WorldWideScience

Sample records for welding development program

  1. Dissimilar weld failure analysis and development program

    International Nuclear Information System (INIS)

    Holko, K.H.; Li, C.C.

    1982-01-01

    The problem of dissimilar weld cracking and failure is examined. This problem occurs in boiler superheater and reheater sections as well as main steam piping. Typically, a dissimilar weld joins low-alloy steel tubing such as Fe-2-1/4 Cr-1Mo to stainless steel tubing such as 321H and 304H. Cracking and failure occur in the low-alloy steel heat-affected zone very close to the weld interface. The 309 stainless steel filler previously used has been replaced with nickel-base fillers such as Inconel 132, Inconel 182, and Incoweld A. This change has extended the time to cracking and failure, but has not solved the problem. To illustrate and define the problem, the metallography of damaged and failed dissimilar welds is described. Results of mechanical tests of dissimilar welds removed from service are presented, and factors believed to be influential in causing damage and failure are discussed. In addition, the importance of dissimilar weldment service history is demonstrated, and the Dissimilar Weld Failure Analysis and Development Program is described. 15 figures

  2. Development of Managing Program for Small Bore Piping Socket Weld on the Secondary System of NPP

    International Nuclear Information System (INIS)

    Lee, Dong Min; Ryu, Jong Myeong; Cho, Hong Seok; Cho, Ki Hyun; Choi, Sang Hoon; Kim, Man Hee

    2011-01-01

    Kori unit 3 had stopped operation due to leakage at steam generator drain line socket weld on June 6th, 2008. The cause of socket weld damage was known as welding defect and fatigue by vibration under normal operation. With above reason, the government has been required developing management program for small bore piping socket weld. Therefore, we have developed the socket weld management program to secure reliability and soundness of socket welds which are located at all domestic NPPs

  3. Image Processing of Welding Procedure Specification and Pre-process program development for Finite Element Modelling

    International Nuclear Information System (INIS)

    Kim, K. S.; Lee, H. J.

    2009-11-01

    PRE-WELD program, which generates automatically the input file for the finite element analysis on the 2D butt welding at the dissimilar metal weld part, was developed. This program is pre-process program of the FEM code for analyzing the residual stress at the welding parts. Even if the users have not the detail knowledge for the FEM modelling, the users can make the ABAQUS INPUT easily by inputting the shape data of welding part, the weld current and voltage of welding parameters. By using PRE-WELD program, we can save the time and the effort greatly for preparing the ABAQUS INPUT for the residual stress analysis at the welding parts, and make the exact input without the human error

  4. Development Of Ultrasonic Testing Based On Delphi Program As A Learning Media In The Welding Material Study Of Detection And Welding Disables In The Environment Of Vocational Education

    Science.gov (United States)

    Dwi Cahyono, Bagus; Ainur, Chandra

    2018-04-01

    The development of science and technology has a direct impact on the preparation of qualified workers, including the preparation of vocational high school graduates. Law Number 20 the Year 2003 on National Education System explains that the purpose of vocational education is to prepare learners to be ready to work in certain fields. One of the learning materials in Vocational High School is welding and detecting welding defects. Introduction of welding and detecting welding defects, one way that can be done is by ultrasonic testing will be very difficult if only capitalize the book only. Therefore this study aims to adopt ultrasonic testing in a computer system. This system is called Delphi Program-based Ultrasonic Testing Expert System. This system is used to determine the classification and type of welding defects of the welded defect indicator knew. In addition to the system, there is a brief explanation of the notion of ultrasonic testing, calibration procedures and inspection procedures ultrasonic testing. In this system, ultrasonic input data testing that shows defects entered into the computer manually. This system is built using Delphi 7 software and Into Set Up Compiler as an installer. The method used in this research is Research and Development (R & D), with the following stages: (1) preliminary research; (2) manufacture of software design; (3) materials collection; (4) early product development; (5) validation of instructional media experts; (6) product analysis and revision; (8) media trials in learning; And (9) result of end product of instructional media. The result of the research shows that: (1) the result of feasibility test according to ultrasonic material testing expert that the system is feasible to be used as instructional media in welding material subject and welding defect detection in vocational education environment, because it contains an explanation about detection method of welding defect using method Ultrasonic testing in detail; (2

  5. Fatique Resistant, Energy Efficient Welding Program, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Egland, Keith; Ludewig, Howard

    2006-05-25

    The program scope was to affect the heat input and the resultant weld bead geometry by synchronizing robotic weave cycles with desired pulsed waveform shapes to develop process parameters relationships and optimized pulsed gas metal arc welding processes for welding fatique-critical structures of steel, high strength steel, and aluminum. Quality would be addressed by developing intelligent methods of weld measurement that accurately predict weld bead geometry from process information. This program was severely underfunded, and eventually terminated. The scope was redirected to investigate tandem narrow groove welding of steel butt joints during the one year of partial funding. A torch was designed and configured to perform a design of experiments of steel butt weld joints that validated the feasability of the process. An initial cost model estimated a 60% cost savings over conventional groove welding by eliminating the joint preparation and reducing the weld volume needed.

  6. Endplug Welding Techniques developed for SFR Metallic Fuel Elements

    International Nuclear Information System (INIS)

    Lee, Jung Won; Kim, Soo Sung; Woo, Yoon Myeng; Kim, Hyung Tae; Lee, Ho Jin; Kim, Ki Hwan

    2013-01-01

    In Korea, the R and D on SFR has been begun since 1997, as one of the national long-term nuclear R and D programs. The international collaborative research is under way on fuel developments within Advanced Fuel Project for Gen-IV SFR with the closed fuel cycle of full actinide recycling, while TRU bearing metallic fuel, U-TRU-Zr alloy fuel, was selected and is being developed. For the fabrication of SFR metallic fuel elements, the endplug welding is a crucial process. The sealing of endplug to cladding tube should be hermetically perfect to prevent a leakage of fission gases and to maintain a good reactor performance. In this study, the welding technique, welding equipment, welding conditions and parameters were developed to make SFR metallic fuel elements. The TIG welding technique was adopted and the welding joint design was developed. And the optimal welding conditions and parameters were also established. In order to make SFR metallic fuel elements, the welding technique, welding equipment, welding conditions and parameters were developed. The TIG welding technique was adopted and the welding joint design was developed. And the optimal welding conditions and parameters were also established

  7. Endplug Welding Techniques developed for SFR Metallic Fuel Elements

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Kim, Soo Sung; Woo, Yoon Myeng; Kim, Hyung Tae; Lee, Ho Jin; Kim, Ki Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In Korea, the R and D on SFR has been begun since 1997, as one of the national long-term nuclear R and D programs. The international collaborative research is under way on fuel developments within Advanced Fuel Project for Gen-IV SFR with the closed fuel cycle of full actinide recycling, while TRU bearing metallic fuel, U-TRU-Zr alloy fuel, was selected and is being developed. For the fabrication of SFR metallic fuel elements, the endplug welding is a crucial process. The sealing of endplug to cladding tube should be hermetically perfect to prevent a leakage of fission gases and to maintain a good reactor performance. In this study, the welding technique, welding equipment, welding conditions and parameters were developed to make SFR metallic fuel elements. The TIG welding technique was adopted and the welding joint design was developed. And the optimal welding conditions and parameters were also established. In order to make SFR metallic fuel elements, the welding technique, welding equipment, welding conditions and parameters were developed. The TIG welding technique was adopted and the welding joint design was developed. And the optimal welding conditions and parameters were also established.

  8. Welding development for LMFBR applications

    International Nuclear Information System (INIS)

    Slaughter, G.M.; Edmonds, D.P.; Goodwin, G.M.; King, J.F.; Moorhead, A.J.

    1976-01-01

    High-quality welds with suitable properties for long-time elevated-temperature nuclear service are among the most critical needs in today's welding technology. Safe, reliable, and economic generation of future power depends on welded construction in systems such as Liquid Metal Fast Breeder Reactors (LMFBRs). Rapid thermal transients in LMFBR systems at coolant temperatures around 590 to 650 0 C (1000 to 1200 0 F) could cause creep and creep-fatigue damage that is not encountered in lower temperature reactor systems. The undesirable consequences of interaction between the two working fluids - sodium and steam - in the steam generators are also of major concern. Thus sound welds that have excellent reliability over a 30-year service life are essential. Several programs are actively underway at ORNL to satisfy this critical need and selected portions of three of these programs are discussed briefly

  9. Development of automatic laser welding system

    International Nuclear Information System (INIS)

    Ohwaki, Katsura

    2002-01-01

    Laser are a new production tool for high speed and low distortion welding and applications to automatic welding lines are increasing. IHI has long experience of laser processing for the preservation of nuclear power plants, welding of airplane engines and so on. Moreover, YAG laser oscillators and various kinds of hardware have been developed for laser welding and automation. Combining these welding technologies and laser hardware technologies produce the automatic laser welding system. In this paper, the component technologies are described, including combined optics intended to improve welding stability, laser oscillators, monitoring system, seam tracking system and so on. (author)

  10. Developments in welding and joining methods of metallic materials

    International Nuclear Information System (INIS)

    Pilarczyk, J.

    2007-01-01

    The impact of the welding technology on the economy development. The welding and joining methods review. The particular role of the laser welding and its interesting applications: with filler metal, twin spot laser welding, hybrid welding process, remote welding. The fiber lasers. The high intensity electron beams applications for surface modification. The TIG welding with the use of the active flux. Friction welding, friction stir welding and friction linear welding. (author)

  11. Development of thick wall welding and cutting tools for ITER

    International Nuclear Information System (INIS)

    Nakahira, Masataka; Takahashi, Hiroyuki; Akou, Kentaro; Koizumi, Koichi

    1998-01-01

    The Vacuum Vessel, which is a core component of International Thermonuclear Experimental Reactor (ITER), is required to be exchanged remotely in a case of accident such as superconducting coil failure. The in-vessel components such as blanket and divertor are planned to be exchanged or fixed. In these exchange or maintenance operations, the thick wall welding and cutting are inevitable and remote handling tools are necessary. The thick wall welding and cutting tools for blanket are under developing in the ITER R and D program. The design requirement is to weld or cut the stainless steel of 70 mm thickness in the narrow space. Tungsten inert gas (TIG) arc welding, plasma cutting and iodine laser welding/cutting are selected as primary option. Element welding and cutting tests, design of small tools to satisfy space requirement, test fabrication and performance tests were performed. This paper reports the tool design and overview of welding and cutting tests. (author)

  12. Development of thick wall welding and cutting tools for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Nakahira, Masataka; Takahashi, Hiroyuki; Akou, Kentaro; Koizumi, Koichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The Vacuum Vessel, which is a core component of International Thermonuclear Experimental Reactor (ITER), is required to be exchanged remotely in a case of accident such as superconducting coil failure. The in-vessel components such as blanket and divertor are planned to be exchanged or fixed. In these exchange or maintenance operations, the thick wall welding and cutting are inevitable and remote handling tools are necessary. The thick wall welding and cutting tools for blanket are under developing in the ITER R and D program. The design requirement is to weld or cut the stainless steel of 70 mm thickness in the narrow space. Tungsten inert gas (TIG) arc welding, plasma cutting and iodine laser welding/cutting are selected as primary option. Element welding and cutting tests, design of small tools to satisfy space requirement, test fabrication and performance tests were performed. This paper reports the tool design and overview of welding and cutting tests. (author)

  13. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  14. GMAW (Gas Metal Arc Welding) process development for girth welding of high strength pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, Vaidyanath; Daniel, Joe; Quintana, Marie [The Lincoln Electric Company, Cleveland, OH (United States); Chen, Yaoshan [Center for Reliable Energy Systems (CRES), Dublin, OH (United States); Souza, Antonio [Lincoln Electric do Brasil, Guarulhos, SP (Brazil)

    2009-07-01

    This paper highlights some of the results and findings from the first phase of a consolidated program co-funded by US Department of Transportation Pipeline and Hazardous Materials Safety Administration (PHMSA) and Pipeline Research Council Inc (PRCI) to develop pipe weld assessment and qualification methods and optimize X 100 pipe welding technologies. One objective of the program is to establish the range of viable welding options for X 100 line pipe, and define the essential variables to provide welding process control for reliable and consistent mechanical performance of the weldments. In this first phase, a series of narrow gap girth welds were made with pulsed gas metal arc welding (GMAW), instrumented with thermocouples in the heat affected zone (HAZ) and weld metal to obtain the associated thermal profiles, and instrumented to measure true energy input as opposed to conventional heat input. Results reveal that true heat input is 16%-22% higher than conventional heat input. The thermal profile measurements correlate very well with thermal model predictions using true energy input data, which indicates the viability of treating the latter as an essential variable. Ongoing microstructural and mechanical testing work will enable validation of an integrated thermal-microstructural model being developed for these applications. Outputs from this model will be used to correlate essential welding process variables with weld microstructure and hardness. This will ultimately enable development of a list of essential variables and the ranges needed to ensure mechanical properties are achieved in practice, recommendations for controlling and monitoring these essential variables and test methods suitable for classification of welding consumables. (author)

  15. Development of high productivity pipeline girth welding

    International Nuclear Information System (INIS)

    Yapp, David; Liratzis, Theocharis

    2010-01-01

    The trend for increased oil and gas consumption implies a growth of long-distance pipeline installations. Welding is a critical factor in the installation of pipelines, both onshore and offshore, and the rate at which the pipeline can be laid is generally determined by the speed of welding. This has resulted in substantial developments in pipeline welding techniques. Arc welding is still the dominant process used in practice, and forge welding processes have had limited successful application to date, in spite of large investments in process development. Power beam processes have also been investigated in detail and the latest laser systems now show promise for practical application. In recent years the use of high strength steels has substantially reduced the cost of pipeline installation, with X70 and X80 being commonly used. This use of high strength pipeline produced by thermomechanical processing has also been researched. They must all meet three requirments, high productivity, satisfactory weld properties, and weld quality

  16. Development of an auto-welding system for CRD nozzle repair welds using a 3D laser vision sensor

    International Nuclear Information System (INIS)

    Park, K.; Kim, Y.; Byeon, J.; Sung, K.; Yeom, C.; Rhee, S.

    2007-01-01

    A control rod device (CRD) nozzle attaches to the hemispherical surface of a reactor head with J-groove welding. Primary water stress corrosion cracking (PWSCC) causes degradation in these welds, which requires that these defect areas be repaired. To perform this repair welding automatically on a complicated weld groove shape, an auto-welding system was developed incorporating a laser vision sensor that measures the 3-dimensional (3D) shape of the groove and a weld-path creation program that calculates the weld-path parameters. Welding trials with a J-groove workpiece were performed to establish a basis for developing this auto-welding system. Because the reactor head is placed on a lay down support, the outer-most region of the CRD nozzle has restricted access. Due to this tight space, several parameters of the design, such as size, weight and movement of the auto-welding system, had to be carefully considered. The cross section of the J-groove weld is basically an oval shape where the included angle of the J-groove ranges from 0 to 57 degrees. To measure the complex shape, we used double lasers coupled to a single charge coupled device (CCD) camera. We then developed a program to generate the weld-path parameters using the measured 3D shape as a basis. The program has the ability to determine the first and final welding positions and to calculate all weld-path parameters. An optimized image-processing algorithm was applied to resolve noise interference and diffused reflection of the joint surfaces. The auto-welding system is composed of a 4-axis manipulator, gas tungsten arc welding (GTAW) power supply, an optimized designed and manufactured GTAW torch and a 3D laser vision sensor. Through welding trials with 0 and 38-degree included-angle workpieces with both J-groove and U-groove weld, the performance of this auto-welding system was qualified for field application

  17. Development of remote laser welding technology

    International Nuclear Information System (INIS)

    Kim, Soo-Sung; Kim, Woong-Ki; Lee, Jung-Won; Yang, Myung-Seung; Park, Hyun-Soo

    1999-01-01

    Various welding processes are now available for end cap closure of nuclear fuel element such as TIG(Tungsten Inert Gas) welding, magnetic resistance welding and laser welding. Even though the resistance and TIG welding process are widely used for manufacturing of the commercial fuel elements, it can not be recommended for the remote seal welding of fuel element at PIE facility due to its complexity of the electrode alignment, difficulty in the replacement of parts in the remote manner and its large heat input for thin sheath. Therefore, Nd:YAG laser system using the optical fiber transmission was selected for Zircaloy-4 end cap welding. Remote laser welding apparatus is developed using a pulsed Nd:YAG laser of 500 watt average power with optical fiber transmission. The laser weldability is satisfactory in respect of the microstructures and mechanical properties comparing with the TIG and resistance welding. The optimum operation processes of laser welding and the optical fiber transmission system for hot cell operation in remote manner have been developed. (author)

  18. ITER lip seal welding and cutting developments

    International Nuclear Information System (INIS)

    Levesy, B.; Cordier, J.J.; Jokinen, T.; Kujanpää, V.; Karhu, M.; Le Barbier, R.; Määttä, T.; Martins, J.P.; Utin, Y.

    2015-01-01

    Highlights: • Different TIG and Laser welding techniques are tested. • Twin spot laser welding techniques is the best. • Limited heat input gives a stable weld pool in all positions. • Penetrations is achieved. • Lip seal welding and cutting with a robotic arm is successfully performed on a representative mock-up. - Abstract: The welded lip seals form part of the torus primary vacuum boundary in between the port plugs and the vacuum vessel, and are classified as Protection Important Component. In order to refurbish the port plugs or the in-vessel components, port plugs have to be removed from the machine. The lip seal design must enable up to ten opening of the vacuum vessel during the life time operation of the ITER machine. Therefore proven, remote reliable cutting and re-welding are essential, as these operations need to be performed in the port cells in a nuclear environment, where human presence will be restricted. Moreover, the combination of size of the components to be welded (∼10 m long vacuum compatible thin welds) and the congested environment close to the core of the machine constraint the type and size of tools to be used. This paper describes the lip seal cutting and welding development programme performed at the VTT Technical Research Centre, Finland. Potential cutting and welding techniques are analyzed and compared. The development of the cutting, TIG and laser welding techniques on samples are presented. Effects of lip seal misalignments and optimization of the 2 welding processes are discussed. Finally, the manufacturing and test of the two 1.2 m × 1 m representative mock-ups are presented. The set-up and use of a robotic arm for the mock-up cutting and welding operations are also described.

  19. ITER lip seal welding and cutting developments

    Energy Technology Data Exchange (ETDEWEB)

    Levesy, B.; Cordier, J.J.; Jokinen, T. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kujanpää, V.; Karhu, M. [VTT Technical Research Centre of Finland (Finland); Le Barbier, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Määttä, T. [VTT Technical Research Centre of Finland (Finland); Martins, J.P.; Utin, Y. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-10-15

    Highlights: • Different TIG and Laser welding techniques are tested. • Twin spot laser welding techniques is the best. • Limited heat input gives a stable weld pool in all positions. • Penetrations is achieved. • Lip seal welding and cutting with a robotic arm is successfully performed on a representative mock-up. - Abstract: The welded lip seals form part of the torus primary vacuum boundary in between the port plugs and the vacuum vessel, and are classified as Protection Important Component. In order to refurbish the port plugs or the in-vessel components, port plugs have to be removed from the machine. The lip seal design must enable up to ten opening of the vacuum vessel during the life time operation of the ITER machine. Therefore proven, remote reliable cutting and re-welding are essential, as these operations need to be performed in the port cells in a nuclear environment, where human presence will be restricted. Moreover, the combination of size of the components to be welded (∼10 m long vacuum compatible thin welds) and the congested environment close to the core of the machine constraint the type and size of tools to be used. This paper describes the lip seal cutting and welding development programme performed at the VTT Technical Research Centre, Finland. Potential cutting and welding techniques are analyzed and compared. The development of the cutting, TIG and laser welding techniques on samples are presented. Effects of lip seal misalignments and optimization of the 2 welding processes are discussed. Finally, the manufacturing and test of the two 1.2 m × 1 m representative mock-ups are presented. The set-up and use of a robotic arm for the mock-up cutting and welding operations are also described.

  20. Complete Report on the Development of Welding Parameters for Irradiated Materials

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Greg [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Sutton, Benjamin J. [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Tatman, Jonathan K. [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Vance, Mark Christopher [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Clark, Scarlett R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Roger G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chen, Jian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tang, Wei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gibson, Brian T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-11-01

    The advanced welding facility at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory, which was conceived to enable research and development of weld repair techniques for nuclear power plant life extension, is now operational. The development of the facility and its advanced welding capabilities, along with the model materials for initial welding trials, were funded jointly by the U.S. Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program, the Electric Power Research Institute, Long Term Operations Program and the Welding and Repair Technology Center, with additional support from Oak Ridge National Laboratory. Welding of irradiated materials was initiated on November 17, 2017, which marked a significant step in the development of the facility and the beginning of extensive welding research and development campaigns on irradiated materials that will eventually produce validated techniques and guidelines for weld repair activities carried out to extend the operational lifetimes of nuclear power plants beyond 60 years. This report summarizes the final steps that were required to complete weld process development, initial irradiated materials welding activities, near-term plans for irradiated materials welding, and plans for post-weld analyses that will be carried out to assess the ability of the advanced welding processes to make repairs on irradiated materials.

  1. Analysis on Development of Transverse - Sectioned Weld Zone using FEM Verified with Multipulsed Resistance Seam Welding

    Directory of Open Access Journals (Sweden)

    N Muhammad

    2013-12-01

    Full Text Available This paper details an investigation, through an experimental study, of the development of weld nuggets and a heat-affected zone (HAZ in resistance seam welding(RSEW using a numerical simulation approach. SYSWELD software for the simulation of heat treatment, welding, and welding assembly was utilized for the simulation process. The integrated Spot Weld Advisor (SWA in SYSWELD was applied to simulate the RSEW model using a two-dimensional axis-symmetric FE model with customized electrode meshing. The thermal-mechanical-electrical characteristic and contact condition were taken into account throughout this study. The developed model comprised a transverse cross section for welding two layers of low carbon steel with a thickness of 1 mm. For the experimental verification, three-pulsed RSEW with two different current stages was carried out. It was discovered that this program code, Spotweld Advisor, when used with the meshing method, was capable of offering results that were in agreement with physical experiments.

  2. Hanford Site Welding Program Successfully Providing A Single Site Function For Use By Multiple Contractors

    International Nuclear Information System (INIS)

    Cannell, G.R.

    2009-01-01

    The Department of Energy, Richland Operations (DOE-RL) recently restructured its Hanford work scope, awarding two new contracts over the past several months for a total of three contracts to manage the sites cleanup efforts. DOE-RL met with key contractor personnel prior to and during contract transition to ensure site welding activities had appropriate oversight and maintained code compliance. The transition also provided an opportunity to establish a single site-wide function that would provide welding and materials engineering services to the Hanford site contractors: CH2M HILL Plateau Remediation Company (CHPRC); Mission Support Alliance (MSA); Washington River Protection Solutions (WRPS); and Washington Closure Hanford (WCH). Over the years, multiple and separate welding programs (amongst the several contractors) existed at the Hanford site leading to inefficiencies resulting from duplication of administrative efforts, maintenance of welding procedures, welder performance certifications, etc. The new, single program eliminates these inefficiencies. The new program, co-managed by two of the sites' new contractors, the CHPRC ('owner' of the program and responsible for construction welding services) and the MSA (provides maintenance welding services), provides more than just the traditional construction and maintenance welding services. Also provided, are welding engineering, specialty welding development/qualification for the closure of radioactive materials containers and materials evaluation/failure analysis. The following describes the new Hanford site welding program.

  3. Virtual Reality Simulator Developed Welding Technology Skills

    Science.gov (United States)

    Yunus, Faizal Amin Nur; Baser, Jamil Abd; Masran, Saiful Hadi; Razali, Nizamuddin; Rahim, Bekri

    2011-01-01

    The purpose of this study was to identify the suitability of VR welding simulator application towards CBT in developing welding skills upon new trainees at the Centre of Instructor and Advanced Skills Training (CIAST) Shah Alam Selangor and National Youth Skills Institute (IKBN) Pagoh Johor. The significance of the study was to create a…

  4. Development of laser weld monitoring system for PWR space grid

    International Nuclear Information System (INIS)

    Chung, Chin Man; Kim, Cheol Jung; Kim, Min Suk

    1998-06-01

    The laser welding monitoring system was developed to inspect PWR space grid welding for KNFC. The demands for this optical monitoring system were applied to Q.C. and process control in space grid welding. The thermal radiation signal from weld pool can be get the variation of weld pool size. The weld pool size and depth are verified by analyzed wavelength signals from weld pool. Applied this monitoring system in space grid weld, improved the weld productivity. (author). 4 refs., 5 tabs., 31 figs

  5. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    Science.gov (United States)

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding.

  6. Mississippi Curriculum Framework for Welding (Program CIP: 48.0508--Welder/Welding Technologist). Secondary Programs.

    Science.gov (United States)

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for welding I and II. Presented first are a program description and course…

  7. Development of sensor augmented robotic weld systems for aerospace propulsion system fabrication

    Science.gov (United States)

    Jones, C. S.; Gangl, K. J.

    1986-01-01

    In order to meet stringent performance goals for power and reuseability, the Space Shuttle Main Engine was designed with many complex, difficult welded joints that provide maximum strength and minimum weight. To this end, the SSME requires 370 meters of welded joints. Automation of some welds has improved welding productivity significantly over manual welding. Application has previously been limited by accessibility constraints, requirements for complex process control, low production volumes, high part variability, and stringent quality requirements. Development of robots for welding in this application requires that a unique set of constraints be addressed. This paper shows how robotic welding can enhance production of aerospace components by addressing their specific requirements. A development program at the Marshall Space Flight Center combining industrial robots with state-of-the-art sensor systems and computer simulation is providing technology for the automation of welds in Space Shuttle Main Engine production.

  8. The National Shipbuilding Research Program. Development of Electromagnetic Acoustic Transducers (EMATS) for Surface/Volumetric Inspection of Welds

    National Research Council Canada - National Science Library

    Maclauchlan, D. T; Clark, S. P; Perry, M. B; Hancock, J. W

    2000-01-01

    ...) through General Dynamics - Electric Boat (EB) extended the EMAT technology by evaluating shear wave sensors for volumetric weld examination and included system evaluation in the shipyard, comparing the results...

  9. Robotic and automatic welding development at the Marshall Space Flight Center

    Science.gov (United States)

    Jones, C. S.; Jackson, M. E.; Flanigan, L. A.

    1988-01-01

    Welding automation is the key to two major development programs to improve quality and reduce the cost of manufacturing space hardware currently undertaken by the Materials and Processes Laboratory of the NASA Marshall Space Flight Center. Variable polarity plasma arc welding has demonstrated its effectiveness on class 1 aluminum welding in external tank production. More than three miles of welds were completed without an internal defect. Much of this success can be credited to automation developments which stabilize the process. Robotic manipulation technology is under development for automation of welds on the Space Shuttle's main engines utilizing pathfinder systems in development of tooling and sensors for the production applications. The overall approach to welding automation development undertaken is outlined. Advanced sensors and control systems methodologies are described that combine to make aerospace quality welds with a minimum of dependence on operator skill.

  10. Report on the Progress of Weld Development of Irradiated Materials at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [ORNL; Miller, Roger G. [ORNL; Chen, Jian [ORNL; Tang, Wei [ORNL; Clark, Scarlett R. [ORNL; Gibson, Brian T. [ORNL; Vance, Mark Christopher [ORNL; Frederick, Greg [Electric Power Research Institute (EPRI); Tatman, Jonathan K. [Electric Power Research Institute (EPRI); Sutton, Benjamin J. [Electric Power Research Institute (EPRI)

    2018-04-01

    This report summarizes recent welding activities on irradiated alloys in the advanced welding facility at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory and the development of post-weld characterization capabilities and procedures that will be critical for assessing the ability of the advanced welding processes housed within the facility to make successful repairs on irradiated alloys. This facility and its capabilities were developed jointly by the U.S. Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program and the Electric Power Research Institute, Long Term Operations Program (and the Welding and Repair Technology Center), with additional support from Oak Ridge National Laboratory. The significant, on-going effort to weld irradiated alloys with high Helium concentrations and comprehensively analyze the results will eventually yield validated repair techniques and guidelines for use by the nuclear industry in extending the operational lifetimes of nuclear power plants.

  11. Recent developments in pipeline welding practice

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Fourteen chapters are included: overview of pipeline welding systems and quality assurance, CRC automatic welding system, H.C. Price Co. automatic welding system, semi-automatic MIG-welding process, partial penetration welding of steel pipes for gas distribution, construction procedures and quality control in offshore pipeline construction, welding in repair and maintenance of gas transmission pipelines, British Gas studies of welding on pressurized gas transmission pipelines, hot tapping pipelines, underwater welding for offshore pipelines and associated equipment, radial friction welding, material composition vs weld properties, review of NDT of pipeline welds, and safety assurance in pipeline construction. A bibliography of approximately 150 references is included, arranged according to subject and year.

  12. The development of a quality prediction system for aluminum laser welding to measure plasma intensity using photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ji Young [Technical Research Center, Hyundai Steel Company, Dangjin (Korea, Republic of); Sohn, Yong Ho [Dept. of Materials Science and Engineering, University of Central Florida, Orlando (United States); Park, Young Whan; Kwak, Jae Seob [Dept. of Mechanical Engineering, Pukyong National University, Busan (Korea, Republic of)

    2016-10-15

    Lightweight metals have been used to manufacture the body panels of cars to reduce the weight of car bodies. Typically, aluminum sheets are welded together, with a focus on weld quality assurance. A weld quality prediction system for the laser welding of aluminum was developed in this research to maximize welding production. The behavior of the plasma was also analyzed, dependent on various welding conditions. The light intensity of the plasma was altered with heat input and wire feed rate conditions, and the strength of the weld and sensor signals correlated closely for this heat input condition. Using these characteristics, a new algorithm and program were developed to evaluate the weld quality. The design involves a combinatory algorithm using a neural network model for the prediction of tensile strength from measured signals and a fuzzy multi-feature pattern recognition algorithm for the weld quality classification to improve predictability of the system.

  13. The development of a quality prediction system for aluminum laser welding to measure plasma intensity using photodiodes

    International Nuclear Information System (INIS)

    Yu, Ji Young; Sohn, Yong Ho; Park, Young Whan; Kwak, Jae Seob

    2016-01-01

    Lightweight metals have been used to manufacture the body panels of cars to reduce the weight of car bodies. Typically, aluminum sheets are welded together, with a focus on weld quality assurance. A weld quality prediction system for the laser welding of aluminum was developed in this research to maximize welding production. The behavior of the plasma was also analyzed, dependent on various welding conditions. The light intensity of the plasma was altered with heat input and wire feed rate conditions, and the strength of the weld and sensor signals correlated closely for this heat input condition. Using these characteristics, a new algorithm and program were developed to evaluate the weld quality. The design involves a combinatory algorithm using a neural network model for the prediction of tensile strength from measured signals and a fuzzy multi-feature pattern recognition algorithm for the weld quality classification to improve predictability of the system

  14. Development of remote welding equipment and techniques for the TFTR vacuum vessel

    International Nuclear Information System (INIS)

    Masson, L.S.; Watts, K.D.; Larson, R.A.; Aldrich, W.C.

    1980-01-01

    In the event that the TFTR vacuum vessel is damaged or one of the toroidal field coils fails after the system has become substantially activated, it is necessary to remotely remove and replace the damaged section of the vessel using remote handling procedures. This paper describes a welding system developed through the final design stage to perform the remote welding necessary during the replacement operation. Information is presented describing the vessel configuration, the replacement sequence, the welding system requirements, welder configuration, supporting systems, the weld development program and future development requirements

  15. Mississippi Curriculum Framework for Welding and Cutting Programs (Program CIP: 48.0508--Welder/Welding Technologist). Postsecondary Programs.

    Science.gov (United States)

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the welding and cutting programs cluster. Presented in the introductory section are a description of the program and suggested course sequence. Section I lists baseline competencies, and…

  16. Development of endplug welding technology for irradiation testing capsule

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. W.; Shin, Y. T.; Kim, S. S.; Kim, B. K.; Kang, Y. H. [KAERI, Taejon (Korea, Republic of)

    2001-10-01

    To evaluate the performance of newly developed nuclear fuel, it is necessary to irradiate the fuel at a research reactor and examine the irradiated fuel. For the irradiation test in a reasearch reactor, a fuel assembly which is generally called a capsule should be fabricated, considering the fuel irradiation plan and the characteristics of the reactor to be used. And also the fuel elements containing the developed fuel pellets should be made and assembled into a capsule. In this study, the welding method, welding equipment, welding conditions and parameters were developed to make fuel elements for the irradiation test at the HANARO research reactor. The TIG welding method using automatic orbital tube welding system was adopted and the welding joint design was developed for the fabrication of various kinds of irradiation fuel elements. And the optimal welding conditions and parameters were also established for the endplug welding of Zircaloy-4 cladding tube.

  17. Fundamentals and advances in the development of remote welding fabrication systems

    Science.gov (United States)

    Agapakis, J. E.; Masubuchi, K.; Von Alt, C.

    1986-01-01

    Operational and man-machine issues for welding underwater, in outer space, and at other remote sites are investigated, and recent process developments are described. Probable remote welding missions are classified, and the essential characteristics of fundamental remote welding tasks are analyzed. Various possible operational modes for remote welding fabrication are identified, and appropriate roles for humans and machines are suggested. Human operator performance in remote welding fabrication tasks is discussed, and recent advances in the development of remote welding systems are described, including packaged welding systems, stud welding systems, remotely operated welding systems, and vision-aided remote robotic welding and autonomous welding systems.

  18. Joint program for the improvement of bimetallic weld inspection

    International Nuclear Information System (INIS)

    Serre, M.; Rattoni, B.; Coquillay; Samman; Billet; Bodson; Olivera

    1985-02-01

    The aim of this program is to improve the in-service monitoring of austenitic and bimetallic welds in PWR Main Coolant Systems. This paper presents the work performed on the bimetallic weld connecting the safe end to the reactor vessel nozzle: suitability of ultrasonic testing for determining the size and location of defects, automation and calibration, gamma-ray examination in three different planes

  19. Modelling of damage development and ductile failure in welded joints

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    , a study of the damage development in Resistance SpotWelded joints, when subject to the commonly used static shear-lab or cross-tension testing techniques, has been carried out ([P3]-[P6]). The focus in thesis is on the Advanced High Strength Steels, Dual-Phase 600, which is used in for example......This thesis focuses on numerical analysis of damage development and ductile failure in welded joints. Two types of welds are investigated here. First, a study of the localization of plastic flow and failure in aluminum sheets, welded by the relatively new Friction Stir (FS) Welding method, has been...... conducted ([P1], [P2], [P7]-[P9]). The focus in the thesis is on FS-welded 2xxx and 6xxx series of aluminum alloys, which are attractive, for example, to the aerospace industry, since the 2024 aluminum in particular, is typically classified as un-weldable by conventional fusion welding techniques. Secondly...

  20. Welding Technology. Program CIP: 48.0508 - WELDING

    Science.gov (United States)

    Ferguson, Doug

    2010-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  1. Development of underwater YAG laser repair welding robots for tanks

    International Nuclear Information System (INIS)

    Miwa, Yasuhiro; Satoh, Syuichi; Ito, Kosuke; Kochi, Tsutomu; Kojima, Toshio; Ohwaki, Katsura; Morita, Ichiro

    1999-01-01

    A remote-controlled repair welding robot which uses YAG laser welding technology in underwater environment was developed. This is an underwater robot technology combined with a laser welding technology. This report will describe the structure and performance of this robot, and the welding test results. The repair welding robot consists of two parts. The one is driving equipment, and the other is welding unit. It can swim in the tank, move around the tank wall, and stay on the welding area. After that it starts YAG laser repair welding. The target of this technology is inner surface repair of some tanks made of austenitic stainless steel, for example RW (Radioactive Waste) tanks. A degradation by General Corrosion and so on might be occurred at inner surface of these tanks in BWR type nuclear power plants. If the damaged area is wide, repair welding works are done. Some workers go into the tank and set up scaffolding after full drainage. In many cases it spends too much time for draining water and repair welding preparation. If the repair welding works can be done in underwater environment, the outage period will be reduced. This is a great advantage. (author)

  2. Modeling of endovascular patch welding using the computer program LATIS

    International Nuclear Information System (INIS)

    Glinsky, M.E.; London, R.A.; Zimmerman, G.B.; Jacques, S.L.

    1995-01-01

    A new computer program, LATIS, being developed at Lawrence Livermore National Laboratory is used to study the effect of pulsed laser irradiation on endovascular patch welding. Various physical and biophysical effects are included in these simulations: laser light scattering and absorption, tissue heating and heat conduction, vascular cooling, and tissue thermal damage. The geometry of a patch being held against the inner vessel wall (500 μm inner diameter) by a balloon is considered. The system is exposed to light pulsed from an optical fiber inside the balloon. A minimum in the depth of damage into the vessel wall is found. The minimum damage zone is about the thickness of the patch material that is heated by the laser. The more ordered the tissue the thinner the minimum zone of damage. The pulse length which minimizes the zone of damage is found to be the time for energy to diffuse across the layer. The delay time between the pulses is determined by the time for the heated layer to cool down. An optimal pulse length exists which minimizes the total time needed to weld the patch to the wall while keeping the thickness of the damaged tissue to less than 100 μm. For the case that is considered, a patch dyed with light absorbing ICG on the side next to the vessel (thickness of the dyed layer is 60 μm), the best protocol is found to be 65-200 ms pulses applied over 2 min

  3. Thermal Stir Welding Development at Marshall Space Flight Center

    Science.gov (United States)

    Ding, Robert J.

    2008-01-01

    Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.

  4. Development of bore tools for pipe welding and cutting

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Ito, Akira; Takiguchi, Yuji

    1998-01-01

    In the International Thermonuclear Experimental Reactor (ITER), in-vessel components replacement and maintenance requires that connected cooling pipes be cut and removed beforehand and that new components be installed to which cooling pipes must be rewelded. All welding must be inspected for soundness after completion. These tasks require a new task concept for ensuring shielded areas and access from narrow ports. Thus, it became necessary to develop autonomous locomotion welding and cutting tools for branch and main pipes to weld pipes by in-pipe access; a system was proposed that cut and welded branch and main pipes after passing inside pipe curves, and elemental technologies developed. This paper introduces current development in tools for welding and cutting branch pipes and other tools for welding and cutting the main pipe. (author)

  5. Development of bore tools for pipe welding and cutting

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Ito, Akira; Takiguchi, Yuji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    In the International Thermonuclear Experimental Reactor (ITER), in-vessel components replacement and maintenance requires that connected cooling pipes be cut and removed beforehand and that new components be installed to which cooling pipes must be rewelded. All welding must be inspected for soundness after completion. These tasks require a new task concept for ensuring shielded areas and access from narrow ports. Thus, it became necessary to develop autonomous locomotion welding and cutting tools for branch and main pipes to weld pipes by in-pipe access; a system was proposed that cut and welded branch and main pipes after passing inside pipe curves, and elemental technologies developed. This paper introduces current development in tools for welding and cutting branch pipes and other tools for welding and cutting the main pipe. (author)

  6. Development of Weld Metal Microstructures in Pulsed Laser Welding of Duplex Stainless Steel

    Science.gov (United States)

    Mirakhorli, F.; Malek Ghaini, F.; Torkamany, M. J.

    2012-10-01

    The microstructure of the weld metal of a duplex stainless steel made with Nd:YAG pulsed laser is investigated at different travel speeds and pulse frequencies. In terms of the solidification pattern, the weld microstructure is shown to be composed of two distinct zones. The presence of two competing heat transfer channels to the relatively cooler base metal and the relatively hotter previous weld spot is proposed to develop two zones. At high overlapping factors, an array of continuous axial grains at the weld centerline is formed. At low overlapping factors, in the zone of higher cooling rate, a higher percentage of ferrite is transformed to austenite. This is shown to be because with extreme cooling rates involved in pulsed laser welding with low overlapping, the ferrite-to-austenite transformation can be limited only to the grain boundaries.

  7. Development of high frequency tungsten inert gas welding method

    International Nuclear Information System (INIS)

    Morisada, Yoshiaki; Fujii, Hidetoshi; Inagaki, Fuminori; Kamai, Masayoshi

    2013-01-01

    Highlights: ► A new ultrasonic wave TIG welding method was developed. ► The area of the blowholes decreased to less than about 1/8 in the normal TIG weld. ► The number of blowholes decreased with the decreasing frequency. ► The number of blowholes increased when the frequency was less than 15 kHz. ► The microstructure of the weld was refined by ultrasonic wave. -- Abstract: A new welding method, called high frequency tungsten inert gas (TIG) welding, was developed to decrease blowholes in a weld. A1050 aluminum alloy plates (100 mm l × 50 mm w × 5 mm t ) were welded at a frequency from 10 to 40 kHz. An Ar-1% hydrogen mixture was used as the shielding gas to generate blowholes in the experiments. The welding was performed in the horizontal position so that the blowholes can easily be a problem. For comparison, a normal TIG welding was also performed at 60 Hz. After welding, the distribution of the blowholes in the welds was observed in order to evaluate the effect of the sonic wave. The number of blowholes changed with the frequency. A frequency near 15 kHz is the most suitable to decrease the blowholes. Using this new method, the area of blowholes is decreased to less than about 1/8 of the normal TIG weld. This method is much more effective for decreasing the number of blowholes, compared with an ultrasonic wave vibrator which is directly fixed to the sample.

  8. Use of narrow gap welding in nuclear power engineering and development of welding equipment at Vitkovice Iron Works (VZSKG), Ostrava

    International Nuclear Information System (INIS)

    Lehar, F.; Sevcik, P.

    1988-01-01

    Briefly discussed are problems related to automatic submerged arc welding into narrow gaps. The said method was tested for the first time at the Vitkovice Iron Works VZSKG for peripheral welds on pressurizers for WWER-440 reactors. The demands are summed up which are put on the welding workplace which must be met for the use of the said technology. The requirements mainly include the provision of the positioning of the welding nozzle towards the weld gap in order to maximally exclude the effect of the welder. An automatic device was designed and manufactured at the VZSKG plant for mounting the welding nozzle on the automatic welding machine manufactured by ESAB which operates on the principle of the flexible compression of the nozzle to the wall of the weld gap. In the bottom part the welding nozzle is provided with a pulley which rolls during welding thereby providing a constant distance to be maintained between the welding wire and the wall of the weld gap. The diameter of the pulley is ruled by the diameter of the welding wire. Provided the clamping part is appropriately adjusted the developed equipment may be used for any type of automatic welding machine with motor driven supports. (Z.M.). 8 figs., 5 tabs., 9 refs

  9. Development of laser beam welding for the lip seal configuration

    International Nuclear Information System (INIS)

    Yadav, Ashish; Joshi, Jaydeep; Singh, Dhananjay Kumar; Natu, Harshad; Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun

    2015-01-01

    Highlights: • Laser welding parameter optimization for required weld penetration. • Parametric study of actual scenarios like air gap, plate & beam misalignment. • Destructive and non-destructive examination of the welds and He-leak testing. - Abstract: A vacuum seal using the lip sealing technique is emerging as the most likely choice for fusion devices, to comply with the requirement of maintainability. The welding technology considered for lip sealing is laser welding, due to the attributes of small spot diameter, low concentrated heat input, high precision and penetration. To establish the process, an experiment has been conducted on a sample size of 150 mm × 50 mm having thickness of 2 mm, material AISI304L to assess the dependence of beam parameters like, laser power, speed and focusing distance on penetration and quality of weld joint. Further, the assessment of the effect of welding set-up variables like air-gap between plates, plate misalignment, and laser beam misalignment on the weld quality is also required. This paper presents the results of this experimental study and also the plan for developing a large (∼10 m) size laser welded seal, that simulates, appropriately, the configuration required in large dimension fusion devices.

  10. Development of laser beam welding for the lip seal configuration

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Ashish, E-mail: ashish.yadav@iter-india.org [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India); Joshi, Jaydeep; Singh, Dhananjay Kumar [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India); Natu, Harshad [Magod Laser Machining Pvt. Ltd., KIADB Ind. Area, Jigani, Anekal Taluk, Bengaluru 560105 (India); Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India)

    2015-10-15

    Highlights: • Laser welding parameter optimization for required weld penetration. • Parametric study of actual scenarios like air gap, plate & beam misalignment. • Destructive and non-destructive examination of the welds and He-leak testing. - Abstract: A vacuum seal using the lip sealing technique is emerging as the most likely choice for fusion devices, to comply with the requirement of maintainability. The welding technology considered for lip sealing is laser welding, due to the attributes of small spot diameter, low concentrated heat input, high precision and penetration. To establish the process, an experiment has been conducted on a sample size of 150 mm × 50 mm having thickness of 2 mm, material AISI304L to assess the dependence of beam parameters like, laser power, speed and focusing distance on penetration and quality of weld joint. Further, the assessment of the effect of welding set-up variables like air-gap between plates, plate misalignment, and laser beam misalignment on the weld quality is also required. This paper presents the results of this experimental study and also the plan for developing a large (∼10 m) size laser welded seal, that simulates, appropriately, the configuration required in large dimension fusion devices.

  11. Welding for the CRBRP steam generators

    International Nuclear Information System (INIS)

    Spalaris, C.N.; Ring, P.J.; Durand, R.E.; Wright, E.A.

    1979-01-01

    The rationale for selecting weld design, welding procedures and inspection methods was based upon the desire to obtain the highest reliability welds for the CRBRP steam generators. To assure the highest weld reliability, heavy emphasis was placed on the control of material cleanliness and composition substantially exceeding the requirements of the ASME Code for 2-1/4Cr--1Mo. The high tube/tubesheet weld quality was achieved through close material control, an extensive weld development program and the selection of high reliability welding equipment. Shell and nozzle weld fabrication using TIG, MIG, and submerged arc procedures are also being controlled through precise specifications, including preheat and postheat programs, together with radiography and ultrasonic inspection to ascertain the weld quality desired. Details of the tube/tubesheet welding and shell welding are described and results from the weld testing program are discussed

  12. Development and application of high-precision laser welding technology for manufacturing Ti alloy frames of glasses

    International Nuclear Information System (INIS)

    Kim, S. S.; Yang, M. S.; Kim, W. K.; Lee, D. Y.; Kim, J. M.; Leem, B. C.; Shin, J. S.; Lee, D. H.

    1999-12-01

    The research and development efforts of the high precision laser welding technology for manufacturing titanium alloy frames of glasses. For this purpose, laser welding device with the high beam quality is designed and fabricated, which consists of a optical fiber transmission part, a welding monitoring part and a welding controller. The welding nozzle and holding fixtures for manufacturing titanium and shape memory alloy frames of glasses. Titanium and shape memory alloy frames of glasses to be developed were experimentally manufactured by utilizing the laser welding using the optical fiber of GI 400 μm. As a result, the seam welding with the bead width of 0.3 mm or less and the weld penetration of 0.3-0.4mm could be accomplished. The fundamental technology was established through design of welding jigs with a variety of configurations and adequate welding conditions. Also, for the purpose to enable the companies participating in this project to commercialize the developed technology acceleratedly, a training program for the engineers belonging to such companies was conducted along with the technology transfer through joint experiments with the engineers. (author)

  13. EB-welding of the copper canister for the nuclear waste disposal. Final report of the development programme 1994-1997

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, H. [Outokumpu Oy Poricopper, Pori (Finland)

    1998-10-01

    During 1994-1997 Posiva Oy and Outokumpu Poricopper Oy had a joint project Development of EB-welding method for massive copper canister manufacturing. The project was part of the national technology program `Weld 2000` and it was supported financially by Technology Development Centre (TEKES). The spent fuel from Finnish nuclear reactors is planned to be encapsulated in thick-walled copper canisters and placed deep into the bedrock. The thick copper layer of the canister provides a long time corrosion resistance and prevents deposited nuclear fuel from contact with water. The quality requirements of the copper components are high because of the designed long lifetime of the canister. The EB-welding technology has proved to be applicable method for the production of the copper canisters and the EB-welding technique is needed at least when the lids of the copper canister will be closed. There are a number of parameters in EB-welding which affect weldability. However, the effect of the welding parameters and their optimization has not been extensively studied in welding of thick copper sections using conventional high vacuum EB-welding. One aim of this development work was to extensively study effect of welding parameters on weld quality. The final objective was to minimise welding defects in the main weld and optimize slope out procedure in thick copper EB-welding. Welding of 50 mm thick copper sections was optimized using vertical and horizontal EB-welding techniques. As a result two full scale copper lids were welded to a short cylinder successfully. The resulting weld quality with optimised welding parameters was reasonable good. The optimised welding parameters for horizontal and vertical beam can be applied to the longitudinal body welds of the canister. The optimal slope out procedure for the lid closure needs some additional development work. In addition of extensive EB-welding program ultrasonic inspection and creep strength of the weld were studied. According

  14. EB-welding of the copper canister for the nuclear waste disposal. Final report of the development programme 1994-1997

    International Nuclear Information System (INIS)

    Aalto, H.

    1998-10-01

    During 1994-1997 Posiva Oy and Outokumpu Poricopper Oy had a joint project Development of EB-welding method for massive copper canister manufacturing. The project was part of the national technology program 'Weld 2000' and it was supported financially by Technology Development Centre (TEKES). The spent fuel from Finnish nuclear reactors is planned to be encapsulated in thick-walled copper canisters and placed deep into the bedrock. The thick copper layer of the canister provides a long time corrosion resistance and prevents deposited nuclear fuel from contact with water. The quality requirements of the copper components are high because of the designed long lifetime of the canister. The EB-welding technology has proved to be applicable method for the production of the copper canisters and the EB-welding technique is needed at least when the lids of the copper canister will be closed. There are a number of parameters in EB-welding which affect weldability. However, the effect of the welding parameters and their optimization has not been extensively studied in welding of thick copper sections using conventional high vacuum EB-welding. One aim of this development work was to extensively study effect of welding parameters on weld quality. The final objective was to minimise welding defects in the main weld and optimize slope out procedure in thick copper EB-welding. Welding of 50 mm thick copper sections was optimized using vertical and horizontal EB-welding techniques. As a result two full scale copper lids were welded to a short cylinder successfully. The resulting weld quality with optimised welding parameters was reasonable good. The optimised welding parameters for horizontal and vertical beam can be applied to the longitudinal body welds of the canister. The optimal slope out procedure for the lid closure needs some additional development work. In addition of extensive EB-welding program ultrasonic inspection and creep strength of the weld were studied. According

  15. Welding techniques development of CLAM steel for Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Li Chunjing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China)], E-mail: lcj@ipp.ac.cn; Huang Qunying; Wu Qingsheng; Liu Shaojun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China); Lei Yucheng [Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Muroga, Takeo; Nagasaka, Takuya [National Institute for Fusion Science, Toki, Jifu, 509-5292 (Japan); Zhang Jianxun [Xi' an Jiaotong University, Xi' an, Shanxi, 710049 (China); Li Jinglong [Northwestern Polytechnical University, Xi' an, Shanxi, 710072 (China)

    2009-06-15

    Fabrication techniques for Test Blanket Module (TBM) with CLAM are being under development. Effect of surface preparation on the HIP diffusion bonding joints was studied and good joints with Charpy impact absorbed energy close to that of base metal have been obtained. The mechanical properties test showed that effect of HIP process on the mechanical properties of base metal was little. Uniaxial diffusion bonding experiments were carried out to study the effect of temperature on microstructure and mechanical properties. And preliminary experiments on Electron Beam Welding (EBW), Tungsten Inert Gas (TIG) Welding and Laser Beam Welding (LBW) were performed to find proper welding techniques to assemble the TBM. In addition, the thermal processes assessed with a Gleeble thermal-mechanical machine were carried out as well to assist the fusion welding research.

  16. Standardization of the WPS and Development of the Welding Process Management System for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Cho, Hong Seok; Lee, Jang Wook; Cho, Ki Hyun; Choi, Sang Hoon

    2010-01-01

    The purpose of this study is to integrate existing WPS(welding procedure specification) and PQR(procedure qualification records) which are kept by every branch office respectively and to develop a specialized program that will assist in the creation of WPS and PQR in accordance with the ASME Sec. IX, III, B31.1, etc. These research results make possible not only to ensure structural integrity by applying WPS and PQR correctly but also to cut down on expenses by managing the welding process efficiently. Moreover, as the specialized program will be linked with ERP system between KHNP and KPS, an administration action of welding process will be dealt with on-line. The backgrounds of this study are as follows; · Need to apply WPS correctly and promptly · Need to cut down on expenses due to overlapping development WPS · Need to manage welding resources efficiently · Need to standardize welding QA(quality assurance) documents · Need to improve efficiency of administrative welding process

  17. Enhancement of weld failure and tube ejection model in PENTAP program

    International Nuclear Information System (INIS)

    Jung, Jaehoon; An, Sang Mo; Ha, Kwang Soon; Kim, Hwan Yeol

    2014-01-01

    The reactor vessel pressure, the debris mass, the debris temperature, and the component of material can have an effect on the penetration tube failure modes. Furthermore, these parameters are interrelated. There are some representative severe accident codes such as MELCOR, MAAP, and PENTAP program. MELCOR decides on a penetration tube failure by its failure temperature such as 1273K simply. MAAP considers all penetration failure modes and has the most advanced model for a penetration tube failure model. However, the validation work against the experimental data is very limited. PENTAP program which evaluates the possible penetration tube failure modes such as creep failure, weld failure, tube ejection, and a long term tube failure under given accident condition was developed by KAERI. The experiment for the tube ejection is being performed by KAERI. The temperature distribution and the ablation rate of both weld and lower vessel wall can be obtained through the experiment. This paper includes the updated calculation steps for the weld failure and the tube ejection modes of the PENTAP program to apply the experimental results. PENTAP program can evaluate the possible penetration tube failure modes. It still requires a large amount of efforts to increase the prediction of failure modes. Some calculation steps are necessary for applying the experimental and the numerical data in the PENTAP program. In this study, new calculation steps are added to PENTAP program to enhance the weld failure and tube ejection models using KAERI's experimental data which are the ablation rate and temperature distribution of weld and lower vessel wall

  18. Robot welding process control development task

    Science.gov (United States)

    Romine, Peter L.

    1992-01-01

    The completion of, and improvements made to, the software developed during 1990 for program maintenance on the PC and HEURIKON and transfer to the CYRO, and integration of the Rocketdyne vision software with the CYRO is documented. The new programs were used successfully by NASA, Rocketdyne, and UAH technicians and engineers to create, modify, upload, download, and control CYRO NC programs.

  19. Development of Inspection Technique for Socket Weld of Small Bore Piping in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yoon, Byungsik; Kim, Yongsik; Lee, Jeongseok

    2013-01-01

    The losses incurred by unplanned shutdowns are significant; consequently, early crack initiation and crack detection, including the detection of fillet weld manufacturing defects, is of the utmost importance. Current inspection techniques are not capable of reliably inspecting socket welds; therefore, new approaches are needed. The new technique must be sensitive to socket weld cracking, which usually initiates from the root, in order to detect the cracking during the early failure phase. In 2008, Kori unit 3 experienced leakage from the drain line socket weld of a steam generator. From this experience, KHNP enforced a management program to focus on enhancing the reliability of small bore socket weld piping inspections. Currently, conventional manual ultrasonic inspection techniques are used to detect service induced fatigue cracks. But there was uncertainty on manual ultrasonic inspection because of limited access to the welds and difficulties with contact between the ultrasonic probe and the OD surface of small bore piping. In this study, phased array ultrasonic inspection techniques are applied to increase inspection speed and reliability. Additionally a manually encoded scanner has been developed to enhance contact conditions and maintain constant signal quality. A phased array UT technique and system was developed to inspect small bore socket welds. The experimental results show all artificial flaws in the specimen were detected and measured. These experimental results show, that the newly developed inspection system, has improved the reliability and speed of small bore socket weld inspection. Based on these results, future works shall focus on additional experiments, with more realistic flaw responses. By applying this technique to the field, we expect that it can improve the integrity of small bore piping in nuclear power plants

  20. Development of injection moulded, ultrasonically welded immiscible phase filtration devices

    DEFF Research Database (Denmark)

    Kistrup, Kasper

    for ultrasonic welding, suitable for microfluidic systems. A methodology has been established where energy directors can be quickly added to existing mould inserts, using laser micromachining. The produced device was performance tested by isolating methicillin-resistant Staphylococcus aureus from bovine whole....... The device appliesmagnetic bead-based solid-phase extraction for nucleic acid extraction from biological samples, using the immiscible phase filtration (IPF) approach. Device development has employed injection moulding for part fabrication and ultrasonic welding for bonding. Rapid prototyping...

  1. Recent developments in Micro Friction Stir Welding: A review

    International Nuclear Information System (INIS)

    Sithole, Keydon; Rao, Veeredhi Vasudeva

    2016-01-01

    The advent of friction stir welding (FSW) in 1991 has been evolutionary in the joining of metals and related materials. Friction stir welding has enabled the joining of metals that could not be joined by other welding processes. Research has shown that dissimilar materials with very different properties, plastics, composites and even wood can be joined by FSW. Recent activities in the application of FSW has seen the development of micro friction stir welding (μFSW), which is the FSW of very thin sections of thickness 1000 μm (1 mm) or less. Micro friction stir welding further extends the applications of FSW to areas such as copper electrical contacts, tailor-welded blanks, wood. Though μFSW is relatively new development significant work has been done to date with interesting research findings being reported. This paper aims to review developments in μFSW to date. The focus of the paper will be on problems peculiar to μFSW due to downscaling to the micro scale and other practical considerations. (paper)

  2. Welding.

    Science.gov (United States)

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  3. Development of weld plugging for steam generator tubes of FBR

    International Nuclear Information System (INIS)

    Shimoyama, T.; Matsuyama, T.; Matsumoto, O.; Nagura, Y.; Nakamura, H.; Tohguchi, Y.; Kurokawa, M.; Fukada, T.

    2002-01-01

    This study was undertaken to develop a method of weld plugging of the heat-exchanger tubes of steam generator of Prototype FBR 'MONJU' in case these tubes are damaged for some reason. We studied mainly the shape of plug, welding procedure and effect of postweld heat treatment (PWHT). Evaporator tube sheet, tube and plug are made of 2-1/4Cr-1Mo steel and usually preheating and PWHT will be required for welding of this steel. The results of this study is as follows. 1) Plug was designed to make butt joint welding with grooved tube sheet around the tube hole to satisfy the requirements of plug designing, stress analysis, and good weldability. 2) TIG welding process was selected and certified its good weldability and good performance. 3) PWHT can be done by using high frequency induction heating method locally and also designing the plug to weld joint with tube sheet which was grooved around the tube hole. 4) Mock up test was done and it was certified that this plugging procedure has good weldability and good performance ability for Non Destructive Inspection. (author)

  4. Robot welding process control

    Science.gov (United States)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  5. MCO closure welding process parameter development and qualification

    International Nuclear Information System (INIS)

    CANNELL, G.R.

    2003-01-01

    One of the key elements in the SNF process is final closure of the MCO by welding. Fuel is loaded into the MCO (approximately 2 ft. in diameter and 13 ft. long) and a heavy shield plug is inserted into the top, creating a mechanical seal. The plug contains several process ports for various operations, including vacuum drying and inert-gas backfilling of the packaged fuel. When fully processed, the Canister Cover Assembly (CCA) is placed over the shield plug and final closure made by welding. The following reports the effort between the Amer Industrial Technology (AIT) and Fluor Hanford (FH) to develop and qualify the welding process for making the final closure--with primary emphasis on developing a set of robust parameters for deposition of the root pass. Work was carried out in three phases: (1) Initial welding process and equipment selection with subsequent field demonstration testing; (2) Development and qualification of a specific process technique and parameters; and (3) Validation of the process and parameters at the CSB under mock production conditions. This work establishes the process technique and parameters that provide a high level of confidence that acceptable MCO closure welds will be made on a consistent and repeatable basis

  6. Welding hazards

    International Nuclear Information System (INIS)

    Khan, M.A.

    1992-01-01

    Welding technology is advancing rapidly in the developed countries and has converted into a science. Welding involving the use of electricity include resistance welding. Welding shops are opened in residential area, which was causing safety hazards, particularly the teenagers and children who eagerly see the welding arc with their naked eyes. There are radiation hazards from ultra violet rays which irritate the skin, eye irritation. Welding arc light of such intensity could damage the eyes. (Orig./A.B.)

  7. Study on Dynamic Development of Three-dimensional Weld Pool Surface in Stationary GTAW

    Science.gov (United States)

    Huang, Jiankang; He, Jing; He, Xiaoying; Shi, Yu; Fan, Ding

    2018-04-01

    The weld pool contains abundant information about the welding process. In particular, the type of the weld pool surface shape, i. e., convex or concave, is determined by the weld penetration. To detect it, an innovative laser-vision-based sensing method is employed to observe the weld pool surface of the gas tungsten arc welding (GTAW). A low-power laser dots pattern is projected onto the entire weld pool surface. Its reflection is intercepted by a screen and captured by a camera. Then the dynamic development process of the weld pool surface can be detected. By observing and analyzing, the change of the reflected laser dots reflection pattern, for shape of the weld pool surface shape, was found to closely correlate to the penetration of weld pool in the welding process. A mathematical model was proposed to correlate the incident ray, reflected ray, screen and surface of weld pool based on structured laser specular reflection. The dynamic variation of the weld pool surface and its corresponding dots laser pattern were simulated and analyzed. By combining the experimental data and the mathematical analysis, the results show that the pattern of the reflected laser dots pattern is closely correlated to the development of weld pool, such as the weld penetration. The concavity of the pool surface was found to increase rapidly after the surface shape was changed from convex to concave during the stationary GTAW process.

  8. Development of a process model for intelligent control of gas metal arc welding

    International Nuclear Information System (INIS)

    Smartt, H.B.; Johnson, J.A.; Einerson, C.J.; Watkins, A.D.; Carlson, N.M.

    1991-01-01

    This paper discusses work in progress on the development of an intelligent control scheme for arc welding. A set of four sensors is used to detect weld bead cooling rate, droplet transfer mode, weld pool and joint location and configuration, and weld defects during welding. A neural network is being developed as the bridge between the multiple sensor set a conventional proportional-integral controller that provides independent control of process variables. This approach is being developed for the gas metal arc welding process. 20 refs., 8 figs

  9. Weld Development for Aluminum Fission Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Cross, Carl Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Jesse Norris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-16

    The Sigma welding team was approached to help fabricate a small fission chamber (roughly ½ inch dia. x ½ inch tall cylinder). These chambers are used as radiation sensors that contain small traces of radionuclides (Cf 252, U 235, and U 238) that serve to ionize gas atoms in addition to external radiation. When a voltage is applied within the chamber, the resulting ion flow can be calibrated and monitored. Aluminum has the advantage of not forming radioactive compounds when exposed to high external radiation (except from minor Na alloy content). Since aluminum has not been used before in this application, this presented an unexplored challenge.

  10. Development of end plug welding method in the fabrication of FBR fuel pins

    International Nuclear Information System (INIS)

    Ohtani, Seiji; Sawayama, Takeo; Tateishi, Yoshinori

    1977-01-01

    As a part of the development of the automatic and remote controlled fabrication of FBR fuel pins, welding of fuel pin end plugs has been examined. Cladding tubes and end plugs used for this experiment are made of SUS 316, and they are the components of fuel pins for the prototype fast breeder reactor (Monju) or the second core of Joyo (Joyo MK-II). The welding tests of cladding tubes and four kinds of end plugs were carried out by means of two techniques; tungsten inert gas welding and laser welding. It can be said that no considerable difference was observed in weld penetration, occurrence rate of weld defects and breaking strength between the tight fit and the loose fit plugs. The face-to-face fit welding requires the least welding heat input, but involves much difficulty in the control of weld penetration and bead zone diameter. The good concentrative property and high energy density of laser beam make the face of weld hollow due to the vaporization of weld metal. However, this problem can be easily solved by changing the shape of end plugs. Good results in the other characteristics of the weld also were obtained by this laser welding. Further experiment is needed in connection with the compatibility of weld metal with sodium and neutron irradiation before final judgement is made on the laser welding technique. (Nakai, Y.)

  11. Weld controller for automated nuclear service welding

    International Nuclear Information System (INIS)

    Barfield, K.L.; Strubhar, P.M.; Green, D.I.

    1995-01-01

    B and W Nuclear Technologies (BWNT) uses many different types of weld heads for automated welding in the commercial nuclear service industry. Some weld heads are purchased as standard items, while others are custom designed and fabricated by BWNT requiring synchronized multiaxis motion control. BWNT recently completed a development program to build a common weld controller that interfaces to all types of weld heads used by BWNT. Their goal was to construct a system that had the flexibility to add different modules to increase the capability of the controller as different application needs become necessary. The benefits from having a common controller are listed. This presentation explains the weld controller system and the types of applications to which it has been applied

  12. Development of a system to support welding design of nuclear power plants

    International Nuclear Information System (INIS)

    Kataoka, S.; Okamoto, A.

    1991-01-01

    This paper describes about an expert system that supports engineers to make welding design for nuclear power plants. In the welding design, engineers must consider a lot of things; the weldability of the material, the weld deformation, the residual stress predicted, the strength of the weld joint, the configuration of the structure and so on. For easy consultation, the computer system that can provide advice and information about the welding technology is desirable to the engineers. The system was developed on a personal computer of Macintosh utilizing a card type data base, HyperCard. It supports an engineer in the following tasks. a. Advice using the instance of troubles caused by the welding design. b. Tutorial instruction for the knowledge of welding. c. Recommendation for the welding design. d. Data display of the base metal and the weld. (author)

  13. DEVELOPING AND QUANTIFYING PARAMETERS FOR CLOSURE WELDING OVERPACKS CONTAINING RESEARCH REACTOR SPENT NUCLEAR FUEL AT HANFORD

    International Nuclear Information System (INIS)

    CANNELL GR

    2007-01-01

    Fluor engineers developed a Gas Tungsten Arc Welding (GTAW) technique and parameters, demonstrated requisite weld quality and successfully closure-welded packaged spent nuclear fuel (SNF) overpacks at the Hanford Site. This paper reviews weld development and qualification activities associated with the overpack closure-welding and provides a summary of the production campaign. The primary requirement of the closure weld is to provide leaktight confinement of the packaged material against release to the environment during interim storage (40-year design term). Required weld quality, in this case, was established through up-front development and qualification, and then verification of parameter compliance during production welding. This approach was implemented to allow for a simpler overpack design and more efficient production operations than possible with approaches using routine post-weld testing and nondestructive examination (NDE). . A series of welding trials were conducted to establish the desired welding technique and parameters. Qualification of the process included statistical evaluation and American Society of Mechanical Engineers (ASME) Section IX testing. In addition, pull testing with a weighted mockup, and thermal calculation/physical testing to identify the maximum temperature the packaged contents would be subject to during welding, was performed. Thirteen overpacks were successfully packaged and placed into interim storage. The closure-welding development activities (including pull testing and thermal analysis) provided the needed confidence that the packaged SNF overpacks could be safely handled and placed into interim storage, and remain leaktight for the duration of the storage term

  14. Development of TIG Welding System for a Nuclear Fuel Test Rig

    International Nuclear Information System (INIS)

    Joung, Changyoung; Ahn, Sungho; Hong, Jintae; Kim, Kahye

    2013-01-01

    The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rig and rods. To manufacture the nuclear fuel test rig, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rig and rods jointing the various sensors and end caps on a fuel cladding tube, which is charged with fuel pellets and component parts. Thus, we designed and fabricated the precision welding system consisting of an orbital TIG welder, a low-pressure chamber, and a high-pressure chamber. Using this system, the performance tests were performed with the round and seal spot welds for each welding condition. This paper describes not only the contents for the fabrication of precision TIG welding system but also some results from weld tests using the low-pressure and high-pressure chambers to verify the performance of this system. The TIG welding system was developed to manufacture the nuclear fuel test rig and rods. It has been configured to be able to weld the nuclear fuel test rigs and rods by applying the TIG welder using a low-pressure chamber and a high-pressure chamber. The performance tests using this system were performed with the round and seal spot welds for the welding conditions. The soundness of the orbital TIG welding system was confirmed through performance tests in the low-pressure and high-pressure chambers

  15. Development of TIG Welding System for a Nuclear Fuel Test Rig

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Changyoung; Ahn, Sungho; Hong, Jintae; Kim, Kahye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rig and rods. To manufacture the nuclear fuel test rig, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rig and rods jointing the various sensors and end caps on a fuel cladding tube, which is charged with fuel pellets and component parts. Thus, we designed and fabricated the precision welding system consisting of an orbital TIG welder, a low-pressure chamber, and a high-pressure chamber. Using this system, the performance tests were performed with the round and seal spot welds for each welding condition. This paper describes not only the contents for the fabrication of precision TIG welding system but also some results from weld tests using the low-pressure and high-pressure chambers to verify the performance of this system. The TIG welding system was developed to manufacture the nuclear fuel test rig and rods. It has been configured to be able to weld the nuclear fuel test rigs and rods by applying the TIG welder using a low-pressure chamber and a high-pressure chamber. The performance tests using this system were performed with the round and seal spot welds for the welding conditions. The soundness of the orbital TIG welding system was confirmed through performance tests in the low-pressure and high-pressure chambers.

  16. Development of resistance welding process. 6. Evaluation test of welding properties of martensitic ODS steel)

    International Nuclear Information System (INIS)

    Kono, Shusaku; Seki, Masayuki; Ishibashi, Fujio

    2003-05-01

    The welding condition and the heat-treatment condition were optimized to evaluate welding properties of the martensitic ODS steel cladding tube. The test pieces for evaluation of strength properties of the welded zone were produced by the optimized welding condition. In order to evaluate the strength of the welded zone, the internal creep rapture test, the single axis creep rapture test, the burst test and the tensile test were conducted. Following results were obtained in these tests. (1) Weld ability: An excellent welding characteristic was observed. The micro cracks, etc. were not served at the joint starting point. The joint starting points were connected uniformly with errors less than 0.05 mm. It is considered that an excellent welding characteristic was result of homogeneous micro structure of cladding material. (2) End plug material: In case of the material of end plug was martensitic ODS steel as same as that of cladding tube, the micro structure and the precipitation state carbide near the welded zone were found to be almost same as that of cladding tube. (3) Optimization of heat-treatment condition: The heat treatments of normalizing (1050degC) and tempering (780degC) were performed after welding and the micro structure near the welded zone was the isometric structure with low dislocation density, the precipitation state of carbide was uniform as same as that of cladding tube. These heat treatments can relax the residual stress accumulated when welding; it is considered that these heat treatments after welding are indispensable. (4) Strength of welded zone: The strength of the welded zone was found to be equal to that of cladding tube in all the strength tests. Therefore, it is concluded that the welding technology for the martensitic ODS steel is completed. (author)

  17. Development of underwater laser cladding and underwater laser seal welding techniques for reactor components

    International Nuclear Information System (INIS)

    Hino, Takehisa; Tamura, Masataka; Tanaka, Yoshimi; Kouno, Wataru; Makino, Yoshinobu; Kawano, Shohei; Matsunaga, Keiji

    2009-01-01

    Stress corrosion cracking (SCC) has been reported at the aged components in many nuclear power plants. Toshiba has been developing the underwater laser welding. This welding technique can be conducted without draining the water in the reactor vessel. It is beneficial for workers not to exposure the radiation. The welding speed can be attaining twice as fast as that of Gas Tungsten Arc Welding (GTAW). The susceptibility of SCC can also be lower than the Alloy 600 base metal. (author)

  18. Fibre Laser Welding of HY-80 Steel: Procedure Development and Testing

    Science.gov (United States)

    2010-09-01

    2 Welding The material used in this study was quenched and tempered martensitic HY80 steel which conforms to MIL-S-1621 [2]. The testing...Journal, 1977. [4] AWS, D1.6 in Structural Welding Code Stainless Steel . 2007, American Welding Society: Miami Florida. [5] DefStan, 02-770 Part 2...Canada Fibre Laser Welding of HY-80 Steel Proceedure Development and Testing Christopher Bayley DLP Neil Aucoin DLP Xinjin Cao NRC IAR AMTC Technical

  19. Development of automatic pre-tracking system for fillet weld based on laser trigonometry

    Science.gov (United States)

    Shen, Xiaoqin; Yu, Fusheng

    2005-01-01

    In this paper, an automatic fillet weld pre-tracking system for welding the work piece of lorry back boards with several bend in haul automobile is developed basing on laser trigonometry. The optical measuring head based on laser-PSD trigonometry is used as position sensor. It is placed in front of the traveling direction of welding wire to get the distances from welding wire to the two side boards of the welding lines, upper board and bottom board of the fillet weld respectively. A chip of AT89S52 is used as the micro controller in this system. The AC servomotors, ball-screws and straight guide rails constitute the sliding table to take welding wire move. The laser-PSD sensors pass through the vertical board, upper board and bottom board of the fillet weld when welding wire moves and then get the distance. The laser-PSD sensors output the analog signals. After A/D conversion, the digital signal is input into AT89S52 and calculated. Then the information of the position and lateral deviation of the welding wire when welding a certain position are gotten to control welding wires. So the weld pre-tracking for welding the work piece with long distance and large bend in haul automobile is realized. The position information is input into EEPROM to be saved for short time after handled by AT89S52. The information is as the welding position information as well as the speed adjusting data of the welding wire when it welds the several bend of the work piece. The practice indicates that this system has high pre-tracking precision, good anti-disturb ability, excellent reliability, easy operating ability and good adaptability to the field of production.

  20. Development of maintenance technology with underwater TIG welding for spent fuel storage pool

    International Nuclear Information System (INIS)

    Obana, Takeshi; Hamada, Yasumitsu; Ooeda, Kaoru; Katou, Masahide; Ootsuka, Toshihiro; Toyoda, Seiichi; Hosogane, Atsushi

    2007-01-01

    The core technology of underwater TIG welding process has been developed and welding equipment system has been manufactured, for application to the maintenance of the spent fuel storage pool of Rokkasho reprocessing plant. Basic experiments for understanding the conditions of dry area and the range of welding conditions was performed, and mock examination for simulation of real environment by using the developed welding equipment was also carried out to judge the applicability of the system. For the purpose that can be selected water removing method for different spatial conditions of the parts to be maintained in underwater, two kinds of welding equipment systems of Chamber type and Partition type were developed and manufactured. On the basis of fundamental experiments, the conditions of dry area formation and welding parameters range for high-reliability weld were discussed. Thus the proper condition in this process was able to be established. With the welding equipment systems of the Chamber type and Partition type, the practical use examination of underwater TIG welding process was executed by mock examination for simulating the real environment. As a result, it was confirmed that the underwater TIG welding could obtain the same reliability as a usual in-air TIG welding, and the operation and the control at remote distance were also possible. And the reliability of the patch-plate fillet weld could be evaluated by remote inspection with the expansion visual test. (author)

  1. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    International Nuclear Information System (INIS)

    Joung, Chang Young; Ahn, Sung Ho; Heo, Sung Ho; Hong, Jin Tae; Kim, Ka Hye

    2013-01-01

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses

  2. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang Young; Ahn, Sung Ho; Heo, Sung Ho; Hong, Jin Tae; Kim, Ka Hye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses.

  3. Development and production of nuclear valves. Forging and welding. Pt. 2

    International Nuclear Information System (INIS)

    Bernal Castro, J.B.; Perez, J.C.; Labonia, R.N.

    1987-01-01

    The first part of this work deals with the obtainment of the austenitic stainless steel DIN 1.4541 (AISI 321) stabilized titanium for Atucha II nuclear valves. The second part presented herein, continued with the development process and part of the production of the bodies' forging and valves leads. This development has been also carried out in the country and a detailed set up of the process with its corresponding Inspection and Assay Program was needed. The last part of this stage has been initiated at the welding process, so it was necessary to develop specific welding procedures to qualify them and use the equipment specially applied to this requirement. The set of assays and criteria certification for the qualifications is presented. (Author)

  4. Development of fatigue resistance evaluation method for socket-weld-jointed pipes

    International Nuclear Information System (INIS)

    Noguchi, Shinji; Shibayama, Motoaki; Iwata, Masazumi; Matsuura, Masayuki

    2003-01-01

    Vent line, drain line and sampling line in nuclear power station have many socket welded-joints made of austenitic stainless steel. Their slenderness and stagnation yield some potential of vibration-induced cracking and stress corrosion cracking. For the joints under vibration, the authors firstly elucidated their welding-defect-related fatigue strength by using fracture mechanics. It could define the allowable sets of stress amplitude and defect size. Secondly, authors developed an ultra-sonic detecting apparatus by using a focus-type probe and its programmed crawl on socket part. The authors finally measured the stress amplitude and frequency by sticking strain gage on suspected joints, then evaluated the fatigue resistance of the joints. For more efficient procedure, the method of stress amplitude analysis through vibration measurement is being developed. (author)

  5. Development of NDT technology of the welds

    International Nuclear Information System (INIS)

    Li Jianwen; Xu Yansen; Wang Zengyong

    2002-01-01

    Non-destructive testing (NDT) and its up-to-date development are summarized, including the advantages and disadvantages and the development of NDT technology. The up-to-date development of X-ray imaging and industrial CT is emphasised on, and the fundamental theory of ultrasonic imaging and related signal processing technology is introduced

  6. Development of NDT technology of the welds

    Energy Technology Data Exchange (ETDEWEB)

    Jianwen, Li; Yansen, Xu; Zengyong, Wang [China Academy of Engineering Physics, Mianyang (China). Inst. of Mechanical Engineering

    2002-07-01

    Non-destructive testing (NDT) and its up-to-date development are summarized, including the advantages and disadvantages and the development of NDT technology. The up-to-date development of X-ray imaging and industrial CT is emphasised on, and the fundamental theory of ultrasonic imaging and related signal processing technology is introduced.

  7. Electron beam weld parameter set development and cavity cost

    International Nuclear Information System (INIS)

    John Brawley; John Mammossor; Larry Philips

    1997-01-01

    Various methods have recently been considered for use in the cost-effective manufacturing of large numbers of niobium cavities. A method commonly assumed to be too expensive is the joining of half cells by electron beam welding (EBW), as has been done with multipurpose EBW equipment for producing small numbers of cavities at accelerator laboratories. The authors have begun to investigate the advantages that would be available if a single-purpose, task-specific EBW processing tool were used to produce cavities in a high-volume commercial-industrial context. For such a tool and context they have sought to define an EBW parameter set that is cost-effective not only in terms of per-cavity production cost, but also in terms of the minimization of quench-producing weld defects. That is, they define cavity cost-effectiveness to include both production and performance costs. For such an EBW parameter set, they have developed a set of ideal characteristics, produced and tested samples and a complete cavity, studied the weld-defect question, and obtained industrial estimates of cavity high-volume production costs. The investigation in ongoing. This paper reports preliminary findings

  8. A continuum based fem model for friction stir welding-model development

    Energy Technology Data Exchange (ETDEWEB)

    Buffa, G. [Ohio State University, Department of Industrial, Welding and Systems Engineering, 1971 Neil Avenue, 210 Baker Systems, Columbus, OH 43210 (United States) and Dipartimento di Tecnologia Meccanica, Produzione e Ingegneria Gestionale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)]. E-mail: g.buffa@dtpm.unipa.it; Hua, J. [Ohio State University, Department of Industrial, Welding and Systems Engineering, 1971 Neil Avenue, 210 Baker Systems, Columbus, OH 43210 (United States)]. E-mail: hua.14@osu.edu; Shivpuri, R. [Ohio State University, Department of Industrial, Welding and Systems Engineering, 1971 Neil Avenue, 210 Baker Systems, Columbus, OH 43210 (United States)]. E-mail: shivpuri.1@osu.edu; Fratini, L. [Dipartimento di Tecnologia Meccanica, Produzione e Ingegneria Gestionale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)]. E-mail: abaqus@dtpm.unipa.it

    2006-03-15

    Although friction stir welding (FSW) has been successfully used to join materials that are difficult-to-weld or unweldeable by fusion welding methods, it is still in its early development stage and, therefore, a scientific knowledge based predictive model is of significant help for thorough understanding of FSW process. In this paper, a continuum based FEM model for friction stir welding process is proposed, that is 3D Lagrangian implicit, coupled, rigid-viscoplastic. This model is calibrated by comparing with experimental results of force and temperature distribution, then is used to investigate the distribution of temperature and strain in heat affect zone and the weld nugget. The model correctly predicts the non-symmetric nature of FSW process, and the relationships between the tool forces and the variation in the process parameters. It is found that the effective strain distribution is non-symmetric about the weld line while the temperature profile is almost symmetric in the weld zone.

  9. A continuum based fem model for friction stir welding-model development

    International Nuclear Information System (INIS)

    Buffa, G.; Hua, J.; Shivpuri, R.; Fratini, L.

    2006-01-01

    Although friction stir welding (FSW) has been successfully used to join materials that are difficult-to-weld or unweldeable by fusion welding methods, it is still in its early development stage and, therefore, a scientific knowledge based predictive model is of significant help for thorough understanding of FSW process. In this paper, a continuum based FEM model for friction stir welding process is proposed, that is 3D Lagrangian implicit, coupled, rigid-viscoplastic. This model is calibrated by comparing with experimental results of force and temperature distribution, then is used to investigate the distribution of temperature and strain in heat affect zone and the weld nugget. The model correctly predicts the non-symmetric nature of FSW process, and the relationships between the tool forces and the variation in the process parameters. It is found that the effective strain distribution is non-symmetric about the weld line while the temperature profile is almost symmetric in the weld zone

  10. Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints

    Science.gov (United States)

    Wu, Dong; Shen, Jun; Zhou, Meng-bing; Cheng, Liang; Sang, Jia-xing

    2017-10-01

    A liquid-nitrogen-cooling friction stir spot welding (C-FSSW) technology was developed for welding AZ31 magnesium alloy sheets. The liquid-nitrogen cooling degraded the deformability of the welded materials such that the width of interfacial cracks increased with increasing cooling time. The grain size of the stirred zone (SZ) and the heat-affected zone (HAZ) of the C-FSSW-welded joints decreased, whereas that of the thermomechanically affected zone (TMAZ) increased with increasing cooling time. The maximum tensile shear load of the C-FSSW-welded joints welded with a cooling time of 5 or 7 s was larger than that of the friction stir spot welding (FSSW)-welded joint, and the tensile shear load decreased with increasing cooling time. The microhardness of the C-FSSW-welded joints was greater than that of the FSSW-welded joint. Moreover, the microhardness of the SZ and the HAZ of the C-FSSW-welded joints increased, whereas that of the TMAZ decreased, with increasing cooling time.

  11. Study of hybrid laser / MAG welding process: characterization of the geometry and the hydrodynamics of the melt pool and development of a 3D thermal model

    International Nuclear Information System (INIS)

    Le Guen, E.

    2010-11-01

    Hybrid laser/MIG-MAG welding shows high advantages compared to laser welding or GMAW arc welding used separately. Thanks to this process, higher productivity can be gained through higher welding speed, higher squeeze tolerance moreover possible improvement of the metallurgical properties of the weld seam can be obtained. However, many operating parameters have to be set up in order to achieve optimal process. The complex physical phenomena, which govern welding process, have to be understood in order to use efficiently this technique in mass production. Understanding of these phenomena is also necessary to program numerical simulations which fit to this process. In the first step, experimental studies have been carried out with GMAW, laser and hybrid welding on samples of S355 steel. Influence of operating parameters has been analyzed through films performed with speed camera and macro-graphies of weld seam cross section. Surface deformations of the melt pool, induced by the arc pressure, weld pool length, droplet detachment and welding speed, have been analyzed precisely from images of the surface melt pool. In a second step, a numerical model was developed using the COMSOL Multiphysics software for MAG, laser and hybrid laser/MAG welding processes. A 3D quasi-stationary model has been calculated from the temperature field within the metal. The originality of the MAG and hybrid model lies in the prediction of the melt pool surface profile used to determine the 3D geometry, by taking into account the material input. The influence of different parameters such as arc power and speed welding on the efficiency as well as the distribution radius of the arc power and the arc pressure are analyzed through validations with different experimental results and different calculation configurations. (author)

  12. Laser welded steel sandwich panel bridge deck development : finite element analysis and stake weld strength tests.

    Science.gov (United States)

    2009-09-01

    This report summarizes the analysis of laser welded steel sandwich panels for use in bridge structures and : static testing of laser stake welded lap shear coupons. Steel sandwich panels consist of two face sheets : connected by a relatively low-dens...

  13. Development and Testing of an Experimental Polysensory Instructional System for Teaching Electric Arc Welding Processes. Report No. 24. Final Report.

    Science.gov (United States)

    Sergeant, Harold A.

    The population of the study consisted of 15 high school industrial arts students, 10 freshman and sophomore college students, and 10 adults. A polysensory, self-pacing instructional system was developed which included (1) pretests and post tests, (2) a general instruction book, (3) equipment to practice arc welding, (4) programed instruction…

  14. Programmable Automated Welding System (PAWS)

    Science.gov (United States)

    Kline, Martin D.

    1994-01-01

    An ambitious project to develop an advanced, automated welding system is being funded as part of the Navy Joining Center with Babcock & Wilcox as the prime integrator. This program, the Programmable Automated Welding System (PAWS), involves the integration of both planning and real-time control activities. Planning functions include the development of a graphical decision support system within a standard, portable environment. Real-time control functions include the development of a modular, intelligent, real-time control system and the integration of a number of welding process sensors. This paper presents each of these components of the PAWS and discusses how they can be utilized to automate the welding operation.

  15. Underwater welding using remote controlled robots. Development of remote underwater welding technology with a high power YAG laser

    International Nuclear Information System (INIS)

    Miwa, Yasuhiro; Sato, Syuuichi; Kojima, Toshio; Owaki, Katsura; Hirose, Naoya

    2002-01-01

    As components in nuclear power plant have been periodically carried out their inspection and repair to keep their integrity, on radioactive liquid wastes storage facility, because of difficulty on their inspection by human beings, some are remained without inspection, and even when capable of inspection, conversion from human works to remote operations is desired from a viewpoint of their operation efficiency upgrading. For response to these needs, some developments on a technology capable of carrying out inspection of their inside at underwater environment and repairing welding with YAG laser by means of remote operation, have been performed. Remote underwater inspection and repair technology is a combination technology of already applied underwater mobile technique (underwater inspection robot) with underwater YAG laser welding technique which is recently at actual using level. Therefore, this technology is composed of an inspection robot and a repair welding robot. And, testing results using the underwater inspection robot and welding test results using the underwater repair welding robot, were enough preferable to obtain forecasting applicable to actual apparatuses. This technology is especially effective for inspection and repair of inside of nuclear fuel cycle apparatuses and relatively high dose apparatuses, and can be thought to be applicable also to large capacity tanks, tanks dealing with harmful matters, underwater structures, and so on, in general industries. (G.K.)

  16. Development of remote bore tools for pipe welding/cutting by YAG laser

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Nakahira, Masataka; Kakudate, Satoshi; Tada, Eisuke; Obara, Kenjiro; Taguchi, Kou; Nakamori, Naokazu

    1996-07-01

    In D-T burning reactors such as International Thermonuclear Experimental Reactor (ITER), an internal access welding/cutting of blanket cooling pipe with bend sections is inevitably required because of spatial constraint due to nuclear shield and available port opening space. For this purpose, an internal access pipe welding/cutting using YAG laser beam is being developed according to the agreement of the ITER R and D task (T44). A design concept of welding/cutting processing head with a flexible optical fiber has been developed and the basic feasibility studies on welding, cutting and rewelding are performed using stainless steel plate (SS316L). In this report, the details of a welding/cutting head with a flexible optical fiber for YAG laser are described, together with the basic experiment results relating to the welding/cutting and rewelding. (author)

  17. Development of New Materials and Technologies for Welding and Surfacing at Research and Production Center 'Welding Processes and Technologies'

    International Nuclear Information System (INIS)

    Kozyrev, N A; Kryukov, R E; Galevsky, G V; Titov, D A; Shurupov, V M

    2015-01-01

    The paper provides description of research into the influence of new materials and technologies on quality parameters of welds and added metal carried out at research and production center «Welding processes and technologies».New welding technologies of tanks for northern conditions are considered, as well as technologies of submerged arc welding involving fluxing agents AN - 348, AN - 60, AN - 67, OK. 10.71 and carbon-fluorine containing additives, new flux cored wires and surfacing technologies, teaching programs and a trainer for welders are designed. (paper)

  18. Development of welding and hardfacing technology for the fast reactor programme in India

    International Nuclear Information System (INIS)

    Bhaduri, Arun Kumar

    2013-01-01

    Prior to the start of construction of the 500 MWe Prototype Fast Breeder Reactor (PFBR), extensive research backed technology development was planned and implemented for materials, welding consumables, fabrication of stringent-specification components and finalisation of quality assurance procedures of fabricated components. With close interaction amongst design, materials and non-destructive evaluation engineers, materials and welding consumable manufactures, and the fabrication industries, it has been possible to overcome the challenges during fabrication of all the structural welds and pipes. This paper presents a comprehensive experience of the development of welding and hardfacing technology for PFBR. (author)

  19. Investigation of the in-service development of weld defects

    International Nuclear Information System (INIS)

    Dubresson, J.

    1982-01-01

    The assessment of the fitness for purpose of a construction in service requires a periodical evaluation of its condition. In the particular case of a welded structure, inspections must be performed at regular intervals in order to prepare, at given moment, a chart showing the number, distribution and length of the observed defects, thus permitting to ascertain any change related to a previous state. Ultrasonic testing is generally regarded as quite appropriate for the purpose, especially in the case of structures in operation (pressure vessels). The nondestructive Testing Department of Institut de Soudure designed and developed an automatic system for analysing the weld defects, this permitting to suppress the problem related to manual inspection. The principle of the analysis method, as well as the results obtained with the system in preliminary experimentation are described. In the first part, the influence of the parameters, such as the testing sensitivity, the dimensional characteristics of artificial reflectors (saw cuts), on the obtained records are studied. The system is then used for the assessment of the fatigue behaviour of a real crack which had been repeatedly inspected at various stages of its development. The future possibilities of development of the method are also outlined [fr

  20. Qualifying program on Non-Destructive Testing, Visual Inspection of the welding (level 2)

    International Nuclear Information System (INIS)

    Shafee, M. A.

    2011-01-01

    Nondestructive testing is a wide group of analysis technique used in science and industry to evaluate the properties of a material, component or system without causing damage. Common Non-Destructive Testing methods include ultrasonic, magnetic-particle, liquid penetrate, radiographic, visual inspection and eddy-current testing. AAEA put the new book of the Non-Destructive Testing publication series that focused on Q ualifying program on Non-Destructive Testing, visual inspection of welding-level 2 . This book was done in accordance with the Arab standard certification of Non-Destructive Testing (ARAB-NDT-CERT-002) which is agreeing with the ISO-9712 (2005) and IAEA- TEC-DOC-487. It includes twenty one chapters dealing with engineering materials used in industry, the mechanical behavior of metals, metal forming equipments, welding, metallurgy, testing of welds, introduction to Non-Destructive Testing, defects in metals, welding defects and discontinuities, introduction to visual inspection theory, properties and tools of visual testing, visual testing, quality control regulations, standards, codes and specifications, procedures of welding inspections, responsibility of welding test inspector, qualification of Non-Destructive Testing inspector and health safety during working.

  1. Dynamic modelling, identification and simulation of industrial robots – for off-line programming of robotised laser welding

    NARCIS (Netherlands)

    Waiboer, R.R.

    2007-01-01

    Robotised laser welding is an innovative joining technique which is increasingly finding applications, especially in the automotive industry. In order to reduce the time needed to prepare and programthe laser welding robot, off-line programming systems are used. The off-line programming systems

  2. Mechanical Behaviour Investigation Of Aluminium Alloy Tailor Welded Blank Developed By Using Friction Stir Welding Technique

    Science.gov (United States)

    Dwi Anggono, Agus; Sugito, Bibit; Hariyanto, Agus; Subroto; Sarjito

    2017-10-01

    The objective on the research was to investigate the mechanical properties and microstructure of tailor welded blank (TWB) made from AA6061-T6 and AA1100 using friction stir welding (FSW) process. Due to the dissimilar mechanical properties of the two aluminium alloys, microhardness test was conducted to measure the hardness distribution across the weld nugget. The mixing of two distinct materials was influenced by tool rotation speed. Therefore, microstructure analysis was carried out to investigate the grain size and shape. The grain size of AA6061-T6 has increased in the heat affected zone (HAZ) while for AA1100 has decreased. In the weld nugget, it has found a hook defects in the dissimilar aluminium joining. By using monotonic tensile load, the different weld line direction was observed with the expansion in tool rotation. The joints failure were consistently on the area of AA1100 series. Furthermore, two specimens were investigated, one through the dissimilar aluminium and the other through similiar material. Inspection of the weld nugget hardness was shown that nonhomogen material intermixing during the stiring process as confirmed by microhardness measurement.

  3. Development of laser welding techniques for vanadium alloys

    International Nuclear Information System (INIS)

    Strain, R.V.; Leong, K.H.; Smith, D.L.

    1996-01-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Bead-on-plate and butt welds were previously performed to depths of about 4 mm with a 6-kW CO 2 laser on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys. These welds were made at a speed of 0.042 m/s using argon purging at a flow rate of 2.8 m 3 /s. The purge was distributed with a diffuser nozzle aimed just behind the laser beam during the welding operation. The fusion zones of welds made under these conditions consisted of very fine, needle-shaped grains and were also harder than the bulk metal (230-270 dph, compared to ∼180 dph for the bulk metal). A limited number of impact tests showed that the as-welded ductile-brittle transition temperatures (DBTT) was above room temperature, but heat treatment at 1000 degrees C for 1 h in vacuum reduced the DBTT to <-25 degrees C. Activities during this reporting period focused on improvements in the purging system and determination of the effect of welding speed on welds. A 2-kW continuous YAG laser at Lumonics Corp. in Livonia, MI, was used to make 34 test welds for this study

  4. Development of remote pipe welding tool for divertor cassettes in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Takao, E-mail: hayashi.takao@jaea.go.jp [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Naka (Japan); Sakurai, Shinji; Sakasai, Akira; Shibanuma, Kiyoshi [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Naka (Japan); Kono, Wataru; Ohnawa, Toshio; Matsukage, Takeshi [Toshiba Corporation, Yokohama, Kanagawa (Japan)

    2015-12-15

    Highlights: • Remote pipe welding tool accessing from inside of the pipe has been newly developed. • Cooling pipe with a jut on the edge expands the acceptable welding gap up to 0.5 mm. • Positioning accuracy of the laser beam is realized to be less than ±0.1 mm. • We have achieved robust welding for an angular misalignment of 0.5°. - Abstract: Remote pipe welding tool accessing from inside of the pipe has been newly developed for JT-60SA. Remote handling (RH) system is necessary for the maintenance and repair of the divertor cassette in JT-60SA. Because the space around the cooling pipe connected with the divertor cassette is very limited, the cooling pipe is to be remotely cut and welded from inside for the maintenance. A laser welding method was employed to perform circumferential welding by rotating the focusing mirror inside the pipe. However, the grooves of connection pipes are not precisely aligned for welding. The most critical issue is therefore to develop a reliable welding tool for pipe connection without a defect such as undercut weld due to a gap caused by angular and axial misalignments of grooves. In addition, an angular misalignment between two pipes due to inclination of pipe has to be taken into account for the positioning of the laser beam during welding. In this paper, the followings are proposed to solve the above issues: (1) Cooling pipe connected with the divertor is machined to have a jut on the edge so as to expand the acceptable welding gap up to 0.5 mm by filling the gap with welded jut. (2) Positioning accuracy of the laser beam for reliable welding is realized to be less than ±0.1 mm along the circumferential target for welding by a position control mechanism provided in the tool even in the case of up to angular misalignment of 0.5° between connection pipes. Based on the above proposals, we have achieved robust welding for a large gap up to 0.5 mm as well as the maximum angular misalignment of 0.5° between connection pipes

  5. Potential Applications of Friction Stir Welding to the Hydrogen Economy. Hydrogen Regional Infrastructure Program In Pennsylvania, Materials Task

    Energy Technology Data Exchange (ETDEWEB)

    Brendlinger, Jennifer [Concurrent Technologies Corporation, Johnstown, PA (United States)

    2009-07-17

    Friction Stir Welding (FSW) is a solid-state welding technique developed by The Welding Institute (TWI) of Cambridge, UK in the early 1990’s. The process uses a non-consumable rotating tool to develop frictional heat and plastically deform workpieces to be joined, resulting in a solid-state weld on the trailing side of the advancing tool. Since the materials to be joined are not melted, FSW results in a finer grain structure and therefore enhanced properties, relative to fusion welds. And unlike fusion welding, a relatively small number of key process parameters exist for FSW: tool rotational speed, linear weld velocity and force perpendicular to the joining surface. FSW is more energy efficient than fusion welding and can be accomplished in one or two passes, versus many more passes required of fusion welding thicker workpieces. Reduced post-weld workpiece distortion is another factor that helps to reduce the cost of FSW relative to fusion welding. Two primary areas have been identified for potential impact on the hydrogen economy: FSW of metallic pipes for hydrogen transmission and FSW of aluminum pressure vessels for hydrogen storage. Both areas have been under active development and are explored in this paper.

  6. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...... this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling...

  7. Development of Alternative Technology to PWHT in Site Welding

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jin; Lee, B. S.; Jang, J. S.; Kim, K. H.; Park, S. D.; Yoon, J. H.; Kim, M. C.; Kim, K. B.; Sung, K. W

    2007-04-15

    ASME Section IX added requirements for qualification when using temper bead welding in the 2004 edition. The temper bead welding techniques which can satisfy the requirements of the Code are needed to use them in the site repair welding. The optimized welding parameters can be obtained when controlling the process to supercritically-reheat and to subcritically-reheat the coarse grain region sequently. The microstructures of SCFGCG obtained from the Gleegle simulated specimens and those of post weld heat treated coarse grain region are compared. The obtained both microstructures showed almost similar patterns. mid bead deposition technique Suggested in this study has a technical concept that the mid beads are deposited between the deposited initial beads repeatedly in a bead layer, which gives a lot of reheating effects on brittle microstructure in HAZ. This newly suggested technique is considered to have more effective tempering effect than the conventional temper bead technique which has concept to deposit one type of beads in a bead layer. The suggested modeling in this study can simulate well the SMAW process. Hence this modeling was used in analyzing the more complicated welding process of multi-layer welding. The modeling was used to analyze the tempering effect on the microstructures of HAZ by considering the patterns of overlapping of the reheating regions under the consequently deposited beads. When considering the crack path in the ever-matched weld metal condition, the interface may have a resistance against the crack propagation. A182 filler and A625 filler were used to make the weld specimens which have different weld metal conditions. The crack directed toward the under-matched weld metal may propagate across the fusion line easier than that of the even-matched weld metal condition.

  8. Development of Alternative Technology to PWHT in Site Welding

    International Nuclear Information System (INIS)

    Lee, Ho Jin; Lee, B. S.; Jang, J. S.; Kim, K. H.; Park, S. D.; Yoon, J. H.; Kim, M. C.; Kim, K. B.; Sung, K. W.

    2007-04-01

    ASME Section IX added requirements for qualification when using temper bead welding in the 2004 edition. The temper bead welding techniques which can satisfy the requirements of the Code are needed to use them in the site repair welding. The optimized welding parameters can be obtained when controlling the process to supercritically-reheat and to subcritically-reheat the coarse grain region sequently. The microstructures of SCFGCG obtained from the Gleegle simulated specimens and those of post weld heat treated coarse grain region are compared. The obtained both microstructures showed almost similar patterns. mid bead deposition technique Suggested in this study has a technical concept that the mid beads are deposited between the deposited initial beads repeatedly in a bead layer, which gives a lot of reheating effects on brittle microstructure in HAZ. This newly suggested technique is considered to have more effective tempering effect than the conventional temper bead technique which has concept to deposit one type of beads in a bead layer. The suggested modeling in this study can simulate well the SMAW process. Hence this modeling was used in analyzing the more complicated welding process of multi-layer welding. The modeling was used to analyze the tempering effect on the microstructures of HAZ by considering the patterns of overlapping of the reheating regions under the consequently deposited beads. When considering the crack path in the ever-matched weld metal condition, the interface may have a resistance against the crack propagation. A182 filler and A625 filler were used to make the weld specimens which have different weld metal conditions. The crack directed toward the under-matched weld metal may propagate across the fusion line easier than that of the even-matched weld metal condition

  9. Development of electromagnetic welding facility of flat plates for nuclear industry

    International Nuclear Information System (INIS)

    Kumar, Rajesh; Sahoo, Subhanarayan; Sarkar, Biswanath; Shyam, Anurag

    2015-01-01

    Electromagnetic pulse welding (EMPW) process, one of high speed welding process uses electromagnetic force from discharged current through working coil, which develops a repulsive force between the induced current flowing parallel and in opposite direction. For achieving the successful weldment using this process the design of working coil is the most important factor due to high magnetic field on surface of work piece. In case of high quality flat plate welding factors such as impact velocity, angle of impact standoff distance, thickness of flyer and overlap length have to be chosen carefully. All the parameters should be optimized because above or below the optimized value, it is impossible to get high quality welding of flat components. Electromagnetic pulse welding of flat components has been studied in detail by many researches due to its advantages of increased formability and reduced spring back than other welding methods. The feasibility of electromagnetic welding of sheets has been established, but the effect of process parameters on the weld quality has not been justified properly. The present study investigates the effect of parameters on welding quality of flat sheets, which has wide applications in nuclear industry, automotive industry, aerospace, electrical industries. However formability and weld ability still remain major issues. The EMPW process for flat sheets and axi-symmetric components has been studied in details by many researchers. Due to ease in controlling the magnetic field enveloped inside tubes, the EMPW has been widely used for tube welding. In case of flat components control of magnetic field is difficult. Hence the application of EMPW gets restricted. The present work attempts to make a novel contribution by investigating the effect of process parameters on welding quality. The work emphasizes the approaches and engineering calculations required to effectively use of actuator in EMPW. (author)

  10. GTA Welding Research and Development for Plutonium Containment

    International Nuclear Information System (INIS)

    Sessions, C.E.

    2002-01-01

    This paper discusses the development of two welding systems that are used to contain actinide metals and oxides for long term storage. The systems are termed the bagless transfer system (BTS) and the outer container welder (OCW) system. The BTS is so named because it permits the containment of actinides without a polymeric package (i.e., bag). The development of these two systems was directed by Department of Energy Standard 3013, hereafter referred to as DOE 3013. This document defines the product and container requirements. In addition, it references national codes and standards for leak rates, ANSI N14.5, and design, American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section VIII (BandPVC)

  11. Creep damage development in welded X20 and P91

    Energy Technology Data Exchange (ETDEWEB)

    Brett, Steve; Holmstrom, Stefan; Hald, John; Borg, Ulrik; Aakjaer Jensen, Soeren; Vulpen, Rijk Van; Degnan, Craig; Vinter Dahl, Kristian; Vilhelmsen, Tommy

    2011-03-15

    The Martensitic steel X20CrMoV121 (hereinafter called X20) and the modified 9Cr1Mo steel (hereinafter called P91) have been used for a number of years in high temperature applications since they posses superior creep strength compared to low alloyed steels. Due to the simple fact that very few failures were observed, almost no knowledge as to the evolution of creep damage in welds were available despite long operation times exceeding well over 100.000 hours. It has been suggested that X20 will develop creep damage in a different manner compared to low alloyed steel, i.e damage initiation should be slow followed by accelerated growth. The research work presented in this report included systematic investigations of the first components of X20, which has developed creep during long-term operation. All of the investigated components showed creep damage evolution similar to low alloy steels

  12. An Investigation of the Perception of Professional Development among Mississippi's Secondary Welding Teachers

    Science.gov (United States)

    Ferguson, Douglas Forrest

    2012-01-01

    This research study originated as a result of a paucity of information available regarding how secondary welding teachers in Mississippi perceive the value of professional development they have received within the previous two years. The purpose of this study was to examine the perceptions of Mississippi's secondary welding teachers regarding how…

  13. Welding, Bonding and Fastening, 1984

    Science.gov (United States)

    Buckley, J. D. (Editor); Stein, B. A. (Editor)

    1985-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  14. Microstructure development of welding joints in high Cr ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kubushiro, Keiji; Takahashi, Satoshi; Morishima, Keiko [IHI Corporation (Japan). Research Lab.

    2010-07-01

    Creep failure in high Cr ferritic steels welding joints are Type IV failure. Type IV-failure was ruptured in fine grained region of heat affected zone, microstructure and phase transformation process at welding in fine grained region were very important to clarify. Microstructure difference of heat affected zone was investigated in Gr.91, Gr.92, Gr.122 welding joint. The fraction of 60 degree block boundary, packet boundary, random boundary (including prior gamma boundary) length was compared in three ferritic steels by EBSP(Electron Backscatter Diffraction Pattern) analysis. HAZ was almost fully martensite phase in Gr.122 weld joint. On the other hand, HAZ in Gr.91 welding joint were some equiaxial grain and martensite structure. (orig.)

  15. Development of an ultrasonic weld inspection system based on image processing and neural networks

    Science.gov (United States)

    Roca Barceló, Fernando; Jaén del Hierro, Pedro; Ribes Llario, Fran; Real Herráiz, Julia

    2018-04-01

    Several types of discontinuities and defects may be present on a weld, thus leading to a considerable reduction of its resistance. Therefore, ensuring a high welding quality and reliability has become a matter of key importance for many construction and industrial activities. Among the non-destructive weld testing and inspection techniques, the time-of-flight diffraction (TOFD) arises as a very safe (no ionising radiation), precise, reliable and versatile practice. However, this technique presents a relevant drawback, associated to the appearance of speckle noise that should be addressed. In this regard, this paper presents a new, intelligent and automatic method for weld inspection and analysis, based on TOFD, image processing and neural networks. The developed system is capable of detecting weld defects and imperfections with accuracy, and classify them into different categories.

  16. Development of ceramic support the base of cordierite for one-side welding

    International Nuclear Information System (INIS)

    Almeida, L.L.P. de; Vieira, C.M.F.; Paranhos, R.P.R.; Tatagiba, L.C.S.

    2009-01-01

    This work has as objective develops ceramic backing for the execution of one side welds in steel. The backing consists the mixture of refractory mineral (Cordierite), adhesive (sodium silicate) and water. Test coupons produced by uniaxial pressing and burned to 1100 deg C they were submitted to physical and mechanical tests for determination the water absorption and flexion strength, respectively. The microstructure of ceramics produced was evaluated by diffraction of X-Ray, scanning electron microscopy and optical microscopy. After the production of the ceramic backing, welding tests were accomplished by the process MIG-MAG to evaluate the format of the weld bead. Based on the results obtained, during and after the welding accomplished with the employment of the ceramic backing, has shown that it is technically feasible for one-side welding. (author)

  17. Development of aluminothermic welding technology for assembly of reinforcement blocks for nuclear power plants

    International Nuclear Information System (INIS)

    Janicko, S.

    1984-01-01

    The newly developed technology of aluminothermic welding of reinforcing bars is used for the construction of reinforcements, turbine foundations, platforms, bubbling depressurization towers, etc. The method makes possible a good welding of the ends of the reinforcement and reproducibility of welded joints properties without the influence of the human factor on quality. The chemical composition of the weld has a higher content of C and Si which is important with regard to strength. Tensile strength, hardness (ranging from 188 to 270 HV 300), notch toughness (11 to 113 J.cm -2 ) and integrity were assessed. The savings achieved by introduction of the new technology are 1.783 h/weld. (J.H.)

  18. Electron beam welding: study of process capabilities and limitations towards development of nuclear components

    International Nuclear Information System (INIS)

    Vadolia, Gautam; Singh, Kongkham Premjit

    2015-01-01

    Electron beam (EB) welding technology is an established and widely adopted technique in nuclear research and development area. Electron Beam welding is thought of as a candidate process for ITER Vacuum Vessel Fabrication. Dhruva Reactor @ BARC, Mumbai and Niobium Superconducting accelerator Cavitity @ BARC has adopted the EB welding technique as a fabrication route. The highly concentrated energy input of the electron beam has added the advantages over the conventional welding as being less HAZ and provided smooth and clean surface. EB Welding has also been used for the joining of various reactive and refractory materials. EB system as heat source has also been used for vacuum brazing application. The Welding Institute (TWI) has demonstrated that EBW is potentially suitable to produce high integrity joints in 50 mm pure copper. TWI has also examined 150 kV Reduced Pressure Electron Beam (RPEB) gun in welding 140 mm and 147 mm thickness Nuclear Reactor Pressure Vessel Steel (SA 508 grade). EBW in 10 mm thick SS316 plates were studied at IPR and results were encouraging. In this paper, the pros and cons and role of electron beam process will be studied to analyze the importance of electron beam welding in nuclear components fabrication. Importance of establishing the high precision Wire Electro Discharge Machining (WEDM) facility will also be discussed. (author)

  19. Advances in solar cell welding technology

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, L.G.; Lott, D.R.

    1982-09-01

    In addition to developing the rigid substrate welded conventional cell panels for an earlier U.S. flight program, LMSC recently demonstrated a welded lightweight array system using both 2 x 4 and 5.9 x 5.9 cm wraparound solar cells. This weld system uses infrared sensing of weld joint temperature at the cell contact metalization interface to precisely control weld energy on each joint. Modules fabricated using this weld control system survived lowearth-orbit simulated 5-year tests (over 30,000 cycles) without joint failure. The data from these specifically configured modules, printed circuit substrate with copper interconnect and dielectric wraparound solar cells, can be used as a basis for developing weld schedules for additional cell array panel types.

  20. Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications

    Science.gov (United States)

    Kumar, B. Ramesh; Gangradey, R.

    2012-11-01

    Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.

  1. Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications

    International Nuclear Information System (INIS)

    Kumar, B Ramesh; Gangradey, R

    2012-01-01

    Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.

  2. Development of a process envelope for friction stir welding of DH36 steel – A step change

    International Nuclear Information System (INIS)

    Toumpis, Athanasios; Galloway, Alexander; Cater, Stephen; McPherson, Norman

    2014-01-01

    Highlights: • The friction stir welding speed on DH36 steel has been substantially increased. • Excellent quality welds offering potential economic advantages are obtained. • Friction stir welding of steel generates a very complex metallurgical system. • Slow and intermediate welding speed tensile samples fractured in the parent material. • Increasing traverse speed is seen to improve the impact toughness of the weld. - Abstract: Friction stir welding of steel presents an array of advantages across many industrial sectors compared to conventional fusion welding techniques. However, the fundamental knowledge of the friction stir welding process in relation to steel remains relatively limited. A microstructure and property evaluation of friction stir welded low alloy steel grade DH36 plate, commonly used in ship and marine applications has been undertaken. In this comprehensive study, plates of 2000 × 200 × 6 mm were butt welded together at varying rotational and traverse speeds. Samples were examined microscopically and by transverse tensile tests. In addition, the work was complemented by Charpy impact testing and micro-hardness testing in various regions of the weld. The study examined a wide range of process parameters; from this, a preliminary process parameter envelope has been developed and initial process parameter sets established that produce commercially attractive excellent quality welds through a substantial increase in the conventionally recognised weld traverse speed

  3. 3D Modeling and Testing of Contact Problems in Resistance Welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin

    A generic, electro-thermo-mechanically coupled finite element program is developed for three-dimensional simulation of resistance welding. The developed computer program has reached a level of a complete standalone software that can be utilized as a tool in the analysis of resistance welding...... of resistance welding processes, which cover a wide range of spot welding and projection welding applications. Three-dimensional simulation of spot welding enables the analysis of critical effects like electrode misalignment and shunt effects between consecutive spots. A single-sided spot welding case involving...... three-dimensional contact is also presented. This case was suggested by and discussed with a German steel manufacturer. When it comes to projection welding, a natural need for three-dimensional analysis arises in many cases because of the involved geometries. Cross-wire welding and welding of square...

  4. State Skill Standards: Welding

    Science.gov (United States)

    Pointer, Mike; Naylor, Randy; Warden, John; Senek, Gene; Shirley, Charles; Lefcourt, Lew; Munson, Justin; Johnson, Art

    2005-01-01

    The Department of Education has undertaken an ambitious effort to develop statewide occupational skill standards. The standards in this document are for welding programs and are designed to clearly state what the student should know and be able to do upon completion of an advanced high-school program. The writing team determined that any statewide…

  5. Re-utilization by '' Stud Welding'' of capsules charpy-V belonged to surveillance programs

    International Nuclear Information System (INIS)

    Lapena, J.; Perosanz, F. J.; Gachuz, M.

    1998-01-01

    The perspectives of nuclear plants life extension that are approximating to their end of design life compels to make new surveillance programs. The re-utilization of specimens belonging to surveillance capsules already tested in these new surveillance programs seems be a solution worldwide accepted. The two possible re-utilization processes of this irradiated material are: Subsized specimens and Reconstitution. While the first alternative (Subsized specimens) outlines serious problems for apply the results, the reconstitution eliminates this problem, since the resulting specimens after of the reconstruction procedure would be of the same dimensions that the original. The reconstruction process involves welds, and therefore it has associated the specific problems of this type of joints. Furthermore, by be tried to material irradiated with certain degree of internal damage, that is the variable to evaluate, requires that the heat contribution to the piece not originate local thermal treatments that alter its mechanical qualities. In this work has been followed the evolution by the variables of the weld process and their influence on the quality by the union from metallographic al point of view as well as mechanical for a weld procedure by Stud Welding. The principal objective is to optimize said parameters to assure a good mechanical continuity, without detriment of the microstructural characteristics of the original material. To verify this last have been accomplished with metallographical tests, temperature profile, hardness and will be carried out also Charpy tests. (Author)

  6. Simulation of Welding Distortions in Theory and Practice

    DEFF Research Database (Denmark)

    Birk-Sørensen, Martin; Kierkegaard, Henning

    1997-01-01

    by an optimised welding order. Welding test samples prove that the constraint of the sample and the time between each pass in a multipass weld affect the magnitude of distortion. Experiments with welding specimens in the form of butt-and fillet welds have been carried out. They show angular deflections as well......In the last few years the use of robot welding processes has increased significatnly. The programming of the robots has until now mainly focused on high efficiency, i.e.high torch rate time, and hence, minimising the inefficient "travelling" time. Together with developing high-performance welding...... due to cutting and welding and parlty in the form of dimensional variation due to human factors. Measurements have been made of the production line for assemblies. The measurements show that distortions related to the multirobot welding are a factor which can rather easily be controlled...

  7. Development of a new bundle welding technology for CANDU fuels

    International Nuclear Information System (INIS)

    Kim, Soo Sung; Lee, D. Y.; Goo, D. S.

    2010-01-01

    The new technology of welding process for fuel bundle of CANDU nuclear fuels is considered important in respect to the soundness of weldments and the improvement of the performance of nuclear fuels during the operation in reactor. The probability of leakage of the fission products is mostly apt to occur at the weldments of fuel bundles, and it is connected directly with the safety and life prediction of the nuclear reactor in operation. The fuel bundles of CANDU nuclear fuels are welded by the electrical resistance method, connecting the endplates and endcaps with fuel rods. Therefore, the purpose of this study of the 2nd year is to select the proper welding parameters and to investigate the characteristics of the full-sized samples using the projection endplates and make some prototype samples for the endplate welding of CANDU nuclear fuels. This study will be also provide the fundamental data for the new design and fabrications of CANDU nuclear fuel bundles

  8. Development and tests of large nuclear turbo-generator welded rotors

    International Nuclear Information System (INIS)

    Colombie, H.; Thiery, M.; Rotzinger, R.; Pelissou, C.; Tabacco, C.; Fernagut, V.

    2015-01-01

    Turbo-generators require large forgings for the rotor and it is a worldwide practice to manufacture turbo-generator rotor bodies as single piece forgings. Rotors for nuclear applications (4-pole rotors design, 1500/1800 rpm) require forgings of up to 2.0 m diameter and ultra large ingots with weight more than 500 tons. Nowadays only few forge masters can deliver such forgings in the world. Based on the large welding experience Alstom has gained over decades on steam and gas turbines and Alstom's multi piece shrunk turbo-generator rotors, it was suggested to manufacture 4-pole turbo-generator rotors by welding the shaft from aligned cylindrical forgings. Compared to turbine welded rotors, the shaft of a turbo-generator rotor presents differences linked to dimensions/weight, weld depth and electrical application. The manufacture of a 2 disc model allowed to prove through electrical and mechanical analysis the reliability of the concept as well as the reliability of the manufacturing processes through material tests, micro sections, electrical component tests, weld geometry, welding processes (TIG,SAW,...), weld inspection (Ultrasonic testing, radiographic inspection,...) weld heat treatments and machining. Then a full rotor able to replace a single forging rotor was manufactured in order to validate and prove to potential customers the validity of the welded rotor technology. During the first order from EDF of a welded 900 MW spare rotor, the procedure for the Non Destructive Test on a slotted rotor was developed upon EDF request in order to compare future Non Destructive Testing with the finger print of the new rotor. This complete rotor was delivered to EDF in January 2013. This rotor is in operation in a nuclear unit since November 2013. (authors)

  9. Development and application of a welding procedure for remote repair of Magnox reactor internal components

    International Nuclear Information System (INIS)

    Morgan-Warren, E.J.

    1988-01-01

    This paper summarises the development and application of an all-welding repair method for reinforcing magnox reactor internal components. The development was dominated by the necessity for remote operation and the environmental constraints, in particular the oxide covering on the steel reactor structure. The choice of welding process is described, together with the development of the procedure for remote operation. The quality assurance procedure, including the verification of the technique and monitoring of the repair operation, is discussed. (author)

  10. Development of pipe welding, cutting and inspection tools for the ITER blanket

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Ito, Akira; Taguchi, Kou; Takiguchi, Yuji; Takahashi, Hiroyuki; Tada, Eisuke

    1999-07-01

    In D-T burning reactors such as International Thermonuclear Experimental Reactor (ITER), an internal access welding/cutting of blanket cooling pipe with bend sections is inevitably required because of spatial constraint due to nuclear shield and available port opening space. For this purpose, internal access pipe welding/cutting/inspection tools for manifolds and branch pipes are being developed according to the agreement of the ITER R and D task (T329). A design concept of welding/cutting processing head with a flexible optical fiber has been developed and the basic feasibility studies on welding, cutting and rewelding are performed using stainless steel plate (SS316L). In the same way, a design concept of inspection head with a non-destructive inspection probe (including a leak-testing probe) has been developed and the basic characteristic tests are performed using welded stainless steel pipes. In this report, the details of welding/cutting/inspection heads for manifolds and branch pipes are described, together with the basic experiment results relating to the welding/cutting and inspection. In addition, details of a composite type optical fiber, which can transmit both the high-power YAG laser and visible rays, is described. (author)

  11. Development of a Fiber Laser Welding Equipment for the LVDT Manufacturing

    International Nuclear Information System (INIS)

    Kim, S. S.; Lee, C. Y.; Park, S. J.; Shin, Y. T.; Cho, M. S.; Choo, K. N.; Kim, B. G.; Kang, Y. H.

    2010-12-01

    The instrumented fuel irradiation test at a research reactor is needed to evaluate the performance of the developed nuclear fuel. A LVDT(Linear Variable Differential Transformer) can be designed to measure the pressure level and elongation during the irradiation test by using various metals and MI cables. LVDT's parts were composed of MI cables and Inconel 600 materials. Laser welding technology is widely used to fabricate some products of nuclear fuel in the nuclear industry. Especially, micro-welding using Fiber laser is one of the key technologies to be developed to fabricate precise products of fuel irradiation test. We also have to secure micro-welding technology to perform various instrumentations for fuel irradiation test. Micro-welding technology was adopted to seal between seal tubes and MI cables with thickness of 0.15 mm. The soundness of welding area has to be confirmed to prevent fission gas of the fuel from leaking out of the fuel rods during the fuel irradiation test. In this report, fundamental data for welding technology using Fiber laser was proposed to seal Inconel 600 sheaths of LVDT instrumented capsules for the irradiation test. Moreover, It is expected that the use of fuel irradiation tests will be revitalized by the self-development of LVDT's parts using the Fiber laser welding technology

  12. Development of Preemptive Repair Technology for Alloy 600 J-Groove Welds of Reactor Vessel Upper Head CEDM Nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kwang Woon; Lee, Jang Wook; Cho, Ki Hyun; Choi, Kwang Min; Choi, Dong Chul; Cho, Sang Beum; Cho, Hong Seok [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    After 2000, PWSCC in numerous NPPs around the world has been generated, and recently, PWSCC in several CEDM nozzles of domestic NPP Hanbit Unit 3 and 4 was founded and repaired with embedded flaw repair(EFR) welding method by Westinghouse. In this study, development status of EFR equipment and basic experimental results for preventive PWSCC of RVUH CEDM nozzles will be introduced. The development of EFR seal welding equipment and welding process for the preemptive repair with original Alloy 600 J-Groove welds of RVUHP was conducted. The EFR welding equipment was tested to be possible seal welding to track J-Groove welds with three dimensional curved surfaces and OD penetration with vertical welding position. Through several BOP and overlay welding experiments, it was verified that good weld beads with no defects, such as cracks, spatter, undercut at the stable welding conditions with heat input of 27.4-32.5 KJ/in were well produced. Consequently, it is expected that the EFR seal welding technique will be applicable on the site.

  13. Design and development of weld inspection manipulator for reactor pressure vessel of TAPS-1

    International Nuclear Information System (INIS)

    Chatterjee, H.; Singh, J.P.; Ranjon, R.; Kulkarni, M.P.; Patel, R.J.

    2013-01-01

    The reactor pressure vessel (RPV) of TAPS-1 BWR contains six longitudinal and four circumferential welds. Periodical in-service inspection of these weld joints has been a regulatory issue pending for long. In the 22 nd refuelling outage in July 2012 the inspection of L1-1, L1-2 longitudinal welds as well as their junctions with C1 circumferential weld were proposed to be done using ultrasonic technique. Approaching these welds from OD side of the RPV is a difficult and tedious task. Therefore it was decided to examine these welds from ID side of the RPV by filling the cavity with water and approaching the RPV from top. No technology was locally available to take the probes at a depth of 10-12 m under water. NPCIL approached RTD, BARC to develop an underwater manipulator to accomplish this task. RTD took up this work as a challenge and came out with the design of manipulator. The weld inspection manipulator (WIM) was fabricated on a war foot basis, tested and successfully implemented in the reactor for the first time in TAPS history. The entire activity was completed in three months time. This article gives the details of design, manufacturing, performance testing, qualification trials and implementation of WIM in the reactor. Ultrasonic testing techniques were developed by QAD, BARC which are not covered in this article. (author)

  14. Characterization and Modeling of Microstructure Development in Nickel-base Superalloy Welds

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S.S.; David, S.A.; Miller, M.K.; Vitek, J.M.

    1999-11-01

    Welding is important for economical reuse and reclamation of used and failed nickel-base superalloy blades, respectively [1]. Solidification and solid state decomposition of {gamma} (Face Centered Cubic, FCC) phase into {gamma}{prime} (L1{sub 2}-ordered) phase control the properties of these welds. In previous publications, the microstructure development in electron beam welds of PWA-1480 alloy [2] and laser beam welds of CMSX-4 alloy [3] were presented. These results showed that the weld cracking in these alloys were associated with low melting point eutectic at the dendrite boundaries [1,2]. The eutectic-{gamma}{prime} precipitation was reduced at rapid weld cooling rates and the partitioning between {gamma}-{gamma}{prime} phase was found to be far from equilibrium conditions [3,4]. This observation was related to diffusional growth of {gamma}{prime} precipitate into {gamma} phase. Subsequent to the above work, the precipitation characteristics of {gamma}{prime} phase from {gamma} phase were evaluated during continuous cooling conditions [5]. The results show that the number density of {gamma} precipitates increased with an increase in cooling rate. However, the details of this decomposition and also the fine-scale elemental partitioning characteristics between {gamma}-{gamma}{prime} were not investigated. In this paper, the precipitation characteristics of {gamma}{prime} from {gamma} during continuous cooling conditions were investigated with transmission electron microscopy, and atom probe field ion microscopy. In addition, thermodynamic and kinetic models were used to describe microstructure development in Ni-base superalloy welds.

  15. Development and validation of predictive simulation model of multi-layer repair welding process by temper bead technique

    International Nuclear Information System (INIS)

    Okano, Shigetaka; Miyasaka, Fumikazu; Mochizuki, Masahito; Tanaka, Manabu

    2015-01-01

    Stress corrosion cracking (SCC) has recently been observed in the nickel base alloy weld metal of dissimilar pipe joint used in pressurized water reactor (PWR) . Temper bead technique has been developed as one of repair procedures against SCC applicable in case that post weld heat treatment (PWHT) is difficult to carry out. In this regard, however it is essential to pass the property and performance qualification test to confirm the effect of tempering on the mechanical properties at repair welds before temper bead technique is actually used in practice. Thus the appropriate welding procedure conditions in temper bead technique are determined on the basis of the property and performance qualification testing. It is necessary for certifying the structural soundness and reliability at repair welds but takes a lot of work and time in the present circumstances. Therefore it is desirable to establish the reasonable alternatives for qualifying the property and performance at repair welds. In this study, mathematical modeling and numerical simulation procedures were developed for predicting weld bead configuration and temperature distribution during multi-layer repair welding process by temper bead technique. In the developed simulation technique, characteristics of heat source in temper bead welding are calculated from weld heat input conditions through the arc plasma simulation and then weld bead configuration and temperature distribution during temper bead welding are calculated from characteristics of heat source obtained through the coupling analysis between bead surface shape and thermal conduction. The simulation results were compared with the experimental results under the same welding heat input conditions. As the results, the bead surface shape and temperature distribution, such as A cl lines, were in good agreement between simulation and experimental results. It was concluded that the developed simulation technique has the potential to become useful for

  16. Development of friction welding method by electric servo motors; Dendo servo shiki masatsu assetsuho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H; Onuma, M; Hasegawa, T; Sakamoto, T [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    The standard friction welding has two methods; the brake method and the inertia method. We have developed a new friction welding method with the electric servo motor system. The forming of plastic fluidity layers of interface is evaluated quantitatively with the feedback control characteristics. The new method has enabled to reduce the heat effect and the burr of friction welding. In the method, we could reduce the getting heat energy, from one-third to half less than the previous methods. 6 refs., 16 figs.

  17. Fiscal 2000 achievement report on development of high-efficiency high-reliability welding technology through improvement on welding techniques; 2000 nendo yosetsu gijutsu no kodoka ni yoru kokoritsu koshinraisei yosetsu gijutsu no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    Efforts are made to develop a welding design support system capable of increasing reliability and enhancing welding efficiency. Activities are conducted in the six fields of (1) the development of welding process simulation models, (2) development of welded section structure simulation models, (3) development of simulation models for predicting welding caused deformation, (4) integration of the models, (5) analysis of the welding phenomenon, and (6) the elucidation of the defect generation mechanism. In field (1), efforts are made to develop an arc plasma model, a molten pool convective heat transportation model, and a welding process model. In the effort to develop an arc plasma model, studies are made about a stationary axisymmetric arc in its steady state and about a constitutive equation and computation algorithm for developing a model in which a tungsten electrode (cathode) and an arc plasma welding pool (anode) are integrated. Furthermore, the simulation outcomes are experimentally verified. Satisfactory models are obtained as far as qualitative properties are concerned. (NEDO)

  18. Development of Mechanical Sealing and Laser Welding Technology to Instrument Thermocouple for Nuclear Fuel Test Rod

    International Nuclear Information System (INIS)

    Joung, Chang-Young; Ahn, Sung-Ho; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho

    2015-01-01

    Zircaloy-4 of the nuclear fuel test rod, AISI 316L of the mechanical sealing parts, and the MI (mineral insulated) cable at a thermocouple instrumentation are hetero-metals, and are difficult to weld to dissimilar materials. Therefore, a mechanical sealing method to instrument the thermocouple should be conducted using two kinds of sealing process as follows: One is a mechanical sealing process using Swagelok, which is composed of sealing components that consists of an end-cap, a seal tube, a compression ring and a Swagelok nut. The other is a laser welding process used to join a seal tube, and an MI cable, which are made of the same material. The mechanical sealing process should be sealed up with the mechanical contact compressed by the strength forced between a seal tube and an end-cap, and the laser welding process should be conducted to have no defects on the sealing area between a seal tube and an MI cable. Therefore, the mechanical sealing and laser welding techniques need to be developed to accurately measure the centerline temperature of the nuclear fuel test rod in an experimental reactor. The mechanical sealing and laser welding tests were conducted to develop the thermocouple instrumentation techniques for the nuclear fuel test rod. The optimum torque value of a Swagelok nut to seal the mechanical sealing part between the end-cap and seal tube was established through various torque tests using a torque wrench. The optimum laser welding conditions to seal the welding part between a seal tube and an MI cable were obtained through various welding tests using a laser welding system

  19. Development of Mechanical Sealing and Laser Welding Technology to Instrument Thermocouple for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Ahn, Sung-Ho; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Zircaloy-4 of the nuclear fuel test rod, AISI 316L of the mechanical sealing parts, and the MI (mineral insulated) cable at a thermocouple instrumentation are hetero-metals, and are difficult to weld to dissimilar materials. Therefore, a mechanical sealing method to instrument the thermocouple should be conducted using two kinds of sealing process as follows: One is a mechanical sealing process using Swagelok, which is composed of sealing components that consists of an end-cap, a seal tube, a compression ring and a Swagelok nut. The other is a laser welding process used to join a seal tube, and an MI cable, which are made of the same material. The mechanical sealing process should be sealed up with the mechanical contact compressed by the strength forced between a seal tube and an end-cap, and the laser welding process should be conducted to have no defects on the sealing area between a seal tube and an MI cable. Therefore, the mechanical sealing and laser welding techniques need to be developed to accurately measure the centerline temperature of the nuclear fuel test rod in an experimental reactor. The mechanical sealing and laser welding tests were conducted to develop the thermocouple instrumentation techniques for the nuclear fuel test rod. The optimum torque value of a Swagelok nut to seal the mechanical sealing part between the end-cap and seal tube was established through various torque tests using a torque wrench. The optimum laser welding conditions to seal the welding part between a seal tube and an MI cable were obtained through various welding tests using a laser welding system.

  20. Development of an End-plug Welding Technology for an Instrumented Fuel Irradiation Test

    International Nuclear Information System (INIS)

    Kim, Soo Sung; Lee, Chul Yong; Shin, Yoon Taek; Choo, Kee Nam

    2010-01-01

    The irradiation test of end-plug specimens was planned for the evaluation of nuclear fuels performance. To establish the fabrication process, and for satisfying the requirements of the irradiation test, an orbital-GTA weld machine for the specimens of the dual rods was developed, and the preliminary welding experiments for optimizing the process conditions of the specimens of the dual rods were performed. Dual rods with a 9.5mm diameter and a 0.6mm wall thickness of the cladding tubes and end-plugs have been used and the optimum conditions of the pin-hole welding have also been selected. This paper describes the experimental results of the GTA welds of the specimens of the dual rods and the metallography examinations of the GTA welded specimens for various welding conditions for the instrumented fuel irradiation test. These investigations satisfied the requirements of the instrumented irradiation test and the GTA welds for the specimens of the dual rods at the HANARO research reactor

  1. Development of phased array UT procedure for crack depth sizing on nickel based alloy weld

    International Nuclear Information System (INIS)

    Hirasawa, Taiji; Okada, Hisao; Fukutomi, Hiroyuki

    2012-01-01

    Recently, it is reported that the primary water stress corrosion cracking (PWSCC) has been occurred at the nickel based alloy weld components such as steam generator safe end weld, reactor vessel safe end weld, and so on, in PWR. Defect detection and sizing is important in order to ensure the reliable operation and life extension of nuclear power plants. In the reactor vessel safe end weld, it was impossible to measure crack depth of PWSCC. The crack was detected in the axial direction of the safe end weld. Furthermore, the crack had some features such as shallow, large aspect ratio (ratio of crack depth and length), sharp geometry of crack tip, and so on. Therefore, development and improvement of defect detection and sizing capabilities for ultrasonic inspection technique is required. Phased array UT technique was applied to nickel based alloy weld specimen with SCC cracks. From the experimental results, good accuracy of crack depth sizing by phased array UT for the inside inspection was shown. From these results, UT procedure for crack depth sizing was verified. Therefore, effectiveness of phased array UT for crack depth sizing in the nickel based alloy welds was shown. (author)

  2. Development of welding technique by remote control at the JMTR Hot Laboratory

    International Nuclear Information System (INIS)

    Shimizu, Michio; Iwamatu, Sigemi; Takada, Humiki

    2000-03-01

    Several kinds of welding techniques have been systematically developed using the remote controlled procedures in the JMTR Hot Laboratory. These are as follows, (1) re-instrumentation's of FP gas pressure gauge and thermocouple to an irradiated fuel rod for the centerline temperature measurement, (2) welding of the un-irradiated/irradiated specimen and machining process to produce tensile test specimens, (3) fabrication of Co-60 radiation source from materials for reactivity adjustment in JMTR core, (4) re-capsuling of irradiated materials in the different types of irradiation facilities. These research and development of circumferential and sealed welding for capsuling and welding of irradiated specimen for re-irradiation were implemented under the remote-controlled conditions in the Hot Cell. These techniques will be very indispensable for supporting the irradiation experiments to be conducted in the JMTR. (author)

  3. A development of an automated ultrasonic TOFD inspection system using an welding line tracing robot

    International Nuclear Information System (INIS)

    Cho, Hyun; Song, Sung Jin; Lee, Kang Won; Kim, Young Jin; Woo, Jong Sik

    2006-01-01

    Large scaled ships, manufactured inside of the country, should be passed welding inspection and painting film inspection. Normally, these kind of inspections are conducted by human inspectors manually, although it cause industrial disasters such as falling accidents and diving accidents frequently. In addition, Ship makers are not to give a full trust to shipowners because manual inspections cannot be conducted all over the welding parts. So, in this study we developed an automated ultrasonic TOFD inspection system using an welding line tracing robot. This system, controlled by an inspector at a remote field, can inspect welding parts of ship outer panel both under water and in air. In this paper we present the developed robot and ultrasonic TOFD inspection system and the inspection result.

  4. A development of an automated ultrasonic TOFD inspection system using an welding line tracing robot

    International Nuclear Information System (INIS)

    Cho, Hyun; Song, Sung Jin; Lee, Kang Won; Kim, Young Jin; Woo, Jong Sik

    2006-01-01

    Large scaled ships, manufactured inside of the country, should be passed welding inspection and painting film inspection. Normally, these kind of inspections are conducted by human inspectors manually, although it cause industrial disasters such as falling accidents and diving accidents frequently. In addition, Ship makers are not to give a full trust to ship owners because manual inspections cannot be conducted all over the welding parts. So, in this study we developed an automated ultrasonic TOFD inspection system using an welding line tracing robot. This system, controlled by an inspector at a remote field, can inspect welding parts of ship outer panel both under water and in air. In this paper we present the developed robot and ultrasonic TOFD inspection system and the inspection result.

  5. Design and development of Pc-based TOFD ultrasonic scanning system for welds inspection

    International Nuclear Information System (INIS)

    Suhairy Sani; Mohamad Pauzi Ismai; Muhammad Faiz Mohd Shukri; Amry Amin Abas

    2010-01-01

    This paper describes the design and development of a portable PC-based ultrasonic scanning system for industrial applications. The system which is called TOFD Ultrasonic Scanning System (TOFUSS) is used to create a gray scale imaging techniques are applied to the RF (AC) signal phase and enables weld integrity to be observed in real time. TOFD consists of a separate ultrasonic transmitter and receiver. The Probes are aimed at the same point in the weld volume. The entire weld is flooded with ultrasound allowing inspection of the weld. With a time of flight path, the ultrasonic velocity and the spatial relationship of the two probes, location and height of the defects can be very accurately calculated. The algorithm and complete system were implemented in a computer software developed using Microsoft Visual BASIC 6.0. (author)

  6. Material and welding development of anchor plates to build nuclear power plant by blue arc process

    International Nuclear Information System (INIS)

    Gibelli, C.E.

    1986-01-01

    To build nuclear power plants, anchor plates are plenty used. These anchor plates serve as a system with the purpose to fix many heavy components or a simple stair. Considering the necessity of element fabrication fastly, with reasonable economy and quality, the arc study welding process (blue arc) was used. A special development of the material concept as well as a welding procedure and a subsuppliers qualification of the raw material was necessary. (Author) [pt

  7. Solid State Welding Development at Marshall Space Flight Center

    Science.gov (United States)

    Ding, Robert J.; Walker, Bryant

    2012-01-01

    What is TSW and USW? TSW is a solid state weld process consisting of an induction coil heating source, a stir rod, and non-rotating containment plates Independent heating, stirring and forging controls Decouples the heating, stirring and forging process elements of FSW. USW is a solid state weld process consisting of an induction coil heating source, a stir rod, and a non-rotating containment plate; Ultrasonic energy integrated into non-rotating containment plate and stir rod; Independent heating, stirring and forging controls; Decouples the heating, stirring and forging process elements of FSW.

  8. B218 Weld Filler Wire Characterization for Al-Li Alloy 2195

    Science.gov (United States)

    Bjorkman, Gerry; Russell, Carolyn

    2000-01-01

    NASA Marshall Space Flight Center, Lockheed Martin Space Systems- Michoud Operations, and McCook Metals have developed an aluminum-copper weld filler wire for fusion welding aluminum lithium alloy 2195. The aluminum-copper based weld filler wire has been identified as B218, a McCook Metals designation. B218 is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties over the 4043 aluminum-silicon weld filler wire, which is currently used to weld 2195 on the Super Lightweight External Tank for the NASA Space Shuttle Program. An initial characterization was performed consisting of a repair weld evaluation using B218 and 4043 weld filler wires. The testing involved room temperature and cryogenic repair weld tensile testing along with fracture toughness testing. From the testing, B218 weld filler wire produce enhanced repair weld tensile strength, ductility, and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding aluminum lithium alloy 2195 over 4043.

  9. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  10. NDT with the structural weld overlay program. Recent field experience and lessons learned

    International Nuclear Information System (INIS)

    Rishel, R.; Lenz, H.; Turley, G.; Newton, B.

    2007-01-01

    Structural weld overlay (SWOL) has become a predominant mitigation technique within the Alloy 600 program. For the pressurizer nozzles, MRP-139 requires volumetric examination by year end 2007. Many nozzles are un-inspectable due to geometry and material limitations that preclude interrogation of the required examination volume. SWOL therefore is the mitigation technique which overcomes these limitations. SWOL of the pressurizer nozzles has been a challenge for all the vendors. Alloy 52 has proven to be difficult to weld under field conditions. The NDT technique chosen to demonstrate the integrity of the overlay needs to be adapted to the specific repair process and nozzle geometry. The purpose of this paper will be to present Westinghouse's integrated approach for SWOL with the focus on the NDT aspects. Topics will include main repair process steps, NDT qualification, recent field experience and lessons learned. (author)

  11. Sensor development and integration for robotized laser welding

    NARCIS (Netherlands)

    Iakovou, D.

    2009-01-01

    Laser welding requires fast and accurate positioning of the laser beam over the seam trajectory. The task of accurate positioning of the laser tools is performed by robotic systems. It is therefore necessary to teach the robot the path it has to follow. Seam teaching is implemented in several ways:

  12. Upper nozzle welding development transfer of Angra 2/00 fuel element to F.E.C. (Fabrica de Elemento Combustivel)

    International Nuclear Information System (INIS)

    Lorenzo, R.F. di; Almeida, R.C.

    1985-01-01

    The technology development of upper nozzle welding of Angra-2 Combustible element, done at CDTN (Centro de Desenvolvimento da Tecnologia Nuclear), this technology transfer to FEC (Fabrica de Elemento Combustivel), the welders training of FEC in nozzle welding, the radiographic control of nozzle welds and the FEC personnel training in this nozzle welds radiography are presented is this report. (C.M.) [pt

  13. Welding problems in nuclear power engineering

    International Nuclear Information System (INIS)

    Zubchenko, A.S.

    1986-01-01

    The problems of welding industry in nuclear power plant engineering, mainly related to the improvement of molten bath protection, are considered. Development of new materials for welding electrodes, for cladding and welding fluxes, is pointed out. Production of the following equipment is brought to a commercial level: welding heads and welding machines for branch pipe welding, anticorrosion cladding, zonal thermal treatment, electron beam welding facilities for the welding and maintenance of turbineblades, equipment for nondestructive testing of welded joints

  14. Preliminary Study for Development of Welds Integrity Verification Equipment for the Small Bore Piping

    International Nuclear Information System (INIS)

    Choi, Geun Suk; Lee, Jong Eun; Ryu, Jung Hoon; Cho, Kyoung Youn; Sohn, Myoung Sung; Lee, Sanghoon; Sung, Gi Ho; Cho, Hong Seok

    2016-01-01

    It has been reported leakage accident of small-bore piping in Korea. Leakage accident of small-bore pipes are those that will increase due to the aging of the nuclear power plant. And if leakage of the pipe is repaired by using the clamping device when it occur accident, it is economically benefits. The clamping device is a fastening device used to hold or secure objects tightly together to prevent movement or separation through the application of inward pressure. However, when the accident occurs, it can't immediately respond because maintenance and repairing technology are not institutionalized in KEPIC. Thus it appears an economic loss. The technology for corresponding thereto is necessary for the safety of the operation of nuclear power plants. The purpose of this research is to develop an online repairing technology of socket welded pipe and vibration monitoring system of small-bore pipe in the nuclear power plant. Specifically, detailed studies are as follows : • Development of weld overlay method of safety class socket welded connections • Development of Mechanical Clamping Devices for Safety Class 2, 3 small-bore pipe. The purpose of this study is to develop an online repairing technology of socket welded pipe and vibration monitoring system of small-bore pipe, resulting in degraded plant systems. And it is necessary to institutionalize the technology. The fatigue crack testing of socket welded overlay will be performed and fatigue life evaluation method will be developed in second year. Also prototype fabrication of mechanical clamping device will be completed. Base on final goal, the intent is to propose practical evaluation tools, design and fabrication methods for socket welded connection integrity. And result of this study is to development of KEPIC code case approved technology for on-line repairing system of socket welded connection and fabrication of mechanical clamping device

  15. Instructional Guidelines. Welding.

    Science.gov (United States)

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  16. Current results for the NRC's short cracks in piping and piping welds research program

    International Nuclear Information System (INIS)

    Wilkowski, G.; Krishnaswamy, P. Brust, F.; Francini, R.; Ghadiali, N.; Kilinski, T.; Marschall, C.; Rahman, S.; Rosenfield, A.; Scott, P.

    1994-01-01

    The overall objective of the Short Cracks in Piping and Piping Welds Program is to verify and improve engineering analyses to predict the fracture behavior of circumferentially cracked pipe under quasi-static loading with particular attention to crack lengths typically used in LBB or flaw evaluation criteria. The program consists of 8 technical tasks as listed below. Task 1 Short through-wall-cracked (TWC) pipe evaluations. Task 2 Short surface-cracked pipe evaluations. Task 3 Bi-metallic weld crack evaluations. Task 4 Dynamic strain aging and crack instabilities. Task 5 Fracture evaluations of anisotropic pipe. Task 6 Crack-opening-area evaluations. Task 7 NRCPIPE Code improvements. Task 8 Additional efforts. Since the last WRSM meeting several additional tasks have been initiated in this program. These are discussed in Task 8. Based on results to date, the first seven tasks have also been modified as deemed necessary. The most significant accomplishments in each of these tasks since the last WRSIM meeting are discussed below. The details of all the results presented here are published in the semiannual reports from this program

  17. Effect of Bainitic Microstructure on Ballistic Performance of Armour Steel Weld Metal Using Developed High Ni-Coated Electrode

    Science.gov (United States)

    Pramanick, A. K.; Das, H.; Reddy, G. M.; Ghosh, M.; Nandy, S.; Pal, T. K.

    2018-05-01

    Welding of armour steel has gained significant importance during the past few years as recent civilian and military requirements demand weld metal properties matching with base metal having good ballistic performance along with high strength and toughness at - 40 °C as per specification. The challenge of armour steel welding therefore lies in controlling the weld metal composition which is strongly dependent on welding electrode/consumables, resulting in desired weld microstructure consisting of lower bainite along with retained austenite. The performance of butt-welded armour steel joints produced by the developed electrodes was evaluated using tensile testing, ballistic testing, impact toughness at room temperature and subzero temperature. Microstructures of weld metals are exclusively characterized by x-ray diffraction technique, scanning electron microscope and transmission electron microscopy with selected area diffraction pattern. Experimental results show that weld metal with relatively lower carbon, higher manganese and lower nickel content was attributed to lower bainite with film type of retained austenite may be considered as a most covetable microstructure for armour steel weld metal.

  18. Effect of Bainitic Microstructure on Ballistic Performance of Armour Steel Weld Metal Using Developed High Ni-Coated Electrode

    Science.gov (United States)

    Pramanick, A. K.; Das, H.; Reddy, G. M.; Ghosh, M.; Nandy, S.; Pal, T. K.

    2018-04-01

    Welding of armour steel has gained significant importance during the past few years as recent civilian and military requirements demand weld metal properties matching with base metal having good ballistic performance along with high strength and toughness at - 40 °C as per specification. The challenge of armour steel welding therefore lies in controlling the weld metal composition which is strongly dependent on welding electrode/consumables, resulting in desired weld microstructure consisting of lower bainite along with retained austenite. The performance of butt-welded armour steel joints produced by the developed electrodes was evaluated using tensile testing, ballistic testing, impact toughness at room temperature and subzero temperature. Microstructures of weld metals are exclusively characterized by x-ray diffraction technique, scanning electron microscope and transmission electron microscopy with selected area diffraction pattern. Experimental results show that weld metal with relatively lower carbon, higher manganese and lower nickel content was attributed to lower bainite with film type of retained austenite may be considered as a most covetable microstructure for armour steel weld metal.

  19. New developments for the ultrasonic inspection of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Chassignole, Bertrand; Doudet, Loic; Dupond, Olivier; Fouquet, Thierry; Richard, Benoit

    2006-01-01

    EDF R and D undertakes studies in non destructive testing (NDT) for better understanding the influence of various parameters (material, type of defect, geometry) on the 'controllability' of the critical components for nuclear safety. In the field of ultrasonic testing, one of the principal research orientations is devoted to the study of the austenitic stainless steel welds of the primary cooling system. Indeed, the structure of these welds present characteristics making difficult their examination, for example: - a strong anisotropy of the properties of elasticity which, coupled with the heterogeneity of the grain orientations, can involve phenomena of skewing, division and distortion of the beam; - a significant scattering of the waves by the grains involving an high attenuation and sometimes backscattered signals. For several years, actions have been launched to improve comprehension of these disturbing phenomena and to evaluate the controllability of those welds. This work is based on the one hand on experimental analyses on representative mock-ups and on the other hand on the developments of modelling codes taking into account the characteristics of the materials. We present in this document a synthesis of this work by developing the following points in particular: - a description of the phenomena of propagation; - the works undertaken to characterize the structure of the welds; - an example of study coupling experimental and modelling analyses for a butt weld achieved by manual arc welding with coated electrodes. The paper has the following contents: 1. Context; 2. Presentation of the problem; 3. Characterization of austenitic welds; 4. From comprehension to industrial application; 5. Conclusion and perspectives; 5. Conclusion and perspectives. This synthesis shows that each austenitic stainless steel weld is a particular case for the ultrasonic testing. This work allowed to better apprehend the disturbances of the ultrasonic propagation in the welds and thus

  20. Friction Pull Plug Welding in Aluminum Alloys

    Science.gov (United States)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  1. Materials and welding process development for nuclear application in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Kussmaul, K.; Stoppler, W.; Sinz, R.

    1982-01-01

    The concept of Basis Safety was developed in the Federal Republic of Germany (FRG) in order to achieve exclusion of catastrophic failure of pressure boundary components in Light Water Reactors (LWRs). This concept provides redundant safeties both for long-term service as well as for an accident by improving toughness properties of the base material (BM), heat-affected zone (HAZ) and deposited metal (DM) of components with relevance safety. With the help of the welding simulation technique, the toughness properties in the HAZ was investigated as a function of stress-relief temperature. Submerged-arc welding (SAW) on heavy section components were investigated during and after welding. This helped to delineate boundary conditions for a computer code for the design and optimization of a joint and its HAZ. The advantage of the narrow gap technique is the extremely low amount of sensitive coarse grained zones. Processing tough filler materials with optimum weld parameters will provide excellent material properties at an elevated strength level in shape-welded heavy section components. The martensitic steel X 20 CrMoV 12 has an excellent weldability of the BM (HAZ without problems), but it has not been possible up to now, to achieve equal properties for the deposited material. This is also the case for martensitic welding. As far as austenitic steels are concerned the sulfur content had also to be lowered. Sufficient toughness had to be proved also in the case of impact loading for austenitic welded joints subsequent to thermal aging. Susceptibility to corrosion of individual austenitic materials and material conditions was investigated and remedies elaborated. 33 figures, 7 tables

  2. Development of filler wires for welding of reduced activation ferritic martenstic steel for India's test blanket module of ITER

    International Nuclear Information System (INIS)

    Srinivasan, G.; Arivazhagan, B.; Albert, S.K.; Bhaduri, A.K.

    2011-01-01

    Highlights: → Weld microstructure produced by RAFMS filler wires are free from delta ferrite. → Cooling rates of by weld thermal cycles influences the presence of delta ferrite. → Weld parameters modified with higher pre heat temperature and high heat input. → PWHT optimized based on correlation of hardness between base and weld metals. → Optimised mechanical properties achieved by proper tempering of the martensite. - Abstract: Indigenous development of reduced activation ferritic martensitic steel (RAFMS) has become mandatory to India to participate in the International Thermo-nuclear Experimental Reactor (ITER) programme. Optimisation of RAFMS is in an advanced stage for the fabrication of test blanket module (TBM) components. Simultaneously, development of RAFMS filler wires has been undertaken since there is no commercial filler wires are available for fabrication of components using RAFMS. Purpose of this study is to develop filler wires that can be directly used for both tungsten inert gas welding (TIG) and narrow gap tungsten inert gas welding (NG-TIG), which reduces the deposited weld metal volume and heat affected zone (HAZ) width. Further, the filler wires would also be used for hybrid laser welding for thick section joints. In view of meeting all the requirements, a detailed specification was prepared for the development of filler wires for welding of RAFM steel. Meanwhile, autogenous welding trials have been carried out on 2.5 mm thick plates of the RAFM steel using TIG process at various heat inputs with a preheat temperature of 250 deg. C followed by various post weld heat treatments (PWHT). The microstructure of the weld metal in most of the cases showed the presence of some delta-ferrite. Filler wires as per specifications have also been developed with minor variations on the chemistry against the specified values. Welding parameters and PWHT parameters were optimised to qualify the filler wires without the presence of delta-ferrite in

  3. Development of neural network models for the prediction of solidification mode, weld bead geometry and sensitisation in austenitic stainless steels

    International Nuclear Information System (INIS)

    Vasudevan, M.; Raj, B.; Prasad Rao, K.

    2005-01-01

    Quantitative models describing the effect of weld composition on the solidification mode, ferrite content and process parameters on the weld bead geometry are necessary in order to design composition of the welding consumable to ensure primary ferritic solidification mode, proper ferrite content and to ensure right choice of process parameters to achieve good bead geometry. A quantitative model on sensitisation behaviour of austenitic stainless steels is also necessary to optimise the composition of the austenitic stainless steel and to limit the strain on the material in order to enhance the resistance to sensitisation. The present paper discuss the development of quantitative models using artificial neural networks to correlate weld metal composition with solidification mode, process parameter with weld bead geometry and time for sensitisation with composition, strain in the material before welding and the temperature of exposure in austenitic stainless steels. (author)

  4. Development of niobium alloy/stainless steel joint by friction welding, (1)

    International Nuclear Information System (INIS)

    Kikuchi, Taiji; Kawamura, Hiroshi.

    1988-08-01

    The niobium alloy and stainless steel have been jointed by the nicrobrazing method generally. However the strength of the jointed part is weaker than that of the mother material. Therefore we developed the niobium alloy(Nb-1 % Zr)/stainless steel(SUS 304) transition joint by the friction welding method. As the tests for the development. We conducted the mechanical tests (tensile test at room temperature, 300 deg C, 500 deg C and 700 deg C, torsion fatigue test and burst test), metallographical observation and electron prove X-ray microanalysis observation. Those tests proved jointed part by the friction welding had enough properties for general uses. (author)

  5. Development and Implementation of Domain Referenced Testing in Vocational Welding. Final Report.

    Science.gov (United States)

    Sterrett, Dan

    A project was undertaken to develop and implement domain-referenced tests (DRTs) for welders' helpers. After analyzing the results of a state survey of welding job titles and related tasks and after consulting with postsecondary educators and industry personnel, researchers developed DRTs to measure various tasks typically performed by welders.…

  6. Development of procedure using plasma welding process to produce 125I seeds

    International Nuclear Information System (INIS)

    Feher, Anselmo

    2006-01-01

    The prostate cancer, which is the second cause of death by cancer in men, overcome only by lung cancer, is a problem of public health in Brazil. Brachytherapy is among the possible available treatments for prostate cancer, in which small seeds containing 125 I radioisotope are implanted in the prostate. The seed consists of a titanium sealed capsule with 0.8 mm external diameter and 4.5 mm length, containing a central silver wire with adsorbed 125 I. The plasma arc welding is one of the viable techniques for the sealing process. The equipment used in this technique is less costly than in other processes. The main objective of this work was the development and the validation of the welding procedure using plasma welding process and the elaboration of a sealing routine according to Good Manufacturing Practices. The development of this work has presented the following phases: cut and cleaning of the titanium material, determination of the welding parameters, development of a device for holding the titanium tube during the welding process, validation of sealed sources according to ISO 2919 Sealed Radioactive Sources - General Requirements and Classification, leakage test according to ISO 9978 Sealed Radioactive Sources - Leakage Test Methods and metallographic assays. The developed procedure, to seal 125 I seeds using plasma welding process, has shown to be efficient, satisfying all the established requirements of ISO 2919. The results obtained in this work have given the possibility to establish a routine production process according to the orientations presented in resolution RDC number 59 - Good Manufacturing Practices do Medical Products of the ANVISA - Brazilian Nacional Agency of Sanitary Surveillance. (author)

  7. Development of Micro-welding Technology of Cladding Tube with Temperature Sensor for Nuclear Fuel Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Sung; Lee, C. Y.; Kim, W. K.; Lee, J. W.; Lee, D. Y

    2006-01-15

    Laser welding technology is widely used to fabricate some products of nuclear fuel in the nuclear industry. Especially, micro-laser welding is one of the key technology to be developed to fabricate precise products of fuel irradiation test. We have to secure laser welding technology to perform various instrumentations for fuel irradiation test. The instrumented fuel irradiation test at a research reactor is needed to evaluate the performance of the developed nuclear fuel. The fuel elements can be designed to measure the center line temperature of fuel pellets during the irradiation test by using temperature sensor. The thermal sensor was composed of thermocouple and sensor sheath. Micro-laser welding technology was adopted to seal between seal tube and sensor sheath with thickness of 0.15mm. The soundness of weld area has to be confirmed to prevent fission gas of the fuel from leaking out of the element during the fuel irradiation test. In this study, fundamental data for micro-laser welding technology was proposed to seal temperature sensor sheath of the instrumented fuel element. And, micro-laser welding for dissimilar metals between sensor sheath and seal tube was characterized by investigating welding conditions. Moreover, the micro-laser welding technology is closely related to advanced industry. It is expected that the laser material processing technology will be adopted to various applications in the industry.

  8. Development of electromagnetic welding facility of flat plates for nuclear industry

    Science.gov (United States)

    Kumar, Rajesh; Sahoo, Subhanarayan; Sarkar, Biswanath; Shyam, Anurag

    2017-04-01

    Electromagnetic pulse welding (EMPW) process, one of high speed welding process uses electromagnetic force from discharged current through working coil, which develops a repulsive force between the induced current flowing parallel and in opposite direction. For achieving the successful weldment using this process the design of working coil is the most important factor due to high magnetic field on surface of work piece. In case of high quality flat plate welding factors such as impact velocity, angle of impact standoff distance, thickness of flyer and overlap length have to be chosen carefully. EMPW has wide applications in nuclear industry, automotive industry, aerospace, electrical industries. However formability and weldability still remain major issues. Due to ease in controlling the magnetic field enveloped inside tubes, the EMPW has been widely used for tube welding. In case of flat components control of magnetic field is difficult. Hence the application of EMPW gets restricted. The present work attempts to make a novel contribution by investigating the effect of process parameters on welding quality of flat plates. The work emphasizes the approaches and engineering calculations required to effectively use of actuator in EMPW of flat components.

  9. Development and evaluation of SUS 304H — IN 617 welds for advanced ultra supercritical boiler applications

    International Nuclear Information System (INIS)

    Pavan, A.H.V.; Vikrant, K.S.N.; Ravibharath, R.; Singh, Kulvir

    2015-01-01

    At moderately high temperature sections of Advanced Ultra Super Critical (AUSC) boilers, welding of superalloys to austenitic steels is inevitable owing to economic aspects of boiler. Welding of SUS 304H and Inconel 617 (IN 617) was attempted using IN 617 filler material employing conventional Gas Tungsten Arc Welding (GTAW) process and the procedure was successfully established along with optimized welding parameters. Microstructural characterization was carried out to identify various zones on either side of the fusion boundaries. Unmixed Zone and Heat Affected Zone (HAZ) were observed towards SUS 304H fusion boundary while no distinct HAZ was observed towards IN 617 fusion boundary. Micro-hardness profiling indicated decrease in hardness at the HAZ towards SUS 304H fusion boundary. Mechanical properties evaluation at both ambient and elevated temperatures was carried out and data obtained was compared with those of base metals. The tensile strength of the cross weld specimens at high temperatures were observed to be marginally lower than that of IN 617 but significantly more than that of SUS 304H, hence, tolerable. Stress-rupture properties of the cross-weld specimens as tested in this study were found to be intermediate to the base metals’ data, thus, suitable for AUSC power plants' boiler applications. Hence, this work gives an insight into welding procedure establishment, microstructural development, variation of mechanical properties at elevated temperatures and stress-rupture properties of the dissimilar metal welds at elevated temperatures. - Highlights: • Procedure establishment & parameters optimization for fabricating defect-free welds. • Characterization of various zones formed during welding. • Mechanical properties evaluation and comparison with those of base metals. • Influence of various zones formed during welding on mechanical properties inferred. • Understanding long term behavior of welds at elevated temperatures

  10. Development and evaluation of SUS 304H — IN 617 welds for advanced ultra supercritical boiler applications

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, A.H.V., E-mail: pavanahv@bhelrnd.co.in [Metallurgy Department, Corporate R& D Division, Bharat Heavy Electricals Limited, Vikasnagar, Hyderabad 500 093 (India); Vikrant, K.S.N., E-mail: vikrant@bhelrnd.co.in [Metallurgy Department, Corporate R& D Division, Bharat Heavy Electricals Limited, Vikasnagar, Hyderabad 500 093 (India); Ravibharath, R., E-mail: rrbharath@bhelrnd.co.in [Welding Research Institute, Bharat Heavy Electricals Limited, Tiruchirapalli 620 014 (India); Singh, Kulvir, E-mail: kulvir@bhelrnd.co.in [Metallurgy Department, Corporate R& D Division, Bharat Heavy Electricals Limited, Vikasnagar, Hyderabad 500 093 (India)

    2015-08-26

    At moderately high temperature sections of Advanced Ultra Super Critical (AUSC) boilers, welding of superalloys to austenitic steels is inevitable owing to economic aspects of boiler. Welding of SUS 304H and Inconel 617 (IN 617) was attempted using IN 617 filler material employing conventional Gas Tungsten Arc Welding (GTAW) process and the procedure was successfully established along with optimized welding parameters. Microstructural characterization was carried out to identify various zones on either side of the fusion boundaries. Unmixed Zone and Heat Affected Zone (HAZ) were observed towards SUS 304H fusion boundary while no distinct HAZ was observed towards IN 617 fusion boundary. Micro-hardness profiling indicated decrease in hardness at the HAZ towards SUS 304H fusion boundary. Mechanical properties evaluation at both ambient and elevated temperatures was carried out and data obtained was compared with those of base metals. The tensile strength of the cross weld specimens at high temperatures were observed to be marginally lower than that of IN 617 but significantly more than that of SUS 304H, hence, tolerable. Stress-rupture properties of the cross-weld specimens as tested in this study were found to be intermediate to the base metals’ data, thus, suitable for AUSC power plants' boiler applications. Hence, this work gives an insight into welding procedure establishment, microstructural development, variation of mechanical properties at elevated temperatures and stress-rupture properties of the dissimilar metal welds at elevated temperatures. - Highlights: • Procedure establishment & parameters optimization for fabricating defect-free welds. • Characterization of various zones formed during welding. • Mechanical properties evaluation and comparison with those of base metals. • Influence of various zones formed during welding on mechanical properties inferred. • Understanding long term behavior of welds at elevated temperatures.

  11. New welding information system on the internet (Prediction of the properties of weld heat-affected zones

    Directory of Open Access Journals (Sweden)

    M Fujita

    2003-08-01

    Full Text Available To promote continuous transfer and development of welding technology, a new system for predicting the microstructures and mechanical properties of welded joins has been built on the Internet. It combines a database system containing continuous cooling transformation diagrams (CCT diagrams for welding and an expert system for computing weld thermal histories. In addition, this system employs a technique which was invented during the development of another distributed database system called "Data-Free-Way" , which was designed to contain information advanced nuclear materials and materials obtained from other programs of welding research at NIMS in the past. This paper describes the current state of our new system for computing weld thermal histories to predict the properties of welded joints using the CCT diagrams database, which is now available on the Internet. Some problems encountered with the database used in such a system are also referred to.

  12. The National Shipbuilding Research Program: Evaluation of the Cincinnati Milacron T-3 Robot for Shipbuilding Welding

    Science.gov (United States)

    1984-01-01

    acknowledgement is extended to the members of Welding Panel SP-7 of the SNAME Ship Production Committee, who served as technical advisors in the preparation...Binzel Robo 450. . . . . . 4.4.4.1.3 Hobart WCG 600 . . . . . . 4.4.4.2 Maintenance and Service . . . . . . . 4.4.4.3 Recommendation...Machine Specialties D & F - Welding . . . Torch Binzel Robo 450 - Welding Torch. Hobart WCG - 600 - Welding Torch. Binzel Nozzle Cleaner

  13. Ductile damage development in friction stir welded aluminum (AA2024) joints

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2008-01-01

    Ductile damage development in a friction stir welded aluminum joint subjected to tension is analyzed numerically by FE-analysis, based on a total Lagrangian formulation. An elastic-viscoplastic constitutive relation that accounts for nucleation and growth of microvoids is applied. Main focus...

  14. Sturdy on Orbital TIG Welding Properties for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Changyoung; Hong, Jintae; Kim, Kahye; Huh, Sungho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    We developed a precision TIG welding system that is able to weld the seam between end-caps and a fuel cladding tube for the nuclear fuel test rod and rig. This system can be mainly classified into an orbital TIG welder (AMI, M-207A) and a pressure chamber. The orbital TIG welder can be independently used, and it consists of a power supply unit, a microprocessor, water cooling unit, a gas supply unit and an orbital weld head. In this welder, the power supply unit mainly supplies GTAW power for a welding specimen and controls an arc starting of high frequency, supping of purge gas, arc rotation through the orbital TIG welding head, and automatic timing functions. In addition, the pressure chamber is used to make the welded surface of the cladding specimen clean with the inert gas filled inside the chamber. To precisely weld the cladding tube, a welding process needs to establish a schedule program for an orbital TIG welding. Therefore, the weld tests were performed on a cladding tube and dummy rods under various conditions. This paper describes not only test results on parameters of the purge gas flow rates and the chamber gas pressures for the orbital TIG welding, but also test results on the program establishment of an orbital TIG welding system to weld the fuel test rods. Various welding tests were performed to develop the orbital TIG welding techniques for the nuclear fuel test rod. The width of HAZ of a cladding specimen welded with the identical power during an orbital TIG welding cycle was continuously increased from a welded start-point to a weld end-point because of heat accumulation. The welding effect of the PGFR and CGP shows a relatively large difference for FSS and LSS. Each hole on the cladding specimens was formed in the 1bar CGP with the 20L/min PGFR but not made in the case of the PGFR of 10L/min in the CGP of 2bar. The optimum schedule program of the orbital TIG welding system to weld the nuclear fuel test rod was established through the program

  15. Sturdy on Orbital TIG Welding Properties for Nuclear Fuel Test Rod

    International Nuclear Information System (INIS)

    Joung, Changyoung; Hong, Jintae; Kim, Kahye; Huh, Sungho

    2014-01-01

    We developed a precision TIG welding system that is able to weld the seam between end-caps and a fuel cladding tube for the nuclear fuel test rod and rig. This system can be mainly classified into an orbital TIG welder (AMI, M-207A) and a pressure chamber. The orbital TIG welder can be independently used, and it consists of a power supply unit, a microprocessor, water cooling unit, a gas supply unit and an orbital weld head. In this welder, the power supply unit mainly supplies GTAW power for a welding specimen and controls an arc starting of high frequency, supping of purge gas, arc rotation through the orbital TIG welding head, and automatic timing functions. In addition, the pressure chamber is used to make the welded surface of the cladding specimen clean with the inert gas filled inside the chamber. To precisely weld the cladding tube, a welding process needs to establish a schedule program for an orbital TIG welding. Therefore, the weld tests were performed on a cladding tube and dummy rods under various conditions. This paper describes not only test results on parameters of the purge gas flow rates and the chamber gas pressures for the orbital TIG welding, but also test results on the program establishment of an orbital TIG welding system to weld the fuel test rods. Various welding tests were performed to develop the orbital TIG welding techniques for the nuclear fuel test rod. The width of HAZ of a cladding specimen welded with the identical power during an orbital TIG welding cycle was continuously increased from a welded start-point to a weld end-point because of heat accumulation. The welding effect of the PGFR and CGP shows a relatively large difference for FSS and LSS. Each hole on the cladding specimens was formed in the 1bar CGP with the 20L/min PGFR but not made in the case of the PGFR of 10L/min in the CGP of 2bar. The optimum schedule program of the orbital TIG welding system to weld the nuclear fuel test rod was established through the program

  16. Developments of modeling tools for the ultrasonic propagation in bimetallic welds

    International Nuclear Information System (INIS)

    Gardahaut, A.

    2013-01-01

    This study fits into the field of ultrasonic non-destructive evaluation. It consists in the development of a dynamic ray tracing model to simulate the ultrasonic propagation in bimetallic welds. The approach has been organised in three steps. First of all, an image processing technique has been developed and applied on the macro-graphs of the weld in order to obtain a smooth cartography of the crystallographic orientation. These images are used as input data for a dynamic ray tracing model adapted to the study of anisotropic and inhomogeneous media such as bimetallic welds. Based on a kinematic and a dynamic ray tracing model, usually used in geophysics, it allows the evaluation of ray trajectories between a source point and an observation point, and the computation of the ultrasonic amplitude through the geometrical spreading of an elementary ray tube. This model has been validated in 2D by comparison of the results with a hybrid semi-analytical/finite elements code, then in 3D thanks to experimental results made on the mock-ups of the studied bimetallic welds. (author) [fr

  17. Reactor cooling water expansion joint bellows: The role of the seam weld in fatigue crack development

    International Nuclear Information System (INIS)

    West, S.L.; Nelson, D.Z.; Louthan, M.R. Jr.

    1992-01-01

    The secondary cooling water system pressure boundary of Savannah River Site reactors includes expansion joints utilizing a thin-wall bellows. While successfully used for over thirty years, an occasional replacement has been required because of the development of small, circumferential fatigue cracks in a bellows convolute. One such crack was recently shown to have initiated from a weld heat-affected zone liquation microcrack. The crack, initially open to the outer surface of the rolled and seam welded cylindrical bellows section, was closed when cold forming of the convolutes placed the outer surface in residual compression. However, the bellows was placed in tension when installed, and the tensile stresses reopened the microcrack. This five to eight grain diameter microcrack was extended by ductile fatigue processes. Initial extension was by relatively rapid propagation through the large-grained weld metal, followed by slower extension through the fine-grained base metal. A significant through-wall crack was not developed until the crack extended into the base metal on both sides of the weld. Leakage of cooling water was subsequently detected and the bellows removed and a replacement installed

  18. Process control program development

    International Nuclear Information System (INIS)

    Dameron, H.J.

    1985-01-01

    This paper details the development and implementation of a ''Process Control Program'' at Duke Power's three nuclear stations - Oconee, McGuire, and Catawba. Each station is required by Technical Specification to have a ''Process Control Program'' (PCP) to control all dewatering and/or solidification activities for radioactive wastes

  19. Evaluating a Development Program.

    Science.gov (United States)

    Frantzreb, Arthur C.

    Problems in evaluating the success of an institutional resource development program are examined and suggestions are offered for effective assessment. Such a program is seen as a sequence of events in the artful management of people, from the planning stage to obtaining a financial commitment in writing from persons who want to share their assets…

  20. Development of data acquisition and analysis system for the nuclear vessel weld

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. P.; Park, C. H.; Lim, H. T.; Noh, H. C. [Research Institute of KAITEC, Taejeon (Korea)

    2000-03-01

    The objective of this project is to develop an automated ultrasonic data acquisition and data analysis system to examine heavy vessel welds. In order to examine nuclear vessel welds including reactor pressure vessel(RPV), huge amount of ultrasonic data from 6 channels should be able to be on-line processed. In addition, ultrasonic transducer scanning device should be remotely controlled, because working place is high radiation area. This kind of an automated ultrasonic testing equipment has not been developed domestically yet. In order to develop an automated ultrasonic testing system, RPV ultrasonic testing equipments developed in foreign countries were investigated and the capability of high speed ultrasonic signal processing hardwares was analyzed. In this study, ultrasonic signal processing system was designed. And also, ultrasonic data acquisition software was developed. 11 refs., 6 figs. (Author)

  1. Report Summarizing the Effort Required to Initiate Welding of Irradiated Materials within the Welding Cubicle

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Greg [Electric Power Research Institute (EPRI), Palo Alto, CA (United States); Sutton, Benjamin J. [Electric Power Research Institute (EPRI), Palo Alto, CA (United States); Tatman, Jonathan K. [Electric Power Research Institute (EPRI), Palo Alto, CA (United States); Vance, Mark Christopher [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Allen W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Clark, Scarlett R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Roger G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chen, Jian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tang, Wei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Xunxiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gibson, Brian T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    The advanced welding facility within a hot cell at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory (ORNL), which has been jointly funded by the U.S. Department of Energy (DOE), Office of Nuclear Energy, Light Water Reactor Sustainability Program and the Electric Power Research Institute, Long Term Operations Program and the Welding and Repair Technology Center, is in the final phase of development. Research and development activities in this facility will involve direct testing of advanced welding technologies on irradiated materials in order to address the primary technical challenge of helium induced cracking that can arise when conventional fusion welding techniques are utilized on neutron irradiated stainless steels and nickel-base alloys. This report details the effort that has been required since the beginning of fiscal year 2017 to initiate welding research and development activities on irradiated materials within the hot cell cubicle, which houses welding sub-systems that include laser beam welding (LBW) and friction stir welding (FSW) and provides material containment within the hot cell.

  2. Tig welding produces leak-proof joints for nuclear application

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    A pulsed welding apparatus using a Hobart Cyber-tig power source with programmed pulsed current has been developed to produce leak-free welds required for a new hermetically sealed leak-free valve for use in nuclear power plants. Advantages of the technique are precise control over travel speed and filler metal addition allowing the weld to be repeated with precision. (R.A.)

  3. LFR Development: Italian Program

    International Nuclear Information System (INIS)

    Tarantino, M.

    2011-01-01

    Conclusions: ⇨ ENEA has one of the most relevant EU R&D infrastructures for HLM technological development; ⇨ ENEA is strongly involved in the EU R&D programs supporting the development of sub-critical (ADS) and critical lead cooled reactors (LFR - Gen. IV); ⇨ Large experimental program ranging from HLM thermalhydraulic to large scale experiment has been implemented in Italy, partially funded by the National Program; ⇨ Large competencies are available related to Safety Assessment, System Design, Core Design & Optimization; ⇨ ENEA is able to cooperate with other laboratories in order to promote the growth and diffusion of the technology for nuclear application

  4. Automatic Program Development

    DEFF Research Database (Denmark)

    Automatic Program Development is a tribute to Robert Paige (1947-1999), our accomplished and respected colleague, and moreover our good friend, whose untimely passing was a loss to our academic and research community. We have collected the revised, updated versions of the papers published in his...... honor in the Higher-Order and Symbolic Computation Journal in the years 2003 and 2005. Among them there are two papers by Bob: (i) a retrospective view of his research lines, and (ii) a proposal for future studies in the area of the automatic program derivation. The book also includes some papers...... by members of the IFIP Working Group 2.1 of which Bob was an active member. All papers are related to some of the research interests of Bob and, in particular, to the transformational development of programs and their algorithmic derivation from formal specifications. Automatic Program Development offers...

  5. Fluor Hanford Nuclear Material Stabilization Project Welding Manual

    International Nuclear Information System (INIS)

    BERKEY, J.R.

    2000-01-01

    The purpose of this section of the welding manual is to: (1) Provide a general description of the major responsibilities of the organizations involved with welding. (2) Provide general guidance concerning the application of codes related to welding. This manual contains requirements for welding for all Fluor Hanford (FH) welding operators working on the W460 Project, in the Plutonium Finishing Plant (PFP) at the U. S. Department of Energy (DOE) Hanford facilities. These procedures and any additional requirements for these joining processes can be used by all FH welding operators that are qualified. The Welding Procedure Specifications (WPS) found in this document were established from Procedure Qualification Records (PQR) qualified by FH specifically for the W460 Project. PQRs are permanent records of the initial testing and qualification program and are used to backup, and support, the WPS. The identification numbers of the supporting PQR(s) are recorded on each WPS. All PQRs are permanently stored under the supervision of the Fluor Hanford Welding Engineer (FHWE). New PQRs and WPSs will continue to be developed as necessary. The qualification of welders, welding operators and welding procedures will be performed for FH under supervision and concurrent of the FHWE. All new welding procedures to be entered in this manual or welder personnel to be added to the welder qualification database, shall be approved by the FHWE

  6. Welding Course Curriculum.

    Science.gov (United States)

    Genits, Joseph C.

    This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part…

  7. Development of Metallographic Etchants for the Microstructure Evolution of A6082-T6 BFSW Welds

    Directory of Open Access Journals (Sweden)

    Abbas Tamadon

    2017-10-01

    Full Text Available BACKGROUND—The solid-phase joining of A6082-T6 plates by bobbin friction stir welding (BFSW is problematic. Better methods are needed to evaluate the microstructural evolution of the weld. However, conventional Al reagents (e.g., Keller’s and Kroll’s do not elucidate the microstructure satisfactorily, specifically regarding grain size and morphology within the weld region. APPROACH—We developed innovative etchants for metallographic observations for optical microscopy. RESULTS—The macrostructure and microstructure of A6082-T6 BFSW welds were clearly demonstrated by optical microscopy analysis. The microetching results demonstrated different microstructures of the Stir Zone (S.Z distinct from the Base Metal (B.M and Heat Affected Zone (HAZ & Thermo-mechanical Affected Zone (TMAZ. The micrographs showed a significant decrease in grain size from 100 μm in B.M to ultrafine 4–10 μm grains for the S.Z. Also, the grain morphology changed from directional columnar in the B.M to equiaxed in the S.Z. Furthermore, thermomechanical recrystallization was observed by the morphological flow of the grain distortion in HAZ and TMAZ. The etchants also clearly show the polycrystalline structure, microflow patterns, and the incoherent interface around inclusion defects. ORIGINALITY—Chemical compositions are identified for a suite of etchant reagents for metallographic examination of the friction-stir welded A6082-T6 alloy. The reagents have made it possible to reveal microstructures not previously evident with optical microscopy.

  8. Last developments in welding for structural cladding; Ultimos desarrollos en el area de soldadura por recubrimiento estructural

    Energy Technology Data Exchange (ETDEWEB)

    Grubb, T.; Llovet, R.; Newton, B.

    2007-07-01

    PCI Energy Services LLC Westinghouse electric company subsidiary has developed over the last years a series of techniques aimed at improving the structural nickel-based weld filler as well as its application in preventive repairs at operating plants. Amongst these developments, the material optimization, the full orbital progression and the low-profile weld system are worth to mention. This article depicts in more details all the above mentioned developments. (Author)

  9. Friction Stir Welding Development at NASA-Marshall Space Flight Center

    Science.gov (United States)

    Bhat, Biliyar N.; Carter, Robert W.; Ding, Robert J.; Lawless, Kirby G.; Nunes, Arthur C., Jr.; Russell, Carolyn K.; Shah, Sandeep R.

    2001-01-01

    This paper presents an overview of friction stir welding (FSW) process development and applications at Marshall Space Flight Center (MSFC). FSW process development started as a laboratory curiosity but soon found support from many users. The FSW process advanced very quickly and has found many applications both within and outside the aerospace industry. It is currently being adapted for joining key elements of the Space Shuttle External Tank for improved producibility and reliability. FSW process modeling is done to better understand and improve the process. Special tools have been developed to weld variable thickness materials including thin and thick materials. FSW is now being applied to higher temperature materials such as copper and to advanced materials such as metal matrix composites. FSW technology is being successfully transferred from MSFC laboratory to shop floors of many commercial companies.

  10. Friction Stir Welding Development at National Aeronautics and Space Administration-Marshall Space Flight Center

    Science.gov (United States)

    Bhat, Biliyar N.; Carter, Robert W.; Ding, Robert J.; Lawless, Kirby G.; Nunes, Arthur C., Jr.; Russell, Carolyn K.; Shah, Sandeep R.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This paper presents an over-view of friction stir welding (FSW) process development and applications at Marshall Space Flight Center (MSFC). FSW process development started as a laboratory curiosity but soon found support from many users. The FSW process advanced very quickly and has found many applications both within and outside the aerospace industry. It is currently being adapted for joining key elements of the Space Shuttle External Tank for improved producibility and reliability. FSW process modeling is done to better understand and improve the process. Special tools have been developed to weld variable thickness materials including very thin and very thick materials. FSW is now being applied to higher temperature materials such as copper and to advanced materials such as metal matrix composites. FSW technology is being successfully transferred from MSFC laboratory to shop floors of many commercial companies.

  11. Development of filler wires for welding of reduced activation ferritic martensitic steel for India's test blanket module of ITER

    International Nuclear Information System (INIS)

    Srinivasan, G.; Arivazhagan, B.; Albert, S.K.; Bhaduri, A.K.

    2010-01-01

    Indigenous development of reduced activation ferritic-martensitic (RAFM) steel has become necessary for India as a participant in the International Thermo-nuclear Experimental Reactor (ITER) programme. Optimisation of RAFM steel is in an advanced stage for the fabrication of test blanket module (TBM) components. Simultaneously, development of RAFM steel filler wires has been undertaken since there is no commercial filler wires are available for fabrication of components using RAFM steel. The purpose of this study is to develop filler wires that can be directly used for both gas tungsten arc welding (GTAW) and for narrow-gap gas tungsten arc welding (NG-GTAW) that reduces the deposited weld metal volume and heat affected zone (HAZ) width. Further, the filler wires would also be used for hybrid laser-MIG welding for thick section joints. In view of meeting all the requirements, a detailed specification was prepared for the development of filler wires for welding of RAFM steel. Meanwhile, welding trials have been carried out on 2.5 mm thick plates of the RAFM steel using GTAW process at various heat inputs with a preheat temperature of 250 C followed by various post weld heat treatments (PWHT). The microstructure of the weld metal in most of the cases showed the presence of some amount of delta-ferrite. Filler wires as per specifications have also been developed with minor variations on the chemistry against the specified values. Welding parameters and PWHT parameters were optimized to qualify the filler wires without the presence of delta-ferrite in the weld metal and with optimized mechanical properties. Results showed that the weld metals are free from delta-ferrite. Tensile properties at ambient temperature and at 500 C are well above the specified values, and are much higher than the base metal values. Ductile Brittle Transition Temperature (DBTT) has been evaluated as -81 C based on the 68 J criteria. The present study highlights the basis and methodology

  12. Optical design and development of a fiber coupled high-power diode laser system for laser transmission welding of plastics

    Science.gov (United States)

    Rodríguez-Vidal, Eva; Quintana, Iban; Etxarri, Jon; Azkorbebeitia, Urko; Otaduy, Deitze; González, Francisco; Moreno, Fernando

    2012-12-01

    Laser transmission welding (LTW) of thermoplastics is a direct bonding technique already used in different industrial applications sectors such as automobiles, microfluidics, electronics, and biomedicine. LTW evolves localized heating at the interface of two pieces of plastic to be joined. One of the plastic pieces needs to be optically transparent to the laser radiation whereas the other part has to be absorbent, being that the radiation produced by high power diode lasers is a good alternative for this process. As consequence, a tailored laser system has been designed and developed to obtain high quality weld seams with weld widths between 0.7 and 1.4 mm. The developed laser system consists of two diode laser bars (50 W per bar) coupled into an optical fiber using a nonimaging solution: equalization of the beam parameter product (BPP) in the slow and fast axes by a pair of step-mirrors. The power scaling was carried out by means of a multiplexing polarization technique. The analysis of energy balance and beam quality was performed considering ray tracing simulation (ZEMAX) and experimental validation. The welding experiments were conducted on acrylonitrile/butadiene/styrene (ABS), a thermoplastic frequently used in automotive, electronics and aircraft applications, doped with two different concentrations of carbon nanotubes (0.01% and 0.05% CNTs). Quality of the weld seams on ABS was analyzed in terms of the process parameters (welding speed, laser power and clamping pressure) by visual and optical microscope inspections. Mechanical properties of weld seams were analyzed by mechanical shear tests. High quality weld seams were produced in ABS, revealing the potential of the laser developed in this work for a wide range of plastic welding applications.

  13. Development of welding technologies for the manufacturing of European Tritium Breeder blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Poitevin, Y., E-mail: yves.poitevin@f4e.europa.eu [Fusion for Energy (F4E), Barcelona (Spain); Aubert, Ph. [CEA Saclay, DEN/DM2S and DEN/DMN, F-91191 Gif-sur-Yvette (France); Diegele, E. [Fusion for Energy (F4E), Barcelona (Spain); Dinechin, G. de [CEA Saclay, DEN/DM2S and DEN/DMN, F-91191 Gif-sur-Yvette (France); Rey, J. [Institut fuer Neutronenphysik und Reaktortechnik, FZK, Karlsruhe (Germany); Rieth, M. [Institut fuer Materialforschung I, FZK, Karlsruhe (Germany); Rigal, E. [CEA Grenoble, DRT/DTH, F-38000 Grenoble (France); Weth, A. von der [Institut fuer Neutronenphysik und Reaktortechnik, FZK, Karlsruhe (Germany); Boutard, J.-L. [European Fusion Development Agreement (EFDA), Garching (Germany); Tavassoli, F. [CEA Saclay, DEN/DM2S and DEN/DMN, F-91191 Gif-sur-Yvette (France)

    2011-10-01

    Europe has developed two reference Tritium Breeder Blankets concepts for a DEMO fusion reactor: the Helium-Cooled Lithium-Lead and the Helium-Cooled Pebble-Bed. Both are using the reduced-activation ferritic-martensitic EUROFER-97 steel as structural material and will be tested in ITER under the form of test blanket modules. The fabrication of their EUROFER structures requires developing welding processes like laser, TIG, EB and diffusion welding often beyond the state-of-the-art. The status of European achievements in this area is reviewed, illustrating the variety of processes and key issues behind retained options, in particular with respect to metallurgical aspects and mechanical properties. Fabrication of mock-ups is highlighted and their characterization and performances with respect to design requirements are reviewed.

  14. Development of an encapsulation method using plasma arc welding to produce iodine-125 seeds for brachytherapy

    International Nuclear Information System (INIS)

    Feher, Anselmo; Calvo, Wilson A.P.; Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Somessari, Samir L.; Costa, Osvaldo L.; Moura, Joao A.; Moura, Eduardo S.; Souza, Carla D.; Rela, Paulo R.

    2011-01-01

    The prostate cancer, which is the second cause of death by cancer in men, overcome only by lung cancer is public health problem in Brazil. Brachytherapy is among the possible available treatments for prostate cancer, in which small seeds containing Iodine-125 radioisotope are implanted into the prostate gland. The seed consists of a titanium sealed capsule with 0.8 mm external diameter and 4.5 mm length, containing a central silver wire with adsorbed Iodine-125. The Plasma Arc Welding (PAW) is one of the viable techniques for sealing process. The equipment used in this technique is less costly than in other processes, such as, Laser Beam Welding (LBW). The main purpose of this work was the development of an encapsulation method using PAW. The development of this work has presented the following phases: cutting and cleaning titanium tube, determination of the welding parameters, development of a titanium tube holding device for PAW, sealed sources validation according to ISO 2919 - Sealed Radioactive Sources - General Requirements and Classification, and metallographic assays. The developed procedure to seal Iodine-125 seeds using PAW has shown high efficiency, satisfying all the established requirements of ISO 2919. The results obtained in this work will give the possibility to establish a routine production process according to the orientations presented in resolution RDC 17 - Good Manufacturing Practices to Medical Products defined by the ANVISA - National Agency of Sanitary Surveillance. (author)

  15. Development of an encapsulation method using plasma arc welding to produce iodine-125 seeds for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Feher, Anselmo; Calvo, Wilson A.P.; Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Somessari, Samir L.; Costa, Osvaldo L.; Moura, Joao A.; Moura, Eduardo S.; Souza, Carla D.; Rela, Paulo R., E-mail: afeher@ipen.b, E-mail: wapcalvo@ipen.b, E-mail: elisaros@ipen.b, E-mail: somessar@ipen.b, E-mail: olcosta@ipen.b, E-mail: esmoura@ipen.b, E-mail: cdsouza@ipen.b, E-mail: prela@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The prostate cancer, which is the second cause of death by cancer in men, overcome only by lung cancer is public health problem in Brazil. Brachytherapy is among the possible available treatments for prostate cancer, in which small seeds containing Iodine-125 radioisotope are implanted into the prostate gland. The seed consists of a titanium sealed capsule with 0.8 mm external diameter and 4.5 mm length, containing a central silver wire with adsorbed Iodine-125. The Plasma Arc Welding (PAW) is one of the viable techniques for sealing process. The equipment used in this technique is less costly than in other processes, such as, Laser Beam Welding (LBW). The main purpose of this work was the development of an encapsulation method using PAW. The development of this work has presented the following phases: cutting and cleaning titanium tube, determination of the welding parameters, development of a titanium tube holding device for PAW, sealed sources validation according to ISO 2919 - Sealed Radioactive Sources - General Requirements and Classification, and metallographic assays. The developed procedure to seal Iodine-125 seeds using PAW has shown high efficiency, satisfying all the established requirements of ISO 2919. The results obtained in this work will give the possibility to establish a routine production process according to the orientations presented in resolution RDC 17 - Good Manufacturing Practices to Medical Products defined by the ANVISA - National Agency of Sanitary Surveillance. (author)

  16. Final Report of Project Curriculum Development: Pulsed Tig Welding, 1978-1979.

    Science.gov (United States)

    Atlantic County Area Vocational-Technical School, NJ.

    Designed to help unemployed and disadvantaged workers find new career opportunities, this curriculum provides vocational students with a basic course of instruction in pulsed tungsten inert gas (TIG) welding. The first of four sections provides a general background of welding, the welding industry, and welding processes. Section 2 focuses on…

  17. Joining U.S. NRC international round robin for weld residual stress analysis. Stress analysis and validation in PWSCC mitigation program

    International Nuclear Information System (INIS)

    Maekawa, Akira; Serizawa, Hisashi; Murakawa, Hidekazu

    2012-01-01

    It is necessary to establish properly reliable weld residual stress analysis methods for accurate crack initiation and growth assessment of primary water stress corrosion cracking (PWSCC), which may occur in nickel-based dissimilar metal welds in pressurized water reactors. The U.S. Nuclear Regulatory Commission conducted an international round robin for weld residual stress analysis to improve stress analysis methods and to examine the uncertainties involved in the calculated stress values. In this paper, the results from the authors' participation in the round robin were reported. In the round robin, the weld residual stress in a nickel-based dissimilar metal weld of a pressurizer surge nozzle mock-up was computed under various analysis conditions. Based on these residual stress analysis results, a welding simulation code currently being developed that uses the iterative substructure method was validated and affecting factors on the analysis results were identified. (author)

  18. Initial Development in Joining of ODS Alloys Using Friction Stir Welding

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Feng, Zhili [ORNL

    2007-08-01

    Solid-state welding of oxide-dispersion-strengthened (ODS) alloy MA956 sheets using friction stir welding (FSW) was investigated. Butt weld was successfully produced. The weld and base metals were characterized using optical microscopy, scanning electronic microscopy, transmission electronic microscopy, and energy dispersion x-ray spectrum. Microhardness mapping was also conducted over the weld region. Analyses indicate that the distribution of the strengthening oxides was preserved in the weld. Decrease in microhardness of the weld was observed but was insignificant. The preliminary results seem to confirm the envisioned feasibility of FSW application to ODS alloy joining. For application to Gen IV nuclear reactor heat exchanger, further investigation is suggested.

  19. Microstructure and mechanical properties of newly developed aluminum–lithium alloy 2A97 welded by fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Banglong [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061 (China); Qin, Guoliang, E-mail: glqin@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061 (China); Meng, Xiangmeng; Ji, Yang; Zou, Yong [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061 (China); Lei, Zhen [Harbin Welding Institute, Harbin 150028 (China)

    2014-11-03

    The newly developed aluminum–lithium alloy 2A97 was for the first time joined by laser beam welding in order to meet the ever-increased long-term requirements of aerospace, aviation and armament industries. The weld appearance, microstructure, solute segregation, precipitate behavior, and their relationships with mechanical properties of welded joints were investigated. Sound joints with no crack and a few small porosities are obtained under appropriate heat inputs. As a result of heterogeneous nucleation involving the effect of Zr and Li, a non-dendritic equiaxed zone forms between partially melted zone and fusion zone. The crystal morphologies in fusion zone vary from columnar dendrite to equiaxed dendrite, with the increase of constitutional supercooling. Solute segregation leads to the variations of Cu content in grain interior and boundary, as well as the weak ability of re-precipitation of fusion zone. Most precipitates in the base metal dissolve during welding, and fusion zone contains a decreased quantity of δ′, β′, θ′, and T{sub 1}. The ultimate tensile strength of laser welded joints is 83.4% of that of the base metal, and can meet the application requirements from related industries, but the ductility still needs to be improved. Welding defects and loss of solid solution/precipitation hardened structure lead to the degradation of mechanical properties. Tensile fracture occurs in weld with the brittle intergranular dominated mode and premature failure occurs and extends in the equiaxed zone.

  20. Remote Welding, NDE and Repair of DOE Standardized Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Eric Larsen; Art Watkins; Timothy R. McJunkin; Dave Pace; Rodney Bitsoi

    2006-05-01

    The U.S. Department of Energy (DOE) created the National Spent Nuclear Fuel Program (NSNFP) to manage DOE’s spent nuclear fuel (SNF). One of the NSNFP’s tasks is to prepare spent nuclear fuel for storage, transportation, and disposal at the national repository. As part of this effort, the NSNFP developed a standardized canister for interim storage and transportation of SNF. These canisters will be built and sealed to American Society of Mechanical Engineers (ASME) Section III, Division 3 requirements. Packaging SNF usually is a three-step process: canister loading, closure welding, and closure weld verification. After loading SNF into the canisters, the canisters must be seal welded and the welds verified using a combination of visual, surface eddy current, and ultrasonic inspection or examination techniques. If unacceptable defects in the weld are detected, the defective sections of weld must be removed, re-welded, and re-inspected. Due to the high contamination and/or radiation fields involved with this process, all of these functions must be performed remotely in a hot cell. The prototype apparatus to perform these functions is a floor-mounted carousel that encircles the loaded canister; three stations perform the functions of welding, inspecting, and repairing the seal welds. A welding operator monitors and controls these functions remotely via a workstation located outside the hot cell. The discussion describes the hardware and software that have been developed and the results of testing that has been done to date.

  1. Developing An Internship Program.

    Science.gov (United States)

    Chase, Valerie

    1984-01-01

    Provided are suggestions for developing museum/aquarium internship programs. These include writing detailed job descriptions, advertising, designing application forms asking all the information needed, supervising the interns, interviewing applicants as they were applying for a paid position, and others. (JN)

  2. Modeling aluminum-lithium alloy welding characteristics

    Science.gov (United States)

    Bernstein, Edward L.

    1996-01-01

    The purpose of this project was to develop a finite element model of the heat-affected zone in the vicinity of a weld line on a plate in order to determine an accurate plastic strain history. The resulting plastic strain increments calculated by the finite element program were then to be used to calculate the measure of damage D. It was hoped to determine the effects of varying welding parameters, such as beam power, efficiency, and weld speed, and the effect of different material properties on the occurrence of microfissuring. The results were to be compared first to the previous analysis of Inconel 718, and then extended to aluminum 2195.

  3. Aluminum alloy weldability. Identification of weld solidification cracking mechanisms through novel experimental technique and model development

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, Nicolas

    2008-07-01

    The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated. Afterwards, cracking models are developed to propose mechanisms for solidification crack initiation and growth. Cracking Sensitivity. Building upon the concept that silicon improves weldability and that weldability can be defined by a critical strain rate, strain rate-composition combinations required for solidification crack formation in the Al- 6060/4043 system were determined using the newly developed Controlled Tensile Weldability (CTW) test utilizing local strain extensometer measurements. Results, presented in a critical strain rate - dilution map, show a crack - no crack boundary which reveals that higher local strain rates require higher 4043 filler dilution to avoid solidification cracking when arc welding Alloy 6060. Using the established crack - no crack boundary as a line of reference, additional parameters were examined and their influence on cracking characterized. These parameter influences have included studies of weld travel speed, weld pool contaminants (Fe, O, and H), and grain refiner additions (TiAl{sub 3} + Boron). Each parameter has been independently varied and its effect on cracking susceptibility quantified in terms of strain rate - composition combinations. Solidification Path. Solidification path of the Al-6060/4043 system was characterized using thermal analysis and phase identification. Increasing 4043 filler dilution from 0 to 16% in Alloy 6060 arc welds resulted in little effect on thermal arrests and microstructure, no effect on

  4. Recent Developments and Research Progress on Friction Stir Welding of Titanium Alloys: An Overview

    Science.gov (United States)

    Karna, Sivaji; Cheepu, Muralimohan; Venkateswarulu, D.; Srikanth, V.

    2018-03-01

    Titanium and its alloys are joined by various welding processes. However, Fusion welding of titanium alloys resulted solidification problems like porosity, segregation and columnar grains. The problems occurred in conventional welding processes can be resolved using a solid state welding i.e. friction stir welding. Aluminium and Magnesium alloys were welded by friction stir welding. However alloys used for high temperature applications such as titanium alloys and steels are arduous to weld using friction stir welding process because of tool limitations. Present paper summarises the studies on joining of Titanium alloys using friction stir welding with different tool materials. Selection of tool material and effect of welding conditions on mechanical and microstructure properties of weldments were also reported. Major advantage with friction stir welding is, we can control the welding temperature above or below β-transus temperature by optimizing the process parameters. Stir zone in below beta transus condition consists of bi-modal microstructure and microstructure in above β-transus condition has large prior β- grains and α/β laths present in the grain. Welding experiments conducted below β- transus condition has better mechanical properties than welding at above β-transus condition. Hardness and tensile properties of weldments are correlated with the stir zone microstructure.

  5. Development of automatic reactor vessel inspection systems: development of data acquisition and analysis system for the nuclear vessel weld

    Energy Technology Data Exchange (ETDEWEB)

    Park, C. H.; Lim, H. T.; Um, B. G. [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2001-03-01

    The objective of this project is to develop an automated ultrasonic data acquisition and data analysis system to examine the reactor vessel weldsIn order to examine nuclear vessel welds including reactor pressure vessel(RPV), huge amount of ultrasonic data from 6 channels should be able to be on-line processed. In addition, ultrasonic transducer scanning device should be remotely controlled, because working place is high radiation area. This kind of an automated ultrasonic testing equipment has not been developed domestically yet In order to develop an automated ultrasonic testing system, RPV ultrasonic testing equipments developed in foreign countries were investigated and the capability of high speed ultrasonic signal processing hardwares was analyzed in this study, ultrasonic signal processing system was designed. And also, ultrasonic data acquisition and analysis software was developed. 11 refs., 6 figs., 9 tabs. (Author)

  6. Development of aluminium viscous damper by high speed MIG welding process; Kosoku MIG yosetsuho ni yoru aluminium sei viscous damper no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hino, H; Hotta, M [Nippon Light Metal Co. Ltd., Tokyo (Japan); Maeda, Y; Shimizu, H [Fukoku Co. Ltd., Saitama (Japan)

    1997-10-01

    We have developed a welded aluminum viscous damper to improve the joining strength between the case and the cover of the conventional damper mechanically fastened by adhesion. The distortion of the welded damper was decreased to an acceptable level using the high speed MIG welding process. Sound quality and good appearance were obtained by optimizing the initial speed of the filler wire and by controlling the welding conditions at the starting part and in the lap part. The leakage load and the fatigue limit of the welded damper were 5 and 10 times those of the conventional damper, respectively. 3 refs., 15 figs.

  7. Robotics Technology Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    The Robotics Technology Development Program (RTDP) is a ''needs-driven'' effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE's Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination ampersand Dismantlement (D ampersand D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D ampersand D and CC ampersand AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas

  8. Grinding Parts For Automatic Welding

    Science.gov (United States)

    Burley, Richard K.; Hoult, William S.

    1989-01-01

    Rollers guide grinding tool along prospective welding path. Skatelike fixture holds rotary grinder or file for machining large-diameter rings or ring segments in preparation for welding. Operator grasps handles to push rolling fixture along part. Rollers maintain precise dimensional relationship so grinding wheel cuts precise depth. Fixture-mounted grinder machines surface to quality sufficient for automatic welding; manual welding with attendant variations and distortion not necessary. Developed to enable automatic welding of parts, manual welding of which resulted in weld bead permeated with microscopic fissures.

  9. Development of optimized techniques and requirements for computer enhancement of structural weld radiographs. Volume 1: Technical report

    Science.gov (United States)

    Adams, J. R.; Hawley, S. W.; Peterson, G. R.; Salinger, S. S.; Workman, R. A.

    1971-01-01

    A hardware and software specification covering requirements for the computer enhancement of structural weld radiographs was considered. Three scanning systems were used to digitize more than 15 weld radiographs. The performance of these systems was evaluated by determining modulation transfer functions and noise characteristics. Enhancement techniques were developed and applied to the digitized radiographs. The scanning parameters of spot size and spacing and film density were studied to optimize the information content of the digital representation of the image.

  10. Numerical and experimental investigation of geometric parameters in projection welding

    DEFF Research Database (Denmark)

    Kristensen, Lars; Zhang, Wenqi; Bay, Niels

    2000-01-01

    parameters by numerical modeling and experimental studies. SORPAS, an FEM program for numerical modeling of resistance welding, is developed as a tool to help in the phase of product design and process optimization in both spot and projection welding. A systematic experimental investigation of projection...... on the numerical and experimental investigations of the geometric parameters in projection welding, guidelines for selection of the geometry and material combinations in product design are proposed. These will be useful and applicable to industry.......Resistance projection welding is widely used for joining of workpieces with almost any geometric combination. This makes standardization of projection welding impossible. In order to facilitate industrial applications of projection welding, systematic investigations are carried out on the geometric...

  11. Development of residual stress analysis procedure for fitness-for-service assessment of welded structure

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Jin, Tae Eun; Dong, P.; Prager, M.

    2003-01-01

    In this study, a state of art review of existing residual stress analysis techniques and representative solutions is presented in order to develop the residual stress analysis procedure for Fitness-For-Service(FFS) assessment of welded structure. Critical issues associated with existing residual stress solutions and their treatments in performing FFS are discussed. It should be recognized that detailed residual stress evolution is an extremely complicated phenomenon that typically involves material-specific thermomechanical/metallurgical response, welding process physics, and structural interactions within a component being welded. As a result, computational procedures can vary significantly from highly complicated numerical techniques intended only to elucidate a small part of the process physics to cost-effective procedures that are deemed adequate for capturing some of the important features in a final residual stress distribution. Residual stress analysis procedure for FFS purposes belongs to the latter category. With this in mind, both residual stress analysis techniques and their adequacy for FFS are assessed based on both literature data and analyses performed in this investigation

  12. Multi Canister Overpack (MCO) Closure Welding Process Parameter Development and Qualification

    International Nuclear Information System (INIS)

    CANNELL, G.R.

    2003-01-01

    One of the Department of Energy's (DOE) top priorities at the Hanford Site (southeastern Washington state), is the processing of more than 2,000 tons of spent nuclear fuel (SNF) into large stainless steel containers called Multi-Canister Overpacks (MCO). Packaging into MCO's will assist in the safe and economic disposition of SNF and greatly reduce risk to the environment. Packaged fuel will be removed from close proximity to the Columbia River to a more suitable area of the site where it will be stored on an interim basis. Eventually, the fuel will be transferred to the federal geologic repository for long-term storage. One of the key elements in the SNF process is final closure of the MCO by welding. Fuel is loaded into the MCO (approximately 2 ft. in diameter and 13 ft. long) and a heavy shield plug inserted into the top, creating a mechanical seal. The plug contains several process ports for various operations, including vacuum drying and inert-gas backfilling of the packaged fuel. When fully processed, the Canister Cover Assembly (CCA) is placed over the shield plug and final closure made by welding. The following describes the effort to develop and qualify the root-pass technique associated with the MCO final closure weld

  13. Effect of prior machining deformation on the development of tensile residual stresses in weld-fabricated nuclear components

    International Nuclear Information System (INIS)

    Prevey, P.S.; Mason, P.W.; Hornbach, D.J.; Molkenthin, J.P.

    1996-01-01

    Austenitic alloy weldments in nuclear systems may be subject to stress-corrosion cracking (SCC) failure if the sum of residual and applied stresses exceeds a critical threshold. Residual stresses developed by prior machining and welding may either accelerate or retard SCC, depending on their magnitude and sign. A combined x-ray diffraction and mechanical procedure was used to determine the axial and hoop residual stress and yield strength distributions into the inside-diameter surface of a simulated Alloy 600 penetration J-welded into a reactor pressure vessel. The degree of cold working and the resulting yield strength increase caused by prior machining and weld shrinkage were calculated from the line-broadening distributions. Tensile residual stresses on the order of +700 MPa were observed in both the axial and the hoop directions at the inside-diameter surface in a narrow region adjacent to the weld heat-affected zone. Stresses exceeding the bulk yield strength were found to develop due to the combined effects of cold working of the surface layers during initial machining and subsequent weld shrinkage. The residual stress and cold work distributions produced by prior machining were found to influence strongly the final residual stress state developed after welding

  14. Integrated sensors for robotic laser welding

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Beyer, E.; Dausinger, F; Ostendorf, A; Otto, A.

    2005-01-01

    A welding head is under development with integrated sensory systems for robotic laser welding applications. Robotic laser welding requires sensory systems that are capable to accurately guide the welding head over a seam in three-dimensional space and provide information about the welding process as

  15. Capabilities of infrared weld monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, P.G.; Keske, J.S.; Leong, K.H.; Kornecki, G.

    1997-11-01

    A non-obtrusive pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld penetration, while AC portions of the output can be correlated with surface irregularities and part misalignment or contamination. Changes in DC behavior are also noted for both full and deep penetration welds. Full penetration welds are signified by an abrupt reduction in the weld monitor output. Bead on plate welds were made on steel, aluminum, and magnesium with both a CW CO{sub 2} laser and a pulsed Nd:YAG laser to explore the relationships between the weld characteristics and the weld monitor output.

  16. Canadian fuel development program

    International Nuclear Information System (INIS)

    Gacesa, M.; Young, E.G.

    1992-11-01

    CANDU power reactor fuel has demonstrated an enviable operational record. More than 99.9% of the bundles irradiated have provided defect-free service. Defect excursions are responsible for the majority of reported defects. In some cases research and development effort is necessary to resolve these problems. In addition, development initiatives are also directed at improvements of the current design or reduction of fueling cost. The majority of the funding for this effort has been provided by COG (CANDU Owners' Group) over the past 10 to 15 years. This paper contains an overview of some key fuel technology programs within COG. The CANDU reactor is unique among the world's power reactors in its flexibility and its ability to use a number of different fuel cycles. An active program of analysis and development, to demonstrate the viability of different fuel cycles in CANDU, has been funded by AECL in parallel with the work on the natural uranium cycle. Market forces and advances in technology have obliged us to reassess and refocus some parts of our effort in this area, and significant success has been achieved in integrating all the Canadian efforts in this area. This paper contains a brief summary of some key components of the advanced fuel cycle program. (Author) 4 figs., tab., 18 refs

  17. Biofuels feedstock development program

    International Nuclear Information System (INIS)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1993-11-01

    The Department of Energy's (DOE's) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires

  18. Development of automatic reactor vessel inspection systems; development of data acquisition and analysis system for the nuclear vessel weld

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Po; Park, C. H.; Kim, H. T.; Noh, H. C.; Lee, J. M.; Kim, C. K.; Um, B. G. [Research Institute of KAITEC, Seoul (Korea)

    2002-03-01

    The objective of this project is to develop an automated ultrasonic data acquisition and data analysis system to examine heavy vessel welds. In order to examine nuclear vessel welds including reactor pressure vessel(RPV), huge amount of ultrasonic data from 6 channels should be able to be on-line processed. In addition, ultrasonic transducer scanning device should be remotely controlled, because working place is high radiation area. This kind of an automated ultrasonic testing equipment has not been developed domestically yet. In order to develop an automated ultrasonic testing system, RPV ultrasonic testing equipments developed in foreign countries were investigated and the capability of high speed ultrasonic signal processing hardwares was analyzed. In this study, ultrasonic signal processing system was designed. And also, ultrasonic data acquisition software was developed. The new systems were tested on the RPV welds of Ulchin Unit 6 to confirm their functions and capabilities. They worked very well as designed and the tests were successfully completed. 13 refs., 34 figs., 11 tabs. (Author)

  19. Perspectives of special welding methods. 1

    International Nuclear Information System (INIS)

    Herden, G.; Buness, G.; Wiesner, P.

    1976-01-01

    Laser, electron, ion, and light beam welding as well as plasma arc welding are considered to be special fusion welding methods. The stage of development and possible future applications of these methods are described. (author)

  20. Progress report on a fully automatic Gas Tungsten Arc Welding (GTAW) system development

    Energy Technology Data Exchange (ETDEWEB)

    Daumeyer, G.J. III

    1994-12-01

    A plan to develop a fully automatic gas tungsten arc welding (GTAW) system that will utilize a vision-sensing computer (which will provide in-process feedback control) is presently in work. Evaluations of different technological aspects and system design requirements continue. This report summaries major activities in the plan`s successful progress. The technological feasibility of producing the fully automated GTAW system has been proven. The goal of this process development project is to provide a production-ready system within the shortest reasonable time frame.

  1. Program development fund

    International Nuclear Information System (INIS)

    1989-03-01

    It is the objective of the Fund to encourage innovative research to maintain the Laboratory's position at the forefront of science. Funds are used to explore new ideas and concepts that may potentially develop into new directions of research for the Laboratory and that are consistent with the major needs, overall goals, and mission of the Laboratory and the DOE. The types of projects eligible for support from PDF include: work in forefront areas of science and technology for the primary purpose of enriching Laboratory research and development capabilities; advanced study of new hypotheses, new experimental concepts, or innovative approaches to energy problems; experiments directed toward ''proof of principle'' or early determination of the utility of a new concept; and conception, design analyses, and development of experimental devices, instruments, or components. This report is a review of these research programs

  2. Critical element development of standard components for pipe welding/cutting by CO{sub 2} laser

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Kakudate, Satoshi; Nakahira, Masataka [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1994-11-01

    In D-T burning reactors such as International Thermonuclear Experimental Reactor(ITER), an internal access is inevitable for welding/cutting of cooling pipes of in-vessel components, because of spatial constraint due to a narrow port opening space. An internal-access pipe welding/cutting equipment is being developed in JAERI. Internal access is to approach through inside a pipe to a welding/cutting position, to use 10kW CO{sub 2} laser beam, and to be applicable to both welding and cutting with using a same processing head. A welding/cutting processing head with 10kW CO{sub 2} laser beam has been fabricated and the basic feasibility has been successfully demonstrated for studies of the internal-access pipe welding/cutting concept using 100-A stainless steel pipe with a thickness of 6.3mm. In this study, the optimum focal point of laser beam, laser power and traveling speed of the head have been investigated together with an adjusting mechanism of a relative distance between the head and the pipe wall. In addition, the radiation resistance of critical elements such as optical lens has been investigated. (author).

  3. ABC Technology Development Program

    International Nuclear Information System (INIS)

    1994-01-01

    The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: 'Provide a weapon's grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon's grade plutonium to be disposed on in [20] years.' This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments

  4. WANO. Development, programs, challenges

    International Nuclear Information System (INIS)

    Haferburg, Manfred

    2011-01-01

    In the wake of the accident at the Soviet RBMK reactor unit 4 in Chernobyl the nuclear industry founded the World Association of Nuclear Operators (WANO). To this day, the purpose of the organization has been to enhance worldwide cooperation of nuclear industry and, in this way, strengthen the safety and availability of nuclear power plants. Following some first steps after 1986, the charter of the organization was signed at the WANO constituent assembly in Moscow on May 15 and 16, 1989. The member companies thus committed themselves to support WANO's mission. WANO was established for these purposes: ''The mission of WANO is to maximize the safety and reliability of nuclear power plants worldwide by working together to assess, benchmark and improve performance through mutual support, exchange of information, and emulation of best practices.'' The WANO programs developed speedily thereafter. The focus was on peer reviews. In 2000, the first interim objective had been reached: Fifty percent of all member nuclear power plants had undergone peer reviews. In addition, plant-related peer reviews were extended throughout all operator organizations, and corporate peer reviews were developed. The other WANO programs as well, i.e. exchanges of experience, technical support, and performance indicators, exerted more and more influence on industry. Peer reviews covered entire operator organizations, and corporate peer reviews were developed. The worldwide paradigm shift in evaluating the use of nuclear power, and the associated construction programs for new nuclear power plants already in their implementation phase, assigned a new quality to the work of WANO. The organization is preparing a long-term strategy in the face of the challenges to be expected. The ultimate objective of these efforts is to support member organizations from the first preparations of a nuclear power plant project to the end of commercial operation. (orig.)

  5. Development and modeling of hot tearing test in TIG welding of aluminum alloy 6056

    OpenAIRE

    Niel , Aurélie; Fras , Gilles; Deschaux-Beaume , Frédéric; Bordreuil , Cyril

    2010-01-01

    International audience; TIG welding process is widely used in the aeronautic industry. However, the increase of productivity which generally require an increase of welding speed is limited by the appearance of defects, such as hot tearing. This study focuses on the analysis of hot tearing in TIG welding on a 6056 aluminum alloy, used in aircraft manufacturing. Thanks to the developpement of an original hot tearing test and to numerical simulation of welding process, the influence of various p...

  6. Weld analysis and control system

    Science.gov (United States)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  7. Development of an intelligent ultrasonic welding defect classification software

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Jeong, Hee Don

    1997-01-01

    Ultrasonic pattern recognition is the most effective approach to the problem of discriminating types of flaws in weldments based on ultrasonic flaw signals. In spite of significant progress in the research on this methodology, it has not been widely used in many practical ultrasonic inspections of weldments in industry. Hence, for the convenient application of this approach in many practical situations, we develop an intelligent ultrasonic signature classification software which can discriminate types of flaws in weldments based on their ultrasonic signals using various tools in artificial intelligence such as neural networks. This software shows the excellent performance in an experimental problem where flaws in weldments are classified into two categories of cracks and non-cracks. This performance demonstrates the high possibility of this software as a practical tool for ultrasonic flaw classification in weldments.

  8. Complete Status Report Documenting Weld Development for Thin Wall Tubing of ODS Ferritic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Edmondson, Philip D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tang, Wei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-16

    Beginning in 2015, research in the FCRD program began the development of FSW for joining thin sections of 14YWT in the form of thin (0.5 mm) plate and ultimately thin wall tubing. In the previous fiscal year, a ~1 mm thick plate, or sheet, of 14YWT was produced by hot rolling with no edge cracking. The initial FSW experiment was performed on the 1 mm thick plate and involved a bead-on-plate weld in which the spinning pin tool is plunged into the plate surface, but does not penetrate the thickness of the plate, and then travels the length of the plate. The FSW run successfully produced a bead-on-plate stir zone on the 1 mm thick plate of 14YWT, but no characterization studies of the stir zone were performed by the end of FY15. Therefore, the results presented in this report cover the microstructural analysis of the bead-on-plate stir zone and the initial research task on obtaining tensile properties of the stir zone using the digital image correlation (DIC) approach during testing of miniature tensile specimens to assess the quality of the FSW parameters used in the initial experiment. The results of the microstructural characterization study using optical, scanning electron and scanning transmission electron microscopies showed the grain structure in the SZ to have isotropic and irregular shape but very similar size compared to the highly elongated grains oriented horizontally with the plane of the plate that were observed in the unaffected zone of 14YWT. Several cracks oriented horizontally were observed mostly on the retreating side of the SZ in both the SZ and TMAZ. These cracks may have formed due to insufficient pressure being exerted on the top surface of the plate by the shoulder and pin tool during the FSW run. High resolution STEM-EDS analysis showed the presence of the Y-Ti-O particles in the SZ, but that some particles exhibited coarsening. Overall, the FSW parameters used to produce the bead-on-plate SZ in the 0.1 cm thick plate of 14YWT were nearly

  9. Advances in automatic welding control

    International Nuclear Information System (INIS)

    White, D.; Woodacre, A.; Taylor, A.F.

    1972-01-01

    The development at the Reactor Fuel Element Laboratories, UKAEA Springfields, of a computer-based welding process control system, was aimed initially at the TIG welding of the end seals of nuclear fuel elements. The system provides for mixed multi-station operation with on-line real-time capability and can be used either as a research tool or for production requirements at competitive costs. The operation of the control system, the form of power source, and the servo motor control units are described. Typically, continuous or pulse-arc welding sequences can be digitally programmed on 0.1 sec increments, with current in 0.5 A increments up to a maximum of 256 A; up to three servo motors can be operated with speeds selected in 0.1 percent increments of their maximum. Up to six welding parameters can be monitored digitally at speeds from once every 10 msec. Some applications are described and it is shown that the equipment has wider uses outside the nuclear fuel element field. High quality industrial welding requirements can also be met and the system is not limited to the TIG process

  10. Advances in automatic welding control

    International Nuclear Information System (INIS)

    White, D.; Woodacre, A.; Taylor, A.F.

    1972-01-01

    The development at the Reactor Fuel Element Laboratories, UKAEA Springfields, of a computer-based welding process control system, was aimed initially at the TIG welding of the end seals of nuclear fuel elements. The system provides for mixed multi-station operation with on-line real-time capability and can be used either as a research tool or for production requirements at competitive costs. The operation of the control system, the form of power source and servo motor control units are described. Typically, continuous or pulse-arc welding sequences can be digitally programmed on 0.1 sec increments, with current in 0.5 A increments up to a maximum of 256 A; up to three servo motors can be operated with speeds selected in 0.1% increments of their maximum. Up to six welding parameters can be monitored digitally at speeds from once every 10 msec. Some applications are described and it is shown that the equipment has wider uses outside the nuclear fuel element field. High quality industrial welding requirements can also be met and the system is not limited to the TIG process. (author)

  11. Development of various welding techniques for refractory and reactive metals and alloys

    International Nuclear Information System (INIS)

    Tonpe, Sunil; Saibaba, N.

    2016-01-01

    Nuclear Fuel Complex (NFC), Hyderabad, India with its excellent manufacturing facilities, produces nuclear fuel and structural components for nuclear reactors. NFC has taken up the challenging job of production of various critical components made out of refractory and reactive metals and alloys for nuclear and aerospace applications as an indigenization import substitute program. Refractory metals are prime candidates for many high temperature aerospace components because of refractory metal's high melting points and inherent creep resistance. The use of refractory metals is often limited because of their poor room temperature properties, inadequate oxidation resistance at elevated temperatures, difficulties associated with joining or welding etc. These advanced materials demand stringent requirement with respect to chemistry, dimensional tolerances, mechanical and metallurgical properties. This paper discusses in detail various welding techniques adopted in NFC for refractory and reactive metals and alloys such as Nb, Zr, Ti, Ta, Zircaloy, Titanium-half alloy etc. to manufacture various components and assemblies required for nuclear and aerospace applications

  12. Development of the advanced phased array UT technique for accurate sizing of cracks in the nozzle welding

    International Nuclear Information System (INIS)

    Nishida, Jun-ichiro; Kawanami, Seiichi; Ideo, Mitsushi; Matsuura, Takayuki; Chigusa, Naoki; Hirano, Shinro; Sera, Takehiko

    2010-01-01

    Recently, preventive maintenance tasks for welding of safe-end nozzles of reactor vessels and steam generators of PWRs in Japan had been carried out sequentially. Before the maintenance tasks, inspection services were carried out and several crack indications were found by eddy current testing (ECT). These indications were found in the welding which made by 600 series nickel base alloy and evaluated as stress corrosion cracks which were oriented to the axial direction of the nozzle. Then investigations to evaluate the depth of cracks were carried out by ultrasonic testing (UT) from inner surface of the nozzles. However they were difficult to evaluate the depth of cracks due to the high attenuation of the ultrasonic propagation caused by large grain structure of welding. And also it was required high resolution near surface region for accurate sizing. Therefore development of advanced phased array UT techniques specialized for the sizing at this portion was carried out. This paper reports the development status and verification test results. Firstly simulations of the ultrasonic propagation in the welding were carried out to optimize beam profiles of phased array probes. Next prototype probes were manufactured and verification tests were conducted to evaluate the accuracy of depth sizing. It is shown that the developed techniques have high sizing accuracy for artificial stress corrosion cracks in the welding. (author)

  13. Experimental Development of Dual Phase Steel Laser-arc Hybrid Welding and its Comparison to Laser and Gas Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Wagner Duarte Antunes

    Full Text Available Abstract Dual phase DP600 steels have been used in many automobile structures and laser welding has been the standard method for the joining of different sections. This work proposed a comparison between laser welding with arc welding (GMAW and with hybrid laser-arc welding in order to access the microstructures and the mechanical behavior. The laser and hybrid welds are competitive in terms of microstructure and mechanical behavior, presenting both acceptable and tough welds. The maximum ductility of the laser and hybrid welds are very similar, around 14%, and near to the values observed in the base material. The GMAW presents low ductility due to the softening caused by tampering of the martensite, and thus is unacceptable as the welding procedure.

  14. ASPECTS REGARDING WOOD WELDING IN THE CONTEXT OF APPLICABILITY IN THE LEAST DEVELOPED COUNTRIES

    Directory of Open Access Journals (Sweden)

    Ramona-Elena DUMITRAȘCU

    2015-12-01

    Full Text Available Furniture, as traditional sector in Romania, is one of the few areas that bring profit. It is a field that contributes to the economical competitiveness through the variety of products for import and export. In this context, joining wood is essential for the production of wood products. Therefore, knowing the environmentally-friendly methods for wood joints could lead to performance and progress. Welding technology of wood as an alternative method to bonding wood elements or wooden structures has not been addressed in Romania until now. The paper presents a review performed with the aim of contribute to the knowledge of this innovative technology, to show the problems and the possibilities, of least developed countries, to contribute at this area of reasearch. The general aim is to present the main methods and to analyze their advantages and disadvantages in the context of development in the least developed countries. The results showed that both methods, at low and hight temperature, has benefits but there are and some economic and knowledge barriers for extended the technology.The overall conclusion of this research is to find efficient solutions for wood welding in order to obtain new better and cleaner wood products

  15. Challenges to Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    This report originates from the compulsory defense during my Ph.D. study at the Technical University of Denmark. Resistance welding is an old and well-proven technology. Yet the emergence of more and more new materials, new designs, invention off new joining techniques, and more stringent...... requirement in quality have imposed challenges to the resistance welding. More some research and development have to be done to adapt the old technology to the manufacturing industry of the 21st century. In the 1st part of the report, the challenging factors to the resistance welding are reviewed. Numerical...... simulation of resistance welding has been under development for many years. Yet it is no easy to make simulation results reliable and accurate because of the complexity of resistance welding process. In the 2nd part of the report numerical modeling of resistance welding is reviewed, some critical factors...

  16. Development of filler wires for welding of reduced activation ferritic martenstic steel for India's test blanket module of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, G., E-mail: gsrini@igcar.gov.in [Materials Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Arivazhagan, B.; Albert, S.K.; Bhaduri, A.K. [Materials Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India)

    2011-06-15

    Highlights: > Weld microstructure produced by RAFMS filler wires are free from delta ferrite. > Cooling rates of by weld thermal cycles influences the presence of delta ferrite. > Weld parameters modified with higher pre heat temperature and high heat input. > PWHT optimized based on correlation of hardness between base and weld metals. > Optimised mechanical properties achieved by proper tempering of the martensite. - Abstract: Indigenous development of reduced activation ferritic martensitic steel (RAFMS) has become mandatory to India to participate in the International Thermo-nuclear Experimental Reactor (ITER) programme. Optimisation of RAFMS is in an advanced stage for the fabrication of test blanket module (TBM) components. Simultaneously, development of RAFMS filler wires has been undertaken since there is no commercial filler wires are available for fabrication of components using RAFMS. Purpose of this study is to develop filler wires that can be directly used for both tungsten inert gas welding (TIG) and narrow gap tungsten inert gas welding (NG-TIG), which reduces the deposited weld metal volume and heat affected zone (HAZ) width. Further, the filler wires would also be used for hybrid laser welding for thick section joints. In view of meeting all the requirements, a detailed specification was prepared for the development of filler wires for welding of RAFM steel. Meanwhile, autogenous welding trials have been carried out on 2.5 mm thick plates of the RAFM steel using TIG process at various heat inputs with a preheat temperature of 250 deg. C followed by various post weld heat treatments (PWHT). The microstructure of the weld metal in most of the cases showed the presence of some delta-ferrite. Filler wires as per specifications have also been developed with minor variations on the chemistry against the specified values. Welding parameters and PWHT parameters were optimised to qualify the filler wires without the presence of delta-ferrite in the weld

  17. 3D numerical simulation of projection welding of square nuts to sheets

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, W.; Martins, P. A. F.

    2015-01-01

    formulation inorder to model the frictional sliding between the square nut projections and the sheets during the weld-ing process. It is proved that the implementation of friction increases the accuracy of the simulations,and the dynamic influence of friction on the process is explained.© 2014 Elsevier B......The challenge of developing a three-dimensional finite element computer program for electro-thermo-mechanical industrial modeling of resistance welding is presented, and the program is applied to thesimulation of projection welding of square nuts to sheets. Results are compared with experimental...

  18. Welding. Performance Objectives. Basic Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of eight terminal objectives for a basic welding course. The materials were developed for a 36-week (2 hours daily) course developed to teach the fundamentals of welding shop work, to become familiar with the operation of the welding shop…

  19. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  20. The Development and Microstructure Analysis of High Strength Steel Plate NVE36 for Large Heat Input Welding

    Science.gov (United States)

    Peng, Zhang; Liangfa, Xie; Ming, Wei; Jianli, Li

    In the shipbuilding industry, the welding efficiency of the ship plate not only has a great effect on the construction cost of the ship, but also affects the construction speed and determines the delivery cycle. The steel plate used for large heat input welding was developed sufficiently. In this paper, the composition of the steel with a small amount of Nb, Ti and large amount of Mn had been designed in micro-alloyed route. The content of C and the carbon equivalent were also designed to a low level. The technology of oxide metallurgy was used during the smelting process of the steel. The rolling technology of TMCP was controlled at a low rolling temperature and ultra-fast cooling technology was used, for the purpose of controlling the transformation of the microstructure. The microstructure of the steel plate was controlled to be the mixed microstructure of low carbon bainite and ferrite. Large amount of oxide particles dispersed in the microstructure of steel, which had a positive effects on the mechanical property and welding performance of the steel. The mechanical property of the steel plate was excellent and the value of longitudinal Akv at -60 °C is more than 200 J. The toughness of WM and HAZ were excellent after the steel plate was welded with a large heat input of 100-250 kJ/cm. The steel plate processed by mentioned above can meet the requirement of large heat input welding.

  1. Weld characterization of RAFM steel. EBP structural materials milestone 3

    Energy Technology Data Exchange (ETDEWEB)

    Alamo, A. [Service de Recherches Metallurgiques Appliquees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Fontes, A. [Service de Techniques Avancees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Schaefer, L. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Gauthier, A.; Tavassoli, A.A. [CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Van Osch, E.V.; Van der Schaaf [ed.] [ECN Netherlands Energy Research Foundation, Petten (Netherlands)

    1999-07-01

    In the long term part of the European Fusion technology programme welding of reduced activation ferritic martensitic (RAFM)steels takes a prominent place. The blanket structures are complex and welding is an important element in manufacturing procedures. In the 95-98 program several Structural Materials tasks of the European Blanket Project are devoted to welding of RAFM steels. In the milestone 3 defined for the program a review of the weld characterization was foreseen in 1998. The present report gives the status of tasks and the major conclusions and recommendations of the welding milestone meeting. The major conclusion is that defect free GTAW (Gas Tungsten Arc Welding), EBW (Electron Beam Welding) and diffusion welds can be accomplished, but further work is needed to assure quantitatively the service boundary conditions. Also for irradiated steel additional work is recommended for the 99-02 period. Development of filler wire material for the European reference RAFM: EUROFER97 is necessary. Establishment of weldability tests must be settled in the next period also. 14 refs.

  2. Model development for mechanical properties and weld quality class of friction stir welding using multi-objective Taguchi method and response surface methodology

    International Nuclear Information System (INIS)

    Mohamed, Mohamed Ackiel; Manurung, Yupiter HP; Berhan, Mohamed Nor

    2015-01-01

    This study presents the effect of the governing parameters in friction stir welding (FSW) on the mechanical properties and weld quality of a 6mm thick 6061 T651 Aluminum alloy butt joint. The main FSW parameters, the rotational and traverse speed were optimized based on multiple mechanical properties and quality features, which focus on the tensile strength, hardness and the weld quality class using the multi-objective Taguchi method (MTM). Multi signal to noise ratio (MSNR) was employed to determine the optimum welding parameters for MTM while further analysis concerning the significant level determination was accomplished via the well-established analysis of variance (ANOVA). Furthermore, the first order model for predicting the mechanical properties and weld quality class is derived by applying response surface methodology (RSM). Based on the experimental confirmation test, the proposed method can effectively estimate the mechanical properties and weld quality class which can be used to enhance the welding performance in FSW or other applications.

  3. Model development for mechanical properties and weld quality class of friction stir welding using multi-objective Taguchi method and response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Mohamed Ackiel [University Kuala Lumpur Malaysia France Institute, Bandar Baru Bangi (Malaysia); Manurung, Yupiter HP; Berhan, Mohamed Nor [Universiti Teknologi MARA, Shah Alam (Malaysia)

    2015-06-15

    This study presents the effect of the governing parameters in friction stir welding (FSW) on the mechanical properties and weld quality of a 6mm thick 6061 T651 Aluminum alloy butt joint. The main FSW parameters, the rotational and traverse speed were optimized based on multiple mechanical properties and quality features, which focus on the tensile strength, hardness and the weld quality class using the multi-objective Taguchi method (MTM). Multi signal to noise ratio (MSNR) was employed to determine the optimum welding parameters for MTM while further analysis concerning the significant level determination was accomplished via the well-established analysis of variance (ANOVA). Furthermore, the first order model for predicting the mechanical properties and weld quality class is derived by applying response surface methodology (RSM). Based on the experimental confirmation test, the proposed method can effectively estimate the mechanical properties and weld quality class which can be used to enhance the welding performance in FSW or other applications.

  4. Short cracks in piping and piping welds. Seventh program report, March 1993-December 1994. Volume 4, Number 1

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.M.; Ghadiali, N.; Rudland, D.; Krishnaswamy, P.; Rahman, S.; Scott, P. [Battelle, Columbus, OH (United States)

    1995-04-01

    This is the seventh progress report of the U.S. Nuclear Regulatory Commission`s research program entitled {open_quotes}Short Cracks in Piping and Piping Welds{close_quotes}. The program objective is to verify and improve fracture analyses for circumferentially cracked large-diameter nuclear piping with crack sizes typically used in leak-before-break (LBB) analyses and in-service flaw evaluations. All work in the eight technical tasks have been completed. Ten topical reports are scheduled to be published. Progress only during the reporting period, March 1993 - December 1994, not covered in the topical reports is presented in this report. Details about the following efforts are covered in this report: (1) Improvements to the two computer programs NRCPIPE and NRCPIPES to assess the failure behavior of circumferential through-wall and surface-cracked pipe, respectively; (2) Pipe material property database PIFRAC; (3) Circumferentially cracked pipe database CIRCUMCK.WKI; (4) An assessment of the proposed ASME Section III design stress rule changes on pipe flaw tolerance; and (5) A pipe fracture experiment on a section of pipe removed from service degraded by microbiologically induced corrosion (MIC) which contained a girth weld crack. Progress in the other tasks is not repeated here as it has been covered in great detail in the topical reports.

  5. Development of a high power electron beam welding gun with replaceable high voltage feed-through insulators

    Energy Technology Data Exchange (ETDEWEB)

    Saha, T.K; Mascarenhas, M.; Kandaswamy, E., E-mail: tanmay@barc.gov.in [Power Beam Equipment Design Section, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Ceramic to metal sealed feed-through insulators are commonly used in electron beam welding gun. The above feed-through insulators are susceptible to failure, as the brazing joints in them are not always very strong. Failure in one of these feed-through could render the complete gun unusable. This problem has already been faced in BARC, which led to the development of the electron gun with replaceable feed through insulators. A 24 kW Electron Beam Welding (EBW) gun with indigenous designed replaceable insulators is fabricated in BARC. Emphasis during the design of the gun had been to reduce the use of imported components to zero. This paper describes the design and fabrication of this gun and reports various simulations and tests performed. Beam trajectory of the gun is numerically computed and presented. Weld passes were carried out on stainless steel plates show satisfactory penetrations. (author)

  6. Simultaneous obtention of multicomponent ferroalloy and slag from black sands for the development of electrical arc welding consumables

    International Nuclear Information System (INIS)

    Cruz-Crespo, A.; Gomez-Rodriguez, L.; Garcia-Sanchez, L. L.; Quintana-Puchol, R.; Cerpa-Naranjo, A.; Cores-Sanchez, A.

    2004-01-01

    In this paper, chemical and mineralogical characterizations of the black sands of the Mejias placer of Sagua de Tanamo (the most important beach littoral placer of the northwest of oriental Cuba) are exposed. Starting from these characterizations a calculation strategy is developed for the making of the metallurgical load that allows to obtain simultaneously, when processed by carbothermic reduction in an electrical arc furnace, a multicomponent ferroalloy and a useful slag for the making of electric arch welding consumables. The powder of the obtained slag is agglomerated with liquid glass. The resulting pellets, due to their behavior on the submerged arc welding (SAW) present technological and metallurgical properties that correspond with the requirements of an agglomerated flux matrix. The chemical composition of the multicomponent ferroalloy is constituted by metallic elements of high metallurgical and alloyed values (V, Cr, Mo, Ti, Nb). It is appropriate for the formulation of consumables for manual welding (SMAW) and SAW, as well. (Author) 15 refs

  7. Texture Development and Material Flow Behavior During Refill Friction Stir Spot Welding of AlMgSc

    Science.gov (United States)

    Shen, Junjun; Lage, Sara B. M.; Suhuddin, Uceu F. H.; Bolfarini, Claudemiro; dos Santos, Jorge F.

    2018-01-01

    The microstructural evolution during refill friction stir spot welding of an AlMgSc alloy was studied. The primary texture that developed in all regions, with the exception of the weld center, was determined to be 〈110〉 fibers and interpreted as a simple shear texture with the 〈110〉 direction aligned with the shear direction. The material flow is mainly driven by two components: the simple shear acting on the horizontal plane causing an inward-directed spiral flow and the extrusion acting on the vertical plane causing an upward-directed or downward-directed flow. Under such a complex material flow, the weld center, which is subjected to minimal local strain, is the least recrystallized. In addition to the geometric effects of strain and grain subdivision, thermally activated high-angle grain boundary migration, particularly continuous dynamic recrystallization, drives the formation of refined grains in the stirred zone.

  8. Thermal and microstructural modelling in weld heat-affected zones: microstructural development

    International Nuclear Information System (INIS)

    Ribera, J.M.; Prado, J.M.

    1996-01-01

    After having analysed in Part 2 of this work the thermal effects caused by a welding process, a metallurgical model which uses those results is proposed to predict the hardness and the microstructure resulting in weld heat affected zones. This model simulates the decomposition of austenite to its various products: martensite, bainite, pearlite and ferrite. Thus, it allows one to optimize welding process parameters to achieve the best microstructure possible. (Author) 5 refs

  9. Carbothermic reduction of pyrolusite for obtaining carbon bearing ferromanganese and slags, adequated to the development of welding materials

    International Nuclear Information System (INIS)

    Cruz-Crespo, A.; Garcia-Sanchez, L. L.; Quintana-Puchol, R.; Perdomo Gonzalez, L.; Gomez-Perez, C. R.; Jimenez-Vielsa, G. E.; Cores-Sanchez, A.

    2004-01-01

    The high carbon ferromanganese obtained by means of carbothermic reduction in an electric arc furnace of direct current is proposed. the ideal composition of slag oxides to achieve a flux to be used in the submerged arc welding (SAW) is established. Calculation for charge components (pyrolusite, coke, steel wool, lime, rutile and fluorite) for no fluxes technology for FeMn is carried out taking into account the welding fluxes characteristics of the SiO 2 -MnO-CaO system. Change materials reduction experiments to obtain FeMn and slag are used to develop a SAW flux. (Author) 21 refs

  10. Development and prevention of porosity in the fusion welding of thick titanium alloys

    International Nuclear Information System (INIS)

    Kulikov, F.R.; Redchits, V.V.; Khokhlov, V.V.

    1975-01-01

    This article describes the results of experimental investigations of the mechanics of formation of porosity in electron-beam welding, single-pass and multipass welding in argon with a consumable and non-consumable electrode, and also in the electroslag welding of alloys VT14 and VT22 from 10 to 60mm thick. It was established that nuclei of gas phase form at the moment of fusion of the edges of the parts being welded, the end surfaces of which have machining defects. The weld metal porosity can be prevented by: careful machining of the faying surfaces of the parts to be welded immediately before welding; the use of welding conditions ensuring long pool existence time, sufficient for hydrogen bubbles to float up and escape; intensification of the weld pool degassing process by using fluxes based on metal fluorides and chlorides, applied to the ends of the root part of the faying edges, and on the filler wire; reduction of the gas pressure in the beam channel by making gas-escape paths

  11. U.S. Advanced Materials Development Program for steam generators

    International Nuclear Information System (INIS)

    Patriarca, P.; Harkness, S.D.; Duke, J.M.

    1975-01-01

    The selection of construction materials for LMFBR steam generators is reviewed, presenting the advantages and limitations of 2 1 / 2 Cr-1 Mo steel selected for the Clinch River Breeder Reactor Plant. These limitations indicate that further development of high-strength ferritic steels containing 9 to 12 percent Cr and the high-nickel Alloy 800 could lead to superior materials, and programs to develop these materials have been started. Combustion Engineering has surveyed the experience with the high-strength ferritic steels and prepared ingots of 26 selected compositions. Charpy V-notch tests and metallography have been used to characterize these alloys, and optimum welding rod compositions for these alloys are under development. Westinghouse-Tampa is undertaking a program to gain code acceptance of Alloy 800. A program has been set up to provide the information required for design, justification, and fabrication of reliable components. Progress has been made on characterization, the role of tertiary creep in failure, and the development of welding processes. (U.S.)

  12. Automatic welding machine for piping

    International Nuclear Information System (INIS)

    Yoshida, Kazuhiro; Koyama, Takaichi; Iizuka, Tomio; Ito, Yoshitoshi; Takami, Katsumi.

    1978-01-01

    A remotely controlled automatic special welding machine for piping was developed. This machine is utilized for long distance pipe lines, chemical plants, thermal power generating plants and nuclear power plants effectively from the viewpoint of good quality control, reduction of labor and good controllability. The function of this welding machine is to inspect the shape and dimensions of edge preparation before welding work by the sense of touch, to detect the temperature of melt pool, inspect the bead form by the sense of touch, and check the welding state by ITV during welding work, and to grind the bead surface and inspect the weld metal by ultrasonic test automatically after welding work. The construction of this welding system, the main specification of the apparatus, the welding procedure in detail, the electrical source of this welding machine, the cooling system, the structure and handling of guide ring, the central control system and the operating characteristics are explained. The working procedure and the effect by using this welding machine, and the application to nuclear power plants and the other industrial field are outlined. The HIDIC 08 is used as the controlling computer. This welding machine is useful for welding SUS piping as well as carbon steel piping. (Nakai, Y.)

  13. Evaluation of canister weld flaw depth for concrete storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Tae Chul; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Jung, Sung Hun; Lee, Young Oh; Jung, In Su [Korea Nuclear Engineering and Service Corp, Daejeon (Korea, Republic of)

    2017-03-15

    Domestically developed concrete storage casks include an internal canister to maintain the confinement integrity of radioactive materials. In this study, we analyzed the depth of flaws caused by loads that propagate canister weld cracks under normal, off-normal and accident conditions, and evaluated the maximum allowable weld flaw depth needed to secure the structural integrity of the canister weld and to reduce the welding time of the internal canister lid of the concrete storage cask. Structural analyses for normal, off-normal and accident conditions were performed using the general-purpose finite element analysis program ABAQUS; the allowable flaw depth was assessed according to ASME B and PV Code Section XI. Evaluation results revealed an allowable canister weld flaw depth of 18.75 mm for the concrete storage cask, which satisfies the critical flaw depth recommended in NUREG-1536.

  14. Welding. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  15. Development of stress corrosion cracking resistant welds of 321 stainless steel by simple surface engineering

    Science.gov (United States)

    Mankari, Kamal; Acharyya, Swati Ghosh

    2017-12-01

    We hereby report a simple surface engineering technique to make AISI grade 321 stainless steel (SS) welds resistant to stress corrosion cracking (SCC) in chloride environment. Heat exchanger tubes of AISI 321 SS, welded either by (a) laser beam welding (LBW) or by (b) metal inert gas welding (MIG) were used for the study. The welds had high magnitude of tensile residual stresses and had undergone SCC in chloride environment while in service. The welds were characterized using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). Subsequently, the welded surfaces were subjected to buffing operation followed by determination of residual stress distribution and surface roughness by XRD and surface profilometer measurements respectively. The susceptibility of the welds to SCC was tested in buffed and un-buffed condition as per ASTM G-36 in boiling MgCl2 for 5 h and 10 h, followed by microstructural characterization by using optical microscope and FESEM. The results showed that the buffed surfaces (both welds and base material) were resistant to SCC even after 10 h of exposure to boiling MgCl2 whereas the un-buffed surfaces underwent severe SCC for the same exposure time. Buffing imparted high magnitude of compressive stresses on the surface of stainless steel together with reduction in its surface roughness and reduction in plastic strain on the surface which made the welded surface, resistant to chloride assisted SCC. Buffing being a very simple, portable and economic technique can be easily adapted by the designers as the last step of component fabrication to make 321 stainless steel welds resistant to chloride assisted SCC.

  16. Study and development of solid fluxes for gas tungsten arc welding applied to titanium and its alloys and stainless steels

    International Nuclear Information System (INIS)

    Perry, N.

    2000-06-01

    Gas Tungsten Arc Welding uses an electric arc between the refractory tungsten electrode and the plates to be welded under an argon shielding gas. As a result, the joint quality is excellent, no pollution nor defects are to be feared, consequently this process is used in nuclear, aeronautic, chemical and food industries. Despite of this good qualities, GTAW is limited because of, on the one side, a poor penetrating weld pool and, on the other side, a week productivity rate. Indeed, up to 3 mm thick plates, machining and filler metal is needed. Multiple runs increase the defect's risks, the manufactory time and increase the deformations and the heat affected zone. The goal of this study is to break through this limits without any device investment. Active GTA welding (or ATIG) is a new technique with GTA device and an activating flux to be spread on the upper plate before welding. The arc, by plasma electrochemical equilibrium modifications, and the pool with the inner connective flows inversion, allow 7 mm thick joints in one run without edges machining or filler metal for both stainless steel and titanium alloys. This manuscript describes the development of these fluxes, highlights the several phenomena and presents the possibilities of this new process. This work, in collaboration with B.S.L. industries, leads to two flux formulations (stainless steel and titanium alloys) now in a commercial phase with CASTOLIN S.A. Moreover, B.S.L.industries produces a pressure device (nitrate column) with the ATIG process using more than 2800 ATIG welds. (author)

  17. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  18. Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Balasubramanian, M.; Jayabalan, V.; Balasubramanian, V.

    2008-01-01

    Titanium (Ti-6Al-4V) alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process of titanium alloy is frequently gas tungsten arc (GTA) welding due to its comparatively easier applicability and better economy. In the case of single pass GTA welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one need to carefully balance various pulse current parameters to arrive at an optimum combination. Hence, in this investigation an attempt has been made to develop mathematical models to predict tensile properties of pulsed current GTA welded titanium alloy weldments. Four factors, five level, central composite, rotatable design matrix is used to optimise the required number of experiments. The mathematical models have been developed by response surface method (RSM). The adequacy of the models has been checked by ANOVA technique. By using the developed mathematical models, the tensile properties of the joints can be predicted with 99% confidence level

  19. Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, M. [Department of Production Engineering, Sathyabama University, Old Mamallapuram Road, Chennai 600 119 (India)], E-mail: manianmb@rediffmail.com; Jayabalan, V. [Department of Manufacturing Engineering, Anna University, Guindy, Chennai 600 025 (India)], E-mail: jbalan@annauniv.edu; Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002 (India)], E-mail: visvabalu@yahoo.com

    2008-07-01

    Titanium (Ti-6Al-4V) alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process of titanium alloy is frequently gas tungsten arc (GTA) welding due to its comparatively easier applicability and better economy. In the case of single pass GTA welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one need to carefully balance various pulse current parameters to arrive at an optimum combination. Hence, in this investigation an attempt has been made to develop mathematical models to predict tensile properties of pulsed current GTA welded titanium alloy weldments. Four factors, five level, central composite, rotatable design matrix is used to optimise the required number of experiments. The mathematical models have been developed by response surface method (RSM). The adequacy of the models has been checked by ANOVA technique. By using the developed mathematical models, the tensile properties of the joints can be predicted with 99% confidence level.

  20. Development of Heat-Affected Zone Hardness Limits for In-Service Welding

    Science.gov (United States)

    2009-09-29

    Welding onto in-service pipelines is frequently required to facilitate a repair or to install a branch connection using the "hot tapping" technique. Welds made in-service cool at an accelerated rate as the result of the ability of the flowing content...

  1. Development of automated welding process for field fabrication of thick walled pressure vessels

    International Nuclear Information System (INIS)

    Schneider, U.A.

    Research on automatic welding processes for the fabrication of thick-walled pressure vessels continued. A literature review on the subject was completed. A laboratory study of criteria for judging acceptable root parameters continued. Equipment for a demonstration facility to test the components and processes of the automated welding system has been specified and is being obtained

  2. Development of automated welding process for field fabrication of thick walled pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, U A

    1981-01-01

    Research on automatic welding processes for the fabrication of thick-walled pressure vessels continued. A literature review on the subject was completed. A laboratory study of criteria for judging acceptable root parameters continued. Equipment for a demonstration facility to test the components and processes of the automated welding system has been specified and is being obtained. (LCL)

  3. Laser welding study for further development in essential power plant part repairs

    Directory of Open Access Journals (Sweden)

    Isarawit Chaopanich

    2015-06-01

    Full Text Available The objective of this research work was to study the effects of laser welding when compared with shield metal arc welding (SMAW process on the heat input, welded deposit rate, residual stress, distortion, microstructure and micro hardness. The martensitic stainless steel grade 431 specimens were overlay welded with the stainless steel filler metals. From the results, the heat input of 0.26 kJ/mm in laser welding calculated was significantly lower than that of 1.66 kJ/mm in SMAW, and contributed to low level residual stress, minimal distortion, very small penetration depth and heat affected zone (HAZ of less than 100 µm. The micro hardness results indicated that the maximum value from laser welding in the HAZ was 370.2 HV lower than the value from SMAW of 525.5 HV. The welded deposit rate for laser welding was with 26.5 mm3 /min remarkably lower than the rate for SMAW of 1,800 mm3 /min.

  4. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  5. Resistance seam welding

    International Nuclear Information System (INIS)

    Schueler, A.W.

    1977-01-01

    The advantages and disadvantages of the resistance seam welding process are presented. Types of seam welds, types of seam welding machines, seam welding power supplies, resistance seam welding parameters and seam welding characteristics of various metals

  6. Preliminary design and definition of field experiments for welded tuff rock mechanics program

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1982-06-01

    The preliminary design contains objectives, typical experiment layouts, definitions of equipment and instrumentation, test matrices, preliminary design predictive modeling results for five experiments, and a definition of the G-Tunnel Underground Facility (GTUF) at the Nevada Test Site where the experiments are to be located. Experiments described for investigations in welded tuff are the Small Diameter Heater, Unit Cell-Canister Scale, Heated Block, Rocha Slot, and Miniature Heater

  7. Development of friction welding process of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Shin, Hyung Seop; Jeong, Young Jin; Kim, Ki Hyun

    2004-01-01

    Bulk Metallic Glasses(BMG) with good mechanical properties have problems that engineering application fields have been limited because of limitation of the alloy size. In order to solving this problem, the friction welding of BMG has been tried using the superplastic-like deformation behavior under the supercooled liquid region. The apparatus for friction welding test was designed and constructed using pneumatic cylinder and gripper based on a conventional lathe. Friction welding have been tried to combination of same BMG alloy and crystalline alloys. The results of welding test were evaluated by X-ray diffraction, measurement of hardness and mechanical properties test. In order to obtain the optimized welding test conditions the temperature of friction interface was measured using Infrared thermal imager

  8. Multipass autogenous electron beam welding

    International Nuclear Information System (INIS)

    Murphy, J.L.; Mustaleski, T.M. Jr.; Watson, L.C.

    1986-01-01

    A multipass, autogenous welding procedure was developed for 7.6 mm (0.3 in.) wall thickness Type 304L stainless steel cylinders. The joint geometry has a 1.5 mm (0.06 in.) root-face width and a rectangular stepped groove that is 0.762 mm (0.03 in.) wide at the top of the root face and extends 1.5 mm in height, terminating into a groove width of 1.27 mm which extends to the outside of the 1.27 mm high weld-boss. One weld pass is made on the root, three passes on the 0.762 mm wide groove and three passes to complete the weld. Multipass, autogenous, electron beam welds maintain the characteristic high depth-to-width ratios and low heat input of single-pass, electron beam welds. The increased part distortion (which is still much less than from arc processes) in multipass weldments is corrected by a preweld machined compensation. Mechanical properties of multipass welds compare well with single-pass welds. The yield strength of welds in aluminum alloy 5083 is approximately the same for single-pass or multipass electron beam and gas, metal-arc welds. The incidence and size of porosity is less in multipass electron beam welding of aluminum as compared to gas, metal-arc welds. The multipass, autogenous, electron beam welding method has proven to be a reliable way to make some difficult welds in multilayer parts or in an instance where inside part temperature or weld underbead must be controlled and weld discontinuities must be minimized

  9. Qualification of flat welding of nuclear fuel bars

    International Nuclear Information System (INIS)

    Romero C, J.; Rivera M, H.

    2001-01-01

    The qualification of flat welding consists in the process (procedures (11), instructions (5), specifications (4) and programs (3)) and equipment (systems (4), equipment (6)) with the Personal Qualification (operators and supervisors) that was done in simultaneous form and supported with test and training programs with its respective technical reports, liberated by the Quality Assurance Office of ININ. Moreover, specific procedures of process and personal qualification are realized with the respective supervision by Quality Assurance Office. For the process, 20 welding were realized as follow: 5 welding with maximum contributing of heat, 10 welding with nominal contributing of heat, 5 welding with minimum contributing of heat. The heat contributing for the qualification was done maximum, of increasing the welding current, diminishing the helium flux and the revolutions per minute of the bar, at the moment of welding, with respect to nominal values. In the minimum contributing of heat it is diminished the welding current, increasing the helium flux and the revolutions per minute of the bar with respect to nominal values. With the qualification it has been finished the development of flat welding with results which define an own method of ININ. It was implemented a pneumatic system, for the elimination of micron cracks. It was required a control of turn velocity of the bar of hundredth of revolution. Moreover the main welding parameters each 40 μs are acquired. Also it was automated completely the process to avoid possible human mistakes. The standard deviations of the values of the realized inspections in the quality, are lower. Process, equipment and personnel with their respective Quality reports and registries are qualified, as well as the Quality certificates of two operators and one supervisor. (Author)

  10. Gender quotas in development programming

    NARCIS (Netherlands)

    Windt, van der Peter; Humphreys, Macartan; Sanchez de la Sierra, Raul

    2018-01-01

    We examine whether gender quotas introduced by development agencies empower women. As part of a development program, an international organization created community management committees in 661 villages to oversee village level program expenditures. In a randomly selected half of these villages the

  11. T.I.G. Welding of stainless steel. Numerical modelling for temperatures calculation in the Haz

    International Nuclear Information System (INIS)

    Martinez-Conesa, E. J.; Estrems-Amestoy, M.; Miguel-Eguia, V.; Garrido-Hernandez, A.; Guillen-Martinez, J. A.

    2010-01-01

    In this work, a numerical method for calculating the temperature field into the heat affected zone for butt welded joints is presented. The method has been developed for sheet welding and takes into account a bidimensional heat flow. It has built a computer program by MS-Excel books and Visual Basic for Applications (VBA). The model has been applied to the TIG process of AISI 304 stainless steel 2mm thickness sheet. The welding process has been considered without input materials. The numerical method may be used to help the designers to predict the temperature distribution in welded joints. (Author) 12 refs.

  12. Development of a robotic manipulator for orbital welding; Desenvolvimento de um manipulador robotico para a sondagem orbital

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Renon Steinbach; Dutra, Jair Carlos [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Lab. de Soldagem; Bonacorso, Nelso Gauze [Centro Federal de Educacao Tecnologica de Santa Catarina (CEFET/SC), Florianopolis, SC (Brazil). Lab. da Automacao Hidraulica e Pneumatica (LAHP)

    2008-07-01

    On the national oil scenario, the pipelines have a high cost, specially on the long time spent on its constructions. Thus, this transaction optimizations become highly attractive. A form of improvement this task is to automate the process of welding. In this context it is interesting the use of a robot manipulator for the orbital welding. In the international market, there are dedicates solutions that meet the restrictions associated mainly with the ease of handling and dimensions. However,since these manipulators use foreign technology this makes the acquisition and maintenance costs high. The project aims to create subsides for greater efficiency in the task of union of pipelines through the development of a robotic manipulator. However it is clear that only the design of such a handler does not guarantee the quality of the root pass. Therefore, it is also being studied the use of the process MIG (Metal Inert Gas), through parametrization of CCC (Short-circuit controlled) in order to have a robust process of welding. The CCC monitors the process of welding and acts when there is detection od short circuit. It is obtained then higher pass from scratch controllability and drastically reduces the amount of spay. (author)

  13. Expanding Options. A Model to Attract Secondary Students into Nontraditional Vocational Programs. For Emphasis in: Building Trades, Electronics, Health Services, Machine Shop, Welding.

    Science.gov (United States)

    Good, James D.; DeVore, Mary Ann

    This model has been designed for use by Missouri secondary schools in attracting females and males into nontraditional occupational programs. The research-based strategies are intended for implementation in the following areas: attracting females into building trades, electronics, machine shop, and welding; and males into secondary health…

  14. Development of the manufacture and process for DUPIC fuel elements; development of the quality evaluation techniques for end cap welds of DUPIC fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Tae; Choi, Myong Seon; Yang, Hyun Tae; Kim, Dong Gyun; Park, Jin Seok; Kim, Jin Ho [Yeungnam University, Kyongsan (Korea)

    2002-04-01

    The objective of this research is to set up the quality evaluation techniques for end cap welds of DUPIC fuel element. High temperature corrosion test and the SCC test for Zircaloy-4 were performed, and also the possibility of the ultrasonic test technique was verified for the quality evaluation and control of the laser welds in the DUPIC fuel rod end cap. From the evaluation of corrosion properties with measuring the weight gain and observing oxide film of the specimen that had been in the circumstance of steam(400 .deg. C, 1,500 psi) by max. 70 days later, the weight gain of the welded specimens was larger than original tube and the weight increasing rate increased with the exposed days. For the Development of techniques for ultrasonic test, semi-auto ultrasonic test system has been made based on immersion pulse-echo technique using spherically concentrated ultrasonic beam. Subsequently, developed ultrasonic test technique is quite sensible to shape of welds in the inside and outside of tube as well as crack, undercut and expulsion, and also this ultrasonic test, together with metallurgical fracture test, has good reliance as enough to be used for control method of welding process. 43 refs., 47 figs., 8 tabs. (Author)

  15. Development of laser cutting/welding system for remote maintenance of ITER manifold

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, Hiroto; Tsuchiya, Kazuyuki; Awano, Toshihiko [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Oka, Kiyoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-09-01

    A remote pipe cutting/welding system using a YAG laser was designed and fabricated for the maintenance of the main structural parts of ITER (International Thermonuclear Experimental Reactor), and a mock-up test carried out. The functions of this system are to cut 100A x Sch 40 pipes of SUS316L by internal access, to adjust the core gap between the as-cut pipe and new pipe, and to weld the pipes automatically. The core gap of the pipes could be decreased within the proper welding conditions by the mock-up test, and sound beads were obtained. (author)

  16. Welding Technician

    Science.gov (United States)

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  17. Weld Joint Design for SFR Metallic Fuel Element Closures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Kim, Soo Sung; Woo, Yoon Myeng; Kim, Hyung Tae; Kim, Ki Hwan; Yoon, Kyung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The sodium-cooled fast reactor (SFR) system is among the six systems selected for Gen-IV promising systems and expected to become available for commercial introduction around 2030. In Korea, the R and D on SFR has been begun since 1997, as one of the national long-term nuclear R and D programs. The international collaborative research is under way on fuel developments within Advanced Fuel Project for Gen-IV SFR with the closed fuel cycle of full actinide recycling, while TRU bearing metallic fuel, U-TRU-Zr alloy fuel, was selected and is being developed. For the fabrication of SFR metallic fuel elements, the endplug welding is a crucial process. The sealing of endplug to cladding tube should be hermetically perfect to prevent a leakage of fission gases and to maintain a good reactor performance. In this study, the joint designs for endplug welding were investigated. For the irradiation test of SFR metallic fuel element, the TIG welding technique was adopted and the welding joint design was developed based on the welding conditions and parameters established. In order to make SFR metallic fuel elements, the weld joint design was developed based on the TIG welding technique.

  18. Real time computer controlled weld skate

    Science.gov (United States)

    Wall, W. A., Jr.

    1977-01-01

    A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.

  19. Numerical weld modeling - a method for calculating weld-induced residual stresses

    International Nuclear Information System (INIS)

    Fricke, S.; Keim, E.; Schmidt, J.

    2001-01-01

    In the past, weld-induced residual stresses caused damage to numerous (power) plant parts, components and systems (Erve, M., Wesseling, U., Kilian, R., Hardt, R., Bruemmer, G., Maier, V., Ilg, U., 1994. Cracking in Stabilized Austenitic Stainless Steel Piping of German Boiling Water Reactors - Characteristic Features and Root Causes. 20. MPA-Seminar 1994, vol. 2, paper 29, pp.29.1-29.21). In the case of BWR nuclear power plants, this damage can be caused by the mechanism of intergranular stress corrosion cracking in austenitic piping or the core shroud in the reactor pressure vessel and is triggered chiefly by weld-induced residual stresses. One solution of this problem that has been used in the past involves experimental measurements of residual stresses in conjunction with weld optimization testing. However, the experimental analysis of all relevant parameters is an extremely tedious process. Numerical simulation using the finite element method (FEM) not only supplements this method but, in view of modern computer capacities, is also an equally valid alternative in its own right. This paper will demonstrate that the technique developed for numerical simulation of the welding process has not only been properly verified and validated on austenitic pipe welds, but that it also permits making selective statements on improvements to the welding process. For instance, numerical simulation can provide information on the starting point of welding for every weld bead, the effect of interpass cooling as far as a possible sensitization of the heat affected zone (HAZ) is concerned, the effect of gap width on the resultant weld residual stresses, or the effect of the 'last pass heat sink welding' (welding of the final passes while simultaneously cooling the inner surface with water) producing compressive stresses in the root area of a circumferential weld in an austenitic pipe. The computer program FERESA (finite element residual stress analysis) was based on a commercially

  20. Advances of orbital gas tungsten arc welding for Brazilian space applications – experimental setup

    Directory of Open Access Journals (Sweden)

    José A. Orlowski de Garcia

    2010-08-01

    Full Text Available The present work describes details of the several steps of the technology involved for the orbital Gas Tungsten Arc Welding (GTAW process of pure commercially titanium tubes. These pieces will be used to connect the several components of the propulsion system of the China-Brazilian Satellite CBERS, and is part of the Brazilian aerospace industry development. The implantation involved the steps of environment control; cut and facing of the base metal; cleaning procedures; piece alignment; choice of the type, geometry and installation of the tungsten electrode; system for the pressure of the purge gas; manual tack welding; choice of the welding parameters; and, finally, the qualification of welding procedures. Three distinct welding programs were studied, using pulsed current with increasing speed, continuous current and pulsed current with decreasing amperage levels. The results showed that the high quality criteria required to the aerospace segment is such that usual welding operations must be carefully designed and executed. The three welding developed programs generated welds free of defects and with adequate morphology, allowing to select the condition that better fits the Brazilian aerospace segment, and to be implanted in the welding of the CBERS Satellite Propulsion System.

  1. Technical Leadership Development Program

    Science.gov (United States)

    2014-04-30

    will be focused on their view of the pros / cons of the ‘how’ they are going about their assigned task as opposed to ‘what’ they are proposing. As...Leadership Style (Y) M4.0 Simula on 1- Leadership Value Proposi on (Y) Some hidden (secret) mo va ons for roles in scenarios/vigne es Develop SWOT

  2. Validation of Weld Residual Stress Modeling in the NRC International Round Robin Study

    International Nuclear Information System (INIS)

    Mullins, Jonathan; Gunnars, Jens

    2013-01-01

    Weld residual stresses (WRS) have a large influence on the behavior of cracks growing under normal operation loads and on the leakage flow from a through-wall crack. Accurate prediction on weld residual stresses is important to make proper decisions when cracks in weld joints are detected. During the latest years, there has been a strong development in both analytical procedures to numerically determine WRS and experimental measurements of WRS. The USNRC (United States Nuclear Regulatory Commission) has formed a program for validation of WRS predictions through comparison of numerically calculated residual stress fields in dissimilar welds measured by different methods. The present report describes the results of the project with special focus on the contribution from Inspecta Technology. Objectives: The principal objective of the project is to compare different WRS predictions for a dissimilar pipe weld with careful measurements on a mock-up weld. The results of the project will make it possible to make recommendations on computational procedures for WRS in dissimilar metal welds. Results: It is concluded that numerical analysis of weld residual stresses using the finite element method is very useful for the estimation of weld residual stresses in complex geometries and dissimilar metal welds. The validation study increases the understanding of uncertainties associated with different modeling approaches and helps to identify the most sensitive parameters

  3. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Science.gov (United States)

    Buckley, John D. (Editor); Stein, Bland A. (Editor)

    1986-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  4. Tailor-welded blanks and their production

    Science.gov (United States)

    Yan, Qi

    2005-01-01

    Tailor welded blanks had been widely used in the automobile industry. A tailor welded blank consists of several flat sheets that were laser welded together before stamping. A combination of different materials, thickness, and coatings could be welded together to form a blank for stamping car body panels. As for the material for automobile industry, this technology was one of the development trend for automobile industry because of its weight reduction, safety improvement and economical use of materials. In this paper, the characters and production of tailor welded blanks in the market were discussed in detail. There had two major methods to produce tailor welded blanks. Laser welding would replace mesh seam welding for the production of tailor welded blanks in the future. The requirements on the edge preparation of unwelded blanks for tailor welded blanks were higher than the other steel processing technology. In order to produce the laser welded blank, there had the other process before the laser welding in the factory. In the world, there had three kinds of patterns for the large volume production of tailor welded blanks. In China, steel factory played the important role in the promotion of the application of tailor welded blanks. The competition for the supply of tailor welded blanks to the automobile industry would become fierce in the near future. As a result, the demand for the quality control on the production of tailor welded blanks would be the first priority concern for the factory.

  5. Thermal Stir Welding: A New Solid State Welding Process

    Science.gov (United States)

    Ding, R. Jeffrey

    2003-01-01

    Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  6. Technical Leadership Development Program

    Science.gov (United States)

    2010-12-13

    the traditional tenets of leadership and management , systems thinking, understanding SOS issues, and thinking and acting holistically. Our research...international element 2.0 Enterprise Leadership and Management UNCLASSIFIED Contract Number: H98230-08-D-0171 DO 002. TO002, RT 004 Report No...mechanisms for leadership of the overall technical effort, for systems engineering, for requirements, management , and for systems integration. o Develop

  7. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    Science.gov (United States)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  8. NCG turbocompressor development program

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, K.E.

    1997-12-31

    Barber-Nichols, Pacific Gas and Electric and UNOCAL as an industry group applied for a DOE grant under the GTO to develop a new type of compressor that could be used to extract non-condensable gas (NCG) from the condensers of geothermal power plants. This grant (DE-FG07-951A13391) was awarded on September 20, 1995. The installation and startup of the turbocompressor at the PG&E Geysers Unit 11 is covered by this paper. The turbocompressor has operated several days at 17000rpm while the plant was producing 50 to 70 MW.

  9. Methodological development and characterization of welded joints in Poly (vinylidene fluoride) (PVDF)

    International Nuclear Information System (INIS)

    Cedrola, S.M.L.; Costa, M.F. da; Pasqualino, I.P.

    2010-01-01

    Pipelines are of great concern in the transport sector of oil and gas industries, mainly due to the natural internal aging process caused by contact with the different transported fluids. Installation of polymeric pipes called liners is a good option for rehabilitation of long segments of deteriorated pipelines. Among the potential materials for such application is Poly (vinylidene fluoride) (PVDF). Meanwhile the installation process cannot be carried out in one single step and the polymeric pipe must be cut in sections that are welded during the installation process. In this research welding methodology was studied aiming to optimize welding conditions and the mechanical properties of the joined materials. The first step was processing the PVDF via compression molding on different conditions. Then, the sample was cut and butt-welded. Welding parameters such as, time control, temperature and contact pressure were studied. Afterwards, the stress-strain properties of the welded material was evaluated and physical characterization was carried by x-ray diffraction (DRX). (author)

  10. Development of laser welded appendages to Zircaloy-4 fuel tubing (sheath/cladding)

    Energy Technology Data Exchange (ETDEWEB)

    Livingstone, S., E-mail: steve.livingstone@cnl.ca [Canadian Nuclear Laboratories Limited, Chalk River, ON, Canada K0J 1J0 (Canada); Xiao, L. [Canadian Nuclear Laboratories Limited, Chalk River, ON, Canada K0J 1J0 (Canada); Corcoran, E.C.; Ferrier, G.A.; Potter, K.N. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada K7K 7B4 (Canada)

    2015-04-01

    Highlights: • Examines feasibility of laser welding appendages to Zr-4 tubing. • Laser welding minimizes the HAZ and removes toxic Be. • Mechanical properties of laser welds appear competitive with induction brazed joints. • Work appears promising and lays the foundation for further investigations. - Abstract: Laser welding is a potential alternative to the induction brazing process commonly used for appendage attachment in CANDU{sup ®} fuel fabrication that uses toxic Be as a filler metal, and creates multiple large heat affected zones in the sheath. For this work, several appendages were laser welded to tubing using different laser heat input settings and then examined with a variety of techniques: visual examination, metallography, shear strength testing, impact testing, and fracture surface analysis. Where possible, the examination results are contrasted against production induction brazed joints. The work to date looks promising for laser welded appendages. Further work on joint optimization, corrosion testing, irradiation testing, and post-irradiation examination will be performed in the future.

  11. Automatic welding and cladding in heavy fabrication

    International Nuclear Information System (INIS)

    Altamer, A. de

    1980-01-01

    A description is given of the automatic welding processes used by an Italian fabricator of pressure vessels for petrochemical and nuclear plant. The automatic submerged arc welding, submerged arc strip cladding, pulsed TIG, hot wire TIG and MIG welding processes have proved satisfactory in terms of process reliability, metal deposition rate, and cost effectiveness for low alloy and carbon steels. An example shows sequences required during automatic butt welding, including heat treatments. Factors which govern satisfactory automatic welding include automatic anti-drift rotator device, electrode guidance and bead programming system, the capability of single and dual head operation, flux recovery and slag removal systems, operator environment and controls, maintaining continuity of welding and automatic reverse side grinding. Automatic welding is used for: joining vessel sections; joining tubes to tubeplate; cladding of vessel rings and tubes, dished ends and extruded nozzles; nozzle to shell and butt welds, including narrow gap welding. (author)

  12. Development of filler wires for welding of reduced activation ferritic martensitic steel for India's test blanket module of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, G.; Arivazhagan, B.; Albert, S.K.; Bhaduri, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2010-07-01

    Indigenous development of reduced activation ferritic-martensitic (RAFM) steel has become necessary for India as a participant in the International Thermo-nuclear Experimental Reactor (ITER) programme. Optimisation of RAFM steel is in an advanced stage for the fabrication of test blanket module (TBM) components. Simultaneously, development of RAFM steel filler wires has been undertaken since there is no commercial filler wires are available for fabrication of components using RAFM steel. The purpose of this study is to develop filler wires that can be directly used for both gas tungsten arc welding (GTAW) and for narrow-gap gas tungsten arc welding (NG-GTAW) that reduces the deposited weld metal volume and heat affected zone (HAZ) width. Further, the filler wires would also be used for hybrid laser-MIG welding for thick section joints. In view of meeting all the requirements, a detailed specification was prepared for the development of filler wires for welding of RAFM steel. Meanwhile, welding trials have been carried out on 2.5 mm thick plates of the RAFM steel using GTAW process at various heat inputs with a preheat temperature of 250 C followed by various post weld heat treatments (PWHT). The microstructure of the weld metal in most of the cases showed the presence of some amount of delta-ferrite. Filler wires as per specifications have also been developed with minor variations on the chemistry against the specified values. Welding parameters and PWHT parameters were optimized to qualify the filler wires without the presence of delta-ferrite in the weld metal and with optimized mechanical properties. Results showed that the weld metals are free from delta-ferrite. Tensile properties at ambient temperature and at 500 C are well above the specified values, and are much higher than the base metal values. Ductile Brittle Transition Temperature (DBTT) has been evaluated as -81 C based on the 68 J criteria. The present study highlights the basis and methodology

  13. Ultrasonic inspection of austenitic welds

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, J R; Wagg, A R; Whittle, M J [N.D.T. Applications Centre, CEGB, Manchester (United Kingdom)

    1980-11-01

    The metallurgical structure of austenitic welds is described and contrasted with that found in ferritic welds. It is shown that this structure imparts a marked elastic anisotropy in the ultrasonic propagation parameters. Measurements of variations in the apparent attenuation of sound and deviations in the beam direction are described. The measurements are interpreted in terms of the measured velocity anisotropy. Two applications of the fundamental work are described. In the first it is shown how, by using short pulse compression wave probes, and with major modification of the welding procedure, a stainless steel fillet weld in an AGR boiler can be inspected. In the second application, alternative designs of a transition butt weld have been compared for ease of ultrasonic inspection. The effects of two different welding processes on such an inspection are described. Finally, the paper examines the prospects for future development of inspection and defect-sizing techniques for austenitic welds. (author)

  14. Wetland Program Development Grants (WPDGs)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Wetland Grant Database (WGD) houses grant data for Wetland Program Development Grants (created by EPA in 1990 under the Clean Water Act Section 104(b)(3)...

  15. Procedure Development and Qualification of the Phased Array Ultrasonic Testing for the Nuclear Power Plant Piping Weld

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Kim, Yong Sik; Lee, Hee Jong

    2010-01-01

    The manual ultrasonic examination for the nuclear power plant piping welds has been demonstrated by using KPD(Korean Performance Demonstration) generic procedure. For automated ultrasonic examination, there is no generic procedure and it should be qualified by using applicable automated equipment. Until now, most of qualified procedures used pulse-echo technique and there is no qualified procedure using phased array technique. In this study, data acquisition and analysis software were developed and phased-array transducer and wedge were designed to implement phased array technique for nuclear power plant in-service inspection. The developed procedure are qualified for performance demonstration for the flaw detection, length sizing and depth sizing. The qualified procedure will be applied for the field examination in the nuclear power plant piping weld inspection

  16. A Brief Introduction to the Theory of Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and is already an important welding process for the aerospace industry, where welds of optimal quality are demanded. The structure of welds determines weld properties. The structure of friction stir welds is determined by the flow field in the weld metal in the vicinity of the weld tool. A simple kinematic model of the FSW flow field developed at Marshall Space Flight Center, which enables the basic features of FSW microstructure to be understood and related to weld process parameters and tool design, is explained.

  17. Visualization program development using Java

    International Nuclear Information System (INIS)

    Sasaki, Akira; Suto, Keiko

    2002-03-01

    Method of visualization programs using Java for the PC with the graphical user interface (GUI) is discussed, and applied to the visualization and analysis of 1D and 2D data from experiments and numerical simulations. Based on an investigation of programming techniques such as drawing graphics and event driven program, example codes are provided in which GUI is implemented using the Abstract Window Toolkit (AWT). The marked advantage of Java comes from the inclusion of library routines for graphics and networking as its language specification, which enables ordinary scientific programmers to make interactive visualization a part of their simulation codes. Moreover, the Java programs are machine independent at the source level. Object oriented programming (OOP) methods used in Java programming will be useful for developing large scientific codes which includes number of modules with better maintenance ability. (author)

  18. Welding in hostile environment for nuclear and offshore industry

    International Nuclear Information System (INIS)

    Delauze, H.G.

    1990-01-01

    The paper reviews recent developments of duplex stainless steel and clad pipe welding and under water welding for offshore structures and for reactor fuel storage pool and remote automatic dry welding [fr

  19. Kodak AMSD Mirror Development Program

    Science.gov (United States)

    Matthews, Gary; Dahl, Roger; Barrett, David; Bottom, John; Russell, Kevin (Technical Monitor)

    2002-01-01

    The Advanced Mirror System Demonstration Program is developing minor technology for the next generation optical systems. Many of these systems will require extremely lightweight and stable optics due to the overall size of the primary mirror. These segmented, deployable systems require new technology that AMSD is developing. The on-going AMSD program is a critical enabler for Next Generation Space Telescope (NGST) which will start in 2002. The status of Kodak's AMSD mirror and future plans will be discussed with respect to the NGST program.

  20. Development of the electron beam welding of the aluminium alloy 6061-T6 for the Jules Horowitz reactor

    International Nuclear Information System (INIS)

    Leblanc, Y.

    2013-01-01

    The aluminium alloy 6061-T6 has been selected for the construction of the Jules Horowitz's reactor vessel. This reactor vessel is pressurized and will be made through butt welding of ∼ 2 cm thick aluminium slabs. The electron beam welding process has been tested and qualified. It appears that this welding process allows: -) welding without pre-heating, -) vacuum welding, -) welding of 100% of the thickness in one passage, -) very low deforming welding process, -) very low density and very low volume of blow holes, -) weak ZAT (Thermal Affected Zones), and -) high reproducibility that permits automation. (A.C.)

  1. Short cracks in piping and piping welds. Seventh program report, March 1993-December 1994. Volume 4, Number 1

    International Nuclear Information System (INIS)

    Wilkowski, G.M.; Ghadiali, N.; Rudland, D.; Krishnaswamy, P.; Rahman, S.; Scott, P.

    1995-04-01

    This is the seventh progress report of the U.S. Nuclear Regulatory Commission's research program entitled open-quotes Short Cracks in Piping and Piping Weldsclose quotes. The program objective is to verify and improve fracture analyses for circumferentially cracked large-diameter nuclear piping with crack sizes typically used in leak-before-break (LBB) analyses and in-service flaw evaluations. All work in the eight technical tasks have been completed. Ten topical reports are scheduled to be published. Progress only during the reporting period, March 1993 - December 1994, not covered in the topical reports is presented in this report. Details about the following efforts are covered in this report: (1) Improvements to the two computer programs NRCPIPE and NRCPIPES to assess the failure behavior of circumferential through-wall and surface-cracked pipe, respectively; (2) Pipe material property database PIFRAC; (3) Circumferentially cracked pipe database CIRCUMCK.WKI; (4) An assessment of the proposed ASME Section III design stress rule changes on pipe flaw tolerance; and (5) A pipe fracture experiment on a section of pipe removed from service degraded by microbiologically induced corrosion (MIC) which contained a girth weld crack. Progress in the other tasks is not repeated here as it has been covered in great detail in the topical reports

  2. Commercial Crew Development Program Overview

    Science.gov (United States)

    Russell, Richard W.

    2011-01-01

    NASA's Commercial Crew Development Program is designed to stimulate efforts within the private sector that will aid in the development and demonstration of safe, reliable, and cost-effective space transportation capabilities. With the goal of delivery cargo and eventually crew to Low Earth Orbit (LEO) and the International Space Station (ISS) the program is designed to foster the development of new spacecraft and launch vehicles in the commercial sector. Through Space Act Agreements (SAAs) in 2011 NASA provided $50M of funding to four partners; Blue Origin, The Boeing Company, Sierra Nevada Corporation, and SpaceX. Additional, NASA has signed two unfunded SAAs with ATK and United Space Alliance. This paper will give a brief summary of these SAAs. Additionally, a brief overview will be provided of the released version of the Commercial Crew Development Program plans and requirements documents.

  3. NASA Procurement Career Development Program

    Science.gov (United States)

    1987-01-01

    The NASA Procurement Career Development Program establishes an agency-wide framework for the management of career development activity in the procurement field. Within this framework, installations are encouraged to modify the various components to meet installation-specific mission and organization requirements. This program provides a systematic process for the assessment of and planning for the development, training, and education required to increase the employees' competence in the procurement work functions. It includes the agency-wide basic knowledge and skills by career field and level upon which individual and organizational development plans are developed. Also, it provides a system that is compatible with other human resource management and development systems, processes, and activities. The compatibility and linkage are important in fostering the dual responsibility of the individual and the organization in the career development process.

  4. Modeling of welded bead profile for rapid prototyping by robotic MAG welding

    Institute of Scientific and Technical Information of China (English)

    CAO Yong; ZHU Sheng; WANG Tao; WANG Wanglong

    2009-01-01

    As a deposition technology, robotic metal active gas(MAG) welding has shown new promise for rapid prototyping (RP) of metallic parts. During the process of metal forming using robotic MAG welding, sectional profile of single-pass welded bead is critical to formed accuracy and quality of metal pans. In this paper, the experiments of single-pass welded bead for rapid prototyping using robotic MAG welding were carried out. The effect of some edge detectors on the cross-sectional edge of welded bead was discussed and curve fitting was applied using leat square fitting. Consequently, the mathematical model of welded bead profile was developed. The experimental results show that good shape could be obtained under suitable welding parameters. Canny operawr is suitable to edge detection of welded bead profile, and the mathematical model of welded bead profile developed is approximately parabola.

  5. Welding of 6061-T651 Aluminium and the relationship of tensile properties to hardness in the heat affect zone. ENG919 Dissertation

    International Nuclear Information System (INIS)

    Stathers, P.

    2000-11-01

    Two objectives are envisaged for this work; the first is to conduct a literature review of 6061 aluminium and welding practices for this alloy and current best welding practice with an emphasis on welding for nuclear applications. Recent developments in the use of innovative welding practice will also be reviewed. The intention is to provide a background of information in order to avoid weld-related problems that have the potential to shorten the life of expensive and difficult-to-replace critical components. The literature survey will include a review of the base alloy and the effect of welding on the mechanical properties in the weld zone (weld metal and heat affected zone (HAZ)). Included, as part of this objective is to review the welding of aluminium to create an awareness of potential difficulties for future critical welding applications. The literature survey would also include the aspect of nuclear-induced changes in properties, particularly within the weld zone. This element of the survey would investigate factors for consideration in selecting the welding method and filler material. The American Society of Mechanical Engineers (ASME) have a nuclear Code Case (N519) 14 covering the use of 6061 aluminium in nuclear core components. This Code Case calls for the implementation of a surveillance program to monitor changes in properties during service. The literature survey will address this requirement and make a set of recommendations as a first step towards implementing such a program. A second objective is to develop a model that relates mechanical properties to hardness measurements in the weld zone. This model has the potential to be used as a tool for checking weld metal properties and the extent of changes in HAZ properties. The intention is to thermally overage the base alloy to various hardness values and relate the hardness to tensile and Charpy impact toughness values. Welded test plates will be prepared using Gas Metal Arc Welding (GMAW) and

  6. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  7. Automatic welding processes for reactor coolant pipes used in PWR type nuclear power plant

    International Nuclear Information System (INIS)

    Hamada, T.; Nakamura, A.; Nagura, Y.; Sakamoto, N.

    1979-01-01

    The authors developed automatic welding processes (submerged arc welding process and TIG welding process) for application to the welding of reactor coolant pipes which constitute the most important part of the PWR type nuclear power plant. Submerged arc welding process is suitable for flat position welding in which pipes can be rotated, while TIG welding process is suitable for all position welding. This paper gives an outline of the two processes and the results of tests performed using these processes. (author)

  8. WELDING TORCH

    Science.gov (United States)

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  9. Welding stresses

    International Nuclear Information System (INIS)

    Poirier, J.; Barbe, B.; Jolly, N.

    1976-01-01

    The aim is to show how internal stresses are generated and to fix the orders of magnitude. A realistic case, the vertical welding of thick plates free to move one against the other, is described and the deformations and stresses are analyzed. The mathematical model UEDA, which accounts for the elastic modulus, the yield strength and the expansion coefficient of the metal with temperature, is presented. The hypotheses and results given apply only to the instantaneous welding of a welded plate and to a plate welded by a moving electrode [fr

  10. Design of welding parameters for laser welding of thin-walled stainless steel tubes using numerical simulation

    Science.gov (United States)

    Nagy, M.; Behúlová, M.

    2017-11-01

    Nowadays, the laser technology is used in a wide spectrum of applications, especially in engineering, electronics, medicine, automotive, aeronautic or military industries. In the field of mechanical engineering, the laser technology reaches the biggest increase in the automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. Modelling and numerical simulation of laser welding processes has been exploited with many advantages for the investigation of physical principles and complex phenomena connected with this joining technology. The paper is focused on the application of numerical simulation to the design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes from theAISI 304 steel for automotive industry. Using the developed and experimentally verified simulation model for laser welding of tubes, the influence of welding parameters including the laser velocity from 30 mm.s-1 to 60 mm.s-1 and the laser power from 500 W to 1200 W on the temperature fields and dimensions of fusion zone was investigated using the program code ANSYS. Based on obtained results, the welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel was suggested.

  11. Research and development program 1985

    International Nuclear Information System (INIS)

    1984-01-01

    In this report the research and development program of the GSI Darmstadt is described. It concerns heavy ion reactions, nuclear structure studies, exotic nuclei, nuclear theory, atomic collisions with heavy ions, atomic spectroscopy, the interaction of heavy ions with matter, atomic theory, biological studies with heavy ions, nuclear track techniques, UNILAC developments, acquisition of experimental data, and the development of new accelerators, ion sources, targets, and detectors. (HSI) [de

  12. Optimization of welding parameters using a genetic algorithm: A robotic arm–assisted implementation for recovery of Pelton turbine blades

    Directory of Open Access Journals (Sweden)

    Luis Pérez Pozo

    2015-11-01

    Full Text Available This work presents the operational optimization of a welding operation involving using genetic algorithms. The welding curves correspond to the profile of a blade-shaped Pelton turbine. The procedure involved the development of a series of tests and observation of the parameters that will be controlled during the welding process. After the tests were performed, the samples were prepared for chemical attack, which allowed observation of the penetration, weld area, and dilution. After that, mathematical models were developed that correlate the controllable welding parameters with the aforementioned bead parameters. In those mathematical models, the optimization of the process parameters was performed using genetic algorithms. Specially programmed functions for mutation, reproduction, and initialization processes were written and used in the implemented model. After the optimization process was completed, the results were evaluated through new tests to verify whether the obtained objective functions properly describe the characteristics of the weld. The comparisons showed errors of less than 6%.

  13. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  14. Development of High Heat Input Welding High Strength Steel Plate for Oil Storage Tank in Xinyu Steel Company

    Science.gov (United States)

    Zhao, Hemin; Dong, Fujun; Liu, Xiaolin; Xiong, Xiong

    This essay introduces the developed high-heat input welding quenched and tempered pressure vessel steel 12MnNiVR for oil storage tank by Xinyu Steel, which passed the review by the Boiler and Pressure Vessel Standards Technical Committee in 2009. The review comments that compared to the domestic and foreign similar steel standard, the key technical index of enterprise standard were in advanced level. After the heat input of 100kJ/cm electro-gas welding, welded points were still with excellent low temperature toughness at -20°C. The steel plate may be constructed for oil storage tank, which has been permitted by thickness range from 10 to 40mm, and design temperature among -20°C-100°C. It studied microstructure genetic effects mechanical properties of the steel. Many production practices indicated that the mechanical properties of products and the steel by stress relief heat treatment of steel were excellent, with pretreatment of hot metal, converter refining, external refining, protective casting, TMCP and heat treatment process measurements. The stability of performance and matured technology of Xinyu Steel support the products could completely service the demand of steel constructed for 10-15 million cubic meters large oil storage tank.

  15. Leadership Development Program Final Project

    Science.gov (United States)

    Parrish, Teresa C.

    2016-01-01

    TOSC is NASA's prime contractor tasked to successfully assemble, test, and launch the EM1 spacecraft. TOSC success is highly dependent on design products from the other NASA Programs manufacturing and delivering the flight hardware; Space Launch System(SLS) and Multi-Purpose Crew Vehicle(MPCV). Design products directly feed into TOSC's: Procedures, Personnel training, Hardware assembly, Software development, Integrated vehicle test and checkout, Launch. TOSC senior management recognized a significant schedule risk as these products are still being developed by the other two (2) programs; SVE and ACE positions were created.

  16. Material development for waste to energy plants. Overlay welding and refractory linings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard Hansson, A.

    2011-02-15

    Waste is an extremely corrosive fuel. In order to recover a higher percentage of the energy in waste, waste incineration plants have developed from purely heat producing units to heat and power producing units. The change in concept results in higher material temperatures and thereby faster material degradation. As a result material failures have been observed in many waste incineration plants. The purpose of this project was to develop materials with higher resistance to the corrosive elements, in order to reduce the cost of maintenance, increase the availability, and increase the efficiency. The focus is on overlay welding and refractory linings. Inconel 625, alloy 50, alloy 686, and Super 625 offer equivalent corrosion protection at panel walls. 100% overlay performs better than 50% overlay. The corrosion morphology changes with increasing temperature from pitting and general corrosion to pitting and selective corrosion (dendritic core or grain boundaries). The previously observed detrimental effect of Fe on the corrosion resistance was not confirmed. It probably depends on factors such as microstructure of the alloy and local metal temperature. Ni-overlay also reduces the corrosion rates on superheater tubes. However, the superheater environment is less aggressive than the water wall environment. Failure of refractory linings is linked to excess porosity, detrimental reactions between raw materials and other mix constituents, volume growth reactions between base material and salt depositions, and thermal stress induced crack formation. Free water and not decomposition of hydrates causes spalling and cracking during the initial heating of refractory linings. Finite Element analysis confirms the stress levels between steel and refractory with the higher stress level at the top of the panel wall tube. A number of LCC mixes were formulated, adjusted and tested. Mixes with low open porosities ({approx} 10%) and state of the art resistance to KCl were achieved. (LN)

  17. Measuring weld heat to evaluate weld integrity

    Energy Technology Data Exchange (ETDEWEB)

    Schauder, V., E-mail: schauder@hks-prozesstechnik.de [HKS-Prozesstechnik GmbH, Halle (Germany)

    2015-11-15

    Eddy current and ultrasonic testing are suitable for tube and pipe mills and have been used for weld seam flaw detection for decades, but a new process, thermography, is an alternative. By measuring the heat signature of the weld seam as it cools, it provides information about weld integrity at and below the surface. The thermal processes used to join metals, such as plasma, induction, laser, and gas tungsten arc welding (GTAW), have improved since they were developed, and they get better with each passing year. However, no industrial process is perfect, so companies that conduct research in flaw detection likewise continue to develop and improve the technologies used to verify weld integrity: ultrasonic testing (UT), eddy current testing (ET), hydrostatic, X-ray, magnetic particle, and liquid penetrant are among the most common. Two of these are used for verifying the integrity of the continuous welds such as those used on pipe and tube mills: UT and ET. Each uses a transmitter to send waves of ultrasonic energy or electrical current through the material and a receiver (probe) to detect disturbances in the flow. The two processes often are combined to capitalize on the strengths of each. While ET is good at detecting flaws at or near the surface, UT penetrates the material, detecting subsurface flaws. One drawback is that sound waves and electrical current waves have a specific direction of travel, or an alignment. A linear defect that runs parallel to the direction of travel of the ultrasonic sound wave or a flaw that is parallel to the coil winding direction of the ET probe can go undetected. A second drawback is that they don't detect cold welds. An alternative process, thermography, works in a different fashion: It monitors the heat of the material as the weld cools. Although it measures the heat at the surface, the heat signature provides clues about cooling activity deep in the material, resulting in a thorough assessment of the weld's integrity It

  18. Complete Status Report Documenting Development of Friction Stir Welding for Joining Thin Wall Tubing of ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bunn, Jeffrey R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    The development of friction stir welding (FSW) for joining thin sections of the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy was initiated in Fuel Cycle Research and Development (FCRD), now the Nuclear Technology Research and Development (NTRD), in 2015. The first FSW experiment was conducted in late FY15 and successfully produced a bead-on-plate stir zone (SZ) on a 1 mm thick plate of 14YWT (SM13 heat). The goal of this research task is to ultimately demonstrate that FSW is a feasible method for joining thin wall (0.5 mm thick) tubing of 14YWT.

  19. Spline-based automatic path generation of welding robot

    Institute of Scientific and Technical Information of China (English)

    Niu Xuejuan; Li Liangyu

    2007-01-01

    This paper presents a flexible method for the representation of welded seam based on spline interpolation. In this method, the tool path of welding robot can be generated automatically from a 3D CAD model. This technique has been implemented and demonstrated in the FANUC Arc Welding Robot Workstation. According to the method, a software system is developed using VBA of SolidWorks 2006. It offers an interface between SolidWorks and ROBOGUIDE, the off-line programming software of FANUC robot. It combines the strong modeling function of the former and the simulating function of the latter. It also has the capability of communication with on-line robot. The result data have shown its high accuracy and strong reliability in experiments. This method will improve the intelligence and the flexibility of the welding robot workstation.

  20. Recent progress on gas tungsten arc welding of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    King, J.F.; Grossbeck, M.L.; Goodwin, G.M.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This is a progress report on a continuing research project to acquire a fundamental understanding of the metallurgical processes in the welding of vanadium alloys. It also has the goal of developing techniques for welding structural vanadium alloys. The alloy V-4Cr-4Ti is used as a representative alloy of the group; it is also the prime candidate vanadium alloy for the U.S. Fusion Program at the present time. However, other alloys of this class were used in the research as necessary. The present work focuses on recent findings of hydrogen embrittlement found in vanadium alloy welds. It was concluded that the atmosphere in the inert gas glove box was insufficient for welding 6mm thick vanadium alloy plates.

  1. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool

  2. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool.

  3. Application of the simplified J-estimation scheme Aramis to mismatching welds in CCP

    International Nuclear Information System (INIS)

    Eripret, C.; Franco, C.; Gilles, P.

    1995-01-01

    The J-based criteria give reasonable predictions of the failure behaviour of ductile cracked metallic structures, even if the material characterization may be sensitive to the size of the specimens. However in cracked welds, this phenomenon due to stress triaxiality effects could be enhanced. Furthermore, the application of conventional methods of toughness measurement (ESIS or ASTM standard) have evidenced a strong influence of the portion of the weld metal in the specimen. Several authors have shown the inadequacy of the simplified J-estimation methods developed for homogeneous materials. These heterogeneity effects mainly related to the mismatch ratio (ratio of weld metal yield strength upon base metal yield strength) as well as to the geometrical parameter h/W-a (weld width upon ligament size). In order to make decisive progress in this field, the Atomic Energy Commission (CEA), the PWR manufacturer FRAMATOME, and the French utility (EDF) have launched a large research program on cracked piping welds behaviour. As part of this program, a new J-estimation scheme, so called ARAMIS, has been developed to account for the influence of both materials, i.e. base metal and weld metal, on the structural resistance of cracked welds. It has been shown that, when the mismatch is high, and when the ligament size is small compared to the weld width, a classical J-based method using the softer material properties is very conservative. On the opposite the ARAMIS method provides a good estimate of J, because it predicts pretty well the shift of the cracked weld limit load, due to the presence of the weld. the influence of geometrical parameters such as crack size, weld width, or specimen length is property accounted for. (authors). 23 refs., 8 figs., 1 tab., 1 appendix

  4. Welding of refractory alloys

    International Nuclear Information System (INIS)

    Lessmann, G.G.

    1984-01-01

    This review primarily summarizes welding evaluations supported by NASA-Lewis Research Center in the 1960s. A literature search run in preparation for this review indicates that more recent work is modest by comparison. Hence, this review restates these accomplishments briefly and addresses opportunities which have evolved in welding technology (such as lasers) in the intervening decade. Emphasis in this review is given to tantalum- and niobium-base alloys. Considerable work was also done to assure that a consistent comparison was made with tungsten. A wide variety of candidate alloys derived primarily from developments directed at aircraft propulsion applications were available. Early efforts by NASA were directed at screening studies to select promising structural alloys for the space power application. This objective required fine tuning of welding procedures, e.g., the demonstration of stringent standards for control of welding atmosphere to assure good corrosion resistance in liquid alkali metals. 16 figures, 6 tables

  5. Application of local vacuum slide sealing electron beam welding procedure

    International Nuclear Information System (INIS)

    Sato, Shozo; Takano, Genta; Minami, Masaharu; Enami, Koji; Uchikawa, Takashi; Kuri, Shuhei

    1982-01-01

    Electron beam welding process is efficient and is superior in workmanship and its application to the welding of large plate structures is eagerly awaited. However, since electron beam welding is generally performed with the object of welding entirely put in a vacuum chamber, high welding cost becomes a problem. In response to this demand, two kinds of local vacuum slide sealing type electron beam welding machines have been developed. These welding machines are designed to perform welding with only the neighborhood of the weld line put in vacuum, one of which is for longitudinal joints and the other for circumferential joints. The welding machine for circumferential joints has been put to practical use for the welding of nucear fusion reactor vacuum vessels (outside diameter 3.5 m, inside diameter 1.7 m), showing that it is applicable to the welding of large structures. (author)

  6. Development of Microstructure and Crystallographic Texture in a Double-Sided Friction Stir Welded Microalloyed Steel

    Science.gov (United States)

    Rahimi, S.; Wynne, B. P.; Baker, T. N.

    2017-01-01

    The evolution of microstructure and crystallographic texture has been investigated in double-sided friction stir welded microalloyed steel, using electron backscatter diffraction (EBSD). The microstructure analyses show that the center of stirred zone reached a temperature between Ac1 and Ac3 during FSW, resulting in a dual-phase austenitic/ ferritic microstructure. The temperatures in the thermo-mechanically affected zone and the overlapped area between the first and second weld pass did not exceed the Ac1. The shear generated by the rotation probe occurs in austenitic/ferritic phase field where the austenite portion of the microstructure is transformed to a bainitic ferrite, on cooling. Analysis of crystallographic textures with regard to shear flow lines generated by the probe tool shows the dominance of simple shear components across the whole weld. The austenite texture at Ac1 - Ac3 is dominated by the B { {1bar{1}2} }D2 { {11bar{2}} }< 111rangle simple shear texture components. The formation of ultrafine equiaxed ferrite with submicron grain size has been observed in the overlapped area between the first and second weld pass. This is due to continuous dynamic strain-induced recrystallization as a result of simultaneous severe shear deformation and drastic undercooling.

  7. Professorship: A Faculty Development Program.

    Science.gov (United States)

    Davis, Todd M.; Davis, Jane F.

    1987-01-01

    A faculty development program at a traditionally black college was designed to enhance the ability of graduate faculty to supervise research activities of graduate students. Focus was on interpersonal problem solving in advisement and professional issues; classroom techniques of discussion teaching, case methods, and psychodrama encouraged the…

  8. Child Development Program Evaluation Scale.

    Science.gov (United States)

    Fiene, Richard J.

    The Child Development Program Evaluation Scale (CDPES) is actually two scales in one, a licensing scale and a quality scale. Licensing predictor items have been found to predict overall compliance of child day care centers with state regulations in four states. Quality scale items have been found to predict the overall quality of child day care…

  9. Development tool for PHP programs

    OpenAIRE

    Karlsen, Håkon Skaarud

    2005-01-01

    This paper discusses how a PHP development toolbox can be implemented. One toolbox has been implemented, and the implementation is described and documented in the text. The toolbox is primarily meant to help students who are taking a System Development course (INF1050) at the University of Oslo with the implementation phase of a software engineering project, but other PHP programmers may also benefit from using the toolbox. It has been emphasized that the programming interface should be i...

  10. Development of resistance welding process. 4. Preparation of pressuring enclosed creep test specimen of 7A material

    International Nuclear Information System (INIS)

    Endo, Hideo; Seki, Masayuki; Ishibashi, Fujio; Hirako, Kazuhito; Tsukada, Tatsuya

    2001-02-01

    Mechanical strength in the position welded by resistance welding system was examined in 1999. The test specimens were destroyed in the welding position in a shorter time than expected in the creep test. Therefore, test specimens were prepared to evaluate the cause of destruction. Inner-pressure enclosed creep test specimens were prepared by resistance welding method. Cladding material with low deviation of thickness and high re-crystallization rate was used. Heat treatment after resistance welding was performed to remove the influence of residual stress and the precipitation of carbides. (1) Before preparation of specimens, the welding condition was fixed. Three test specimens were prepared. Two specimens without heat treatment were transported to MMS in Oarai Engineering Center on Aug. 4, 2000. One specimen with heat treatment was transported to MMS after evaluating the residual stress to get optimum heat treatment condition. (2) Specimens were prepared with welding end plugs to both ends of ferritic ODS cladding. Enclosing sides were welded with highly strong Ferritic/Martensitic steel end plugs. The other sides were welded with ferritic ODS end plugs. (3) Some kinds of electrical wave data were obtained during performing welding. Welding position was evaluated with supersonic detector after performing welding. (4) Mechanical strength of welding position in high temperature 800degC was confirmed to be equal to or larger than that of cladding material. The highly qualified specimens in the present were successfully prepared. (author)

  11. Recent Developments for Ultrasonic-Assisted Friction Stir Welding: Joining, Testing, Corrosion - an Overview

    Science.gov (United States)

    Thomä, M.; Wagner, G.; Straß, B.; Conrad, C.; Wolter, B.; Benfer, S.; Fürbeth, W.

    2016-03-01

    Due to the steadily increasing demand on innovative manufacturing processes, modern lightweight construction concepts become more and more important. Especially joints of dissimilar metals offer a variety of advantages due to their high potential for lightweight construction. The focus of the investigations was Al/Mg-joints. Friction Stir Welding (FSW) is an efficient process to realize high strength joints between these materials in ductile condition. Furthermore, for a simultaneous transmission of power ultrasound during the FSW-process (US-FSW) a positive effect on the achievable tensile strength of the Al/Mg-joints was proven. In the present work the industrial used die cast alloys EN AC-48000 (AlSi12CuNiMg) and AZ80 (MgAl8Zn) were joined by a machining center modified especially for Ultrasound Supported Friction Stir Welding. The appearing welding zone and the formation of intermetallic phases under the influence of power ultrasound were examined in particular. In order to identify optimal process parameters extensive preliminary process analyzes have been carried out. Following this, an ultrasound-induced more intensive stirring of the joining zone and as a result of this a considerably modified intermetallic zone was detected. At the same time an increase of the tensile strength of about 25% for US-FSW-joints and for fatigue an up to three times higher number of cycles to failure in comparison to a conventional welding process was observed. Moreover, detailed corrosion analyzes have shown that especially the welding zone was influenced by the corrosive attack. To expand and deepen the knowledge of the US-FSW-process further material combinations such as Ti/Steel and Al/Steel will be considered in future.

  12. Recent Developments for Ultrasonic-Assisted Friction Stir Welding: Joining, Testing, Corrosion - an Overview

    International Nuclear Information System (INIS)

    Thomä, M; Wagner, G; Straß, B; Conrad, C; Wolter, B; Benfer, S; Fürbeth, W

    2016-01-01

    Due to the steadily increasing demand on innovative manufacturing processes, modern lightweight construction concepts become more and more important. Especially joints of dissimilar metals offer a variety of advantages due to their high potential for lightweight construction. The focus of the investigations was Al/Mg-joints. Friction Stir Welding (FSW) is an efficient process to realize high strength joints between these materials in ductile condition. Furthermore, for a simultaneous transmission of power ultrasound during the FSW-process (US-FSW) a positive effect on the achievable tensile strength of the Al/Mg-joints was proven. In the present work the industrial used die cast alloys EN AC-48000 (AlSi12CuNiMg) and AZ80 (MgAl8Zn) were joined by a machining center modified especially for Ultrasound Supported Friction Stir Welding. The appearing welding zone and the formation of intermetallic phases under the influence of power ultrasound were examined in particular. In order to identify optimal process parameters extensive preliminary process analyzes have been carried out. Following this, an ultrasound-induced more intensive stirring of the joining zone and as a result of this a considerably modified intermetallic zone was detected. At the same time an increase of the tensile strength of about 25% for US-FSW-joints and for fatigue an up to three times higher number of cycles to failure in comparison to a conventional welding process was observed. Moreover, detailed corrosion analyzes have shown that especially the welding zone was influenced by the corrosive attack. To expand and deepen the knowledge of the US-FSW-process further material combinations such as Ti/Steel and Al/Steel will be considered in future. (paper)

  13. WELDING METHOD

    Science.gov (United States)

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  14. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G., E-mail: wrcc@cdtn.br, E-mail: camilarezende.cr@gmail.com, E-mail: egr@cdtn.br, E-mail: vladimirsoler@hotmail.com, E-mail: ahfv02@outlook.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  15. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    International Nuclear Information System (INIS)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G.

    2017-01-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  16. A Decade of Friction Stir Welding R and D at NASA's Marshall Space Flight Center and a Glance into the Future

    Science.gov (United States)

    Ding, Jeff; Carter, Bob; Lawless, Kirby; Nunes, Arthur; Russell, Carolyn; Suites, Michael; Schneider, Judy

    2006-01-01

    Welding at NASA's Marshall Space Flight Center (MSFC), Huntsville, Alabama, has taken a new direction through the last 10 years. Fusion welding processes, namely variable polarity plasma arc (VPPA) and tungsten inert gas (TIG) were once the corner stone of welding development in the Space Flight Center's welding laboratories, located in the part of MSFC know as National Center for Advanced Manufacturing (NCM). Developed specifically to support the Shuttle Program's External Tank and later International Space Station manufacturing programs, was viewed as the paragon of welding processes for joining aluminum alloys. Much has changed since 1994, however, when NASA's Jeff Ding brought the FSW process to the NASA agency. Although, at that time, FSW was little more than a "lab curiosity", NASA researchers started investigating where the FSW process would best fit NASA manufacturing programs. A laboratory FSW system was procured and the first welds were made in fall of 1995. The small initial investment NASA made into the first FSW system has certainly paid off for the NASA agency in terms of cost savings, hardware quality and notoriety. FSW is now a part of Shuttle External Tank (ET) production and the preferred weld process for the manufacturing of components for the new Crew Launch Vehicle (CLV) and Heavy Lift Launch Vehicle (HLLV) that will take this country back to the moon. It is one of the solid state welding processes being considered for on-orbit space welding and repair, and is of considerable interest for Department of Defense @OD) manufacturing programs. MSFC involvement in these and other programs makes NASA a driving force in this country's development of FSW and other solid state welding technologies. Now, a decade later, almost the entire on-going welding R&D at MSFC now focuses on FSW and other more advanced solid state welding processes.

  17. Advances in welding science and technology

    International Nuclear Information System (INIS)

    David, S.A.; Babu, S.S.; Vitek, J.M.

    1995-01-01

    Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based design of composition, structure, and properties of welds with intelligent control and automation of the welding processes. In the last several decades, welding has evolved as an interdisciplinary activity requiring synthesis of knowledge from various disciplines and incorporating the most advanced tools of various basic applied sciences. A series of international conferences and other publications have covered the issues, current trends and directions in welding science and technology. In the last few decades, major progress has been made in (i) understanding physical processes in welding, (ii) characterization of microstructure and properties, and (iii) intelligent control and automation of welding. This paper describes some of these developments

  18. Accelerated leach test development program

    International Nuclear Information System (INIS)

    Fuhrmann, M.; Pietrzak, R.F.; Heiser, J.; Franz, E.M.; Colombo, P.

    1990-11-01

    In FY 1989, a draft accelerated leach test for solidified waste was written. Combined test conditions that accelerate leaching were validated through experimental and modeling efforts. A computer program was developed that calculates test results and models leaching mechanisms. This program allows the user to determine if diffusion controls leaching and, if this is the case, to make projections of releases. Leaching mechanisms other than diffusion (diffusion plus source term partitioning and solubility limited leaching) are included in the program is indicators of other processes that may control leaching. Leach test data are presented and modeling results are discussed for laboratory scale waste forms composed of portland cement containing sodium sulfate salt, portland cement containing incinerator ash, and vinyl ester-styrene containing sodium sulfate. 16 refs., 38 figs., 5 tabs

  19. Glucocorticoid programming of intrauterine development.

    Science.gov (United States)

    Fowden, A L; Valenzuela, O A; Vaughan, O R; Jellyman, J K; Forhead, A J

    2016-07-01

    Glucocorticoids (GCs) are important environmental and maturational signals during intrauterine development. Toward term, the maturational rise in fetal glucocorticoid receptor concentrations decreases fetal growth and induces differentiation of key tissues essential for neonatal survival. When cortisol levels rise earlier in gestation as a result of suboptimal conditions for fetal growth, the switch from tissue accretion to differentiation is initiated prematurely, which alters the phenotype that develops from the genotype inherited at conception. Although this improves the chances of survival should delivery occur, it also has functional consequences for the offspring long after birth. Glucocorticoids are, therefore, also programming signals that permanently alter tissue structure and function during intrauterine development to optimize offspring fitness. However, if the postnatal environmental conditions differ from those signaled in utero, the phenotypical outcome of early-life glucocorticoid receptor overexposure may become maladaptive and lead to physiological dysfunction in the adult. This review focuses on the role of GCs in developmental programming, primarily in farm species. It examines the factors influencing GC bioavailability in utero and the effects that GCs have on the development of fetal tissues and organ systems, both at term and earlier in gestation. It also discusses the windows of susceptibility to GC overexposure in early life together with the molecular mechanisms and long-term consequences of GC programming with particular emphasis on the cardiovascular, metabolic, and endocrine phenotype of the offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Aspects of welding of zircaloy thin tube to end plugin the experimental welding facility of fuel element fabrication laboratory

    International Nuclear Information System (INIS)

    Shafy, M.; El-Hakim, E.

    1997-01-01

    The work was achieved within the scope of developing egyptian nuclear fuel fabrication laboratory in inshas. It showed the results of developing a welding facility for performing a qualified zircaloy-2 and 4 thin tubes to end weld joints. The welding chamber design was developed to get qualified weld for both PWR and CANDU fuel rod configurations. Experimental works for optimizing the welding parameters of tungsten inert gas (TIG) welding and electron beam (EB) welding processes were achieved. The ld penetration deeper than the wall tube thickness can be obtained for qualified end plug weld joints. It recommended to use steel compensating block for radiographic inspection of end plug weld joints. The predominate defects that can be expected in end plug weld joints, are lack of penetration and cavity. The microstructure of the fusion zone and heat affected zones are Widmanstaetten structure and its grain size is drastically sensible to the heat generation and removal of arc welding. 16 figs

  1. Evaluating the SCC resistance of underwater welds in sodium tetrathionate

    International Nuclear Information System (INIS)

    White, R.A.; Angeliu, T.M.

    1997-01-01

    The susceptibility of welds to stress corrosion cracking (SCC) is enhanced by the surface residual tensile stresses generated by the typical welding process. However, underwater plasma transferred arc (PTA) welding has been shown to produce compressive surface residual stresses, an encouraging result if repairs of cracked boiling water reactor (BWR) components are to be made without further endangering them to SCC. This program was designed to verify that underwater PTA welds are resistant to SCC and to determine if underwater PTA welding could mitigate SCC in potentially susceptible welds. This was achieved by exposing various welds on solution annealed (SA) and SA + thermally sensitized 304 stainless steel at 25 C in a solution of 1.5 gm/liter of sodium sulfide added to 0.05M sodium tetrathionate, titrated to a pH of 1.25 with H 2 SO 4 . The autogeneous welds were produced using gas tungsten arc (GTA) and plasma transferred arc (PTA) welding under atmospheric conditions, and PTA welding underwater. After 1 hour of sodium tetrathionate exposure, GTA and air PTA welds exhibited SCC while the underwater PTA weld heat affected zones were more resistant. Underwater PTA welds bisecting a GTA weld eliminated the cracking in the GTA weld heat affected zone under certain conditions. The lack of IG cracking in the region influenced by the underwater PTA weld is consistent with the measurement of compressive surface residual stresses inherent to the underwater welding process

  2. Advanced Emissions Control Development Program

    Energy Technology Data Exchange (ETDEWEB)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  3. Finite element simulation of the welding process and structural behaviour of welded components

    International Nuclear Information System (INIS)

    Locci, J.M.; Rouvray, A. de; Barbe, B.; Poirier, J.

    1977-01-01

    In the field of inelastic analysis of nuclear metal structures, the computation of residual stresses in welds, and their effects on the strength of welded components is of major importance. This paper presents an experimentally checked finite element simulation with the general nonlinear program PAM NEP-D, of the electron beam welding of two thick hemispherical shells, and the behaviour of the welded sphere under various additional thermomechanical sollicitations. (Auth.)

  4. ARC+(Registered Trademark) and ARC PC Welding Simulators: Teach Welders with Virtual Interactive 3D Technologies

    Science.gov (United States)

    Choquet, Claude

    2011-01-01

    123 Certification Inc., a Montreal based company, has developed an innovative hands-on welding simulator solution to help build the welding workforce in the most simple way. The solution lies in virtual reality technology, which has been fully tested since the early 90's. President and founder of 123 Certification Inc., Mr. Claude Choquet Ing. Msc. IWE. acts as a bridge between the welding and the programming world. Working in these fields for more than 20 years. he has filed 12 patents world-wide for a gesture control platform with leading edge hardware related to simulation. In the summer of 2006. Mr Choquet was proud to be invited to the annual IIW International Weld ing Congress in Quebec City to launch the ARC+ welding simulator. A 100% virtual reality system and web based training center was developed to simulate multi process. multi-materiaL multi-position and multi pass welding. The simulator is intended to train welding students and apprentices in schools or industries. The welding simulator is composed of a real welding e[eetrode holder (SMAW-GTAW) and gun (GMAW-FCAW). a head mounted display (HMD), a 6 degrees of freedom tracking system for interaction between the user's hands and head. as well as external audio speakers. Both guns and HMD are interacting online and simultaneously. The welding simulation is based on the law of physics and empirical results from detailed analysis of a series of welding tests based on industrial applications tested over the last 20 years. The simulation runs in real-time, using a local logic network to determine the quality and shape of the created weld. These results are based on the orientation distance. and speed of the welding torch and depth of penetration. The welding process and resulting weld bc.1d are displayed in a virtual environment with screenplay interactive training modules. For review. weld quality and recorded process values can be displayed and diagnosed after welding. To help in the le.tming process, a

  5. Characterization of Cassini GPHS fueled clad production girth welds

    International Nuclear Information System (INIS)

    Franco-Ferreira, E.A.; Moyer, M.W.; Reimus, M.A.H.; Placr, A.; Howard, B.D.

    2000-01-01

    Fueled clads for radioisotope power systems are produced by encapsulating 238 PuO 2 in iridium alloy cups, which are joined at their equators by gas tungsten arc welding. Cracking problems at the girth weld tie-in area during production of the Galileo/Ulysses GPHS capsules led to the development of a first-generation ultrasonic test for girth weld inspection at the Savannah River Plant. A second-generation test and equipment with significantly improved sensitivity and accuracy were jointly developed by the Oak Ridge Y-12 Plant and Westinghouse Savannah River Company for use during the production of Cassini GPHS capsules by the Los Alamos National Laboratory. The test consisted of Lamb wave ultrasonic scanning of the entire girth weld from each end of the capsule combined with a time-of-flight evaluation to aid in characterizing nonrelevant indications. Tangential radiography was also used as a supplementary test for further evaluation of reflector geometry. Each of the 317 fueled GP HS capsules, which were girth welded for the Cassini Program, was subjected to a series of nondestructive tests that included visual, dimensional, helium leak rate, and ultrasonic testing. Thirty-three capsules were rejected prior to ultrasonic testing. Of the 44 capsules rejected by the standard ultrasonic test, 22 were upgraded to flight quality through supplementary testing for an overall process acceptance rate of 82.6%. No confirmed instances of weld cracking were found

  6. The effect of welding methods on the microstructure and properties of welded tantalum sheets and a mathematical analysis of heat transfer in welding

    International Nuclear Information System (INIS)

    Sharir, Y.

    1977-12-01

    The effect of electromagnetic vibration of the arc and the influence of varying the pulses of the current on the nature of solidification in the molten zone of welded tantalum were investigated. Their influence on microstructure and some service properties were also studied. At optimum conditions equi-axed grains and refined microstructure were obtained in the fusion zone of the weld. Similar results were achieved by selecting proper conditions for the current pulses. The effect of varying welding speed and the combined effect of welding speed and optimal vibration conditions were also examined. The experiments were performed in an inert-gas-chamber designed for this purpose. Most of the tests to evaluate service performance were devoted to the investigation of some mechanical properties (yield stress, ultimate tensile strength, hardness and ductility) of the fusion-zone itself. Slight improvement in strength and significant increase in ductility were achieved by an advanced welding technique as compared with the results of a more conventional welding method. The optimum conditions for the advanced welding technique applied in this work were determined. A new mathematical model for calculating heat distribution in tantalum sheets was developed. A non-stationary calculation, independent of specific initial conditions or the shape of the molten pool, is the basis of this model. Consequently, it can be used for advanced welding techniques where the molten pool is dynamic in shape or nature. The model takes into account heat losses by an exponential function and the variation of some physical properties as a function of temperature. The differential equations are solved numerically by an explicit-finite-difference-method by a computer program written for this purpose. Calculated and experimental results are in good agreement. (author)

  7. Professional development and extension programs

    Energy Technology Data Exchange (ETDEWEB)

    Bereznai, G. [University of Ontario Institute of Technology, Oshawa, ON (Canada)

    2015-07-01

    Professional Development (PD) refers to the means by which people acquire, develop, maintain and enhance the specialist knowledge and skills needed to practice in their profession. Extension Programs (aka Continuing Education) are offered by most post-secondary degree/diploma/certificate granting institutions.The courses are typically taken on a part-time basis, and course delivery often includes distance learning technology. An important implementation of PD is via workplace training, industry specific seminars, workshops and non-credit courses offered by a wide range of service providers.

  8. Professional development and extension programs

    International Nuclear Information System (INIS)

    Bereznai, G.

    2015-01-01

    Professional Development (PD) refers to the means by which people acquire, develop, maintain and enhance the specialist knowledge and skills needed to practice in their profession. Extension Programs (aka Continuing Education) are offered by most post-secondary degree/diploma/certificate granting institutions.The courses are typically taken on a part-time basis, and course delivery often includes distance learning technology. An important implementation of PD is via workplace training, industry specific seminars, workshops and non-credit courses offered by a wide range of service providers.

  9. Wind Energy Career Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Gwen Andersen

    2012-03-29

    Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

  10. Application of reliability techniques to prioritize BWR [boiling water reactor] recirculation loop welds for in-service inspection

    International Nuclear Information System (INIS)

    Holman, G.S.

    1989-12-01

    In January 1988 the US Nuclear Regulatory Commission issued Generic Letter 88-01 together with NUREG-0313, Revision 2, ''Technical Report on Material Selection and Processing Guidelines for BWR Coolant Pressure Boundary Piping,'' to implement NRC long-range plans for addressing the problem of stress corrosion cracking in boiling water reactor piping. NUREG-0313 presents guidelines for categorizing BWR pipe welds according to their SCC condition (e.g., presence of known cracks, implementation of measures for mitigating SCC) as well as recommended inspection schedules (e.g., percentage of welds inspected, inspection frequency) for each weld category. NUREG-0313 does not, however, specify individual welds to be inspected. To address this issue, the Lawrence Livermore National Laboratory developed two recommended inspection samples for welds in a typical BWR recirculation loop. Using a probabilistic fracture mechanics model, LLNL prioritized loop welds on the basis of estimated leak probabilities. The results of this evaluation indicate that riser welds and bypass welds should be given priority attention over other welds. Larger-diameter welds as a group can be considered of secondary importance compared to riser and bypass welds. A ''blind'' comparison between the probability-based inspection samples and data from actual field inspections indicated that the probabilistic analysis generally captured the welds which the field inspections identified as warranting repair or replacement. Discrepancies between the field data and the analytic results can likely be attributed to simplifying assumptions made in the analysis. The overall agreement between analysis and field experience suggests that reliability techniques -- when combined with historical experience -- represent a sound technical basis on which to define meaningful weld inspection programs. 13 refs., 8 figs., 5 tabs

  11. Development of an automation system for Iodine-125 brachytherapy seed encapsulated by Nd:YAG laser welding

    International Nuclear Information System (INIS)

    Somessari, S.L.; Feher, A.; Sprenger, F.E.; Rostelato, M.E.C.M.; Costa, F.E. da; Calvo, W.A.P.

    2011-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by Nd:YAG laser welding, which has been used successfully in low dose rate (LDR) brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8 mm in diameter and 4.5 mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at Institute for Nuclear and Energy Research, Sao Paulo, Brazil (IPEN-CNEN/SP) imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources became a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a larger number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with good manufacturing practices (GMP). The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing a programmable logic controller (PLC), a stepper motor, an Nd:YAG laser welding machine and a supervisory. The statistical repeatability of correctly encapsulated sealed sources with this automation system is greater than 95%. (authors)

  12. Development of an automation system for iodine-125 brachytherapy seed production by ND:YAG laser welding

    International Nuclear Information System (INIS)

    Somessari, Samir L.; Feher, Anselmo; Sprenger, Francisco E.; Rostellato, Maria Elisa C.M.; Costa, Fabio E.; Calvo, Wilson A.P.

    2009-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by Nd:YAG laser welding, which has been used successfully in low dose rate brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8 mm in diameter and 4.5 mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at IPEN-CNEN/SP imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources became a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a larger number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with good manufacturing practices. The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing a Programmable Logic Controller, a stepper motor, an Nd:YAG laser welding machine and a supervisory. (author)

  13. Development of an automation system for iodine-125 brachytherapy seed production by (Nd:YAG) laser welding

    International Nuclear Information System (INIS)

    Somessari, Samir Luiz

    2010-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by (Nd:YAG) laser welding, which has been used successfully in Low Dose Rate (LDR) brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8mm in diameter and 4.5mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at IPEN-CNEN/SP imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources becomes a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a largest number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with Good Manufacturing Practices (GMP). The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing Programmable Logic Controller (PLC), stepper motors, drivers, (Nd:YAG) laser welding machine, photoelectric sensors and supervisory. (author)

  14. Developing a successful robotics program.

    Science.gov (United States)

    Luthringer, Tyler; Aleksic, Ilija; Caire, Arthur; Albala, David M

    2012-01-01

    Advancements in the robotic surgical technology have revolutionized the standard of care for many surgical procedures. The purpose of this review is to evaluate the important considerations in developing a new robotics program at a given healthcare institution. Patients' interest in robotic-assisted surgery has and continues to grow because of improved outcomes and decreased periods of hospitalization. Resulting market forces have created a solid foundation for the implementation of robotic surgery into surgical practice. Given proper surgeon experience and an efficient system, robotic-assisted procedures have been cost comparable to open surgical alternatives. Surgeon training and experience is closely linked to the efficiency of a new robotics program. Formally trained robotic surgeons have better patient outcomes and shorter operative times. Training in robotics has shown no negative impact on patient outcomes or mentor learning curves. Individual economic factors of local healthcare settings must be evaluated when planning for a new robotics program. The high cost of the robotic surgical platform is best offset with a large surgical volume. A mature, experienced surgeon is integral to the success of a new robotics program.

  15. Fusion welding of thin metal foils

    International Nuclear Information System (INIS)

    Casey, H.

    1975-01-01

    Aspects of fusion welding of thin metal foils are reviewed and the current techniques employed at LASL to join foils are described. Techniques for fusion welding approximately 0.025-mm-thick foils of copper, aluminum, and stainless steels have been developed using both electron beam and laser welding equipment. These techniques, together with the related aspects of joint design, tooling and fixturing, joint preparation, and modifications to the commercially available welding equipment, are included in the review. (auth)

  16. Development of measurement technique for crack depth in weld zone of thick stainless steel pipe with ultrasonic phased array TOFD

    International Nuclear Information System (INIS)

    Ishida, Hitoshi

    2006-01-01

    Phased array TOFD (time of flight diffraction) method which makes possible to detect tip diffraction echoes and measure crack depth in an austenitic stainless steel weld zone with a thickness of more than 25 mm to which region it was difficult to apply ultrasonic test due to scattering of ultrasonic waves has been developed. The developed method uses a single array transducer to have a short distance between incident points of transmitter and receiver in order to propagate waves in shorter pass in the weld region. Transmitting and receiving ultrasonic beams from a single array probe can be set a crossing point and a focal point at desired depth. This method makes possible to scan with 16 kinds of combination of crossing points and focal pints of ultrasonic beam at a time. We have examined fundamental characteristics of depth measurement with electric discharge machining slits on base metal of a stainless steel with a thickness of 35 mm. As the results: (1) We could measure the slit depth with 0.2mm error from the slit depth with a estimating method of a lateral wave propagation time with back wall echo. (2) The largest error of the depth measurement from the slit depth with the ultrasonic beam crossing point set at the 4mm different point from the tip of the slit was 0.3 mm. (3) The largest error of the depth measurements due to the difference of focal point depth of ultrasonic beam was 0.2 mm. (4) The highest tip diffraction echo could be observed with the ultrasonic beam cross point set at the tip of the slit. The difference of 4 mm between the cross point and the tip of the slit caused attenuation of tip diffraction echo height in -6.8 dB. Furthermore we have measured a depth of electric discharge machining slits, fatigue cracks and stress corrosion cracking (SCC) on stainless steel welded pipe specimens with a thickness of 35 mm. As the results: (1) We could detect the tip diffraction echoes which have a signal noise ratio with more than 2.4 from the fatigue

  17. Numerical simulation of welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær; Thorborg, Jesper

    Aim of project:To analyse and model the transient thermal field from arc welding (SMAW, V-shaped buttweld in 15mm plate) and to some extend the mechanical response due to the thermal field. - To implement this model in a general purpose finite element program such as ABAQUS.The simulation...... stress is also taken into account.Work carried out:With few means it is possible to define a thermal model which describes the thermal field from the welding process in reasonable agreement with reality. Identical results are found with ABAQUS and Rosenthal’s analytical solution of the governing heat...... transfer equation under same conditions. It is relative easy tointroduce boundary conditions such as convection and radiation where not surprisingly the radiation has the greatest influence especially from the high temperature regions in the weld pool and the heat affected zone.Due to the large temperature...

  18. Upgraded HFIR Fuel Element Welding System

    International Nuclear Information System (INIS)

    Sease, John D.

    2010-01-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  19. Variant selection of martensites in steel welded joints with low transformation temperature weld metals

    International Nuclear Information System (INIS)

    Takahashi, Masaru; Yasuda, Hiroyuki Y.

    2013-01-01

    Highlights: ► We examined the variant selection of martensites in the weld metals. ► We also measured the residual stress developed in the butt and box welded joints. ► 24 martensite variants were randomly selected in the butt welded joint. ► High tensile residual stress in the box welded joint led to the strong variant selection. ► We discussed the rule of the variant selection focusing on the residual stress. -- Abstract: Martensitic transformation behavior in steel welded joints with low transformation temperature weld (LTTW) metal was examined focusing on the variant selection of martensites. The butt and box welded joints were prepared with LTTW metals and 980 MPa grade high strength steels. The residual stress of the welded joints, which was measured by a neutron diffraction technique, was effectively reduced by the expansion of the LTTW metals by the martensitic transformation during cooling after the welding process. In the LTTW metals, the retained austenite and martensite phases have the Kurdjumov–Sachs (K–S) orientation relationship. The variant selection of the martensites in the LTTW metals depended strongly on the type of welded joints. In the butt welded joint, 24 K–S variants were almost randomly selected while a few variants were preferentially chosen in the box welded joint. This suggests that the high residual stress developed in the box welded joint accelerated the formation of specific variants during the cooling process, in contrast to the butt welded joint with low residual stress

  20. Strategic Employee Development (SED) Program

    Science.gov (United States)

    Nguyen, Johnny; Guevara (Castano), Nathalie; Thorpe, Barbara; Barnett, Rebecca

    2017-01-01

    As with many other U.S. agencies, succession planning is becoming a critical need for NASA. The primary drivers include (a) NASAs higher-than-average aged workforce with approximately 50 of employees eligible for retirement within 5 years; and (b) employees who need better developmental conversations to increase morale and retention. This problem is particularly concerning for Safety Mission Assurance (SMA) organizations since they traditionally rely on more experienced engineers and specialists to perform their organizations functions.In response to this challenge, the Kennedy Space Center (KSC) SMA organization created the Strategic Employee Development (SED) program. The SED programs goal is to provide a proactive method to counter the primary drivers by creating a deeper bench strength and providing a more comprehensive developmental feedback experience for the employee. The SED is a new succession planning framework that enables customization to any organization, and in this case, specifically for an SMA organization. This is accomplished via the identification of key positions, the corresponding critical competencies, and a process to help managers have relevant and meaningful development conversations with the workforce. As a result of the SED, several tools and products were created that allows management to make better strategic workforce decisions. Although there are opportunities for improvement for the SED program, the most important impact has been on the quality of developmental discussions for employees.

  1. Advantages of new micro-jet welding technology on weld microstructure control

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2013-01-01

    Full Text Available An innovative apparatus to welding process with micro-jet cooling of the weld made it possible to carry out technological tests, which have proved theoretical considerations about this problem. This project gives real opportunities for professional development in the field of welding with controlling the parameters of weld structure. These tests have proved that the new micro-jet technology has the potential for growth. It may be great achievement of welding technology in order to increase weld metal strength. The new technology with micro-jet cooling may have many practical applications in many fields, for example such as in the transport industry or to repair damaged metal elements. The advantages of the new device over the traditional system are the ability to control the structure of the weld, the weld mechanical performance increases and improve the quality of welded joints.

  2. Microstructural Development in a TRIP-780 Steel Joined by Friction Stir Welding (FSW: Quantitative Evaluations and Comparisons with EBSD Predictions

    Directory of Open Access Journals (Sweden)

    Gladys Perez Medina

    Full Text Available Abstract The present work describes the effect of FSW on the result microstructure in the stir zone (SZ, thermo-mechanically affected zone (TMAZ, heat affected zone (HAZ and base metal (BM of a TRIP-780 steel. X-ray diffraction (XRD, optical microscopy (OM and EBSD were used for determinations retained austenite (RA in the SZ, It was found that the amount of RA developed in SZ was relatively large, (approximately 11% to 15%. In addition, recrystallization and the formation of a grain texture were resolved using EBSD. During FSW, the SZ experienced severe plastic deformation which lead to an increase in the temperature and consequently grain recrystallization. Moreover, it was found that the recrystallized grain structure and relatively high martensite levels developed in the SZ lead to a significant drop in the mechanical properties of the steel. In addition, microhardness profiles of the welded regions indicated that the hardness in both the SZ and TMAZ were relatively elevated confirming the development of martensite in these regions. In particular, to evaluate the mechanical strength of the weld, lap shear tensile test was conducted; exhibited the fracture zone in the SZ with shear fracture with uniformly distributed elongation shear dimples.

  3. Welding process

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    For the final chapter of this book, there is basic introduction on welding process. The good radiography must know somehow on welding process so that they can know what kind of welding that must rejected or not. All of the exposure technique that mention in earlier chapter almost applicable in this field because welding process is critical problem if there is no inspection will be done. So, for this chapter, all the discontinuity that usually appeared will be discussed and there is another discontinuity maybe not to important and do not give big impact if found it, do not described here. On top of that, the decision to accept or reject based on code, standard and specification that agreed by both to make sure that decision that agreed is corrected and more meaningful.

  4. Program development fund: FY 1987

    Energy Technology Data Exchange (ETDEWEB)

    1989-03-01

    It is the objective of the Fund to encourage innovative research to maintain the Laboratory's position at the forefront of science. Funds are used to explore new ideas and concepts that may potentially develop into new directions of research for the Laboratory and that are consistent with the major needs, overall goals, and mission of the Laboratory and the DOE. The types of projects eligible for support from PDF include: work in forefront areas of science and technology for the primary purpose of enriching Laboratory research and development capabilities; advanced study of new hypotheses, new experimental concepts, or innovative approaches to energy problems; experiments directed toward ''proof of principle'' or early determination of the utility of a new concept; and conception, design analyses, and development of experimental devices, instruments, or components. This report is a review of these research programs.

  5. Program summary for the Civilian Reactor Development Program

    International Nuclear Information System (INIS)

    1982-07-01

    This Civilian Reactor Development Program document has the prime purpose of summarizing the technical programs supported by the FY 1983 budget request. This section provides a statement of the overall program objectives and a general program overview. Section II presents the technical programs in a format intended to show logical technical interrelationships, and does not necessarily follow the structure of the formal budget presentation. Section III presents the technical organization and management structure of the program

  6. Internal-bore-welding of 2 1/4 Cr--1 Mo steel tube-to-tubesheet joints

    International Nuclear Information System (INIS)

    Moorhead, A.J.; Slaughter, G.M.

    1976-01-01

    In order to avoid the disadvantages of the conventional face-side tube-to-tubesheet weld, the steam generators for the Clinch River Breeder Reactor Plant (a power-producing demonstration LMFBR) will be built using a relatively new technique known as internal-bore-welding (IBW). In IBW the tube does not pass through the tubesheet but rather is welded to a short stub machined on the tube side of the tubesheet. This joint has the important advantages of being inspectable by radiography and eliminating the crevice; however, it is much more difficult to weld than is the face-side design. Because of the close proximity of the tubes, there is not room for an orbiting-arc welding head on the outside of the tube. Consequently, this weld must be made by welding from the inside- or bore-side of the tube. The results are presented of the initial phases of a program undertaken at ORNL to develop improved bore-side welding equipment, to gain further understanding of this technique, and to develop mechanical property data for autogeneous welds in 2 1/4 Cr-1 Mo steel tube and tubesheet materials

  7. Syllabus in Trade Welding.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  8. Strength Evaluation of Heat Affected Zone in Electron Beam Welded ARAA for HCCR TBM in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J. S.; Kim, S. K.; Jin, H. G.; Lee, E. H.; Lee, D. W. [KAERI, Daejeon (Korea, Republic of); Cho, S. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The Korean helium cooled ceramic reflector (HCCR) test blanket module (TBM) has been developed for ITER, and Korean reduced activation ferritic martensitic (RAFM) steel, called advanced reduced activation alloy (ARAA), has also been developed for a structural material of the HCCR TBM. One case of limited optimized electron beam (EB) welding conditions was selected based on previous work, and the weldability of an EB weld was evaluated for TBM fabrication. The micro-hardness was measured from the base to the weld region, and the microstructures were also observed. A small punch (SP) test considering the HAZ was carried out at room and high (550 .deg. C) temperatures. The empirical mechanical properties of HAZ in the EB weld were evaluated, and the fracture behavior was investigated after the SP test. The SP results show that the estimated yield and tensile strength of the HAZ were higher than the base metal at both temperatures. Korean RAFM steel, ARAA, was developed as a TBM structural material. Using one of the program alloys in ARAA (F206), one case of a limited optimized EB welding condition was selected based on previous works, and the weldability of an EB weld using the SP test was evaluated for TBM fabrication at room and high (550 .deg. C) temperatures. From a micro-Vickers hardness evaluation, the HAZ gave the highest values compared with the other regions. The irregular grain boundaries in the HAZ were observed, but its width was narrower than the TIG weld from the previous results. The optimized welding methods such as the TIG, EB, and laser weld, and the welding procedure considering the PWHT are being established, and the weldability evaluation is also progressing according to the development of the ARAA for the fusion material application in Korea.

  9. Advances in welding science - a perspective

    International Nuclear Information System (INIS)

    David, S.A.; Vitek, J.M.; Babu, S.S.; DebRoy, T.

    1995-01-01

    The ultimate goal of welding technology is to improve the joint integrity and increase productivity. Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based tailoring of composition, structure, and properties of welds with intelligent control and automation of the welding processes

  10. Simulation and experimental study on distortion of butt and T-joints using WELD PLANNER

    International Nuclear Information System (INIS)

    Sulaiman, Mohd Shahar; Manurung, Yupiter HP; Rahim, Mohammad Ridzwan Abdul Mohd; Redza, Ridhwan; Lidam, Robert Ngendang Ak.; Abas, Sunhaji Kiyai; Tham, Ghalib; Haruman, Esa; Chau, Chan Yin

    2011-01-01

    This paper investigates the capability of linear thermal elastic numerical analysis to predict the welding distortion that occurs due to GMAW process. Distortion is considered as the major stumbling block that can adversely affect the dimensional accuracy and thus lead to expensive corrective work. Hence, forecast of distortion is crucially needed and ought to be determined in advance in order to minimize the negative effects, improve the quality of welded parts and finally to reduce the production costs. In this study, the welding deformation was simulated by using relatively new FEM software WELD PLANNER developed by ESI Group. This novel Welding Simulation Solution was employed to predict welding distortion induced in butt and T-joints with thickness of 4 mm. Low carbon steel material was used for the simulation and experimental study. A series of experiments using fully automated welding process were conducted for verification purpose to measure the distortion. By comparing between the simulation and experimental results, it was found out that this program code offered fast solution analysis time in estimating weld induced distortion within acceptable accuracy

  11. Simulation and experimental study on distortion of butt and T-joints using WELD PLANNER

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, Mohd Shahar; Manurung, Yupiter HP; Rahim, Mohammad Ridzwan Abdul Mohd; Redza, Ridhwan; Lidam, Robert Ngendang Ak.; Abas, Sunhaji Kiyai; Tham, Ghalib [Universiti Teknologi MARA, Kuala Lumpur (Malaysia); Haruman, Esa [Bakrie University, Jakarta (Indonesia); Chau, Chan Yin [ESI Group, Kuala Lumpur (Malaysia)

    2011-10-15

    This paper investigates the capability of linear thermal elastic numerical analysis to predict the welding distortion that occurs due to GMAW process. Distortion is considered as the major stumbling block that can adversely affect the dimensional accuracy and thus lead to expensive corrective work. Hence, forecast of distortion is crucially needed and ought to be determined in advance in order to minimize the negative effects, improve the quality of welded parts and finally to reduce the production costs. In this study, the welding deformation was simulated by using relatively new FEM software WELD PLANNER developed by ESI Group. This novel Welding Simulation Solution was employed to predict welding distortion induced in butt and T-joints with thickness of 4 mm. Low carbon steel material was used for the simulation and experimental study. A series of experiments using fully automated welding process were conducted for verification purpose to measure the distortion. By comparing between the simulation and experimental results, it was found out that this program code offered fast solution analysis time in estimating weld induced distortion within acceptable accuracy.

  12. The Numerical Welding Simulation - Developments and Validation of Simplified and Bead Lumping Methods

    International Nuclear Information System (INIS)

    Baup, Olivier

    2001-01-01

    The aim of this work was to study the TIG multipass welding process on stainless steel, by means of numerical methods and then to work out simplified and bead lumping methods in order to reduce adjusting and realisation times of these calculations. A simulation was used as reference for the validation of these methods; after the presentation of the test series having led to the option choices of this calculation (2D generalised plane strains, elastoplastic model with an isotropic hardening, hardening restoration due to high temperatures), various simplifications were tried on a plate geometry. These simplifications related various modelling points with a correct plastic flow representation in the plate. The use of a reduced number of thermal fields characterising the bead deposit and a low number of tensile curves allow to obtain interesting results, decreasing significantly the Computing times. In addition various lumping bead methods have been studied and concerning both the shape and the thermic of the macro-deposits. The macro-deposit shapes studied are in 'L', or in layer or they represent two beads one on top of the other. Among these three methods, only those using a few number of lumping beads gave bad results since thermo-mechanical history was deeply modified near and inside the weld. Thereafter, simplified methods have been applied to a tubular geometry. On this new geometry, experimental measurements were made during welding, which allow a validation of the reference calculation. Simplified and reference calculations gave approximately the same stress fields as found on plate geometry. Finally, in the last part of this document a procedure for automatic data setting permitting to reduce significantly the calculation phase preparation is presented. It has been applied to the calculation of thick pipe welding in 90 beads; the results are compared with a simplified simulation realised by Framatome and with experimental measurements. A bead by

  13. [New welding processes and health effects of welding].

    Science.gov (United States)

    La Vecchia, G Marina; Maestrelli, Piero

    2011-01-01

    This paper describes some of the recent developments in the control technology to enhance capability of Pulse Gas Metal Arc Welding. Friction Stir Welding (FSW) processing has been also considered. FSW is a new solid-state joining technique. Heat generated by friction at the rotating tool softens the material being welded. FSW can be considered a green and energy-efficient technique without deleterious fumes, gas, radiation, and noise. Application of new welding processes is limited and studies on health effects in exposed workers are lacking. Acute and chronic health effects of conventional welding have been described. Metal fume fever and cross-shift decline of lung function are the main acute respiratory effects. Skin and eyes may be affected by heat, electricity and UV radiations. Chronic effects on respiratory system include chronic bronchitis, a benign pneumoconiosis (siderosis), asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders.

  14. Laser Welding Test Results with Gas Atmospheres in Welding Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seo-Yun; Yang, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The weld beads of specimens welded under identical conditions in the helium and argon gas were cleaner, more regular, and steadier than those in a vacuum. The penetration depth of the FZ in the vacuum was much deeper than those in the helium and argon gas. To measure the irradiation properties of nuclear fuel in a test reactor, a nuclear fuel test rod instrumented with various sensors must be fabricated with assembly processes. A laser welding system to assemble the nuclear fuel test rod was designed and fabricated to develop various welding technologies of the fuel test rods to joint between a cladding tube and end-caps. It is an air-cooling optical fiber type and its emission modes are a continuous (CW) mode of which the laser generates continuous emission, and pulse (QCW) mode in which the laser internally generates sequences of pulses. We considered the system welding a sample in a chamber that can weld a specimen in a vacuum and inert gas atmosphere, and the chamber was installed on the working plate of the laser welding system. In the chamber, the laser welding process should be conducted to have no defects on the sealing area between a cladding tube and an end-cap.

  15. Developing a career advancement program.

    Science.gov (United States)

    Pinette, Shirley L

    2003-01-01

    Have you ever asked yourself, "What will I be doing five or ten years from now?" "Will I be doing the same thing I'm doing right now?" How would you feel if the answer were "yes"? I often wonder if any of my employees think the same thing. If they do, and the answer is "yes," just how does that make them feel? A day's work for managers can run the gamut--from billing and coding, to patient issues, to staff performance reviews, to CQI, to JCAHO-just to name a few. We're NEVER bored. Can we say the same of our employees, or do they do the same thing day in and day out? If so, it's no wonder that attitudes may become negative and motivation and productivity may decline. What are we as healthcare managers and administrators doing to value and continually train our employees so that staff morale, productivity and patient satisfaction remain high? What are we doing to keep those highly motivated employees motivated and challenged so that they don't get bored and want to move across town to our neighboring hospital or healthcare center? What are we doing to stop our employees from developing the "same job, different day" attitude? A Career Ladder program holds many benefits and opportunities for the motivated employee who seeks and needs additional challenges on the job. It affords them opportunities to learn new skills, demonstrate initiative, accept additional responsibilities and possibly advance into new positions. It also affords them opportunities to grow, to be challenged and to feel like an important and valued member of the radiology team and radiology department. For the manager, a Career Ladder program affords opportunities to retain valuable employees, attract new high-quality employees and maintain a workforce of well-trained highly motivated employees, which in turn will provide high quality products and services to our customers. A Career Ladder program is a "win-win" situation for everyone. For the last twelve months, I have been working with other

  16. New process for weld metal reliability

    International Nuclear Information System (INIS)

    Hebel, A.G.

    1985-01-01

    The industry-wide nature of weld cracking alerts one to the possibility that there is a fundamental law being overlooked. And in overlooking this law, industry is unable to counteract it. That law mandates that restraint during welding causes internal stress; internal stress causes weld metal to crack. Component restraint during welding, according to the welding standard, is the major cause of weld metal failures. When the metal working industry accepts this fact and begins to counter the effects of restraint, the number of weld failures experienced fall dramatically. Bonal Technologies, inc., of Detroit, has developed the first consistently effective non-thermal process to relieve stress caused by restraint during welding. Bonal's patented Mets-Lax sub-resonant stress relief acts as a restraint neutralizer when used during welding. Meta-Lax weld conditioning produces a finer more uniform weld grain structure. A finer, more uniform grain structure is a clear metallurgical indication of improved mechanical weld properties. Other benefits like less internal stress, and less warpage are also achieved

  17. Residual strains and microstructure development in single and sequential double sided friction stir welds in RQT-701 steel

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, S.J. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)], E-mail: simon.barnes-2@manchester.ac.uk; Steuwer, A. [FaME38, ILL ESRF, 6 rue J.Horowitz, 38042 Grenoble, Cedex (France); University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Mahawish, S. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Johnson, R. [TWI Yorkshire, Wallis Way, Catcliffe, Rotherham S60 5TZ (United Kingdom); Withers, P.J. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)

    2008-09-25

    Single and double sided partial penetration friction stir butt welds, in a rolled, quenched and tempered steel (RQT-701), were produced at The Welding Institute (TWI) under controlled process conditions. The residual strain distributions in the longitudinal and transverse directions have been measured using energy dispersive synchrotron X-ray diffraction. The measured strains were indicative of longitudinal tensile residual stresses at levels greater than the 0.2% yield stress of the parent metal in both the single and double pass welds. In both cases, the maximum tensile strain was found in the parent metal at the boundary of the heat affected zone (HAZ). Microstructural analysis of the welds was carried out using optical microscopy and hardness variations were also mapped across the weld-plate cross-section. The maximum hardness was observed in the mixed bainite/martensite structure of the weld nugget on the advancing side of the stir zone. The minimum hardness was observed in the HAZ.

  18. Residual strains and microstructure development in single and sequential double sided friction stir welds in RQT-701 steel

    International Nuclear Information System (INIS)

    Barnes, S.J.; Steuwer, A.; Mahawish, S.; Johnson, R.; Withers, P.J.

    2008-01-01

    Single and double sided partial penetration friction stir butt welds, in a rolled, quenched and tempered steel (RQT-701), were produced at The Welding Institute (TWI) under controlled process conditions. The residual strain distributions in the longitudinal and transverse directions have been measured using energy dispersive synchrotron X-ray diffraction. The measured strains were indicative of longitudinal tensile residual stresses at levels greater than the 0.2% yield stress of the parent metal in both the single and double pass welds. In both cases, the maximum tensile strain was found in the parent metal at the boundary of the heat affected zone (HAZ). Microstructural analysis of the welds was carried out using optical microscopy and hardness variations were also mapped across the weld-plate cross-section. The maximum hardness was observed in the mixed bainite/martensite structure of the weld nugget on the advancing side of the stir zone. The minimum hardness was observed in the HAZ

  19. Development of High Heat Input Welding Offshore Steel as Normalized Condition

    Science.gov (United States)

    Deng, Wei; Qin, Xiaomei

    The heavy plate used for offshore structure is one of the important strategic products. In recent years, there is an increasing demand for heavy shipbuilding steel plate with excellent weldability in high heat input welding. During the thermal cycle, the microstructure of the heat affected zone (HAZ) of plates was damaged, and this markedly reduced toughness of HAZ. So, how to improve the toughness of HAZ has been a key subject in the fields of steel research. Oxide metallurgy is considered as an effective way to improve toughness of HAZ, because it could be used to retard grain growth by fine particles, which are stable at the high temperature.The high strength steel plate, which satisfies the low temperature specification, has been applied to offshore structure. Excellent properties of the plates and welded joints were obtained by oxide metallurgy technology, latest controlled rolling and accelerated cooling technology using Ultra-Fast Cooling (an on-line accelerated cooling system). The 355MPa-grade high strength steel plates with normalizing condition were obtained, and the steels have excellent weldability with heat input energy of 79 287kJ/cm, and the nil ductility transition (NDT) temperature was -70°C, which can satisfy the construction of offshore structure in cold regions.

  20. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  1. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    Optical and X-ray metallography combined with ultrasonic testing by compression waves was used for inspection of stainless steel weld metal produced by three different welding techniques. X-ray diffraction showed that each weld possessed a characteristic fibre textured structure which was shown by optical microscopy to be parallel to columnar grain boundaries. Metallographic evidence suggested that the development of fibre texture is due to the mechanism of competitive growth. From observations made as a result of optical metallographic examination the orientation of the fibre axis could be predicted if the weld geometry and welding procedure were known. Ultrasonic velocity and attenuation measurements as a continuous function of grain orientation, made on cylinders machined from weld samples, showed that attenuation was strongly orientation dependent. It was concluded that the sensitivity of ultrasonic inspection to small defects is unlikely to be as high for austenitic welds as for ferritic even when transmission is improved by modifying the welding procedure to improve the ultrasonic transmission. (U.K.)

  2. Laser welding engineering

    International Nuclear Information System (INIS)

    Bhieh, N. M.; El Eesawi, M. E.; Hashkel, A. E.

    2007-01-01

    Laser welding was in its early life used mainly for unusual applications where no other welding process would be suitable that was twenty five years ago. Today, laser welding is a fully developed part of the metal working industry, routinely producing welds for common items such as cigarette lighters, which springs, motor/transformer lamination, hermetic seals, battery and pacemaker cans and hybrid circuit packages. Yet very few manufacturing engineering have seriously considers employing lasers in their own operations. Why? There are many reasons, but a main one must be not acquainted with the operation and capabilities of a laser system. Other reasons, such as a relatively high initial cost and a concern about using lasers in the manufacturing environment, also are frequently cited, and the complexity of the component and flexibility of the light delivery system. Laser welding could be used in place of many different standard processes, such as resistance (spot or seam), submerged arc, RF induction, high-frequency resistance, ultrasonic and electronic and electron-beam. while each of these techniques has established an independent function in the manufacturing world, the flexible laser welding approach will operate efficiently and economically in many different applications. Its flexibility will even permit the welding system to be used for other machining function, such as drilling, scribing, sealing and serializing. In this article, we will look at how laser welding works and what benefits it can offer to manufacturing engineers. Some industry observers state that there are already 2,000 laser machine tools being used for cutting, welding and drilling and that the number could reach 30,000 over the next 15 years as manufacturing engineers become more aware of the capabilities of lasers [1). While most laser applications are dedicated to one product or process that involves high-volume, long-run manufacturing, the flexibility of a laser to supply energy to hard

  3. Senior Program Specialist | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... offices on issues of program and project development and management;; Plays ... Ensures that a regional perspective is brought to bear on program planning at the ... between Canadian and developing country researchers;; When traveling, ...

  4. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    Science.gov (United States)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  5. Investigate The Effect Of Welding Parameters On Mechanical Properties During The Welding Of Al-6061 Alloy

    Directory of Open Access Journals (Sweden)

    Rajendra Prasad

    2017-10-01

    Full Text Available Friction welding is a solid state welding technique which is being used in recent times to weld similar as well as dissimilar metals for getting defect free weld. Many combinations like low carbon to stainless steel austenitic to ferrite stainless steel aluminium to copper and titanium to aluminium or steel have been tried out by various solid state welding processes with quite good results. In the present work the 3 level full factorial design has been employed to investigate the effect of welding parameters on tensile strength toughness and heat generation during the welding of Al-6061 alloy. Mathematical relationships between friction welding parameters and mechanical properties like heat generation tensile strength and toughness have also been developed. An attempt has also been made to examine the fracture surfaces of test specimens using SEM. It has been found that welding speed is the most significant parameter thats affect the heat generation tensile strength and toughness. it has been found that tensile strength and toughness during welding increases with increased in welding speed while tensile strength and toughness initially increased as the welding time increases after that it decreased with increase in welding time. The difference in weight of alloying elements can be clearly seen by analyzing spectrum of elements.

  6. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    Science.gov (United States)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  7. High quality, high efficiency welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Aoki, Shigeyuki; Nagura, Yasumi

    1996-01-01

    For nuclear power plants, it is required to ensure the safety under the high reliability and to attain the high rate of operation. In the manufacture and installation of the machinery and equipment, the welding techniques which become the basis exert large influence to them. For the purpose of improving joint performance and excluding human errors, welding heat input and the number of passes have been reduced, the automation of welding has been advanced, and at present, narrow gap arc welding and high energy density welding such as electron beam welding and laser welding have been put to practical use. Also in the welding of pipings, automatic gas metal arc welding is employed. As for the welding of main machinery and equipment, there are the welding of the joints that constitute pressure boundaries, the build-up welding on the internal surfaces of pressure vessels for separating primary water from them, and the sealing welding of heating tubes and tube plates in steam generators. These weldings are explained. The welding of pipings and the state of development and application of new welding methods are reported. (K.I.)

  8. Comparison of microstructural and mechanical properties of joints developed by high temperature brazing, GTAW and laser welding methods on AISI 316 L stainless steel for specific applications in nuclear components

    International Nuclear Information System (INIS)

    Venkatesu, Sadu; Saxena, Rajesh; Ravi Kumar, R.; Chaurasia, P.K; Murugan, S.; Venugopal, S.

    2016-01-01

    Fabrication of instrumented irradiation capsule for evaluating the irradiation performance of fuel and structural materials in a nuclear reactor requires development of thin wall joints capable of withstanding high temperature and/or internal pressure. Thin wall joints for high temperature (∼550℃) applications can be made by laser beam welding (LBW), gas tungsten Arc welding (GTAW) and High Temperature Brazing (HLT) method

  9. A System for Complex Robotic Welding

    DEFF Research Database (Denmark)

    Madsen, Ole; Sørensen, Carsten Bro; Olsen, Birger

    2002-01-01

    This paper presents the architecture of a system for robotic welding of complex tasks. The system integrates off-line programming, control of redundant robots, collision-free motion planning and sensor-based control. An implementation for pipe structure welding made at Odense Steel Shipyard Ltd......., Denmark, demonstrates the system can be used for automatic welding of complex products in one-of-a-kind production....

  10. Electron beam welding of iridium heat source capsules

    International Nuclear Information System (INIS)

    Mustaleski, T.M.; Yearwood, J.C.; Burgan, C.E.; Green, L.A.

    1991-01-01

    The development of the welding procedures for the production of DOP-26 iridium alloy cups for heat source encapsulation is described. All the final assembly welds were made using the electron beam welding process. The welding of the 0.13-mm weld shield required the use of computer controlled X-Y table and a run-off tab. Welding of the frit vent to the cup required that a laser weld be made to hold the frit assembly edges together for the final electron beam weld. Great care is required in tooling design and beam placement to achieve acceptable results. Unsuccessful attempts to use laser beam welding for heat shield butt weld are discussed

  11. Performance Improvement of Friction Stir Welds by Better Surface Finish

    Science.gov (United States)

    Russell, Sam; Nettles, Mindy

    2015-01-01

    The as-welded friction stir weld has a cross section that may act as a stress concentrator. The geometry associated with the stress concentration may reduce the weld strength and it makes the weld challenging to inspect with ultrasound. In some cases, the geometry leads to false positive nondestructive evaluation (NDE) indications and, in many cases, it requires manual blending to facilitate the inspection. This study will measure the stress concentration effect and develop an improved phased array ultrasound testing (PAUT) technique for friction stir welding. Post-welding, the friction stir weld (FSW) tool would be fitted with an end mill that would machine the weld smooth, trimmed shaved. This would eliminate the need for manual weld preparation for ultrasonic inspections. Manual surface preparation is a hand operation that varies widely depending on the person preparing the welds. Shaving is a process that can be automated and tightly controlled.

  12. Welding template

    International Nuclear Information System (INIS)

    Ben Venue, R.J. of.

    1976-01-01

    A welding template is described which is used to weld strip material into a cellular grid structure for the accommodation of fuel elements in a nuclear reactor. On a base plate the template carries a multitude of cylindrical pins whose upper half is narrower than the bottom half and only one of which is attached to the base plate. The others are arrested in a hexagonal array by oblong webs clamped together by chuck jaws which can be secured by means of screws. The parts are ground very accurately. The template according to the invention is very easy to make. (UWI) [de

  13. The study of development of welded compact plate heat exchanger for high temperature and pressure

    International Nuclear Information System (INIS)

    Park, Jae Hong; Lim, Hyug; Kim, Jung Kyu; Cho, Sung Youl; Kwon, Oh Boong

    2009-01-01

    In view of space saving, the design of more compact heat exchangers is relatively important. Also, to meet the demand for saving energy and resources today, manufacturers are trying to enhance efficiency and reduce the size and weight of heat exchangers. Over the past decade, there has been tremendous advancement in the manufacturing technology of high efficiency heat exchangers. This has allowed the use of smaller and high performance heat exchangers. Consequently, the use of smaller and high performance heat exchanger becomes popular in the design of heat exchangers. Welded compact plate heat exchanger is used in high temperature and pressure. In the design of heat exchanger, it is necessary to understand the heat transfer characteristics, so performance data are provided to help design of this type heat exchanger.

  14. Research and Development of Ultra-High Strength X100 Welded Pipe

    Science.gov (United States)

    Chuanguo, Zhang; Lei, Zheng; Ping, Hu; Bei, Zhang; Kougen, Wu; Weifeng, Huang

    Ultra-high strength X100 welded pipe can be used in the construction of long distance oil and gas pipeline to improve transmission capacity and reduce operation cost. By using the way of thermo-simulation and pilot rolling, the CCT (Continuous Cooling Transformation) diagram and the relationship between ACC (Accelerated Cooling) parameters, microstructure and mechanical properties were studied for the designed X100 pipeline steel with low carbon, high manganese and niobium micro-alloyed composition in lab. The analysis of CCT diagram indicates that the suitable hardness and microstructure can be obtained in the cooling rate of 20 80°C/sec. The pilot rolling results show that the ACC cooling start temperature below Ar3 phase transformation point is beneficial to increase uniform elongation, and the cooling stop temperature of 150 350°C is helpful to obtain high strength and toughness combination. Based on the research conclusions, the X100 plate and UOE pipe with dimension in O.D.1219×W.T.14.8mm, O.D.1219×W.T.17.8mm, designed for the natural gas transmission pipeline, were trial produced. The manufactured pipe body impact absorbed energy at -10°C is over 250J. The DWTT shear area ratio at 0°C is over 85%. The transverse strength meets the X100 grade requirement, and uniform elongation is over 4%. The X100 plate and UOE pipe with dimension in O.D.711×W.T.20.0mm, O.D.711×W.T.12.5mm, designed for an offshore engineering, were also trial produced. The average impact absorbed energy of pipe body at -30°C is over 200J. The average impact absorbed energy of HAZ (Heat-affected zone) and WM (Welded Seam) at -30°C is over 100J. And the good pipe shapes were obtained

  15. Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding

    Science.gov (United States)

    Luo, Masiyang; Shin, Yung C.

    2015-01-01

    In keyhole fiber laser welding processes, the weld pool behavior is essential to determining welding quality. To better observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. This work presents a weld pool edge detection technique based on an off axial green illumination laser and a coaxial image capturing system that consists of a CMOS camera and optic filters. According to the difference of image quality, a complete developed edge detection algorithm is proposed based on the local maximum gradient of greyness searching approach and linear interpolation. The extracted weld pool geometry and the width are validated by the actual welding width measurement and predictions by a numerical multi-phase model.

  16. Weld pool boundary and weld bead shape reconstruction based on passive vision in P-GMAW

    Institute of Scientific and Technical Information of China (English)

    Yan Zhihong; Zhang Guangjun; Gao Hongming; Wu Lin

    2006-01-01

    A passive visual sensing system is established in this research, and clear weld pool images in pulsed gas metal arc welding ( P-GMA W) can be captured with this system. The three-dimensional weld pool geometry, especially the weld height,is not only a crucial factor in determining workpiece mechanical properties, but also an important parameter for reflecting the penetration. A new three-dimensional (3D) model is established to describe the weld pool geometry in P-GMAW. Then, a series of algorithms are developed to extract the model geometrical parameters from the weld pool images. Furthermore, the method to reconstruct the 3D shape of weld pool boundary and weld bead from the two-dimensional images is investigated.

  17. Inspection of nuclear reactor welding by acoustic emission

    International Nuclear Information System (INIS)

    Prine, D.W.

    1977-01-01

    The objective of the work described is to evaluate in-process acoustic emission weld monitoring with the goal of upgrading the inspection techniques for assuring better weld quality in nuclear reactor piping and pressure vessels. To accomplish this overall objective, the following specific goals have been set within a three year program: (1) prove the feasibility of in-process AE under shop conditions and validate the AE findings by currently acceptable NDE techniques; (2) develop and build a prototype monitor for use in Nuclear Fabrication shops; and (3) provide data for NRC/ASME acceptance of the inspection practice

  18. Elementary TIG Welding Skills.

    Science.gov (United States)

    Pierson, John E., III

    The text was prepared to help deaf students develop the skills needed by an employed welder. It uses simplified language and illustrations to present concepts which should be reinforced by practical experience with welding skills. Each of the 12 lessons contains: (1) an information section with many illustrations which presents a concept or…

  19. Multifrequency eddy-current inspection of seam weld in steel sheath

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.H.; Dodd, C.V.; Chitwood, L.D.

    1985-04-01

    Multifrequency eddy-current techniques were used to perform a continuous on-line inspection of the seam weld in the steel jacket for a superconducting cable. The inspection was required to detect both surface and internal weld flaws in the presence of a large, highly conductive central conductor. Raw eddy-current data were recorded on magnetic tape, and test properties such as discontinuity size and weld penetration were determined by mathematically fitting these data to coefficients developed with representative standards. A sophisticated computer-controlled scanning technique was applied, and a unique scanning device was developed to provide full coverage of the weld and heat-affected zone. The techniques used to develop this multifrequency eddy-current examination are described in this report along with the test equipment, test procedures, and computer programs.

  20. Multifrequency eddy-current inspection of seam weld in steel sheath

    International Nuclear Information System (INIS)

    Smith, J.H.; Dodd, C.V.; Chitwood, L.D.

    1985-04-01

    Multifrequency eddy-current techniques were used to perform a continuous on-line inspection of the seam weld in the steel jacket for a superconducting cable. The inspection was required to detect both surface and internal weld flaws in the presence of a large, highly conductive central conductor. Raw eddy-current data were recorded on magnetic tape, and test properties such as discontinuity size and weld penetration were determined by mathematically fitting these data to coefficients developed with representative standards. A sophisticated computer-controlled scanning technique was applied, and a unique scanning device was developed to provide full coverage of the weld and heat-affected zone. The techniques used to develop this multifrequency eddy-current examination are described in this report along with the test equipment, test procedures, and computer programs

  1. R/D and implement of temper bead welding as newly developed maintenance technique in nuclear power plant

    International Nuclear Information System (INIS)

    Hirano, Shinro; Sera, Takehiko; Chigusa, Naoki; Okimura, Koji; Nishimoto, Kazutoshi

    2011-01-01

    Japanese government has recently addressed a policy to increase capacity factor of existing nuclear PPs to achieve the goal to decrease the emission of CO 2 . Numerous preventive measures have taken in nuclear power plants to minimize the risk of unexpected long shutdown. Newly developed mitigation measures or repair methods need to be qualified to satisfy regulatory standards, before it is implemented to nuclear power plants. The qualification process needs to comply regulatory standards though it may consume time to go through each of the required steps. This paper describes such cases namely ambient temper-bead welding and clarifies the issues that need to be resolved regarding qualification process. The qualification process for new methods that has not been prescribed in regulatory standards temporarily completed by go through confirm testing by JAPEIC, RNP and issuance of no action letter in rush. Currently, the qualification process can only be applied on limited area so generalized qualification process needs to be established. (author)

  2. Experimental analysis of cut welding in aluminium

    DEFF Research Database (Denmark)

    Dorph, Pernille; De Chiffre, Leonardo; Bay, Niels

    1993-01-01

    Cut welding is a newly developed cold pressure welding process. In the present work, an experimental investigation was carried out analyzing the mechanisms involved in cut welding of a block to a strip. Experiments were carried out in technically pure aluminium. The investigation has involved...... tensile testing and metallographic investigations of the welds. The results show that this variant of cut welding is a very reproducible process giving a weld strength equal to 30-40% the strength of the parent material. The experiments have shown that the reason for this relatively low strength...... is an uneven pressure distribution along the weld due to a wave formed during sliding. Attempts to alter the material flow during sliding are presented....

  3. Numerical Simulation of Duplex Steel Multipass Welding

    Directory of Open Access Journals (Sweden)

    Giętka T.

    2016-12-01

    Full Text Available Analyses based on FEM calculations have significantly changed the possibilities of determining welding strains and stresses at early stages of product design and welding technology development. Such an approach to design enables obtaining significant savings in production preparation and post-weld deformation corrections and is also important for utility properties of welded joints obtained. As a result, it is possible to make changes to a simulated process before introducing them into real production as well as to test various variants of a given solution. Numerical simulations require the combination of problems of thermal, mechanical and metallurgical analysis. The study presented involved the SYSWELD software-based analysis of GMA welded multipass butt joints made of duplex steel sheets. The analysis of the distribution of stresses and displacements were carried out for typical welding procedure as during real welding tests.

  4. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.

    Science.gov (United States)

    Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A

    2016-04-01

    levels during stud welding simulations, but further development is needed before field deployment is possible. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  5. Development of remote welding technology for nuclear fuel end capping (A study on the weldability of Zircaloy-4)

    Energy Technology Data Exchange (ETDEWEB)

    Kho, Jin Hyun; Sung, Ho Hyun; Hyun, Yong Kyu; Suh, Hee Kang [Korea University of Technology and Education, Cheonan (Korea)

    1998-03-01

    The integrity of nuclear fuel end cap welds is essential to the nuclear fuel performance and safety as well as the usability of power plant. The first aim of this project is to obtain experimental data on the nuclear fuel cladding materials of Zircaloy-4 with welding processes such as plasma arc, gas tungsten arc and laser beam welding. the data obtained in this study will be applicable to the nuclear fuel design, fabrication and nuclear fuel quality control. In addition, the welding processes applicable to the Zircaloy-4 welding were compared and contrasted. The weldability of Zircaloy-4 was evaluated from the metallurgical and mechanical standpoints. 88 refs., 57 figs., 16 tabs. (Author)

  6. Weld bonding of stainless steel

    DEFF Research Database (Denmark)

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.

    2004-01-01

    . The overall assessment of the weld bonding process is made using several commercial adhesives with varying working times under different surface conditions. The quality of the resulting joints is evaluated by means of macroetching observations, tension-shear tests and peel tests. The theoretical investigation......This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot-welding...... of the process consists of numerical predictions based on the commercial finite element program SORPAS with the purpose of establishing the most favourable parameters that allow spot-welding through the adhesives....

  7. Study on hybrid heat source overlap welding of magnesium alloy AZ31B

    International Nuclear Information System (INIS)

    Liang, G.L.; Zhou, G.; Yuan, S.Q.

    2009-01-01

    The magnesium alloy AZ31B was overlap welded by hybrid welding (laser-tungsten inert gas arc). According to the hybrid welding interaction principle, a new heat source model, hybrid welding heat source model, was developed with finite element analysis. At the same time, using a high-temperature metallographical microscope, the macro-appearance and microstructure characteristics of the joint after hybrid overlap welding were studied. The results indicate that the hybrid welding was superior to the single tungsten inert gas welding or laser welding on the aspects of improving the utilized efficiency of the arc and enhancing the absorptivity of materials to laser energy. Due to the energy characteristics of hybrid overlap welding the macro-appearance of the joint was cup-shaped, the top weld showed the hybrid welding microstructure, while, the lower weld showed the typical laser welding microstructure

  8. Study on hybrid heat source overlap welding of magnesium alloy AZ31B

    Energy Technology Data Exchange (ETDEWEB)

    Liang, G.L. [Department of Electromechanical Engineering, Tangshan College, Tangshan 063000 (China)], E-mail: guoliliang@sohu.com; Zhou, G. [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yuan, S.Q. [Department of Electromechanical Engineering, Tangshan College, Tangshan 063000 (China)

    2009-01-15

    The magnesium alloy AZ31B was overlap welded by hybrid welding (laser-tungsten inert gas arc). According to the hybrid welding interaction principle, a new heat source model, hybrid welding heat source model, was developed with finite element analysis. At the same time, using a high-temperature metallographical microscope, the macro-appearance and microstructure characteristics of the joint after hybrid overlap welding were studied. The results indicate that the hybrid welding was superior to the single tungsten inert gas welding or laser welding on the aspects of improving the utilized efficiency of the arc and enhancing the absorptivity of materials to laser energy. Due to the energy characteristics of hybrid overlap welding the macro-appearance of the joint was cup-shaped, the top weld showed the hybrid welding microstructure, while, the lower weld showed the typical laser welding microstructure.

  9. Design of Friction Stir Spot Welding Tools by Using a Novel Thermal-Mechanical Approach.

    Science.gov (United States)

    Su, Zheng-Ming; Qiu, Qi-Hong; Lin, Pai-Chen

    2016-08-09

    A simple thermal-mechanical model for friction stir spot welding (FSSW) was developed to obtain similar weld performance for different weld tools. Use of the thermal-mechanical model and a combined approach enabled the design of weld tools for various sizes but similar qualities. Three weld tools for weld radii of 4, 5, and 6 mm were made to join 6061-T6 aluminum sheets. Performance evaluations of the three weld tools compared fracture behavior, microstructure, micro-hardness distribution, and welding temperature of welds in lap-shear specimens. For welds made by the three weld tools under identical processing conditions, failure loads were approximately proportional to tool size. Failure modes, microstructures, and micro-hardness distributions were similar. Welding temperatures correlated with frictional heat generation rate densities. Because the three weld tools sufficiently met all design objectives, the proposed approach is considered a simple and feasible guideline for preliminary tool design.

  10. Braze welding of cobalt with a silver–copper filler

    Directory of Open Access Journals (Sweden)

    Everett M. Criss

    2015-01-01

    Full Text Available A new method of joining cobalt by braze-welding it with a silver–copper filler was developed in order to better understand the residual stresses in beryllium–aluminum/silicon weldments which are problematic to investigate because of the high toxicity of Be. The base and filler metals of this new welding system were selected to replicate the physical properties, crystal structures, and chemical behavior of the Be–AlSi welds. Welding parameters of this surrogate Co–AgCu system were determined by experimentation combining 4-point bending tests and microscopy. Final welds are 5 pass manual TIG (tungsten inert gas, with He top gas and Ar back gas. Control of the welding process produces welds with full penetration melting of the cobalt base. Microscopy indicates that cracking is minimal, and not through thickness, whereas 4-point bending shows failure is not by base-filler delamination. These welds improve upon the original Be–AlSi welds, which do not possess full penetration, and have considerable porosity. We propose that utilization of our welding methods will increase the strength of the Be–AlSi weldments. The specialized welding techniques developed for this study may be applicable not only for the parent Be–AlSi welds, but to braze welds and welds utilizing brittle materials in general. This concept of surrogacy may prove useful in the study of many different types of exotic welds.

  11. Thermomechanical Modelling of Resistance Welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi

    2007-01-01

    The present paper describes a generic programme for analysis, optimization and development of resistance spot and projection welding. The programme includes an electrical model determining electric current and voltage distribution as well as heat generation, a thermal model calculating heat...

  12. Dependence of the mechanical properties of joints welded according to the parameters of the metal active gas (MAG welding regime

    Directory of Open Access Journals (Sweden)

    D. Dobrotă

    2015-10-01

    Full Text Available The main objective followed in the realization of welded structures is to obtain superior mechanical characteristics for these structures. The research aimed at setting ranges of values for the welding voltage (Uw, respectively for the welding current (Iw so as to obtain superior mechanical features for welded constructions. The research was carried out using E 36-4 steel as base material and SG2 wire as filler material, whereas the applied welding process was MAG. The optimization was done with the help of a number of 31 test bars considering various welding procedures for each test bar, and the experimental data were processed using the STATISTCA program.

  13. Enabling high speed friction stir welding of aluminum tailor welded blanks

    Science.gov (United States)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  14. FSW of Aluminum Tailor Welded Blanks across Machine Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Upadhyay, Piyush; Carlson, Blair; Szymanski, Robert; Luzanski, Tom; Marshall, Dustin

    2015-02-16

    Development and characterization of friction stir welded aluminum tailor welded blanks was successfully carried out on three separate machine platforms. Each was a commercially available, gantry style, multi-axis machine designed specifically for friction stir welding. Weld parameters were developed to support high volume production of dissimilar thickness aluminum tailor welded blanks at speeds of 3 m/min and greater. Parameters originally developed on an ultra-high stiffness servo driven machine where first transferred to a high stiffness servo-hydraulic friction stir welding machine, and subsequently transferred to a purpose built machine designed to accommodate thin sheet aluminum welding. The inherent beam stiffness, bearing compliance, and control system for each machine were distinctly unique, which posed specific challenges in transferring welding parameters across machine platforms. This work documents the challenges imposed by successfully transferring weld parameters from machine to machine, produced from different manufacturers and with unique control systems and interfaces.

  15. Program Leader | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    Leads in the identification of the overall development research ... Ensures that a regional perspective is brought to bear on program planning at the PI and ... The incumbent is the manager of the Program Initiative program and team and as such: ... projects between Canadian and developing country researchers; and; When ...

  16. Numerical methods in simulation of resistance welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, Paulo A.F.; Zhang, Wenqi

    2015-01-01

    Finite element simulation of resistance welding requires coupling betweenmechanical, thermal and electrical models. This paper presents the numerical models and theircouplings that are utilized in the computer program SORPAS. A mechanical model based onthe irreducible flow formulation is utilized...... a resistance welding point of view, the most essential coupling between the above mentioned models is the heat generation by electrical current due to Joule heating. The interaction between multiple objects is anothercritical feature of the numerical simulation of resistance welding because it influences...... thecontact area and the distribution of contact pressure. The numerical simulation of resistancewelding is illustrated by a spot welding example that includes subsequent tensile shear testing...

  17. Plasticity Theory of Fillet Welds

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2005-01-01

    a safe and statically admissible stress distribution is established. The plasticity solutions are compared with tests carried out at the Engineering Academy of Denmark, Lyngby, in the early nineties, and old fillet weld tests. The new failure conditions are in very good agreement with the yield load......This paper deals with simple methods for calculation of fillet welds based on the theory of plasticity. In developing the solutions the lower-bound theorem is used. The welding material and parts of the base material are subdivided into triangular regions with homogeneous stress fields; thereby...... tests, but not so good agreement with the old failure load tests....

  18. Programs and Research Advisor | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Support risk management of regional programming and partnerships by: ... analysing, on a regular basis, key program development and performance indicators; ... Represent the IDRC and Regional Director at key events in order to gather ...

  19. Improving productivity and quality in plastic and thin metallic plates manufacturing by using ultrasonic welding processes

    OpenAIRE

    Dehelean,D.; Oanca,O.

    2009-01-01

    The paper presents an overview of the research done at the Romanian National R&D Institute for Welding and Material Testing ISIM Timisoara in the field of ultrasonic process development. It starts with a general presentation of the value added by the welding sector in Europe. There are presented figures representing the size of the welding sector in Romania. The need of development of new high efficiency welding processes is mentioned, ultrasonic welding being one of the special welding proce...

  20. WELDABILITY, WELDING METALLURGY, WELDING CHEMISTRY

    OpenAIRE

    Sarjito Jokosisworo

    2012-01-01

    Sambungan las merupakan bagian penting dari stuktur/bangunan yang dilas, dan kunci dari logam induk yang baik adalah kemampuan las (weld ability). Kemampuan las yang baik dan kemudahan dalam fabrikasi dari suatu logam merupakan pertimbangan dalam memilih suatu logam untuk konstruksi.

  1. Development of nitronic 50 fusion welding techniques for 4 K service

    International Nuclear Information System (INIS)

    Dalder, E.N.C.; Juhas, M.C.

    1981-01-01

    The Mirror Fusion Test Facility (MFTF-B) is a large magnetic fusion energy experiment in the tandem mirror configuration. The requirement that each pair of Yin-Yang magnets, one pair at each end of the experiment, not undergo excessive lateral motion during seismic events was found to require excessively thick (> 12.7 mm) walled tubing in the support-struts, which accelerated the flow of heat inward to the 4 K magnet case from the nearby 300 K wall of the rector vessel, when any of the Cr-Ni austenite stainless steels, such as Type 304 with a 300 K yield-strength (sigma y) of 307 mpa (min.) was considered. Since the cold end of the lateral restraining strut was to be at or near 4 K, the additional constraints of good austenite stability and resistance to brittle fracture at 4 K existed. After consideration of these constraints against available information on Cr-Ni and Cr-Mn-Ni-N 2 austenitic stainless steels, grade XM-19 (Fe-22 Cr-12 Ni-5 Mn-.04 C-.02 N 2 was chosen. The mechanical properties of these welds were studied

  2. Development of welding technology for improving the metallurgical and mechanical properties of 21st century nickel based superalloy 686

    Energy Technology Data Exchange (ETDEWEB)

    Arulmurugan, B. [School of Mechanical Engineering, VIT University, Vellore 632014 (India); KPR Institute of Engineering and Technology, Coimbatore (India); Manikandan, M., E-mail: mano.manikandan@gmail.com [School of Mechanical Engineering, VIT University, Vellore 632014 (India)

    2017-04-13

    Alloy 686 is a highly corrosion resistant 21st-Century Nickel based superalloy derived from Ni-Cr-Mo ternary system. The alloying elements chromium (Cr) and molybdenum (Mo) are added to improve the resistance to corrosion in the broad range of service environment. The presence of a higher percentage of alloying elements Cr and Mo lead to microsegregation and end up with hot cracking in the fusion zone of Nickel-based superalloys. However, there is scanty of information regarding the welding of alloy 686 with respect to the microsegregation of alloying elements. The present study investigates the possibility of bringing down the microsegregation to cut down the formation of secondary phases in the fusion zone. The weld joints were fabricated by Gas Tungsten Arc Welding (GTAW) and Pulsed current gas tungsten arc welding (PCGTAW) with ERNiCrMo-10 filler and without filler wire (autogenous) mode. The microstructural properties of the weld joints were studied with optical and Scanning Electron Microscope (SEM). The joints fabricated by pulsed current (PC) technique shows refined microstructure, narrower weld bead and practically no heat affected zone (HAZ). Scanning Electron Microscope demonstrates the presence of secondary phases in the interdendritic regions of GTAW case. Energy Dispersive X-ray Spectroscopy (EDS) analysis was carried out to evaluate the microsegregation of alloying element. The results show that the segregation of Mo noticed in the interdendritic zone of GTAW both autogenous and filler wire. Tensile and Impact tests were done to evaluate the strength, ductility, and toughness of the weld joints. The results show that the PCGTA helps to obtain improved strength, ductility and toughness of the weld joints compared to their respective GTAW. Bend test did not lead to cracking irrespective of the type of welding adopted in the present study.

  3. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    Science.gov (United States)

    Vasudevan, M.

    2017-03-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  4. EDF field experience of 182 J-Groove welds on CRDMs and SG channel head nozzles

    International Nuclear Information System (INIS)

    Duisabeau, L.; Deforge, D.; Thebault, Y.; Stindel, M.; Lemaire, E.

    2011-01-01

    The Reactor Pressure Vessel Head (RPVH) replacement program, which began after a leak occurrence in a vessel head nozzle in Alloy 600 at Bugey Unit 3, was a unique opportunity to perform an extended inspection program on the welds from the decommissioned RPV heads. This paper presents the actual results of this program. More than 800 CRDM J groove welds from 18 decommissioned RPV heads were inspected by automatic dye penetrant testing. Detected indications were characterized by viewing tools specifically developed and in some specific cases, by destructive investigations in hot lab. Some welding defects were observed but no indication corresponding to stress corrosion cracking (SCC) was detected at the welds wet surface nor propagation from welding manufacturing defects, including the weld with the longest operating time on EDF power plants (170 000 h). Very few cases of SCC propagation from Alloy 600 to Alloy 182 are reported. One case of initiation at the weld root pass was observed. From design, the weld root pass (mechanically loaded) of CRDM (Control Rod Drive Mechanism) nozzles is not in contact with primary water and the cracking observed occurred after a through wall cracking of the Alloy 600 tube, enabling primary water to wet the root pass. Concerning the steam generator (SG) drain nozzle, the alloy 182 weld root is directly in contact with primary water. In June 2008, a primary water leakage was suspected on a steam generator bowl drain while conducting a bare metal visual examination during the plant's outage. Dye penetrant testing of the weld and metallographic replica were implemented during the 2008 and 2009 refuelling outages to confirm a leakage by SCC. Manufacturing reports analyses revealed that the drain nozzle weld was repaired and had not been stress relieved during manufacturing. EDF has decided to plug this nozzle and to enforce the maintenance policy for similar components with the same manufacturing specificity. Regarding national and

  5. Repair welding of cracked steam turbine blades

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.

    1999-01-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER316L austenitic stainless steel filler wire and ER410 martensitic stainless steel filler wire. The repair welding procedure with austenitic filler wire was developed to avoid preheating of the blade as also hydrogen induced cold cracking, and involved evaluation of three different austenitic filler wires, viz. ER309L, ER316L and ERNiCr-3. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microstructural examination. After various trials using different procedures, the procedure of local PWHT using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld, was found to give the most satisfactory results. A similar procedure was used for preheating while using ER410 filler metal. Mechanical testing of weldments before and after PWHT involved tensile tests at room temperature, face and root bend tests, and microhardness measurements across the fusion line and heat affected zone. During procedure qualification, mock-ups and actual repair welding, dye penetrant testing was used at different stages and where ever possible radiography was carried out. These procedures were developed for repair welding of cracked blades in the low-pressure (LP) steam turbines of Indian nuclear power plants. The procedure with ER316 L filler wire has so far been applied for repair welding of 2 cracked blades (made of AISI 410 SS) of LP steam turbines, while the procedure

  6. Improving fatigue performance of rail thermite welds

    Science.gov (United States)

    Jezzini-Aouad, M.; Flahaut, P.; Hariri, S.; Winiar, L.

    2010-06-01

    Rail transport development offers economic and ecological interests. Nevertheless, it requires heavy investments in rolling material and infrastructure. To be competitive, this transportation means must rely on safe and reliable infrastructure, which requires optimization of all implemented techniques and structure. Rail thermite (or aluminothermic) welding is widely used within the railway industry for in-track welding during re-rail and defect replacement. The process provides numerous advantages against other welding technology commonly used. Obviously, future demands on train traffic are heavier axle loads, higher train speeds and increased traffic density. Thus, a new enhanced weld should be developed to prevent accidents due to fracture of welds and to lower maintenance costs. In order to improve such assembly process, a detailed metallurgical study coupled to a thermomechanical modelling of the phenomena involved in the thermite welding process is carried out. Obtained data enables us to develop a new improved thermite weld (type A). This joint is made by modifying the routinely specified procedure (type B) used in a railway rail by a standard gap alumino-thermic weld. Joints of type A and B are tested and compared. Based on experimental temperature measurements, a finite element analysis is used to calculate the thermal residual stresses induced. In the vicinity of the weld, the residual stress patterns depend on the thermal conditions during welding as it also shown by litterature [1, 2]. In parallel, X-Ray diffraction has been used to map the residual stress field that is generated in welded rail of types A and B. Their effect on fatigue crack growth in rail welds is studied. An experimental study based on fatigue tests of rails welded by conventional and improved processes adjudicates on the new advances and results will be shown.

  7. Welding process modelling and control

    Science.gov (United States)

    Romine, Peter L.; Adenwala, Jinen A.

    1993-01-01

    The research and analysis performed, and software developed, and hardware/software recommendations made during 1992 in development of the PC-based data acquisition system for support of Welding Process Modeling and Control is reported. A need was identified by the Metals Processing Branch of NASA Marshall Space Flight Center, for a mobile data aquisition and analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC-based system was chosen. The Welding Measurement System (WMS) is a dedicated instrument, strictly for the use of data aquisition and analysis. Although the WMS supports many of the functions associated with the process control, it is not the intention for this system to be used for welding process control.

  8. Process Simulation of Resistance Weld Bonding and Automotive Light-weight Materials

    DEFF Research Database (Denmark)

    Zhang, Wenqi; Chergui, Azeddine; Nielsen, Chris Valentin

    of mechanical, electrical, thermal and metallurgical processes, which are essential for simulation of resistance welding process to predict the welding results and evaluate the weldability of materials. These functions have been further extended with new functions for optimization of welding process parameters...... and predicting welding process window, for weld planning with optimal welding parameter settings, and for modeling microstructures and hardness distribution after welding. Latest developments have been made on simulation of resistance welding with nonconductive materials for applications in weld bonding......This paper presents the latest developments in numerical simulation of resistance welding especially with the new functions for simulation of microstructures, weld bonding and spot welding of new light-weight materials. The fundamental functions in SORPAS® are built on coupled modeling...

  9. Mechanical Property Analysis in the Retracted Pin-Tool (RPT) Region of Friction Stir Welded (FSW) Aluminum Lithium 2195

    Science.gov (United States)

    Ding, R. Jeffrey; Oelgoetz, Peter A.

    1999-01-01

    The "Auto-Adjustable Pin Tool for Friction Stir Welding", was developed at The Marshall Space Flight Center to address process deficiencies unique to the FSW process. The auto-adjustable pin tool, also called the retractable pin-tool (R.PT) automatically withdraws the welding probe of the pin-tool into the pin-tool's shoulder. The primary function of the auto-adjustable pin-tool is to allow for keyhole closeout, necessary for circumferential welding and localized weld repair, and, automated pin-length adjustment for the welding of tapered material thickness. An overview of the RPT hardware is presented. The paper follows with studies conducted using the RPT. The RPT was used to simulate two capabilities; welding tapered material thickness and closing out the keyhole in a circumferential weld. The retracted pin-tool regions in aluminum- lithium 2195 friction stir weldments were studied through mechanical property testing and metallurgical sectioning. Correlation's can be =de between retractable pin-tool programmed parameters, process parameters, microstructure, and resulting weld quality.

  10. WELDING PROCESS

    Science.gov (United States)

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  11. Mathematical Modelling of a Friction Stir Welding Process to Predict the Joint Strength of Two Dissimilar Aluminium Alloys Using Experimental Data and Genetic Programming

    Directory of Open Access Journals (Sweden)

    Mohammed Yunus

    2018-01-01

    Full Text Available Friction stir welding (FSW is the most popular and efficient method of solid-state joining for similar as well as dissimilar metals and alloys. It is mostly used in applications for aerospace, rail, automotive, and marine industries. Many researchers are currently working with different perspectives on this FSW process for various combinations of materials. The general input process parameters are the thickness of the plate, axial load, rotational speed, welding speed, and tilt angle. The output parameters are joint hardness, % of elongation, and impact and yield strengths. Genetic programming (GP is a relatively new method of evolutionary computing with the principal advantage of this approach being to evaluate efficacious predictive mathematical models or equations without any prior assumption regarding the possible form of the functional relationship. This paper both defines and illustrates how GP can be applied to the FSW process to derive precise relationships between the output and input parameters in order to obtain a generalized prediction model. A GP model will assist engineers in quantifying the performance of FSW, and the results from this study can then be utilized to estimate future requirements based on the historical data to provide a robust solution. The obtained results from the GP models showed good agreement with experimental and target data at an average prediction error of 0.72%.

  12. A Comparative Study of Welded ODS Cladding materials for AFCI/GNEP Applications

    Energy Technology Data Exchange (ETDEWEB)

    Indrajit Charit; Megan Frary; Darryl Butt; K.L. Murty; Larry Zirker; James Cole; Mitchell Meyer; Rajiv S. Mishra; Mark Woltz

    2011-03-31

    This research project involved working on the pressure resistance welding of oxide dispersion strengthened (ODS) alloys which will have a large role to play in advanced nuclear reactors. The project also demonstrated the research collaboration between four universities and one nation laboratory (Idaho National Laboratory) with participation from an industry for developing for ODS alloys. These alloys contain a high number density of very fine oxide particles that can impart high temperature strength and radiation damage resistance suitable for in-core applications in advanced reactors. The conventional fusion welding techniques tend to produce porosity-laden microstructure in the weld region and lead to the agglomeration and non-uniform distribution of the neededoxide particles. That is why two solid state welding methods - pressure resistance welding (PRW) and friction stir welding (FSW) - were chosen to be evaluated in this project. The proposal is expected to support the development of Advanced Burner Reactors (ABR) under the GNEP program (now incorporated in Fuel Cycle R&D program). The outcomes of the concluded research include training of graduate and undergraduate students and get them interested in nuclear related research.

  13. A Comparative Study of Welded ODS Cladding materials for AFCI/GNEP Applications

    International Nuclear Information System (INIS)

    Charit, Indrajit; Frary, Megan; Butt, Darryl; Murty, K.L.; Zirker, Larry; Cole, James; Meyer, Mitchell; Mishra, Rajiv S.; Woltz, Mark

    2011-01-01

    This research project involved working on the pressure resistance welding of oxide dispersion strengthened (ODS) alloys which will have a large role to play in advanced nuclear reactors. The project also demonstrated the research collaboration between four universities and one nation laboratory (Idaho National Laboratory) with participation from an industry for developing for ODS alloys. These alloys contain a high number density of very fine oxide particles that can impart high temperature strength and radiation damage resistance suitable for in-core applications in advanced reactors. The conventional fusion welding techniques tend to produce porosity-laden microstructure in the weld region and lead to the agglomeration and non-uniform distribution of the needed oxide particles. That is why two solid state welding methods - pressure resistance welding (PRW) and friction stir welding (FSW) - were chosen to be evaluated in this project. The proposal is expected to support the development of Advanced Burner Reactors (ABR) under the GNEP program (now incorporated in Fuel Cycle R and D program). The outcomes of the concluded research include training of graduate and undergraduate students and get them interested in nuclear related research.

  14. Interactive development of object handling programs

    Energy Technology Data Exchange (ETDEWEB)

    Gini, G C; Gini, M L

    1982-01-01

    The authors describe work on development of a software system for writing and testing programs for a computer controlled manipulation. The authors examine in particular how the development of working programs is facilitated by the use of an interactive system based on an interpreter. The paper presents the main features of Pointy the system developed at Stanford Artificial Intelligence Laboratory as a tool for writing assembly programs. The user, interacting with the manipulator, constructs an incremental model of the objects involved in the assembly and develops the corresponding symbolic program. 13 references.

  15. Ethical Development through Student Activities Programming.

    Science.gov (United States)

    Brock, Carol S.

    1991-01-01

    Student activities programing, viewed as essential to the college experience, is defended by outlining some of the values and growth opportunities it provides for students. Several specific programing strategies useful as catalysts in values development are described, including values clarification exercises, multicultural programing, and…

  16. A methodology for developing distributed programs

    NARCIS (Netherlands)

    Ramesh, S.; Mehndiratta, S.L.

    1987-01-01

    A methodology, different from the existing ones, for constructing distributed programs is presented. It is based on the well-known idea of developing distributed programs via synchronous and centralized programs. The distinguishing features of the methodology are: 1) specification include process

  17. National investment programs and sustainable development

    OpenAIRE

    Szyja, Paulina

    2014-01-01

    In situation of economic crisis many countries, for example the United States, members of European Union prepared anti-crisis programs to conduct investments. In most cases, they concentrated on modernization of transport or energy infrastructure. In Poland it would have been presented program "Polish Investments". The main purposes of the article is presentation of public investments programs and their role in sustainable development.

  18. Uncertainty quantification methodologies development for stress corrosion cracking of canister welds

    Energy Technology Data Exchange (ETDEWEB)

    Dingreville, Remi Philippe Michel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    This letter report presents a probabilistic performance assessment model to evaluate the probability of canister failure (through-wall penetration) by SCC. The model first assesses whether environmental conditions for SCC – the presence of an aqueous film – are present at canister weld locations (where tensile stresses are likely to occur) on the canister surface. Geometry-specific storage system thermal models and weather data sets representative of U.S. spent nuclear fuel (SNF) storage sites are implemented to evaluate location-specific canister surface temperature and relative humidity (RH). As the canister cools and aqueous conditions become possible, the occurrence of corrosion is evaluated. Corrosion is modeled as a two-step process: first, pitting is initiated, and the extent and depth of pitting is a function of the chloride surface load and the environmental conditions (temperature and RH). Second, as corrosion penetration increases, the pit eventually transitions to a SCC crack, with crack initiation becoming more likely with increasing pit depth. Once pits convert to cracks, a crack growth model is implemented. The SCC growth model includes rate dependencies on both temperature and crack tip stress intensity factor, and crack growth only occurs in time steps when aqueous conditions are predicted. The model suggests that SCC is likely to occur over potential SNF interim storage intervals; however, this result is based on many modeling assumptions. Sensitivity analyses provide information on the model assumptions and parameter values that have the greatest impact on predicted storage canister performance, and provide guidance for further research to reduce uncertainties.

  19. Innovative Technology Development Program. Final summary report

    International Nuclear Information System (INIS)

    Beller, J.

    1995-08-01

    Through the Office of Technology Development (OTD), the U.S. Department of Energy (DOE) has initiated a national applied research, development, demonstration, testing, and evaluation program, whose goal has been to resolve the major technical issues and rapidly advance technologies for environmental restoration and waste management. The Innovative Technology Development (ITD) Program was established as a part of the DOE, Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) Program. The plan is part of the DOE's program to restore sites impacted by weapons production and to upgrade future waste management operations. On July 10, 1990, DOE issued a Program Research and Development Announcement (PRDA) through the Idaho Operations Office to solicit private sector help in developing innovative technologies to support DOE's clean-up goals. This report presents summaries of each of the seven projects, which developed and tested the technologies proposed by the seven private contractors selected through the PRDA process

  20. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    International Nuclear Information System (INIS)

    Toropchin, A; Frolov, V; Pipa, A V; Kozakov, R; Uhrlandt, D

    2014-01-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results

  1. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    Science.gov (United States)

    Toropchin, A.; Frolov, V.; Pipa, A. V.; Kozakov, R.; Uhrlandt, D.

    2014-11-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.

  2. TBM performance prediction in Yucca Mountain welded tuff from linear cutter tests

    International Nuclear Information System (INIS)

    Gertsch, R.; Ozdemir, L.; Gertsch, L.

    1992-01-01

    This paper discusses performance prediction which were developed for tunnel boring machines operating in welded tuff for the construction of the experimental study facility and the potential nuclear waste repository at Yucca Mountain. The predictions were based on test data obtained from an extensive series of linear cutting tests performed on samples of Topopah String welded tuff from the Yucca Mountain Project site. Using the cutter force, spacing, and penetration data from the experimental program, the thrust, torque, power, and rate of penetration were estimated for a 25 ft diameter tunnel boring machine (TBM) operating in welded tuff. The result show that the Topopah Spring welded tuff (TSw2) can be excavated at relatively high rates of advance with state-of-the-art TBMs. The result also show, however, that the TBM torque and power requirements will be higher than estimated based on rock physical properties and past tunneling experience in rock formations of similar strength

  3. A 1993 review of welding in Japan

    Science.gov (United States)

    1994-07-01

    This paper describes a prospect on Japanese welding technologies available in 1993. Amid the increasing research publications on non-ferrous metals as structural materials, publications are also increasing on steel materials as to their fracture and welding mechanics, and structural control. Studies are being made on ceramics with respect to its bonding, interface reaction mechanisms, and mechanical characteristics. The paper describes the progress and improvement in conventional technologies in welding and cutting processes. Especially active is the study on solid face welding such as pressure welding and diffusion. A considerable decrease is seen in reports on thermal spraying. The paper also introduces surface processing and hydrostatic pressure processing as new processing techniques. In the area of welding devices, practical use of arc welding robots has come to near a completion stage. Technological development and cost reduction are indispensable to transfer to visual sensing with a higher intelligence level. With respect to the performance of joints, a large number of research has been reported on welding deformation and residual stress. The paper also dwells on corrosion resistance and welding cracks. Quality assurance, inspection, and related standards are described. Details are given on application of welding to different industrial fields.

  4. Automotive Stirling Engine Development Program

    Science.gov (United States)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Antonelli, M. (Editor)

    1983-01-01

    Mod I engine testing and test results, the test of a Mod I engine in the United States, Mod I engine characterization and analysis, Mod I Transient Test Bed fuel economy, Mod I-A engine performance are discussed. Stirling engine reference engine manufacturing and reduced size studies, components and subsystems, and the study and test of low-cost casting alloys are also covered. The overall program philosophy is outlined, and data and results are presented.

  5. Development program business in Romania

    OpenAIRE

    Elena Ilie

    2014-01-01

    In the early 2000, in Romania, there were fewer programs to stimulating business environment and in this case the SMEs. After a transition period, various attempts to implement a financial and logistical support from the state were beginning to bear fruit with the year 2009 and take hold in 2011. Amid all legislative changes occurred, the novel proves its effectiveness against Romanian entrepreneurs and especially to young people, university graduates determined to make his way into the busin...

  6. Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm

    International Nuclear Information System (INIS)

    Sathiya, P.; Panneerselvam, K.; Abdul Jaleel, M.Y.

    2012-01-01

    Highlights: ► Super austenitic stainless steel has successfully welded by laser welding with three different shielding gases. ► Among the three shielded joints, the helium shielded weld has more tensile strength. ► Neural network model was developed to predict the depth of penetration, bead width and tensile strength of the joints. ► The developed ANN model is suitably integrated with GA for optimization. -- Abstract: The laser welding input parameters play a very significant role in determining the quality of a weld joint. The quality of the joint can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. In particular mechanical properties should be controlled to obtain good welded joints. In this study, the weld bead geometry such as depth of penetration (DP), bead width (BW) and tensile strength (TS) of the laser welded butt joints made of AISI 904L super austenitic stainless steel are investigated. Full factorial design is used to carry out the experimental design. Artificial neural networks (ANNs) program was developed in MatLab software to establish the relationship between the laser welding input parameters like beam power, travel speed and focal position and the three responses DP, BW and TS in three different shielding gases (argon, helium and nitrogen). The established models are used for optimizing the process parameters using genetic algorithm (GA). Optimum solutions for the three different gases and their respective responses are obtained. Confirmation experiment has also been conducted to validate the optimized parameters obtained from GA.

  7. T.I.G. Welding of stainless steel. Numerical modelling for temperatures calculation in the Haz; Soldadura T.I.G. de acero inoxidable. Modelo numerico para el calculo de temperaturas en la ZAT

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Conesa, E. J.; Estrems-Amestoy, M.; Miguel-Eguia, V.; Garrido-Hernandez, A.; Guillen-Martinez, J. A.

    2010-07-01

    In this work, a numerical method for calculating the temperature field into the heat affected zone for butt welded joints is presented. The method has been developed for sheet welding and takes into account a bidimensional heat flow. It has built a computer program by MS-Excel books and Visual Basic for Applications (VBA). The model has been applied to the TIG process of AISI 304 stainless steel 2mm thickness sheet. The welding process has been considered without input materials. The numerical method may be used to help the designers to predict the temperature distribution in welded joints. (Author) 12 refs.

  8. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  9. The Effect of Welding Energy on the Microstructural and Mechanical Properties of Ultrasonic-Welded Copper Joints

    Science.gov (United States)

    Yang, Jingwei; Cao, Biao; Lu, Qinghua

    2017-01-01

    The effects of welding energy on the mechanical and microstructural characteristics of ultrasonic-welded pure copper plates were investigated. Complex dynamic recrystallization and grain growth occurred inside the weld zone during ultrasonic welding. At a low welding energy, a thin band of straight weld interfaces was observed and had an ultra-fine grain structure. With an increase in welding energy, the weld interface progressively changed from flat to sinusoidal, and eventually turned into a convoluted wavy pattern, bearing similarities to shear instabilities, as observed in fluid dynamics. The lap shear load of the joints initially increased and then remained stable as the welding energy increased. The tensile characteristics of the joints significantly depended on the development of plastic deformation at the interface. The influence of the microstructure on the hardness was also discussed. PMID:28772553

  10. Developing Program Management Leadership for Acquisition Reform

    Science.gov (United States)

    2011-04-30

    mêçÅÉÉÇáåÖë= çÑ=íÜÉ= bfdeqe=^kkr^i=^`nrfpfqflk== obpb^o`e=pvjmlpfrj== qeropa^v=pbppflkp== slirjb ff Developing Program Management Leadership for...4. TITLE AND SUBTITLE Developing Program Management Leadership for Acquisition Reform 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Developing Program  Management   Leadership   for Acquisition Reform    The 8th Annual Acquisition Research Symposium Panel #20: Investing in People

  11. A Neural Network Approach for GMA Butt Joint Welding

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2003-01-01

    This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...... penetration, when the gap width is varying during the welding process. The process modeling to facilitate the mapping from joint geometry and reference weld quality to significant welding parameters has been based on a multi-layer feed-forward network. The Levenberg-Marquardt algorithm for non-linear least...

  12. Pulsed magnetic welding application of fast breeder austenitic pins plugging

    International Nuclear Information System (INIS)

    Gallizzi, H.; Colombe, G.

    1986-11-01

    For specific nuclear needs, we had to develop pulsed magnetic welding on high resistivity coefficient alloys as austenitic steels. The magnetic force produced by an explosive inductor is transmitted on weld pieces by the use of an aluminium driver. A theoretical work carried out permitted to compare pulsed magnetic welding with explosive welding. With specific recordings, it was possible to study electrical and magnetical behavior during the active welding phase. By means of these informations, we are able to specify and to realize, with the financial help of ANVAR organization, a low impedance high velocity generator permitting to weld with a non destructible inductor. 6 refs [fr

  13. Recent progress of welding technology applied for nuclear components

    International Nuclear Information System (INIS)

    Kobayashi, T.; Hoshino, T.; Koide, H.; Yamamoto, T.; Takahashi, T.; Hashimoto, T.

    2005-01-01

    More than 30 years have been passed since the first nuclear power plant was in operation. Various needs for welding technology have been emerged and the technology has been developed. This paper first describes the key technologies in BWR power plants and then introduces ones in PWR power plants. Welding techniques are introduced in detail. Applications of arc welding, gas tungsten arc welding, electroslag welding, electron beam welding are explained. In order to avoid stress corrosion cracking, water jet and laser peening techniques are used. (author)

  14. Intelligent sensing and control of gas metal arc welding

    International Nuclear Information System (INIS)

    Smartt, H.B.; Johnson, J.A.

    1993-01-01

    Intelligent sensing and control is a multidisciplinary approach that attempts to build adequate sensing capability, knowledge of process physics, control capability, and welding engineering into the welding system such that the welding machine is aware of the state of the weld and knows how to make a good weld. The sensing and control technology should reduce the burden on the welder and welding engineer while providing the great adaptability needed to accommodate the variability found in the production world. This approach, accomplished with application of AI techniques, breaks the tradition of separate development of procedure and control technology

  15. A Neural Network Approach for GMA Butt Joint Welding

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2003-01-01

    penetration, when the gap width is varying during the welding process. The process modeling to facilitate the mapping from joint geometry and reference weld quality to significant welding parameters has been based on a multi-layer feed-forward network. The Levenberg-Marquardt algorithm for non-linear least......This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...

  16. A numerical model for cold welding of metals

    DEFF Research Database (Denmark)

    Zhang, Wenqi; Bay, Niels

    1996-01-01

    at the weld interface. Accordingly, the general model for bond strength in cold welding earlier developed by Bay has been extended and modified. The new model presented in this paper simulates the whole cold welding process including the deformation of base metals and the establishment of welds bonding......Based on experimental investigations of cold welding of different metal combinations applying various surface preparation methods, the understanding of the mechanisms of bond formation in cold welding has been improved by introducing two parameters representing the properties of surface layers...... similar as well as dissimilar metals The calculated bond strengths are verified by comparing with experimental measurements....

  17. Thermocapillary and arc phenomena in stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Stanley W. [Colorado School of Mines, Golden, CO (United States)

    1993-01-01

    Goal was to study effect of power level and distribution on thermocapiilary-induced weld shape and of arc factors on weld shape. Thermocapillarity was apparent in both conduction mode EB welds and GTA welds, particularly in the former. A non-Gaussian arc distribution is suggested for accounting for the differences between the twoss processes. At higher current levels (200--300 A), plasma shear force also contributes to weld shape development. Evidence suggests that thermocapillary flow reversal is not a factor in normal GTA welds; EDB flow reversal occurs only at high power density levels where the keyhole mode is present.

  18. The characteristics of welded joints for air conditioning application

    Science.gov (United States)

    Weglowski, M. St.; Weglowska, A.; Miara, D.; Kwiecinski, K.; Błacha, S.; Dworak, J.; Rykala, J.; Pikula, J.; Ziobro, G.; Szafron, A.; Zimierska-Nowak, P.; Richert, M.; Noga, P.

    2017-10-01

    In the paper the results of metallographic examination of welded joints for air-conditioning elements are presented. The European directives 2006/40/EC on the greenhouse gasses elimination demand to stop using traditional refrigerant and to change it to R744 (CO2) medium in air conditioning installation. The R744 refrigerant is environmental friendly medium if compared with standard solution such as R12, R134a or R1234yf and safer for passengers than R1234yf. The non-standard thermodynamic parameters of the R744 which translate into high pressure and high temperature require specific materials to develop the shape and to specify the technology of manufacturing for the particular elements of the conduits and moreover the technologies of joining for the whole structure, which would meet the exploitation requirements of the new air-conditioning system. To produce the test welded joints of stainless steels four different joining technologies were applied: laser welding, plasma welding, electron beam welding as well as high speed rotation welding. This paper describes the influence of the selected welding process on the macrostructure and microstructure of welded joints of AISI 304 and AISI 316L steels. The results indicated that plasma welding laser welding and electron beam welding technologies guaranty the proper quality of welded joints and can be used for the air conditioning application in automotive industry. However, high speed rotation welding not guarantee the good quality of welded joints and cannot be used for above application.

  19. Coastal nonpoint pollution control program: Program development and approval guidance

    International Nuclear Information System (INIS)

    1993-01-01

    The document, developed by NOAA and EPA, contains guidance for states in developing and implementing their coastal nonpoint pollutant source programs. It describes the requirements that must be met, including: the geographic scope of the program; the pollutant sources to be addressed; the types of management measures used; the establishment of critical areas; technical assistance, public participation, and administrative coordination; and, the process for program submission and Federal approval. The document also contains the criteria by which NOAA and EPA will review the states' submissions

  20. Automatic Gap Detection in Friction Stir Welding Processes (Preprint)

    National Research Council Canada - National Science Library

    Yang, Yu; Kalya, Prabhanjana; Landers, Robert G; Krishnamurthy, K

    2006-01-01

    .... This paper develops a monitoring algorithm to detect gaps in Friction Stir Welding (FSW) processes. Experimental studies are conducted to determine how the process parameters and the gap width affect the welding process...

  1. Automotive Stirling engine development program: A success

    Science.gov (United States)

    Tabata, W. K.

    1987-01-01

    The original 5-yr Automotive Stirling Engine Development Program has been extended to 10 years due to reduced annual funding levels. With an estimated completion date of April 1988, the technical achievements and the prospectives of meeting the original program objectives are reviewed. Various other applications of this developed Stirling engine technology are also discussed.

  2. The DUPIC fuel development program in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Yang, M S; Park, H S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    This study describes the DUPIC fuel development program in KAERI as follows; Burning spent PWR fuel again in CANDU by DUPIC, Compatibility with existing CANDU system, Feasibility of DUPIC fuel fabrication, Waste reduction, Safeguard ability, Economics of DUPIC fuel cycle, The DUPIC fuel development program, and International prospective. 5 refs., 10 figs.

  3. Developing a mentoring program in clinical nutrition.

    Science.gov (United States)

    Martindale, Robert G; McClave, Stephen; Heyland, Daren; August, David

    2010-01-01

    Mentoring programs in nutrition are essential to the survival of clinical nutrition as we know it today. The best method known to maintain an influx of talent to a discipline is by developing an active mentoring program. This paper describes 1 concept for development of a viable mentor program. Mentoring should be flexible and based on mentees' training background. Realistic goals should be set, with written and verbal feedback, to sustain a successful program. Programs should incorporate the Socratic Method whenever possible. Factors that leave doubt about the survival of nutrition as a viable area of focus for physicians include the inability to generate adequate funds to support oneself and limited numbers of mentors available with dedicated time to be a mentor. A healthy, sustainable mentoring program in clinical nutrition will ensure survival of physician-based nutrition programs.

  4. Nuclear Power Infrastructure Development Program: Korean Education Program

    International Nuclear Information System (INIS)

    Choi, Sung Yeol; Hwang, Il Soon; Kim, Si Hwan

    2009-01-01

    Many countries have decided nuclear power for next energy resources as one of the long-term energy supply options. IAEA projected nuclear power expansion up to 2030 reaching between 447 GWe and 691 GWe compared to 370 GWe and 2660 TWh at the end of 2006. Both low and high projection is accompanied with new nuclear power plant constructions respectively 178 and 357, about 11 units per year, and most new construction is in North America, the Far East, Eastern Europe, the Middle East, and Southeast Asia. During the last forty years, thirty three countries have established commercial nuclear power programs but only some of them have developed comprehensive and large scale peaceful nuclear power infrastructure. Although various cooperation and guidance program of nuclear power infrastructure, developing appropriate environment and infrastructure of nuclear power plant is still challenging problems for developing countries launching nuclear power program. With increasing the demand of safety and safeguard from international society, creating appropriate infrastructure becomes essential requirements in national nuclear power program. In the viewpoint of developing countries, without sufficient explanation and proper guidance, infrastructure could be seen only as another barrier in its nuclear power program. The importance of infrastructure development would be obscured by ostensible business and infrastructure program can result in increasing entering barriers to peaceful nuclear power application field without benefits to developing countries and international community. To avoid this situation by providing enough explanation and realistic case example and cooperate with the countries wanting to establish comprehensive nuclear power infrastructure in the peaceful applications, we are creating the education program of infrastructure development with basic guidelines of the IAEA infrastructure series and Korean experiences from least developed country to advanced country

  5. Welding and Joining of Titanium Aluminides

    Science.gov (United States)

    Cao, Jian; Qi, Junlei; Song, Xiaoguo; Feng, Jicai

    2014-01-01

    Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials. PMID:28788113

  6. Underwater laser beam welding of Alloy 690

    International Nuclear Information System (INIS)

    Hino, Takehisa; Tamura, Masataka; Kono, Wataru; Kawano, Shohei; Yoda, Masaki

    2009-01-01

    Stress Corrosion Clacking (SCC) has been reported at Alloy 600 welds between nozzles and safe-end in Pressurized Water Reactor (PWR) plant. Alloy 690, which has higher chromium content than Alloy 600, has been applied for cladding on Alloy 600 welds for repairing damaged SCC area. Toshiba has developed Underwater Laser Beam Welding technique. This method can be conducted without draining, so that the repairing period and the radiation exposure during the repair can be dramatically decreased. In some old PWRs, high-sulfur stainless steel is used as the materials for this section. It has a high susceptibility of weld cracks. Therefore, the optimum welding condition of Alloy 690 on the high-sulfur stainless steel was investigated with our Underwater Laser Beam Welding unit. Good cladding layer, without any crack, porosity or lack of fusion, could be obtained. (author)

  7. Automated Fuel Element Closure Welding System

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1993-01-01

    The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout

  8. Welding and Joining of Titanium Aluminides

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2014-06-01

    Full Text Available Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials.

  9. Orbital friction stir welding of aluminium pipes

    International Nuclear Information System (INIS)

    Engelhard, G.; Hillers, T.

    2002-01-01

    Friction stir welding (FSW) was originally developed for flat plates. This contribution shows how it can be applied to the welding of aluminium pipes. Pipes made of AlMG 3 (EN5754), AlMg 4.5Mn (EN5083) and AlMgSi 0.5 (EN6106) with dimensions of Da 600 and 520 x 10-8 mm were welded. The FSW orbital system comprises an annular cage with integrated FSW head, a hydraulic system, and a control unit. The welds were tested successfully according to EN 288. The mechanical and technical properties of the welds were somewhat better than with the TIG orbital process, and welding times were about 40 percent shorter [de

  10. Control system of power supply for resistance welding machine

    Directory of Open Access Journals (Sweden)

    Світлана Костянтинівна Поднебенна

    2017-06-01

    Full Text Available This article describes the existing methods of heat energy stabilizing, which are realized in thyristor power supplies for resistance welding machines. The advantages and features of thyristor power supplies have been described. A control system of power supply for resistance welding machine with stabilization of heat energy in a welding spot has been developed. Measurements are performed in primary winding of a welding transformer. Weld spot heating energy is calculated as the difference between the energy, consumed from the mains, and the energy losses in the primary and secondary circuits of the welding transformer as well as the energy losses in the transformer core. Algorithms of digital signal processing of the developed control system are described in the article. All measurements and calculations are preformed automatically in real-time. Input signals to the control system are: transformer primary voltage and current, temperature of the welding circuit. The designed control system ensures control of the welding heat energy and is not influenced by the supply voltage and impedance changes caused by insertion of the ferromagnetic mass in the welding circuit, the temperature change during the welding process. The developed control system for resistance welding machine makes it possible to improve the quality of welded joints, increase the efficiency of the resistance welding machine

  11. Effect of welding current and speed on occurrence of humping bead in high-speed GMAW

    Institute of Scientific and Technical Information of China (English)

    Chen Ji; Wu Chuansong

    2009-01-01

    The developed mathematical model of humping formation mechanism in high-speed gas metal arc welding (GMAW) is used to analyze the effects of welding current and welding speed on the occurrence of humping bead. It considers both the momentum and heat content of backward flowing molten jet inside weld pool. Three-dimensional geometry of weld pool, the spacing between two adjacent humps and hump height along humping weld bead are calculated under different levels of welding current and welding speed. It shows that wire feeding rate, power intensity and the moment of backward flowing molten jet are the major factors on humping bead formation.

  12. The application of TIG-welding to the manufacture of modern boiler units. Chapter 3

    International Nuclear Information System (INIS)

    Dick, N.T.

    1978-01-01

    Stringent weld acceptance standards are necessary in nuclear installations. Mechanised TIG-welding is being used exclusively in the manufacture of the boiler pods for the Hartlepool and Heysham nuclear generating stations. The choice of a TIG welding process is discussed. Reliability, access, welding position, tube dimensions and weld profile were important as was the desirability of having ferrite control because in the austenitic stainless steel used, the acceptance standard does not permit microfissuring. Development of the technique and production equipment and conditions are given for tube butt welding, tube-to-tubeplate bore welding and tube-to-tubeplate face welding in AGR applications. (U.K.)

  13. Introduction to Welding.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  14. Distortion Control during Welding

    NARCIS (Netherlands)

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ

  15. Welding and cutting

    International Nuclear Information System (INIS)

    Drews, P.; Schulze Frielinghaus, W.

    1978-01-01

    This is a survey, with 198 literature references, of the papers published in the fields of welding and cutting within the last three years. The subjects dealt with are: weldability of the materials - Welding methods - Thermal cutting - Shaping and calculation of welded joints - Environmental protection in welding and cutting. (orig.) [de

  16. Program Development Tools and Infrastructures

    International Nuclear Information System (INIS)

    Schulz, M.

    2012-01-01

    Exascale class machines will exhibit a new level of complexity: they will feature an unprecedented number of cores and threads, will most likely be heterogeneous and deeply hierarchical, and offer a range of new hardware techniques (such as speculative threading, transactional memory, programmable prefetching, and programmable accelerators), which all have to be utilized for an application to realize the full potential of the machine. Additionally, users will be faced with less memory per core, fixed total power budgets, and sharply reduced MTBFs. At the same time, it is expected that the complexity of applications will rise sharply for exascale systems, both to implement new science possible at exascale and to exploit the new hardware features necessary to achieve exascale performance. This is particularly true for many of the NNSA codes, which are large and often highly complex integrated simulation codes that push the limits of everything in the system including language features. To overcome these limitations and to enable users to reach exascale performance, users will expect a new generation of tools that address the bottlenecks of exascale machines, that work seamlessly with the (set of) programming models on the target machines, that scale with the machine, that provide automatic analysis capabilities, and that are flexible and modular enough to overcome the complexities and changing demands of the exascale architectures. Further, any tool must be robust enough to handle the complexity of large integrated codes while keeping the user's learning curve low. With the ASC program, in particular the CSSE (Computational Systems and Software Engineering) and CCE (Common Compute Environment) projects, we are working towards a new generation of tools that fulfill these requirements and that provide our users as well as the larger HPC community with the necessary tools, techniques, and methodologies required to make exascale performance a reality.

  17. Program Development Tools and Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, M

    2012-03-12

    Exascale class machines will exhibit a new level of complexity: they will feature an unprecedented number of cores and threads, will most likely be heterogeneous and deeply hierarchical, and offer a range of new hardware techniques (such as speculative threading, transactional memory, programmable prefetching, and programmable accelerators), which all have to be utilized for an application to realize the full potential of the machine. Additionally, users will be faced with less memory per core, fixed total power budgets, and sharply reduced MTBFs. At the same time, it is expected that the complexity of applications will rise sharply for exascale systems, both to implement new science possible at exascale and to exploit the new hardware features necessary to achieve exascale performance. This is particularly true for many of the NNSA codes, which are large and often highly complex integrated simulation codes that push the limits of everything in the system including language features. To overcome these limitations and to enable users to reach exascale performance, users will expect a new generation of tools that address the bottlenecks of exascale machines, that work seamlessly with the (set of) programming models on the target machines, that scale with the machine, that provide automatic analysis capabilities, and that are flexible and modular enough to overcome the complexities and changing demands of the exascale architectures. Further, any tool must be robust enough to handle the complexity of large integrated codes while keeping the user's learning curve low. With the ASC program, in particular the CSSE (Computational Systems and Software Engineering) and CCE (Common Compute Environment) projects, we are working towards a new generation of tools that fulfill these requirements and that provide our users as well as the larger HPC community with the necessary tools, techniques, and methodologies required to make exascale performance a reality.

  18. Yugoslavian Petroleum Refinery development program

    International Nuclear Information System (INIS)

    Ocic, Ozren

    1999-01-01

    This paper shows the analysis of the world petroleum industry development, being an important factor in planning the development of the Yugoslav petroleum industry and Pancevo Petroleum Refinery, as well. Then Yugoslav petroleum industry development is analysed, including the appropriate balances of crude oil production and crude oil products consumption. The way of realizing the basic targets are also proposed. Likewise, the analysis of the condition within West European refineries has been conducted, from the aspects of technology, energy consumption and environmental protection and the same analysis for Pancevo Petroleum Refinery has been presented, too. The analysis of the condition within the refineries in the European Union countries and comparing it with the condition within Pancevo Petroleum Refinery, makes it mainly possible to recognize the development programmes which should be realized in order that Pancevo Petroleum Refinery could reach the refining level of the EU countries. (Original)

  19. Analogy Mapping Development for Learning Programming

    Science.gov (United States)

    Sukamto, R. A.; Prabawa, H. W.; Kurniawati, S.

    2017-02-01

    Programming skill is an important skill for computer science students, whereas nowadays, there many computer science students are lack of skills and information technology knowledges in Indonesia. This is contrary with the implementation of the ASEAN Economic Community (AEC) since the end of 2015 which is the qualified worker needed. This study provided an effort for nailing programming skills by mapping program code to visual analogies as learning media. The developed media was based on state machine and compiler principle and was implemented in C programming language. The state of every basic condition in programming were successful determined as analogy visualization.

  20. Residual stresses due to weld repairs, cladding and electron beam welds and effect of residual stresses on fracture behavior. Annual report, September 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Rybicki, E.F.

    1978-11-01

    The study is divided into three tasks. Task I is concerned with predicting and understanding the effects of residual stresses due to weld repairs of pressure vessels. Task II examines residual stresses due to an electron beam weld. Task III addresses the problem of residual stresses produced by weld cladding at a nozzle vessel intersection. The objective of Task I is to develop a computational model for predicting residual stress states due to a weld repair of pressure vessel and thereby gain an understanding of the mechanisms involved in the creation of the residual stresses. Experimental data from the Heavy Section Steel Technology (HSST) program at Oak Ridge National Laboratories (ORNL) is used to validate the computational model. In Task II, the residual stress model is applied to the case of an electron beam weld of a compact tension freacture specimen. The results in the form of residual stresses near the weld are then used to explain unexpected fracture behavior which is observed in the testing of the specimen. For Task III, the residual stress model is applied to the cladding process used in nozzle regions of nuclear pressure vessels. The residual stresses obtained from this analysis are evaluated to determine their effect on the phenomena of under-clad cracking

  1. Unconventional oil and gas development and its stresses on water resources in the context of Water-Energy-Food Nexus: The case of Weld County, Colorado

    Science.gov (United States)

    Oikonomou, P. D.; Waskom, R.; Boone, K.; Ryan, J. N.

    2015-12-01

    The development of unconventional oil and gas resources in Colorado started to rapidly increase since the early 2000's. The recent oil price plunge resulted in a decline of well starts' rate in the US, but in Weld County, Colorado, it is currently at the 2013-levels. The additional water demand, despite its insignificant percentage in overall state's demand (0.1% in 2012), it competes with traditional ones, since Colorado's water is almost fully appropriated. Presently, the state has 53,597 active producing oil and gas wells. More than 40% of these are located in Weld County, which happens also to be one of top food production U.S. counties. The competition for land and water resources between the energy and agricultural sectors in water stressed areas, like the western U.S., is further intensified if recycle and reuse practices are not preferred to water disposal by the energy industry. Satisfying the multiple objectives of the Water-Energy-Food Nexus in order to achieve sustainable economic development requires balanced management of these resources. Identifying pressures on key areas that food and energy sectors are competing for water, is essential for prudent water management and developing appropriate policies. Weld County, as a water stressed and fossil fuel producing area, was selected for investigating current stresses on local water resources alongside with future climatic and water demand scenarios for exploring probable long-term effects.

  2. New developments in employee assistance programs.

    Science.gov (United States)

    White, R K; McDuff, D R; Schwartz, R P; Tiegel, S A; Judge, C P

    1996-04-01

    Employee assistance programs have developed from alcoholism assessment and referral centers to specialized behavioral health programs. Comprehensive employee assistance programs are defined by six major components: identification of problems based on job performance, consultation with supervisors, constructive confrontation, evaluation and referral, liaison with treatment providers, and substance abuse expertise. Other services have been added as enhancements to the basic model and include managed behavioral health activities and professional assistance committees, which provide services for impaired professionals and executives. Recent developments in the field are illustrated through examples from the experience of the employee assistance program at the University of Maryland Medical System in Baltimore.

  3. Welding of structural components and vessels

    International Nuclear Information System (INIS)

    1989-01-01

    'Welding of structural components and vessels' was chosen as the guiding topic for the 17th special conference in Munich so that current problems of this important area of application for welding engineering could be discussed in detail. The following topics were in the focus of the discussions: developments in steel, steel production and steel processing, reports on the practical application of welding in the manufacture of containers and pipes, quality assurance, product liability, safety considerations regarding creep-stressed components, problems of welding in large structures. 7 of the total number of 12 contributions were recorded separately for the data base ENERGY. (orig./MM) [de

  4. Sensing the gas metal arc welding process

    Science.gov (United States)

    Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.

    1994-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  5. Closure Welding of Plutonium Bearing Storage Containers

    International Nuclear Information System (INIS)

    Cannell, G.R.

    2002-01-01

    A key element in the Department of Energy (DOE) strategy for the stabilization, packaging and storage of plutonium-bearing materials involves closure welding of DOE-STD-3013 Outer Containers (3013 container). The 3013 container provides the primary barrier and pressure boundary preventing release of plutonium-bearing materials to the environment. The final closure (closure weld) of the 3013 container must be leaktight, structurally sound and meet DOE STD 3013 specified criteria. This paper focuses on the development, qualification and demonstration of the welding process for the closure welding of Hanford PFP 3013 outer containers

  6. Real-time ultrasonic weld evaluation system

    Science.gov (United States)

    Katragadda, Gopichand; Nair, Satish; Liu, Harry; Brown, Lawrence M.

    1996-11-01

    Ultrasonic testing techniques are currently used as an alternative to radiography for detecting, classifying,and sizing weld defects, and for evaluating weld quality. Typically, ultrasonic weld inspections are performed manually, which require significant operator expertise and time. Thus, in recent years, the emphasis is to develop automated methods to aid or replace operators in critical weld inspections where inspection time, reliability, and operator safety are major issues. During this period, significant advances wee made in the areas of weld defect classification and sizing. Very few of these methods, however have found their way into the market, largely due to the lack of an integrated approach enabling real-time implementation. Also, not much research effort was directed in improving weld acceptance criteria. This paper presents an integrated system utilizing state-of-the-art techniques for a complete automation of the weld inspection procedure. The modules discussed include transducer tracking, classification, sizing, and weld acceptance criteria. Transducer tracking was studied by experimentally evaluating sonic and optical position tracking techniques. Details for this evaluation are presented. Classification is obtained using a multi-layer perceptron. Results from different feature extraction schemes, including a new method based on a combination of time and frequency-domain signal representations are given. Algorithms developed to automate defect registration and sizing are discussed. A fuzzy-logic acceptance criteria for weld acceptance is presented describing how this scheme provides improved robustness compared to the traditional flow-diagram standards.

  7. Numerical modelling of steel arc welding

    International Nuclear Information System (INIS)

    Hamide, M.

    2008-07-01

    Welding is a highly used assembly technique. Welding simulation software would give access to residual stresses and information about the weld's microstructure, in order to evaluate the mechanical resistance of a weld. It would also permit to evaluate the process feasibility when complex geometrical components are to be made, and to optimize the welding sequences in order to minimize defects. This work deals with the numerical modelling of arc welding process of steels. After describing the industrial context and the state of art, the models implemented in TransWeld (software developed at CEMEF) are presented. The set of macroscopic equations is followed by a discussion on their numerical implementation. Then, the theory of re-meshing and our adaptive anisotropic re-meshing strategy are explained. Two welding metal addition techniques are investigated and are compared in terms of the joint size and transient temperature and stresses. The accuracy of the finite element model is evaluated based on experimental results and the results of the analytical solution. Comparative analysis between experimental and numerical results allows the assessment of the ability of the numerical code to predict the thermomechanical and metallurgical response of the welded structure. The models limitations and the phenomena identified during this study are finally discussed and permit to define interesting orientations for future developments. (author)

  8. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  9. Development of cutting and welding methods for thick-walled stainless steel support and containment structures for ITER

    International Nuclear Information System (INIS)

    Jones, L.; Maisonnier, D.; Goussain, J.; Johnson, G.; Petring, D.; Wernwag, L.

    1998-01-01

    In ITER the containment and support structures are made from 316L(N)-IG (ITER Grade) stainless steel plate, 40 to 70 mm thick. The structures are divided into twenty sectors which have to be welded together in situ. The three areas of work described in this paper are, CO 2 laser welding, plasma cutting and CO 2 laser cutting. CO 2 laser welding offers significant advantages due to its high speed and low distortion and the most powerful commercial laser in Europe has been used to investigate single pass welding of thick plates, with strong welds up to 35 mm thick being achieved in one pass. For cutting, the space available on the back-side to collect debris and protect fragile components from damage is limited to 30 mm. A static, water-cooled backside protection plate proved unable to contain the debris from plasma cutting so a reciprocating backside protection system with dry ceramic heat shield demonstrated a solution. A 10 kW CO 2 laser system for nitrogen-assisted laser cutting, provided successful results at 40 mm thickness. This technique shows considerable promise as significant reductions in through power and rate of debris production are expected compared with plasma cutting and thicker cuts appear feasible. The results presented herein represent significant technical advances and will be strong candidates for the mix of methods which will have to be used for the assembly and maintenance of the ITER machine. (authors)

  10. Development of the simplified local stress analysis methodology for the nuclear class 2 and 3 piping welded to the seal plate

    International Nuclear Information System (INIS)

    Lee, Dae Hee; Park, Jun Soo; Jeong, Seung Ha; Kim, Jong Min; Eom, Se Yoon

    1996-06-01

    Lugs, brackets, stiffeners and other attachments may be welded, bolted and studded to the outside or inside of piping and the local stresses arise because of the radial thermal expansion of the piping, the dilatation of the piping due to its internal pressure, the circumferential contraction of the pipe as a results of an axial tensile force, etc., constrained by those. So the evaluation of the local stress for the piping constrained by the attachment in accordance with the ASME Section III, NB-3651.3, NC-3645 and ND-3645 are required for the Class 1, 2, and 3 piping. In this report, the formula for the local stress analysis for the piping welded to the seal plate was developed and the results from the theoretical analysis were compared with the results from the theoretical analysis were compared with the results analyzed by the ANSYS. The results from the theoretical analysis agree well to the results analyzed by the ANSYS with a conservatism. The conservatism in the theoretical analysis can be considered as a safety factor in the design stage. So, the formula developed in this report can be used very effectively for the design of the seal plate and the local stress analysis of the nuclear class 2 and 3 piping welded to the seal plate. 2 tabs., 7 figs., 5 refs. (Author) .new

  11. Development of a crack growth analysis is program for reactor head penetration

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Choi, Kwang Hee; Park, Jeong Il [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Kang, Young Hwan; Park, Sung Ho; Kim, Il; Kim, Young Jong; Yoo, Young Joon; Yoo, Wan; Maeng, Wan Young; Choi, Suk Nam; Kim, Kee Suk; Yoon, Sung Won; Kim, Jee Ho; Park, Myung Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    Crack growth analysis program for Reactor Head Penetration is being developed for applying to plants such as, Kori 1, Kori 2, Kori 3,4 YoungKwang 1,2 and Uljin 1,2 (1) Stress Evaluation - The stress analysis is required to evaluate the structure integrity for the RVH penetration tubes. The RVH penetration tubes are geometrically non-symmetry except center one. Thus, 3D finite element analysis should be employed for the stress analysis. The magnitude and distribution of residual stress resulted from welding can be determined analytically by simulation welding procedure. (2) Flaw Evaluation - There are two objectives of the penetration tube flaw evaluation to predict the time required for a crack to propagate to the acceptance criteria. The first objective is to perform the parametric evaluation for a postulated crack. The second objective is to develop the flaw evaluation program for the crack detected during the inspection. (3) Characterization of Material Properties of Alloy 600 - These study is to provide data which similarly represent the properties of PWR power plants in Korea. The data is used for analyzing of the stress distribution around penetration tubes. And the PWSCC data will be used for the crack growth rate of the penetration tubes. (author). 92 refs., 121 figs.

  12. Developing the Metropolia Alumni Relations Program

    OpenAIRE

    Hardy, Tea

    2015-01-01

    The target of this Master's Thesis was to create a practical plan to further develop the alumni relations program at Helsinki Metropolia University of Applied Sciences. The plan will act as a guide for the program on how to reach and engage Metropolia's students and alumni in order to create a sustainable and active alumni relations program. Special attention was given to the international students and alumni, which is an understandable approach from the global perspective as many of the Metr...

  13. Assessing a GTA professional development program

    OpenAIRE

    Alicea-Muñoz, Emily; Masip, Joan Espar; Sullivan, Carol Subiño; Schatz, Michael F.

    2018-01-01

    For the last four years, the School of Physics at Georgia Tech have been preparing new Graduate Teaching Assistants (GTAs) through a program that integrates pedagogy, physics content, and professional development strategies. Here we discuss various assessments we have used to evaluate the program, among them surveys, GTA self-reporting, and end-of-semester student evaluations. Our results indicate that GTAs who participate in the program find its practical activities useful, feel better prepa...

  14. Ultrashort pulsed laser technology development program

    Science.gov (United States)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  15. The selection of ultrasonic transducers for inspection of pipeline girth welds. Vol. 2. Evaluation of a unique creeping wave probe for examination of the cap region in pipeline girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Fingerhut, M P; Glover, A G; Dorling, D V

    1988-10-01

    This work is part of a program aimed at developing an ultrasonic inspection design for the nondestructive evaluation of pipeline girth welds made by the mechanized gas metal arc (GMA) welding process for onshore and offshore pipeline construction. The feasibility of using creeping waves for examination of the cap region was investigated and, as a result, a specification for an experimental creeping wave transducer developed and a probe was designed to provide a beam oriented nearly perpendicular to expected defects in the cap region of the weld. The performance of this experimental creeping wave transducer was evaluated with respect to its ability to detect simulated and real weld defects in the cap region of mechanized GMA welds in 9.5 mm material. The probe was successful in detecting planar lack of sidewall fusion welding defects with a signal-to-noise ratio of greater than 12 dB, at depths of up to 4.2 mm from the plate surface. This indicates maximum pipe wall thicknesses of 10.9 mm may be satisfactorily examined before additional probes are required, assuming complete coverage in the root region is provided by other probes. The creeping wave probe not only performed well in the detection of real weld defects in the cap region for which it was intended, but also showed potential for detecting and discriminating some planar defects in the root region. 9 refs., 23 figs., 3 tabs.

  16. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    International Nuclear Information System (INIS)

    Filacchioni, G.; Montanari, R.; Tata, M.E.; Pilloni, L.

    2002-01-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program

  17. Alloy development for irradiation performance: program strategy

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Wiffen, F.W.; Dalder, E.N.C.; Reuther, T.C.; Gold, R.E.; Holmes, J.J.; Kummer, D.L.; Nolfi, F.V.

    1978-01-01

    The objective of the Alloy Development for Irradiation Performance Program is the development of structural materials for use in the first wall and blanket region of fusion reactors. The goal of the program is a material that will survive an exposure of 40 MWyr/m 2 at a temperature which will allow use of a liquid-H 2 O heat transport system. Although the ultimate aim of the program is development of materials for commercial reactors by the end of this century, activities are organized to provide materials data for the relatively low performance interim machines that will precede commercial reactors

  18. Pulsed TIG welding in the fabrication of nuclear components and structures

    International Nuclear Information System (INIS)

    Lucas, W.; Males, B.O.

    1979-01-01

    TIG welding is an important welding technique in nuclear plant fabrication for the welding of critical components and structures where a high level of weld integrity is demanded. Whilst the process is ideally suited to precision welding, since the arc is a small intense heat source, it has proved to be somewhat intolerant to production variations in 'difficult' applications, such as tube to tube plate welding and orbital tube welding with tube in the fixed position. Whilst the problems directly associated with this intolerance (of the welding process) are less frequently observed when used manually, difficulties are experienced in fully mechanised welding operations particularly when welding to a relatively rigid approved procedure. Pulsing of the welding current was developed as a technique to achieve greater control of the behaviour of the weld pool. Instead of moving the weld pool in a continuous motion around the joint, welding was conducted intermittently in the form of overlapping spots. This technique, which offers significant advantages over continuous current welding has been exploited in nuclear fabrication for welding those components which demand a high level of weld quality. In this paper, the essential features of this technique are described and, in indicating its advantages, examples have been drawn from recent experiences on the welding of two types of joint for the Advanced Gas Cooled Reactor, a tube sheet and a butt joint in the G Position. (author)

  19. Development of education programs using HANARO

    International Nuclear Information System (INIS)

    Ser, K. W.; Cho, H. J.; Won, J. Y.; Ju, Y. C.; Lee, H. Y.; Choi, Y. M.

    2001-01-01

    The purposes of the study is to development of the education program using HANARO, which is one of the programs for HANARO Utilization. These consist of four fields; radioisotope production application, neutron activation analysis, examination of irradiated fuel/material and neutron beam application. This program provides various special research courses to faculties, researchers, universities and the industrial sector. In the development of the education program using HANARO, we have plan to the graduate thesis research course for the students, such a plan identifies the actual and potential capabilities of the reactor as well as its current and potential future specialists. Also, we have designed the development of actual training and education programs on radiological emergency preparedness, its necessary to the on-site and off-side public health and safety around near the reactor and relation facilities. These course topics involve the introduction of radiological emergency, actual technical method on radiation measurement, radiological emergency exercise and so on

  20. Multi-physics modeling and numerical simulation of weld pool in GTA welding

    International Nuclear Information System (INIS)

    Nguyen, Minh-Chien

    2015-01-01

    In this work, we develop a 3D physical and numerical model of the GTA (Gas Tungsten Arc) welding process in order to predict, for given welding parameters, useful quantities for the designer of welded assembly: weld bead shape, fluid flow in the weld pool as well as thermal distribution in the work piece. The model is developed in the Cast3M (http://www-cast3m.cea.fr/) finite element software and takes into account the main physical phenomena acting in the work piece and particularly in the weld pool, subject to source terms modeling the arc part of the welding process. A steady solution of this model is thought for and involves the coupling of the nonlinear thermohydraulics and electromagnetic equations together with the displacement of the deformable free surface of the weld pool. A first step in the development consisted in modeling the electromagnetic phenomena with two different numerical methods, in comparing the numerical results obtained with those of the literature and in quantifying the importance of the Lorentz force and the Joule effect compared to the other mechanical and thermal sources by computing power balances. Then, in order to assess the predictive capability of the model, simulations of various welding configurations are performed: variation in the chemical composition of the material, of the welding speed, of the prescribed arc pressure and of the welding positions, which is a focus of this work, are studied. A good agreement is obtained between the results of our model and other experimental and numerical results of the literature. Eventually, a model accounting for metal filling is proposed and its results are discussed. Thus, our complete model can be seen as a solid foundation towards future totally-coupled 3D welding models including the arc and it will be included in WPROCESS the in-house CEA software dedicated to the numerical simulation of welding. (author) [fr