science.gov (United States)

    ... breath, coughing, and chest tightness caused by chronic obstructive pulmonary disease (COPD; a group of diseases that affect the lungs and airways, which includes chronic bronchitis and emphysema). Olodaterol oral inhalation is in a class of ...

  18. [Submicron particles in smoke resulting from welding alloys and cast alloy in metalworking industry].

    Science.gov (United States)

    Avino, P; Manigrasso, M; Fanizza, Carla; Carrai, P; Solfanelli, Linda

    2013-01-01

    The toxicity of welding fumes depends on both chemical composition and ability to penetrate and deposit deeply in the lungs. Their penetration and deposition in the regions of the respiratory system is mainly determined by their size. The knowledge of the size distribution of welding fumes is a crucial information towards the estimate of the doses of toxic compounds delivered into the respiratory tract. Particle number size distribution was continuously measured during different welding operations by means of a Fast Mobility Particle Sizer, which counts and classifies particles, according to their electrical mobility, in 32 size-channels, in the range from 5.6 to 523 nm, with is time resolution. The temporal evolution of submicrometric particles (6-523 nm), nucleation mode particles (6-16 nm) and the fraction 19-523 nm before, during and after the welding operations performed with/without local exhaust ventilation are reported and extensively discussed. Before welding, nucleation mode particles represent about 7% of submicrometric particles; after about 40 s from the welding start, the percent contribution of nucleation mode particles increases to 60%. Total and nucleation mode particle concentrations increase from 2.1 x 10(4) to 2.0 x 10(6) and from 1.6 x 10(3) to 1.0 x 10(6), respectively. The temporal variation of the particle number size distribution across the peaks, evidences the strong and fast-evolving contribution of nucleation mode particles: peak values are maintained for less than 10 s. The implication of such contribution on human health is linked to high deposition efficiency of the submicrometric particles in the alveolar interstitial region of the human respiratory system, where gas exchange occurs.

  19. Lung Function Status of Workers Exposed to Welding Fume: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Mulyana Mulyana

    2016-04-01

    CONCLUSION: Lung function parameters status were significantly lower in welder than non-welder, and working period was the most important indicator for lung function status evaluation among welder. KEYWORDS: vital capacity, VC, forced vital capacity, FCV, forced expiratory volume in one second, FEV1, lung function, ratio of FEV1/FVC, working period

  20. Characterization of Iron Welding Fumes for Potential Beneficial Use in Environmental Remediation

    Science.gov (United States)

    Research regarding nanoparticles generated as waste byproducts during industrial practices has received little attention in the environmental science and engineering literature. The physical and chemical characteristics and properties need to be considered when evaluating potent...

  1. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  2. Welding skate with computerized controls

    Science.gov (United States)

    Wall, W. A., Jr.

    1968-01-01

    New welding skate concept for automatic TIG welding of contoured or double-contoured parts combines lightweight welding apparatus with electrical circuitry which computes the desired torch angle and positions a torch and cold-wire guide angle manipulator.

  3. Urinary neutrophil gelatinase-associated lipocalin is associated with heavy metal exposure in welding workers.

    Science.gov (United States)

    Chuang, Kai-Jen; Pan, Chih-Hong; Su, Chien-Ling; Lai, Ching-Huang; Lin, Wen-Yi; Ma, Chih-Ming; Ho, Shu-Chuan; Bien, Mauo-Ying; Chen, Cheng-Hsien; Chuang, Hsiao-Chi

    2015-12-17

    Metals cause nephrotoxicity with acute and/or chronic exposure; however, few epidemiological studies have examined impacts of exposure to metal fumes on renal injury in welding workers. In total, 66 welding workers and 12 office workers were recruited from a shipyard located in southern Taiwan. Urine samples from each subject were collected at the beginning (baseline) and end of the work week (1-week exposure). Personal exposure to PM2.5 was measured. The 8-h mean PM2.5 was 50.3 μg/m(3) for welding workers and 27.4 μg/m(3) for office workers. iTRAQs coupled with LC-MS/MS were used to discover the pathways in response to welding PM2.5 in the urine, suggesting that extracellular matrix (ECM)-receptor interactions are a critical mechanism. ECM-receptor interaction-related biomarkers for renal injury, kidney injury molecule (KIM)-1 and neutrophil gelatinase-associated lipocalin (NGAL), were significantly elevated in welding workers post-exposure, as well as were urinary Al, Cr, Mn, Fe, Co, and Ni levels. NGAL was more significantly associated with Al (r = 0.737, p welding PM2.5 exposure. Nephrotoxicity (e.g., renal tubular injury) may be an emerging concern in occupational health.

  4. Computerized adaptive control weld skate with CCTV weld guidance project

    Science.gov (United States)

    Wall, W. A.

    1976-01-01

    This report summarizes progress of the automatic computerized weld skate development portion of the Computerized Weld Skate with Closed Circuit Television (CCTV) Arc Guidance Project. The main goal of the project is to develop an automatic welding skate demonstration model equipped with CCTV weld guidance. The three main goals of the overall project are to: (1) develop a demonstration model computerized weld skate system, (2) develop a demonstration model automatic CCTV guidance system, and (3) integrate the two systems into a demonstration model of computerized weld skate with CCTV weld guidance for welding contoured parts.

  5. Effectiveness of Inhalant Abuse Legislation.

    Science.gov (United States)

    Batis, Jeffery C

    2017-01-28

    Since peaking in the 1990s, inhalant abuse has steadily decreased over the past two decades. Concurrently, nearly every state has passed legislation aimed at minimizing inhalant abuse. While males have historically been more likely to abuse inhalants than females, there is no longer a sex effect in self-reported rates of inhalant abuse. The objective of the present study is to evaluate the effect of anti-inhalant abuse legislation on self-reported rates of inhalant abuse, in high school age males and females. Beginning in 1993, the CDC's biannual Youth Risk Behavior Surveillance Survey asked respondents if they have ever used inhalants to get high. Data from these surveys were collected, along with the date of passage of anti-inhalant abuse legislation in 46 of 50 states. ANOVAs were conducted to assess the effect of legislation on self-reported inhalant abuse rates. There were no significant main effects or interactions that demonstrated that inhalant abuse rates decreased in males or females following passage of legislation aimed at decreasing inhalant abuse. Conclusion/Importance: To date, 46 of 50 states have passed laws aimed at minimizing inhalant abuse, and while inhalant abuse rates have been decreasing for the past two decades, there is no evidence that this decline is related to enactment of these laws. Further research is needed to determine the cause of the decrease in inhalant abuse. The laws may benefit from amendments to include options for treatment.

  6. Acute respiratory effects and biomarkers of inflammation due to welding-derived nanoparticle aggregates.

    Science.gov (United States)

    Dierschke, Katrin; Isaxon, Christina; Andersson, Ulla B K; Assarsson, Eva; Axmon, Anna; Stockfelt, Leo; Gudmundsson, Anders; Jönsson, Bo A G; Kåredal, Monica; Löndahl, Jakob; Pagels, Joakim; Wierzbicka, Aneta; Bohgard, Mats; Nielsen, Jörn

    2017-07-01

    Welders are exposed to airborne particles from the welding environment and often develop symptoms work-related from the airways. A large fraction of the particles from welding are in the nano-size range. In this study we investigate if the welders' airways are affected by exposure to particles derived from gas metal arc welding in mild steel in levels corresponding to a normal welding day. In an exposure chamber, 11 welders with and 10 welders without work-related symptoms from the lower airways and 11 non-welders without symptoms, were exposed to welding fumes (1 mg/m 3 ) and to filtered air, respectively, in a double-blind manner. Symptoms from eyes and upper and lower airways and lung function were registered. Blood and nasal lavage (NL) were sampled before, immediately after and the morning after exposure for analysis of markers of oxidative stress. Exhaled breath condensate (EBC) for analysis of leukotriene B4 (LT-B4) was sampled before, during and immediately after exposure. No adverse effects of welding exposure were found regarding symptoms and lung function. However, EBC LT-B4 decreased significantly in all participants after welding exposure compared to filtered air. NL IL-6 increased immediately after exposure in the two non-symptomatic groups and blood neutrophils tended to increase in the symptomatic welder group. The morning after, neutrophils and serum IL-8 had decreased in all three groups after welding exposure. Remarkably, the symptomatic welder group had a tenfold higher level of EBC LT-B4 compared to the two groups without symptoms. Despite no clinical adverse effects at welding, changes in inflammatory markers may indicate subclinical effects even at exposure below the present Swedish threshold limit (8 h TWA respirable dust).

  7. Modern Methods of Rail Welding

    Science.gov (United States)

    Kozyrev, Nikolay A.; Kozyreva, Olga A.; Usoltsev, Aleksander A.; Kryukov, Roman E.; Shevchenko, Roman A.

    2017-10-01

    Existing methods of rail welding, which are enable to get continuous welded rail track, are observed in this article. Analysis of existing welding methods allows considering an issue of continuous rail track in detail. Metallurgical and welding technologies of rail welding and also process technologies reducing aftereffects of temperature exposure are important factors determining the quality and reliability of the continuous rail track. Analysis of the existing methods of rail welding enable to find the research line for solving this problem.

  8. Challenges to Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    This report originates from the compulsory defense during my Ph.D. study at the Technical University of Denmark. Resistance welding is an old and well-proven technology. Yet the emergence of more and more new materials, new designs, invention off new joining techniques, and more stringent...... requirement in quality have imposed challenges to the resistance welding. More some research and development have to be done to adapt the old technology to the manufacturing industry of the 21st century. In the 1st part of the report, the challenging factors to the resistance welding are reviewed. Numerical...... simulation of resistance welding has been under development for many years. Yet it is no easy to make simulation results reliable and accurate because of the complexity of resistance welding process. In the 2nd part of the report numerical modeling of resistance welding is reviewed, some critical factors...

  9. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  10. FABRICATION AND CHARACTERIZATION OF POLYIMIDE/POLYETHERSULFONE-FUMED SILICA MIXED MATRIX MEMBRANE FOR GAS SEPARATION

    Directory of Open Access Journals (Sweden)

    A. F. Ismail

    2012-01-01

    Full Text Available This study is performed primarily to investigate the feasibility of fumed silica as inorganic material towards gas separation performance of mixed matrix membrane. In this study, polyimide/polyethersulfone (PES-fumed silica mixed matrix membranes were casted using dry/wet technique. The results from the FESEM, DSC and FTIR analysis confirmed that the structure and physical properties of membrane is influenced by inorganic filler. FESEM’s cross-section view indicated good compatibility between polymer and fumed silica for all of range fumed silica used in this study. The gas separation performance of the mixed matrix membranes with fumed silica were relatively higher compared to that of the neat PI/PES membrane. PI/PES-fumed silica 5 wt% yielded significant selectivity enhancement of 7.21 and 40.47 for O2/N2, and CO2/CH4, respectively.

  11. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  12. Studies of welded joints

    Directory of Open Access Journals (Sweden)

    J. M. Krupa

    2010-07-01

    Full Text Available Studies of a welded joint were described. The joint was made as a result of the reconstruction of a truss and one of the possible means to make a repair. The studies were of a simulation character and were targeted at the detection of welding defects and imperfections thatshould be eliminated in a real structure. A model was designed and on this model the tests and examinations were carried out. The modelwas made under the same conditions as the conditions adopted for repair. It corresponded to the real object in shape and dimensions, and in the proposed technique of welding and welding parameters. The model was composed of five plates joined together with twelve beads.The destructive and non-destructive tests were carried out; the whole structure and the respective welds were also examined visually. Thedefects and imperfections in welds were detected by surface methods of inspection, penetration tests and magnetic particle flaw detection.The model of the welded joint was prepared by destructive methods, a technique that would never be permitted in the case of a realstructure. For the investigations it was necessary to cut out the specimens from the welded joint in direction transverse to the weld run. The specimens were subjected to metallographic examinations and hardness measurements. Additionally, the joint cross-section was examined by destructive testing methods to enable precise determination of the internal defects and imperfections. The surface methods were applied again, this time to determine the severity of welding defects. The analysis has proved that, fabricated under proper conditions and with parameters of the welding process duly observed, the welded joint has good properties and repairs of this type are possible in practice.

  13. Particle packing of cement and silica fume in pastes using an analytical model

    Directory of Open Access Journals (Sweden)

    A. HERMANN

    Full Text Available When added to concrete in appropriate content, silica fume may provide an increase in the mechanical strength of the material due to its high pozzolanic reactivity. In addition to the chemical contribution, physical changes can also be observed in concretes with silica fume due to an improvement in the particle packing of the paste. This is a result of their small size spherical particles, which fill the voids between the larger cement grains. However, it is necessary to properly establish the cement replacement content by silica fume, because at high amounts, which exceed the volume of voids between the cement particles, silica fume can promote the loosening of these particles. Thus, instead of filling the voids and increasing the packing density, the addition of silica fume will increase the volume of voids, decreasing the solid concentration. Consequently, this will impair the properties of the concrete. The objective of this paper is to use a particle packing analytical model, the CPM (Compressible Packing Model, to verify the maximum packing density of cement and silica fume, which could be associated with the silica fume optimum content in pastes. The ideal content of silica fume in pastes, mortars and concretes is usually experimentally determined. However, a theoretical study to contrast experimental data may help understanding the behaviour of silica fume in mixes. Theoretical results show maximum amounts of silica fume in the order of 18 to 20% of the cement weight, which is high considering recommendations on literature of 15%. Nevertheless, the packing model does not consider the effect of silica fume high specific surface on the agglomeration of particles or water demand. Hence, the packing density predicted by this model cannot be used as the single parameter in determining the optimum amount of silica fume in pastes.

  14. Robot welding process control

    Science.gov (United States)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  15. Explosive Welding of Pipes

    Science.gov (United States)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  16. [Inhaled medication in pediatrics].

    Science.gov (United States)

    Sapet, A; Oudyi, M; Dubus, J-C

    2013-08-01

    Three different devices are available for inhaled medications in children: the pressurized metered dose inhalers (pMDIs, breath-actuator synchronized pMDI, and valved holding spacers), the dry powder inhalers, and the nebulizers. To choose the better device for a particular patient, a perfect knowledge of the available devices, of their mode of use, of their advantages and inconvenient is required. The use of a pMDI coupled to a valved holding spacer is the first mode of delivery to propose in children aged less than 6 years. After 6 years old, the DPIs may be proposed depending on the child's competences. At last, the nebulizations are indicated in some particular and severe indications, but new indications are appearing because of recent progresses. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Nicotine microaerosol inhaler.

    Science.gov (United States)

    Andrus, P G; Rhem, R; Rosenfeld, J; Dolovich, M B

    1999-01-01

    To measure the droplet size distribution of a nicotine pressurized metered-dose inhaler using a nicotine in ethanol solution formulation with hydrofluoroalkane as propellant. Sizing was performed at room temperature by multistage liquid impinger and quartz crystal impactor. The mass median aerodynamic diameter of the nicotine aerosol produced was measured at 1.6 mm by multistage liquid impinger and 1.5 mm by quartz crystal impactor. The inhaler formulation used produces a microaerosol of sufficiently fine droplet size that mimics the puff-by-puff pulmonary arterial bolus nicotine delivery of tobacco smoke. The absence of combustion products such as heat, carcinogens and carbon monoxide permits safer nicotine delivery via the inhaler than is possible via smoked tobacco.

  18. Inhaled Corticosteroids (ICSs) and Pregnancy

    Science.gov (United States)

    Inhaled Corticosteroids (ICSs) In every pregnancy, a woman starts out with a 3-5% chance of having a baby ... This sheet talks about whether exposure to inhaled corticosteroids may increase the risk for birth defects over ...

  19. Effects of parkinsonism on health status in welding exposed workers.

    Science.gov (United States)

    Harris, Rachel C; Lundin, Jessica I; Criswell, Susan R; Hobson, Angela; Swisher, Laura M; Evanoff, Bradley A; Checkoway, Harvey; Racette, Brad A

    2011-11-01

    Previous studies suggest that welders frequently display parkinsonian signs, such as bradykinesia and tremor. Demonstrating that these parkinsonian findings are associated with reductions in quality of life (QoL) or health status could have important repercussions for worker safety and performance. Subjects included 394 active workers exposed to welding fumes and evaluated for parkinsonism by movement disorders experts in a worksite-based epidemiology study. Subjects were diagnosed with parkinsonism if the Unified Parkinson Disease Rating Scale motor subsection part 3 (UPDRS3) score was ≥15. All subjects completed a Parkinson's disease (PD) symptom questionnaire and the PDQ39, a widely used QoL and health status measure for PD. Total PDQ39 score and all subscores were greater in welders with parkinsonism than welders without parkinsonism, with the most significant differences observed for mobility, emotional well-being, and activities of daily living (ADL's). The PDQ39 scores for welding exposed workers with parkinsonism were similar to scores seen in a group of early PD patients. Parkinsonism in active, welding exposed workers is associated with reductions in health status and QoL affecting a broad range of categories and within the range seen in early PD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Occupational health concerns in the welding industry.

    Science.gov (United States)

    Korczynski, R E

    2000-12-01

    The Workplace Safety and Health Branch initiated a proactive study in the welding industry in Manitoba. Eight welding companies participated in this study. Health concerns raised by welders were welders' flash, sore/red/teary eyes, headaches, nosebleeds, and a black mucous discharge from their nasal membrane. Most welders expressed concern regarding excessive smoke levels in the workplace and inadequate ventilation. Types of welding identified were MIG mild steel, MIG stainless steel, and TIG aluminum. Monitoring involved an assessment of noise levels, fume composition, and carbon monoxide and ozone concentrations. Metal analyses were according to National Institute for Occupational Safety and Health (NIOSH) Method 7300. Noise dosimeters used were the Quest model 100 and Micro 14 & 15. Carbon monoxide was monitored using the Gastech Model 4700 and ozone using the AID Portable Ozone Meter Model 560. In Manitoba, a hearing conservation program is required when the equivalent sound exposure level (normalized Lex 8-hr) exceeds 80 dBA-weighted. The American Conference of Governmental Industrial Hygienists' threshold limit value-time weighted average (ACGIH TLV-TWA) for iron is 5.0 mg/m3, manganese is 0.2 mg/m3, carbon monoxide is 25 ppm, and ozone is 0.05 ppm (heavy work), 0.08 ppm (moderate work), and 0.1 ppm (light work). Welders' personal exposures to manganese ranged from 0.01-4.93 mg/m3 (N = 42; AM = 0.5; GM = 0.2; SD +/- 0.9; GSD +/- 3.2) and to iron ranged from 0.04-16.29 mg/m3 (N = 42; AM = 3.0; GM = 1.4; SD +/- 3.5; GSD +/- 2.5). Noise exposures ranged from 79-98 dBA (N = 44; AM = 88.9; GM = 88.8; SD +/- 4.2; GSD +/- 1.0). Carbon monoxide levels were less than 5.0 ppm (at source) and ozone levels varied from 0.4-0.6 ppm (at source). Ventilation upgrades in the workplace were required in most welding shops. Only 7 percent of the welders wore respiratory protection. A hearing conservation program and hearing protection were required at all monitored workplaces.

  1. Who Can Use an Inhaler?

    Science.gov (United States)

    ... Should You Go to School? Breast Cancer Who Can Use an Inhaler? KidsHealth > For Kids > Who Can Use an Inhaler? Print A A A en ... get medicine right into your lungs , where it can help stop breathing problems related to asthma. Inhalers ...

  2. Measuring weld heat to evaluate weld integrity

    Energy Technology Data Exchange (ETDEWEB)

    Schauder, V., E-mail: schauder@hks-prozesstechnik.de [HKS-Prozesstechnik GmbH, Halle (Germany)

    2015-11-15

    Eddy current and ultrasonic testing are suitable for tube and pipe mills and have been used for weld seam flaw detection for decades, but a new process, thermography, is an alternative. By measuring the heat signature of the weld seam as it cools, it provides information about weld integrity at and below the surface. The thermal processes used to join metals, such as plasma, induction, laser, and gas tungsten arc welding (GTAW), have improved since they were developed, and they get better with each passing year. However, no industrial process is perfect, so companies that conduct research in flaw detection likewise continue to develop and improve the technologies used to verify weld integrity: ultrasonic testing (UT), eddy current testing (ET), hydrostatic, X-ray, magnetic particle, and liquid penetrant are among the most common. Two of these are used for verifying the integrity of the continuous welds such as those used on pipe and tube mills: UT and ET. Each uses a transmitter to send waves of ultrasonic energy or electrical current through the material and a receiver (probe) to detect disturbances in the flow. The two processes often are combined to capitalize on the strengths of each. While ET is good at detecting flaws at or near the surface, UT penetrates the material, detecting subsurface flaws. One drawback is that sound waves and electrical current waves have a specific direction of travel, or an alignment. A linear defect that runs parallel to the direction of travel of the ultrasonic sound wave or a flaw that is parallel to the coil winding direction of the ET probe can go undetected. A second drawback is that they don't detect cold welds. An alternative process, thermography, works in a different fashion: It monitors the heat of the material as the weld cools. Although it measures the heat at the surface, the heat signature provides clues about cooling activity deep in the material, resulting in a thorough assessment of the weld's integrity It

  3. Fine welding with lasers.

    Science.gov (United States)

    MacLellan, D

    2008-01-01

    The need for micro joining metallic alloys for surgical instruments, implants and advanced medical devices is driving a rapid increase in the implementation of laser welding technology in research, development and volume production. This article discusses the advantages of this welding method and the types of lasers used in the process.

  4. Laser Welding in Space

    Science.gov (United States)

    Workman, Gary L.; Kaukler, William F.

    1989-01-01

    Solidification type welding process experiments in conditions of microgravity were performed. The role of convection in such phenomena was examined and convective effects in the small volumes obtained in the laser weld zone were observed. Heat transfer within the weld was affected by acceleration level as indicated by the resulting microstructure changes in low gravity. All experiments were performed such that both high and low gravity welds occurred along the same weld beam, allowing the effects of gravity alone to be examined. Results indicate that laser welding in a space environment is feasible and can be safely performed IVA or EVA. Development of the hardware to perform the experiment in a Hitchhiker-g platform is recomended as the next step. This experiment provides NASA with a capable technology for welding needs in space. The resources required to perform this experiment aboard a Shuttle Hitchhiker-pallet are assessed. Over the four year period 1991 to 1994, it is recommended that the task will require 13.6 manyears and $914,900. In addition to demonstrating the technology and ferreting out the problems encountered, it is suggested that NASA will also have a useful laser materials processing facility for working with both the scientific and the engineering aspects of materials processing in space. Several concepts are also included for long-term optimization of available solar power through solar pumping solid state lasers directly for welding power.

  5. DC arc weld starter

    Science.gov (United States)

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  6. [Emission Characteristics of Water-Soluble Ions in Fumes of Coal Fired Boilers in Beijing].

    Science.gov (United States)

    Hu, Yue-qi; Ma, Zhao-hui; Feng, Ya-jun; Wang, Chen; Chen, Yuan-yuan; He, Ming

    2015-06-01

    Selecting coal fired boilers with typical flue gas desulfurization and dust extraction systems in Beijing as the study objects, the issues and characteristics of the water-soluble ions in fumes of coal fired boilers and theirs influence factors were analyzed and evaluated. The maximum mass concentration of total water-soluble ions in fumes of coal fired boilers in Beijing was 51.240 mg x m(-3) in the benchmark fume oxygen content, the minimum was 7.186 mg x m(-3), and the issues of the water-soluble ions were uncorrelated with the fume moisture content. SO4(2-) was the primary characteristic water-soluble ion for desulfurization reaction, and the rate of contribution of SO4(2-) in total water-soluble ions ranged from 63.8% to 81.0%. F- was another characteristic water-soluble ion in fumes of thermal power plant, and the rate of contribution of F- in total water-soluble ions ranged from 22.2% to 32.5%. The fume purification technologies significantly influenced the issues and the emission characteristics of water-soluble ions in fumes of coal fired boilers. Na+ was a characteristic water-soluble ion for the desulfurizer NaOH, NH4+ and NO3+ were characteristic for the desulfurizer NH4HCO3, and Mg2+ was characteristic for the desulfurizer MgO, but the Ca2+ emission was not increased by addition of the desulfurizer CaO or CaCO3 The concentrations of NH4+ and NO3- in fumes of thermal power plant were lower than those in fumes of industrial or heating coal fired boilers. The form of water-soluble ions was significantly correlated with fume temperature. The most water-soluble ions were in superfine state at higher fume temperature and were not easily captured by the filter membrane.

  7. Budesonide Oral Inhalation

    Science.gov (United States)

    ... hands, feet, ankles, or lower legs hoarseness difficulty breathing or swallowing wheezing cough chest pain anxiety fever, chills, or other signs of infection tiredness nausea vomiting weakness changes in vision Budesonide inhalation may cause children to grow more slowly. There is not enough ...

  8. Inhalational Lung Disease

    Directory of Open Access Journals (Sweden)

    MR Farzaneh

    2010-01-01

    Full Text Available Inhalational lung diseases are among the most important occupational diseases. Pneumoconiosis refers to a group of lung diseases result from inhalation of usually inorganic dusts such as silicon dioxide, asbestos, coal, etc., and their deposition in the lungs. The resultant pulmonary disorders depend on the susceptibility of lungs; size, concentration, solubility and fibrogenic properties of the inhaled particles; and duration of exposure. Radiographic manifestations of pneumoconiosis become apparent several years after exposure to the particles. However, for certain types of dusts, e.g., silicone dioxide crystal and beryllium, heavy exposure within a short period can cause an acute disease. Pulmonary involvement in asbestosis is usually in the lower lobes. On the contrary, in silicosis and coal worker pneumoconiosis, the upper lobes are involved predominantly. For imaging evaluation of pneumoconiosis, high-resolution computed tomography (CT is superior to conventional chest x-ray. Magnetic resonance imaging (MRI and positron emission tomography (PET scan are helpful in those with suspected tumoral lesions. In this essay, we reviewed the imaging aspects of inhalational lung disease.

  9. Welding method, and welding device for use therein, and method of analysis for evaluating welds

    NARCIS (Netherlands)

    Aendenroomer, A.J.; Den Ouden, G.; Xiao, Y.H.; Brabander, W.A.J.

    1995-01-01

    Described is a method of automatically welding pipes, comprising welding with a pulsation welding current and monitoring, by means of a sensor, the variations occurring in the arc voltage caused by weld pool oscillations. The occurrence of voltage variations with only frequency components below 100

  10. Thermoplastic welding apparatus and method

    Science.gov (United States)

    Matsen, Marc R.; Negley, Mark A.; Geren, William Preston; Miller, Robert James

    2017-03-07

    A thermoplastic welding apparatus includes a thermoplastic welding tool, at least one tooling surface in the thermoplastic welding tool, a magnetic induction coil in the thermoplastic welding tool and generally encircling the at least one tooling surface and at least one smart susceptor in the thermoplastic welding tool at the at least one tooling surface. The magnetic induction coil is adapted to generate a magnetic flux field oriented generally parallel to a plane of the at least one smart susceptor.

  11. Laser forming and welding processes

    CERN Document Server

    Yilbas, Bekir Sami; Shuja, Shahzada Zaman

    2013-01-01

    This book introduces model studies and experimental results associated with laser forming and welding such as laser induced bending, welding of sheet metals, and related practical applications. The book provides insight into the physical processes involved with laser forming and welding. The analytical study covers the formulation of laser induced bending while the model study demonstrates the simulation of bending and welding processes using the finite element method. Analytical and numerical solutions for laser forming and welding problems are provided.

  12. Inhaler treatment options in COPD

    Directory of Open Access Journals (Sweden)

    S. P. Newman

    2005-12-01

    Full Text Available A variety of inhaler devices are available for delivering treatments to patients with chronic obstructive pulmonary disease, and new inhalers are currently being developed. Each type of device has advantages and disadvantages, and the methods of preparation and use vary between them. The differences in instructions for use can easily confuse patients and health providers alike, resulting in incorrect use of many inhalers. "Crucial" errors in inhaler technique, whereby no drug is deposited in the lungs, must be avoided. Any type of inhaler can be misused so that little or no drug is deposited in the lungs. It is now increasingly widely recognised that a successful treatment outcome in chronic obstructive pulmonary disease depends as much on the inhaler device as it does on the drug. Inhaler choice in chronic obstructive pulmonary disease should take into account whether the patient is likely to use it correctly, as well as patient preference and the likelihood of adherence to treatment.

  13. Combined Performance of Polypropylene Fibre and Weld Slag in High Performance Concrete

    Science.gov (United States)

    Ananthi, A.; Karthikeyan, J.

    2017-12-01

    The effect of polypropylene fibre and weld slag on the mechanical properties of High Performance Concrete (HPC) containing silica fume as the mineral admixtures was experimentally verified in this study. Sixteen series of HPC mixtures(70 MPa) were designed with varying fibre fractions and Weld Slag (WS). Fibre added at different proportion (0, 0.1, 0.3 and 0.6%) to the weight of cement. Weld slag was substituted to the fine aggregate (0, 10, 20 and 30%) at volume. The addition of fibre decreases the slump at 5, 9 and 14%, whereas the substitution of weld slag decreases by about 3, 11 and 21% with respect to the control mixture. Mechanical properties like compressive strength, split tensile strength, flexural strength, Ultrasonic Pulse Velocity test (UPV) and bond strength were tested. Durability studies such as Water absorption and Sorptivity test were conducted to check the absorption of water in HPC. Weld slag of 10% and fibre dosage of 0.3% in HPC, attains the maximum strength and hence this combination is most favourable for the structural applications.

  14. deFUME: Dynamic exploration of functional metagenomic sequencing data

    DEFF Research Database (Denmark)

    van der Helm, Eric; Geertz-Hansen, Henrik Marcus; Genee, Hans Jasper

    2015-01-01

    Functional metagenomic selections represent a powerful technique that is widely applied for identification of novel genes from complex metagenomic sources. However, whereas hundreds to thousands of clones can be easily generated and sequenced over a few days of experiments, analyzing the data......-bioinformaticians. The web-server integrates multiple analysis steps into one single workflow: read assembly, open reading frame prediction, and annotation with BLAST, InterPro and GO classifiers. Analysis results are visualized in an online dynamic web-interface. The deFUME webserver provides a fast track from raw sequence...

  15. 42 CFR 84.1151 - DOP filter test; respirators designed as respiratory protection against dusts, fumes, and mists...

    Science.gov (United States)

    2010-10-01

    ... respiratory protection against dusts, fumes, and mists having an air contamination level less than 0.05... filter test; respirators designed as respiratory protection against dusts, fumes, and mists having an air... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide...

  16. Morphological Evolution of Low-Grade Silica Fume at Elevated Temperature

    Science.gov (United States)

    Chen, Junhong; Li, Tong; Li, Xiaoping; Chou, Kuo-Chih; Hou, Xinmei

    2017-07-01

    To solve the environmental pollution problem caused by low-grade silica fume (SiO2, < 86 mass%) and further expand its application field, the morphological development of low-grade silica fume from room temperature to 900 °C in air was investigated using TG-DTA, SEM and TEM techniques. The structural development of silica fume was further analyzed using FT-IR and Raman spectrum. The results show that silica fume contains many defects of broken bands such as Si-O or ≡Si at room temperature. When exposed to the moister or water, the broken bonds tend to react with water and result in the formation of Si-OH and adjacent hydroxyl groups of Si-OH•OH-Si. At elevated temperature up to 900 °C, the structure of silica fume becomes compact due to the reconstruction of the broken bonds caused by the dehydration reaction.

  17. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2003-01-01

    Deals with the main commercially significant and commonly used welding processes. This title takes the student or novice welder through the individual steps involved in each process in an easily understood way. It covers many of the requirements referred to in European Standards including EN719, EN 729, EN 729 and EN 287.$bWelding processes handbook is a concise, explanatory guide to the main commercially significant and commonly-used welding processes. It takes the novice welder or student through the individual steps involved in each process in a clear and easily understood way. It is intended to provide an up-to-date reference to the major applications of welding as they are used in industry. The contents have been arranged so that it can be used as a textbook for European welding courses in accordance with guidelines from the European Welding Federation. Welding processes and equipment necessary for each process are described so that they can be applied to all instruction levels required by the EWF and th...

  18. Chlorine Gas Inhalation

    Science.gov (United States)

    White, Carl W.; Martin, James G.

    2010-01-01

    Humans can come into contact with chlorine gas during short-term, high-level exposures due to traffic or rail accidents, spills, or other disasters. By contrast, workplace and public (swimming pools, etc.) exposures are more frequently long-term, low-level exposures, occasionally punctuated by unintentional transient increases. Acute exposures can result in symptoms of acute airway obstruction including wheezing, cough, chest tightness, and/or dyspnea. These findings are fairly nonspecific, and might be present after exposures to a number of inhaled chemical irritants. Clinical signs, including hypoxemia, wheezes, rales, and/or abnormal chest radiographs may be present. More severely affected individuals may suffer acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS). Up to 1% of exposed individuals die. Humidified oxygen and inhaled β-adrenergic agents are appropriate therapies for victims with respiratory symptoms while assessments are underway. Inhaled bicarbonate and systemic or inhaled glucocorticoids also have been reported anecdotally to be beneficial. Chronic sequelae may include increased airways reactivity, which tends to diminish over time. Airways hyperreactivity may be more of a problem among those survivors that are older, have smoked, and/or have pre-existing chronic lung disease. Individuals suffering from irritant-induced asthma (IIA) due to workplace exposures to chlorine also tend to have similar characteristics, such as airways hyperresponsiveness to methacholine, and to be older and to have smoked. Other workplace studies, however, have indicated that workers exposed to chlorine dioxide/sulfur dioxide have tended to have increased risk for chronic bronchitis and/or recurrent wheezing attacks (one or more episodes) but not asthma, while those exposed to ozone have a greater incidence of asthma. Specific biomarkers for acute and chronic exposures to chlorine gas are currently lacking. Animal models for chlorine gas

  19. Frequency distribution of gastro esophageal reflux disease in inhalation injury: A historical cohort study

    Directory of Open Access Journals (Sweden)

    Ashraf Karbasi

    2015-01-01

    Full Text Available Background: There is no data on the prevalence and the association of gastro esophageal reflux disease (GERD with toxic fume inhalation. Therefore, we aimed to evaluate the frequency distribution of GERD symptoms among the individuals with mild respiratory disorder due to the past history of toxic fume exposure to sulfur mustard (SM. Materials and Methods: In a historical cohort study, subjects were randomly selected from 7000 patients in a database of all those who had a history of previous exposure to a single high dose of SM gas during war. The control group was randomly selected from adjacent neighbors of the patients, and two healthy male subjects were chosen per patient. In this study, we used the validated Persian translation of Mayo Gastroesophageal Reflux Questionnaire to assess the frequency distribution of reflux disease. Results: Relative frequency of GERD symptoms, was found to be significantly higher in the inhalation injury patients with an odds ratio of 8.30 (95% confidence interval [CI]: 4.73-14.55, and after adjustment for cigarette smoking, tea consumption, age, and body mass index, aspirin and chronic cough the odds ratio was found to be 4.41 (95% CI: 1.61-12.07. Conclusion: The most important finding of our study was the major GERD symptoms (heartburn and/or acid regurgitation once or more per week among the individuals with the past history of exposure to SM toxic gas is substantially higher (4.4-fold than normal populations.

  20. Thermal stir welding process

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2012-01-01

    A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  1. Thermal stir welding apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2011-01-01

    A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  2. Solar array welding developement

    Science.gov (United States)

    Elms, R. V., Jr.

    1974-01-01

    The present work describes parallel gap welding as used for joining solar cells to the cell interconnect system. Sample preparation, weldable cell parameter evaluation, bond scheduling, bond strength evaluation, and bonding and thermal shock tests are described. A range of weld schedule parameters - voltage, time, and force - can be identified for various cell/interconnect designs that will provide adequate bond strengths and acceptably small electrical degradation. Automation of solar array welding operations to a significant degree has been achieved in Europe and will be receiving increased attention in the U.S. to reduce solar array fabrication costs.

  3. Review of Welding Terminology

    Directory of Open Access Journals (Sweden)

    Angelika Petrėtienė

    2011-04-01

    Full Text Available The paper discusses welding terms in accordance with the Lithuanian standard LST EN 1792 „Welding. The multilingual list of welding terms and similar processes”, „The Russian–Lithuanian dictionary of the terms of mechanical engineering technology and welding“ and the examples from postgraduates‘ final works. It analyses the infringement of lexical, word-building and morphological rules. First-year students should already be familiar with the standardized terms of their speciality. More active propagation of the terms should help to avoid terminology mistakes in various scientific spheres.

  4. Inhalation exposure methodology.

    OpenAIRE

    Phalen, R F; Mannix, R C; Drew, R T

    1984-01-01

    Modern man is being confronted with an ever-increasing inventory of potentially toxic airborne substances. Exposures to these atmospheric contaminants occur in residential and commercial settings, as well as in the workplace. In order to study the toxicity of such materials, a special technology relating to inhalation exposure systems has evolved. The purpose of this paper is to provide a description of the techniques which are used in exposing laboratory subjects to airborne particles and ga...

  5. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  6. Thorium exposure during tungsten inert gas welding with thoriated tungsten electrodes

    DEFF Research Database (Denmark)

    Gäfvert, T.; Pagels, J.; Holm, E.

    2003-01-01

    The exposure to Th-232 from TIG welding with thoriated electrodes has been determined at five different workshops. Welding with both alternating and direct current was investigated. The exposure levels of Th-232 were generally below 10 mBq m(-3) in the breathing zone of the welders. Two samples...... from AC welding showed significant higher exposure levels, probably due to maladjustment of the TIG welding power source. Samples of the respirable fraction of Th-232 from grinding thoriated electrodes were also collected showing exposure levels of 5 mBq m(-3) or lower. A dose estimate has been made...... for two scenarios, one realistic and one with conservative assumptions, showing that the annual committed effective dose from inhalation of Th-232, Th-230, Th-228 and Ra-228, for a full-time TIG welder, in the realistic case is below 0.3 mSv and with conservative assumptions around 1 mSv or lower...

  7. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  8. Friction stir welding tool

    Science.gov (United States)

    Tolle,; Charles R. , Clark; Denis E. , Barnes; Timothy, A [Ammon, ID

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  9. Concurrent ultrasonic weld evaluation system

    Science.gov (United States)

    Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.

    1987-01-01

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  10. American Indian adolescent inhalant use.

    Science.gov (United States)

    Thurman, P J; Green, V A

    1997-01-01

    Inhalant use and use patterns, decision-making pertaining to inhalant use, cognitive capacity, cognitive egocentrism, and adherence to traditional ways were studied in a sample of male and female American Indian adolescents residing in a boarding home. Significant differences were not found for gender. Inhalant use group differences were found for only one variable, participation in tribal activities. For males, cognitive ability, cognitive egocentrism and participation in tribal activities were significant predictors of inhalant use/non-use. For females, tribal activities was the only significant predictor.

  11. Weld formation control at electron beam welding with beam oscillations

    OpenAIRE

    Trushnikov, Dmitriy; Koleva, Elena; Mladenov, Georgy; A. Shcherbakov

    2014-01-01

    Electron beam welding is used extensively to produce essential machine parts. The control of the basic beam parameters beam power or beam current at constant accelerating voltage, welding speed, current of focusing lens and distance between electron gun and welded sample surface is not enough to obtain at most of the regimes sound welds. Control of the focus position using analysis of the high frequency component of the current, collected by plasma, at periodic interactions on the beam (the o...

  12. Effect of Silica Fume on two-stage Concrete Strength

    Science.gov (United States)

    Abdelgader, H. S.; El-Baden, A. S.

    2015-11-01

    Two-stage concrete (TSC) is an innovative concrete that does not require vibration for placing and compaction. TSC is a simple concept; it is made using the same basic constituents as traditional concrete: cement, coarse aggregate, sand and water as well as mineral and chemical admixtures. As its name suggests, it is produced through a two-stage process. Firstly washed coarse aggregate is placed into the formwork in-situ. Later a specifically designed self compacting grout is introduced into the form from the lowest point under gravity pressure to fill the voids, cementing the aggregate into a monolith. The hardened concrete is dense, homogeneous and has in general improved engineering properties and durability. This paper presents the results from a research work attempt to study the effect of silica fume (SF) and superplasticizers admixtures (SP) on compressive and tensile strength of TSC using various combinations of water to cement ratio (w/c) and cement to sand ratio (c/s). Thirty six concrete mixes with different grout constituents were tested. From each mix twenty four standard cylinder samples of size (150mm×300mm) of concrete containing crushed aggregate were produced. The tested samples were made from combinations of w/c equal to: 0.45, 0.55 and 0.85, and three c/s of values: 0.5, 1 and 1.5. Silica fume was added at a dosage of 6% of weight of cement, while superplasticizer was added at a dosage of 2% of cement weight. Results indicated that both tensile and compressive strength of TSC can be statistically derived as a function of w/c and c/s with good correlation coefficients. The basic principle of traditional concrete, which says that an increase in water/cement ratio will lead to a reduction in compressive strength, was shown to hold true for TSC specimens tested. Using a combination of both silica fume and superplasticisers caused a significant increase in strength relative to control mixes.

  13. Know How to Use Your Asthma Inhaler

    Medline Plus

    Full Text Available ... metered dose inhaler one to two inches from mouth Your browser does not support iframes Using a ... KB] Using a metered dose inhaler (inhaler in mouth) Your browser does not support iframes Using a ...

  14. Assessment of DNA damage as an index of genetic toxicity in welding microenvironments among iron-based industries.

    Science.gov (United States)

    Singh, Zorawar; Chadha, Pooja

    2016-10-01

    Welding is used extensively in different industries. Welders are always at a risk of exposure to a number of gases and metal-containing fumes in their respective microenvironments in which they work. Welding fumes consist of a wide range of complex metal oxide particles which can deposit in different parts of their bodies causing serious health problems. In the present study, 35 welders (age: 33.80 ± 1.04 years) from two iron-based industries have been assessed for DNA damage in peripheral blood lymphocytes using single-cell gel electrophoresis. An equal number of subjects (N = 35; age: 30.40 ± 1.51 years) matched to exposed subjects with respect to sex, age, socioeconomic status, smoking, and alcoholic habits were taken as controls. The results revealed that the damaged cell frequency (DCF) and mean comet tail length (CTL) in welders were significantly higher as compared to the controls (DCF: 69.74 ± 1.68 vs. 31.14 ± 1.67 and CTL: 29.21 ± 1.48 vs. 1.47 ± 0.08; p < 0.05). The effect of confounding factors such as age, duration of exposure, smoking, and drinking habits was also studied. Blood lead levels also showed a positive correlation with duration of exposure and CTL, and the overall results indicated an increased genetic damage as an index of genotoxicity in workers occupationally engaged in welding microenvironments. © The Author(s) 2015.

  15. Effect of silica fume and SBR latex on the pasteaggregate interfacial transition zone

    Directory of Open Access Journals (Sweden)

    João Adriano Rossignolo

    2007-03-01

    Full Text Available This paper deals with the effect of silica fume and styrene-butadiene latex (SBR on the microstructure of the interfacial transition zone (ITZ between Portland cement paste and aggregates (basalt. Scanning Electron Microscope (SEM equipped with energy dispersive x ray analysis system (EDX was used to determine the ITZ thickness. In the plain concrete a marked ITZ around the aggregate particles (55 µm was observed, while in concretes with silica fume or latex SBR the ITZ was less pronounced (35-40 µm. However, better results were observed in concretes with silica fume and latex SBR (20-25 µm.

  16. Alternate Welding Processes for In-Service Welding

    Science.gov (United States)

    2009-04-24

    Conducting weld repairs and attaching hot tap tees onto pressurized pipes has the advantage of avoiding loss of service and revenue. However, the risks involved with in-service welding need to be managed by ensuring that welding is performed in a rep...

  17. Certification of a weld produced by friction stir welding

    Science.gov (United States)

    Obaditch, Chris; Grant, Glenn J

    2013-10-01

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  18. Welding defects at friction stir welding

    Directory of Open Access Journals (Sweden)

    P. Podržaj

    2015-04-01

    Full Text Available The paper presents an overview of different types of defects at friction stir welding. In order to explain the reasons for their occurrence a short theoretical background of the process is given first. The main emphasis is on the parameters that influence the process. An energy supply based division of defects into three disjoint groups was used. The occurring defects are demonstrated on various materials.

  19. Workmanship standards for fusion welding

    Science.gov (United States)

    Phillips, M. D.

    1967-01-01

    Workmanship standards manual defines practices, that adhere to rigid codes and specifications, for fusion welding of component piping, assemblies, and systems. With written and pictorial presentations, it is part of the operating procedure for fusion welding.

  20. Contributions to risk assessment in the departments of welding mechanical engineering companies

    Directory of Open Access Journals (Sweden)

    Amza Gheorghe

    2017-01-01

    Full Text Available The risk assessment professional should cover every activity and every workstation in an enterprise engineering, considering each component of the production system (the system working, each duty, work equipment and working environment. This represents an extremely complicated and complex problem because of production system that is a powerful polluting technology, especially of the atmosphere and soil. The formation of gas welding process is the result of electrodes burning, fluxes, and development of bath fused metal the welded seam. In welding processes, human operators are exposed to smoke and toxic gases, arising from the welding process, which can be dangerous to health. Many acute intoxication caused by to excessive exposure or short exposure to severe smoke and gases resulting from the welding process were studied the course of time. The paper focuses on smoke inhalation and calculate the score of danger each chemical agent score volatility of process. This conducts to collective protection so ultimately results in a score of inhalation Sinh = 1000, or resulting risk moderate, requiring a set of protective and preventive measures that are proposed in this regard.

  1. Asymptomatic inhaled foreign body

    Science.gov (United States)

    Salim, Muhammad U.; Asghar, Asif; Tareen, Irum; Azhar, Muhammad

    2016-01-01

    It is very rare to have a big foreign body in the lungs without any complications or symptoms for 2 years. A 14-year-old male with episodes of minor hemoptysis for 4 weeks had a history of inhalation of a bullet 2 years earlier. He had asymptomatic for lung complications for 2 years. The bullet was removed by right thoracotomy and non-anatomical wedge stapled resection, and he followed an uneventful recovery. An aspirated foreign body although big can remain asymptomatic for a long time, especially if it has migrated to the periphery. PMID:27652366

  2. Accidental condom inhalation.

    Science.gov (United States)

    Arya, C L; Gupta, Rajnish; Arora, V K

    2004-01-01

    A 27-year-old lady presented with persistent cough, sputum and fever for the preceding six months. Inspite of trials with antibiotics and anti-tuberculosis treatment for the preceeding four months, her symptoms did not improve. A subsequent chest radiograph showed non-homogeneous collapse-consolidation of right upper lobe. Videobronchoscopy revealed an inverted bag like structure in right upper lobe bronchus and rigid bronchoscopic removal with biopsy forceps confirmed the presence of a condom. Detailed retrospective history also confirmed accidental inhalation of the condom during fellatio.

  3. THE ROLE OF SHIELDING GAS ON MECHANICAL, METALLURGICAL AND CORROSION PROPERTIES OF CORTEN STEEL WELDED JOINTS OF RAILWAY COACHES USING GMAW

    Directory of Open Access Journals (Sweden)

    Byju John

    2016-12-01

    Full Text Available This analysis lays emphasis on finding a suitable combination of shielding gas for welding underframe members such as sole bar of Railway Coaches made of corten steel; for improved mechanical, metallurgical and corrosion properties of welds using copper coated solid MIG/MAG welding filler wire size 1.2 mm conforming to AWS/SFA 5.18 ER 70 S in Semi-automatic GMAW process. Solid filler wire is preferred by welders due to less fumes, practically no slag and easy manipulation of welding torch with smooth wire flow during corrosion repair attention, when compared to Flux cored wire. Three joints using Gas metal arc welding (GMAW with shielding gases viz., Pure CO2, (80% Ar – 20% CO2 and (90% Ar – 10% CO2 were made from test pieces cut from Sole bar material of Railway Coach. Study of Mechanical properties such as tensile strength, hardness and toughness revealed that welded joint made using shielding gas (80% Ar – 20% CO2 has better Mechanical properties compared to the other two shielding gases and comparable to that of Parent metal. Type of Shielding gas used has influence on the chemical composition and macro & micro structures. The Tafel extrapolation study of freshly ground samples in 3.5% NaCl solution revealed that the welded joint made using shielding gas (80% Ar – 20% CO2 has also better corrosion resistance which is comparable to the Parent metal as well as similar commercial steels.

  4. Occupational Exposure to Inhalable Manganese at German Workplaces.

    Science.gov (United States)

    Kendzia, Benjamin; Van Gelder, Rainer; Schwank, Tobias; Hagemann, Cornelia; Zschiesche, Wolfgang; Behrens, Thomas; Weiss, Tobias; Brüning, Thomas; Pesch, Beate

    2017-11-10

    Due to mounting evidence of neurotoxic effects of manganese (Mn) already at low concentrations, occupational exposure limits (OELs) have been adopted. We analyzed 5771 personal measurements of inhalable manganese (Mn) together with information on sampling conditions and job tasks from the German exposure database Messdaten zur Exposition gegenüber Gefahrstoffen am Arbeitsplatz (MEGA) to assess exposure levels in welders and other occupations between 1989 and 2015. Geometric means (GMs) of exposure to Mn were estimated for various occupational settings adjusted for 2-h sampling duration and analytical method, centered at 2009. Measurements below the limit of quantification (LOQ) were multiply imputed. The median concentration was 74 µg m-3 (inter-quartile range 14-260 µg m-3) in welders and 8 µg m-3 (inter-quartile range 100 µg m-3 were observed in gas metal and flux-cored arc welders and in shielded metal arc welders using consumables of high Mn content (>5%). Tungsten inert gas welding, laser welding and working in other occupations such as foundry worker, electroplater, or grinder were associated with GMs <10 µg m-3. A shorter sampling duration was associated with higher Mn concentrations. High-emission welding techniques require protective measures to cope with adopted OELs. Results of this study are useful to assess cumulative Mn exposure in community-based studies on neurotoxic effects. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  5. Welding and Brazing Silicon Carbide

    Science.gov (United States)

    Moore, T. J.

    1986-01-01

    Hot isostatic pressing and conventional furnace brazing effective under right conditions. Study performed showed feasibility of welding SiC using several welding and brazing techniques. Use of SiC improves engine efficiency by allowing increase in operating temperature. SiC successfully hot-pressure-welded at 3,550 degrees F (1,950 degrees C) in argon. Refinements of solid-state welding and brazing procedures used sufficient for some specific industrial applications.

  6. Ultrasound scattering from silica fume clusters: in-line shear flow dynamics of hydrophilic or partially hydrophobic silica fume fillers in melts of non-polar polymeric systems

    Science.gov (United States)

    Haïder, Leïla; Tatibouët, Jacques; Ferry, Laurent

    2008-02-01

    Shear flow dynamics of fractal aggregates are investigated by ultrasound scattering to study shear induced disruption processes of hydrophilic polydisperse silica fume fillers in melts of non-polar polymeric systems (polypropylene). A rheo-acoustical model in the low frequency scattering regime only involving structural parameters is proposed. Flow-dependent changes of the ultrasound scattering power per unit of volume from hydrophilic silica fume aggregates during extrusion are analyzed in the frame of the proposed rheo-acoustical model. In a second part, equilibrium structures of polymer coated silica fume fillers are investigated to elucidate the coupled intra- and inter-filler interactions. Surface chemistry of silica fume fillers was modified by grafting amphiphilic molecules with the same hydrophobic tail (long alkyl chains) and various hydrophilic polar heads (amine, carboxylic acid or hydroxyl groups) to obtain a range of hydrophobic fumed silica units. The effects of the surface layer of tethered chains and the extent of the coating level in a non-polar liquid dispersion are analyzed within the framework of the mismatch in chemical nature or solubility parameters between grafted chains and continuous polymer phase. Lastly, the ability of the ultrasound scattering technique to give a quantitative estimate of the critical disaggregation shear stress mainly representative of the particle surface adhesive energy in relation to filler surface modification is shown.

  7. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications

    Science.gov (United States)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert

    2003-01-01

    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading

  8. Welding. Performance Objectives. Basic Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of eight terminal objectives for a basic welding course. The materials were developed for a 36-week (2 hours daily) course developed to teach the fundamentals of welding shop work, to become familiar with the operation of the welding shop…

  9. Welding. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  10. Friction stir welding tool and process for welding dissimilar materials

    Science.gov (United States)

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  11. Ultrasonic Evaluation of Weld Strength for Aluminum Ultrasonic Spot Welds

    Science.gov (United States)

    Ghaffari, Bita; Hetrick, Elizabeth T.; Mozurkewich, George; Reatherford, Larry V.

    2005-04-01

    The goal of this work is to determine the feasibility of using an ultrasonic, non-destructive technique for post-process evaluation of aluminum ultrasonic spot welds. A focused immersion transducer was utilized to obtain a C-scan of the weld interface, from which a weighted ultrasonic contact area was estimated. Weldments were subsequently tested destructively to determine the weld strength. The square root of the weld contact area displayed a relatively good correlation with weld strength, r2=0.85.

  12. Characterization of airborne particles generated from metal active gas welding process.

    Science.gov (United States)

    Guerreiro, C; Gomes, J F; Carvalho, P; Santos, T J G; Miranda, R M; Albuquerque, P

    2014-05-01

    This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm(3) of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.

  13. Weld bead profile of laser welding dissimilar joints stainless steel

    Science.gov (United States)

    Mohammed, Ghusoon R.; Ishak, M.; Aqida, S. N.; Abdulhadi, Hassan A.

    2017-10-01

    During the process of laser welding, the material consecutively melts and solidifies by a laser beam with a peak high power. Several parameters such as the laser energy, pulse frequency, pulse duration, welding power and welding speed govern the mode of the welding process. The aim of this paper is to investigate the effect of peak power, incident angle, and welding speed on the weld bead geometry. The first investigation in this context was conducted using 2205-316L stainless steel plates through the varying of the welding speed from 1.3 mm/s to 2.1 mm/s. The second investigation was conducted by varying the peak power from 1100 W to 1500 W. From the results of the experiments, the welding speed and laser power had a significant effect on the geometry of the weld bead, and the variation in the diameter of the bead pulse-size. Due to the decrease in the heat input, welding speed affected penetration depth more than bead width, and a narrow width of heat affected zone was achieved ranging from 0.2 to 0.5 mm. Conclusively, weld bead geometry dimensions increase as a function of peak power; at over 1350 W peak power, the dimensions lie within 30 μm.

  14. Improvement of RVNRL film properties by adding fumed silica and hydroxy apatite

    Directory of Open Access Journals (Sweden)

    Adul Thiangchanya

    2003-01-01

    Full Text Available The effect of adding fumed silica and hydroxy apatite to Radiation Vulcanized Natural Rubber Latex (RVNRL for improving tear strength, aging properties, degradability and water-soluble protein content of rubber films has been investigated. The addition of fumed silica and hydroxy apatite in RVNRL improves tear strength and aging properties of rubber films, whereas tensile strength and degradability of rubber films were unchanged during storage at room temperature. The water-soluble protein content in rubber films was reduced by immobilization of the fumed silica and hydroxy apatite and enhanced by addition of ZnO. This may reduce allergy problems of natural rubber latex products caused by water-soluble protein. The MST of the RVNRL with fumed silica and hydroxy apatite indicated that the latex must be used within two months after mixing because of its stability.

  15. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  16. A comparison between atmospheric/humidity and vacuum cyanoacrylate fuming of latent fingermarks.

    Science.gov (United States)

    Farrugia, Kevin J; Fraser, Joanna; Friel, Lauren; Adams, Duncan; Attard-Montalto, Nicola; Deacon, Paul

    2015-12-01

    A number of pseudo-operational trials were set up to compare the atmospheric/humidity and vacuum cyanoacrylate fuming processes on plastic carrier bags. The fuming processes were compared using two-step cyanoacrylate fuming with basic yellow 40 (BY40) staining and a one-step fluorescent cyanoacrylate fuming, Lumicyano 4%. Preliminary work using planted fingermarks and split depletions were performed to identify the optimum vacuum fuming conditions. The first pseudo-operational trial compared the different fuming conditions (atmospheric/humidity vs. vacuum) for the two-step process where an additional 50% more marks were detected with the atmospheric/humidity process. None of the marks by the vacuum process could be observed visually; however, a significant number of marks were detected by fluorescence after BY40 staining. The second trial repeated the same work in trial 1 using the one-step cyanoacrylate process, Lumicyano at a concentration of 4%. Trial 2 provided comparable results to trial 1 and all the items were then re-treated with Lumicyano 4% at atmospheric/humidity conditions before dyeing with BY40 to provide the sequences of process A (Lumicyano 4% atmospheric-Lumicyano 4% atmospheric-BY40) and process B (Lumicyano 4% vacuum-Lumicyano 4% atmospheric-BY40). The number of marks (visual and fluorescent) was counted after each treatment with a substantial increase in the number of detected marks in the second and third treatments of the process. The increased detection rate after the double Lumicyano process was unexpected and may have important implications. Trial 3 was performed to investigate whether the amount of cyanoacrylate and/or fuming time had an impact on the results observed in trial 2 whereas trial 4 assessed if the double process using conventional cyanoacrylate, rather than Lumicyano 4%, provided an increased detection rate. Trials 3 and 4 confirmed that doubling the amount of Lumicyano 4% cyanoacrylate and fuming time produced a lower

  17. Numerical simulation of welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær; Thorborg, Jesper

    Aim of project:To analyse and model the transient thermal field from arc welding (SMAW, V-shaped buttweld in 15mm plate) and to some extend the mechanical response due to the thermal field. - To implement this model in a general purpose finite element program such as ABAQUS.The simulation...... stress is also taken into account.Work carried out:With few means it is possible to define a thermal model which describes the thermal field from the welding process in reasonable agreement with reality. Identical results are found with ABAQUS and Rosenthal’s analytical solution of the governing heat...... transfer equation under same conditions. It is relative easy tointroduce boundary conditions such as convection and radiation where not surprisingly the radiation has the greatest influence especially from the high temperature regions in the weld pool and the heat affected zone.Due to the large temperature...

  18. Extravehicular activity welding experiment

    Science.gov (United States)

    Watson, J. Kevin

    1989-01-01

    The In-Space Technology Experiments Program (INSTEP) provides an opportunity to explore the many critical questions which can only be answered by experimentation in space. The objective of the Extravehicular Activity Welding Experiment definition project was to define the requirements for a spaceflight experiment to evaluate the feasibility of performing manual welding tasks during EVA. Consideration was given to experiment design, work station design, welding hardware design, payload integration requirements, and human factors (including safety). The results of this effort are presented. Included are the specific objectives of the flight test, details of the tasks which will generate the required data, and a description of the equipment which will be needed to support the tasks. Work station requirements are addressed as are human factors, STS integration procedures and, most importantly, safety considerations. A preliminary estimate of the cost and the schedule for completion of the experiment through flight and postflight analysis are given.

  19. Pulsed welding plasma source

    Science.gov (United States)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Tyasto, A.

    2016-04-01

    It is shown that in order to form the current pulse of a near rectangular shape, which provides conversion of the welding arc into a dynamic mode, it is rational to connect a forming element made on the basis of an artificial forming line in series to the welding DC circuit. The paper presents a diagram of a pulsed device for welding with a non-consumable electrode in argon which was developed using the forming element. The conversion of the arc into the dynamic mode is illustrated by the current and voltage oscillograms of the arc gap and the dynamic characteristic of the arc within the interval of one pulse generation time in the arc gap. The background current travels in the interpulse interval.

  20. Ternary gas plasma welding torch

    Science.gov (United States)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor); Waldron, Douglas J. (Inventor)

    1995-01-01

    A plasma arc welding torch is discussed. A first plasma gas is directed through the body of the welding torch and out of the body across the tip of a welding electrode disposed at the forward end of the body. A second plasma gas is disposed for flow through a longitudinal bore in the electrode. The second plasma gas enters one end of the electrode and exits the electrode at the tip thereof for co-acting with the electric welding arc to produce the desired weld. A shield gas is directed through the torch body and circulates around the head of the torch adjacent to the electrode tip.

  1. Determining the Compressive, Flexural and Splitting Tensile Strength of Silica Fume Reinforced Lightweight Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Mydin M.A.O.

    2014-01-01

    Full Text Available This study investigated the performance of the properties of foamed concrete in replacing volumes of cement of 10%, 15% and 20% by weight. A control unit of foamed concrete mixture made with ordinary Portland cement (OPC and 10%, 15% and 20% silica fume was prepared. Three mechanical property parameters were studied such as compressive strength, flexural strength and splitting tensile of foamed concrete with different percentages of silica fume. Silica fume is commonly used to increase the mechanical properties of concrete materials and it is also chosen due to certain economic reasons. The foamed concrete used in this study was cured at a relative humidity of 70% and a temperature of ±28°C. The improvement of mechanical properties was due to a significant densification in the microstructure of the cement paste matrix in the presence of silica fume hybrid supplementary binder as observed from micrographs obtained in the study. The overall results showed that there is a potential to utilize silica fume in foamed concrete, as there was a noticeable enhancement of thermal and mechanical properties with the addition of silica fume.

  2. Non-occupational exposure to paint fumes during pregnancy and fetal growth in a general population.

    Science.gov (United States)

    Sørensen, Mette; Andersen, Anne-Marie N; Raaschou-Nielsen, Ole

    2010-05-01

    Occupational exposure to organic solvents during pregnancy has been associated with reduced fetal growth. Though organic solvents in the form of paint fumes are also found in the home environment, no studies have investigated the effect of such exposure in a general population. We studied associations between residential exposure to paint fumes during pregnancy and fetal growth within the Danish National Birth Cohort which consecutively recruited pregnant women from 1996 to 2002 from all over Denmark. Around the 30th pregnancy week, 19,000 mothers were interviewed about use of paint in their residence during pregnancy. The mothers were also asked about smoking habits and alcohol consumption during pregnancy, pre-pregnancy weight, height, parity and occupation. Information on birth weight and gestational age was obtained from national registers. We found that 45% of the mothers had been exposed to paint fumes in their residence during pregnancy. We found a statistically significant inverse relationship between exposure to paint fumes and the risk of being small for gestational age. There were no statistically significant associations between exposure to paint fumes and birth weight and risk of preterm birth after adjustment for potential confounders. Our results suggest that there are no causal relationship between non-occupational exposure to paint fumes in the residence during pregnancy and fetal growth. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Improved Reactivity of Fly Ash-Slag Geopolymer by the Addition of Silica Fume

    Directory of Open Access Journals (Sweden)

    N. K. Lee

    2016-01-01

    Full Text Available This study investigates the improved reactivity of a geopolymer based on a combination of fly ash and blast furnace slag (BFS by the addition of silica fume. The geopolymer was synthesized by activating a mixture of fly ash, BFS, and three different types of silica fume with alkali activator. X-ray diffraction (XRD and inductively coupled plasma-optical emission spectroscopy (ICP-OES were utilized to characterize the reaction. The silicate structure was also analyzed by nuclear magnetic resonance (NMR spectroscopy. From these results, it was found that the replacement of fly ash with the silica fume led to a significant decrease in the Q4(1Al and an increase in the Q4(2Al, Q4(3Al, and Q4(4Al. The Si/Al ratio of the aluminosilicate gel was relatively constant, ranging from 2.0 to 2.6, while the Si/Al ratio of the C-S-H gel increased with the addition of silica fume. Therefore, some of the Al dissolved from the slag contributed to the formation of aluminosilicate gel, and the remnant slag particles mostly participated in the formation of the C-(A-S-H gel with a decrease in the Q2(1Al. The increase in the reactivity of slag caused by the addition of silica fume was attributed to the reaction of the Al in the slag with the silica fume.

  4. Integrated sensors for robotic laser welding

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Beyer, E.; Dausinger, F; Ostendorf, A; Otto, A.

    2005-01-01

    A welding head is under development with integrated sensory systems for robotic laser welding applications. Robotic laser welding requires sensory systems that are capable to accurately guide the welding head over a seam in three-dimensional space and provide information about the welding process as

  5. Sensor integration for robotic laser welding processes

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Ostendorf, A; Hoult, A.; Lu, Y.

    2005-01-01

    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process,

  6. Acoustic-Emission Weld-Penetration Monitor

    Science.gov (United States)

    Maram, J.; Collins, J.

    1986-01-01

    Weld penetration monitored by detection of high-frequency acoustic emissions produced by advancing weld pool as it melts and solidifies in workpiece. Acoustic emission from TIG butt weld measured with 300-kHz resonant transducer. Rise in emission level coincides with cessation of weld penetration due to sudden reduction in welding current. Such monitoring applied to control of automated and robotic welders.

  7. Weld procedure development with OSLW - optimization software for laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Fuerschbach, P.W.; Eisler, G.R. [Sandia National Labs., Albuquerque, NM (United States); Steele, R.J. [Naval Air Warfare Center, China Lake, CA (United States)

    1998-06-01

    Weld procedure development can require extensive experimentation, in-depth process knowledge, and is further complicated by the fact that there are often multiple sets of parameters that will meet the weld requirements. Choosing among these multiple weld procedures can be hastened with computer models that find parameters to meet selected weld dimensional requirements while simultaneously optimizing important figures of merit. Software is described that performs this task for CO{sub 2} laser beam welding. The models are based on dimensionless parameter correlations that are derived from solutions to the moving heat source equations. The use of both handbook and empirically verified thermophysical property values allows OSLW to be extended to many different materials. Graphics displays show the resulting solution on contour plots that can be used to further probe the model. The important figures of merit for laser beam welding are energy transfer efficiency and melting efficiency. The application enables the user to input desired weld shape dimensions, select the material to be welded, and to constrain the search problem to meet the application requirements. Successful testing of the software at a laser welding fabricator has validated this tool for weld procedure development.

  8. 30 CFR 71.700 - Inhalation hazards; threshold limit values for gases, dust, fumes, mists, and vapors.

    Science.gov (United States)

    2010-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND..., Virginia 22209-3939; at every MSHA Coal Mine Safety and Health district office; at the National Institute for Occupational Safety and Health, 5600 Fishers Lane, Rockville, MD; and at the Public Health Service...

  9. Welding. Student Learning Guide.

    Science.gov (United States)

    Palm Beach County Board of Public Instruction, West Palm Beach, FL.

    This student learning guide contains 30 modules for completing a course in welding. It is designed especially for use in secondary schools in Palm Beach County, Florida. Each module covers one task, and consists of a purpose, performance objective, enabling objectives, learning activities keyed to resources, information sheets, student self-check…

  10. Thermal Stresses in Welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær

    1998-01-01

    Studies of the transient temperature fields and the hereby induced deformations and stressses in a butt-welded mild steel plate modelledrespectively in 2D plane stress state (as well as plane strain state) and in full 3D have been done. The model has been implemented in the generalpurpose FE...

  11. Elementary TIG Welding Skills.

    Science.gov (United States)

    Pierson, John E., III

    The text was prepared to help deaf students develop the skills needed by an employed welder. It uses simplified language and illustrations to present concepts which should be reinforced by practical experience with welding skills. Each of the 12 lessons contains: (1) an information section with many illustrations which presents a concept or…

  12. effect of post-weld heat treatment on the microstructure

    African Journals Online (AJOL)

    user

    among others are shielded metal arc welding, submerge arc welding, gas metal arc welding, plasma arc welding, gas ... welding (SMAW) technique is preferable to the other techniques ..... studies''International Journal of Innovative Research.

  13. SHADOW: a new welding technique

    Science.gov (United States)

    Kramer, Thorsten; Olowinsky, Alexander M.; Durand, Friedrich

    2002-06-01

    The new welding technique 'SHADOW ' is introduced. SHADOW means the use of a single pulse to generate a quasi continuous weld of several millimeters in length. HET processing time is defined by the pulse duration of the pulsed laser. At present, a state-of-the-art laser is capable of a maximum pulse duration of 20 ms. The variation of the laser power depend on time is a vital capability of the pulsed laser to adapt the energy deposition into the workpiece. Laser beam welds of several watch components were successfully performed. Similar metals like crowns and axes made out of stainless steel have been welded using pulsed laser radiation. Applying a series of about 130 single pulses for the crown-axis combination the total energy accumulates to 19.5 J. The use of the SHADOW welding technique reduces the energy to 2.5 J. While welding dissimilar metals like stainless steel and bras, the SHADOW welding reduces drastically the contamination as well as the distortion. Laser beam welding of copper has a low process reliability due to the high reflection and the high thermal conductivity. SHADOW welds of 3.6 mm length were performed on 250 micrometers thick copper plates with very high reproducibility. As a result, a pilot plant for laser beam welding of copper plates has been set up. The work to be presented has partly been funded by the European Commission in a project under the contract BRPR-CT-0634.

  14. Reporting a sudden death due to accidental gasoline inhalation.

    Science.gov (United States)

    Martínez, María Antonia; Ballesteros, Salomé; Alcaraz, Rafael

    2012-02-10

    The investigation of uncertain fatalities requires accurate determination of the cause of death, with assessment of all factors that may have contributed to it. Gasoline is a complex and highly variable mixture of aliphatic and aromatic hydrocarbons that can lead to cardiac arrhythmias due to sensitization of the myocardium to catecholamines or acts as a simple asphyxiant if the vapors displace sufficient oxygen from the breathing atmosphere. This work describes a sudden occupational fatality involving gasoline. The importance of this petroleum distillate detection and its quantitative toxicological significance is discussed using a validated analytical method. A 51 year-old Caucasian healthy man without significant medical history was supervising the repairs of the telephone lines in a manhole near to a gas station. He died suddenly after inhaling gasoline vapors from an accidental leak. Extensive blistering and peeling of skin were observed on the skin of the face, neck, anterior chest, upper and lower extremities, and back. The internal examination showed a strong odor of gasoline, specially detected in the respiratory tract. The toxicological screening and quantitation of gasoline was performed by means of gas chromatography with flame ionization detector and confirmation was performed using gas chromatography-mass spectrometry. Disposition of gasoline in different tissues was as follows: heart blood, 35.7 mg/L; urine, not detected; vitreous humor, 1.9 mg/L; liver, 194.7 mg/kg; lung, 147.6 mg/kg; and gastric content, 116,6 mg/L (2.7 mg total). Based upon the toxicological data along with the autopsy findings, the cause of death was determined to be gasoline poisoning and the manner of death was accidental. We would like to alert on the importance of testing for gasoline, and in general for volatile hydrocarbons, in work-related sudden deaths involving inhalation of hydrocarbon vapors and/or exhaust fumes. Copyright © 2011 Elsevier Ireland Ltd. All rights

  15. Mathematical modeling of inhalation exposure

    Science.gov (United States)

    Fiserova-Bergerova, V.

    1976-01-01

    The paper presents a mathematical model of inhalation exposure in which uptake, distribution and excretion are described by exponential functions, while rate constants are determined by tissue volumes, blood perfusion and by the solubility of vapors (partition coefficients). In the model, tissues are grouped into four pharmokinetic compartments. The model is used to study continuous and interrupted chronic exposures and is applied to the inhalation of Forane and methylene chloride.

  16. Welding residual stress distributions for dissimilar metal nozzle butt welds in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Soo; Kim, Ju Hee; Bae, Hong Yeol; OH, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyungsoo [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Song, Tae Kwang [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-02-15

    In pressurized water nuclear reactors, dissimilar metal welds are susceptible to primary water stress corrosion cracking. To access this problem, accurate estimation of welding residual stresses is important. This paper provides general welding residual stress profiles in dissimilar metal nozzle butt welds using finite element analysis. By introducing a simplified shape for dissimilar metal nozzle butt welds, changes in the welding residual stress distribution can be seen using a geometry variable. Based on the results, a welding residual stress profile for dissimilar metal nozzle butt welds is proposed that modifies the existing welding residual stress profile for austenitic pipe butt welds.

  17. In-field Welding and Coating Protocols

    Science.gov (United States)

    2009-05-12

    Gas Technology Institute (GTI) and Edison Welding Institute (EWI) created both laboratory and infield girth weld samples to evaluate the effects of weld geometry and hydrogen off-gassing on the performance of protective coatings. Laboratory made plat...

  18. Closed circuit TV system monitors welding operations

    Science.gov (United States)

    Gilman, M.

    1967-01-01

    TV camera system that has a special vidicon tube with a gradient density filter is used in remote monitoring of TIG welding of stainless steel. The welding operations involve complex assembly welding tools and skates in areas of limited accessibility.

  19. Factors affecting weld root morphology in laser keyhole welding

    Science.gov (United States)

    Frostevarg, Jan

    2018-02-01

    Welding production efficiency is usually optimised if full penetration can be achieved in a single pass. Techniques such as electron and laser beam welding offer deep high speed keyhole welding, especially since multi-kilowatt lasers became available. However, there are limitations for these techniques when considering weld imperfections such as weld cap undercuts, interior porosity or humps at the root. The thickness of sheets during full penetration welding is practically limited by these root humps. The mechanisms behind root morphology formation are not yet satisfactory understood. In this paper root humping is studied by reviewing previous studies and findings and also by sample examination and process observation by high speed imaging. Different process regimes governing root quality are presented, categorized and explained. Even though this study mainly covers laser beam and laser arc hybrid welding, the presented findings can generally be applied full penetration welding in medium to thick sheets, especially the discussion of surface tension effects. As a final result of this analysis, a map of methods to optimise weld root topology is presented.

  20. Dynamics of space welding impact and corresponding safety welding study.

    Science.gov (United States)

    Fragomeni, James M; Nunes, Arthur C

    2004-03-01

    This study was undertaken in order to be sure that no hazard would exist from impingement of hot molten metal particle detachments upon an astronauts space suit during any future electron beam welding exercises or experiments. The conditions under which molten metal detachments might occur in a space welding environment were analyzed. The safety issue is important during welding with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at low earth orbit. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were determined for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. A weld pool detachment parameter for specifying the conditions for metal weld pool detachment by impact was derived and correlated to the experimental results. The experimental results were for the most part consistent with the theoretical analysis and predictions. c2003 Elsevier Ltd. All rights reserved.

  1. Dynamics of space welding impact and corresponding safety welding study

    Science.gov (United States)

    Fragomeni, James M.; Nunes, Arthur C.

    2004-03-01

    This study was undertaken in order to be sure that no hazard would exist from impingement of hot molten metal particle detachments upon an astronauts space suit during any future electron beam welding exercises or experiments. The conditions under which molten metal detachments might occur in a space welding environment were analyzed. The safety issue is important during welding with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at low earth orbit. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were determined for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. A weld pool detachment parameter for specifying the conditions for metal weld pool detachment by impact was derived and correlated to the experimental results. The experimental results were for the most part consistent with the theoretical analysis and predictions.

  2. Fundamental Laser Welding Process Investigations

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1998-01-01

    In a number of systematic laboratory investigations the fundamental behavior of the laser welding process was analyzed by the use of normal video (30 Hz), high speed video (100 and 400 Hz) and photo diodes. Sensors were positioned to monitor the welding process from both the top side and the rear...... side of the specimen.Special attention has been given to the dynamic nature of the laser welding process, especially during unstable welding conditions. In one series of experiments, the stability of the process has been varied by changing the gap distance in lap welding. In another series...... video pictures (400 Hz), a clear impact on the seam characteristics has been identified when a hump occurs.Finally, a clear correlation between the position of the focus point, the resultant process type and the corresponding signal intensity and signal variation has been found for sheets welded...

  3. Effective dose in SMAW and FCAW welding processes using rutile consumables.

    Science.gov (United States)

    Herranz, M; Rozas, S; Idoeta, R; Alegría, N

    2014-03-01

    The shielded metal arc welding (SMAW) and flux cored arc welding (FCAW) processes use covered electrodes and flux cored wire as consumables. Among these consumables, ones containing rutile are the most widely used, and since they have a considerable natural radioactive content, they can be considered as NORM (naturally occurring radioactive material). To calculate the effective dose on workers during their use in a conservative situation, samples of slag and aerosols and particles emitted or deposited during welding were taken and measured by gamma, alpha and beta spectrometry. An analytical method was also developed for estimating the activity concentration of radionuclides in the inhaled air. (222)Rn activity concentration was also assessed. With all these data, internal and external doses were calculated. The results show that external doses are negligible in comparison with internal ones, which do not exceed 1 mSv yr(-1), either in this conservative situation or in any other more favourable one. Radionuclides after Rn in the radioactive natural series are emitted at the same activity concentration to the atmosphere, this being around 17 times higher than that corresponding to radionuclides before Rn. Taking into account these conclusions and the analytical method developed, it can be concluded that one way to assess the activity concentration of natural radionuclides in inhaled air and hence effective doses could be the early gamma-ray spectrometry of aerosols and particles sampled during the welding process.

  4. Pulsed ultrasonic stir welding system

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  5. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2016-01-01

    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced...... residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature failure in the weld components. This paper deals with the influence and impact of welding method on the welding...... induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...

  6. The effect of post-welding conditions in friction stir welds: From weld simulation to Ductile Failure

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Nielsen, Kim Lau; Tutum, Cem Celal

    2012-01-01

    effect of the post-welding conditions when subjecting a friction stir weld to loading transverse to the weld line. The numerical model of the friction stir welded joint, employs a step-wise modeling approach to combine an in-situ weld simulation with a post-welding failure analysis. Using the commercial......The post-welding stress state, strain history and material conditions of friction stir welded joints are often strongly idealized when used in subsequent modeling analyses, typically by neglecting one or more of the features above. But, it is obvious that the conditions after welding do influence...... the weld performance. The objective of this paper is to discuss some of the main conflicts that arise when taking both the post-welding material conditions and stressestrain state into account in a subsequent structural analysis. The discussion is here based on a preliminary numerical study of the possible...

  7. Pulsed ultrasonic stir welding method

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  8. Reconditioning medical prostheses by welding

    Science.gov (United States)

    Rontescu, C.; Cicic, D. T.; Vasile, I. M.; Bogatu, A. M.; Amza, C. G.

    2017-08-01

    After the technological process of making, some of the medical prostheses may contain imperfections, which can lead to framing the product in the spoilage category. This paper treats the possibility of reconditioning by welding of the prosthesis made of titanium alloys. The paper presents the obtained results after the reconditioning by welding, using the GTAW process, of a intramedullary rod type prosthesis in which was found a crack after the non-destructive examination. The obtained result analysis, after the micrographic examination of the welded joint areas, highlighted that the process of reconditioning by welding can be applied successfully in such situations.

  9. Portable electron beam weld chamber

    Science.gov (United States)

    Lewis, J. R.; Dimino, J. M.

    1972-01-01

    Development and characteristics of portable vacuum chamber for skate type electron beam welding are discussed. Construction and operational details of equipment are presented. Illustrations of equipment are provided.

  10. Inhaled Drug Delivery: A Practical Guide to Prescribing Inhaler Devices

    Directory of Open Access Journals (Sweden)

    Pierre Ernst

    1998-01-01

    Full Text Available Direct delivery of medication to the target organ results in a high ratio of local to systemic bioavailability and has made aerosol delivery of respiratory medication the route of choice for the treatment of obstructive lung diseases. The most commonly prescribed device is the pressurized metered dose inhaler (pMDI; its major drawback is the requirement that inspiration and actuation of the device be well coordinated. Other requirements for effective drug delivery include an optimal inspiratory flow, a full inspiration from functional residual capacity and a breath hold of at least 6 s. Available pMDIs are to be gradually phased out due to their use of atmospheric ozone-depleting chlorofluorocarbons (CFCs as propellants. Newer pMDI devices using non-CFC propellants are available; preliminary experience suggests these devices greatly increase systemic bioavailability of inhaled corticosteroids. The newer multidose dry powder inhalation devices (DPIs are breath actuated, thus facilitating coordination with inspiration, and contain fewer ingredients. Furthermore, drug delivery is adequate even at low inspired flows, making their use appropriate in almost all situations. Equivalence of dosing among different devices for inhaled corticosteroids will remain imprecise, requiring the physician to adjust the dose of medication to the lowest dose that provides adequate control of asthma. Asthma education will be needed to instruct patients on the effective use of the numerous inhalation devices available.

  11. Silica Fume Functionalized With Amine-Based Additives as a Modifier to Enhance Asphalt Resistance to Oxidation

    Science.gov (United States)

    Abutalib, Nader Turki

    This dissertation investigates the practical feasibility of functionalizing silica fume particles with the amine groups in Bio-binder and pure APTES chemical to disperse silica fume in asphalt binder matrix to produce silica-fume-modified binder (SFMB). Dispersed silica fume was then introduced to asphalt to reduce oxidative aging. It has been widely reported that asphalt binder oxidation is one of the phenomena that reduces the service life of asphalt pavement by negatively affecting its rheological properties. This in turn can lead to a more brittle pavement, which is more prone to cracks due to thermal stress and traffic loading. It has been shown that the introduction of 4% silica fume to asphalt can reduce asphalt oxidative aging. However, the challenge with a higher percentage of silica fume was found to be the agglomeration of nano- particles to form micro-size clusters, which can reduce the effectiveness of silica fume while making asphalt binder more susceptible to shear. Therefore, this dissertation studies the effectiveness of functionalizing the SFMB to reduce asphalt oxidative aging while alleviating the agglomeration effect. To do so, various percentages of bio-binder (BB) and bio-char (BC) were introduced to SFMB, and the rheological properties and high-temperature performance of each specimen were evaluated by measuring the rotational viscosity and complex shear modulus before and after oxidative aging. It is hypothesized that fine-graded BC and BB with nano- to micro-level particles can be used to reduce asphalt oxidation and create a new generation of low- agglomeration SFMB with higher resistance to oxidative aging. To further study the effects of functionalization on dispersion of silica fume, silica fume particles were produced with different functional groups: amine (APTES) groups and phosphonate (THPMP) groups. Agglomeration studies using a scanning electron microscope and zeta potential analysis indicate that modifying asphalt binder with

  12. Exposure to cooking fumes in restaurant kitchens in norway.

    Science.gov (United States)

    Svendsen, Kristin; Jensen, Hanne Naper; Sivertsen, Ingvill; Sjaastad, Ann Kristin

    2002-06-01

    The purpose of this study was to assess exposure to fat aerosols and aldehydes in kitchens and to study the variations in exposure between different types of kitchen. Measurements were made in four hotel kitchens, two hamburger chain restaurants, 10 à la carte restaurants and three small local restaurants serving mostly fried food. The measurements were performed as personal measurements and each person carried two sampling devices connected to pumps. One pump was connected to a filter cassette with a 37 mm glassfibre filter and the other to a sampling device for aldehydes. The measurements were repeated on 3 days in each kitchen. Variables which could influence the level of exposure were recorded by the occupational hygienist. The level of fat aerosols varied between the different types of kitchen. The highest measured level of fat aerosol was 6.6 mg/m(3), in a small local restaurant. The arithmetic mean for all the kitchens was 0.62 mg/m(3). The highest level of the sum of the aldehydes was 186 micro g/m(3) (0.186 mg/m(3)), while the arithmetic mean was 69 micro g/m(3). The exposure to fat aerosols was modest, but could be up to 50% of the Norwegian threshold limit value (TLV) for nuisance dust (10 mg/m(3)). Fat aerosols from frying will, however, contain a mixture of heat- and water-treated fat from the meat which is being fried, hydrolysed vegetable fat and other degradation products, such as fatty acids, other organic acids and aldehydes. As a consequence of this, cooking fumes should be regarded as harmful to the lungs. The levels of formaldehyde, acetaldehyde and acrolein were well below the TLVs.

  13. Gas Metal Arc Welding. Welding Module 5. Instructor's Guide.

    Science.gov (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching an eight-unit module in gas metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety and testing, gas metal arc…

  14. Inhalant abuse: An exploratory study

    Directory of Open Access Journals (Sweden)

    Rohit Verma

    2011-01-01

    Full Text Available Background: Inhalants are being abused by large numbers of people throughout the world, particularly children and adolescents. It is also an often overlooked form of ubstance abuse in adolescents. Aims: The current study explored the inhalant abuse among adolescents seeking treatment from a tertiary care drug de-addiction clinic. Settings and Design: The study was conducted at a tertiary level multispecialty hospital. Materials and Methods: The current study was a chart review of the cases with inhalant abuse/dependence presenting to the clinic over a 1-year period. All the treatment records of the de-addiction clinic were reviewed, and information was gathered regarding patients with inhalant abuse/dependence. Statistical Analysis: Descriptive statistics with frequency distribution was carried out by using SPSS version 10.0. Results: The mean age of the subjects was 16.24 years (SD±1.9 years; range 12-18 years. Twenty-two percent of the subjects were illiterate. Forty percent of the adolescents had a family history of alcohol use problems and 48% that of tobacco use. The mean age of the initiation of inhalant use was 11.6 years (SD±2.17 years. It varied from 9 to 18 years. Forty percent of the adolescents had made a previous abstinence attempt. Conclusions: The findings provide important information on an underresearched area in psychiatry.

  15. 42 CFR 84.1141 - Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Isoamyl acetate tightness test; dust, fume, and... Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist...

  16. Non-occupational exposure to paint fumes during pregnancy and fetal growth in a general population

    DEFF Research Database (Denmark)

    Sørensen, Mette; Andersen, Anne-Marie N; Raaschou-Nielsen, Ole

    2010-01-01

    Occupational exposure to organic solvents during pregnancy has been associated with reduced fetal growth. Though organic solvents in the form of paint fumes are also found in the home environment, no studies have investigated the effect of such exposure in a general population. We studied...... associations between residential exposure to paint fumes during pregnancy and fetal growth within the Danish National Birth Cohort which consecutively recruited pregnant women from 1996 to 2002 from all over Denmark. Around the 30th pregnancy week, 19,000 mothers were interviewed about use of paint...... of preterm birth after adjustment for potential confounders. Our results suggest that there are no causal relationship between non-occupational exposure to paint fumes in the residence during pregnancy and fetal growth....

  17. Testing Silica Fume-Based Concrete Composites under Chemical and Microbiological Sulfate Attacks

    Directory of Open Access Journals (Sweden)

    Adriana Estokova

    2016-04-01

    Full Text Available Current design practices based on descriptive approaches to concrete specification may not be appropriate for the management of aggressive environments. In this study, the durability of cement-based materials with and without the addition of silica fume, subjected to conditions that leach calcium and silicon, were investigated. Chemical corrosion was simulated by employing various H2SO4 and MgSO4 solutions, and biological corrosion was simulated using Acidithiobacillus sp. bacterial inoculation, leading to disrupted and damaged surfaces; the samples’ mass changes were studied following both chemical and biological attacks. Different leaching trends were observed via X-ray fluorescence when comparing chemical with biological leaching. Lower leaching rates were found for concrete samples fortified with silica fume than those without silica fume. X-ray diffraction and scanning electron microscopy confirmed a massive sulfate precipitate formation on the concrete surface due to bacterial exposure.

  18. Stabilization of heavy metals in MSWI fly ash using silica fume

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinying; Chen, Quanyuan [School of Environment Science and Engineering, Donghua University, Shanghai 201620 (China); State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620 (China); Zhou, Yasu [School of Environment Science and Engineering, Donghua University, Shanghai 201620 (China); Tyrer, Mark [Mineral Industry Research Organisation, Solihull B37 7HB (United Kingdom); Yu, Yang [School of Environment Science and Engineering, Donghua University, Shanghai 201620 (China)

    2014-12-15

    Highlights: • The stabilization of heavy metals in MSWI fly ash was investigated. • The addition of silica fume effectively reduced the leaching of Pb and Cd. • The relation of solid phase transformation and leaching behavior of heavy metals was discussed. - Abstract: The objective of this work was to investigate the feasibility and effectiveness of silica fume on stabilizing heavy metals in municipal solid waste incineration (MSWI) fly ash. In addition to compressive strength measurements, hydrated pastes were characterized by X-ray diffraction (XRD), thermal-analyses (DTA/TG), and MAS NMR ({sup 27}Al and {sup 29}Si) techniques. It was found that silica fume additions could effectively reduce the leaching of toxic heavy metals. At the addition of 20% silica fume, leaching concentrations for Cu, Pb and Zn of the hydrated paste cured for 7 days decreased from 0.32 mg/L to 0.05 mg/L, 40.99 mg/L to 4.40 mg/L, and 6.96 mg/L to 0.21 mg/L compared with the MSWI fly ash. After curing for 135 days, Cd and Pb in the leachates were not detected, while Cu and Zn concentrations decreased to 0.02 mg/L and 0.03 mg/L. The speciation of Pb and Cd by the modified version of the European Community Bureau of Reference (BCR) extractions showed that these metals converted into more stable state in hydrated pastes of MSWI fly ash in the presence of silica fume. Although exchangeable and weak-acid soluble fractions of Cu and Zn increased with hydration time, silica fume addition of 10% can satisfy the requirement of detoxification for heavy metals investigated in terms of the identification standard of hazardous waste of China.

  19. Modeling Stress-Strain State in Butt-Welded Joints after TIG Welding

    Directory of Open Access Journals (Sweden)

    V. Atroshenko

    2015-09-01

    Full Text Available In this paper mathematical model was developed for definition of thermal-welding cycle influence on welding deformations distribution in flat samples of austenitic steels after TIG welding and developed recommendations to reduce the welding deformation on o the machinery for welding with a copper backing.

  20. Welding--Trade or Profession?

    Science.gov (United States)

    Albright, C. E.; Smith, Kenneth

    2006-01-01

    This article discusses a collaborative program between schools with the purpose of training and providing advanced education in welding. Modern manufacturing is turning to automation to increase productivity, but it can be a great challenge to program robots and other computer-controlled welding and joining systems. Computer programming and…

  1. Metal Working and Welding Operations.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by metal workers and welders. Addressed in the six individual units of the course are the following topics: weldable metals and their alloys, arc welding, gas welding,…

  2. Weld bonding of stainless steel

    DEFF Research Database (Denmark)

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.

    2004-01-01

    This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot-welding. Th...

  3. Contributions to risk injury evaluation of human skin contact caused by welding technology in mechanical engineering a company

    Directory of Open Access Journals (Sweden)

    Amza Gheorghe

    2017-01-01

    Full Text Available Assembly by welding is a very important pollutant technological process, mainly of the atmosphere and soil. The formation of gas in welding process is the result of electrodes, fluxes burning, formation of fused bath and welded seam. A large number of human operators feels different adverse effects on health. Most problems appears in respiratory system and include bronchitis, respiratory irritation, fever caused by smoke, changes in lung function, decreased immunity to infection and a possible increase of lung cancer risk. Very little information are available about effects on the organism and skin after exposure to fumes from welding, therefore. In this order, this paper do a risk assessment by skin contact. Starting from the main parameters for the evaluation of a cutaneous risk, it was determined a score of danger, a score of surface and a score of frequency. It results a risk associated with each class with a value Scut = 100.000, that indicates a very high probable risk with immediate proposing corrective measures.

  4. Dynamic Moisture Sorption and Desorption in Fumed Silica-filled Silicone Foam

    Energy Technology Data Exchange (ETDEWEB)

    Trautschold, Olivia Carol [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    Characterizing dynamic moisture sorption and desorption in fumed silica-filled silicone foam is necessary for determining material compatibilities and life predictions, particularly in sealed environments that may be exposed to a range of environmental conditions. Thermogravimetric analysis (TGA) and near infrared spectroscopy (NIR) were performed on S5470 fumed silica-filled silicone foam to determine the weight percent of moisture at saturation. Additionally, TGA was used to determine the time, temperature, and relative humidity levels required for sorption and desorption of physisorbed moisture in S5470.

  5. Know How to Use Your Asthma Inhaler

    Medline Plus

    Full Text Available ... Guidelines Air Pollution & Respiratory Health Know How to Use Your Asthma Inhaler Recommend on Facebook Tweet Share ... to follow along with the correct way to use your metered dose inhaler. Print the step-by- ...

  6. Inhalant Abuse: Is Your Child at Risk?

    Science.gov (United States)

    ... can be valuable as well. With help, your child can end inhalant abuse and learn how to make healthy choices for a lifetime. References Baydala L. Inhalant abuse. Paediatrics and Child Health. 2010;15:443. Results from the 2013 ...

  7. Know How to Use Your Asthma Inhaler

    Medline Plus

    Full Text Available ... inhaler with a spacer Your browser does not support iframes Using a metered dose inhaler with a spacer [ PDF - 377 KB] Your browser does not support iframes Cómo usar un inhalador de dosis fija ...

  8. Know How to Use Your Asthma Inhaler

    Medline Plus

    Full Text Available ... metered dose inhaler with a spacer Your browser does not support iframes Using a metered dose inhaler with a spacer [ PDF - 377 KB] Your browser does not support iframes Cómo usar un inhalador de ...

  9. 29 CFR 1910.255 - Resistance welding.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Resistance welding. 1910.255 Section 1910.255 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Welding, Cutting and Brazing § 1910.255 Resistance welding. (a.... Ignitron tubes used in resistance welding equipment shall be equipped with a thermal protection switch. (3...

  10. 46 CFR 154.660 - Pipe welding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt welds...

  11. 49 CFR 179.300-9 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.300-9 Section 179.300-9... Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-9 Welding. (a) Longitudinal... fusion welded on class DOT-110A tanks. Welding procedures, welders and fabricators must be approved in...

  12. METHOD AND SYSTEM FOR LASER WELDING

    DEFF Research Database (Denmark)

    2008-01-01

    The invention relates to laser welding of at least two adjacent, abutting or overlapping work pieces in a welding direction using multiple laser beams guided to a welding region, wherein at least two of the multiple laser beams are coupled into the welding region so as to form a melt and at least...

  13. Magnetic Deflection Of Welding Electron Beam

    Science.gov (United States)

    Malinzak, R. Michael; Booth, Gary N.

    1991-01-01

    Electron-beam welds inside small metal parts produced with aid of magnetic deflector. Beam redirected so it strikes workpiece at effective angle. Weld joint positioned to where heavy microfissure concentration removed when subsequent machining required, increasing likelihood of removing any weld defects located in face side of electron-beam weld.

  14. Clamp and Gas Nozzle for TIG Welding

    Science.gov (United States)

    Gue, G. B.; Goller, H. L.

    1982-01-01

    Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.

  15. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    OpenAIRE

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen; Guerrero-Mata, Martha Patricia

    2016-01-01

    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature fail...

  16. Research on stress corrosion behavior of CCSE40 welded by underwater wet welding with austenitic welding rod in seawater

    Science.gov (United States)

    Zou, Y.; Bai, Q.; Dong, S.; Yang, Z. L.; Gao, Y.

    2017-09-01

    The stress corrosion behavior of CCSE40 welded by underwater wet welding with austenitic welding rod in seawater was studied. Microstructure, mechanical property and stress corrosion cracking susceptibility of the underwater wet welding joint were analyzed by metallographic observation, tensile and bending tests, slow strain rate test (SSRT) and SEM. The results indicated that the weld zone (WZ) and the heat affected zone (HAZ) were all sensitive to the stress corrosion, and the WZ was more sensitive than the HAZ.

  17. Research on the Effects of Technical Parameters on the Molding of the Weld by A-TIG Welding

    OpenAIRE

    Shi, Kai; Pan, Wu

    2012-01-01

    The effects of welding parameters on the molding of weld by A-TIG welding of a 4mm thickness mild steel plate is studied in the present paper. The results obtained show that: as welding current increases A-TIG welding penetration gets deeper than TIG welding; size and shape of HAZ has remarkable change; A-TIG welding has the narrower weld pool width than TIG welding.

  18. Inhalation Therapy in Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Dilaver Tas

    2012-04-01

    Full Text Available Inhaled drug therapy in respiratory critical care units is an important treatment choice. İnhalation therapy has been in use since beginning of 1900%u2019s with the production of first liquid spray (atomiser. Today, there are numerous drugs given by inhalation. In this review, inhalational drugs and characteristics of inhalation therapy during invasive and noninvasive mechanical ventilation is described.

  19. Impact of inhalation therapy on oral health

    OpenAIRE

    Navneet Godara; Ramya Godara; Megha Khullar

    2011-01-01

    Inhalation therapy has been employed as the mainstay of the treatment in chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Beta-2 agonists, anticholinergic bronchodilators, inhaled corticosteroids, and sodium cromoglycate are often used alone or in combination in an inhaled form. Studies have shown that inhaled drugs used in the treatment have some adverse effects on the oral health based on their dosage, frequency, and duration of use. Several oral...

  20. Do misconceptions hinder effective inhalation therapy with dry powder inhalers?

    NARCIS (Netherlands)

    De Boer, A.H.; Hagedoorn, P.H.; Frijlink, H.W.F.

    Purpose: It is widely believed that high resistance dry powder inhalers (DPI's) can not be operated adequately by patients with reduced vital capacity and that a constant lung deposition requires a flow rate independent fine particle output (FPF). These beliefs may result in incorrect use and

  1. Automatic welding of stainless steel tubing

    Science.gov (United States)

    Clautice, W. E.

    1978-01-01

    The use of automatic welding for making girth welds in stainless steel tubing was investigated as well as the reduction in fabrication costs resulting from the elimination of radiographic inspection. Test methodology, materials, and techniques are discussed, and data sheets for individual tests are included. Process variables studied include welding amperes, revolutions per minute, and shielding gas flow. Strip chart recordings, as a definitive method of insuring weld quality, are studied. Test results, determined by both radiographic and visual inspection, are presented and indicate that once optimum welding procedures for specific sizes of tubing are established, and the welding machine operations are certified, then the automatic tube welding process produces good quality welds repeatedly, with a high degree of reliability. Revised specifications for welding tubing using the automatic process and weld visual inspection requirements at the Kennedy Space Center are enumerated.

  2. Automatic welding systems for large ship hulls

    Science.gov (United States)

    Arregi, B.; Granados, S.; Hascoet, JY.; Hamilton, K.; Alonso, M.; Ares, E.

    2012-04-01

    Welding processes represents about 40% of the total production time in shipbuilding. Although most of the indoor welding work is automated, outdoor operations still require the involvement of numerous operators. To automate hull welding operations is a priority in large shipyards. The objective of the present work is to develop a comprehensive welding system capable of working with several welding layers in an automated way. There are several difficulties for the seam tracking automation of the welding process. The proposed solution is the development of a welding machine capable of moving autonomously along the welding seam, controlling both the position of the torch and the welding parameters to adjust the thickness of the weld bead to the actual gap between the hull plates.

  3. Thorium exposure during tungsten inert gas welding with thoriated tungsten electrodes.

    Science.gov (United States)

    Gäfvert, T; Pagels, J; Holm, E

    2003-01-01

    The exposure to 232Th from TIG welding with thoriated electrodes has been determined at five different workshops. Welding with both alternating and direct current was investigated. The exposure levels of 232Th were generally below 10 mBq m(-3) in the breathing zone of the welders. Two samples from AC welding showed significant higher exposure levels, probably due to maladjustment of the TIG welding power source. Samples of the respirable fraction of 232Th from grinding thoriated electrodes were also collected showing exposure levels of 5 mBq m(-3) or lower. A dose estimate has been made for two scenarios, one realistic and one with conservative assumptions, showing that the annual committed effective dose from inhalation of 232Th, 230Th, 228Th and 228Ra, for a full-time TIG welder, in the realistic case is below 0.3 mSv and with conservative assumptions around 1 mSv or lower. The contribution from grinding electrodes was lower, 10 microSv or lower in the realistic case and 63 microSv or lower based on conservative assumptions. The study does not exclude occurrence of higher exposure levels under welding conditions different from those prevailing in this study.

  4. Microstructure and Mechanical Properties of an Ultrasonic Spot Welded Aluminum Alloy: The Effect of Welding Energy

    National Research Council Canada - National Science Library

    He Peng; Daolun Chen; Xianquan Jiang

    2017-01-01

    The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique-ultrasonic spot welding (USW...

  5. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  6. Real time computer controlled weld skate

    Science.gov (United States)

    Wall, W. A., Jr.

    1977-01-01

    A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.

  7. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  8. Control of Welding Processes.

    Science.gov (United States)

    1987-01-01

    Structures, Office of Deputy Under Secretary of Defense for R&E (ET), Department of Defense, Washington, D.C. CHARLES ZANIS, Assistant Director for Platform... CHARLES NULL, Head, Metals Branch, Naval Sea Systems Command, Washington, D.C. ROBERT A. WEBER, Welding Engineering and Metallurgy, U.S. Army Corps of...Needs. Pp. 487-90. in Papers Presented at the August 3-8, 1Q80, AIME Syi,.posium. Essers, W . ., and R. Walter. Heat transfer and penet ration

  9. Inhalable drugs for systemic therapy.

    Science.gov (United States)

    Corkery, K

    2000-07-01

    Although oral and injectable drug formulations still dominate the market, interest in pulmonary delivery has been rising steadily. Given patients' desire for an alternative to injections, and recent advances in aerosol science and pulmonary medicine, the potential for improved disease management outcomes by using aerosols for systemic drug delivery should lead the way for a shift to inhalables.

  10. The effect of friction welding self-regulation process on weld structure and hardness

    Directory of Open Access Journals (Sweden)

    W. Ptak

    2010-07-01

    Full Text Available The self-regulation phenomenon that occurs during friction welding process was characterised, and the effect of the self-regulation of theenergy-related parameters on structure and hardness distribution in SW7Mo steel – 55 steel welded joint was determined experimentally.The structure and hardness of the weld zone were examined, the energy required for the stable run of a friction welding process wascalculated, and a relationship between the welding energy and weld hardness was derived.

  11. 10,170 flawless welds

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    The welding of tubes containing the principal current-carrying busbars in the LHC magnets was one of the main activities of the SMACC project. After a year of preparation and another of intense activity in the tunnel, the last weld was completed on Wednesday 14 May. Over 10,170 welds have been inspected and not a single fault has been found.    The welder (above) creates the weld using an orbital welding machine (below) specifically designed for CERN. Each of the eight sectors of the LHC contains around 210 interconnects between the superconducting magnets. Consolidating these interconnections was the SMACC project’s primary objective. One of the last jobs before closing the interconnects is the welding of the M lines: each has a 104 mm diameter and a radial clearance of just 45 mm. In total: 10,170 welds carried out in a single year of activities. A true challenge, which was carried out by a team of 30 highly specialised welders, working under the supervision o...

  12. Laser welding of fused quartz

    Science.gov (United States)

    Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine

    2003-06-10

    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  13. The effect of limestone powder, fly ash and silica fume on the ...

    Indian Academy of Sciences (India)

    Gudmudsson G, Olafsson H 1996 Silica Fume in concrete-16 years of experience in iceland, alkali- aggregate reaction in concrete. In: A Shayan (ed.) Proceedings of the 10th International Conference,. Melbourne, 462–69. Gürol G 1999 Components for Economic Concrete, cement/water/fine and coarse aggregate/ ...

  14. 42 CFR 84.1147 - Silica mist test for dust, fume, and mist respirators; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Silica mist test for dust, fume, and mist respirators; minimum requirements. 84.1147 Section 84.1147 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  15. 42 CFR 84.1158 - Dust, fume, and mist tests; respirators with filters; minimum requirements; general.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Dust, fume, and mist tests; respirators with filters; minimum requirements; general. 84.1158 Section 84.1158 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES...

  16. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements. 84.1149 Section 84.1149 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  17. 42 CFR 84.1140 - Dust, fume, and mist respirators; performance requirements; general.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Dust, fume, and mist respirators; performance requirements; general. 84.1140 Section 84.1140 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY...

  18. Effect of silica fume on compressive strength of oil-polluted concrete in different marine environments

    Science.gov (United States)

    Shahrabadi, Hamid; Sayareh, Sina; Sarkardeh, Hamed

    2017-12-01

    In the present research, effect of silica fume as an additive and oil polluted sands as aggregates on compressive strength of concrete were investigated experimentally. The amount of oil in the designed mixtures was assumed to be constant and equal to 2% of the sand weight. Silica fume accounting for 10%, 15% and 20% of the weight is added to the designed mixture. After preparation and curing, concrete specimens were placed into the three different conditions: fresh, brackish and saltwater environments (submerged in fresh water, alternation of exposed in air & submerged in sea water and submerged in sea water). The result of compressive strength tests shows that the compressive strength of the specimens consisting of silica fume increases significantly in comparison with the control specimens in all three environments. The compressive strength of the concrete with 15% silica fume content was about 30% to 50% higher than that of control specimens in all tested environments under the condition of using polluted aggregates in the designed mixture.

  19. Effect of paint fumes on histoarchitecture of the testes of adult male ...

    African Journals Online (AJOL)

    This is an indication of altered spermatogenesis. Conclusion: Paint fumes that contain volatile organic compound cause the necrotic death of testicular germ cells in exposure dependent manner and there were reduced sperm cells in the lumen. This can lead to infertility. Keywords: histoarchitecture, testes, spermatogonia, ...

  20. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    Science.gov (United States)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  1. Nanocomposite polymer electrolytes: Modulation of mechanical properties using surface-functionalized fumed silica

    Science.gov (United States)

    Yerian, Jeffrey Alan

    Rechargeable lithium metal batteries are potential next-generation power sources for portable electronic devices and electric vehicles due to their high-energy density and low self-discharge rate. However, high reactivity of lithium metal with the electrolyte impedes commercialization. Improved performance of the electrolyte can be achieved by adding surface-functionalized fumed silica to enhance mechanical stability and reduce reactivity with lithium metal. Crosslinkable fumed silica in polyethylene glycol dimethyl ether (PEGdm, Mn = 250) + lithium bis(trifluoromethanesulfonyl)imide can be subsequently reacted in the presence of a chemically similar monomer, e.g., butyl methacrylate (BMA) monomer, to form covalent bonds between silica particles rather than physical interactions. The conductivity decreases by only a factor of two after crosslinking with 20 wt% BMA despite significant increases in elastic modulus (G'). These electrolytes exhibit room-temperature conductivity near 10-3 S cm-1 , G' greater than 10 5 Pa, and a yield stress approaching 104 Pa. Addition of fumed silica to polyethylene oxide (PEO, MW = 200K) increases G'; decreases the frequency dependence of G'; and increases percent recoverable strain. The extent of elasticity enhancement depends on fumed silica surface chemistry and concentration. The largest increase in elasticity is observed for hydrophilic silica due to interactions between hydroxyl groups on the silica and ether oxygens on PEO. These interactions facilitate bridging of fumed silica particles through entanglements of adsorbed PEO, which increases G '. Hydrophilic and hydrophobic blends of fumed silica are studied in mineral oil and PEGdm (250) to determine how the presence of two silica types affects the strength and mechanism of gel formation. In mineral oil, blends exhibit G' between those of single-component systems since both hydrophilic and hydrophobic fumed silica interacts via hydrogen bonding. Consequently, G' of blend

  2. PEMANFAATAN LIMBAH SERBUK MARMER PADA BETON SEBAGAI BAHAN PENGGANTI SEBAGIAN SEMEN DENGAN VARIASI PENGGUNAAN SILICA FUME

    Directory of Open Access Journals (Sweden)

    Agil Fitri Handayani

    2015-02-01

    Full Text Available The Utilization of Marble Powder Waste in Concrete Ma­­­­­­­­terials as a Partial Material Substitution of Cement  with the Variation Use of Silica Fume. The purpose of this study was to determine the effect of marble powder and silica fume on the mechanical pro­per­ties of concrete. This study used an experimental design using 16 group of testing materials with variety types of mixtures between marble powder and silica fume 0.00; 5.00; 10.00; and 15.00%. The wa­ter-cement ratio was 0.50 and a low dosage of superplasticizer, which was 0.50%. The behavior of fresh concrete were calculated and the mechanical properties of concrete were tested on con­crete age of 28 days. The results showed the marble powder main com­position was Silicon Dioxide (SiO2 17.63% and Calcium Carbonate (CaCO3 2.73%. Mar­ble powder was more appropriate to be used as fillers than to be used as a partial substitution of ce­ment. The optimum mechanical properties of concrete was produced by the mixtures of 5.00% mar­ble powder  and 6.22% silica fume which resulted in compressive strength of 29.04 MPa.   Tujuan penelitian ini adalah untuk mengetahui pengaruh peng­gunaan ser­buk marmer dan silica fume terhadap sifat mekanik beton. Penelitian ini meng­gu­na­kan desain eksperimen dengan 16 kelompok benda uji dengan variasi ser­buk marmer dan silica fume 0,00; 5,00; 10,00; dan 15,00%. Faktor air semen di­gu­nakan 0,50 dan superplasticizer dengan dosis rendah 0,50%. Perilaku beton segar di­perhitungkan dan sifat mekanik beton diuji pada umur beton 28 hari. Hasil analisis me­nunjukkan kom­posisi utama serbuk marmer adalah Silikon Dioksida (SiO2 17,63% dan Kalsium Kar­bonat (CaCO3 2,73%. Serbuk marmer lebih tepat digunakan se­bagai bahan pe­ng­isi atau filler dari pada sebagai pengganti semen. Sifat mekanik be­ton optimum di­ha­sil­kan pada campuran serbuk marmer 5,00% dan silica fume 6,22% dengan kuat tekan be­ton yang dihasilkan  mencapai 29

  3. Review of laser hybrid welding

    DEFF Research Database (Denmark)

    Bagger, Claus

    2004-01-01

    In this artucle an overview og the hybrid welding process is given. After a short historic overview, a review of the fundamental phenomenon taking place when a laser (CO2 or Nd:YAG) interacts in the same molten pool as a more conventional source of energy, e.g. tungsten in-active gas, plasma......, or metal inactive gas/metal active gas.This is followed by reports of how the many process parameters governing the hybrid welding process can be set and how the choice of secondary energy source, shielding gas, etc. can affect the overall welding process....

  4. Novel Process Revolutionizes Welding Industry

    Science.gov (United States)

    2008-01-01

    Glenn Research Center, Delphi Corporation, and the Michigan Research Institute entered into a research project to study the use of Deformation Resistance Welding (DRW) in the construction and repair of stationary structures with multiple geometries and dissimilar materials, such as those NASA might use on the Moon or Mars. Traditional welding technologies are burdened by significant business and engineering challenges, including high costs of equipment and labor, heat-affected zones, limited automation, and inconsistent quality. DRW addresses each of those issues, while drastically reducing welding, manufacturing, and maintenance costs.

  5. Convection in arc weld pools

    Energy Technology Data Exchange (ETDEWEB)

    Oreper, G.M.; Eagar, T.W.; Szekely, J.

    1982-11-01

    A mathematical model was developed to account for convection and temperature distributions in stationary arc weld pools driven by buoyancy, electromagnetic and surface tension forces. It is shown that the electromagnetic and surface tension forces dominate the flow behavior. In some cases, these forces produce double circulation loops, which are indirectly confirmed by experimental measurements of segregation in the weld pool. It is also shown that the surface tension driven flows are very effective in dissipating the incident energy flux on the pool surface which, in turn, reduces the vaporization from the weld pool.

  6. Plasticity Theory of Fillet Welds

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2005-01-01

    This paper deals with simple methods for calculation of fillet welds based on the theory of plasticity. In developing the solutions the lower-bound theorem is used. The welding material and parts of the base material are subdivided into triangular regions with homogeneous stress fields; thereby...... a safe and statically admissible stress distribution is established. The plasticity solutions are compared with tests carried out at the Engineering Academy of Denmark, Lyngby, in the early nineties, and old fillet weld tests. The new failure conditions are in very good agreement with the yield load...

  7. Impact of inhalation therapy on oral health

    Directory of Open Access Journals (Sweden)

    Navneet Godara

    2011-01-01

    Full Text Available Inhalation therapy has been employed as the mainstay of the treatment in chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD. Beta-2 agonists, anticholinergic bronchodilators, inhaled corticosteroids, and sodium cromoglycate are often used alone or in combination in an inhaled form. Studies have shown that inhaled drugs used in the treatment have some adverse effects on the oral health based on their dosage, frequency, and duration of use. Several oral conditions such as xerostomia, dental caries, candidiasis, ulceration, gingivitis, periodontitis, and taste changes have been associated with inhalation therapy. Since the prevalence of chronic respiratory diseases is rising, it is important to provide optimal oral care to the individuals receiving inhalation therapy. This article will review the influence of inhaled drugs on the oral health of individuals and adequate management and prevention of the same.

  8. Impact of inhalation therapy on oral health.

    Science.gov (United States)

    Godara, Navneet; Godara, Ramya; Khullar, Megha

    2011-10-01

    Inhalation therapy has been employed as the mainstay of the treatment in chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Beta-2 agonists, anticholinergic bronchodilators, inhaled corticosteroids, and sodium cromoglycate are often used alone or in combination in an inhaled form. Studies have shown that inhaled drugs used in the treatment have some adverse effects on the oral health based on their dosage, frequency, and duration of use. Several oral conditions such as xerostomia, dental caries, candidiasis, ulceration, gingivitis, periodontitis, and taste changes have been associated with inhalation therapy. Since the prevalence of chronic respiratory diseases is rising, it is important to provide optimal oral care to the individuals receiving inhalation therapy. This article will review the influence of inhaled drugs on the oral health of individuals and adequate management and prevention of the same.

  9. Specification and qualification of welding procedures for metallic materials : welding procedure test : part 1 : arc and gas welding of steels and arc welding of nickel and nickel alloys : technical corrigendum 1

    CERN Document Server

    International Organization for Standardization. Geneva

    2005-01-01

    Specification and qualification of welding procedures for metallic materials : welding procedure test : part 1 : arc and gas welding of steels and arc welding of nickel and nickel alloys : technical corrigendum 1

  10. Automated Variable-Polarity Plasma-Arc Welding

    Science.gov (United States)

    Numes, A. C., Jr.; Bayless, E. O., Jr.; Jones, S. C., III; Munafo, P.; Munafo, A.; Biddle, A.; Wilson, W.

    1984-01-01

    Variable-polarity plasma-arc methods produces better welds at lower cost than gas-shielded tungsten-arc welding in assemblies. Weld porosity very low and costs of joint preparation, depeaking, inspection, and weld repair minimized.

  11. Laser welding and post weld treatment of modified 9Cr-1MoVNb steel.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z. (Nuclear Engineering Division)

    2012-04-03

    Laser welding and post weld laser treatment of modified 9Cr-1MoVNb steels (Grade P91) were performed in this preliminary study to investigate the feasibility of using laser welding process as a potential alternative to arc welding methods for solving the Type IV cracking problem in P91 steel welds. The mechanical and metallurgical testing of the pulsed Nd:YAG laser-welded samples shows the following conclusions: (1) both bead-on-plate and circumferential butt welds made by a pulsed Nd:YAG laser show good welds that are free of microcracks and porosity. The narrow heat affected zone has a homogeneous grain structure without conventional soft hardness zone where the Type IV cracking occurs in conventional arc welds. (2) The laser weld tests also show that the same laser welder has the potential to be used as a multi-function tool for weld surface remelting, glazing or post weld tempering to reduce the weld surface defects and to increase the cracking resistance and toughness of the welds. (3) The Vicker hardness of laser welds in the weld and heat affected zone was 420-500 HV with peak hardness in the HAZ compared to 240 HV of base metal. Post weld laser treatment was able to slightly reduce the peak hardness and smooth the hardness profile, but failed to bring the hardness down to below 300 HV due to insufficient time at temperature and too fast cooling rate after the time. Though optimal hardness of weld made by laser is to be determined for best weld strength, methods to achieve the post weld laser treatment temperature, time at the temperature and slow cooling rate need to be developed. (4) Mechanical testing of the laser weld and post weld laser treated samples need to be performed to evaluate the effects of laser post treatments such as surface remelting, glazing, re-hardening, or tempering on the strength of the welds.

  12. Exposure to Cooking Fumes and Acute Reversible Decrement in Lung Functional Capacity

    Directory of Open Access Journals (Sweden)

    Masoud Neghab

    2017-10-01

    Full Text Available Background: Being exposed to cooking fumes, kitchen workers are occupationally at risk of multiple respiratory hazards. No conclusive evidence exists as to whether occupational exposure to these fumes is associated with acute and chronic pulmonary effects and symptoms of respiratory diseases. Objective: To quantify the exposure levels and evaluate possible chronic and acute pulmonary effects associated with exposure to cooking fumes. Methods: In this cross-sectional study, 60 kitchen workers exposed to cooking fumes and 60 unexposed employees were investigated. The prevalence of respiratory symptoms among these groups was determined through completion of a standard questionnaire. Pulmonary function parameters were also measured before and after participants' work shift. Moreover, air samples were collected and analyzed to quantify their aldehyde, particle, and volatile organic contents. Results: The mean airborne concentrations of formaldehyde, acetaldehyde, and acrolein was 0.45 (SD 0.41, 0.13 (0.1, and 1.56 (0.41 mg/m3, respectively. The mean atmospheric concentrations of PM1, PM2.5, PM7, PM10, and total volatile organic compounds (TVOCs was 3.31 (2.6, 12.21 (5.9, 44.16 (16.6, 57 (21.55 μg/m3, and 1.31 (1.11 mg/m3, respectively. All respiratory symptoms were significantly (p<0.05 more prevalent in exposed group. No significant difference was noted between the pre-shift mean of spirometry parameters of exposed and unexposed group. However, exposed workers showed cross-shift decrease in most spirometry parameters, significantly lower than the pre-shift values and those of the comparison group. Conclusion: Exposure to cooking fumes is associated with a significant increase in the prevalence of respiratory symptoms as well as acute reversible decrease in lung functional capacity.

  13. [Effects of Instruction on Inhalation Techniques Using iPads - Web Application "Inhalation Lessons"].

    Science.gov (United States)

    Kogawa, Noriko; Ito, Reiko; Gon, Yasuhiro; Maruoka, Shuichiro; Hashimoto, Shu

    2015-12-01

    Instruction on inhalation techniques for chronic obstructive pulmonary disease(COPD)and asthma patients being treated with inhalants have sufficient therapeutic effects and are important to maintain adherence. However, problems continue to exist, including time constraints of medical staff that have a large number of patients and a lack of knowledge on inhalation instruction methods. A web application,"Inhalation Lessons,'for the iPad has been developed. It explains inhalation methods, and consists of videos and review tests. Instruction on inhalation techniques was performed using this application for patients that use Diskus, and the effects were examined. As a result, there are significant improvements in the inhalation techniques of patients after viewing the"Inhalation Lessons'application. Uniform instruction on inhalation techniques can be performed even in the field of homecare.

  14. Assessment of biological chromium among stainless steel and mild steel welders in relation to welding processes.

    Science.gov (United States)

    Edmé, J L; Shirali, P; Mereau, M; Sobaszek, A; Boulenguez, C; Diebold, F; Haguenoer, J M

    1997-01-01

    Air and biological monitoring were used for assessing external and internal chromium exposure among 116 stainless steel welders (SS welders) using manual metal arc (MMA), metal inert gas (MIG) and tungsten inert gas (TIG) welding processes (MMA: n = 57; MIG: n = 37; TIG: n = 22) and 30 mild steel welders (MS welders) using MMA and MIG welding processes (MMA: n = 14; MIG: n = 16). The levels of atmospheric total chromium were evaluated after personal air monitoring. The mean values for the different groups of SS welders were 201 micrograms/m3 (MMA) and 185 micrograms/m3 (MIG), 52 micrograms/m3 (TIG) and for MS welders 8.1 micrograms/m3 (MMA) and 7.3 micrograms/m3 (MIG). The curve of cumulative frequency distribution from biological monitoring among SS welders showed chromium geometric mean concentrations in whole blood of 3.6 micrograms/l (95th percentile = 19.9), in plasma of 3.3 micrograms/l (95th percentile = 21.0) and in urine samples of 6.2 micrograms/l (95th percentile = 58.0). Among MS welders, mean values in whole blood and plasma were rather more scattered (1.8 micrograms/l, 95th percentile = 9.3 and 1.3 micrograms/l, 95th percentile = 8.4, respectively) and in urine the value was 2.4 micrograms/l (95th percentile = 13.3). The analysis of variance of chromium concentrations in plasma previously showed a metal effect (F = 29.7, P welding process. MMA-SS is definitely different from other processes because the biological values are clearly higher. These higher levels are due to the very significant concentrations of total soluble chromium, mainly hexavalent chromium, in welding fumes.

  15. Materials participation in welded joints manufacturing

    Science.gov (United States)

    Ghenghea, L. D.

    2016-08-01

    Management of materials dilution to form a joint with higher features asked by complex metallic structures is a problem that took attention and efforts of welding processes researchers and this communication will give a little contribution presenting some scientific and experimental results of dilution processes studied by Welding Research Group from Iasi, Romania, TCM Department. Liquid state welding processes have a strong dependence related to dilution of base and filler materials, the most important are for automatic joining using welding. The paper presents a review of some scientific works already published and their contributions, results of dilution coefficient evaluation using weighing, graphics and software applied for shielded metal arc welding process. Paper results could be used for welders’ qualification, welding procedure specification and other welding processes researchers’ activities. The results of Welding Research Group from Iasi, Romania, TCM Department, show dilution coefficient values between 20-30 % of base material and 70-80 % of filler material for studied welding process.

  16. Filler wire for aluminum alloys and method of welding

    Science.gov (United States)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)

    2003-01-01

    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  17. MFDC - technological improvement in resistance welding controls

    Energy Technology Data Exchange (ETDEWEB)

    Somani, A.K.; Naga Bhaskar, V.; Chandramouli, J.; Rameshwara Rao, A. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2008-07-01

    Among the various Resistance Welding operations carried out in the production line of a fuel bundle end plug welding is the most critical operation. Welding controllers play a very vital role in obtaining consistent weld quality by regulating and controlling the weld current. Conventional mains synchronized welding controllers are at best capable of controlling the weld current at a maximum speed of the mains frequency. In view of the very short welding durations involved in the various stages of a fuel bundle fabrication, a need was felt for superior welding controllers. Medium Frequency Welding Controllers offer a solution to these limitations in addition to offering other advantages. Medium Frequency power sources offer precise welding current control as they regulate and correct the welding current faster, typically twenty times faster when operated at 1000Hz. An MFDC was employed on one of the welding machines and its performance was studied. This paper discusses about the various advantages of MFDCs with other controllers employed at NFC to end plug welding operation. (author)

  18. Gas Shielding Technology for Welding and Brazing

    Science.gov (United States)

    Nunes, Arthur J.; Gradl, Paul R.

    2012-01-01

    Welding is a common method that allows two metallic materials to be joined together with high structural integrity. When joints need to be leak-tight, light-weight, or free of contaminant-trapping seams or surface asperities, welding tends to be specified. There are many welding techniques, each with its own advantages and disadvantages. Some of these techniques include Forge Welding, Gas Tungsten Arc Welding, Friction Stir Welding, and Laser Beam Welding to name a few. Whichever technique is used, the objective is a structural joint that meets the requirements of a particular component or assembly. A key practice in producing quality welds is the use of shielding gas. This article discusses various weld techniques, quality of the welds, and importance of shielding gas in each of those techniques. Metallic bonds, or joints, are produced when metals are put into intimate contact. In the solid-state "blacksmith welding" process, now called Forge Welding (FOW), the site to be joined is pounded into intimate contact. The surfaces to be joined usually need to be heated to make it easier to deform the metal. The surfaces are sprinkled with a flux to melt surface oxides and given a concave shape so that surface contamination can be squeezed out of the joint as the surfaces are pounded together; otherwise the surface contamination would be trapped in the joint and would weaken the weld. In solid-state welding processes surface oxides or other contamination are typically squeezed out of the joint in "flash."

  19. Welding and Production Metallurgy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 6000 square foot facility represents the only welding laboratory of its kind within DA. It is capable of conducting investigations associated with solid state...

  20. Thermomechanical Modelling of Resistance Welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi

    2007-01-01

    The present paper describes a generic programme for analysis, optimization and development of resistance spot and projection welding. The programme includes an electrical model determining electric current and voltage distribution as well as heat generation, a thermal model calculating heat...

  1. Laser Welding of Ship Steel

    National Research Council Canada - National Science Library

    Brayton, W. C; Banas, C. M; Peters, G. T

    1979-01-01

    ... joint cleanliness and fitup conditions. In the current program, welds were formed between surfaces with nonperfect fitup, between plasma-cut surfaces, between surfaces deliberately mismatched to provide a varging joint gap and under out...

  2. Welding process modelling and control

    Science.gov (United States)

    Romine, Peter L.; Adenwala, Jinen A.

    1993-01-01

    The research and analysis performed, and software developed, and hardware/software recommendations made during 1992 in development of the PC-based data acquisition system for support of Welding Process Modeling and Control is reported. A need was identified by the Metals Processing Branch of NASA Marshall Space Flight Center, for a mobile data aquisition and analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC-based system was chosen. The Welding Measurement System (WMS) is a dedicated instrument, strictly for the use of data aquisition and analysis. Although the WMS supports many of the functions associated with the process control, it is not the intention for this system to be used for welding process control.

  3. Health hazards due to the inhalation of amorphous silica.

    Science.gov (United States)

    Merget, R; Bauer, T; Küpper, H U; Philippou, S; Bauer, H D; Breitstadt, R; Bruening, T

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic ("thermal" or "fumed") silica, and (3) chemically or physically modified silica. According to the different physicochemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no study

  4. Automatic Control Of Length Of Welding Arc

    Science.gov (United States)

    Iceland, William F.

    1991-01-01

    Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.

  5. Inhalation therapy in mechanical ventilation

    Science.gov (United States)

    Maccari, Juçara Gasparetto; Teixeira, Cassiano; Gazzana, Marcelo Basso; Savi, Augusto; Dexheimer-Neto, Felippe Leopoldo; Knorst, Marli Maria

    2015-01-01

    Patients with obstructive lung disease often require ventilatory support via invasive or noninvasive mechanical ventilation, depending on the severity of the exacerbation. The use of inhaled bronchodilators can significantly reduce airway resistance, contributing to the improvement of respiratory mechanics and patient-ventilator synchrony. Although various studies have been published on this topic, little is known about the effectiveness of the bronchodilators routinely prescribed for patients on mechanical ventilation or about the deposition of those drugs throughout the lungs. The inhaled bronchodilators most commonly used in ICUs are beta adrenergic agonists and anticholinergics. Various factors might influence the effect of bronchodilators, including ventilation mode, position of the spacer in the circuit, tube size, formulation, drug dose, severity of the disease, and patient-ventilator synchrony. Knowledge of the pharmacological properties of bronchodilators and the appropriate techniques for their administration is fundamental to optimizing the treatment of these patients. PMID:26578139

  6. Inhalation therapy in mechanical ventilation.

    Science.gov (United States)

    Maccari, Juçara Gasparetto; Teixeira, Cassiano; Gazzana, Marcelo Basso; Savi, Augusto; Dexheimer-Neto, Felippe Leopoldo; Knorst, Marli Maria

    2015-01-01

    Patients with obstructive lung disease often require ventilatory support via invasive or noninvasive mechanical ventilation, depending on the severity of the exacerbation. The use of inhaled bronchodilators can significantly reduce airway resistance, contributing to the improvement of respiratory mechanics and patient-ventilator synchrony. Although various studies have been published on this topic, little is known about the effectiveness of the bronchodilators routinely prescribed for patients on mechanical ventilation or about the deposition of those drugs throughout the lungs. The inhaled bronchodilators most commonly used in ICUs are beta adrenergic agonists and anticholinergics. Various factors might influence the effect of bronchodilators, including ventilation mode, position of the spacer in the circuit, tube size, formulation, drug dose, severity of the disease, and patient-ventilator synchrony. Knowledge of the pharmacological properties of bronchodilators and the appropriate techniques for their administration is fundamental to optimizing the treatment of these patients.

  7. Passive inhalation of cannabis smoke

    Energy Technology Data Exchange (ETDEWEB)

    Law, B.; Mason, P.A.; Moffat, A.C.; King, L.J.; Marks, V.

    1984-09-01

    Six volunteers each smoked simultaneously, in a small unventilated room (volume 27 950 liter), a cannabis cigarette containing 17.1 mg delta 9-tetrahydrocannabinol (THC). A further four subjects - passive inhalers - remained in the room during smoking and afterwards for a total of 3 h. Blood and urine samples were taken from all ten subjects and analyzed by radioimmunoassay for THC metabolites. The blood samples from the passive subjects taken up to 3 h after the start of exposure to cannabis smoke showed a complete absence of cannabinoids. In contrast, their urine samples taken up to 6 h after exposure showed significant concentrations of cannabinoid metabolites (less than or equal to 6.8 ng ml-1). These data, taken with the results of other workers, show passive inhalation of cannabis smoke to be possible. These results have important implications for forensic toxicologists who are frequently called upon to interpret cannabinoid levels in body fluids.

  8. Ship construction and welding

    CERN Document Server

    Mandal, Nisith R

    2017-01-01

    This book addresses various aspects of ship construction, from ship types and construction materials, to welding technologies and accuracy control. The contents of the book are logically organized and divided into twenty-one chapters. The book covers structural arrangement with longitudinal and transverse framing systems based on the service load, and explains basic structural elements like hatch side girders, hatch end beams, stringers, etc. along with structural subassemblies like floors, bulkheads, inner bottom, decks and shells. It presents in detail double bottom construction, wing tanks & duct keels, fore & aft end structures, etc., together with necessary illustrations. The midship sections of various ship types are introduced, together with structural continuity and alignment in ship structures. With regard to construction materials, the book discusses steel, aluminum alloys and fiber reinforced composites. Various methods of steel material preparation are discussed, and plate cutting and form...

  9. Welding of Prosthetic Alloys

    Directory of Open Access Journals (Sweden)

    Wojciechowska M.

    2015-04-01

    Full Text Available This paper presents the techniques of joining metal denture elements, used in prosthetic dentistry: the traditional soldering technique with a gas burner and a new technique of welding with a laser beam; the aim of the study was to make a comparative assessment of the quality of the joints in view of the possibility of applying them in prosthetic structures. Fractographic examinations were conducted along with tensile strength and impact strength tests, and the quality of the joints was assessed compared to the solid metal. The experiments have shown that the metal elements used to make dentures, joined by the technique which employs a laser beam, have better strength properties than those achieved with a gas burner.

  10. A comparison of the physics of Gas Tungsten Arc Welding (GTAW), Electron Beam Welding (EBW), and Laser Beam Welding (LBW)

    Science.gov (United States)

    Nunes, A. C., Jr.

    1985-01-01

    The physics governing the applicability and limitations of gas tungsten arc (GTA), electron beam (EB), and laser beam (LB) welding are compared. An appendix on the selection of laser welding systems is included.

  11. Upgraded HFIR Fuel Element Welding System

    Energy Technology Data Exchange (ETDEWEB)

    Sease, John D [ORNL

    2010-02-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  12. A study of processes for welding pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Weston, J. (ed.)

    1991-07-01

    A review was made of exisiting and potential processes for welding pipelines: fusion welding (arc, electron beam, laser, thermit) and forge welding (friction, flash, magnetically impelled arc butt, upset butt, explosive, shielded active gas, gas pressure). Consideration of J-lay operations gave indications that were reflections of the status of the processes in terms of normal land and offshore S-lay operation: forge welding processes, although having promise require considerable development; fusion welding processes offer several possibilities (mechanized GMA welding likely to be used in 1991-2); laser welding requires development in all pipeline areas: a production machine for electron beam welding will involve high costs. Nondestructive testing techniques are also reviewed. Demand for faster quality assessment is being addressed by speeding radiographic film processing and through the development of real time radiography and automatic ultrasonic testing. Conclusions on most likely future process developments are: SMAW with cellulosic electrodes is best for tie-ins, short pip runs; SMAW continues to be important for small-diameter lines, although mechanized GMA could be used, along with mechanical joining, MIAB, radial fraction, and flash butt; mechanized GMA welding is likely to predominate for large diameter lines and probably will be used for the first J-lay line (other techniques could be used too); and welding of piping for station facilities involves both shop welding of sub-assemblies and on-site welding of pipe and sub-assemblies to each other (site welding uses both SMAW and GMAW). Figs, tabs.

  13. Emissions during the BHP Billiton mozal aluminium smelter Fume Treatment Centre (FTC) rebuild – A human health perspective

    CSIR Research Space (South Africa)

    Wright, C

    2011-02-01

    Full Text Available BHP Billiton Mozambique Aluminium Smelter (MOZAL) experienced structural damage to the Fume Treatment Centre (FTC) caused by unanticipated corrosion. As a result MOZAL was in the process of rebuilding the FTC, an exercise that entailed a bypass...

  14. Prediction of Flexural Strength of Concretes Containing Silica Fume and Styrene-Butadiene Rubber (SBR) with an Empirical Model

    Science.gov (United States)

    Shafieyzadeh, M.

    2015-12-01

    In the flexural test, the theoretical maximum tensile stress at the bottom fiber of a test beam is known as the modulus of rupture or flexural strength. This work deals with the effects of Silica Fume and Styrene-Butadiene Latex (SBR) on flexural strength of concrete. An extensive experimentation was carried out to determine the effects of silica fume and SBR on flexural strength of concrete. Two water-binder ratios and several percentages of silica fume and SBR were considered. Abrams' Law, which was originally formulated for conventional concrete containing cement as the only cementations material, is used for prediction of flexural strength of these concretes. The aim of this work is to construct an empirical model to predict the flexural strength of silica fume-SBR concretes using concrete ingredients and time of curing in water. Also, the obtained results for flexural strength tests have been compared with predicted results.

  15. Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators

    National Research Council Canada - National Science Library

    Bernal, S. A; Rodríguez, E. D; Mejía de Gutiérrez, R; Provis, J. L

    2015-01-01

    This study assessed the mechanical properties, and structural changes induced by high temperature exposure, of alkali-silicate activated slag cements produced with sodium silicates derived from silica fume (SF) and rice husk ash (RHA...

  16. Weld procedure produces quality welds for thick sections of Hastelloy-X

    Science.gov (United States)

    Flens, F. J.; Fletcher, C. W.; Glasier, L. F., Jr.

    1967-01-01

    Welding program produces premium quality, multipass welds in heavy tube sections of Hastelloy-X. It develops semiautomatic tungsten/inert gas procedures, weld wire procurement specifications material weld properties, welder-operator training, and nondestructive testing inspection techniques and procedures.

  17. Laser welding of aluminium-magnesium alloys sheets process optimization and welds characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, C. [GEMPPM (CALFETMAT), 69 - Villeurbanne (France); Fouquet, F. [GEMPPM (CALFETMAT), 69 - Villeurbanne (France); Robin, M. [GEMPPM (CALFETMAT), 69 - Villeurbanne (France)

    1996-12-31

    The purpose of the present study was to obtain good quality welds using a CO2 laser with Al-Mg alloys sheet. Defects formation mechanisms were analyzed and a welding procedure was defined, using several characterization technics, in order to realize low defects welding seams. After laser welding optimization, comparative tensile tests and microstructural analysis were carried out. (orig.)

  18. An Accelerated Test Method of Simultaneous Carbonation and Chloride Ion Ingress: Durability of Silica Fume Concrete in Severe Environments

    OpenAIRE

    Ghahari, S A; Ramezanianpour, A. M.; Ramezanianpour, A.A.; Esmaeili, M.

    2016-01-01

    The effects of simultaneous carbonation and chloride ion attack on mechanical characteristics and durability of concrete containing silica fume have been investigated through an accelerated test method. Specimens containing different amounts of silica fume were maintained in an apparatus in which carbon dioxide pressure and concentration and relative humidity were kept constant, and wetting and drying cycles in saline water were applied. Surface resistivity, sorptivity, CO2 consumption, and c...

  19. High Strength Lightweight Concrete Made with Ternary Mixtures of Cement-Fly Ash-Silica Fume and Scoria as Aggregate

    OpenAIRE

    Yaşar, Ergül; ATIŞ, Cengiz Duran; KILIÇ, Alaettin

    2004-01-01

    This paper presents part of the results of an ongoing laboratory study carried out to design a structural lightweight high strength concrete (SLWHSC) made with and without ternary mixtures of cement-fly ash-silica fume. In the mixtures, lightweight basaltic-pumice (scoria) aggregate was used. A concrete mixture made with lightweight scoria, and another lightweight scoria concrete mixture incorporating 20% fly ash and 10% silica fume as a cement replacement, were prepared. Two normal...

  20. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-06-01

    Full Text Available Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of nitrogen and oxygen amount in WMD (weld metal deposit.

  1. TECHNOLOGICAL ISSUES IN MECHANISED FEED WIG/TIG WELDING SURFACING OF WELDING

    Directory of Open Access Journals (Sweden)

    BURCA Mircea

    2016-09-01

    manual welding tests in the light of using the process for welding surfacing being known that in such applications mechanised operations are recommended whenever possible given the latter strengths i.e. increased productivity and quality deposits. The research also aims at achieving a comparative a study between wire mechanised feed based WIG manual welding and the manual rod entry based manual welding in terms of geometry deposits, deposits aesthetics, operating technique, productivity, etc . In this regard deposits were made by means of two welding procedures, and subsequently welding surfacing was made with the optimum values of the welding parameters in this case.

  2. Effects of welding parameters on the mechanical properties of inert gas welded 6063 Aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ertan, Taner [MAKO Corporation (Turkey); Uguz, Agah [Uludag Univ. (Turkey). Mechnical Engineering Dept.; Ertan, Rukiye

    2012-07-01

    The influence of welding parameters, namely welding current and gas flow rate, on the mechanical properties of Gas Tungsten Arc Welding (GTAW) and Shielded Metal Arc Welding (SMAW) welded 6063 Aluminum alloy (AA 6063) has been investigated. In order to study the effect of the welding current and gas flow rate, microstructural examination, hardness measurements and room temperature tensile tests have been carried out. The experimental results show that the mechanical properties of GTAW welded joints have better mechanical properties than those of SMAW welded joints. Increasing the welding current appeared to have a beneficial effect on the mechanical properties. However, either increasing or decreasing the gas flow rate resulted in a decrease of hardness and tensile strength. It was also found that, the highest strength was obtained in GTAW welded samples at 220 A and 15 l/min gas flow rate.

  3. Redemption of asthma pharmaceuticals among stainless steel and mild steel welders

    DEFF Research Database (Denmark)

    Kristiansen, Pernille; Jørgensen, Kristian Tore; Hansen, Johnni

    2015-01-01

    PURPOSE: The purpose was to examine bronchial asthma according to cumulative exposure to fume particulates conferred by stainless steel and mild steel welding through a proxy of redeemed prescribed asthma pharmaceuticals. METHODS: A Danish national company-based historical cohort of 5,303 male ever......-welders was followed from 1995 to 2011 in the Danish Medicinal Product Registry to identify the first-time redemption of asthma pharmaceuticals including beta-2-adrenoreceptor agonists, adrenergic drugs for obstructive airway diseases and inhalable glucocorticoids. Lifetime exposure to welding fume particulates...... was estimated by combining questionnaire data on welding work with a welding exposure matrix. The estimated exposure accounted for calendar time, welding intermittence, type of steel, welding methods, local exhaustion and welding in confined spaces. Hazard ratios (HRs) with 95 % confidence intervals (CIs) were...

  4. Automatic monitoring of vibration welding equipment

    Science.gov (United States)

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  5. Experimental and simulated strength of spot welds

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Bennedbæk, Rune A.K.; Larsen, Morten B.

    2014-01-01

    Weld strength testing of single spots in DP600 steel is presented for the three typical testing procedures, i.e. tensile-shear, cross-tension and peel testing. Spot welds are performed at two sets of welding parameters and strength testing under these conditions is presented by load......-elongation curves revealing the maximum load and the elongation at break. Welding and strength testing is simulated by SORPAS® 3D, which allows the two processes to be prepared in a combined simulation, such that the simulated welding properties are naturally applied to the simulation of strength testing. Besides...... the size and shape of the weld nugget, these properties include the new strength of the material in the weld and the heat affected zone based on the predicted hardness resulting from microstructural phase changes simulated during cooling of the weld before strength testing. Comparisons between overall...

  6. Análise comparativa da geração de fumos entre arames maciços (GMAW e tubulares (FCAW Comparative analysis of fume generation between solid (GMAW and flux cored wires (FCAW

    Directory of Open Access Journals (Sweden)

    Regina Paula Garcia

    2010-06-01

    industry. However, it presents limitations regarding metallurgical aspects and geometrical characteristics of the weld bead. The FCAW process, on the other hand, due to presence of fluxes, achieves improvements on these aspects, but the flux might be responsible for larger fume emission. This paper aimed to present a comparative study of fume generation between the GMAW process with short-circuit metal transfer and the gas shielded FCAW process, using wires of same class of resistance (483 MPa of ultimate tension and application. The experiments were performed in a fume chamber calibrated according to a standard. Both wires were evaluated using 100% CO2 as the shielding gas and at two current levels. The arc length effect and the use of another shielding gas (25% CO2 in argon were also evaluated. Appropriate conditions of contact-tip-to-work-piece distance and arc voltage were selected for each wire-shielding gas combination as a means of making the comparison closer to the reality. The volume of the weld beads per meter was made the same for each level of current, by keeping the same relationship between wire deposition and welding travel speed. The results confirm a higher fume generation rate of the FCAW process (already expected and that absolute fume generation rate grows as the welding current increases. However, for the GMAW process, analyzed from a relative point of view, it doesn't happen. It was verified that the current effect is more significant on the FCAW process. The increase in the CO2 content raised the fume generation rate only for the FCAW process, whilst the arc voltage variation did not demonstrate any effect on it.

  7. Inhalation Injury: Pathophysiology, Diagnosis, and Treatment.

    Science.gov (United States)

    Jones, Samuel W; Williams, Felicia N; Cairns, Bruce A; Cartotto, Robert

    2017-07-01

    The classic determinants of mortality from severe burn injury are age, size of injury, delays of resuscitation, and the presence of inhalation injury. Of the major determinants of mortality, inhalation injury remains one of the most challenging injuries for burn care providers. Patients with inhalation injury are at increased risk for pneumonia (the leading cause of death) and multisystem organ failure. There is no consensus among leading burn care centers in the management of inhalation injury. This article outlines the current treatment algorithms and the evidence of their efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Thermal treatment of dissimilar steels' welded joints

    Science.gov (United States)

    Nikulina, A. A.; Denisova, A. S.; Gradusov, I. N.; Ryabinkina, P. A.; Rushkovets, M. V.

    2016-04-01

    In this paper combinations of chrome-nickel steel and high-carbon steel, produced by flash butt welding after heat treatment, are investigated. Light and electron microscopic studies show that the welded joints after heat treatment have a complex structure consisting of several phases as initial welded joints. A martensite structure in welded joints after thermal treatment at 300... 800 °C has been found.

  9. Closed circuit television welding alignment system

    Energy Technology Data Exchange (ETDEWEB)

    Darner, G.S.

    1976-09-01

    Closed circuit television (CCTV) weld targeting systems were developed to provide accurate and repeatable positioning of the electrode of an electronic arc welder with respect to the parts being joined. A sliding mirror electrode holder was developed for use with closed circuit television equipment on existing weld fixturing. A complete motorized CCTV weld alignment system was developed to provide weld targeting for even the most critical positioning requirements.

  10. Preventing Contamination In Electron-Beam Welds

    Science.gov (United States)

    Goodin, Wesley D.; Gulbrandsen, Kevin A.; Oleksiak, Carl

    1990-01-01

    Simple expedient eliminates time-consuming, expensive manual hand grinding. Use of groove and backup tube greatly reduces postweld cleanup in some electron-beam welding operations. Tube-backup method developed for titanium parts, configurations of which prevents use of solid-block backup. In new welding configuration, tube inserted in groove to prevent contact between alumina beads and molten weld root. When welding complete and beads and tube removed, only minor spatter remains and is ground away easily.

  11. Chloride accelerated test: influence of silica fume, water/binder ratio and concrete cover thickness

    Directory of Open Access Journals (Sweden)

    E. Pereira

    Full Text Available In developed countries like the UK, France, Italy and Germany, it is estimated that spending on maintenance and repair is practically the same as investment in new constructions. Therefore, this paper aims to study different ways of interfering in the corrosion kinetic using an accelerated corrosion test - CAIM, that simulates the chloride attack. The three variables are: concrete cover thickness, use of silica fume and the water/binder ratio. It was found, by analysis of variance of the weight loss of the steel bars and chloride content in the concrete cover thickness, there is significant influence of the three variables. Also, the results indicate that the addition of silica fume is the path to improve the corrosion protection of low water/binder ratio concretes (like 0.4 and elevation of the concrete cover thickness is the most effective solution to increase protection of high water/binder ratio concrete (above 0.5.

  12. A Comparative Study of Energy Performance of Fumed Silica Vacuum Insulation Panels in an Apartment Building

    Directory of Open Access Journals (Sweden)

    Taesub Lim

    2017-12-01

    Full Text Available Building insulation materials has a significant impact on building energy consumptions. However, conventional materials are easily flammable and can cause fire disasters in buildings. Therefore, it is important to select appropriate insulation materials for building energy efficiency and safety and Vacuum Insulation Panels (VIPs are increasingly applied to building insulation. Considering this, the present study investigates energy performance of VIPs with design alternatives, such as window systems, infiltration rates, etc., by using energy simulation. Among various VIPs, fumes silica VIPs were chosen. In addition, eight combinations were compared to find the best energy efficient design conditions. The results of the present study showed that building energy performance can be improved with an appropriate combination of design options including fumed silica VIPs.

  13. Upgrading offshore pipelines concrete coated by silica fume additive against aggressive mechanical laying

    Directory of Open Access Journals (Sweden)

    M.I. Abdou

    2016-06-01

    Full Text Available Studies have been carried out to investigate the possibility of utilizing a broad range of micro-silica partial additions with cement in the production of concrete coating. This study investigated the strength properties and permeability of micro-silica concrete to achieve resistance toward concrete cracking and damage during laying. The chemical composition of micro-silica (silica fume was determined, and has been conducted on concrete mixes with additions of 3 up to 25% by weight of cement in concrete. Properties of hardened concrete such as compressive strength, flexural strength, and permeability have been assessed and analyzed. Cubic specimens and beams were produced and cured in a curing tank for 7 and 28 days. Testing results have shown that additions of silica fume to cement between 5% and 7%, which acts as a filler and cementations material, developed high flexural and compressive strength with reduction of permeability.

  14. Controversial effects of fumed silica on the curing and thermomechanical properties of epoxy composites

    Directory of Open Access Journals (Sweden)

    2010-06-01

    Full Text Available The effect of fumed silica on the curing of a trimethylolpropane epoxy resin was investigated by thermal analysis methods like Differential Scanning Calorimetry (DSC, and Dynamic Mechanical Analysis (DMA. The fumed silica used here is a by-product of the silicon and ferrosilicon industry, consisting of micro and nanosized particles. Both the curing reaction and the properties of the obtained composites were affected by the filler content. Different trends were observed for filler contents above and below the 30 wt%. Up to 30 wt%, the behaviour can be explained as a predominantly agglomeration effect. For 30 wt% and higher filler contents, single particles seem to play a more important role.

  15. Silica Fume and Fly Ash Admixed Can Help to Improve the PRC Durability Combine Microscopic Analysis

    Directory of Open Access Journals (Sweden)

    Xiao Li-guang

    2016-01-01

    Full Text Available Silica fume/Fly ash RPC can greatly improve durability. When Silica fume to replace the same amount of 8% of the proportion of cement, re-mixed 15min of mechanically activated Fly ash content of 10%, by chloride ion flux detector measuring, complex doped than the reference RPC impermeability improved significantly; In addition, by using static nitrogen adsorption method showed, RPC internal pore structure determination, the hole integral volume was lower than the reference admixed RPC integral pore volume significantly; And combined SEM microscopic experimental methods, mixed of RPC internal structure and the formation mechanism analysis showed that, SF/FA complex fully embodies the synergy doped composites “Synergistic” principle.

  16. Behavior of gypsum-based mortars with silica fume at high temperatures

    Science.gov (United States)

    Krejsová, Jitka; Doleželová, Magdaléna; Vimmrová, Alena

    2017-07-01

    The influence of high temperatures on the ternary and binary gypsum-based mortars is described. The gypsum-based mortar with ternary binder, composed from gypsum, hydrated lime and silica fume and mortar with binary binder, composed from gypsum and hydrated lime only were exposed to the temperatures from 50°C to 1000°C and their physical and mechanical properties were investigated. The comparison of ternary mortars and mortars without silica fume was carried out. The results were also compared with the results obtained from previous testing of gypsum-based pastes without sand. It was found, that gypsum-based mortars have better stability than gypsum-based materials without sand. Ternary materials have better volume stability than materials without pozzolan (about 5 % at 1000 °C).

  17. Performance of mesh seam welds in tailor welded blanks; Terado blank yo mash seam yosetsubu no tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Uchihara, M.; Takahashi, M.; Kurita, M.; Hirose, Y.; Fukui, K. [Sumitomo Metal Industries, Ltd., Osaka (Japan)

    1997-10-01

    Formability, fatigue properties and corrosion behavior of mash seam welded steel sheets were investigated and the results were compared with laser weld. The stretch formability of mash seam weld and laser weld were same level. Mash seam weld however, showed slightly smaller formability in hole expansion test. The fatigue strength of mash seam welds was lower than that of laser welds in case of differential thickness joints. Corrosion was apt to initiate at weld in both mash seam and laser weld with E-coat. The corrosion resistance of welds was improved by using zinc coated steel. 3 refs., 14 figs., 2 tabs.

  18. Welding technology for rails. Rail no setsugo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, M.; Karimine, K. (Nippon Steel Corp., Tokyo (Japan)); Uchino, K.; Sugino, K. (Nippon Steel Corp., Kitakyushu, Fukuoka (Japan). Technical Research Inst. of Yawata Works); Ueyama, K. (JR Railway Technical Research Inst., Tokyo (Japan))

    1993-08-01

    The rail joining technology is indispensable for making long welded rails. Flush butt welding, gas welding, enclosed arc welding, and thermit welding are used properly as the welding methods. A method for improving the joint reliability by controlling the residual stress distribution of welded joint is investigated to prepare high carbon component weld metal similar to the rail. Problems with each of the welding methods and the newly developed technology to solve the problems are outlined. Composition of the coating is improved also, and a high C system welding rod is developed which has satisfactory weldability. High performance and high efficient new enclosed arc welding technology not available by now is developed which utilizes high carbon welding metal as a new EA welding work technology, and put to practical use. As a result of this study, useful guides are obtained for the establishment of satisfactory thermit welding technology. 17 refs., 16 figs., 1 tab.

  19. Utilizing waste materials to enhance mechanical and durability characteristics of concrete incorporated with silica fume

    Directory of Open Access Journals (Sweden)

    Hamza Ali

    2017-01-01

    Full Text Available Construction and demolition wastes are increasing significantly due to augmented boom of modern construction. Although the partial cement replacement materials do promote the idea of sustainable construction, the use of construction and demolition waste can also be considered to be viable option to advance the sustainability in modern construction practices. This paper investigates the use of industrial waste materials namely marble dust and crushed bricks as replacement of natural fine aggregates along with the use of silica fume as a partial cement replacement on the mechanical properties and durability characteristics of concrete. Partial replacement levels of waste materials were 10 and 20 percent by volume while the partial replacement level of silica fume was kept to 20 percent at all concrete samples. The results reported in this paper show that the use of marble dust as a replacement material to the natural fine aggregates resulted in an increase in the mechanical properties of concrete. However, the use of crushed bricks did not substantially contribute in the development of strength. Water permeability of concrete incorporated with both silica fume and waste materials (marble dust and crushed bricks decreased significantly. The decrease in water permeability of concrete was attributed to the pozzolanic reaction of silica fume with calcium hydroxide of cement and the filler effect of the waste materials of marble dust and crushed bricks. The use of waste materials also enhance the freeze and thaw resistance of concrete. Authors strongly suggest that the pozzolanic reaction and the development of the microstructure of the concrete through the use of waste materials are largely responsible from the advances in the durability of concrete.

  20. Effects of lead pollution from vehicular exhaust fumes against sentinel juvenile Achatina achatina.

    Science.gov (United States)

    Ebenso, I E; Ologhobo, A D

    2008-11-01

    We investigated lead metal pollution induced by traffic fumes along roads with differing traffic intensity near abandoned battery factory (Niger Delta, Nigeria). Juvenile Achatina achatina were positioned as sentinels in plastic snaileries 2 m on road sides. Lead contamination in snail tissue by atomic absorption spectrophotometer increased with increasing vehicular traffic intensity. Snails showed low positive (r (2) = 0.40) relationship and significant (p pollution. Edible snails sold along road sides are prone to lead contamination.

  1. Influence of silica fume on mechanical and physical properties of recycled aggregate concrete

    OpenAIRE

    Çakır, Özgür; Sofyanlı, Ömer Özkan

    2015-01-01

    Several studies related to sustainable concrete construction have encouraged development of composite binders, involving Portland cement, industrial by-products, and concrete mixes with partial replacement of natural aggregate with recycled aggregate. In this paper, the effects of incorporating silica fume (SF) in the concrete mix design to improve the quality of recycled aggregates in concrete are presented. Portland cement was replaced with SF at 0%, 5% and 10%. Specimens were manufactured ...

  2. 49 CFR 195.224 - Welding: Weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  3. 49 CFR 179.100-9 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.100-9 Section 179.100-9... Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-9 Welding. (a) All..., appendix W (IBR, see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be...

  4. 49 CFR 179.220-10 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.220-10 Section 179.220-10... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints... of this subchapter). Welding procedures, welders, and fabricators shall be approved. (b) Radioscopy...

  5. 49 CFR 179.400-11 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.400-11 Section 179.400-11...-11 Welding. (a) Except for closure of openings and a maximum of two circumferential closing joints in... subchapter). (d) Each welding procedure, welder, and fabricator must be approved. [Amdt. 179-32, 48 FR 27708...

  6. 49 CFR 179.200-10 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.200-10 Section 179.200-10... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-10 Welding. (a) All joints... W (IBR, see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be...

  7. 30 CFR 77.408 - Welding operations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding operations. 77.408 Section 77.408 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... for Mechanical Equipment § 77.408 Welding operations. Welding operations shall be shielded and the...

  8. 30 CFR 75.1729 - Welding operations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding operations. 75.1729 Section 75.1729 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1729 Welding operations. Welding...

  9. Friction welding thermal and metallurgical characteristics

    CERN Document Server

    Yilbas, Bekir Sami

    2014-01-01

    This book provides insight into the thermal analysis of friction welding incorporating welding parameters such as external, duration, breaking load, and material properties. The morphological and metallurgical changes associated with the resulting weld sites are analysed using characterization methods such as electron scanning microscope, energy dispersive spectroscopy, X-ray Diffraction, and Nuclear reaction analysis.

  10. Welding Using Chilled-Inert-Gas Purging

    Science.gov (United States)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Report describes study of fusion welding using chilled inert gas. Marked improvement shown in welding of aluminum using chilled helium gas. Chilling inert gas produces two additional benefits: 1) creation of ultradense inert atmosphere around welds; 2) chilled gas cools metal more quickly down to temperature at which metals not reactive.

  11. 49 CFR 179.11 - Welding certification.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding certification. 179.11 Section 179.11 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Design Requirements § 179.11 Welding certification. (a) Welding procedures, welders and fabricators shall...

  12. 46 CFR 154.665 - Welding procedures.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Welding procedures. 154.665 Section 154.665 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Construction § 154.665 Welding procedures. Welding procedure tests for cargo tanks for a design temperature...

  13. Low Speed Control for Automatic Welding

    Science.gov (United States)

    Iceland, W. E.

    1982-01-01

    Amplifier module allows rotating positioner of automatic welding machine to operate at speeds below normal range. Low speeds are precisely regulated by a servomechanism as are normal-range speeds. Addition of module to standard welding machine makes it unnecessary to purchase new equipment for low-speed welding.

  14. 49 CFR 195.214 - Welding procedures.

    Science.gov (United States)

    2010-10-01

    ... accordance with welding procedures qualified under Section 5 of API 1104 or Section IX of the ASME Boiler and Pressure Vessel Code (incorporated by reference, see § 195.3) . The quality of the test welds used to... 49 Transportation 3 2010-10-01 2010-10-01 false Welding procedures. 195.214 Section 195.214...

  15. Welding multiple plies with an electron beam

    Science.gov (United States)

    Kiluk, F. J.

    1980-01-01

    Method for electron-beam welding of multi-ply metal sheets eliminates ply separation and minimizes porosity. Method was developed for assembling bellows made of four plies of iron/nickel alloy sheets. Method consists of making successive stitch welds with electron beam until weld seam is completely filled in and all plies have been penetrated.

  16. Viewing electron-beam welds in progress

    Science.gov (United States)

    Armenoff, C. T.

    1980-01-01

    With aid of optical filter, operator of electron-beam welding machine can view TV image of joint that is being welded and can make corrections as necessary. Operator can see when weld bead gets out of alinement, for example, and compensate for deflection of electron beam caused by changes in magnetic field.

  17. [Dental welding titanium and its clinical usage].

    Science.gov (United States)

    Li, H; Xiao, M; Zhao, Y

    1998-09-01

    Due to its excellent biocompatibility, desirable chemical and mechanical properties, Titanium has been used for implant denture, RPD and FPD, where welding techniques were indispensable. This paper introduces 5 useful modern ways to weld Titanium and their clinical usage. They are: laser, plasma welding, TIG, infraned brazing and Hruska electrowelding.

  18. Technology of welding aluminum alloys-III

    Science.gov (United States)

    Harrison, J. R.; Kor, L. J.; Oleksiak, C. E.

    1978-01-01

    Control of porosity in weld beads was major objective in development of aluminum welding program. Porosity, most difficult defect to control, is caused by hydrogen gas unable to escape during solidification. Hard tooling allows hotter bead than free-fall tooling so hydrogen bubbles can boil out instead of forming pores. Welding position, moisture, and cleanliness are other important factors in control of porosity.

  19. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool.

  20. Study on visual image information detection of external angle weld based on arc welding robot

    Science.gov (United States)

    Liu, Xiaorui; Liu, Nansheng; Sheng, Wei; Hu, Xian; Ai, Xiaopu; Wei, Yiqing

    2009-11-01

    Nowadays, the chief development trend in modern welding technology is welding automation and welding intelligence. External angle weld has a certain proportion in mechanical manufacture industries. In the real-time welding process, due to hot deformation and the fixture of workpieces used frequently, torch will detach welding orbit causes deviation, which will affect welding quality. Therefore, elimination weld deviation is the key to the weld automatic tracking system. In this paper, the authors use the self-developed structured light vision sensor system which has significant advantage compared with arc sensors to capture real-time weld images. In the project of VC++6.0 real-time weld image processing, after binaryzation with threshold value seventy, 3*1 median filter, thinning, obtain weld main stripe. Then, using the extraction algorithm this paper proposed to obtain weld feature points, and compute position of weld. Experiment result verified that the extraction algorithm can locate feature points rapidly and compute the weld deviation accurately.

  1. The effectiveness and practicality of using simultaneous superglue & iodine fuming method for fingermark development on 'low yield' leather surfaces: A feasibility study.

    Science.gov (United States)

    Zheng, Xiaochun; Li, Kang; Xu, Jingyang; Lin, Zhen

    2017-12-01

    This research successfully demonstrated the first use of simultaneous superglue & iodine fuming on leather surfaces compared to superglue, iodine, superglue-iodine and iodine-superglue fuming methods which typically give low fingermark yields. A novel fuming chamber was developed and used for simultaneous superglue & iodine fuming. Results show that the simultaneous fuming method produced significantly better enhancement for light-coloured leather substrates relative to other processing procedures, but was found to be ineffective on dark-coloured leather. However, superglue, as one of the most common methods in practice, was found to be effective for freshly deposited latent fingermarks on dark-coloured leather. The newly designed chamber for the simultaneous fuming method has proved to be fast, effective and delightfully easy to use. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Contamination and solid state welds.

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Bernice E.

    2007-05-01

    Since sensitivity to contamination is one of the verities of solid state joining, there is a need for assessing contamination of the part(s) to be joined, preferably nondestructively while it can be remedied. As the surfaces that are joined in pinch welds are inaccessible and thus provide a greater challenge, most of the discussion is of the search for the origin and effect of contamination on pinch welding and ways to detect and mitigate it. An example of contamination and the investigation and remediation of such a system is presented. Suggestions are made for techniques for nondestructive evaluation of contamination of surfaces for other solid state welds as well as for pinch welds. Surfaces that have good visual access are amenable to inspection by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Although other techniques are useful for specific classes of contaminants (such as hydrocarbons), DRIFT can be used most classes of contaminants. Surfaces such as the interior of open tubes or stems that are to be pinch welded can be inspected using infrared reflection spectroscopy. It must be demonstrated whether or not this tool can detect graphite based contamination, which has been seen in stems. For tubes with one closed end, the technique that should be investigated is emission infrared spectroscopy.

  3. Effect of silica fume on the characterization of the geopolymer materials

    Science.gov (United States)

    Khater, Hisham M.

    2013-12-01

    The influence of silica fume (SF) addition on properties of geopolymer materials produced from alkaline activation of alumino-silicates metakaolin and waste concrete produced from demolition works has been studied through the measurement of compressive strength, Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy (SEM) analysis. Alumino-silicate materials are coarse aggregate included waste concrete and fired kaolin (metakaolin) at 800°C for 3 h, both passing a sieve of 90 μm. Mix specimens containing silica fume were prepared at water/binder ratios in a range of 0.30 under water curing. The used activators are an equal mix of sodium hydroxide and silicate in the ratio of 3:3 wt.%. The control geopolymer mix is composed of metakaolin and waste concrete in an equal mix (50:50, wt.%). Waste concrete was partially replaced by silica fume by 1 to 10 wt.%. The results indicated that compressive strengths of geopolymer mixes incorporating SF increased up to 7% substitution and then decreased up to 10% but still higher than that of the control mix. Results indicated that compressive strengths of geopolymer mixes incorporating SF increases up to 7% substitution and then decreases up to 10% but still higher than the control mix, where 7% SF-digested calcium hydroxide (CH) crystals, decreased the orientation of CH crystals, reduced the crystal size of CH gathered at the interface, and improved the interface more effectively.

  4. Enhancement of concrete properties for pavement slabs using waste metal drillings and silica fume.

    Science.gov (United States)

    Hassani, Abolfazl; Arjmandi, Mohsen

    2010-01-01

    This paper presents a comparative study on the effects of steel fibres and waste metal drillings on the mechanical/physical behaviour of conventional and silica fume concrete. The amount of silica fume used was 10% of cement by mass and the amount of steel fibres and metal drillings used in both concrete mixtures was 0.5% by concrete volume for steel fibres and 0.0, 0.25, 0.50 and 0.75% for metal drillings, respectively. In total, 10 different mixtures were made and tested for compressive strength, modulus of elasticity, flexural strength and toughness. Our data reveal the significant impact of the effect of silica fume, steel fibres and industrial waste metal drillings on the mechanical and physical characteristics of concrete mixtures. The results also show that mixtures with steel fibres and waste metal drillings have comparable behaviour. Hence, there is a potential for use of waste metal drillings as an alternative to steel fibres for specific cases such as concrete pavement slabs.

  5. Laser welding of selected aerospace alloys

    Science.gov (United States)

    Ebadan, Gracie E.

    The study was aimed at developing an understanding of the microstructural effects of the laser welding process on the alloys, and assessing the structural integrity of the resultant welds. The effect of laser processing parameters such as laser power, laser beam traverse speed, lens focal length, and the manipulation of these parameters on the welding efficiency and weld area integrity was also investigated. Other tasks within the project included a study on the possibility of using an anodic film to enhance the laser weld ability of Al 6061. Finally, attempts were made to identify phases observed in the weld area of the composite materials. Nimonics C263 and PE11 exhibited laser welds free of cracks and porosity. The difference in composition between the two alloys did not result in any significant dissimilarities in their response to the laser welding process. The welds in both alloys exhibited a fine columnar dendritic microstructure, and while carbides were observed in the interdendritic regions of the welds, electron optical analysis did not reveal any gamma' precipitates in this region. It was concluded that for the welding of thin gage materials above a threshold laser power the resultant welding efficiency shows a greater dependence on laser beam mode, and laser spot size, than on laser power, and beam traverse speed. Aluminum 6061 was not easily welded with a laser in its as received form, and the welds showed some degree of porosity. Anodizing was found to improve the welding efficiency in this material. While the presence of an anodic film on the metal surface increased the welding efficiency of the alloy, no relationship was found between the thickness of the anodic film and welding efficiency in the range of film thicknesses investigated. Weld regions were observed to be cellular dendritic in structure, with narrow heat affected zones. No precipitates or low melting point phases could be identified in the weld region. Melt zones were successfully

  6. Analysis and Comparison of Aluminum Alloy Welded Joints Between Metal Inert Gas Welding and Tungsten Inert Gas Welding

    Science.gov (United States)

    Zhao, Lei; Guan, Yingchun; Wang, Qiang; Cong, Baoqiang; Qi, Bojin

    2015-09-01

    Surface contamination usually occurs during welding processing and it affects the welds quality largely. However, the formation of such contaminants has seldom been studied. Effort was made to study the contaminants caused by metal inert gas (MIG) welding and tungsten inert gas (TIG) welding processes of aluminum alloy, respectively. SEM, FTIR and XPS analysis was carried out to investigate the microstructure as well as surface chemistry. These contaminants were found to be mainly consisting of Al2O3, MgO, carbide and chromium complexes. The difference of contaminants between MIG and TIG welds was further examined. In addition, method to minimize these contaminants was proposed.

  7. Electron Beam Welding to Join Gamma Titanium Aluminide Articles

    Science.gov (United States)

    Kelly, Thomas Joseph (Inventor)

    2008-01-01

    A method is provided for welding two gamma titanium aluminide articles together. The method includes preheating the two articles to a welding temperature of from about 1700 F to about 2100 F, thereafter electron beam welding the two articles together at the welding temperature and in a welding vacuum to form a welded structure, and thereafter annealing the welded structure at an annealing temperature of from about 1800 F to about 2200 F, to form a joined structure.

  8. Materials and welding engineering in advanced coal utilization plants

    Energy Technology Data Exchange (ETDEWEB)

    Schuhmacher, D.; Schulze-Frielinghaus, W.; Puetz, J.; Eichhorn, F.; Gaever, E. van

    1983-08-01

    The authors present the findings of studies on welding methods for high-temperature alloys used in advanced coal gasification plants. They discuss weld preparation, automatic TIG welding, MIG welding (also with pulsed arc) and plasma arc welding. The mechanical properties of welded joints before and after age hardening are investigated, and the results of fatigue and corrosion tests are presented. The welding methods are compared with a view to their suitability for high-temperature materials.

  9. Advanced Welding Tool

    Science.gov (United States)

    1982-01-01

    Accutron Tool & Instrument Co.'s welder was originally developed as a tool specifically for joining parts made of plastic or composite materials in any atmosphere to include the airless environment of space. Developers decided on induction or magnetic heating to avoid causing deformation and it also can be used with almost any type of thermoplastic material. Induction coil transfers magnetic flux through the plastic to a metal screen that is sandwiched between the sheets of plastic to be joined. When welder is energized, alternating current produces inductive heating on the screen causing the adjacent plastic surfaces to melt and flow into the mesh, creating a bond on the total surface area. Dave Brown, owner of Great Falls Canoe and Kayak Repair, Vienna, VA, uses a special repair technique based on operation of the Induction Toroid Welder to fix canoes. Whitewater canoeing poses the problem of frequent gashes that are difficult to repair. The main reason is that many canoes are made of plastics. The commercial Induction model is a self-contained, portable welding gun with a switch on the handle to regulate the temperature of the plastic melting screen. Welder has a broad range of applications in the automobile, appliance, aerospace and construction industries.

  10. Effect of weld spacing on microstructure and mechanical properties of CLAM electron beam welding joints

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yutao; Huang, Bo, E-mail: aufa0007@163.com; Zhang, Junyu; Zhang, Baoren; Liu, Shaojun; Huang, Qunying

    2016-11-15

    Highlights: • The welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding, and a simplified model of CLAM sheet was proposed. • The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). • The effect of the welding thermal cycle was significantly when the weld spacings were smaller than 4 mm. • When the weld spacing was small enough, the original microstructures would be fragmented with the high heat input. - Abstract: China low activation martensitic (CLAM) steel has been chosen as the primary structural material in the designs of dual function lithium-lead (DFLL) blanket for fusion reactors, China helium cooled ceramic breeder (HCCB) test blanket module (TBM) for ITER and China fusion engineering test reactor (CFETR) blanket. The cooling components of the blankets are designed with high density cooling channels (HDCCs) to remove the high nuclear thermal effectively. Hence, the welding spacing among the channels are small. In this paper, the welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding (EBW). The weld spacing was designed to be 2 mm, 3 mm, 4 mm, 6 mm and 8 mm. The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). The PWHT is tempering at 740 °C for 120 min. The results showed that the grain size in the heat affected zone (HAZ) increased with the increasing weld spacing, and the joint with small weld spacing had a better performance after PWHT. This work would give useful guidance to improve the preparation of the cooling components of blanket.

  11. Study of Mechanical Properties and Characterization of Pipe Steel welded by Hybrid (Friction Stir Weld + Root Arc Weld) Approach

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yong Chae [ORNL; Sanderson, Samuel [MegaStir Technologies LLC; Mahoney, Murray [Consultant; Wasson, Andrew J [ExxonMobil, Upstream Research Company (URC); Fairchild, Doug P [ExxonMobil, Upstream Research Company (URC); Wang, Yanli [ORNL; Feng, Zhili [ORNL

    2015-01-01

    Friction stir welding (FSW) has recently attracted attention as an alternative construction process for gas/oil transportation applications due to advantages compared to fusion welding techniques. A significant advantage is the ability of FSW to weld the entire or nearly the entire wall thickness in a single pass, while fusion welding requires multiple passes. However, when FSW is applied to a pipe or tube geometry, an internal back support anvil is required to resist the plunging forces exerted during FSW. Unfortunately, it may not be convenient or economical to use internal backing support due to limited access for some applications. To overcome this issue, ExxonMobil recently developed a new concept, combining root arc welding and FSW. That is, a root arc weld is made prior to FSW that supports the normal loads associated with FSW. In the present work, mechanical properties of a FSW + root arc welded pipe steel are reported including microstructure and microhardness.

  12. Metal vaporization from weld pools

    Science.gov (United States)

    Block-Bolten, A.; Eagar, T. W.

    1984-09-01

    Experimental studies of alloy vaporization from aluminum and stainless steel weld pools have been made in order to test a vaporization model based on thermodynamic data and the kinetic theory of gases. It is shown that the model can correctly predict the dominant metal vapors that form but that the absolute rate of vaporization is not known due to insufficient knowledge of the surface temperature distribution and subsequent condensation of the vapor in the cooler regions of the metal. Values of the net evaporation rates for different alloys have been measured and are found to vary by two orders of magnitude. Estimated maximum weld pool temperatures based upon the model are in good agreement with previous experimental measurements of electron beam welds.

  13. STUDY AND ANALYSIS OF THE EFFECT OF WELDING PROCESS ON DISTORTION WITH 304L STAINLESS STEEL WELD JOINTS

    OpenAIRE

    Dhananjay Kumar*, Dharamvir mangal

    2017-01-01

    The effect of welding process on the distortion with 304L stainless steel 12thk weld joints made by TIG (tungsten inert gas) and SMAW (Shielded metal arc welding) welding process involving different type joint configuration have been studied. The joint configurations employed were double V-groove edge preparation for double side SMAW welding and square – butt preparation for double side TIG welding. All weld joints passed by radiographic. Distortion measurements were carried out using height ...

  14. Dry hyperbaric gas metal arc welding of subsea pipelines: experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Azar, Amin S.

    2012-07-01

    Ambitions in exploration of oil and gas fields at deeper water depth require continuous investigation and maintenance. The transportation pipelines laid in deep waters are both subjected to corrosion and buckling due to environmental phenomena. They may also often undergo branching (namely hot tapping) to redirect (or add to) the transportation paths. Mechanical joints and welding are both considered as available alternatives when sectioning and replacement of the pipes at shallow waters is necessary, yet, welding is more promising for deep waters where remote operation is central. Fusion welding on the other hand comprises several technological detractions for sound operations under high ambient pressures disregarding its low cost and flexibility. The foremost detracting phenomenon in the arc welding is called 'arc root constriction', which is defined as arc geometry shrinkage under the increased pressure. Consequently, the power delivery to the weld pool at different pressure levels is a major worry. Effects of ionization and dissociation energies of different gases and mixtures, partial pressure of environmental gases including hydrogen and oxygen, gasification and degasification of the weld metal, inclusions that affect the phase transformation, absorption and desorption kinetics, oxidation and deoxidation reactions and many more are the phenomena that can possibly be altered by the gas type and ambient pressure level. Spattering and fume generation is a problematic issue since the arc is rather unstable under high pressure. Thus, seeking the effect of different chamber gas mixtures on welding parameters, final microstructure and mechanical properties is the main objective of this work.Statistical analysis of the collected voltage and current waveforms is carried out to identify the source of arc misbehavior and instability (discussed in Paper I). The stochastic parameters is related to the electrical stability and resolved into a number of varying

  15. Laser Beam Submerged Arc Hybrid Welding

    Science.gov (United States)

    Reisgen, Uwe; Olschok, Simon; Jakobs, Stefan; Schleser, Markus; Mokrov, Oleg; Rossiter, Eduardo

    The laser beam-submerged arc hybrid welding method originates from the knowledge that, with increasing penetration depth, the laser beam process has a tendency to pore formation in the lower weld regions. The coupling with the energy-efficient submerged-arc process improves degassing and reduces the tendency to pore formation. The high deposition rate of the SA process in combination with the laser beam process offers, providing the appropriate choice of weld preparation, the possibility of welding plates with a thickness larger than 20° mm in a single pass, and also of welding thicker plates with the double-sided single pass technique.

  16. Peculiarities and future development of space welding

    Science.gov (United States)

    Shulym, V. F.; Lapchinskii, V. F.; Nikitskii, V. P.; Demidov, D. L.; Neznamova, L. O.

    The paper deals with the peculiar features of space as a medium in which welding operations are performed. Studies of different methods of welding carried out both in the plane-laboratory and in space are briefly described, and the comparative characteristics of the most promising methods of welding for space conditions are given. The selection of electron beam as a basic method for space is supported. The paper considers the main welding processes performed in space with the help of an electron beam, such as heating, brazing, welding, cutting and coating.

  17. Grain refinement control in TIG arc welding

    Science.gov (United States)

    Iceland, W. F.; Whiffen, E. L. (Inventor)

    1975-01-01

    A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.

  18. Concentration-dependent systemic response after inhalation of nano-sized zinc oxide particles in human volunteers.

    Science.gov (United States)

    Monsé, Christian; Hagemeyer, Olaf; Raulf, Monika; Jettkant, Birger; van Kampen, Vera; Kendzia, Benjamin; Gering, Vitali; Kappert, Günther; Weiss, Tobias; Ulrich, Nadin; Marek, Eike-Maximilian; Bünger, Jürgen; Brüning, Thomas; Merget, Rolf

    2018-02-12

    Inhalation of high concentrations of zinc oxide particles (ZnO) may cause metal fume fever. In an earlier human inhalation study, no effects were observed after exposure to ZnO concentrations of 0.5 mg/m 3 . Further data from experimental studies with pure ZnO in the concentration range between 0.5 and 2.5 mg/m 3 are not available. It was the aim of this experimental study to establish the concentration-response relationship of pure nano-sized ZnO particles. Sixteen healthy subjects were exposed to filtered air and ZnO particles (0.5, 1.0 and 2.0 mg/m 3 ) for 4 h on 4 different days, including 2 h of cycling with a low workload. The effects were assessed before, immediately after, and about 24 h after each exposure. Effect parameters were symptoms, body temperature, inflammatory markers and clotting factors in blood, and lung function. Concentration-dependent increases in symptoms, body temperature, acute phase proteins and neutrophils in blood were detected after ZnO inhalation. Significant effects were detected with ZnO concentrations of 1.0 mg/m 3 or higher, with the most sensitive parameters being inflammatory markers in blood. A concentration-response relationship with nano-sized ZnO particles in a low concentration range was demonstrated. Systemic inflammatory effects of inhaled nano-sized ZnO particles were observed at concentrations well below the occpational exposure limit for ZnO in many countries. It is recommended to reassess the exposure limit for ZnO at workplaces.

  19. Know How to Use Your Asthma Inhaler

    Medline Plus

    Full Text Available ... iframes Using a metered dose inhaler (inhaler in mouth) [PDF - 370 KB] Your browser does not support iframes Cómo usar un inhalador de dosis fija (inhalador de boca) [PDF - 276 KB] Follow @CDCasthma on Twitter to learn more about helping people with asthma live healthier ...

  20. Know How to Use Your Asthma Inhaler

    Medline Plus

    Full Text Available ... keep them with your Asthma Action Plan. Using a metered dose inhaler with a spacer Your browser does not support iframes Using ... dosis fija con espaciador [PDF - 343 KB] Using a metered dose inhaler one to two inches from ...