WorldWideScience

Sample records for welded aisi 409m

  1. Experimental study of mechanical properties of friction welded AISI ...

    Indian Academy of Sciences (India)

    Friction welding is widely used as a mass production method in various industries. In the present study, an experimental set-up was designed in order to achieve friction welding of plastically deformed AISI 1021 steels. In this study, low alloy steel (AISI 1021) was welded under different welding parameters and afterwards ...

  2. Experimental study of mechanical properties of friction welded AISI ...

    Indian Academy of Sciences (India)

    Abstract. Friction welding is widely used as a mass production method in vari- ous industries. In the present study, an experimental set-up was designed in order to achieve friction welding of plastically deformed AISI 1021 steels. In this study, low alloy steel (AISI 1021) was welded under different welding parameters and ...

  3. Microstructural characteristics on bead on plate welding of AISI 904 ...

    African Journals Online (AJOL)

    In the present work, bead-on -plate welds were carried out on AISI 904 L super austenitic stainless steel sheets using Gas Metal Arc Welding (GMAW) process. In this present investigation AISI 904 L solid wire having 1.2 mm diameter was used as an electrode with direct current electrode positive polarity. Argon was ...

  4. Microstructural characteristics on bead on plate welding of AISI 904 ...

    African Journals Online (AJOL)

    user

    Abstract. In the present work, bead-on -plate welds were carried out on AISI 904 L super austenitic stainless steel sheets using Gas. Metal Arc Welding (GMAW) process. In this present investigation AISI 904 L solid wire having 1.2 mm diameter was used as an electrode with direct current electrode positive polarity.

  5. Weldability of AISI 304 to copper by friction welding

    Energy Technology Data Exchange (ETDEWEB)

    Kirik, Ihsan [Batman Univ. (Turkey); Balalan, Zulkuf [Firat Univ., Elazig (Turkey)

    2013-06-01

    Friction welding is a solid-state welding method, which can join different materials smoothly and is excessively used in manufacturing industry. Friction welding method is commonly used in welding applications of especially cylindrical components, pipes and materials with different properties, for which other welding methods remain incapable. AISI 304 stainless steel and a copper alloy of 99.6 % purity were used in this study. This couple was welded in the friction welding machine. After the welding process, samples were analyzed macroscopically and microscopically, and their microhardness was measured. Tensile test was used to determine the bond strength of materials that were joined using the friction welding method. At the end of the study, it was observed that AISI 304 stainless steel and copper could be welded smoothly using the friction welding method and the bond strength is close to the tensile strength of copper. (orig.)

  6. Metallurgical and Mechanical Research on Dissimilar Electron Beam Welding of AISI 316L and AISI 4340

    Directory of Open Access Journals (Sweden)

    A. R. Sufizadeh

    2016-01-01

    Full Text Available Dissimilar electron beam welding of 316L austenitic stainless steel and AISI 4340 low alloy high strength steel has been studied. Studies are focused on effect of beam current on weld geometry, optical and scanning electron microscopy, X-ray diffraction of the weld microstructures, and heat affected zone. The results showed that the increase of beam current led to increasing depths and widths of the welds. The optimum beam current was 2.8 mA which shows full penetration with minimum width. The cooling rates were calculated for optimum sample by measuring secondary dendrite arm space and the results show that high cooling rates lead to austenitic microstructure. Moreover, the metallography result shows the columnar and equiaxed austenitic microstructures in weld zone. A comparison of HAZ widths depicts the wider HAZ in the 316L side. The tensile tests results showed that the optimum sample fractured from base metal in AISI 316L side with the UTS values is much greater than the other samples. Moreover, the fractography study presents the weld cross sections with dimples resembling ductile fracture. The hardness results showed that the increase of the beam current led to the formation of a wide softening zone as HAZ in AISI 4340 side.

  7. Pulsed Nd:YAG laser welding of AISI 304 to AISI 420 stainless steels

    Science.gov (United States)

    Berretta, José Roberto; de Rossi, Wagner; David Martins das Neves, Maurício; Alves de Almeida, Ivan; Dias Vieira Junior, Nilson

    2007-09-01

    The technique to weld AISI 304 stainless steel to AISI 420 stainless steel with a pulsed Nd:YAG laser has been investigated. The main objective of this study was to determine the influence of the laser beam position, with respect to the joint, on weld characteristics. Specimens were welded with the laser beam incident on the joint and moved 0.1 and 0.2 mm on either side of the joint. The joints were examined in an optical microscope for cracks, pores and to determine the weld geometry. The microstructure of the weld and the heat affected zones were observed in a scanning electron microscope. An energy dispersive spectrometer, coupled to the scanning electron microscope, was used to determine variations in (weight %) the main chemical elements across the fillet weld. Vickers microhardness testing and tensile testing were carried out to determine the mechanical properties of the weld. The results of the various tests and examinations enabled definition of the best position for the incident laser beam with respect to the joint, for welding together the two stainless steels.

  8. Optimization of tensile strength of friction welded AISI 1040 and AISI 304L steels according to statistics analysis (ANOVA)

    Energy Technology Data Exchange (ETDEWEB)

    Kirik, Ihsan [Batman Univ. (Turkey); Ozdemir, Niyazi; Firat, Emrah Hanifi; Caligulu, Ugur [Firat Univ., Elazig (Turkey)

    2013-06-01

    Materials difficult to weld by fusion welding processes can be successfully welded by friction welding. The strength of the friction welded joints is extremely affected by process parameters (rotation speed, friction time, friction pressure, forging time, and forging pressure). In this study, statistical values of tensile strength were investigated in terms of rotation speed, friction time, and friction pressure on the strength behaviours of friction welded AISI 1040 and AISI 304L alloys. Then, the tensile test results were analyzed by analysis of variance (ANOVA) with a confidence level of 95 % to find out whether a statistically significant difference occurs. As a result of this study, the maximum tensile strength is very close, which that of AISI 1040 parent metal of 637 MPa to could be obtained for the joints fabricated under the welding conditions of rotation speed of 1700 rpm, friction pressure of 50 MPa, forging pressure of 100 MPa, friction time of 4 s, and forging time of 2 s. Rotation speed, friction time, and friction pressure on the friction welding of AISI 1040 and AISI 304L alloys were statistically significant regarding tensile strength test values. (orig.)

  9. Mechanical and Microstructural Properties of Friction Welded AISI 304 Stainless Steel to AISI 1060 Steel AISI 1060

    Directory of Open Access Journals (Sweden)

    Ates H.

    2014-10-01

    Full Text Available Rotary Friction welding is one of the most popular methods of joining similar and dissimilar materials. It is widely used with metals and thermoplastics in a wide variety of aviation, transport and aerospace industrial component designs. This study investigates the influence of friction and upsetting pressures on the hardness, tensile properties and microstructure of the welds. The experimental results showed that as the friction and upsetting pressures increased, the hardness and tensile strength values increased, as well. The tensile fracture of welded joint occurred in the AISI 1060 side. The friction processed joints were evaluated for their integrity and quality aspects by optical and scanning electron microscopy. For the perfect interfacial bonding, sufficient upsetting and friction pressures are necessary to reach the optimal temperature and severe plastic deformation to bring these materials within the attraction range.

  10. Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process

    OpenAIRE

    Chen Ying An; Francisco Piorino Neto; Eder Paduan Alves

    2010-01-01

    Abstract: The purpose of this work was to assess the development of solid state joints of dissimilar material AA1050 aluminum and AISI 304 stainless steel, which can be used in pipes of tanks of liquid propellants and other components of the Satellite Launch Vehicle. The joints were obtained by rotary friction welding process (RFW), which combines the heat generated from friction between two surfaces and plastic deformation. Tests were conducted with different welding process parameters. The ...

  11. Friction welding of Al-Cu-SiC composite to AISI 304 austenitic stainless steel

    OpenAIRE

    Özdemir, Niyazi; Balaban, Zülküf

    2017-01-01

    The present study investigates thefeasibility of joining an aluminium matrix composite reinforced with 5, 10 and15 vol. % of SiCp particles to AISI 304 austenitic stainless steel by usingfriction welding technique. In the present study, optical and electronmicroscopy as well as lap shear strength test and microhardness measurementswere used to evaluate the quality of bonding of Al-Cu-SiC and AISI 304austenitic stainless steel joints produced by friction welding

  12. TIG AISI-316 welds using an inert gas welding chamber and different filler metals: Changes in mechanical properties and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Pascual, M.; Salas, F.; Carcel, F.J.; Perales, M.; Sanchez, A.

    2010-07-01

    This report analyses the influence of the use of an inert gas welding chamber with a totally inert atmosphere on the microstructure and mechanical properties of austenitic AISI 316L stainless steel TIG welds, using AISI ER316L, AISI 308L and Inconel 625 as filler metals. When compared with the typical TIG process, the use of the inert gas chamber induced changes in the microstructure, mainly an increase in the presence of vermicular ferrite and ferrite stringers, what resulted in higher yield strengths and lower values of hardness. Its effect on other characteristics of the joins, such as tensile strength, depended on the filler metal. The best combination of mechanical characteristics was obtained when welding in the inert gas chamber using Inconel 625 as filler metal. (Author). 12 refs.

  13. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser...... treated surface was investigated using a novel micro electrochemical technique with a tip resolution of ~1 mm. Results show that hybrid laser welding of 316L has increased corrosion susceptibility probably as a result of grain boundary carbide formation. However a suitable post laser treatment could...

  14. Active flux tungsten inert gas welding of austenitic stainless steel AISI 304

    Directory of Open Access Journals (Sweden)

    D. Klobčar

    2016-10-01

    Full Text Available The paper presents the effects of flux assisted tungsten inert gas (A-TIG welding of 4 (10 mm thick austenitic stainless steel EN X5CrNi1810 (AISI 304 in the butt joint. The sample dimensions were 300 ´ 50 mm, and commercially available active flux QuickTIG was used for testing. In the planned study the influence of welding position and weld groove shape was analysed based on the penetration depth. A comparison of microstructure formation, grain size and ferrit number between TIG welding and A-TIG welding was done. The A-TIG welds were subjected to bending test. A comparative study of TIG and A-TIG welding shows that A-TIG welding increases the weld penetration depth.

  15. Effects of X-rays Radiation on AISI 304 Stainless Steel Weldings with AISI 316L Filler Material: A Study of Resistance and Pitting Corrosion Behavior

    Directory of Open Access Journals (Sweden)

    Francisco Javier Cárcel-Carrasco

    2016-04-01

    Full Text Available This article investigates the effect of low-level ionizing radiation, namely X-rays, on the micro structural characteristics, resistance, and corrosion resistance of TIG-welded joints of AISI 304 austenitic stainless steel made using AISI 316L filler rods. The welds were made in two different environments: natural atmospheric conditions and a closed chamber filled with inert argon gas. The influence of different doses of radiation on the resistance and corrosion characteristics of the welds is analyzed. Welded material from inert Ar gas chamber TIG showed better characteristics and lesser irradiation damage effects.

  16. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    Unlike in autogenous laser welding, hybrid laser welding of stainless steel could introduce grain boundary carbides due to low cooling rates. Formation of grain boundary carbides leads to reduced corrosion properties. Studies have initially been carried out on hybrid laser welding and subsequent...... laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser...... treated surface was investigated using a novel micro electrochemical technique with a tip resolution of ~1 mm. Results show that hybrid laser welding of 316L has increased corrosion susceptibility probably as a result of grain boundary carbide formation. However a suitable post laser treatment could...

  17. Corrosion resistance of the welded AISI 316L after various surface treatments

    Directory of Open Access Journals (Sweden)

    Tatiana Liptáková

    2014-01-01

    Full Text Available The main aim of this work is to monitor the surface treatment impact on the corrosion resistance of the welded stainless steel AISI 316L to local corrosion forms. The excellent corrosion resistance of austenitic stainless steel is caused by the existence of stable, thin and well adhering passive layer which quality is strongly influenced by welding. Therefore surface treatment of stainless steel is very important with regard to its local corrosion susceptibility Surfaces of welded stainless steel were treated by various mechanical methods (grinding, garnet blasting. Surface properties were studied by SEM, corrosion resistance was evaluated after exposition tests in chlorides environment using weight and metalographic analysis. The experimental outcomes confirmed that the mechanical finishing has a significant effect on the corrosion behavior of welded stainless steel AISI 316L.

  18. Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process

    Directory of Open Access Journals (Sweden)

    Chen Ying An

    2010-09-01

    Full Text Available The purpose of this work was to assess the development of solid state joints of dissimilar material AA1050 aluminum and AISI 304 stainless steel, which can be used in pipes of tanks of liquid propellants and other components of the Satellite Launch Vehicle. The joints were obtained by rotary friction welding process (RFW, which combines the heat generated from friction between two surfaces and plastic deformation. Tests were conducted with different welding process parameters. The results were analyzed by means of tensile tests, Vickers microhardness, metallographic tests and SEM-EDX. The strength of the joints varied with increasing friction time and the use of different pressure values. Joints were obtained with superior mechanical properties of the AA1050 aluminum, with fracture occurring in the aluminum away from the bonding interface. The analysis by EDX at the interface of the junction showed that interdiffusion occurs between the main chemical components of the materials involved. The RFW proves to be a great method for obtaining joints between dissimilar materials, which is not possible by fusion welding processes.

  19. Temperature distribution of multipass TIG welded AISI 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Esme, Ugur; Guven, Onur [Mersin Univ., Tarsus (Turkey); Bayramoglu, Melih; Serin, Hasan [Cukurova Univ., Adana (Turkey); Aydin, Hakan [Uludag Unaiv., Bursa (Turkey); Kazancoglu, Yigit [Izmir Univ. of Economics (Turkey). Dept. of Business Administration

    2011-07-01

    Tungsten inert gas welding (TIG) is one of the most important material-joining processes widely used in industry. AISI type 304L stainless steel plates with 8 and 10 mm thicknesses are widely used in the fabrication of pressure vessels and other components. These plates are mostly joined together by multipass welding methods. The temperature distribution that occurs during multipass welding affects the material microstructure, hardness, mechanical properties, and the residual stresses that will be present in the welded material. Very limited experimental data regarding temperature distribution during multipass welding of plates is available in the literature. Experimental work was carried out to find out the temperature distribution during multipass welding of the AISI 304L stainless steel plates. The temperature distribution curves obtained during the experiments are presented. The average maximum temperature rise during each pass of welding is calculated and plotted against the distance from the weld pad centre line. From these plots, the maximum temperature rise expected in the base plate region during any pass of welding operation can be estimated. (orig.)

  20. MICROSTRUCTURE AND FATIGUE PROPERTIES OF DISSIMILAR SPOT WELDED JOINTS OF AISI 304 AND AISI 1008

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2013-06-01

    Full Text Available Carbon steel and stainless steel composites are being more frequently used for applications requiring a corrosion resistant and attractive exterior surface and a high strength structural substrate. Spot welding is a potentially useful and efficient jointing process for the production of components consisting of these two materials. The spot welding characteristics of weld joints between these two materials are discussed in this paper. The experiment was conducted on dissimilar weld joints using carbon steel and 304L (2B austenitic stainless steel by varying the welding currents and electrode pressing forces. Throughout the welding process; the electrical signals from the strain sensor, current transducer and terminal voltage clippers are measured in order to understand each and every millisecond of the welding process. In doing so, the dynamic resistances, heat distributions and forging forces are computed for various currents and force levels within the good welds’ regions. The other process controlling parameters, particularly the electrode tip and weld time, remained constant throughout the experiment. The weld growth was noted for the welding current increment, but in the electrode force increment it causes an adverse reaction to weld growth. Moreover, the effect of heat imbalance was clearly noted during the welding process due to the different electrical and chemical properties. The welded specimens finally underwent tensile, hardness and metallurgical testing to characterise the weld growth.

  1. TIG AISI-316 welds using an inert gas welding chamber and different filler metals: Changes in mechanical properties and microstructure

    Directory of Open Access Journals (Sweden)

    Sánchez, A.

    2010-12-01

    Full Text Available This report analyses the influence of the use of an inert gas welding chamber with a totally inert atmosphere on the microstructure and mechanical properties of austenitic AISI 316L stainless steel TIG welds, using AISI ER316L, AISI 308L and Inconel 625 as filler metals. When compared with the typical TIG process, the use of the inert gas chamber induced changes in the microstructure, mainly an increase in the presence of vermicular ferrite and ferrite stringers, what resulted in higher yield strengths and lower values of hardness. Its effect on other characteristics of the joins, such as tensile strength, depended on the filler metal. The best combination of mechanical characteristics was obtained when welding in the inert gas chamber using Inconel 625 as filler metal.

    En este estudio se analiza la influencia que el uso de una cámara de soldadura de gas inerte tiene sobre la microestructura y las propiedades mecánicas de las soldaduras TIG en el acero inoxidable austenítico AISI-316L cuando se emplean AISI ER316L, AISI 308L e Inconel 625 como materiales de aporte. Cuando se compara con el típico proceso de TIG, el uso de una cámara de gas inerte induce cambios en la microestructura, incrementando la presencia de ferrita vermicular y de laminillas de ferrita, resultando en un aumento del límite elástico y una pérdida de dureza. Su influencia sobre otras características de las soldaduras como la carga de rotura depende de la composición del material de aporte. La mejor combinación de propiedades mecánicas se obtuvo usando el Inconel 625 como material de aporte y soldando en la cámara de gas inerte.

  2. Effect of the purging gas on properties of Ti stabilized AISI 321 stainless steel TIG welds

    Energy Technology Data Exchange (ETDEWEB)

    Taban, Emel; Kaluc, Erdinc; Aykan, T. Serkan [Kocaeli Univ. (Turkey). Dept. of Mechanical Engineering

    2014-07-01

    Gas purging is necessary to provide a high quality of stainless steel pipe welding in order to prevent oxidation of the weld zone inside the pipe. AISI 321 stabilized austenitic stainless steel pipes commonly preferred in refinery applications have been welded by the TIG welding process both with and without the use of purging gas. As purging gases, Ar, N{sub 2}, Ar + N{sub 2} and N{sub 2} + 10% H{sub 2} were used, respectively. The aim of this investigation is to detect the effect of purging gas on the weld joint properties such as microstructure, corrosion, strength and impact toughness. Macro sections and microstructures of the welds were investigated. Chemical composition analysis to obtain the nitrogen, oxygen and hydrogen content of the weld root was done by Leco analysis. Ferrite content of the beads including root and cap passes were measured by a ferritscope. Vickers hardness (HV10) values were obtained. Intergranular and pitting corrosion tests were applied to determine the corrosion resistance of all welds. Type of the purging gas affected pitting corrosion properties as well as the ferrite content and nitrogen, oxygen and hydrogen contents at the roots of the welds. Any hot cracking problems are not predicted as the weld still solidifies with ferrite in the primary phase as confirmed by microstructural and ferrite content analysis. Mechanical testing showed no significant change according to the purge gas. AISI 321 steel and 347 consumable compositions would permit use of nitrogen rich gases for root shielding without a risk of hot cracking.

  3. Microstructural characteristics on bead on plate welding of AISI 904 ...

    African Journals Online (AJOL)

    user

    Kim Ill-Soo., Son Joon-Sik., Yarlagadda Prasad KDV, 2003, A study on the quality improvement of robotic GMA welding process, Robot CIM-International Journal of Manufacturing, Vol. 19, No. 6, pp. 567–572. Lee TH, Kim SJ, Jung YC, 2000, Crystallographic Details of Precipitates in Fe-22Cr-21Ni-6Mo-(N) Super austenitic ...

  4. Welding with coated electrodes E 6010 and E 7018 in AISI 1025 steel

    Directory of Open Access Journals (Sweden)

    Dennis Reyes-Carcasés

    2018-01-01

    Full Text Available The welding of steel of low carbon content is a common practice in the nickel industry, where components with steels of these characteristics are manufactured. The objective of the paper was to establish the microstructural behavior of the AISI 1025 steel when it was welded with two types of electrodes (E 6010 and E 7018, the first one deposited as a mattress, and the second one to guarantee mechanical resistance; they were made in a 240 x 240 x 10 mm plate with simple bevel preparation. The microstructures obtained with the electrode E 6010 are of the ferrite type Widmanstátten, columnar ferrite and intergranular pearlite, with a hardness of 345 HV, while with the electrode E 7018 the microstructures are ferrite Widmanstátten, austenite and martensite, with hardness of 332 HV . The decrease in hardness in the latter case is associated with the thermal treatment of multipass annealing.

  5. Electrochemical Study of Welded AISI 304 and 904L Stainless Steel in Seawater in View of Corrosion

    Directory of Open Access Journals (Sweden)

    Richárd Székely

    2010-10-01

    Full Text Available This is a comparative study of the corrosion behaviour of welds in AISI 304 and AISI 904L stainless steels carried out in seawater model solution in the temperature range 5-35°C and the standard of corrosion testing of welds was followed. The corrosion rate and corrosion attack characteristics were determined for welds of the examined steels with several type of treatment. The aim of this work was to compare the steels based on their resistance against the corrosion in terms of pitting potential (Epit and repassivation potential (Erepass. Seawater is an electrochemically aggressive medium, which can initiate localised corrosion in welded stainless steels. Different electrochemical and testing methods were used, including cyclic voltammetry, chronopotentiometry, electrochemical impedance spectroscopy (EIS, pH measuring and penetration tests.

  6. Normalizing effect on fatigue crack propagation at the heat-affected zone of AISI 4140 steel shielded metal arc weldings

    OpenAIRE

    B. Vargas-Arista; J. Teran-Guillen; Solis, J.; García-Cerecero,G.; Martínez-Madrid,M.

    2013-01-01

    The fractography and mechanical behaviour of fatigue crack propagation in the heat-affected zone (HAZ) of AISI 4140 steel welded using the shielded metal arc process was analysed. Different austenitic grain size was obtained by normalizing performed at 1200 °C for 5 and 10 hours after welding. Three point bending fatigue tests on pre-cracked specimens along the HAZ revealed that coarse grains promoted an increase in fatigue crack growth rate, hence causing a reduction in both fracture toughne...

  7. Microstructural, compositional and residual stress evaluation of CO{sub 2} laser welded superaustenitic AISI 904L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zambon, A. [DIMEG, University of Padova, Via Marzolo, 9 I-35131 Padova (Italy)]. E-mail: a.zambon@unipd.it; Ferro, P. [Department of Management and Engineering, University of Padova, Str.lla S. Nicola, 3 I-36100 Vicenza (Italy); Bonollo, F. [Department of Management and Engineering, University of Padova, Str.lla S. Nicola, 3 I-36100 Vicenza (Italy)

    2006-05-25

    CO{sub 2} laser welding was performed on AISI 904L superaustenitic stainless steel sheets, with optimised processing parameters determined by means of melt run trial evaluations. X-ray diffraction phase identification and light microscopy confirmed that the weld structure is fully austenitic and dendritic. A hardness increase in the weld bead with respect to the parent metal occurred and was related to both the microstructural refinement induced by a rapid cooling of the fusion zone and the presence of nanometric scale precipitates observed by TEM in the weld bead. Residual stresses were determined by means of X-ray diffraction, exhibiting tensile stresses, close to the yield strength, in the longitudinal direction in the weld bead, while the stresses were compressive in the transverse direction and in the base material. Tensile tests showed that welded specimens retained strength and ductility values comparable to those of the base material.

  8. Effect of Beam Oscillation on Microstructure and Mechanical Properties of AISI 316L Electron Beam Welds

    Science.gov (United States)

    Kar, Jyotirmaya; Roy, Sanat Kumar; Roy, Gour Gopal

    2017-04-01

    The properties of electron beam-welded AISI 316L stainless steel butt joints prepared with and without beam oscillation were evaluated by microstructural analysis, mechanical testing like microhardness measurements, tensile tests at room and elevated temperature 973 K (700 °C), three-point bend, and Charpy impact tests. All joints, irrespective of being prepared with or without beam oscillation, were found to be defect free. Welds produced by beam oscillation exhibited narrower fusion zone (FZ) with lathy ferrite morphology, while the weld without beam oscillation was characterized by wider FZ and skeletal ferrite morphology. During tensile tests at room and elevated temperature 973 K (700 °C), all samples fractured in the base metal (BM) and showed almost the same tensile properties as that of the BM. However, the notch tensile tests at room temperature demonstrated higher strength for joints prepared with the oscillating beam. Besides, face and root bend tests, as well as Charpy impact tests, showed higher bending strength and notch toughness, respectively, for joints prepared with beam oscillation.

  9. Joining of hybrid AA6063-6SiCp-3Grp composite and AISI 1030 steel by friction welding

    Directory of Open Access Journals (Sweden)

    N. Rajesh Jesudoss Hynes

    2017-10-01

    Full Text Available Joining of metals and aluminium hybrid metal matrix composites has significant applications in aviation, ship building and automotive industries. In the present work, investigation is carried out on Friction Welding of AISI 1030 steel and hybrid AA6063-6SiCp-3Grpcomposite, that are difficult to weld by fusion welding technique. Silicon carbide and graphite particle reinforced AA6063 matrix hybrid composite was developed successfully using stir casting method and the joining feasibility of AISI1030 steel with AA6063-6SiCp-3Grp hybrid composite was tried out by friction stud welding technique. During friction stage of welding process, the particulates (SiC & Graphite used for reinforcement, tend to increase the viscosity and lead to improper mixing of matrix and reinforcement. This eventually results in lower strength in dissimilar joints. To overcome this difficulty AA1100 interlayer is used while joining hybrid composite to AISI 1030 steel. Experimentation was carried out using Taguchi based design of experiments (DOE technique. Multiple regression methods were applied to understand the relationship between process parameters of the friction stud welding process. Micro structural examination reveals three separate zones namely fully plasticized zone, partially deformed zone and unaffected base material zone. Ultra fine dynamically recrystallized grains of about 341 nm were observed at the fully plasticized zone. EDX analysis confirms the presence of intermetallic compound Fe2Al5 at the joint interface. According to the experimental analysis using DOE, rotational speed and interlayer sheet thickness contribute about 39% and 36% respectively in determining the impact strength of the welded joints. It is found that joining with 0.5 mm interlayer sheet provides efficient joints. Developed regression model could be used to predict the axial shortening distance and impact strength of the welded joint with reasonable accuracy.

  10. Pulsed current and dual pulse gas metal arc welding of grade AISI: 310S austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    A. Mathivanan

    2015-09-01

    Full Text Available The transverse shrinkage, mechanical and metallurgical properties of AISI: 310S ASS weld joints prepared by P-GMAW and DP-GMAW processes were investigated. It was observed that the use of the DP-GMAW process improves the aforementioned characteristics in comparison to that of the P-GMAW process. The enhanced quality of weld joints obtained with DP-GMAW process is primarily due to the combined effect of pulsed current and thermal pulsation (low frequency pulse. During the thermal pulsation period, there is a fluctuation of wire feed rate, which results in the further increase in welding current and the decrease in arc voltage. Because of this synchronization between welding current and arc voltage during the period of low frequency pulse, the DP-GMAW deposit introduces comparatively more thermal shock compared to the P-GMAW deposit, thereby reducing the heat input and improves the properties of weld joints.

  11. Effect of electromagnetic interaction during fusion welding of AISI 2205 duplex stainless steel on the corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    García-Rentería, M.A., E-mail: marcogarciarenteria@uadec.edu.mx [Faculty of Metallurgy, Autonomous University of Coahuila, Carretera 57 Km. 5, CP 25720, Monclova, Coahuila (Mexico); López-Morelos, V.H., E-mail: vhlopez@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); González-Sánchez, J., E-mail: jagonzal@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); García-Hernández, R., E-mail: rgarcia@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); Dzib-Pérez, L., E-mail: franciscocl7@yahoo.com.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); Curiel-López, F.F., E-mail: franciscocl7@yahoo.com.mx [Faculty of Metallurgy, Autonomous University of Coahuila, Carretera 57 Km. 5, CP 25720, Monclova, Coahuila (Mexico)

    2017-02-28

    Highlights: • Application of EMILI during welding 2205 Duplex stainless steel hindered the coarsening of δ grains in HTHAZ and promoted regeneration of γ. • Welds made with simultaneous EMILI presented TPI values at the HTHAZ similar to those for BM. • Welds made under 3, 12 and 15 mT presented a mass loss by anodic polarisation similar to that observed for the as-received BM. • This behaviour is due to changes in the dynamics of microstructural evolution during welding with EMILI. - Abstract: The effect of electromagnetic interaction of low intensity (EMILI) applied during fusion welding of AISI 2205 duplex stainless steel on the resistance to localised corrosion in natural seawater was investigated. The heat affected zone (HAZ) of samples welded under EMILI showed a higher temperature for pitting initiation and lower dissolution under anodic polarisation in chloride containing solutions than samples welded without EMILI. The EMILI assisted welding process developed in the present work enhanced the resistance to localised corrosion due to a modification on the microstructural evolution in the HAZ and the fusion zone during the thermal cycle involved in fusion welding. The application of EMILI reduced the size of the HAZ, limited coarsening of the ferrite grains and promoted regeneration of austenite in this zone, inducing a homogeneous passive condition of the surface. EMILI can be applied during fusion welding of structural or functional components of diverse size manufactured with duplex stainless steel designed to withstand aggressive environments such as natural seawater or marine atmospheres.

  12. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Energy Technology Data Exchange (ETDEWEB)

    Kilinc, B., E-mail: bkilinc@sakarya.edu.tr; Durmaz, M.; Abakay, E. [Department of Metallurgical and Materials Engineering, Institute of Arts and Sciences, SakaryaUniversity, Esentepe Campus, 54187Sakarya (Turkey); Sen, U.; Sen, S. [Department of Metallurgical and Materials Engineering, Engineering Faculty, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey)

    2015-03-30

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe{sub 12}Nb{sub 5}B{sub 3} and Fe{sub 2}NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe{sub 2}B, NbB{sub 2}, NbFeB and Fe0,2 Nb{sub 0,8} phases. The hardness of the presence phases are changing between 1689±85 HV{sub 0.01}, and 181±7 HV{sub 0.1}. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe{sub 12}Nb{sub 5}B{sub 3} and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  13. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Science.gov (United States)

    Kilinc, B.; Durmaz, M.; Abakay, E.; Sen, U.; Sen, S.

    2015-03-01

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe12Nb5B3 and Fe2NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe2B, NbB2, NbFeB and Fe0,2 Nb0,8 phases. The hardness of the presence phases are changing between 1689±85 HV0.01, and 181±7 HV0.1. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe12Nb5B3 and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  14. Experimental Determination of Temperature During Rotary Friction Welding of AA1050 Aluminum with AISI 304 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Eder Paduan Alves

    2012-03-01

    Full Text Available The purpose of this study was the temperature monitoring at bonding interface during the rotary friction welding process of dissimilar materials: AA1050 aluminum with AISI 304 stainless steel. As it is directly related to the mechanical strenght of the junction, its experimental determination in real time is of fundamental importance for understanding and characterizing the main process steps, and the definition and optimization of parameters. The temperature gradients were obtained using a system called Thermocouple Data-Logger, which allowed monitoring and recording data in real-time operation. In the graph temperature versus time obtained, the heating rates, cooling were analyzed, and the maximum temperature was determined that occurred during welding, and characterized every phases of the process. The efficiency of this system demonstrated by experimental tests and the knowledge of the temperature at the bonding interface open new lines of research to understand the process of friction welding.

  15. Joining of Dissimilar alloy Sheets (Al 6063&AISI 304 during Resistance Spot Welding Process: A Feasibility Study for Automotive industry

    Directory of Open Access Journals (Sweden)

    Reddy Sreenivasulu

    2014-12-01

    Full Text Available Present design trends in automotive manufacture have shifted emphasis to alternative lightweight materials in order to achieve higher fuel efficiency and to bring down vehicle emission. Although some other joining techniques are more and more being used, spot welding still remains the primary joining method in automobile manufacturing so far. Spot welds for automotive applications should have a sufficiently large diameter, so that nugget pullout mode is the dominant failure mode. Interfacial mode is unacceptable due to its low load carrying and energy absorption capability. Strength tests with different static loading were performed in, to reveal the failure mechanisms for the lap-shear geometry and the cross-tension geometry. Based on the literature survey performed, venture into this work was amply motivated by the fact that a little research work has been conducted to joining of dissimilar materials like non ferrous to ferrous. Most of the research works concentrated on joining of different materials like steel to steel or aluminium alloy to aluminium alloy by resistance spot welding. In this work, an experimental study on the resistance spot weldability of aluminium alloy (Al 6063 and austenitic stainless steel (AISI304 sheets, which are lap joined by using a pedestal type resistance spot welding machine. Welding was conducted using a 45-deg truncated cone copper electrode with 10-mm face diameter. The weld nugget diameter, force estimation under lap shear test and T – peel test were investigated using digital type tensometer attached with capacitive displacement transducer (Mikrotech, Bangalore, Model: METM2000ER1. The results shows that joining of Al 6063 and AISI 304 thin sheets by RSW method are feasible for automotive structural joints where the loads are below 1000N act on them, it is observed that by increasing the spots per unit length, then the joint with standing strength to oppose failure is also increased linearly incase of

  16. Effect of plasma arc welding variables on fusion zone grain size and hardness of AISI 321 austenitic stainless steel

    Science.gov (United States)

    Kondapalli, S. P.

    2017-12-01

    In the present work, pulsed current microplasma arc welding is carried out on AISI 321 austenitic stainless steel of 0.3 mm thickness. Peak current, Base current, Pulse rate and Pulse width are chosen as the input variables, whereas grain size and hardness are considered as output responses. Response surface method is adopted by using Box-Behnken Design, and in total 27 experiments are performed. Empirical relation between input and output response is developed using statistical software and analysis of variance (ANOVA) at 95% confidence level to check the adequacy. The main effect and interaction effect of input variables on output response are also studied.

  17. THE EFFECT OF THE ANNEALING TEMPERATURE ON THE CORROSION RESISTANCE OF WELD JOINT OF AISI 310 STEEL - SHORT COMMUNICATION

    Directory of Open Access Journals (Sweden)

    Pavel Kovačócy

    2011-10-01

    Full Text Available The article presents samples of weld joint of AISI 310 austenitic steel which were subjected to solution annealing at various temperature - time exposures. The objective of the experiment was to determine the annealing temperature so that the steel should not be sensitized. Tendency to intercrystalline corrosion was analysed by means of a corrosion test in 10 % oxalic acid according to ASTM A 262. At the temperatures of 1000 and 1100°C held for 15 min. the steel was not sensitized. At the temperature of 850°C the steel was sensitized, i.e. susceptible to intercrystalline corrosion.

  18. THE EFFECT OF THE ANNEALING TEMPERATURE ON THE CORROSION RESISTANCE OF WELD JOINT OF AISI 310 STEEL - SHORT COMMUNICATION

    Directory of Open Access Journals (Sweden)

    Martina Nerádová

    2012-02-01

    Full Text Available The article presents samples of weld joint of AISI 310 austenitic steel which were subjected to solution annealing at various temperature - time exposures. The objective of the experiment was to determine the annealing temperature so that the steel should not be sensitized. Tendency to intercrystalline corrosion was analysed by means of a corrosion test in 10 % oxalic acid according to ASTM A 262. At the temperatures of 1000 and 1100°C held for 15 min. the steel was not sensitized. At the temperature of 850°C the steel was sensitized, i.e. susceptible to intercrystalline corrosion.

  19. Normalizing effect on fatigue crack propagation at the heat-affected zone of AISI 4140 steel shielded metal arc weldings

    Directory of Open Access Journals (Sweden)

    B. Vargas-Arista

    2013-01-01

    Full Text Available The fractography and mechanical behaviour of fatigue crack propagation in the heat-affected zone (HAZ of AISI 4140 steel welded using the shielded metal arc process was analysed. Different austenitic grain size was obtained by normalizing performed at 1200 °C for 5 and 10 hours after welding. Three point bending fatigue tests on pre-cracked specimens along the HAZ revealed that coarse grains promoted an increase in fatigue crack growth rate, hence causing a reduction in both fracture toughness and critical crack length, and a transgranular brittle final fracture with an area fraction of dimple zones connecting cleavage facets. A fractographic analysis proved that as the normalizing time increased the crack length decreased. The increase in the river patterns on the fatigue crack propagation in zone II was also evidenced and final brittle fracture because of transgranular quasicleavage was observed. Larger grains induced a deterioration of the fatigue resistance of the HAZ.

  20. The 2D Finite Element Microstructure Evaluation of V-Shaped Arc Welding of AISI 1045 Steel

    Directory of Open Access Journals (Sweden)

    Omer Eyercioglu

    2017-02-01

    Full Text Available In the present study, V-shaped arc welding of the AISI 1045 steel is modeled by using 2D Finite Element Model (FEM. The temperature distribution, microstructure, grain growth, and the hardness of the heat-affected zone (HAZ of the welding are simulated. The experimental work is carried out to validate the FE model. The very close agreement between the simulation and experimental results show that the FE model is very effective for predicting the microstructure, the phase transformation, the grain growth and the hardness. The effect of preheat temperature on the martensite formation is analysed, and it is shown that 225 °C preheating completely eliminates the martensite formations for the 12 mm thick plate.

  1. Genetic algorithm based optimization of the process parameters for gas metal arc welding of AISI 904 L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Sathiya, P. [National Institute of Technology Tiruchirappalli (India); Ajith, P. M. [Department of Mechanical Engineering Rajiv Gandhi Institute of Technology, Kottayam (India); Soundararajan, R. [Sri Krishna College of Engineering and Technology, Coimbatore (India)

    2013-08-15

    The present study is focused on welding of super austenitic stainless steel sheet using gas metal arc welding process with AISI 904 L super austenitic stainless steel with solid wire of 1.2 mm diameter. Based on the Box - Behnken design technique, the experiments are carried out. The input parameters (gas flow rate, voltage, travel speed and wire feed rate) ranges are selected based on the filler wire thickness and base material thickness and the corresponding output variables such as bead width (BW), bead height (BH) and depth of penetration (DP) are measured using optical microscopy. Based on the experimental data, the mathematical models are developed as per regression analysis using Design Expert 7.1 software. An attempt is made to minimize the bead width and bead height and maximize the depth of penetration using genetic algorithm.

  2. Gas tungsten arc welding and friction stir welding of ultrafine grained AISI 304L stainless steel: Microstructural and mechanical behavior characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sabooni, S., E-mail: s.sabooni@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Karimzadeh, F.; Enayati, M.H. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Ngan, A.H.W. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Jabbari, H. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of)

    2015-11-15

    In the present study, an ultrafine grained (UFG) AISI 304L stainless steel with the average grain size of 650 nm was successfully welded by both gas tungsten arc welding (GTAW) and friction stir welding (FSW). GTAW was applied without any filler metal. FSW was also performed at a constant rotational speed of 630 rpm and different welding speeds from 20 to 80 mm/min. Microstructural characterization was carried out by High Resolution Scanning Electron Microscopy (HRSEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). Nanoindentation, microhardness measurements and tensile tests were also performed to study the mechanical properties of the base metal and weldments. The results showed that the solidification mode in the GTAW welded sample is FA (ferrite–austenite) type with the microstructure consisting of an austenite matrix embedded with lath type and skeletal type ferrite. The nugget zone microstructure in the FSW welded samples consisted of equiaxed dynamically recrystallized austenite grains with some amount of elongated delta ferrite. Sigma phase precipitates were formed in the region ahead the rotating tool during the heating cycle of FSW, which were finally fragmented into nanometric particles and distributed in the weld nugget. Also there is a high possibility that the existing delta ferrite in the microstructure rapidly transforms into sigma phase particles during the short thermal cycle of FSW. These suggest that high strain and deformation during FSW can promote sigma phase formation. The final austenite grain size in the nugget zone was found to decrease with increasing Zener–Hollomon parameter, which was obtained quantitatively by measuring the peak temperature, calculating the strain rate during FSW and exact examination of hot deformation activation energy by considering the actual grain size before the occurrence of dynamic recrystallization. Mechanical properties observations showed that the welding

  3. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    Energy Technology Data Exchange (ETDEWEB)

    García-Rentería, M.A., E-mail: crazyfim@gmail.com [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); López-Morelos, V.H., E-mail: vhlopez@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); García-Hernández, R., E-mail: rgarcia@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); Dzib-Pérez, L., E-mail: luirdzib@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); García-Ochoa, E.M., E-mail: emgarcia@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); González-Sánchez, J., E-mail: jagonzal@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico)

    2014-12-01

    Highlights: • Electromagnetic interaction in welding improved localised corrosion resistance. • Electromagnetic interaction in welding enhanced γ/δ phase balance of DuplexSS. • Welding under Electromagnetic interaction repress formation and growth of detrimental phases. • Welds made with gas protection (2% O{sub 2} + 98% Ar) have better microstructural evolution during welding. - Abstract: The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O{sub 2} (M1) and 97% Ar + 3% N{sub 2} (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  4. Effect of postweld treatment on the fatigue crack growth rate of electron-beam-welded AISI 4130 steel

    Science.gov (United States)

    Wang, Chien-Chun; Chang, Yih

    1996-10-01

    This article studies the effect of in-chamber electron beam and ex-chamber furnace postweld treatments on the fatigue crack growth rate of electron-beam-welded AISI 4130 steel. Mechanical properties of the weldment are evaluated by tensile testing, while the fatigue properties are investigated by a fatigue crack propagation method. Microstructural examination shows that both postweld treatments temper the weldment by the appropriate control of beam pattern width, input beam energy, and furnace temperature. In addition, the ductility, strength, and microhardness of the weldment also reflect this tempering effect. The fatigue crack growth rate is decreased after both postweld treatments. This is mainly caused by the existence of a toughened microstructure and relief of the residual stress due to the fact that (1) the residual stress becomes more compressive as more beam energy is delivered into the samples and (2) postweld furnace tempering effectively releases the tensile stress into a compressive stress state.

  5. Characterization of welding of AISI 304l stainless steel similar to the core encircling of a BWR reactor; Caracterizacion de soldaduras de acero inoxidable AISI 304L similares a las de la envolvente del nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gachuz M, M.E.; Palacios P, F.; Robles P, E.F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    Plates of austenitic stainless steel AISI 304l of 0.0381 m thickness were welded by means of the SMAW process according to that recommended in the Section 9 of the ASME Code, so that it was reproduced the welding process used to assemble the encircling of the core of a BWR/5 reactor similar to that of the Laguna Verde Nucleo electric plant, there being generated the necessary documentation for the qualification of the one welding procedure and of the welder. They were characterized so much the one base metal, as the welding cord by means of metallographic techniques, scanning electron microscopy, X-ray diffraction, mechanical essays and fracture mechanics. From the obtained results it highlights the presence of an area affected by the heat of up to 1.5 mm of wide and a value of fracture tenacity (J{sub IC}) to ambient temperature for the base metal of 528 KJ/m{sup 2}, which is diminished by the presence of the welding and by the increment in the temperature of the one essay. Also it was carried out an fractographic analysis of the fracture zone generated by the tenacity essays, what evidence a ductile fracture. The experimental values of resistance and tenacity are important for the study of the structural integrity of the encircling one of the core. (Author)

  6. Influences of Cr/Ni equivalent ratios of filler wires on pitting corrosion and ductility-dip cracking of AISI 316L weld metals

    Science.gov (United States)

    Kim, Y. H.; Kim, D. G.; Sung, J. H.; Kim, I. S.; Ko, D. E.; Kang, N. H.; Hong, H. U.; Park, J. H.; Lee, H. W.

    2011-02-01

    To study the pitting corrosion of AISI 316L weld metals according to the chromium/nickel equivalent ratio (Creq/Nieq ratio), three filler wires were newly designed for the flux-cored arc welding process. The weld metal with delta-ferrite at less than 3 vol.%, was observed for ductility-dip cracking (DDC) in the reheated region after multi-pass welding. The tensile strength and yield strength increased with increasing Creq/Nieq ratio. The result of anodic polarization tests in a 0.1 M NaCl solution at the room temperature (25) for 45 min, revealed that the base metal and weld metals have a similar corrosion potential of -0.34 VSCE. The weld metal with the highest content of Cr had the highest pitting potential (0.39 VSCE) and the passivation range (0.64 VSCE) was higher than the base metal (0.21 VSCE and 0.46 VSCE, respectively). Adding 0.001 M Na2S to the 0.1M NaCl solution, the corrosion occurred more severely by H2S. The corrosion potentials of the base metal and three weld metals decreased to -1.0 VSCE. DDC caused the decrease of the pitting potential by inducing a locally intense corrosion attack around the crack openings.

  7. Estimation of Fatigue Life of Laser Welded AISI304 Stainless Steel T-Joint Based on Experiments and Recommendations in Design Codes

    DEFF Research Database (Denmark)

    Lambertsen, Søren Heide; Damkilde, Lars; Kristensen, Anders Schmidt

    2013-01-01

    of specimens are used, two of these are non-welded and the third is welded with a transverse welding (T-Joint). The 13 laser welded specimens are cut out with a milling cutter. The non-welded specimens are divided in 13 specimens cut out with a milling cutter and 10 specimens cut out by a plasma cutter......In this paper the fatigue behavior of laser welded T-joints of stainless steel AISI304 is investigated experimentally. In the fatigue experiments 36 specimens with a sheet thickness of 1 mm are exposed to one-dimensional cyclic loading. Three different types of specimens are adopted. Three groups....... The non-welded specimens are used to study the influence of heat and surface effects on the fatigue life. The fatigue life from the experiments is compared to fatigue life calculated from the guidelines in the standards DNV-RP-C203 and EUROCODE 3 EN-1993-1-9. Insignificant differences in fatigue life...

  8. Influence of process parameters on torsional strength, impact toughness and hardness of dissimilar AISI 304 and AISI 1021 friction welded steels

    Directory of Open Access Journals (Sweden)

    Amit Handa

    2014-06-01

    Full Text Available In this present study an attempt was made to join austenitic stainless steel (AISI 304 with low alloy steel (AISI 1021 at different rotational speeds and at different axial pressures and then determining the strength of the joint by means of mechanical properties such as torsional strength, impact strength and micro hardness. The experimental results indicate that the rotational speed and the axial pressure have a significant effect on the mechanical properties of the joint and it is possible to improve the quality of the joint by selecting the optimum parameters.

  9. Optimization of pulsed current GTAW process parameters for sintered hot forged AISI 4135 P/M steel welds by simulated annealing and genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Joby; Muthukumaran, S. [National Institute of Technology, Tamil Nadu (India)

    2016-01-15

    Abundant improvements have occurred in materials handling, especially in metal joining. Pulsed current gas tungsten arc welding (PCGTAW) is one of the consequential fusion techniques. In this work, PCGTAW of AISI 4135 steel engendered through powder metallurgy (P/M) has been executed, and the process parameters have been highlighted applying Taguchi's L9 orthogonal array. The results show that the peak current (Ip), gas flow rate (GFR), welding speed (WS) and base current (Ib) are the critical constraints in strong determinant of the Tensile strength (TS) as well as percentage of elongation (% Elong) of the joint. The practical impact of applying Genetic algorithm (GA) and Simulated annealing (SA) to PCGTAW process has been authenticated by means of calculating the deviation between predicted and experimental welding process parameters.

  10. The effect of CO{sub 2} laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Köse, Ceyhun, E-mail: ceyhun.kose@gop.edu.tr [Faculty of Natural Sciences and Engineering, Department of Mechanical Engineering, Gaziosmanpaşa University, Tokat (Turkey); Kaçar, Ramazan, E-mail: rkacar@karabuk.edu.tr [Faculty of Technology Department of Manufacturing Engineering, Karabuk University, Karabuk 78050 (Turkey); Zorba, Aslı Pınar, E-mail: aslipinarzorba@gmail.com [Graduate School of Natural and Applied Sciences, Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey); Bağırova, Melahat, E-mail: mbagir@yildiz.edu.tr [Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey); Allahverdiyev, Adil M., E-mail: adil@yildiz.edu.tr [Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey)

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO{sub 2} laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and

  11. The effect of CO2 laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro.

    Science.gov (United States)

    Köse, Ceyhun; Kaçar, Ramazan; Zorba, Aslı Pınar; Bağırova, Melahat; Allahverdiyev, Adil M

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded

  12. The effect of temperature on the SCC behavior of AISI301L stainless steel welded joints in 3.5% NaCl solution

    Science.gov (United States)

    Fu, Z. H.; Gou, G. Q.; Xiao, J.; Qiu, S. Y.; Wang, W. J.

    2017-07-01

    The stress corrosion cracking (SCC) behaviors at slow strain rate tensile (SSRT) test of AISI301L stainless steel laser-MIG welded joints in 3.5 wt.% NaCl solution at 20∘C, 40∘C and 60∘C were investigated. The results showed that the weld metal composed of as-cast with δ-Fe and austenite. The base metal (BM) and heat affected zone (HAZ) contained strain-induced M phase. The stress and strain decreased with the increasing temperature. The SCC cracks are initiated by anodic dissolution at 20∘C. Besides the anodic dissolution mechanism, hydrogen-induced SCC mechanism had appeared in 3.5 wt.% NaCl solution at 40∘C and 60∘C.

  13. Effects of Thermal Aging on Microstructure and Corrosion Resistance of AISI 317L Steel Weld Metal in the FSW Process

    OpenAIRE

    Farneze, Humberto Nogueira; Tavares,Sérgio Souto Maior; Pardal, Juan Manuel; Londoño,Antônio José Ramírez; Pereira,Victor Ferrinho; Barbosa, Cássio

    2015-01-01

    The AISI 317L grade is an austenitic stainless steel with high Mo content (3.0 wt% min.). Due to the higher pitting resistance, this grade has replaced AISI 316L steel in many applications where the corrosion resistance is a critical property. However, the high Mo can induce phase transformations in high temperature services. In modern oil refinaries and petrochemical industries AISI 317L has been selected for temperatures as high as 550 °C. The goal of this work was to analyze the microstruc...

  14. Effect of prior cold work on the degree of sensitisation of welded joints of AISI 316L austenitic stainless steel studied by using an electrochemical minicell

    Energy Technology Data Exchange (ETDEWEB)

    De Tiedra, Pilar [Ciencia de los Materiales e Ingenieria Metalurgica, Departamento CMeIM/EGI/ICGF/IM/IPF, Universidad de Valladolid, Escuela de Ingenierias Industriales, Paseo del Cauce 59, Valladolid 47011 (Spain); Martin, Oscar, E-mail: oml@eis.uva.es [Ciencia de los Materiales e Ingenieria Metalurgica, Departamento CMeIM/EGI/ICGF/IM/IPF, Universidad de Valladolid, Escuela de Ingenierias Industriales, Paseo del Cauce 59, Valladolid 47011 (Spain); Garcia, Cristina; Martin, Fernando; Lopez, Manuel [Ciencia de los Materiales e Ingenieria Metalurgica, Departamento CMeIM/EGI/ICGF/IM/IPF, Universidad de Valladolid, Escuela de Ingenierias Industriales, Paseo del Cauce 59, Valladolid 47011 (Spain)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Double loop shows greater sensitivity to interdendritic corrosion than single loop. Black-Right-Pointing-Pointer Fusion line sensitisation is lower than that of weld metal for all prior cold works. Black-Right-Pointing-Pointer Heat affected zone sensitisation is maximum at a prior cold work of 10%. Black-Right-Pointing-Pointer Heat affected zone sensitisation Much-Less-Than base material sensitisation for a prior cold work of 20%. - Abstract: This work aims to assess the effect of prior cold work on the degree of sensitisation of each of the four welding zones of welded joints of AISI 316L subjected to post-welding sensitisation. Electrochemical potentiokinetic reactivation and double loop electrochemical potentiokinetic reactivation tests are performed on each of the four zones by using a small-scale electrochemical cell (minicell). The results show that the degree of sensitisation of heat affected zone, which achieves its maximum at a prior cold work level of 10%, is significantly lower than that of base material for a prior cold work of 20%.

  15. Similar and Dissimilar Nd:YAGlaser Welding of NiTi Shape Memory Alloy to AISI 420Stainless Steel

    Directory of Open Access Journals (Sweden)

    Jassim Mohammed Salman Al-Murshdy

    2017-03-01

    Full Text Available Similar NiTi shape memory alloy(SMA plates, 420 Martensitic stainless steelplates and dissimilar NiTi shape memory alloy with Martensiticstainless steel were welded by a pulsed Nd:YAGlaser welding method.The nature microstructure of the base metal (BM, weld zone (WZ, interface and the heat affected zones(HAZ were showedby in a scanning electron microscope (SEM and optical microscope.Vickers hardness tests wasconducted to specifythe properties of the weld. The outcomes showed that the hardness of dissimilar NiTi-Stainless steel (St.St. weld is higher than that in similar NiTi-NiTi and St.St.-St.St. weld.TheMicrostructural examination in both NiTi-St.St. and NiTi-NiTi welds illustrates that the solidification process in the fusion zone changed the kind of plan to the cell type as well as the changes that occur in the cell to dentritic kind of intra- region of the weld through the weld center in the welded sample sides but in the St.St.-St.St. weld showed dendrite microstructure. In this study it is found that the increase of the welding speed leads to a decrease in hardness in all jointsNiTi-NiTi, NiTi-St.St. and St.St.-St.St.

  16. Solidificação da zona de fusão na soldagem do AISI 304 com inconel 600 por laser de Nd: YAG Microstructure development in Nd: YAG laser welding of AISI 304 and Inconel 600

    Directory of Open Access Journals (Sweden)

    Maurício David M. das Neves

    2009-06-01

    Full Text Available Neste trabalho estudou-se a morfologia de solidificação da zona de fusão, numa junta formada a partir de materiais dissimilares, composta por aço inoxidável austenítico AISI 304 e por liga de níquel Inconel 600, soldada com laser pulsado de Nd:YAG. Os parâmetros do feixe laser e do sistema óptico foram selecionados, visando obter uma solda com penetração total e bom acabamento superficial. A caracterização microestrutural foi realizada por microscopia ótica, onde se observou uma zona de fusão com penetração total do tipo keyhole, a presença de pequenos poros e a ausência de trincas. As juntas soldadas foram caracterizadas também, por meio de microscopia eletrônica de varredura (MEV. Medidas realizadas por espectrometria de raios X por dispersão de energia na zona de fusão indicaram uma distribuição levemente heterogênea de níquel e ferro. Observou-se que o início de solidificação da zona de fusão ocorreu por meio de crescimento epitaxial. A morfologia de solidificação da ZF foi basicamente dendrítica e celular sendo, influenciada pelo gradiente de temperatura, velocidade de solidificação e composição química. As variações de composição química e da morfologia de solidificação não alteraram significativamente os valores de microdureza Vickers na zona de fusão. Resultados obtidos nos ensaios de tração indicaram valores de eficiência de soldagem adequados.An autogenous laser welding of dissimilar materials involving AISI 304 austenitic stainless steels and Inconel 600 nickel alloy was investigated in this study. Hence, the aim of this investigation was to study the solidification and microstructure of fusion zone when using a pulsed Nd:YAG laser. The laser and optical beam parameters were chosen to achieve a good weld with total penetration. Optical microscopy pictures showed a typical keyhole weld with total penetration, small pores and free of cracks. The x-ray spectrometry by energy dispersion

  17. Weldability Characteristics of Sintered Hot-Forged AISI 4135 Steel Produced through P/M Route by Using Pulsed Current Gas Tungsten Arc Welding

    Science.gov (United States)

    Joseph, Joby; Muthukumaran, S.; Pandey, K. S.

    2016-01-01

    Present investigation is an attempt to study the weldability characteristics of sintered hot-forged plates of AISI 4135 steel produced through powder metallurgy (P/M) route using matching filler materials of ER80S B2. Compacts of homogeneously blended elemental powders corresponding to the above steel were prepared on a universal testing machine (UTM) by taking pre-weighed powder blend with a suitable die, punch and bottom insert assembly. Indigenously developed ceramic coating was applied on the entire surface of the compacts in order to protect them from oxidation during sintering. Sintered preforms were hot forged to flat, approximately rectangular plates, welded by pulsed current gas tungsten arc welding (PCGTAW) processes with aforementioned filler materials. Microstructural, tensile and hardness evaluations revealed that PCGTAW process with low heat input could produce weldments of good quality with almost nil defects. It was established that PCGTAW joints possess improved tensile properties compared to the base metal and it was mainly attributed to lower heat input, resulting in finer fusion zone grains and higher fusion zone hardness. Thus, the present investigation opens a new and demanding field in research.

  18. Joining of Dissimilar alloy Sheets (Al 6063&AISI 304) during Resistance Spot Welding Process: A Feasibility Study for Automotive industry

    OpenAIRE

    Sreenivasulu, Reddy

    2014-01-01

    Present design trends in automotive manufacture have shifted emphasis to alternative lightweight materials in order to achieve higher fuel efficiency and to bring down vehicle emission. Although some other joining techniques are more and more being used, spot welding still remains the primary joining method in automobile manufacturing so far. Spot welds for automotive applications should have a sufficiently large diameter, so that nugget pullout mode is the dominant failure mode. Interfacial ...

  19. Spectroscopic, energetic and metallographic investigations of the laser lap welding of AISI 304 using the response surface methodology

    Science.gov (United States)

    Rizzi, Domenico; Sibillano, Teresa; Pietro Calabrese, Paolo; Ancona, Antonio; Mario Lugarà, Pietro

    2011-07-01

    Spectroscopic signals originated by the laser-induced plasma optical emission have been simultaneously investigated together with energetic and metallographic analyses of CO 2 laser welded stainless steel lap joint, using the Response Surface Methodology. This statistical approach allowed us to study the influence of the laser beam power and the laser welding speed on the following response parameters: plasma plume electron temperature, joint penetration depth and melted area. A clear correlation has been found between all the investigated response parameters. The results have been shown to be consistent with quantitative considerations on the energy supplied to the workpiece as far as the laser power and travel speed were varied. The regression model obtained in this way could be a valuable starting point to develop a closed loop control of the weld penetration depth and the melted area in the investigated process window.

  20. Feasibility of surface-coated friction stir welding tools to join AISI 304 grade austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    A.K. Lakshminarayanan

    2014-12-01

    Full Text Available An attempt is made to develop the tools that are capable enough to withstand the shear, impact and thermal forces that occur during friction stir welding of stainless steels. The atmospheric plasma spray and plasma transferred arc hardfacing processes are employed to deposit refractory ceramic based composite coatings on the Inconel 738 alloy. Five different combinations of self-fluxing alloy powder and 60% ceramic reinforcement particulate mixtures are used for coating. The best friction stir welding tool selected based on tool wear analysis is used to fabricate the austenitic stainless steel joints.

  1. Deposición metálica de Stellite grado 6 sobre AISI 316 en superficies planas mediante soldadura por fricción. // Metallic deposition of Stellite degree 6 on AISI 316 in plane surfaces by means of friction welding.

    Directory of Open Access Journals (Sweden)

    J. Cabello Eras

    2003-01-01

    Full Text Available En el presente trabajo se realiza un estudio del proceso de deposición metálica de Stellite grado 6 sobre una superficie deacero inoxidable AISI 316 a través de la soldadura por fricción. Se estudiaron distintas combinaciones de parámetros desoldadura tales como, velocidad de rotación de la barra de material de aportación, velocidad transversal del sustrato, tiempode calentamiento, presión de apriete de la barra contra el sustrato y los depósitos obtenidos son sometidos a un análisismetalográfico en la zona de interfase y a una prueba de doblado para comprobar su adhesión al metal base.Palabras claves: Soldadura por fricción, depósitos metálicos._____________________________________________________________________________AbstractPresently work carried out a study of the process of metallic deposition of Stellite degree 6 on a surface of stainlesssteel AISI 316 through the welding by friction. Different combinations of welding parameters were studied as:rotation speed of the contribution material bar, sustain traverse speed, time of heating, pressure of the bar againstthe sustain. The obtained deposits are subject to metalografic analysis in the interface area and to bending test inorder to check their adhesion to the metal bases.Key words: Friction welding, metallic deposits.

  2. AISI/DOE Technology Roadmap Program: Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Chuko; Jerry Gould

    2002-07-08

    This report describes work accomplished in the project, titled ''Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels.'' The Phase 1 of the program involved development of in-situ temper diagrams for two gauges of representative dual-phase and martensitic grades of steels. The results showed that tempering is an effective way of reducing hold-time sensitivity (HTS) in hardenable high-strength sheet steels. In Phase 2, post-weld cooling rate techniques, incorporating tempering, were evaluated to reduce HTS for the same four steels. Three alternative methods, viz., post-heating, downsloping, and spike tempering, for HTS reduction were investigated. Downsloping was selected for detailed additional study, as it appeared to be the most promising of the cooling rate control methods. The downsloping maps for each of the candidate steels were used to locate the conditions necessary for the peak response. Three specific downslope conditions (at a fix ed final current for each material, timed for a zero-, medium-, and full-softening response) were chosen for further metallurgical and mechanical testing. Representative samples, were inspected metallographically, examining both local hardness variations and microstructures. The resulting downslope diagrams were found to consist largely of a C-curve. The softening observed in these curves, however, was not supported by subsequent metallography, which showed that all welds made, regardless of material and downslope condition, were essentially martensitic. CCT/TTT diagrams, generated based on microstructural modeling done at Oak Ridge National Laboratories, showed that minimum downslope times of 2 and 10 s for the martensitic and dual-phase grades of steels, respectively, were required to avoid martensite formation. These times, however, were beyond those examined in this study. These results show that downsloping is not an effective means of reducing HTS for

  3. Effects of Thermal Aging on Material Properties, Stress Corrosion Cracking, and Fracture Toughness of AISI 316L Weld Metal

    Science.gov (United States)

    Lucas, Timothy; Forsström, Antti; Saukkonen, Tapio; Ballinger, Ronald; Hänninen, Hannu

    2016-08-01

    Thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels, as well as duplex, and high-Cr ferritic stainless steels. Spinodal decomposition is largely responsible for the well-known "748 K (475 °C) embrittlement" that results in drastic reductions in ductility and toughness in these materials. This process is also operative in welds of either cast or wrought stainless steels where δ-ferrite is present. While the embrittlement can occur after several hundred hours of aging at 748 K (475 °C), the process is also operative at lower temperatures, at the 561 K (288 °C) operating temperature of a boiling water reactor (BWR), for example, where ductility reductions have been observed after several tens of thousands of hours of exposure. An experimental program was carried out in order to understand how spinodal decomposition may affect changes in material properties in Type 316L BWR piping weld metals. The study included material characterization, nanoindentation hardness, double-loop electrochemical potentiokinetic reactivation (DL-EPR), Charpy-V, tensile, SCC crack growth, and in situ fracture toughness testing as a function of δ-ferrite content, aging time, and temperature. SCC crack growth rates of Type 316L stainless steel weld metal under simulated BWR conditions showed an approximate 2 times increase in crack growth rate over that of the unaged as-welded material. In situ fracture toughness measurements indicate that environmental exposure can result in a reduction of toughness by up to 40 pct over the corresponding at-temperature air-tested values. Material characterization results suggest that spinodal decomposition is responsible for the degradation of material properties measured in air, and that degradation of the in situ properties may be a result of hydrogen absorbed during exposure to the high-temperature water environment.

  4. Feasibility of surface-coated friction stir welding tools to join AISI 304 grade austenitic stainless steel

    OpenAIRE

    A.K. Lakshminarayanan; C.S. Ramachandran; V. Balasubramanian

    2014-01-01

    An attempt is made to develop the tools that are capable enough to withstand the shear, impact and thermal forces that occur during friction stir welding of stainless steels. The atmospheric plasma spray and plasma transferred arc hardfacing processes are employed to deposit refractory ceramic based composite coatings on the Inconel 738 alloy. Five different combinations of self-fluxing alloy powder and 60% ceramic reinforcement particulate mixtures are used for coating. The best friction sti...

  5. Welding.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  6. Caracterização microestrutural de soldas dissimilares dos aços ASTM A-508 e AISI 316L Characterization of dissimilar metal weld between low alloy steel ASTM A-508 and 316L stainless steel

    Directory of Open Access Journals (Sweden)

    Luciana Iglésias Lourenço Lima

    2010-06-01

    Full Text Available As soldas dissimilares (dissimilar metal welds - DMWs são utilizadas em diversos segmentos da indústria. No caso específico de usinas nucleares, tais soldas são necessárias para conectar tubulações de aço inoxidável com componentes fabricados em aços baixa liga. Os materiais de adição mais utilizados neste tipo de solda são as ligas de níquel 82 e 182. Este trabalho consistiu na soldagem de uma junta dissimilar de aço baixa liga ASTM A-508 G3 e aço inoxidável austenítico AISI 316L utilizando as ligas de níquel 82 e 182 como metais de adição. A soldagem foi realizada manualmente empregando os processos de soldagem ao arco SMAW (Shielded Metal Arc Welding e GTAW (Gas Tungsten Arc Welding. Os corpos de prova foram caracterizados microestruturalmente utilizando-se microscópio óptico e microscópio eletrônico de varredura com microanálise por dispersão de energia de raios X (EDS e ensaios de microdureza Vickers. Observou-se uma microestrutura constituída de dendritas de austenita com a presença de precipitados com formas e dimensões definidas pelo aporte térmico e pela direção de soldagem. Não houve variação significativa da dureza ao longo da junta soldada, demonstrando a adequação dos parâmetros de soldagem utilizados.The dissimilar metal welds (DMWs are used in several areas of the industries. In the nuclear power plant, this weld using nickel alloy welding wires is used to connect stainless steel pipes to low alloy steel components on the reactor pressured vessels. The filler materials commonly used in this type of weld are nickel alloys 82 and 182.. In this study, dissimilar metal welds composed of low alloy steel ASTM A-508 G3, nickel alloys 82 e 182 as weld metals, and austenitic stainless steel AISI 316L were prepared by manual shielded metal arc welding (SMAW and gas tungsten arc welding techniques (GTAW. Samples were microstructural characterized by optical microscopy and scanning electron microscopy

  7. Spectral analysis of the process emission during laser welding of AISI 304 stainless steel with disk and Nd:YAG laser

    NARCIS (Netherlands)

    Konuk, A.R.; Aarts, R.G.K.M.; Huis in 't Veld, A.J.

    2009-01-01

    Optical emissions from the laser welding process can be obtained relatively easy in real-time. Such emissions come from the melt pool, keyhole, or plume during welding. Therefore it is very beneficial to establish a clear relation between characteristics of these emissions and the resulting weld

  8. Fatigue life of AISI 316L stainless steel welded joints, obtained by GMAW; Vida a la fatiga de juntas soldadas del acero inoxidable AISI 316L obtenidas mediante el proceso GMAW

    Energy Technology Data Exchange (ETDEWEB)

    Puchi-Cabrera, E. S.; Saya-Gamboa, R. A.; Barbera-Sosa, J. G. la; Staia, M. H.; Ignoto-Cardinale, V.; Berrios-Ortiz, J. A.; Mesmacque, G.

    2007-07-01

    An investigation has been conducted in order to determine the effect of both the metallic transfer mode (pulsed arc or short circuit) and the O{sub 2} content in the Ar/O{sub 2} gas mixture, of the gas-metal arc welding process (GMAW), on the fatigue life under uniaxial conditions of welded joints of 316L stainless. it has been concluded that the mixture of the protective gases employed in the process could have an important influence on the fatigue life of the welded joints of such steel in two different ways. firstly, through the modification of the radius of curvature at the joint between the welding tow and the base metal and, secondly, through a more pronounced degree of oxidation of the alloying elements induced by a higher O{sub 2} content in the mixture. As far as the metallic transfer mode is concerned, it has been determined that the welded joints obtained under a pulsed arc mode show a greater fatigue life in comparison with the joints obtained under short circuit for both gas mixtures. (Author) 25 refs.

  9. Effect of heat input on microstructure, wear and friction behavior of (wt.-% 50FeCrC-20FeW-30FeB coating on AISI 1020 produced by using PTA welding.

    Directory of Open Access Journals (Sweden)

    Cihan Özel

    Full Text Available In this study, AISI 1020 steel surface was coated in different heat inputs with (wt.-% 50FeCrC-20FeW-30FeB powder mixture by using plasma transferred arc (PTA welding method. The microstructure of the coated samples were investigated by using optical microscope (OM, scanning electron microscope (SEM, X-ray diffraction (XRD and energy dispersive X-ray (EDS. The hardness was measured with micro hardness test device. The dry sliding wear and friction coefficient properties were determined using a block-on-disk type wear test device. Wear tests were performed at 19.62 N, 39.24 N, 58.86 N load and the sliding distance of 900 m. The results were shown that different microstructures formed due to the heat input change. The highest average micro hardness value was measured at 1217 HV on sample coated with low heat input. It was determined that the wear resistance decreased with increasing heat input.

  10. Effect of heat input on microstructure, wear and friction behavior of (wt.-%) 50FeCrC-20FeW-30FeB coating on AISI 1020 produced by using PTA welding.

    Science.gov (United States)

    Özel, Cihan; Gürgenç, Turan

    2018-01-01

    In this study, AISI 1020 steel surface was coated in different heat inputs with (wt.-%) 50FeCrC-20FeW-30FeB powder mixture by using plasma transferred arc (PTA) welding method. The microstructure of the coated samples were investigated by using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDS). The hardness was measured with micro hardness test device. The dry sliding wear and friction coefficient properties were determined using a block-on-disk type wear test device. Wear tests were performed at 19.62 N, 39.24 N, 58.86 N load and the sliding distance of 900 m. The results were shown that different microstructures formed due to the heat input change. The highest average micro hardness value was measured at 1217 HV on sample coated with low heat input. It was determined that the wear resistance decreased with increasing heat input.

  11. Welding.

    Science.gov (United States)

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  12. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  13. Laser power coupling efficiency in conduction and keyhole welding ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    MS received 24 May 2001; revised 28 December 2001. Abstract. Laser welding of thin sheets of AISI 304 stainless steel was carried out with high power CW CO2 laser. The laser power utilized in the welding process was estimated using the experimental results and the dimensionless parameter model for laser welding ...

  14. GAP WIDTH STUDY IN LASER BUTT-WELDING

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    In this paper the maximum allowable gap width in laser butt-welding is intensively studied. The gap width study (GWS) is performed on the material of SST of W1.4401 (AISI 316) under various welding conditions, which are the gap width : 0.00-0.50 mm, the welding speed : 0.5-2.0 m/min, the laser po...

  15. Laser power coupling efficiency in conduction and keyhole welding ...

    Indian Academy of Sciences (India)

    Laser welding of thin sheets of AISI 304 stainless steel was carried out with high power CW CO2 laser. The laser power utilized in the welding process was estimated using the experimental results and the dimensionless parameter model for laser welding; and also the energy balance equation model. Variation of laser ...

  16. Microstructures and mechanical properties of dissimilar Nd:YAG laser weldments of AISI4340 and AISI316L steels

    Science.gov (United States)

    Sufizadeh, A. R.; Akbari Mousavi, S. A. A.

    2017-05-01

    This paper presents studies on the microstructure and mechanical properties of AISI 316L stainless steel and AISI 4340 low-alloy steel joints formed by the Nd:YAG laser welding process. The weld microstructures and heat affected zones (HAZs) were investigated. Austenitic microstructures were observed in all of the samples. The sizes of the HAZs changed when the heat input was varied, and the 316L sides exhibited a larger HAZ. The cooling rates were calculated by measuring the solidification dendrite arm spacing. It is shown that high cooling rates lead to an austenitic microstructure. Tensile tests were carried out, and the results revealed the tensile properties of both the base metals and the weldments. The hardness test results agreed well with the tensile test results.

  17. Effect of cooling rate on the microstructure and hardness of austenitic stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, A. [ISEC - IPC, Quinta da Nora, Coimbra (Portugal); Loureiro, A. [DEM - FCTUC, Polo II, Coimbra (Portugal)

    2004-07-01

    The aim of this work is to study the effect of the cooling rate on the microstructure and hardness of the melted material of welds in steels AISI 304 and AISI 316L. The increase of weld heat input, consequently the decrease in the cooling rate, produces only a smooth increase of the ferrite content and a small decrease of hardness in the melted material of autogeneous TIG welds. (orig.)

  18. Analisa Hasil Pengelasan Smaw Pada Stainless Steel Aisi 304 Dengan Variasi Arus dan Diameter Elektroda

    OpenAIRE

    Tarigan, Esta Karina

    2016-01-01

    Construction using metal at the present time involves many elements, especially the field of welding engineering for welded joints is one of making connections that technically requires a high skill for welding, in order to obtain a connection with good quality. This study aims to determine the effect of variations in flow and the electrode on the distribution of hardness and microstructure in welding Stainless Steel AISI 304. seam type used is a double hem V with an angle 45. In this study u...

  19. Evaluation of performance of AISI 444 steel for application in distillation towers; Avaliacao do desempenho do aco AISI 444 para aplicacao como 'lining' em torres de destilacao

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, R.F.; Miranda, H.C. de; Farias, J.P. [Universidade Federal do Ceara (DEMM/UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Metalurgica e de Materiais. Lab. de Caracterizacao de Materiais], e-mail: rf.guimaraes@yahoo.com.br

    2008-07-01

    In this work, the behavior of the AISI 444 ferritic stainless steel submitted to thermal fatigue test and their corrosion resistance in heavy crude oil was evaluated. The AWS E309MoL-16 and E316L-17 weld metal was employed as filler metal. Plates of the AISI 444 were welded on ASTM A-516 Gr. 60 plates and submitted to fatigue thermal cycle. Samples were extracted from plates welded and heat treated immersed in heavy crude oil at 300 deg C. Optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive of X-ray analysis (EDX) were used to characterize the microstructure and the corroded surface. The results show that the AISI 444 stainless steels did not present cracks after the thermal fatigue cycle and the heat treated immerse in heavy crude oil. The electrode AWS E309MoL-16 show better corrosion resistance than the AWS E316L-17. (author)

  20. The characteristics of welded joints for air conditioning application

    Science.gov (United States)

    Weglowski, M. St.; Weglowska, A.; Miara, D.; Kwiecinski, K.; Błacha, S.; Dworak, J.; Rykala, J.; Pikula, J.; Ziobro, G.; Szafron, A.; Zimierska-Nowak, P.; Richert, M.; Noga, P.

    2017-10-01

    In the paper the results of metallographic examination of welded joints for air-conditioning elements are presented. The European directives 2006/40/EC on the greenhouse gasses elimination demand to stop using traditional refrigerant and to change it to R744 (CO2) medium in air conditioning installation. The R744 refrigerant is environmental friendly medium if compared with standard solution such as R12, R134a or R1234yf and safer for passengers than R1234yf. The non-standard thermodynamic parameters of the R744 which translate into high pressure and high temperature require specific materials to develop the shape and to specify the technology of manufacturing for the particular elements of the conduits and moreover the technologies of joining for the whole structure, which would meet the exploitation requirements of the new air-conditioning system. To produce the test welded joints of stainless steels four different joining technologies were applied: laser welding, plasma welding, electron beam welding as well as high speed rotation welding. This paper describes the influence of the selected welding process on the macrostructure and microstructure of welded joints of AISI 304 and AISI 316L steels. The results indicated that plasma welding laser welding and electron beam welding technologies guaranty the proper quality of welded joints and can be used for the air conditioning application in automotive industry. However, high speed rotation welding not guarantee the good quality of welded joints and cannot be used for above application.

  1. Analysis of the Corrosion Behavior of an A-TIG Welded SS 409 Weld Fusion Zone

    Science.gov (United States)

    Vidyarthy, R. S.; Dwivedi, D. K.

    2017-11-01

    AISI 409 (SS 409) ferritic stainless steel is generally used as the thick gauge section in freight train wagons, in ocean containers, and in sugar refinery equipment. Activating the flux tungsten inert gas (A-TIG) welding process can reduce the welding cost during fabrication of thick sections. However, corrosion behavior of the A-TIG weld fusion zone is a prime concern for this type of steel. In the present work, the effect of the A-TIG welding process parameters on the corrosion behavior of a weld fusion zone made of 8-mm-thick AISI 409 ferritic stainless-steel plate has been analyzed. Potentiodynamic polarization tests were performed to evaluate the corrosion behavior. The maximum corrosion potential ( E corr) was shown by the weld made using a welding current of 215 A, a welding speed of 95 mm/min, and a flux coating density of 0.81 mg/cm2. The minimum E corr was observed in the weld made using a welding current of 190 A, a welding speed of 120 mm/min, and a flux coating density of 1.40 mg/cm2. The current study also presents the inclusive microstructure-corrosion property relationships using the collective techniques of scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction.

  2. Cyclic oxidation of stainless steel ferritic AISI 409, AISI 439 and AISI 441; Oxidacao ciclica dos acos inoxidaveis ferriticos AISI 409, AISI 439 e AISI 441

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Maria de Fatima; Santos, Diego Machado dos; Oliveira, Givanilson Brito de, E-mail: fatima.salgado@pq.cnpq.br [Universidade Estadual do Maranhao (CESC/UEMA), Caxias, MA (Brazil). Centro de Estudos Superiores; Rodrigues, Samara Clotildes Saraiva; Brandim, Ayrton de Sa [Instituto Federal do Piaui (PPGEM/IFPI), PI (Brazil); Lins, Vanessa de Freitas Cunha [Universidade Federal de Minas Gerais (IFMG), MG (Brazil)

    2014-07-01

    Stainless steels have many industrial applications. The cyclic oxidation of ferritic stainless steels technical and scientific importance presents, because they are less susceptible to peeling the austenitic alloys. For the purpose of investigating the behavior of these steels under thermal cycling, cyclic oxidation of AISI 409, AISI 441 and AISI 439 was carried out in a tubular furnace under two different conditions: oxidation by dipping the steel in the synthetic condensate for 10h and without oxidation immersion in the condensate, for up to 1500h at 300° C temperature. Using techniques: SEM, EDS and XRD revealed a microstructure with increased oxidation in the samples were immersed in the condensate. The oxide film remained intact during oxidation for steels 439 and 441 409 The Steel immersed in the condensate was rupture of the film after the 20th cycle of oxidation. The chemical characterization of the films allowed the identification of elements: Chromium, Iron, Aluminium and Silicon To a great extent, Cr{sub 2}O{sub 3}. (author)

  3. The Effect of Welding Current and Composition of Stainless steel on the Panetration in GTAW

    Directory of Open Access Journals (Sweden)

    Ramazan Yılmaz

    2012-06-01

    Full Text Available In this study, welding was performed on the plates of two different types of AISI 316 and AISI 316Ti austenitic stainless steels by GTAW (Gas Tungsten Arc Welding without using welding consumable in flat position. Automatic GTAW welding machine was used to control and obtain the exact values. The effects of welding currents used in welding process and the compositions of the stainless steels materials on the penetration were investigated. Weld bead size and shape such as bead width and dept were important considerations for penetration. Welding process was performed using various welding current values. The study showed that both welding parameters and composition of the stainless steels has influence on the penetration and It is increased with increasing of welding current. Besides, P/W rate of the weldments were influenced by the current and hardness values of the weld metal decrease with increasing welding current. The microstructure of the weld metal was also changed by variation of welding current.

  4. Characterization of Stainless Steel Welding Fume Particles : Influence of Stainless Steel Grade, Welding Parameters and Particle Size

    OpenAIRE

    Mei, Nanxuan

    2016-01-01

    Welding is a widely used method to join two pieces of stainless steel. Since it produces a large amount of fume during the process, it can cause adverse health effects. The welding fume particles contain many elements. Among them Cr, Mn and Ni are of concern. These three elements can cause diseases if inhaled by humans, especially Cr(VI). In this project, welding fume particles are collected during welding of different stainless steel grades (austenitic AISI 304L and duplex LDX2101). Furtherm...

  5. Shielding gas effect on weld characteristics in arc-augmented laser welding process of super austenitic stainless steel

    Science.gov (United States)

    Sathiya, P.; Kumar Mishra, Mahendra; Soundararajan, R.; Shanmugarajan, B.

    2013-02-01

    A series of hybrid welding (gas metal arc welding-CO2 laser beam welding) experiments were conducted on AISI 904L super austenitic stainless steel sheet of 5 mm thickness. A detailed study of CO2 Laser-GMAW hybrid welding experiments with different shielding gas mixtures (100% He, 50% He+50% Ar, 50%He+45% Ar+5% O2, and 45% He+45% Ar+10% N2) were carried out and the results are presented. The resultant welds were subjected to detailed mechanical and microstructural characterization. Hardness testing revealed that the hardness values in the fusion zone were higher than the base material irrespective of the parameters. Transverse tensile testing showed that the joint efficiency is 100% with all the shielding gas experimented. Impact energy values of the welds were also found to be higher than the base material and the fractrograph taken in scanning electron microscope (SEM) has shown that the welds exhibited dimple fracture similar to the base material.

  6. The Investigation of Mechanical Properties of the Flash Welded Different Steel Bars

    OpenAIRE

    AKKUŞ, Ahmet

    2017-01-01

    In this study, three type steel bars were selected as experimentalspecimens. The steel types are S235JR (St37), S355JR (St52),AISI 304 stainless steel. Experimental parameters are material type and weldcurrent. The specimens which have Ø24 x 200 mm dimensions flash welded botheach other and different steel bars as using three weld currents. After thewelding operations, the welded specimens were cooled at open - air conditionsand their diameters were dropped by using a lathe machine so that th...

  7. The effect of interlayers on dissimilar friction weld properties

    Science.gov (United States)

    Maldonado-Zepeda, Cuauhtemoc

    The influence of silver interlayers on the metallurgical and mechanical properties of dissimilar aluminium alloy/stainless steel friction welds are investigated. An elastic contact model is proposed that explains the conditions at and close to the contact surface, which produce Al2O3 particle fracture in dissimilar MMC/AISI 304 stainless steel friction welds. Intermixed (IM) and particle dispersed (PD) regions are formed in Ag-containing dissimilar friction welds. These regions form very early in the joining operation and both contain Ag3Al. Therefore, an interlayer (Ag) introduced with the specific aim of preventing FexAly compound formation in MMC/AISI 304 stainless steel friction welds promotes the formation of another intermetallic phase at the bondline. Since IM and PD regions are progressively removed as the friction welding operation proceeds thinner intermetallic layers are produced when long friction welding times are applied. This type of behavior is quite different from that observed in silver-free dissimilar MMC/AISI 304 stainless steel welds. Nanoparticles of silver are formed in dissimilar MMC/Ag/AISI 304 stainless steel welds produced using low friction pressures. Nanoparticle formation in dissimilar friction welds has never been previously observed or investigated. The introduction of silver interlayers decreases heat generation during welding, produces narrower softened zone regions and improved notch tensile strength properties. All research to-date has assumed per se that joint mechanical properties wholly depend on the mechanical properties and width of the intermetallic layer formed at the dissimilar joint interface. However, it is shown in this thesis that the mechanical properties of MMC/AISI 304 stainless steel joints are determined by the combined effects of intermetallic formation at the bondline and softened zone formation in MMC base material immediately adjacent to the joint interface. A methodology for calculating the notch tensile

  8. A comparative evaluation of microstructural and mechanical behavior of fiber laser beam and tungsten inert gas dissimilar ultra high strength steel welds

    Directory of Open Access Journals (Sweden)

    Jaiteerth R. Joshi

    2016-12-01

    Full Text Available The influence of different welding processes on the mechanical properties and the corresponding variation in the microstructural features have been investigated for the dissimilar weldments of 18% Ni maraging steel 250 and AISI 4130 steel. The weld joints are realized through two different fusion welding processes, tungsten inert arc welding (TIG and laser beam welding (LBW, in this study. The dissimilar steel welds were characterized through optical microstructures, microhardness survey across the weldment and evaluation of tensile properties. The fiber laser beam welds have demonstrated superior mechanical properties and reduced heat affected zone as compared to the TIG weldments.

  9. Practical method for diffusion welding of steel plate in air.

    Science.gov (United States)

    Moore, T. J.; Holko, K. H.

    1972-01-01

    Description of a simple and easily applied method of diffusion welding steel plate in air which does not require a vacuum furnace or hot press. The novel feature of the proposed welding method is that diffusion welds are made in air with deadweight loading. In addition, the use of an autogenous (self-generated) surface-cleaning principle (termed 'auto-vac cleaning') to reduce the effects of surface oxides that normally hinder diffusion welding is examined. A series of nine butt joints were diffusion welded in thick sections of AISI 1020 steel plate. Diffusion welds were attempted at three welding temperatures (1200, 1090, and 980 C) using a deadweight pressure of 34,500 N/sq m (5 psi) and a two-hour hold time at temperature. Auto-vac cleaning operations prior to welding were also studied for the same three temperatures. Results indicate that sound welds were produced at the two higher temperatures when the joints were previously fusion seal welded completely around the periphery. Also, auto-vac cleaning at 1200 C for 2-1/2 hours prior to diffusion welding was highly beneficial, particularly when subsequent welding was accomplished at 1090 C.

  10. Comparative study of high temperature oxidation behaviour in AISI 304 and AISI 439 stainless steels

    Directory of Open Access Journals (Sweden)

    Antônio Claret Soares Sabioni

    2003-06-01

    Full Text Available This work deals with a comparison of high temperature oxidation behaviour in AISI 304 austenitic and AISI 439 ferritic stainless steels. The oxidation experiments were performed between 850 and 950 °C, in oxygen and Ar (100 vpm H2. In most cases, it was formed a Cr2O3 protective scale, whose growth kinetics follows a parabolic law. The exception was for the the AISI 304 steel, at 950 °C, in oxygen atmosphere, which forms an iron oxide external layer. The oxidation resistance of the AISI 439 does not depend on the atmosphere. The AISI 304 has the same oxidation resistance in both atmospheres, at 850 °C, but at higher temperatures, its oxidation rate strongly increases in oxygen atmosphere. Concerning the performance of these steels under oxidation, our results show that the AISI 439 steel has higher oxidation resistance in oxidizing atmosphere, above 850 °C, while, in low pO2 atmosphere, the AISI 304 steel has higher oxidation resistance than the AISI 439, in all the temperature range investigated.

  11. Microstructural changes due to laser surface melting of an AISI 304 stainless steel

    Directory of Open Access Journals (Sweden)

    A.S.C.M. d’Oliveira

    2001-01-01

    Full Text Available Several techniques can be used to improve surface properties. These can involve changes on the surface chemical composition (such as alloying and surface welding processes or on the surface microstructure, such as hardening and melting. In the present work surface melting with a 3kW CO2 cw laser was done to alter surface features of an AISI 304 stainless steel. Microstructure characterisation was done by optical and scanning electron microscopy. Vickers and Knoop microhardness tests evaluated mechanical features after surface melting. Phase transformation during rapid solidification is analysed and discussed.

  12. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  13. Optimization of Gas Metal Arc Welding Process Parameters

    Science.gov (United States)

    Kumar, Amit; Khurana, M. K.; Yadav, Pradeep K.

    2016-09-01

    This study presents the application of Taguchi method combined with grey relational analysis to optimize the process parameters of gas metal arc welding (GMAW) of AISI 1020 carbon steels for multiple quality characteristics (bead width, bead height, weld penetration and heat affected zone). An orthogonal array of L9 has been implemented to fabrication of joints. The experiments have been conducted according to the combination of voltage (V), current (A) and welding speed (Ws). The results revealed that the welding speed is most significant process parameter. By analyzing the grey relational grades, optimal parameters are obtained and significant factors are known using ANOVA analysis. The welding parameters such as speed, welding current and voltage have been optimized for material AISI 1020 using GMAW process. To fortify the robustness of experimental design, a confirmation test was performed at selected optimal process parameter setting. Observations from this method may be useful for automotive sub-assemblies, shipbuilding and vessel fabricators and operators to obtain optimal welding conditions.

  14. WOOD WELDING

    OpenAIRE

    Marcos Theodoro Muller; Rafael Rodolfo de Melo; Diego Martins Stangerlin

    2010-01-01

    The term "wood welding" designates what can be defined as "welding of wood surfaces". This new process, that it provides the joint of wood pieces without the use of adhesives or any other additional material, provokes growing interest in the academic environment, although it is still in laboratorial state. Linear friction welding induced bymechanical vibration yields welded joints of flat wood surfaces. The phenomenon of the welding occurs in less time than 10 seconds, with the temperature in...

  15. Design of welding parameters for laser welding of thin-walled stainless steel tubes using numerical simulation

    Science.gov (United States)

    Nagy, M.; Behúlová, M.

    2017-11-01

    Nowadays, the laser technology is used in a wide spectrum of applications, especially in engineering, electronics, medicine, automotive, aeronautic or military industries. In the field of mechanical engineering, the laser technology reaches the biggest increase in the automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. Modelling and numerical simulation of laser welding processes has been exploited with many advantages for the investigation of physical principles and complex phenomena connected with this joining technology. The paper is focused on the application of numerical simulation to the design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes from theAISI 304 steel for automotive industry. Using the developed and experimentally verified simulation model for laser welding of tubes, the influence of welding parameters including the laser velocity from 30 mm.s‑1 to 60 mm.s‑1 and the laser power from 500 W to 1200 W on the temperature fields and dimensions of fusion zone was investigated using the program code ANSYS. Based on obtained results, the welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel was suggested.

  16. pitting corrosion susceptibility pitting corrosion susceptibility of aisi ...

    African Journals Online (AJOL)

    eobe

    Abstract. The susceptibility of austenitic (AISI 301) stainless steel to pitting corrosion was evaluated in sodium chloride. (NaCl) solutions ... AISI 301 steel suffers from pitting corrosion in all the investigated solutions. AISI 301 steel suffers from ..... [1] Ijeomah, M.N.C. Elements of Corrosion and Protection. Theory, Auto Century ...

  17. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  18. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...

  19. Weldability, machinability and surfacing of commercial duplex stainless steel AISI2205 for marine applications – A recent review

    Directory of Open Access Journals (Sweden)

    A. Vinoth Jebaraj

    2017-05-01

    Full Text Available In the present review, attempts have been made to analyze the metallurgical, mechanical, and corrosion properties of commercial marine alloy duplex stainless steel AISI 2205 with special reference to its weldability, machinability, and surfacing. In the first part, effects of various fusion and solid-state welding processes on joining DSS 2205 with similar and dissimilar metals are addressed. Microstructural changes during the weld cooling cycle such as austenite reformation, partitioning of alloying elements, HAZ transformations, and the intermetallic precipitations are analyzed and compared with the different welding techniques. In the second part, machinability of DSS 2205 is compared with the commercial ASS grades in order to justify the quality of machining. In the third part, the importance of surface quality in a marine exposure is emphasized and the enhancement of surface properties through peening techniques is highlighted. The research gaps and inferences highlighted in this review will be more useful for the fabrications involved in the marine applications.

  20. Welding Technician

    Science.gov (United States)

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  1. Laser-Beam Welding Impact on the Deformation Properties of Stainless Steels When Used for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Evin Emil

    2016-09-01

    Full Text Available Materials other than standard and advanced high strength steels are remarkable for the thin-walled structures of the car-body in recent years in order to safety enhancement, weight and emission reduction, corrosion resistance improvement. Thus, there are presented in the paper the deformation properties of laser welded austenitic AISI 304 and ferritic AISI 430 stainless steels compared to these one measured for the high strength low alloyed steel H220PD. The properties were researched by tensile test and 3-point bending test with fixed ends on specimens made of basic material and laser welded one. The specimens were welded by solid state fiber laser YLS-5000 in longitudinal direction (the load direction. The deformation properties such as strength, stiffness and deformation work were evaluated and compared. The strength and stiffness were calculated from tensile test results and the deformation work was calculated from both, tensile test and 3-point bending test results. There has been found only minor effect of laser welding to the deformation properties for high strength low alloyed steel H220PD and austenitic stainless steel AISI 304. Otherwise, the laser welding strongly influenced the deformation work of the ferritic stainless steel AISI 430 as well as the elongation at tensile test.

  2. Survey of welding processes.

    Science.gov (United States)

    2003-07-01

    The current KYTC SPECIAL PROVISION NO. 4 WELDING STEEL BRIDGES prohibits the use of welding processes other than shielded metal arc welding (SMAW) and submerged arc welding (SAW). Nationally, bridge welding is codified under ANSI/AASHTO/AWS D1....

  3. Rapid solidification in laser welding of stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Zambon, A. (Univ. di Padova (Italy)); Bonollo, F.

    1994-04-30

    The microstructural characterization of both weld beads and heat affected zones (HAZ) was carried out on austenitic (AISI 304, 316) and duplex (UNS 31803) stainless steels, laser welded under various working parameters (power, traverse speed, shielding gas), by means of light microscopy, SEM, TEM, and image analysis, with the aim of pointing out changes in the amounts of the present phases, with respect to those predicted by equilibrium diagrams. Moreover, an analytical thermal model of laser beam welding was employed in order to evaluate the cooling rates involved in the process. The thermal field analysis, checked by comparing the calculated and the actual weld beads, has been used as a tool aimed at correlating cooling rates and microstructural characteristics. (orig.)

  4. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  5. WELDING TORCH

    Science.gov (United States)

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  6. State on AISI 304 Stainless Steel

    Directory of Open Access Journals (Sweden)

    A. Fattah-alhosseini

    2011-01-01

    Full Text Available The passivity and protective nature of the passive films are essentially related to ionic and electronic transport processes, which are controlled by the optical and electronic properties of passive films. In this study, the electrochemical behavior of passive films anodically formed on AISI 304 stainless steel in sulfuric acid solution has been examined using electrochemical impedance spectroscopy. AISI 304 in sulphuric acid solution is characterized by high interfacial impedance, thereby illustrating its high corrosion resistance. Results showed that the interfacial impedance and the polarization resistance (pol initially increase with applied potential, within the low potential passive. However, at a sufficiently high potential passive (>0.4 V, the interfacial impedance and the polarization resistance decrease with increasing potential. An electrical equivalent circuit based on the impedance analysis, which describes the behavior of the passive film on stainless steel more satisfactorily than the proposed models, is presented.

  7. A case study on failure of AISI 347H stabilized stainless steel pipe in a petrochemical plant

    Directory of Open Access Journals (Sweden)

    M. Ghalambaz

    2017-10-01

    Full Text Available In this study failure of AISI 347 stabilized stainless steel pipe after 60,000 of working in a petrochemical plant was investigated. Result showed that the main cause of failure was thermal stress fatigue. Fatigue cracks were formed at the outer surface of the investigated pipe, and were grown towards the inner surface at the fusion line of welded area. The formation of chromium-rich phases together with thermal fatigue stresses were found to be main causes of failure.

  8. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding; Inhibicion de la formacion de compuestos intermetalicos en juntas aluminio-acero soldadas por friccion-agitacion

    Energy Technology Data Exchange (ETDEWEB)

    Torres Lopez, E. A.; Ramirez, A. J.

    2015-07-01

    Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW) has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 degree centigrade. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters. (Author)

  9. Characterization of AISI 4140 borided steels

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Silva, I., E-mail: icampos@ipn.mx [Instituto Politecnico Nacional, Grupo Ingenieria de Superficies, SEPI-ESIME U.P. Adolfo Lopez Mateos, Zacatenco, Mexico D.F., 07738 (Mexico); Ortiz-Dominguez, M.; Lopez-Perrusquia, N.; Meneses-Amador, A. [Instituto Politecnico Nacional, Grupo Ingenieria de Superficies, SEPI-ESIME U.P. Adolfo Lopez Mateos, Zacatenco, Mexico D.F., 07738 (Mexico); Escobar-Galindo, R. [Instituto de Ciencia de Materiales de Madrid (CSIC), E-28049 Cantoblanco, Madrid (Spain); Martinez-Trinidad, J. [Instituto Politecnico Nacional, Grupo Ingenieria de Superficies, SEPI-ESIME U.P. Adolfo Lopez Mateos, Zacatenco, Mexico D.F., 07738 (Mexico)

    2010-02-01

    The present study characterizes the surface of AISI 4140 steels exposed to the paste-boriding process. The formation of Fe{sub 2}B hard coatings was obtained in the temperature range 1123-1273 K with different exposure times, using a 4 mm thick layer of boron carbide paste over the material surface. First, the growth kinetics of boride layers at the surface of AISI 4140 steels was evaluated. Second, the presence and distribution of alloying elements on the Fe{sub 2}B phase was measured using the Glow Discharge Optical Emission Spectrometry (GDOES) technique. Further, thermal residual stresses produced on the borided phase were evaluated by X-ray diffraction (XRD) analysis. The fracture toughness of the iron boride layer of the AISI 4140 borided steels was estimated using a Vickers microindentation induced-fracture testing at a constant distance of 25 {mu}m from the surface. The force criterion of fracture toughness was determined from the extent of brittle cracks, both parallel and perpendicular to the surface, originating at the tips of an indenter impression. The fracture toughness values obtained by the Palmqvist crack model are expressed in the form K{sub C}({pi}/2) > K{sub C} > K{sub C}(0) for the different applied loads and experimental parameters of the boriding process.

  10. Plasma arc welding weld imaging

    Science.gov (United States)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has a transparent shield cup disposed about the constricting nozzle, the cup including a small outwardly extending polished lip. A guide tube extends externally of the torch and has a free end adjacent to the lip. First and second optical fiber bundle assemblies are supported within the guide tube. Light from a strobe light is transmitted along one of the assemblies to the free end and through the lip onto the weld site. A lens is positioned in the guide tube adjacent to the second assembly and focuses images of the weld site onto the end of the fiber bundle of the second assembly and these images are transmitted along the second assembly to a video camera so that the weld site may be viewed continuously for monitoring the welding process.

  11. Micro-structure of Joints made of Dissimilar Metals using Explosion Welding

    Directory of Open Access Journals (Sweden)

    Juan Ramón Castillo-Matos

    2017-04-01

    Full Text Available The objective of this investigation is to establish the behaviour of the micro-structure of dissimilar joints made of titanium with AISI 1020, 1066 and 1008 steels through explosion welding. A detonation velocity of 2 800 m/s, a charge radius of 0,345 kg and a collision velocity of 1196, 16 m/s with an explosive volume of 600 cm3 and a density of 1,15 g/cm3 were considered. The microstructures obtained were composed of equiaxed ferrite grains, very fine grains of troostitic type and coarse grains with ferrite grid. Fine and aligned grains of ferrite type are observed in the casted area of both base materials. The metal hardness experienced an increase in samples from 120 HV AISI 1008 steel up to 250 HV for AISI 1066 steel. The AISI 1020 steel joint with titanium has an line shaped interface unlike the AISI 1008 steels with 4063 forms waves with uniform width, which provides a higher mechanical resistance associated with the ductility of the AISI 1008 steel.

  12. Dissimilar steel welding and overlay covering with nickel based alloys using SWAM (Shielded Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) processes in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Arce Chilque, Angel Rafael [Centro Tecnico de Engenharia e Inovacao Empresarial Ltda., Belo Horizonte, MG (Brazil); Bracarense, Alexander Queiroz; Lima, Luciana Iglesias Lourenco [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Quinan, Marco Antonio Dutra; Schvartzman, Monica Maria de Abreu Mendonca [Nuclear Technology Development Centre (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Marconi, Guilherme [Federal Center of Technological Education (CEFET-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    This work presents the welding of dissimilar ferritic steel type A508 class 3 and austenitic stainless steel type AISI 316 L using Inconel{sup R} 600 (A182 and A82) and overlay covering with Inconel{sup R} 690 (A52) as filler metal. Dissimilar welds with these materials without defects and weldability problems such as hot, cold, reheat cracking and Ductility Dip Crack were obtained. Comparables mechanical properties to those of the base metal were found and signalized the efficiency of the welding procedure and thermal treatment selected and used. This study evidences the importance of meeting compromised properties between heat affected zone of the ferritic steel and the others regions presents in the dissimilar joint, to elaborate the dissimilar metal welding procedure specification and weld overlay. Metallographic studies with optical microscopy and Vickers microhardness were carried out to justified and support the results, showing the efficiency of the technique of elaboration of dissimilar metal welding procedure and overlay. The results are comparables and coherent with the results found by others. Some alternatives of welding procedures are proposed to attain the efficacy. Further studies are proposed like as metallographic studies of the fine microstructure, making use, for example, of scanning electron microscope (SEM adapted with an EDS) to explain looking to increase the resistance to primary water stress corrosion (PWSCC) in nuclear equipment. (author)

  13. WELDING METHOD

    Science.gov (United States)

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  14. Effect of molybdenum addition on microstructure and mechanical properties of plain carbon steel weld

    Directory of Open Access Journals (Sweden)

    Jyoti Menghani

    2016-12-01

    Full Text Available The present investigation has two main objectives; first is optimization of welding process parameters of submerged arc welding (SAW using Taguchi philosophy and second is to improve the mechanical properties such as strength and microhardness of weld joint by alloying with varying amounts of molybdenum. For optimization of welding process, parameters Taguchi philosophy have been applied on a mild steel plate (AISI C- 1020 of 10 mm thickness with 60o groove angle with arc voltage and welding speed as variables and bead width as output variables. A mathematical relationship between bead width, arc voltage and welding speed has also been found using multiple regression analysis for the present base metal plate geometry. After optimizing welding parameters, molybdenum has been added individually to the welding area in varying percentages. The properties of alloyed and unalloyed weld metal bead are compared. The mechanical characterization of weld has been done in terms of microhardness, tensile strength, whereas microstructural characterization has been performed using optical microscopy, XRD and EDS. The presence of molybdenum resulted in bainite structure in weld bead having a refined grain structure, enhancement in tensile strength and microhardness. The XRD results showed the formation of molybdenum carbides justifying the increase in microhardness value.

  15. Development of stress corrosion cracking resistant welds of 321 stainless steel by simple surface engineering

    Science.gov (United States)

    Mankari, Kamal; Acharyya, Swati Ghosh

    2017-12-01

    We hereby report a simple surface engineering technique to make AISI grade 321 stainless steel (SS) welds resistant to stress corrosion cracking (SCC) in chloride environment. Heat exchanger tubes of AISI 321 SS, welded either by (a) laser beam welding (LBW) or by (b) metal inert gas welding (MIG) were used for the study. The welds had high magnitude of tensile residual stresses and had undergone SCC in chloride environment while in service. The welds were characterized using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). Subsequently, the welded surfaces were subjected to buffing operation followed by determination of residual stress distribution and surface roughness by XRD and surface profilometer measurements respectively. The susceptibility of the welds to SCC was tested in buffed and un-buffed condition as per ASTM G-36 in boiling MgCl2 for 5 h and 10 h, followed by microstructural characterization by using optical microscope and FESEM. The results showed that the buffed surfaces (both welds and base material) were resistant to SCC even after 10 h of exposure to boiling MgCl2 whereas the un-buffed surfaces underwent severe SCC for the same exposure time. Buffing imparted high magnitude of compressive stresses on the surface of stainless steel together with reduction in its surface roughness and reduction in plastic strain on the surface which made the welded surface, resistant to chloride assisted SCC. Buffing being a very simple, portable and economic technique can be easily adapted by the designers as the last step of component fabrication to make 321 stainless steel welds resistant to chloride assisted SCC.

  16. Residual Stresses in LENS-Deposited AISI 410 Stainless Steel Plates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L [Mississippi State University (MSU); Felicellli, S D [Mississippi State University (MSU); Pratt, Phillip R [ORNL

    2008-01-01

    The residual stress in thin plate components deposited by the laser engineered net shaping (LENS{reg_sign}) process was investigated experimentally and numerically. Neutron diffraction mapping was used to characterize the residual stress in LENS-deposited AISI 410 stainless steel thin wall plates. Using the commercial welding software SYSWELD, a thermo-mechanical three-dimensional finite element model was developed, which considers also the effect of metallurgical phase transformations. The model was employed to predict the temperature history and the residual stress field during the LENS process. Several simulations were performed with the geometry and process parameters that were used to build the experimental samples. The origin of the residual stress distribution is discussed based on the thermal histories of the samples, and the modeling results are compared with measurements obtained by neutron diffraction mapping.

  17. Residual stresses in LENS-deposited AISI 410 stainless steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liang [Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 39762 (United States); Felicelli, Sergio D. [Mechanical Engineering Department, Mississippi State University, Mississippi State, MS 39762 (United States)], E-mail: felicelli@me.msstate.edu; Pratt, Phillip [Mechanical Engineering Department, Mississippi State University, Mississippi State, MS 39762 (United States)

    2008-11-25

    The residual stress in thin plate components deposited by the laser engineered net shaping (LENS) process was investigated experimentally and numerically. Neutron diffraction mapping was used to characterize the residual stress in LENS-deposited AISI 410 stainless steel thin wall plates. Using the commercial welding software SYSWELD, a thermo-mechanical three-dimensional finite element model was developed, which considers also the effect of metallurgical phase transformations. The model was employed to predict the temperature history and the residual stress field during the LENS process. Several simulations were performed with the geometry and process parameters that were used to build the experimental samples. The origin of the residual stress distribution is discussed based on the thermal histories of the samples, and the modeling results are compared with measurements obtained by neutron diffraction mapping.

  18. Effect of continuous and pulsed currents on microstructural evolution of stainless steel joined by TIG welding; Einfluss des Einsatzes von Dauerstrom und Impulsstrom auf die Mikrostrukturentwicklung bei durch das WIG-Schweissverfahren gefuegtem rostfreiem Stahl

    Energy Technology Data Exchange (ETDEWEB)

    Durgutlu, Ahmet; Findik, Tayfun; Guelenc, Behcet [Gazi Univ., Ankara (Turkey). Dept. of Metallurgy and Materials Engineering; Cevik, Bekir [Duezce Univ. (Turkey). Dept. of Welding Technology; Kaya, Yakup; Kahraman, Nizamettin [Karabuek Univ. (Turkey). Dept. of Manufacturing Engineering

    2015-07-01

    In this study, AISI 316L series austenitic stainless steel sheets were joined by tungsten inert gas welding method in continuous and pulsed currents. Regarding microstructural investigation and hardness values of weld metal, samples were welded to investigate the effect of current type on grain structures of weld metal. Results showed that samples welded by using pulsed current had considerable different properties compared to the samples welded by using continuous current. While the weld metals of joinings obtained by using continuous current displayed a coarse-grained and columnar structure, weld metals obtained by using pulsed current had a finer-grained structure. It was also found that hardness values of samples, which were welded with continuous and pulsed current, were quite different.

  19. A Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    1997-01-01

    A prototype shield gas box with different plasma control nozzles have been investigated for laser welding of stainless steel (AISI 316). Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and gas flows show the impact on process...... stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds...... are oxide free. With 2.7 kW power welds have been performed at 4000 mm/min with Ar / He (70%/30%) as coaxial, plasma and shield gas....

  20. Syllabus in Trade Welding.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  1. An investigation on borided AISI 1020 steel

    Science.gov (United States)

    Altinsoy, I.; Efe, F. G. Celebi; Ipek, M.; Ozbek, I.; Zeytin, S.; Bindal, C.

    2013-12-01

    In this study, we investigated some properties of borided AISI 1020 steel. Boronizing heat treatment was carried out at 800°C, 875°C and 950°C for 2, 4, 6 and 8 h using Ekabor 1 powders. The hardness of borides formed on the steel substrate measured via Vickers indenter was about 1500 HVN. The thickness of boride layers depending on the process temperature and time was ranged from 20.5 to 216 μm. The presence of Fe2B boride was determined by XRD analysis. SEM microscope studies showed that the borides formed on the AISI 1020 steel have columnar nature. Kinetics studies reveal a parabolic relationship between layer depth and process time, and the activation energy is calculated as 164,356 kJ/mol. Moreover, an attempt was made to investigate the possibility of predicting the iso-thickness of boride layer and to establish an empirical relationship between process parameters of boriding and boride layer for industrial applications.

  2. Wear properties of Fe-Cr-C and B{sub 4}C powder coating on AISI 316 stainless steel analyzed by the Taguchi method

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ali Kaya; Ozay, Cetin; Orhan, Ayhan; Buytoz, Soner; Caligulu, Ugur; Yigitturk, Necmettin [Firat Univ., Elazig (Turkey). Faculty of Technical Education

    2014-06-01

    In this study, the plasma arc welded cladding of FeCrC and B{sub 4}C powder mixtures alloyed with 70 wt.-% Cr on the surface of AISI 316 stainless steel was investigated. Application of the Taguchi method revealed respective effects on the abrasive wear resistance of the cladding layer on the stainless steel. The abrasive wear behaviour of the AISI 316 stainless steel surfaces coated with Fe-Cr-C and with 10 wt.-%, 15 wt.-%, 20 wt.-%, and 25 wt.-% B{sub 4}C was investigated by using four loads and four distances for the 220 mesh SiC abrasive. Results were analyzed by variance analysis using ANOVA, and effects of parameters on the wear rate were determined as percentage rate. Furthermore, the error ratio was statistically evaluated. The experimental results were analyzed by the respective analysis of means and variance which is discussed in detail. (orig.)

  3. Effect of Heat Input on Mechanical and Metallurgical Properties of Gas Tungsten Arc Welded Lean Super Martensitic Stainless Steel

    OpenAIRE

    Muthusamy,Chellappan; Karuppiah, Lingadurai; Paulraj,Sathiya; Kandasami,Devakumaran; Kandhasamy,Raja

    2016-01-01

    Welding of 6mm thick AISI: 410S lean super martensitic stainless steel (LSMSS) under different heat input of 7.97, 8.75 and 10.9 kJ/cm was carried out by gas tungsten arc welding process. The influence of heat input on metallurgical and mechanical properties in weld and HAZ region was studied. The tensile tests were carried out at different temperatures, namely at room temperature, at 600ºC, 7000C and 8000C. It is observed that rise in the heat input and temperature decreased the tensile stre...

  4. Effects of stop-start features on residual stresses in a multipass austenitic stainless steel weld

    Energy Technology Data Exchange (ETDEWEB)

    Turski, M., E-mail: Mark.Turski@magnesium-elektron.com [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Francis, J.A. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)] [Materials Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Hurrell, P.R. [Rolls-Royce Plc., Raynesway, Derby DE21 7XX (United Kingdom); Bate, S.K. [Serco Technical Services, Birchwood Park, Warrington, Cheshire WA3 6GA (United Kingdom); Hiller, S. [Materials Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Withers, P.J. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)

    2012-01-15

    In this article we describe experiments that characterise and quantify the localised perturbations in residual stress associated with both ramped and abrupt stop-start features in a multipass weld. Residual stress distributions in AISI Grade 304L/308L stainless steel groove-welded specimens, containing weld interruptions that were introduced in a controlled manner, have been characterised using both neutron diffraction and the incremental deep hole drilling method. The extent to which the localised stresses associated with the interruptions were annealed by overlayed passes was also assessed. The results suggest that, regardless of the type of interruption, there can be significant localised increases in residual stress if the stop-start feature is left exposed. If further weld passes are deposited, then the localised increases in stress are likely to persist if the interruption was abrupt, whereas for a ramped interruption they may be dissipated. - Highlights: Black-Right-Pointing-Pointer In this study the residual stress-field surrounding weld interruptions was measured. Black-Right-Pointing-Pointer Localised stresses were found to increase at weld interruptions. Black-Right-Pointing-Pointer Both ramped and abrupt weld interruptions were investigated. Black-Right-Pointing-Pointer After subsequent weld passes, localised stresses persisted for abrupt interruptions. Black-Right-Pointing-Pointer After subsequent weld passes, localised stresses dissipated for ramped interruptions.

  5. T.I.G. Welding of stainless steel. Numerical modelling for temperatures calculation in the Haz; Soldadura T.I.G. de acero inoxidable. Modelo numerico para el calculo de temperaturas en la ZAT

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Conesa, E. J.; Estrems-Amestoy, M.; Miguel-Eguia, V.; Garrido-Hernandez, A.; Guillen-Martinez, J. A.

    2010-07-01

    In this work, a numerical method for calculating the temperature field into the heat affected zone for butt welded joints is presented. The method has been developed for sheet welding and takes into account a bidimensional heat flow. It has built a computer program by MS-Excel books and Visual Basic for Applications (VBA). The model has been applied to the TIG process of AISI 304 stainless steel 2mm thickness sheet. The welding process has been considered without input materials. The numerical method may be used to help the designers to predict the temperature distribution in welded joints. (Author) 12 refs.

  6. Experimental characterization of the weld pool flow in a TIG configuration

    Science.gov (United States)

    Stadler, M.; Masquère, M.; Freton, P.; Franceries, X.; Gonzalez, J. J.

    2014-11-01

    Tungsten Inert Gas (TIG) welding process relies on heat transfer between plasma and work piece leading to a metallic weld pool. Combination of different forces produces movements on the molten pool surface. One of our aims is to determine the velocity on the weld pool surface. This provides a set of data that leads to a deeper comprehension of the flow behavior and allows us to validate numerical models used to study TIG parameters. In this paper, two diagnostic methods developed with high speed imaging for the determination of velocity of an AISI 304L stainless steel molten pool are presented. Application of the two methods to a metallic weld pool under helium with a current intensity of 100 A provides velocity values around 0.70 m/s which are in good agreement with literature works.

  7. Microestrutura de uma Solda Dissimilar entre o Aço Inoxidável Ferrítico AISI 410S e o Aço Inoxidável Austenítico AISI 304L Soldado pelo Processo FSW

    Directory of Open Access Journals (Sweden)

    Tathiane Caminha Andrade

    2015-12-01

    Full Text Available Resumo O presente trabalho visa investigar a microestrutura formada na soldagem dissimilar entre chapas de aços inoxidáveis ferríticos AISI 410S e aços inoxidáveis austeníticos AISI 304L pelo processo friction stir welding. A soldagem foi realizada com o ajuste dos seguintes parâmetros: rotação 450 rpm; velocidade de soldagem de 1,0 mm/s; e força axial 40 kN. O aço AISI 410S foi posicionado no lado de avanço enquanto que o aço AISI 304L foi posicionado no lado de retrocesso. A análise consistiu de preparação metalográfica e caracterização microestrutural por microscopia ótica e microscopia eletrônica de varredura. Para o aço AISI 410S foi observada a formação de martensita associada com ferrita na zona de mistura (ZM, zona termomecanicamente afetada (ZTMA e na zona afetada pelo calor (ZAC. As características do processo de soldagem FSW resultaram num refino de grão para o aço inoxidável ferrítico, posicionado no lado de avanço, tanto na ZM quanto nas ZTMA e ZAC. O mesmo comportamento não foi observado para o lado austenítico.

  8. Distortion Control during Welding

    OpenAIRE

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ methods to control welding distortion. In these methods local heating and/or cooling strategies are applied during welding. Additional heating and/or cooling sources can be implemented either stationa...

  9. Study on stress corrosion of the zone affected by the AISI 316L steel heat under PWR reactor environment at 325 deg Celsius; Estudo da corrosao sob tensao da zona afetada pelo calor do aco AISI 316L em ambiente de reator PWR a 325 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Satler Filho, Luiz F.; Schvartzman, Monica M.A.M.; Quinan, Marco A.D.; Soares, Antonio E.G., E-mail: aegs@cdtn.b, E-mail: fernandosatler@yahoo.com.b, E-mail: quinanm@cdtn.b, E-mail: monicas@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Lima, Luciana I.L., E-mail: lill@cdtn.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2009-07-01

    This paper evaluates the stress corrosion susceptibility of the HAZ (heat affected zone) of the AISI 316L stainless steel of a dissimilar welding done between the ASTM A-508 steel and the AISI 316L steel, using a nickel alloy, under a chemical environment similar to the PWR (Pressurized Water Reactor) nuclear reactor primary circuit. The nickel 82 and 182 alloys were used in the GTAW (Gas Tungsten Arc Welding) and SMAW (Shielded Metal Arc Welding) processes respectively. The test at slow deformation - SSRT (Slow Strain Rate Test) was applied, using a deformation rate of 3x10{sup -7} s{sup -1}, at a temperature of 325 degree Celsius and pressure of 12.5 MPa. The susceptibility under tress corrosion evaluation was performed comparing the resistance limit, the total deformation and the fracture time obtained at the inert medium (nitrogen) and at the PWR medium. Also, the fracture surfaces were observed under a scanning electron microscope, verifying the fragile fracture regions

  10. WELDING PROCESS

    Science.gov (United States)

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  11. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  12. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  13. Corrosion behavior of dissimilar weld joint of 316L and alloy 182 filler metal with different post-weld heat treatments in saline environments

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Joao H.N.; Santos, Neice F.; Esteves, Luiza; Campos, Wagner R.C.; Rabello, Emerson G., E-mail: joao.garcia@cdtn.br, E-mail: nfs@cdtn.br, E-mail: luiza.esteves@cdtn.br, E-mail: wrcc@cdtn.br, E-mail: egr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (SEIES/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Serviço de Integridade Estrutural

    2017-11-01

    Austenitic stainless steel and nickel alloys are widely used in nuclear reactors components and other plants of energy generation, chemical and petrochemical industries, due to their high corrosion resistance. These metals require post weld heat treatment (PWHT) to relieve stresses from the welding processes, although it can lead to a degradation of the weld microstructure. The aim of this work was to evaluate the influence of different PWHT on corrosion behavior of a dissimilar weld joint of two AISI 316L austenitic stainless steel plates with nickel alloy as filler material in saline environments. The material was submitted to heat treatments for three hours at 600, 700 and 800 °C. The weld joint was examined by optical microscopy to determine the effects of PWHT in the microstructure. The corrosion behavior of the samples before and after heat treatment was evaluated using cyclic potentiodynamic polarization (CPP) in sodium chloride solutions (19% v/v) and pH 4.0 at room temperature. Metallographic analyses showed that delta ferrite dissolute with PWHT temperature increase. CPP curves demonstrated an increase of pitting corrosion resistance as the PWHT temperature increases, although the pit size has been increased. The heat treated weld joint at 600 °C showed corrosion resistance close to the as welded material. (author)

  14. Introduction to Welding.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  15. Distortion Control during Welding

    NARCIS (Netherlands)

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ

  16. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  17. Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration

    OpenAIRE

    R Mendes; Ribeiro, J. B.; Loureiro, A.

    2013-01-01

    The aim of this research is to study the influence of explosive characteristics on the weld interfaces of stainless steel AISI 304L to low alloy steel 51CrV4 in a cylindrical configuration. The effect of ammonium nitrate-based emulsion, sensitized with different quantities and types of sensitizing agents (hollow glass microballoons or expanded polystyrene spheres) and Ammonium Nitrate Fuel Oil (ANFO) explosives on the interface characteristics is analyzed. Research showed that the type of exp...

  18. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    Science.gov (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  19. Influence of Mode of Metal Transfer on Microstructure and Mechanical Properties of Gas Metal Arc-Welded Modified Ferritic Stainless Steel

    Science.gov (United States)

    Mukherjee, Manidipto; Pal, Tapan Kumar

    2012-06-01

    This article describes in detail the effect of the modes of metal transfer on the microstructure and mechanical properties of gas metal arc-welded modified ferritic stainless steel (SSP 409M) sheets (as received) of 4 mm thickness. The welded joints were prepared under three modes of metal transfer, i.e., short-circuit (SC), spray (S), transfer, and mix (M) mode transfer using two different austenitic filler wires (308L and 316L) and shielding gas composition of Ar + 5 pct CO2. The welded joints were evaluated by means of microstructural, hardness, notched tensile strength, Charpy impact toughness, and high cycle fatigue. The dependence of weld metal microstructure on modes of metal transfer and filler wires has been determined by dilution calculation, WRC-1992 diagram, Creq/Nieq ratio, stacking fault energy (SFE), optical microscopy (OM), and transmission electron microscopy (TEM). It was observed that the microstructure as well as the tensile, Charpy impact, and high cycle fatigue of weld metal is significantly affected by the mode of metal transfer and filler wire used. However, the heat-affected zone (HAZ) is affected only by the modes of metal transfer. The results have been correlated with the microstructures of weld and HAZ developed under different modes of metal transfer.

  20. Thermomechanical behaviour of AISI 304 steels; Comportamiento termomecanico de aceros AISI 304

    Energy Technology Data Exchange (ETDEWEB)

    El Wahabi, M.; Garcia, V. G.; Cabrera, J. M.; Prado, J. M.

    2001-07-01

    The hot deformation behaviour of three AISI 304 (H, L and HP) austenitic stainless steel with different carbon contents has been studied. An analysis of the parameters describing their hot flow curves was carried out. No heavy effect of the carbon content was found on most of the latter parameters. However, the work hardening and dynamic recovery behaviour showed clear differences depending on the given alloy, especially at high temperatures and low strain rates where the high carbon steel displayed larger work hardening and dynamic recovery rates than the other steels. The high purity steel (interstitial free) displayed the lower stress levels as its hardening rate was slower than in the other two steels. (Author) 16 refs.

  1. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding

    Directory of Open Access Journals (Sweden)

    Torres López, Edwar A.

    2015-12-01

    Full Text Available Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 °C. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters.La unión de juntas aluminio-acero, sin la formación de fases deletéreas del tipo FexAly, ha sido, por décadas, un desafío para los procesos de soldadura. La soldadura por fricción-agitación ha sido empleada para intentar reducir el aporte térmico y evitar la formación de compuestos intermetálicos. Usando esta técnica fueron soldadas juntas disimilares de aluminio 6063-T5 y acero AISI-SAE 1020. La soldadura fue acompañada de medidas de temperatura durante su ejecución. La interfase de las juntas soldadas fue caracterizada utilizando microscopía óptica, electrónica de barrido y electrónica de transmisión. Adicionalmente fueron realizadas medidas puntuales X-EDS y DRX. Los resultados experimentales revelan que la temperatura máxima en la junta es inferior a 360 °C. La caracterización microestructural en la interfase aluminio-acero demostró la ausencia de compuestos intermetálicos, condición atribuida al uso de parámetros de soldadura con bajo aporte térmico.

  2. Mössbauer studies on an AISI 1137 type steel

    Indian Academy of Sciences (India)

    An AISI 1137 type medium carbon steel was studied by means of scanning electron microscopy and Mössbauer spectroscopy. This steel in as received state at room temperature was ferritic. Different heat treatments on related steel exhibited different microstructures such as pearlite and bainite. Also magnetism of these ...

  3. Stress corrosion cracking of AISI 321 stainless steel in acidic ...

    Indian Academy of Sciences (India)

    Unknown

    YANLIANG HUANG. Marine Corrosion and Protection Laboratory, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road,. Qingdao 266071, China. MS received 21 August 2001; revised 21 November 2001. Abstract. The stress corrosion cracking (SCC) of AISI 321 stainless steel in acidic chloride solution ...

  4. Stress corrosion cracking of AISI 321 stainless steel in acidic ...

    Indian Academy of Sciences (India)

    The stress corrosion cracking (SCC) of AISI 321 stainless steel in acidic chloride solution was studied by slow strain rate (SSR) technique and fracture mechanics method. The fractured surface was characterized by cleavage fracture. In order to clarify the SCC mechanism, the effects of inhibitor KI on SCC behaviour were ...

  5. Effects of Thermocapillary Forces during Welding of 316L-Type Wrought, Cast and Powder Metallurgy Austenitic Stainless Steels

    CERN Document Server

    Sgobba, Stefano

    2003-01-01

    The Large Hadron Collider (LHC) is now under construction at the European Organization for Nuclear Research (CERN). This 27 km long accelerator requires 1248 superconducting dipole magnets operating at 1.9 K. The cold mass of the dipole magnets is closed by a shrinking cylinder with two longitudinal welds and two end covers at both extremities of the cylinder. The end covers, for which fabrication by welding, casting or Powder Metallurgy (PM) was considered, are dished-heads equipped with a number of protruding nozzles for the passage of the different cryogenic lines. Structural materials and welds must retain high strength and toughness at cryogenic temperature. AISI 316L-type austenitic stainless steel grades have been selected because of their mechanical properties, ductility, weldability and stability of the austenitic phase against low-temperature spontaneous martensitic transformation. 316LN is chosen for the fabrication of the end covers, while the interconnection components to be welded on the protrud...

  6. Effect of welding process, type of electrode and electrode core diameter on the tensile property of 304L austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Akinlabi OYETUNJI

    2014-11-01

    Full Text Available The effect of welding process, type of electrode and electrode core diameter on the tensile property of AISI 304L Austenitic Stainless Steel (ASS was studied. The tensile strength property of ASS welded samples was evaluated. Prepared samples of the ASS were welded under these three various variables. Tensile test was then carried out on the welded samples. It was found that the reduction in ultimate tensile strength (UTS of the butt joint samples increases with increase in core diameter of the electrode. Also, the best electrode for welding 304L ASS is 308L stainless steel-core electrode of 3.2 mm core diameter. It is recommended that the findings of this work can be applied in the chemical, food and oil industries where 304L ASS are predominantly used.

  7. Reliability of the longitudinal welds of LHC main dipoles

    CERN Document Server

    Fessia, P; Sgobba, Stefano; MT-18

    2004-01-01

    The LHC main dipoles are assembled relying heavily on welding technology. In particular, two 15 m long longitudinal MAG welds along the shrinking cylinder, manufactured from AISI 316 LN stainless steel plates, close the cold mass and are submitted to tensile stress. The welds have to feature a design load of 350 MPa at 1.8 K and to guarantee the leak tightness to superfluid helium. Starting from few available experimental data, the reliability of the cold mass welds in terms of fracture mechanics is studied under different hypotheses (i. e. presence of surface or embedded flaws). The analysis has been carried out using a wide range of different approaches, such as Leak before break, LCF (Low Cycle Fatigue), LEFM (Linear Elastic Fracture Mechanics) and established standards (WES 2805). Also different approaches of propagation under fatigue are compared. The results of this study are meant to prove the robustness and reliability of the design at the working temperature of the magnets.

  8. Influence of use of ultrasound on metallographic structure of plated pieces by welding in ultrasonic field

    Directory of Open Access Journals (Sweden)

    Gh. Amza

    2015-07-01

    Full Text Available To optimize the plating process is necessary to know the behavior of surfaces plated during the exploitation and in particular susceptibility to cracking, the formation of cracks from the inside to outside or reverse, embrittlement in the heat affected zone. Research has been realized considering several samples plated by welding without ultrasonic activation and with ultrasonic activation, and these samples were made of AISI 4130 steel, and as filler material was used Inconel 625 Fe developed as electrode wire ø 1,2 / mm. The plating process was realized by a WIG welding process in Ar100 /% environment with non-consumable tungsten electrode, in two versions, respectively with and without the use of ultrasonic energy. Four pieces played by welding there were analyzed the metallographies structure in the base material, the deposited material and the material from the heat affected zone.

  9. Reprocessing weld and method

    Energy Technology Data Exchange (ETDEWEB)

    Killian, M.L.; Lewis, H.E.

    1993-08-03

    A process is described for improving the fatigue resistance of a small primary structural weld at a joint between structural members of a weldment, the weld having been made with the welding energy input of E[sub 1], the process comprising: applying a reprocessing weld on at least a portion of either one or both toes of the primary structural weld, thereby covering said toe portion, the reprocessing weld containing a filler metal and having a cross-sectional area which is less than the corresponding cross-sectional area of the primary structural weld, the reprocessing weld extending onto the face of the primary structural weld at one side of the toe portion covered and onto the structural member at the other side of the toe portion covered, and the total welding energy input, E[sub 2], used in said reprocessing the primary structural weld being less than the welding energy input E[sub 1] of the primary structural weld.

  10. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  11. Friction Welding For Cladding Applications: Processing, Microstructure and Mechanical Properties of Inertia Friction Welds of Stainless Steel to Low Carbon Steel and Evaluation of Wrought and Welded Austenitic Stainless Steels for Cladding Applications in Acidchloride Service

    Science.gov (United States)

    Switzner, Nathan

    Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid

  12. Welding Course Curriculum.

    Science.gov (United States)

    Genits, Joseph C.

    This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part…

  13. Instructional Guidelines. Welding.

    Science.gov (United States)

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  14. Nitriding using cathodic cage technique of martensitic stainless steel AISI 420 with addition of CH4

    National Research Council Canada - National Science Library

    De Sousa, R.R.M; De Araújo, F.O; Da Costa, J.A.P; De Sousa, R.S; Alves JR, C

    2008-01-01

    AISI 420 martensitic stainless steel samples were nitrided by cathodic cage technique with addition of methane in the atmosphere aiming to reduce chromium nitride precipitation, to increase hardness...

  15. Gap Width Study and Fixture Design in Laser Butt-Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    This paper discusses some practical consideration for design of a mechanical fixture, which enables to accurately measure the width of a gap between two stainless steel workpieces and to steadfastly clamp the workpieces for butt-welding with a high power CO2 laser.With such a fixture, a series...... of butt-welding experiment is successfully carried out in order to find the maximum allowable gap width in laser butt-welding. The gap width study (GWS) is performed on the material of SST of W1.4401 (AISI 316) under various welding conditions, which are the gap width : 0.00-0.50 mm, the welding speed : 0.......5-2.0 m/min, the laser power : 2 and 2.6 kW and the focal point position : 0 and -1.2 mm. Quality of all the butt welds are destructively tested according to ISO 13919-1.Influences of the variable process parameters to the maximum allowable gap width are observed as (1) the maximum gap width is inversely...

  16. Magnetic Barkhausen emission in lightly deformed AISI 1070 steel

    Energy Technology Data Exchange (ETDEWEB)

    Capo Sanchez, J., E-mail: jcapo@cnt.uo.edu.cu [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n, 90500 Santiago de Cuba (Cuba); Campos, M.F. de [EEIMVR-Universidade Federal Fluminense, Av. dos Trabalhadores 420, Vila Santa Cecilia, 27255-125 Volta Redonda, RJ (Brazil); Padovese, L.R. [Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231, 05508-900 Sao Paulo (Brazil)

    2012-01-15

    The Magnetic Barkhausen Noise (MBN) technique can evaluate both micro- and macro-residual stresses, and provides indication about the relevance of contribution of these different stress components. MBN measurements were performed in AISI 1070 steel sheet samples, where different strains were applied. The Barkhausen emission is also analyzed when two different sheets, deformed and non-deformed, are evaluated together. This study is useful to understand the effect of a deformed region near the surface on MBN. The low permeability of the deformed region affects MBN, and if the deformed region is below the surface the magnetic Barkhausen signal increases. - Highlights: > Evaluated residual stresses by the magnetic Barkhausen technique. > Indication about the relevance of micro-and macro-stress components. > Magnetic Barkhausen measurements were carried out in AISI 1070 steel sheet samples. > Two different sheets, deformed and non-deformed, are evaluated together. > Magnetic Barkhausen signal increases when deformed region is below the surface.

  17. Investigation of diffusion kinetics of plasma paste borided AISI 8620 ...

    Indian Academy of Sciences (India)

    Abstract. In the present study, AISI 8620 steel was plasma paste borided by using various B2O3 paste mixture. The plasma paste boriding process was carried out in a dc plasma system at temperatures of 973, 1023 and 1073 K for 2, 5 and 7 h in a gas mixture of 70% H2 -30% Ar under a constant pressure of 10 mbar.

  18. Pitting Corrosion Susceptibility of AISI 301 Stainless Steel in ...

    African Journals Online (AJOL)

    The susceptibility of austenitic (AISI 301) stainless steel to pitting corrosion was evaluated in sodium chloride (NaCl) solutions - 0.1M, 0.2M, 0.3M, 0.5M and 0.7M and 1.0M. Tensile tests and microscopic examinations were performed on samples prepared from the steel after exposure in the various environments.

  19. Fragmentation of primary coarse macrostructure of AISI 321 steel

    Science.gov (United States)

    Jandoš, F.; Mazanec, K.; Kasl, J.; Kuneš, J.

    1988-04-01

    Fragmentation of primary grains in an ingot of AISI 321 steel was studied under common hammer forging conditions, i.e. at a temperature gradient existing in the cross-section of the ingot. It has been found that recrystallization in the surface zone starts by deformation induced migration of large subgrains observed inside primary grains, that static recrystallization takes place by intragranular twinning and that the fragmentation of the primary macrostructure is conditioned by static recrystallization.

  20. Physics of arc welding

    Science.gov (United States)

    Eagar, T. W.

    1982-05-01

    A discussion of the factors controlling the size and shape of the weld fusion zone is presented along with a description of current theories of heat and fluid flow phenomena in the plasma and the molten metal weld pool. Although experimental results confirm that surface tension, plasma jets, and weld pool convection all strongly influence the fusion zone shape; no comprehensive model is available from which to predict welding behavior. It is proposed that the lack of such an understanding is a major impediment to development of automated welding processes. In addition, sensors for weld torch positioning are reviewed in terms of the mechnical and electromagnetic energy spectra which have been used. New developments in this area are also needed in order to advance the technology of automated welding.

  1. Size-separated particle fractions of stainless steel welding fume particles - A multi-analytical characterization focusing on surface oxide speciation and release of hexavalent chromium.

    Science.gov (United States)

    Mei, N; Belleville, L; Cha, Y; Olofsson, U; Odnevall Wallinder, I; Persson, K-A; Hedberg, Y S

    2018-01-15

    Welding fume of stainless steels is potentially health hazardous. The aim of this study was to investigate the manganese (Mn) and chromium (Cr) speciation of welding fume particles and their extent of metal release relevant for an inhalation scenario, as a function of particle size, welding method (manual metal arc welding, metal arc welding using an active shielding gas), different electrodes (solid wires and flux-cored wires) and shielding gases, and base alloy (austenitic AISI 304L and duplex stainless steel LDX2101). Metal release investigations were performed in phosphate buffered saline (PBS), pH 7.3, 37°, 24h. The particles were characterized by means of microscopic, spectroscopic, and electroanalytical methods. Cr was predominantly released from particles of the welding fume when exposed in PBS [3-96% of the total amount of Cr, of which up to 70% as Cr(VI)], followed by Mn, nickel, and iron. Duplex stainless steel welded with a flux-cored wire generated a welding fume that released most Cr(VI). Nano-sized particles released a significantly higher amount of nickel compared with micron-sized particle fractions. The welding fume did not contain any solitary known chromate compounds, but multi-elemental highly oxidized oxide(s) (iron, Cr, and Mn, possibly bismuth and silicon). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Estimation of embrittlement during aging of AISI 316 stainless steel ...

    Indian Academy of Sciences (India)

    Unknown

    Stainless steel; TIG welds; aging; Charpy impact; lower shelf energy; embrittlement. 1. Introduction. Austenitic stainless steels have high ductility, low yield strength, high tensile strength, are easy to fabricate and have good corrosion resistance (Harvey 1979). In welding of these steels there are some difficulties including hot.

  3. Application of Leak-Before-Break concept in 316LN austenitic steel pipes welded using 316L

    Directory of Open Access Journals (Sweden)

    Gabriel Giannini de Cunto

    2017-07-01

    Full Text Available The paper presents a study of the application of Leak-BeforeBreak (LBB concept in a relatively small-diameter high energy reactor coolant line, where it is proposed type AISI 316LN to be used as base material welded with type AISI 316L coated electrode considering a pipe with diameter of 273 mm. The pipe material was characterized in terms of tensile test with Ramberg-Osgood analyses and fracture toughness tests with J-Resistance curve determination, considering base material, weld joint and heat affected zones. For the mechanical properties found in tensile tests and using the PICEP software, were determined the leak rate curves versus crack sizes, to determine the size of a detectable leakage crack, and the critical crack sizes, considering failure by plastic collapse. For the critical crack sizes found in weld, which presented the lowest toughness, J-Integral analysis was performed considering failure by tearing instability. Results show a well-defined mechanical behavior where base material has a high toughness, weld has a low toughness, and HAZ showed intermediate properties. For the load limit analysis, the lowest critical crack size was found for base material presenting circumferential cracks. For J- Integral analysis, it was demonstrated that failure by tearing instability will not occur.

  4. Vida a la fatiga de juntas soldadas del acero inoxidable AISI 316L obtenidas mediante el proceso GMAW

    Directory of Open Access Journals (Sweden)

    Puchi-Cabrera, E. S.

    2007-06-01

    Full Text Available An investigation has been conducted in order to determine the effect of both the metallic transfer mode (pulsed arc or short circuit and the O2 content in the Ar/O2 gas mixture, of the gas-metal arc welding process (GMAW, on the fatigue life under uniaxial conditions of welded joints of 316L stainless steel. It has been concluded that the mixture of the protective gases employed in the process could have an important influence on the fatigue life of the welded joints of such steel in two different ways. Firstly, through the modification of the radius of curvature at the joint between the welding toe and the base metal and, secondly, through a more pronounced degree of oxidation of the alloying elements induced by a higher O2 content in the mixture. As far as the metallic transfer mode is concerned, it has been determined that the welded joints obtained under a pulsed arc mode show a greater fatigue life in comparison with the joints obtained under short circuit for both gas mixtures.

    Se ha llevado a cabo una investigación con la finalidad de determinar el efecto, tanto del modo de transferencia metálica (arco pulsado o cortocircuito como del contenido de O2 en la mezcla de gases protectores Ar/O2, del proceso de soldadura a tope mediante arco metálico con protección gaseosa (GMAW, sobre la vida a la fatiga en condiciones uniaxiales de juntas soldadas del acero inoxidable AISI 316L. Dicho trabajo ha permitido concluir que la composición de la mezcla de gases protectores del proceso GMAW pudiera tener una influencia importante en la vida a la fatiga de las juntas soldadas de dicho material, a través de dos formas distintas: primero, mediante la modificación del radio de curvatura entre la raíz del cordón de soldadura y el metal base y, en segundo lugar, a través del mayor grado de oxidación de los elementos de aleación. En cuanto al modo de transferencia metálica, se determinó que las juntas soldadas mediante arco pulsado

  5. Dual wire weld feed proportioner

    Science.gov (United States)

    Nugent, R. E.

    1968-01-01

    Dual feed mechanism enables proportioning of two different weld feed wires during automated TIG welding to produce a weld alloy deposit of the desired composition. The wires are fed into the weld simultaneously. The relative feed rates of the wires and the wire diameters determine the weld deposit composition.

  6. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  7. Validity and reliability of the attachment insecurity screening inventory (AISI) 2-5 years

    NARCIS (Netherlands)

    Wissink, I.B.|info:eu-repo/dai/nl/293037817; Stams, G.J.J.M.; Colonnesi, C.; Asscher, J.J.|info:eu-repo/dai/nl/288661834; Hoeve, M.; Noom, M.J.; Polderman, Nelleke; Kellaert-Knol, Marijke G.

    2016-01-01

    The Attachment Insecurity Screening Inventory (AISI) 2–5 years is a parent-report questionnaire for assessing attachment insecurity in preschoolers. Validity and reliability of the AISI 2–5 years were examined in a general sample (n = 429) and in a clinical sample (n = 71). Confirmatory factor

  8. Welding skate with computerized controls

    Science.gov (United States)

    Wall, W. A., Jr.

    1968-01-01

    New welding skate concept for automatic TIG welding of contoured or double-contoured parts combines lightweight welding apparatus with electrical circuitry which computes the desired torch angle and positions a torch and cold-wire guide angle manipulator.

  9. Computerized adaptive control weld skate with CCTV weld guidance project

    Science.gov (United States)

    Wall, W. A.

    1976-01-01

    This report summarizes progress of the automatic computerized weld skate development portion of the Computerized Weld Skate with Closed Circuit Television (CCTV) Arc Guidance Project. The main goal of the project is to develop an automatic welding skate demonstration model equipped with CCTV weld guidance. The three main goals of the overall project are to: (1) develop a demonstration model computerized weld skate system, (2) develop a demonstration model automatic CCTV guidance system, and (3) integrate the two systems into a demonstration model of computerized weld skate with CCTV weld guidance for welding contoured parts.

  10. Modern Methods of Rail Welding

    Science.gov (United States)

    Kozyrev, Nikolay A.; Kozyreva, Olga A.; Usoltsev, Aleksander A.; Kryukov, Roman E.; Shevchenko, Roman A.

    2017-10-01

    Existing methods of rail welding, which are enable to get continuous welded rail track, are observed in this article. Analysis of existing welding methods allows considering an issue of continuous rail track in detail. Metallurgical and welding technologies of rail welding and also process technologies reducing aftereffects of temperature exposure are important factors determining the quality and reliability of the continuous rail track. Analysis of the existing methods of rail welding enable to find the research line for solving this problem.

  11. Challenges to Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    This report originates from the compulsory defense during my Ph.D. study at the Technical University of Denmark. Resistance welding is an old and well-proven technology. Yet the emergence of more and more new materials, new designs, invention off new joining techniques, and more stringent...... requirement in quality have imposed challenges to the resistance welding. More some research and development have to be done to adapt the old technology to the manufacturing industry of the 21st century. In the 1st part of the report, the challenging factors to the resistance welding are reviewed. Numerical...... simulation of resistance welding has been under development for many years. Yet it is no easy to make simulation results reliable and accurate because of the complexity of resistance welding process. In the 2nd part of the report numerical modeling of resistance welding is reviewed, some critical factors...

  12. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  13. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  14. Studies of welded joints

    Directory of Open Access Journals (Sweden)

    J. M. Krupa

    2010-07-01

    Full Text Available Studies of a welded joint were described. The joint was made as a result of the reconstruction of a truss and one of the possible means to make a repair. The studies were of a simulation character and were targeted at the detection of welding defects and imperfections thatshould be eliminated in a real structure. A model was designed and on this model the tests and examinations were carried out. The modelwas made under the same conditions as the conditions adopted for repair. It corresponded to the real object in shape and dimensions, and in the proposed technique of welding and welding parameters. The model was composed of five plates joined together with twelve beads.The destructive and non-destructive tests were carried out; the whole structure and the respective welds were also examined visually. Thedefects and imperfections in welds were detected by surface methods of inspection, penetration tests and magnetic particle flaw detection.The model of the welded joint was prepared by destructive methods, a technique that would never be permitted in the case of a realstructure. For the investigations it was necessary to cut out the specimens from the welded joint in direction transverse to the weld run. The specimens were subjected to metallographic examinations and hardness measurements. Additionally, the joint cross-section was examined by destructive testing methods to enable precise determination of the internal defects and imperfections. The surface methods were applied again, this time to determine the severity of welding defects. The analysis has proved that, fabricated under proper conditions and with parameters of the welding process duly observed, the welded joint has good properties and repairs of this type are possible in practice.

  15. Robot welding process control

    Science.gov (United States)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  16. Explosive Welding of Pipes

    Science.gov (United States)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  17. INFLUENCE OF SHOT PEENING ON AISI 316Ti FATIGUE PROPERTIES

    Directory of Open Access Journals (Sweden)

    František Nový

    2012-09-01

    Full Text Available This paper deals with examination of fatigue properties of AISI 316Ti stainless steel before and after shot peening including analysis of residual stress relaxation during rotating bending fatigue tests (f = 50 Hz, T = 20 ± 3 °C, R = - 1 with use of X - ray diffractometer. Obtained experimental results show increase of fatigue properties in the high – cycle region including fatigue limit and show the behavior of residual stress at cyclic loading in the region from N = 103 cycles to N = 107 cycles of loading.

  18. INFLUENCE OF SHOT PEENING ON AISI 316Ti FATIGUE PROPERTIES

    Directory of Open Access Journals (Sweden)

    Mario Guagliano

    2012-05-01

    Full Text Available This paper deals with examination of fatigue properties of AISI 316Ti stainless steel before and after shot peening including analysis of residual stress relaxation during rotating bending fatigue tests (f = 50 Hz, T = 20 ± 3 °C, R = - 1 with use of X - ray diffractometer. Obtained experimental results show increase of fatigue properties in the high – cycle region including fatigue limit and show the behavior of residual stress, decrease, at given cyclic loading amplitude in the region from N = 103 cycles to N = 107 cycles of loading.

  19. Behaviour of AISI 316L Steel Exposed to Demineralized Water

    Directory of Open Access Journals (Sweden)

    Kožuh, S.

    2009-06-01

    Full Text Available The subject of investigation was the passivation of AISI 316L austenitic stainless steel. The effectiveness of various passivation media was tested by means of the potentiodynamic polarization technique. Potentiodynamic polarization was carried out in demineralized water before and after passivation treatment. Comparative analysis of the potentiodynamic curves for different passivation media showed that the best protection of the steel surface was provided by a HNO3 solution, φ= 6.0 %, containing CuSO4 · 5H2O, w = 2.0 %. The satisfactory protective properties were found to agree with the high value of the pitting potential.

  20. Experimental and numerical evaluation of the fatigue behaviour in a welded joint

    Science.gov (United States)

    Almaguer, P.; Estrada, R.

    2014-07-01

    Welded joints are an important part in structures. For this reason, it is always necessary to know the behaviour of them under cyclic loads. In this paper a S - N curve of a butt welded joint of the AISI 1015 steel and Cuban manufacturing E6013 electrode is showed. Fatigue tests were made in an universal testing machine MTS810. The stress ratio used in the test was 0,1. Flaws in the fatigue specimens were characterized by means of optical and scanning electron microscopy. SolidWorks 2013 software was used to modeling the specimens geometry, while to simulate the fatigue behaviour Simulation was used. The joint fatigue limit is 178 MPa, and a cut point at 2 039 093 cycles. Some points of the simulations are inside of the 95% confidence band.

  1. Aluminum coating by fluidized bed chemical vapor deposition on austenitic stainless steels AISI 304 and AISI 316

    Directory of Open Access Journals (Sweden)

    Jose Luddey Marulanda-Arevalo

    2015-01-01

    Full Text Available Los revestimientos de aluminio f ueron depositados sobre aceros inoxidables AISI 304 y AISI 316 en el rango de temperatura de 5 60 a 600 °C por deposición química de vapor en lecho fluidizado(CVD – FBR. Se utilizó un lecho que consistía en 10 % de aluminio en polvo y 90 % de lecho inerte (alúmina, el cual fue fluidizado con Ar y como ga ses activadores se utilizó una mezcla de ácido clorhídrico con hidrógeno (HCl/H 2 . En el recubrimiento si n tratamiento térmico están las siguiente s especies: Al 13 Fe 4 , Fe 2 Al 5 , FeAl 2 y Al 5 FeNi, las cuales están presentes para ambos aceros. Además, el tratamiento térmico provoca la difusa de alu minio hacia el sustrato y la difusa de hierro del sustrato haci a la superficie del recubrimiento, haciendo la trans formación de los compuestos ant eriores a FeAl, Fe 2 Al 5 , FeAl 2 , Al 0.99 Fe 0.99 Ni 0.02 , AlNi y el Fe 2 AlCr. Se realizó la simulación termodinámica con el s oftware Thermo Calc para obt ener información de la posible composición y la cantidad de mat erial depositado, para condiciones seleccionadas. Las muestras recubi ertas y sin recubrir, se expus ieron a 750 ºC en una atmósfera d onde el vapor agua se transporta a las muestras usando un flujo de N 2 de 40 ml/min, más 100 % vapor de agua (H 2 O. Los dos sustratos sin revestir se comportaron de manera diferente, ya que el acero AISI 304 soportó bien el a taque y ganó poco peso (0.49 mg/cm 2 , en comparación con el acero AISI 316 que perdió mucho peso (25.4 mg/cm 2 . Los aceros recubiertos ganaron poco de peso durante las mil horas de exposición (0.26 mg/cm 2 y soportaron muy bien el ataque corrosivo en c omparación con sustratos sin r ecubrimiento.

  2. Measuring weld heat to evaluate weld integrity

    Energy Technology Data Exchange (ETDEWEB)

    Schauder, V., E-mail: schauder@hks-prozesstechnik.de [HKS-Prozesstechnik GmbH, Halle (Germany)

    2015-11-15

    Eddy current and ultrasonic testing are suitable for tube and pipe mills and have been used for weld seam flaw detection for decades, but a new process, thermography, is an alternative. By measuring the heat signature of the weld seam as it cools, it provides information about weld integrity at and below the surface. The thermal processes used to join metals, such as plasma, induction, laser, and gas tungsten arc welding (GTAW), have improved since they were developed, and they get better with each passing year. However, no industrial process is perfect, so companies that conduct research in flaw detection likewise continue to develop and improve the technologies used to verify weld integrity: ultrasonic testing (UT), eddy current testing (ET), hydrostatic, X-ray, magnetic particle, and liquid penetrant are among the most common. Two of these are used for verifying the integrity of the continuous welds such as those used on pipe and tube mills: UT and ET. Each uses a transmitter to send waves of ultrasonic energy or electrical current through the material and a receiver (probe) to detect disturbances in the flow. The two processes often are combined to capitalize on the strengths of each. While ET is good at detecting flaws at or near the surface, UT penetrates the material, detecting subsurface flaws. One drawback is that sound waves and electrical current waves have a specific direction of travel, or an alignment. A linear defect that runs parallel to the direction of travel of the ultrasonic sound wave or a flaw that is parallel to the coil winding direction of the ET probe can go undetected. A second drawback is that they don't detect cold welds. An alternative process, thermography, works in a different fashion: It monitors the heat of the material as the weld cools. Although it measures the heat at the surface, the heat signature provides clues about cooling activity deep in the material, resulting in a thorough assessment of the weld's integrity It

  3. Fine welding with lasers.

    Science.gov (United States)

    MacLellan, D

    2008-01-01

    The need for micro joining metallic alloys for surgical instruments, implants and advanced medical devices is driving a rapid increase in the implementation of laser welding technology in research, development and volume production. This article discusses the advantages of this welding method and the types of lasers used in the process.

  4. Laser Welding in Space

    Science.gov (United States)

    Workman, Gary L.; Kaukler, William F.

    1989-01-01

    Solidification type welding process experiments in conditions of microgravity were performed. The role of convection in such phenomena was examined and convective effects in the small volumes obtained in the laser weld zone were observed. Heat transfer within the weld was affected by acceleration level as indicated by the resulting microstructure changes in low gravity. All experiments were performed such that both high and low gravity welds occurred along the same weld beam, allowing the effects of gravity alone to be examined. Results indicate that laser welding in a space environment is feasible and can be safely performed IVA or EVA. Development of the hardware to perform the experiment in a Hitchhiker-g platform is recomended as the next step. This experiment provides NASA with a capable technology for welding needs in space. The resources required to perform this experiment aboard a Shuttle Hitchhiker-pallet are assessed. Over the four year period 1991 to 1994, it is recommended that the task will require 13.6 manyears and $914,900. In addition to demonstrating the technology and ferreting out the problems encountered, it is suggested that NASA will also have a useful laser materials processing facility for working with both the scientific and the engineering aspects of materials processing in space. Several concepts are also included for long-term optimization of available solar power through solar pumping solid state lasers directly for welding power.

  5. DC arc weld starter

    Science.gov (United States)

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  6. Propagation of crevices in stainless steel AISI304L in conditions of hydrogen chemistry (HWC); Propagacion de grietas en acero inoxidable AISI304L en condiciones de quimica de hidrogeno (HWC)

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, 52750 Ocoyoacac, Estado de Mexico (Mexico); Castano M, V. [IFA-UNAM, Juriquilla, Queretaro (Mexico)]. e-mail: ads@nuclear.inin.mx

    2006-07-01

    Crevice growth velocities in samples of AISI 304L stainless steel thermally welded and sensitized were obtained by the Rising displacement method or of growing displacement. It was used a recirculation circuit in where the operation conditions of a BWR type reactor were simulated (temperature of 288 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu{sup ++} ion. CT pre cracked specimens were used and each rehearsal stayed to one constant displacement velocity of 1 x 10{sup -9} m/s (3.6 {mu}m/hr), making a continuous pursuit of the advance of the crack by the electric potential drop technique. To the end of the rehearsal it was carried out the fractographic analysis of the propagation surfaces. The values of the growth velocities obtained by this methodology went similar to the opposing ones under normal conditions of operation; while the fractographic analysis show the cracks propagation in trans and intergranular ways, evidencing the complexity of the regulator mechanisms of the one IGSCC even under controlled ambient conditions or with mitigation methodologies like the alternative hydrogen chemistry. (Author)

  7. Pengaruh Ball Peening terhadap Kekerasan Baja Tahan Karat AISI 316L

    Directory of Open Access Journals (Sweden)

    Teguh Dwi Widodo

    2017-03-01

    Full Text Available In this work, ball peening was performed in order to evaluate its effect on the AISI 316L hardness. The process was conducted by employing AISI E52100 Chrome Steel ball which has hardness 752 HVN as bomber. In this research ball peening process was performed at three different nozzle pressure (6, 7, and 8 bar for 5 minutes. Vickers Micro Hardness Tester and Digital Optical Microscope was used to characterize the samples hardness and grains structure respectively. The results showed that the hardness of AISI 316L was improved. It may due to plastic deformation which toke places on its grains.

  8. Welding method, and welding device for use therein, and method of analysis for evaluating welds

    NARCIS (Netherlands)

    Aendenroomer, A.J.; Den Ouden, G.; Xiao, Y.H.; Brabander, W.A.J.

    1995-01-01

    Described is a method of automatically welding pipes, comprising welding with a pulsation welding current and monitoring, by means of a sensor, the variations occurring in the arc voltage caused by weld pool oscillations. The occurrence of voltage variations with only frequency components below 100

  9. Thermoplastic welding apparatus and method

    Science.gov (United States)

    Matsen, Marc R.; Negley, Mark A.; Geren, William Preston; Miller, Robert James

    2017-03-07

    A thermoplastic welding apparatus includes a thermoplastic welding tool, at least one tooling surface in the thermoplastic welding tool, a magnetic induction coil in the thermoplastic welding tool and generally encircling the at least one tooling surface and at least one smart susceptor in the thermoplastic welding tool at the at least one tooling surface. The magnetic induction coil is adapted to generate a magnetic flux field oriented generally parallel to a plane of the at least one smart susceptor.

  10. Laser forming and welding processes

    CERN Document Server

    Yilbas, Bekir Sami; Shuja, Shahzada Zaman

    2013-01-01

    This book introduces model studies and experimental results associated with laser forming and welding such as laser induced bending, welding of sheet metals, and related practical applications. The book provides insight into the physical processes involved with laser forming and welding. The analytical study covers the formulation of laser induced bending while the model study demonstrates the simulation of bending and welding processes using the finite element method. Analytical and numerical solutions for laser forming and welding problems are provided.

  11. Statistical and Graphical Assessment of Circumferential and Radial Hardness Variation of AISI 4140, AISI 1020 and AA 6082 Aluminum Alloy

    Science.gov (United States)

    Al-Khalid, Hamad; Alaskari, Ayman; Oraby, Samy

    2011-01-01

    Hardness homogeneity of the commonly used structural ferrous and nonferrous engineering materials is of vital importance in the design stage, therefore, reliable information regarding material properties homogeneity should be validated and any deviation should be addressed. In the current study the hardness variation, over wide spectrum radial locations of some ferrous and nonferrous structural engineering materials, was investigated. Measurements were performed over both faces (cross-section) of each stock bar according to a pre-specified stratified design, ensuring the coverage of the entire area both in radial and circumferential directions. Additionally the credibility of the apparatus and measuring procedures were examined through a statistically based calibration process of the hardness reference block. Statistical and response surface graphical analysis are used to examine the nature, adequacy and significance of the measured hardness values. Calibration of the apparatus reference block proved the reliability of the measuring system, where no strong evidence was found against the stochastic nature of hardness measures over the various stratified locations. Also, outlier elimination procedures were proved to be beneficial only at fewer measured points. Hardness measurements showed a dispersion domain that is within the acceptable confidence interval. For AISI 4140 and AISI 1020 steels, hardness is found to have a slight decrease trend as the diameter is reduced, while an opposite behavior is observed for AA 6082 aluminum alloy. However, no definite significant behavior was noticed regarding the effect of the sector sequence (circumferential direction). PMID:28817030

  12. PERFORMANCE STUDY ON AISI316 AND AISI410 USING DIFFERENT LAYERED COATED CUTTING TOOLS IN CNC TURNING

    Directory of Open Access Journals (Sweden)

    K. RAJA

    2015-01-01

    Full Text Available Stainless steel (SS is used for many commercial and industrial applications owing to its high resistance to corrosion. It is too hard to machine due to its high strength and high work hardening property. A surface property such as surface roughness (SR is critical to the function-ability of machined components. SS is generally regarded as more difficult to machine material and poor SR is obtained during machining. In this paper an attempt has been made to investigate the SR produced by CNC turning on austenitic stainless steel (AISI316 and martensitic stainless steel (AISI410 by different cases of coated cutting tool used at dry conditions. Multilayered coated with TiCN/Al2O3, multilayered coated with Ti(C, N, B and single layered coated with TiAlN coated cutting tools are used. Experiments were carried out by using Taguchi’s L27 orthogonal array. The effect of cutting parameters on SR is evaluated and optimum cutting conditions for minimizing the SR are determined. Analysis of variance (ANOVA is used for identifying the significant parameters affecting the responses. Confirmation experiments are conducted to validate the results obtained from optimization.

  13. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2003-01-01

    Deals with the main commercially significant and commonly used welding processes. This title takes the student or novice welder through the individual steps involved in each process in an easily understood way. It covers many of the requirements referred to in European Standards including EN719, EN 729, EN 729 and EN 287.$bWelding processes handbook is a concise, explanatory guide to the main commercially significant and commonly-used welding processes. It takes the novice welder or student through the individual steps involved in each process in a clear and easily understood way. It is intended to provide an up-to-date reference to the major applications of welding as they are used in industry. The contents have been arranged so that it can be used as a textbook for European welding courses in accordance with guidelines from the European Welding Federation. Welding processes and equipment necessary for each process are described so that they can be applied to all instruction levels required by the EWF and th...

  14. Thermal stir welding process

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2012-01-01

    A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  15. Thermal stir welding apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2011-01-01

    A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  16. Solar array welding developement

    Science.gov (United States)

    Elms, R. V., Jr.

    1974-01-01

    The present work describes parallel gap welding as used for joining solar cells to the cell interconnect system. Sample preparation, weldable cell parameter evaluation, bond scheduling, bond strength evaluation, and bonding and thermal shock tests are described. A range of weld schedule parameters - voltage, time, and force - can be identified for various cell/interconnect designs that will provide adequate bond strengths and acceptably small electrical degradation. Automation of solar array welding operations to a significant degree has been achieved in Europe and will be receiving increased attention in the U.S. to reduce solar array fabrication costs.

  17. Review of Welding Terminology

    Directory of Open Access Journals (Sweden)

    Angelika Petrėtienė

    2011-04-01

    Full Text Available The paper discusses welding terms in accordance with the Lithuanian standard LST EN 1792 „Welding. The multilingual list of welding terms and similar processes”, „The Russian–Lithuanian dictionary of the terms of mechanical engineering technology and welding“ and the examples from postgraduates‘ final works. It analyses the infringement of lexical, word-building and morphological rules. First-year students should already be familiar with the standardized terms of their speciality. More active propagation of the terms should help to avoid terminology mistakes in various scientific spheres.

  18. Tribological Properties of Nanometric Atomic Layer Depositions Applied on AISI 420 Stainless Steel

    National Research Council Canada - National Science Library

    E. Marin; A. Lanzutti; L. Fedrizzi

    2013-01-01

    .... In this work, mono- and bi -layer nanometric, protective low-temperature ALD Coatings, based on Al2O3 and TiO2 were applied on AISI 420 Stainless Steel in orderto enhance its relatively low corrosion...

  19. Effects of deep cryogenic treatment on mechanical and tribological properties of AISI D3 tool steel

    National Research Council Canada - National Science Library

    Khun, Nay Win; Liu, Erjia; Tan, Adrian Wei Yee; Senthilkumar, D; Albert, Bensely; Mohan Lal, D

    2015-01-01

    In this study, the effects of deep cryogenic treatment (DCT) on the mechanical and tribological properties of AISI D3 tool steel were investigated together with a systematic correlation between their hardness and wear resistance...

  20. Optimal design for laser beam butt welding process parameter using artificial neural networks and genetic algorithm for super austenitic stainless steel

    Science.gov (United States)

    Sathiya, P.; Panneerselvam, K.; Soundararajan, R.

    2012-09-01

    Laser welding input parameters play a very significant role in determining the quality of a weld joint. The joint quality can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. Therefore, mechanical properties should be controlled to obtain good welded joints. In this study, the weld bead geometry such as depth of penetration (DP), bead width (BW) and tensile strength (TS) of the laser welded butt joints made of AISI 904L super austenitic stainless steel were investigated. Full factorial design was used to carry out the experimental design. Artificial Neural networks (ANN) program was developed in MatLab software to establish the relationships between the laser welding input parameters like beam power, travel speed and focal position and the three responses DP, BW and TS in three different shielding gases (Argon, Helium and Nitrogen). The established models were used for optimizing the process parameters using Genetic Algorithm (GA). Optimum solutions for the three different gases and their respective responses were obtained. Confirmation experiment has also been conducted to validate the optimized parameters obtained from GA.

  1. In-Situ Observations of Phase Transformations During Welding of 1045 Steel using Spatially Resolved and Time Resolved X-Ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, J; Palmer, T; DebRoy, T

    2005-10-28

    Synchrotron-based methods have been developed at Lawrence Livermore National Laboratory (LLNL) for the direct observation of microstructure evolution during welding. These techniques, known as spatially resolved (SRXRD) and time resolved (TRXRD) x-ray diffraction, allow in-situ experiments to be performed during welding and provide direct observations of high temperature phases that form under the intense thermal cycles that occur. This paper presents observations of microstructural evolution that occur during the welding of a medium carbon AISI 1045 steel, using SRXRD to map the phases that are present during welding, and TRXRD to dynamically observe transformations during rapid heating and cooling. SRXRD was further used to determine the influence of welding heat input on the size of the high temperature austenite region, and the time required to completely homogenize this region during welding. These data can be used to determine the kinetics of phase transformations under the steep thermal gradients of welds, as well as benchmark and verify phase transformation models.

  2. Precipitation examination of δ, σ, and γ phases using modified Cr/Ni equivalent ratios during the multipass welding of stainless steels

    Science.gov (United States)

    Lin, Dong-Yih; Hsieh, Chih-Chun

    2009-06-01

    The purpose of this study is to discuss the precipitation tendencies of δ, σ, and γ phases using a modified Cr/Ni equivalent ratio with 309L filler after welding dissimilar steels (SUS 304L and AISI 1017) while adding various Si contents of 0.25 wt.%, 0.45 wt.%, and 0.65 wt.% and hot rolling in AISI 309LSi stainless steels at 1200 °C for 2 h. The elemental compositions of δ, σ, and γ phases were performed by EDS in as-hot-rolled AISI 309LSi as well as dissimilar welded samples, and the Creq/Nieq ratios were calculated by Hammer & Svensson's equation. In this research, the Creq/Nieq of phase and matrix were presented as [Creq/Nieq]phase and [Creq/Nieq]matrix, respectively. The modified equation ([Creq/Nieq]modified) was equal to [Creq/Nieq]phase/[Creq/Nieq]matrix, and it was used to examine the effect of materials and processes in the δ, σ, and γ phases. The results indicated the Creq/Nieq ratios of the δ, σ, and γ phases were 2.557˜1.304, over 3.143, and 1.229, respectively.

  3. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  4. Corrosion of annealed AISI 316 stainless steel in sodium environment

    Science.gov (United States)

    Ganesan, Vaidehi; Ganesan, Vedaraman

    1998-07-01

    Solution annealed AISI type 316 austenitic stainless steel specimens were exposed in static sodium at 773 and 873 K for durations ranging from 500 to 2000 h. The results, i.e, weight loss data, hardness values, carburisation, depletion rates, sigma phase formation from the ferrite layer, corrosion morphology, roughness values etc. are analysed and discussed in the paper. Corrosion data such as the weight loss/depleted layer thickness and microstructure of fully annealed stainless steel specimens at 773 and 873 K under static sodium conditions (present study) are comparable to those of 20% cold worked stainless steel type 316 specimens at temperatures 973 K and above under dynamic sodium conditions. Annealed specimens leach out at a faster rate than cold worked specimens exposed to sodium.

  5. Sputtering of the 1020 AISI steel in abnormal glow discharge

    Science.gov (United States)

    García Zúñiga, J. A.; Sarmiento Santos, A.; Álvarez Luna, B.

    2017-12-01

    In all material treated in Sbnormal Glow Discharge (AGD) the phenomenon of sputtering occurs. In this work we study the sputtering suffered at different temperatures by AISI 1020 steel subjected to a DC discharge in two types of atmospheres. The steel samples were previously sanded until obtaining mirror brightness and subjected to the AGD plasma in the gaseous atmospheres of H2 and Ar. The temperature for each sputtering process was set in the range of 420°C to 600°C. In these samples the mass variation was measured and the yield sputtering processes was determined. Next, the simulation of the sputtering process was performed in the SRIM/TRIM 2008 software, by adjusting sputtering yield computational computations to those experimentally measured, in order to determine the energy with which the responsible ions of the sputtering collide with studied target.

  6. Comportamiento termomecánico de aceros AISI 304

    Directory of Open Access Journals (Sweden)

    El Wahabi, M.

    2001-04-01

    Full Text Available The hot deformation behaviour of three AISI 304 (H, L and HP austenitic stainless steel with different carbon contents has been studied. An analysis of the parameters describing their hot flow curves was carried out. No heavy effect of the carbon content was found on most of the latter parameters. However, the work hardening and dynamic recovery behaviour showed clear differences depending on the given alloy, especially at high temperatures and low strain rates where the high carbon steel displayed larger work hardening and dynamic recovery rates than the other steels. The high purity steel (interstitial free displayed the lower stress levels as its hardening rate was slower than in the other two steels.

    Se llevó a cabo un estudio del comportamiento termomecánico de tres aceros inoxidables austeníticos tipo AISI 304 (H, L y HP con diferentes contenido en carbono, mediante la determinación de los parámetros que describen las etapas de deformación en caliente. No se notó un fuerte efecto del carbono en dichos parámetros, excepto en los que describen los procesos de endurecimiento y de restauración dinámica que muestran una cierta dependencia con la composición química, especialmente a bajos valores del parámetro de Zener-Hollomon, donde el acero de alto carbono (304H endurece y restaura más rápido que el de bajo carbono (304L, alcanzándose valores de tensión de pico similares en ambos casos. El material de alta pureza (libre de intersticiales toma valores de tensión de pico más bajos que los otros aceros, endureciendo más lentamente y con una velocidad de restauración similar a la del 304H.

  7. A GTA Welding Cooling Rate Analysis on Stainless Steel and Aluminum Using Inverse Problems

    Directory of Open Access Journals (Sweden)

    Elisan dos Santos Magalhaes

    2017-01-01

    Full Text Available This work presents an analysis of the thermal influence of the heat transfer by convection and radiation during GTA (gas tungsten arc welding process. The authors’ in-house C++ previously-developed code was modified to calculate the amount of heat transfer by convection and radiation. In this software, an iterative Broydon-Fletcher-Goldfarb-Shanno (BFGS inverse method was applied to estimate the amount of heat delivered to the plate when the appropriate sensitivity criteria were defined. The methodology was validated by accomplishing lab-controlled experiments on stainless steel AISI 304L and aluminum 6065 T5 plates. Due to some experimental singularities, the forced thermal convection induced by the electromagnetic field and thermal-capillary force were disregarded. Significant examples of these singularities are the relatively small weld bead when compared to the sample size and the reduced time of the welding process. In order to evaluate the local Nusselt number, empirical correlations for flat plates were used. The thermal emission was a dominant cooling effect on the aluminum cooling. However, it did not present the same behavior as the stainless steel samples. The study found that the heat losses by convection and radiation of the weld pool do not affect the cooling process significantly.

  8. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  9. Friction stir welding tool

    Science.gov (United States)

    Tolle,; Charles R. , Clark; Denis E. , Barnes; Timothy, A [Ammon, ID

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  10. Concurrent ultrasonic weld evaluation system

    Science.gov (United States)

    Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.

    1987-01-01

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  11. Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment.

    Science.gov (United States)

    Ruiz, A; Timke, T; van de Sande, A; Heftrich, T; Novotny, R; Austin, T

    2016-06-01

    This article presents corrosion data and microstructural analysis data of austenitic stainless steels AISI 316L and AISI 347H exposed to supercritical water (25 MPa, 550 °C) with 2000 ppb of dissolved oxygen. The corrosion tests lasted a total of 1200 h but were interrupted at 600 h to allow measurements to be made. The microstructural data have been collected in the grain interior and at grain boundaries of the bulk of the materials and at the superficial oxide layer developed during the corrosion exposure.

  12. Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment

    Directory of Open Access Journals (Sweden)

    A. Ruiz

    2016-06-01

    Full Text Available This article presents corrosion data and microstructural analysis data of austenitic stainless steels AISI 316L and AISI 347H exposed to supercritical water (25 MPa, 550 °C with 2000 ppb of dissolved oxygen. The corrosion tests lasted a total of 1200 h but were interrupted at 600 h to allow measurements to be made. The microstructural data have been collected in the grain interior and at grain boundaries of the bulk of the materials and at the superficial oxide layer developed during the corrosion exposure.

  13. Study of residual stresses generated in machining of AISI 4340 steel; Estudo das tensoes residuais geradas na usinagem de aco AISI 4340

    Energy Technology Data Exchange (ETDEWEB)

    Reis, W.P. dos; Fonseca, M.P. Cindra; Serrao, L.F.; Chuvas, T.C.; Oliveira, L.C., E-mail: mcindra@vm.uff.b [Universidade Federal Fluminense (PGMEC/UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica

    2010-07-01

    Among the mechanical construction steels, AISI 4340 has good harden ability, while combining high strength with toughness and good fatigue strength, making it excellent for application in the metalworking industry, where it can work at different levels and types of requests. Residual stresses are generated in almost all processes of mechanical manufacturing. In this study, the residual stresses generated in different machining processes and heat treatment hardening of AISI 4340 were analyzed by X-ray diffraction, by the sen{sup 2} {psi} method, using Cr{kappa}{beta} radiation and compared. All samples, except for turned and cut by EDM, presented compressive residual stresses in the surface with various magnitudes. (author)

  14. Weld formation control at electron beam welding with beam oscillations

    OpenAIRE

    Trushnikov, Dmitriy; Koleva, Elena; Mladenov, Georgy; A. Shcherbakov

    2014-01-01

    Electron beam welding is used extensively to produce essential machine parts. The control of the basic beam parameters beam power or beam current at constant accelerating voltage, welding speed, current of focusing lens and distance between electron gun and welded sample surface is not enough to obtain at most of the regimes sound welds. Control of the focus position using analysis of the high frequency component of the current, collected by plasma, at periodic interactions on the beam (the o...

  15. Alternate Welding Processes for In-Service Welding

    Science.gov (United States)

    2009-04-24

    Conducting weld repairs and attaching hot tap tees onto pressurized pipes has the advantage of avoiding loss of service and revenue. However, the risks involved with in-service welding need to be managed by ensuring that welding is performed in a rep...

  16. Certification of a weld produced by friction stir welding

    Science.gov (United States)

    Obaditch, Chris; Grant, Glenn J

    2013-10-01

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  17. Welding defects at friction stir welding

    Directory of Open Access Journals (Sweden)

    P. Podržaj

    2015-04-01

    Full Text Available The paper presents an overview of different types of defects at friction stir welding. In order to explain the reasons for their occurrence a short theoretical background of the process is given first. The main emphasis is on the parameters that influence the process. An energy supply based division of defects into three disjoint groups was used. The occurring defects are demonstrated on various materials.

  18. Workmanship standards for fusion welding

    Science.gov (United States)

    Phillips, M. D.

    1967-01-01

    Workmanship standards manual defines practices, that adhere to rigid codes and specifications, for fusion welding of component piping, assemblies, and systems. With written and pictorial presentations, it is part of the operating procedure for fusion welding.

  19. Welding and Brazing Silicon Carbide

    Science.gov (United States)

    Moore, T. J.

    1986-01-01

    Hot isostatic pressing and conventional furnace brazing effective under right conditions. Study performed showed feasibility of welding SiC using several welding and brazing techniques. Use of SiC improves engine efficiency by allowing increase in operating temperature. SiC successfully hot-pressure-welded at 3,550 degrees F (1,950 degrees C) in argon. Refinements of solid-state welding and brazing procedures used sufficient for some specific industrial applications.

  20. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications

    Science.gov (United States)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert

    2003-01-01

    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading

  1. Welding. Performance Objectives. Basic Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of eight terminal objectives for a basic welding course. The materials were developed for a 36-week (2 hours daily) course developed to teach the fundamentals of welding shop work, to become familiar with the operation of the welding shop…

  2. Welding. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  3. Microstructural characterization of an AISI-SAE 4140 steel without nitridation and nitrided; Caracterizacion microestructural de un acero AISI-SAE 4140 sin nitrurar y nitrurado

    Energy Technology Data Exchange (ETDEWEB)

    Medina F, A.; Naquid G, C. [Gerencia de Ciencia de Materiales, Depto. de Sintesis y Caracterizacion de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    It was micro structurally characterized an AISI-SAE 4140 steel before and after of nitridation through the nitridation process by plasma post-unloading microwaves through Optical microscopy (OM), Scanning electron microscopy (SEM) by means of secondary electrons and retrodispersed, X-ray diffraction (XRD), Energy dispersion spectra (EDS) and mapping of elements. (Author)

  4. Friction stir welding tool and process for welding dissimilar materials

    Science.gov (United States)

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  5. Ultrasonic Evaluation of Weld Strength for Aluminum Ultrasonic Spot Welds

    Science.gov (United States)

    Ghaffari, Bita; Hetrick, Elizabeth T.; Mozurkewich, George; Reatherford, Larry V.

    2005-04-01

    The goal of this work is to determine the feasibility of using an ultrasonic, non-destructive technique for post-process evaluation of aluminum ultrasonic spot welds. A focused immersion transducer was utilized to obtain a C-scan of the weld interface, from which a weighted ultrasonic contact area was estimated. Weldments were subsequently tested destructively to determine the weld strength. The square root of the weld contact area displayed a relatively good correlation with weld strength, r2=0.85.

  6. Study on tempering behaviour of AISI 410 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Gopa, E-mail: gopa_mjs@igcar.gov.in [Metallurgy & Materials Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Das, C.R.; Albert, S.K.; Bhaduri, A.K.; Thomas Paul, V. [Metallurgy & Materials Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Panneerselvam, G. [Chemistry Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Dasgupta, Arup [Metallurgy & Materials Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India)

    2015-02-15

    Martensitic stainless steels find extensive applications due to their optimum combination of strength, hardness and wear-resistance in tempered condition. However, this class of steels is susceptible to embrittlement during tempering if it is carried out in a specific temperature range resulting in significant reduction in toughness. Embrittlement of as-normalised AISI 410 martensitic stainless steel, subjected to tempering treatment in the temperature range of 673–923 K was studied using Charpy impact tests followed by metallurgical investigations using field emission scanning electron and transmission electron microscopes. Carbides precipitated during tempering were extracted by electrochemical dissolution of the matrix and identified by X-ray diffraction. Studies indicated that temper embrittlement is highest when the steel is tempered at 823 K. Mostly iron rich carbides are present in the steel subjected to tempering at low temperatures of around 723 K, whereas chromium rich carbides (M{sub 23}C{sub 6}) dominate precipitation at high temperature tempering. The range 773–823 K is the transition temperature range for the precipitates, with both Fe{sub 2}C and M{sub 23}C{sub 6} types of carbides coexisting in the material. The nucleation of Fe{sub 2}C within the martensite lath, during low temperature tempering, has a definite role in the embrittlement of this steel. Embrittlement is not observed at high temperature tempering because of precipitation of M{sub 23}C{sub 6} carbides, instead of Fe{sub 2}C, preferentially along the lath and prior austenite boundaries. Segregation of S and P, which is widely reported as one of the causes for temper embrittlement, could not be detected in the material even through Auger electron spectroscopy studies. - Highlights: • Tempering behaviour of AISI 410 steel is studied within 673–923 K temperature range. • Temperature regime of maximum embrittlement is identified as 773–848 K. • Results show that type of

  7. Weld bead profile of laser welding dissimilar joints stainless steel

    Science.gov (United States)

    Mohammed, Ghusoon R.; Ishak, M.; Aqida, S. N.; Abdulhadi, Hassan A.

    2017-10-01

    During the process of laser welding, the material consecutively melts and solidifies by a laser beam with a peak high power. Several parameters such as the laser energy, pulse frequency, pulse duration, welding power and welding speed govern the mode of the welding process. The aim of this paper is to investigate the effect of peak power, incident angle, and welding speed on the weld bead geometry. The first investigation in this context was conducted using 2205-316L stainless steel plates through the varying of the welding speed from 1.3 mm/s to 2.1 mm/s. The second investigation was conducted by varying the peak power from 1100 W to 1500 W. From the results of the experiments, the welding speed and laser power had a significant effect on the geometry of the weld bead, and the variation in the diameter of the bead pulse-size. Due to the decrease in the heat input, welding speed affected penetration depth more than bead width, and a narrow width of heat affected zone was achieved ranging from 0.2 to 0.5 mm. Conclusively, weld bead geometry dimensions increase as a function of peak power; at over 1350 W peak power, the dimensions lie within 30 μm.

  8. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  9. Numerical simulation of welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær; Thorborg, Jesper

    Aim of project:To analyse and model the transient thermal field from arc welding (SMAW, V-shaped buttweld in 15mm plate) and to some extend the mechanical response due to the thermal field. - To implement this model in a general purpose finite element program such as ABAQUS.The simulation...... stress is also taken into account.Work carried out:With few means it is possible to define a thermal model which describes the thermal field from the welding process in reasonable agreement with reality. Identical results are found with ABAQUS and Rosenthal’s analytical solution of the governing heat...... transfer equation under same conditions. It is relative easy tointroduce boundary conditions such as convection and radiation where not surprisingly the radiation has the greatest influence especially from the high temperature regions in the weld pool and the heat affected zone.Due to the large temperature...

  10. Extravehicular activity welding experiment

    Science.gov (United States)

    Watson, J. Kevin

    1989-01-01

    The In-Space Technology Experiments Program (INSTEP) provides an opportunity to explore the many critical questions which can only be answered by experimentation in space. The objective of the Extravehicular Activity Welding Experiment definition project was to define the requirements for a spaceflight experiment to evaluate the feasibility of performing manual welding tasks during EVA. Consideration was given to experiment design, work station design, welding hardware design, payload integration requirements, and human factors (including safety). The results of this effort are presented. Included are the specific objectives of the flight test, details of the tasks which will generate the required data, and a description of the equipment which will be needed to support the tasks. Work station requirements are addressed as are human factors, STS integration procedures and, most importantly, safety considerations. A preliminary estimate of the cost and the schedule for completion of the experiment through flight and postflight analysis are given.

  11. Pulsed welding plasma source

    Science.gov (United States)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Tyasto, A.

    2016-04-01

    It is shown that in order to form the current pulse of a near rectangular shape, which provides conversion of the welding arc into a dynamic mode, it is rational to connect a forming element made on the basis of an artificial forming line in series to the welding DC circuit. The paper presents a diagram of a pulsed device for welding with a non-consumable electrode in argon which was developed using the forming element. The conversion of the arc into the dynamic mode is illustrated by the current and voltage oscillograms of the arc gap and the dynamic characteristic of the arc within the interval of one pulse generation time in the arc gap. The background current travels in the interpulse interval.

  12. Nitriding Process Characterization of Cold Worked AISI 304 and 316 Austenitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Waldemar Alfredo Monteiro

    2017-01-01

    Full Text Available The nitriding behavior of austenitic stainless steels (AISI 304 and 316 was studied by different cold work degree (0% (after heat treated, 10%, 20%, 30%, and 40% before nitride processing. The microstructure, layer thickness, hardness, and chemical microcomposition were evaluated employing optical microscopy, Vickers hardness, and scanning electron microscopy techniques (WDS microanalysis. The initial cold work (previous plastic deformations in both AISI 304 and 306 austenitic stainless steels does not show special influence in all applied nitriding kinetics (in layer thicknesses. The nitriding processes have formed two layers, one external layer formed by expanded austenite with high nitrogen content, followed by another thinner layer just below formed by expanded austenite with a high presence of carbon (back diffusion. An enhanced diffusion can be observed on AISI 304 steel comparing with AISI 316 steel (a nitrided layer thicker can be noticed in the AISI 304 steel. The mechanical strength of both steels after nitriding processes reveals significant hardness values, almost 1100 HV, on the nitrided layers.

  13. Ternary gas plasma welding torch

    Science.gov (United States)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor); Waldron, Douglas J. (Inventor)

    1995-01-01

    A plasma arc welding torch is discussed. A first plasma gas is directed through the body of the welding torch and out of the body across the tip of a welding electrode disposed at the forward end of the body. A second plasma gas is disposed for flow through a longitudinal bore in the electrode. The second plasma gas enters one end of the electrode and exits the electrode at the tip thereof for co-acting with the electric welding arc to produce the desired weld. A shield gas is directed through the torch body and circulates around the head of the torch adjacent to the electrode tip.

  14. AISI waste oxide recycling program. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Aukrust, E.; Downing, K.B.; Sarma, B.

    1995-08-01

    In March 1995 AISI completed a five-year, $60 million collaborative development program on Direct Steelmaking cost-shared by DOE under the Metals Initiative. This program defined an energy-efficient and environmentally-friendly technology to produce hot metal for steelmaking directly from coal and iron ore pellets without incurring the high capital costs and environmental problems associated with traditional coke oven and blast furnace technology. As it becomes necessary to replace present capacity, this new technology will be favored because of reduced capital costs, higher energy efficiency, and lower operating costs. In April 1994, having failed to move forward with a demonstration plant for direct ironmaking, despite substantial efforts by both Stelco and Geneva Steel, an alternative opportunity was sought to commercialize this new technology without waiting until existing ironmaking capacity needed to be replaced. Recycling and resource recovery of steel plant waste oxides was considered an attractive possibility. This led to approval of a ten-month, $8.3 million joint program with DOE on recycling steel plant waste oxides utilizing this new smelting technology. This highly successful trial program was completed in December 1994. The results of the pilot plant work and a feasibility study for a recycling demonstration plant are presented in this final technical report.

  15. Local Reversion of Cold Formed AISI 301LN

    Science.gov (United States)

    Järvenpää, A.; Jaskari, M.; Hietala, M.; Mäntyjärvi, K.

    This study demonstrates applying laser heat treatment for reversion treatments of cold-formed AISI 301LN. Sheets were cold- rolled to final thicknesses of 1.5 and 3 mm (65pct reduction), having martensite fraction of 70-95%. Sheets were heated locally by a laser beam to various peak temperatures to obtain different degrees of martensite reversion to austenite. Mechanical properties and formability of grain-refined and coarse-grained structures were measured by tensile, bending and Erichsen cup tests. In addition to standard Erichsen cup test, additional interrupted tests were carried out, where cups were first stretched close to the critical strain. Drawn cups were then heated locally by a laser beam to revitalize the structure and thereby enhance the formability in the following cupping test until failure. Various structures were produced: completely reverted microstructures (T > 700 °C) with grain sizes 0.9 - 2 μm in addition to partially reverted structure (T treatment is suitable for the reversion treatment to refine the austenite grain size. Refinement of the austenitic structures increased strength properties and the formability was better than with coarse grained structures having the same strength. Especially the yield strength was significantly enhanced, being around 900 MPa in the strongest reverted structure compared to the 300-400 MPa of the coarse grained austenitic structure. It was demonstrated that the local laser treatment restored formability of the drawn cups, allowing stretching to be continued.

  16. Abnormal grain growth in AISI 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Shirdel, M., E-mail: mshirdel1989@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-11-15

    The microstructural evolution during abnormal grain growth (secondary recrystallization) in 304L stainless steel was studied in a wide range of annealing temperatures and times. At relatively low temperatures, the grain growth mode was identified as normal. However, at homologous temperatures between 0.65 (850 °C) and 0.7 (900 °C), the observed transition in grain growth mode from normal to abnormal, which was also evident from the bimodality in grain size distribution histograms, was detected to be caused by the dissolution/coarsening of carbides. The microstructural features such as dispersed carbides were characterized by optical metallography, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and microhardness. Continued annealing to a long time led to the completion of secondary recrystallization and the subsequent reappearance of normal growth mode. Another instance of abnormal grain growth was observed at homologous temperatures higher than 0.8, which may be attributed to the grain boundary faceting/defaceting phenomenon. It was also found that when the size of abnormal grains reached a critical value, their size will not change too much and the grain growth behavior becomes practically stagnant. - Highlights: • Abnormal grain growth (secondary recrystallization) in AISI 304L stainless steel • Exaggerated grain growth due to dissolution/coarsening of carbides • The enrichment of carbide particles by titanium • Abnormal grain growth due to grain boundary faceting at very high temperatures • The stagnancy of abnormal grain growth by annealing beyond a critical time.

  17. Tensile properties of shielded metal arc welded dissimilar joints of nuclear grade ferritic steel and austenitic stainless steel

    Science.gov (United States)

    Karthick, K.; Malarvizhi, S.; Balasubramanian, V.; Krishnan, S. A.; Sasikala, G.; Albert, Shaju K.

    2016-12-01

    In nuclear power plants, modified 9Cr-1Mo ferritic steel (Grade 91 or P91) is used for constructing steam generators (SG's) whereas austenitic stainless steel (AISI 316LN) is a major structural member for intermediate heat exchanger (IHX). Therefore, a dissimilar joint between these materials is unavoidable. In this investigation, dissimilar joints were fabricated by Shielded Metal Arc Welding (SMAW) process with Inconel 82/182 filler metals. Transverse tensile properties and Charpy V-notch impact toughness for different regions of dissimilar joints of modified 9Cr-1Mo ferritic steel and AISI 316LN austenitic stainless steel were evaluated as per the standards. Microhardness distribution across the dissimilar joint was recorded. Microstructural features of different regions were characterized by optical and scanning electron microscopy. The transverse tensile properties of the joint is found to be inferior to base metals. Impact toughness values of different regions of dissimilar metal weld joint (DMWJ) is slightly higher than the prescribed value. Formation of a soft zone at the outer edge of the HAZ will reduce the tensile properties of DMWJ. The complex microstructure developed at the interfaces of DMWJ will reduce the impact toughness values.

  18. Integrated sensors for robotic laser welding

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Beyer, E.; Dausinger, F; Ostendorf, A; Otto, A.

    2005-01-01

    A welding head is under development with integrated sensory systems for robotic laser welding applications. Robotic laser welding requires sensory systems that are capable to accurately guide the welding head over a seam in three-dimensional space and provide information about the welding process as

  19. Sensor integration for robotic laser welding processes

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Ostendorf, A; Hoult, A.; Lu, Y.

    2005-01-01

    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process,

  20. Acoustic-Emission Weld-Penetration Monitor

    Science.gov (United States)

    Maram, J.; Collins, J.

    1986-01-01

    Weld penetration monitored by detection of high-frequency acoustic emissions produced by advancing weld pool as it melts and solidifies in workpiece. Acoustic emission from TIG butt weld measured with 300-kHz resonant transducer. Rise in emission level coincides with cessation of weld penetration due to sudden reduction in welding current. Such monitoring applied to control of automated and robotic welders.

  1. Weld procedure development with OSLW - optimization software for laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Fuerschbach, P.W.; Eisler, G.R. [Sandia National Labs., Albuquerque, NM (United States); Steele, R.J. [Naval Air Warfare Center, China Lake, CA (United States)

    1998-06-01

    Weld procedure development can require extensive experimentation, in-depth process knowledge, and is further complicated by the fact that there are often multiple sets of parameters that will meet the weld requirements. Choosing among these multiple weld procedures can be hastened with computer models that find parameters to meet selected weld dimensional requirements while simultaneously optimizing important figures of merit. Software is described that performs this task for CO{sub 2} laser beam welding. The models are based on dimensionless parameter correlations that are derived from solutions to the moving heat source equations. The use of both handbook and empirically verified thermophysical property values allows OSLW to be extended to many different materials. Graphics displays show the resulting solution on contour plots that can be used to further probe the model. The important figures of merit for laser beam welding are energy transfer efficiency and melting efficiency. The application enables the user to input desired weld shape dimensions, select the material to be welded, and to constrain the search problem to meet the application requirements. Successful testing of the software at a laser welding fabricator has validated this tool for weld procedure development.

  2. Welding. Student Learning Guide.

    Science.gov (United States)

    Palm Beach County Board of Public Instruction, West Palm Beach, FL.

    This student learning guide contains 30 modules for completing a course in welding. It is designed especially for use in secondary schools in Palm Beach County, Florida. Each module covers one task, and consists of a purpose, performance objective, enabling objectives, learning activities keyed to resources, information sheets, student self-check…

  3. Thermal Stresses in Welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær

    1998-01-01

    Studies of the transient temperature fields and the hereby induced deformations and stressses in a butt-welded mild steel plate modelledrespectively in 2D plane stress state (as well as plane strain state) and in full 3D have been done. The model has been implemented in the generalpurpose FE...

  4. Elementary TIG Welding Skills.

    Science.gov (United States)

    Pierson, John E., III

    The text was prepared to help deaf students develop the skills needed by an employed welder. It uses simplified language and illustrations to present concepts which should be reinforced by practical experience with welding skills. Each of the 12 lessons contains: (1) an information section with many illustrations which presents a concept or…

  5. effect of post-weld heat treatment on the microstructure

    African Journals Online (AJOL)

    user

    among others are shielded metal arc welding, submerge arc welding, gas metal arc welding, plasma arc welding, gas ... welding (SMAW) technique is preferable to the other techniques ..... studies''International Journal of Innovative Research.

  6. SHADOW: a new welding technique

    Science.gov (United States)

    Kramer, Thorsten; Olowinsky, Alexander M.; Durand, Friedrich

    2002-06-01

    The new welding technique 'SHADOW ' is introduced. SHADOW means the use of a single pulse to generate a quasi continuous weld of several millimeters in length. HET processing time is defined by the pulse duration of the pulsed laser. At present, a state-of-the-art laser is capable of a maximum pulse duration of 20 ms. The variation of the laser power depend on time is a vital capability of the pulsed laser to adapt the energy deposition into the workpiece. Laser beam welds of several watch components were successfully performed. Similar metals like crowns and axes made out of stainless steel have been welded using pulsed laser radiation. Applying a series of about 130 single pulses for the crown-axis combination the total energy accumulates to 19.5 J. The use of the SHADOW welding technique reduces the energy to 2.5 J. While welding dissimilar metals like stainless steel and bras, the SHADOW welding reduces drastically the contamination as well as the distortion. Laser beam welding of copper has a low process reliability due to the high reflection and the high thermal conductivity. SHADOW welds of 3.6 mm length were performed on 250 micrometers thick copper plates with very high reproducibility. As a result, a pilot plant for laser beam welding of copper plates has been set up. The work to be presented has partly been funded by the European Commission in a project under the contract BRPR-CT-0634.

  7. Deformation induced martensite in AISI 316 stainless steel

    Directory of Open Access Journals (Sweden)

    Solomon, N.

    2010-04-01

    Full Text Available The forming process leads to a considerable differentiation of the strain field within the billet, and finally causes the non-uniform distribution of the total strain, microstrusture and properties of the material over the product cross-section. This paper focus on the influence of stress states on the deformation-induced a’ martensitic transformation in AISI Type 316 austenitic stainless steel. The formation of deformation-induced martensite is related to the austenite (g instability at temperatures close or below room temperature. The structural transformation susceptibility is correlated to the stacking fault energy (SFE, which is a function not only of the chemical composition, but also of the testing temperature. Austenitic stainless steels possess high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Nevertheless, the deformation-induced martensite transformation may enhance the rate of work-hardening and it may or may not be in favour of further material processing. Due to their high corrosion resistance and versatile mechanical properties the austenitic stainless steels are used in pressing of heat exchanger plates. However, this corrosion resistance is influenced by the amount of martensite formed during processing. In order to establish the links between total plastic strain, and martensitic transformation, the experimental tests were followed by numerical simulation.

    El proceso de conformación da a lugar a una considerable diferenciación del campo de tensiones dentro de una barra de extrusión y, finalmente, causa una distribución no uniforme de la tensión total, la microestructura y propiedades del material sobre el corte transversal. En este trabajo se estudia la influencia de los estados de tensión sobre la transformación martensítica inducida por deformación en un acero inoxidable austenítico tipo AISI 316. La formación de martensita inducida por

  8. Welding residual stress distributions for dissimilar metal nozzle butt welds in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Soo; Kim, Ju Hee; Bae, Hong Yeol; OH, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyungsoo [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Song, Tae Kwang [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-02-15

    In pressurized water nuclear reactors, dissimilar metal welds are susceptible to primary water stress corrosion cracking. To access this problem, accurate estimation of welding residual stresses is important. This paper provides general welding residual stress profiles in dissimilar metal nozzle butt welds using finite element analysis. By introducing a simplified shape for dissimilar metal nozzle butt welds, changes in the welding residual stress distribution can be seen using a geometry variable. Based on the results, a welding residual stress profile for dissimilar metal nozzle butt welds is proposed that modifies the existing welding residual stress profile for austenitic pipe butt welds.

  9. In-field Welding and Coating Protocols

    Science.gov (United States)

    2009-05-12

    Gas Technology Institute (GTI) and Edison Welding Institute (EWI) created both laboratory and infield girth weld samples to evaluate the effects of weld geometry and hydrogen off-gassing on the performance of protective coatings. Laboratory made plat...

  10. Closed circuit TV system monitors welding operations

    Science.gov (United States)

    Gilman, M.

    1967-01-01

    TV camera system that has a special vidicon tube with a gradient density filter is used in remote monitoring of TIG welding of stainless steel. The welding operations involve complex assembly welding tools and skates in areas of limited accessibility.

  11. Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing

    Directory of Open Access Journals (Sweden)

    Massimiliano Filippi

    2009-03-01

    Full Text Available The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing, in comparison with those obtained under standard/conventional process (EP conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of free-metal atoms apart from the detected oxides and hydroxides. Such a morphology of the surface film usually affects the thermodynamic stability and corrosion resistance of surface oxide layer and is one of the most important features of stainless steels. With this new MEP process we can improve metal surface properties by making the stainless steel more resistant to halides encountered in a variety of environments. Furthermore, in this paper the stainless steel surface film study results have been presented. The results of the corrosion research carried out by the authors on the behaviour of the most commonly used material - medical grade AISI 316L stainless steel both in Ringer’s body fluid and in aqueous 3% NaCl solution have been investigated and presented earlier elsewhere, though some of these results, concerning the EIS Nyquist plots and polarization curves are also revealed herein. In this paper an attempt to explain this peculiar performance of 316L stainless steel has been undertaken. The SEM studies, Auger electron spectroscopy (AES and X-ray photoelectron spectroscopy (XPS were performed on 316L samples after three treatments: MP – abrasive polishing (800 grit size, EP – conventional electrolytic polishing, and MEP – magnetoelectropolishing. It has been found that the proposed magnetoelectropolishing (MEP process considerably modifies the morphology and the composition of the surface film, thus leading to improved corrosion resistance of the studied 316L SS.

  12. Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing

    Science.gov (United States)

    Hryniewicz, Tadeusz; Rokosz, Krzysztof; Filippi, Massimiliano

    2009-01-01

    The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing), in comparison with those obtained under standard/conventional process (EP) conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of free-metal atoms apart from the detected oxides and hydroxides. Such a morphology of the surface film usually affects the thermodynamic stability and corrosion resistance of surface oxide layer and is one of the most important features of stainless steels. With this new MEP process we can improve metal surface properties by making the stainless steel more resistant to halides encountered in a variety of environments. Furthermore, in this paper the stainless steel surface film study results have been presented. The results of the corrosion research carried out by the authors on the behaviour of the most commonly used material − medical grade AISI 316L stainless steel both in Ringer’s body fluid and in aqueous 3% NaCl solution have been investigated and presented earlier elsewhere, though some of these results, concerning the EIS Nyquist plots and polarization curves are also revealed herein. In this paper an attempt to explain this peculiar performance of 316L stainless steel has been undertaken. The SEM studies, Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were performed on 316L samples after three treatments: MP – abrasive polishing (800 grit size), EP – conventional electrolytic polishing, and MEP – magnetoelectropolishing. It has been found that the proposed magnetoelectropolishing (MEP) process considerably modifies the morphology and the composition of the surface film, thus leading to improved corrosion resistance of the studied 316L SS.

  13. Characterization of Tungsten Carbide coatings deposited on AISI 1020 steel

    Science.gov (United States)

    Santos, A.; Gonzalez, C.; Ramirez, Z. Y.

    2017-01-01

    In order to determine the variation in the mechanical properties of AISI 1020 standardized steel, heat treated by a quenching and tempering process and with a Tungsten Carbide coating, was performed a microstructural and chemical characterization of the coating material through electron microscopy scanning and X-ray energy dispersive spectroscopy. The steel received a heat treatment of quenching performed by heating to 850°C, followed by cooling in water and tempering at a temperature of 450°C with air cooling. Tests of a) microhardness with a Wilson-Wolpert Tukon 2100B micro durometer and b) resistance to adhesive and abrasive wear following the ASTM G99-05 “Standard test method for wear testing with a pin-on-disk machine” and ASTM G65-04 “standard test method for measuring abrasion using dry sand and rubber Wheel” standards respectively. The results show that the microhardness of the steel do not vary with the load used to perform the test; in addition, the heat treatment of quenching and tempering improves by 5.5% the property while the coating increase it by 124.2%. Regarding the abrasive wear resistance, it is observed that the amount of material lost increases linearly with the distance covered. It was determined that the heat treatment decreased on average by 17.5% the volume of released material during the tests while the coating recued it by 66.7%. The amount volume of material lost during the adhesive wear tests increases linearly with the distance covered while the heat treatment decreased on average by 10.5% the volume of released material during the trial and the coating reduced it by 66.5%.

  14. Evolution of microstructures and mechanical properties during dissimilar electron beam welding of titanium alloy to stainless steel via copper interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Tomashchuk, I., E-mail: iryna.tomashchuk@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 12 rue de la Fonderie, F-71200 Le Creusot (France); Sallamand, P. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 12 rue de la Fonderie, F-71200 Le Creusot (France); Belyavina, N. [Department of Physics, Taras Shevchenko University, 2, Glushkov Avenue, 03022 Kiev (Ukraine); Pilloz, M. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 12 rue de la Fonderie, F-71200 Le Creusot (France)

    2013-11-15

    The influence of operational parameters on the local phase composition and mechanical stability of the electron beam welds between titanium alloy and AISI 316L austenitic stainless steel with a copper foil as an intermediate layer has been studied. It was shown that two types of weld morphologies could be obtained depending on beam offset from the center line. Beam shift toward the titanium alloy side results in formation of a large amount of the brittle TiFe{sub 2} phase, which is located at the steel/melted zone interface and leads to reducing the mechanical resistance of the weld. Beam shift toward the steel side inhibits the melting of titanium alloy and, so, the formation of brittle intermetallics at the titanium alloy/melted zone interface. Mechanical stability of the obtained junctions was shown to depend on the thickness of this intermetallic layer. The fracture zone of the weld was found to be a mixture of TiCu (3–42 wt%), TiCu{sub 1−x}Fe{sub x} (x=0.72–0.84) (22–68 wt%) and TiCu{sub 1−x}Fe{sub x} (x=0.09–0.034) (0–22 wt%). In order to achieve the maximal ultimate tensile strength (350 MPa), the diffusion path length of Ti in the melted zone should be equal to 40–80 µm.

  15. Factors affecting weld root morphology in laser keyhole welding

    Science.gov (United States)

    Frostevarg, Jan

    2018-02-01

    Welding production efficiency is usually optimised if full penetration can be achieved in a single pass. Techniques such as electron and laser beam welding offer deep high speed keyhole welding, especially since multi-kilowatt lasers became available. However, there are limitations for these techniques when considering weld imperfections such as weld cap undercuts, interior porosity or humps at the root. The thickness of sheets during full penetration welding is practically limited by these root humps. The mechanisms behind root morphology formation are not yet satisfactory understood. In this paper root humping is studied by reviewing previous studies and findings and also by sample examination and process observation by high speed imaging. Different process regimes governing root quality are presented, categorized and explained. Even though this study mainly covers laser beam and laser arc hybrid welding, the presented findings can generally be applied full penetration welding in medium to thick sheets, especially the discussion of surface tension effects. As a final result of this analysis, a map of methods to optimise weld root topology is presented.

  16. Dynamics of space welding impact and corresponding safety welding study.

    Science.gov (United States)

    Fragomeni, James M; Nunes, Arthur C

    2004-03-01

    This study was undertaken in order to be sure that no hazard would exist from impingement of hot molten metal particle detachments upon an astronauts space suit during any future electron beam welding exercises or experiments. The conditions under which molten metal detachments might occur in a space welding environment were analyzed. The safety issue is important during welding with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at low earth orbit. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were determined for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. A weld pool detachment parameter for specifying the conditions for metal weld pool detachment by impact was derived and correlated to the experimental results. The experimental results were for the most part consistent with the theoretical analysis and predictions. c2003 Elsevier Ltd. All rights reserved.

  17. Dynamics of space welding impact and corresponding safety welding study

    Science.gov (United States)

    Fragomeni, James M.; Nunes, Arthur C.

    2004-03-01

    This study was undertaken in order to be sure that no hazard would exist from impingement of hot molten metal particle detachments upon an astronauts space suit during any future electron beam welding exercises or experiments. The conditions under which molten metal detachments might occur in a space welding environment were analyzed. The safety issue is important during welding with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at low earth orbit. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were determined for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. A weld pool detachment parameter for specifying the conditions for metal weld pool detachment by impact was derived and correlated to the experimental results. The experimental results were for the most part consistent with the theoretical analysis and predictions.

  18. Fundamental Laser Welding Process Investigations

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1998-01-01

    In a number of systematic laboratory investigations the fundamental behavior of the laser welding process was analyzed by the use of normal video (30 Hz), high speed video (100 and 400 Hz) and photo diodes. Sensors were positioned to monitor the welding process from both the top side and the rear...... side of the specimen.Special attention has been given to the dynamic nature of the laser welding process, especially during unstable welding conditions. In one series of experiments, the stability of the process has been varied by changing the gap distance in lap welding. In another series...... video pictures (400 Hz), a clear impact on the seam characteristics has been identified when a hump occurs.Finally, a clear correlation between the position of the focus point, the resultant process type and the corresponding signal intensity and signal variation has been found for sheets welded...

  19. Structure and properties of the Stainless steel AISI 316 nitrided with microwave plasma; Estructura y propiedades del acero inoxidable AISI 316 nitrurado con plasmas de microondas

    Energy Technology Data Exchange (ETDEWEB)

    Becerril R, F

    1999-07-01

    In this work were presented the results obtained by nitridation on stainless steel AISI 316 using a plasma generated through a microwave discharge with an external magnetic field using several moistures hydrogen / nitrogen to form a plasma. The purpose of nitridation was to increase the surface hardness of stainless steel through a phase formation knew as {gamma}N which has been reported that produces such effect without affect the corrosion resistance proper of this material. (Author)

  20. Friction-corrosion of AISI 316L/bone cement and AISI 316L/PMMA contacts: ionic strength effect on tribological behaviour

    OpenAIRE

    Geringer, Jean; Atmani, Fouad; Forest, Bernard

    2009-01-01

    International audience; Wear phenomena understanding of implants is a challenge: friction-corrosion of biomaterials, which constitute orthopaedic implants, is a significant issue concerning the aseptic loosening. This work aims at studying AISI 316L/bone cement friction which is a tribological problem related to hip joint cemented prostheses. This study focuses on the ionic strength effect on the tribological behaviour of 316L/bone cement and 316L/PMMA contacts. PMMA, poly(methylmethacrylate)...

  1. Pulsed ultrasonic stir welding system

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  2. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2016-01-01

    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced...... residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature failure in the weld components. This paper deals with the influence and impact of welding method on the welding...... induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...

  3. The effect of post-welding conditions in friction stir welds: From weld simulation to Ductile Failure

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Nielsen, Kim Lau; Tutum, Cem Celal

    2012-01-01

    effect of the post-welding conditions when subjecting a friction stir weld to loading transverse to the weld line. The numerical model of the friction stir welded joint, employs a step-wise modeling approach to combine an in-situ weld simulation with a post-welding failure analysis. Using the commercial......The post-welding stress state, strain history and material conditions of friction stir welded joints are often strongly idealized when used in subsequent modeling analyses, typically by neglecting one or more of the features above. But, it is obvious that the conditions after welding do influence...... the weld performance. The objective of this paper is to discuss some of the main conflicts that arise when taking both the post-welding material conditions and stressestrain state into account in a subsequent structural analysis. The discussion is here based on a preliminary numerical study of the possible...

  4. Pulsed ultrasonic stir welding method

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  5. Reconditioning medical prostheses by welding

    Science.gov (United States)

    Rontescu, C.; Cicic, D. T.; Vasile, I. M.; Bogatu, A. M.; Amza, C. G.

    2017-08-01

    After the technological process of making, some of the medical prostheses may contain imperfections, which can lead to framing the product in the spoilage category. This paper treats the possibility of reconditioning by welding of the prosthesis made of titanium alloys. The paper presents the obtained results after the reconditioning by welding, using the GTAW process, of a intramedullary rod type prosthesis in which was found a crack after the non-destructive examination. The obtained result analysis, after the micrographic examination of the welded joint areas, highlighted that the process of reconditioning by welding can be applied successfully in such situations.

  6. Portable electron beam weld chamber

    Science.gov (United States)

    Lewis, J. R.; Dimino, J. M.

    1972-01-01

    Development and characteristics of portable vacuum chamber for skate type electron beam welding are discussed. Construction and operational details of equipment are presented. Illustrations of equipment are provided.

  7. Effect of Boronizing on Microhardness and Wear Resistance of Steel AISI 1050 and Chilled Cast Iron

    Science.gov (United States)

    Calik, Adnan; Simsek, Mithat; Karakas, Mustafa Serdar; Ucar, Nazim

    2014-05-01

    Steel AISI 1050 (steel 50) and chilled cast iron are studied after 5-h solid-phase boronizing from a powder environment at 900 °C. The surfaces of the boronized specimens are studied by x-ray and electron microscopic analyses and their Vickers microhardness is measured. The wear resistance is determined by the pin-on-disc method.

  8. Measurement of the thermal expansion coefficient of AISI 420 stainless steel between 20 and 293 K

    Science.gov (United States)

    Martelli, Valentina; Bianchini, Giovanni; Ventura, Guglielmo

    2014-07-01

    The accurate measurement of thermal expansion coefficient at low temperatures is fundamental in applications where a high mechanical stability is required over the complete procedure of cooling. Here we report on our measurement of thermal expansion of AISI 420 between 20 and 293 K, measured by an interferometric dilatometer.

  9. The adhesion of hot-filament CVD diamond films on AISI type 316 austenitic stainless steel

    NARCIS (Netherlands)

    Buijnsters, J.G.; Shankar, P.; Enckevort, W.J.P. van; Schermer, J.J.; Meulen, J.J. ter

    2004-01-01

    Steel ball indentation and scratch adhesion testing of hot filament chemical vapour deposited diamond films onto AISI type 316 austenitic stainless steel substrates using two different interlayer systems, namely chromium nitride and borided steel, have been investigated. In order to compare the

  10. Numerical simulation of laser bending of AISI 304 plate with a ...

    African Journals Online (AJOL)

    This paper presents investigation of laser bending of AISI 304 plate having a rectangular cut out at its middle via process modeling by finite ... (Shichun and Jinsong, 2001) studied the effect of line energy, material properties and sheet geometry on bending ... scanning path are high and therefore, require a denser mesh.

  11. Numerical simulation of laser bending of AISI 304 plate with a ...

    African Journals Online (AJOL)

    This paper presents investigation of laser bending of AISI 304 plate having a rectangular cut out at its middle via process modeling by finite element method and statistical techniques. The objective is to study the effects of process and geometric parameters on thermal and deformation fields. Correlations are developed, with ...

  12. Surface characterization and wear behaviour of laser surface melted AISI 316L stainless steel

    CSIR Research Space (South Africa)

    Kumar, A

    2010-01-01

    Full Text Available in N2 shroud. Lattice strain and residual stress are also reduced by laser surface melting. The average microhardness of the melt zone increases from 240 VHN (for as-received AISI 316L stainless steel) to 375 VHN and 475 VHN for laser surface melted...

  13. A comprehensive review on cold work of AISI D2 tool steel

    Science.gov (United States)

    Abdul Rahim, Mohd Aidil Shah bin; Minhat, Mohamad bin; Hussein, Nur Izan Syahriah Binti; Salleh, Mohd Shukor bin

    2017-11-01

    As a common material in mould and die application, AISI D2 cold work tool steel has proven to be a promising chosen material in the industries. However, challenges remain in using AISI D2 through a modified version with a considerable progress having been made in recent years. This paper provides a critical review of the original as-cast AISI D2 cold work tool steel up to the modified version. The main purpose is to develop an understanding of current modified tool steel trend; the machinability of AISI D2 (drilling, milling, turning, grinding and EDM/WEDM; and the microstructure evolution and mechanical properties of these cold work tool steels due to the presence of alloy materials in the steel matrix. The doping of rare earth alloy element, new steel fabrication processes, significant process parameter in machinability and surface treatment shows that there have been few empirical investigations into these cold work tool steel alloys. This study has discovered that cold work tool steel will remain to be explored in order to survive in the steel industries.

  14. Investigation of the Microstructural, Mechanical and Corrosion Properties of Grade A Ship Steel-Duplex Stainless Steel Composites Produced via Explosive Welding

    Science.gov (United States)

    Kaya, Yakup; Kahraman, Nizamettin; Durgutlu, Ahmet; Gülenç, Behçet

    2017-08-01

    Grade A ship-building steel-AISI 2304 duplex stainless steel composite plates were manufactured via explosive welding. The AISI 2304 plates were used to clad the Grade A plates. Optical microscopy studies were conducted on the joining interface for characterization of the manufactured composite plates. Notch impact, tensile-shear, microhardness, bending and twisting tests were carried out to determine the mechanical properties of the composites. In addition, the surfaces of fractured samples were examined by scanning electron microscopy (SEM), and neutral salt spray (NSS) and potentiodynamic polarization tests were performed to examine corrosion behavior. Near the explosion zone, the interface was completely flat, but became wavy as the distance from the explosion zone increased. The notch impact tests indicated that the impact strength of the composites decreased with increasing distance from the explosion zone. The SEM studies detected brittle behavior below the impact transition temperature and ductile behavior above this temperature. Microhardness tests revealed that the hardness values increased with increasing distance from the explosion zone and mechanical tests showed that no visible cracking or separation had occurred on the joining interface. The NSS and potentiodynamic polarization tests determined that the AISI 2304 exhibited higher corrosion resistance than the Grade A steel.

  15. Avaliação da suscetibilidade à corrosão sob tensão da ZAC do aço inoxidável AISI 316L em ambiente de reator nuclear PWR Stress corrosion cracking of stainless steel AISI 316L HAZ in PWR Nuclear reactor environment

    Directory of Open Access Journals (Sweden)

    Mônica Maria de Abreu Mendonça Schvartzman

    2009-09-01

    Full Text Available Aços carbono de baixa liga e aços inoxidáveis são amplamente utilizados nos circuitos primários de reatores nucleares do tipo PWR (Pressurized Water Reactor. Ligas de níquel são empregadas na soldagem destes materiais devido a características como elevadas resistências mecânica e à corrosão, coeficiente de expansão térmica adequado, etc. Nos últimos 30 anos, a corrosão sob tensão (CST tem sido observada principalmente nas regiões das soldas entre materiais dissimilares existentes nestes reatores. Este trabalho teve como objetivo avaliar, por comparação, a suscetibilidade à corrosão sob tensão da zona afetada pelo calor (ZAC do aço inoxidável austenítico AISI 316L quando submetida a um ambiente similar ao do circuito primário de um reator nuclear PWR nas temperaturas de 303ºC e 325ºC. Para esta avaliação empregou-se o ensaio de taxa de deformação lenta - SSRT (Slow Strain Rate Test. Os resultados indicaram que a CST é ativada termicamente e que a 325ºC pode-se observar a presença mais significativa de fratura frágil decorrente do processo de corrosão sob tensão.In pressurized water reactors (PWRs, low alloy carbon steels and stainless steel are widely used in the primary water circuits. In most cases, Ni alloys are used to joint these materials and form dissimilar welds. These alloys are known to accommodate the differences in composition and thermal expansion of the two materials. Stress corrosion cracking of metals and alloys is caused by synergistic effects of environment, material condition and stress. Over the last thirty years, CST has been observed in dissimilar metal welds. This study presents a comparative work between the CST in the HAZ (Heat Affected Zone of the AISI 316L in two different temperatures (303ºC and 325ºC. The susceptibility to stress corrosion cracking was assessed using the slow strain rate tensile (SSRT test. The results of the SSRT tests indicated that CST is a thermally

  16. Gas Metal Arc Welding. Welding Module 5. Instructor's Guide.

    Science.gov (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching an eight-unit module in gas metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety and testing, gas metal arc…

  17. [New welding processes and health effects of welding].

    Science.gov (United States)

    La Vecchia, G Marina; Maestrelli, Piero

    2011-01-01

    This paper describes some of the recent developments in the control technology to enhance capability of Pulse Gas Metal Arc Welding. Friction Stir Welding (FSW) processing has been also considered. FSW is a new solid-state joining technique. Heat generated by friction at the rotating tool softens the material being welded. FSW can be considered a green and energy-efficient technique without deleterious fumes, gas, radiation, and noise. Application of new welding processes is limited and studies on health effects in exposed workers are lacking. Acute and chronic health effects of conventional welding have been described. Metal fume fever and cross-shift decline of lung function are the main acute respiratory effects. Skin and eyes may be affected by heat, electricity and UV radiations. Chronic effects on respiratory system include chronic bronchitis, a benign pneumoconiosis (siderosis), asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders.

  18. Optimization Of Pulsed Current Parameters To Minimize Pitting Corrosion İn Pulsed Current Micro Plasma Arc Welded Aısı 304l Sheets Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Kondapalli Siva Prasad

    2013-06-01

    Full Text Available Austenitic stainless steel sheets have gathered wide acceptance in the fabrication of components, which require high temperature resistance and corrosion resistance, such as metal bellows used in expansion joints in aircraft, aerospace and petroleum industry. In case of single pass welding of thinner sections of this alloy, Pulsed Current Micro Plasma Arc Welding (PCMPAW was found beneficial due to its advantages over the conventional continuous current process. This paper highlights the development of empirical mathematical equations using multiple regression analysis, correlating various process parameters to pitting corrosion rates in PCMPAW of AISI 304L sheets in 1 Normal HCl. The experiments were conducted based on a five factor, five level central composite rotatable design matrix. A Genetic Algorithm (GA was developed to optimize the process parameters for minimizing the pitting corrosion rates.

  19. The influence of cutting speed and feed rate in surface integrity of aisi 1045//Influencia de la velocidad de corte y la velocidad de avance en la integridad superficial del acero aisi 1045

    National Research Council Canada - National Science Library

    Mario Jacas-Cabrera; Tania Rodríguez-Moliner; José Luís Lopes-Da Silveira

    2015-01-01

    El objetivo de esta investigación es el estudio de la influencia de la velocidad de corte y la velocidad de avance en la integridad superficial del acero AISI-1045, sometido a un proceso de torneado...

  20. Modeling Stress-Strain State in Butt-Welded Joints after TIG Welding

    Directory of Open Access Journals (Sweden)

    V. Atroshenko

    2015-09-01

    Full Text Available In this paper mathematical model was developed for definition of thermal-welding cycle influence on welding deformations distribution in flat samples of austenitic steels after TIG welding and developed recommendations to reduce the welding deformation on o the machinery for welding with a copper backing.

  1. Welding--Trade or Profession?

    Science.gov (United States)

    Albright, C. E.; Smith, Kenneth

    2006-01-01

    This article discusses a collaborative program between schools with the purpose of training and providing advanced education in welding. Modern manufacturing is turning to automation to increase productivity, but it can be a great challenge to program robots and other computer-controlled welding and joining systems. Computer programming and…

  2. Metal Working and Welding Operations.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by metal workers and welders. Addressed in the six individual units of the course are the following topics: weldable metals and their alloys, arc welding, gas welding,…

  3. Weld bonding of stainless steel

    DEFF Research Database (Denmark)

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.

    2004-01-01

    This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot-welding. Th...

  4. Resistência à corrosão de junta dissimilar soldada pelo processo TIG composta pelos aços inoxidáveis AISI 316L e AISI 444

    Directory of Open Access Journals (Sweden)

    Luis Henrique Guilherme

    2014-03-01

    Full Text Available O aço inoxidável AISI 444 tornou-se uma opção para substituir a liga AISI 316L devido ao seu menor custo e satisfatória resistência à corrosão. Entretanto, o uso da liga AISI 444 no feixe tubular de trocadores de calor acarreta na soldagem de uma junta dissimilar. O presente estudo teve por objetivo avaliar a resistência à corrosão da junta tubo-espelho soldada pelo processo TIG composta pelas ligas AISI 316L e AISI 444. A manufatura das amostras consistiu em replicar o projeto da junta tubo-espelho de trocadores de calor. Realizou-se em juntas soldadas ensaios de sensitização, perda de massa por imersão desde a temperatura ambiente até 90 ºC, e ensaios eletroquímicos de polarização potenciodinâmica nos eletrólitos 0,5 mol/L de HCl e 0,5 mol/L de H2SO4. Os resultados mostraram que a junta dissimilar sofreu corrosão galvânica com maior degradação na zona afetada pelo calor (ZAC do tubo AISI 444. Porém, os mecanismos de corrosão localizada (pite e intergranular demonstraram ser mais ativos para a liga AISI 316L. Conclui-se que a junta dissimilar apresentou melhor resistência à corrosão do que a junta soldada composta unicamente pela liga AISI 316L em temperaturas de até 70 ºC, conforme as condições observadas neste trabalho.

  5. 29 CFR 1910.255 - Resistance welding.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Resistance welding. 1910.255 Section 1910.255 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Welding, Cutting and Brazing § 1910.255 Resistance welding. (a.... Ignitron tubes used in resistance welding equipment shall be equipped with a thermal protection switch. (3...

  6. 46 CFR 154.660 - Pipe welding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt welds...

  7. 49 CFR 179.300-9 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.300-9 Section 179.300-9... Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-9 Welding. (a) Longitudinal... fusion welded on class DOT-110A tanks. Welding procedures, welders and fabricators must be approved in...

  8. METHOD AND SYSTEM FOR LASER WELDING

    DEFF Research Database (Denmark)

    2008-01-01

    The invention relates to laser welding of at least two adjacent, abutting or overlapping work pieces in a welding direction using multiple laser beams guided to a welding region, wherein at least two of the multiple laser beams are coupled into the welding region so as to form a melt and at least...

  9. Magnetic Deflection Of Welding Electron Beam

    Science.gov (United States)

    Malinzak, R. Michael; Booth, Gary N.

    1991-01-01

    Electron-beam welds inside small metal parts produced with aid of magnetic deflector. Beam redirected so it strikes workpiece at effective angle. Weld joint positioned to where heavy microfissure concentration removed when subsequent machining required, increasing likelihood of removing any weld defects located in face side of electron-beam weld.

  10. Clamp and Gas Nozzle for TIG Welding

    Science.gov (United States)

    Gue, G. B.; Goller, H. L.

    1982-01-01

    Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.

  11. Effect of heat treatment on an AISI 304 austenitic stainless steel evaluated by the ultrasonic attenuation coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Moghanizadeh, Abbas; Farzi, Abolfazl [Islamic Azad Univ., Esfarayen (Iran, Islamic Republic of). Dept. of Civil Engineering

    2016-07-01

    The properties of metals can be substantially changed by various methods, one of them is using heat treatment processes. Moreover, ultrasonic testing is the most preferred and effective, nondestructive testing technique for characterization of mechanical material properties. Austenitic stainless steel AISI 304 serves in many applications due to high strength and corrosion resistance. In certain applications, it is important to evaluate the mechanical properties of AISI 304 stainless steel. In this study, the ultrasonic method (attenuation measurement technique) is used to evaluate the hardness of AISI 304 stainless steel samples which were heat treated at different levels. Due to the heat treatment process, each sample has its specific microstructure and hardness which attenuate ultrasonic waves appropriately. The ultrasonic and hardness test show that it is possible to evaluate the hardness of AISI 304 stainless steel by ultrasonic attenuation coefficient. In addition, the relationship between ultrasonic attenuation coefficients and time of heat treatment is investigated.

  12. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    OpenAIRE

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen; Guerrero-Mata, Martha Patricia

    2016-01-01

    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature fail...

  13. Research on stress corrosion behavior of CCSE40 welded by underwater wet welding with austenitic welding rod in seawater

    Science.gov (United States)

    Zou, Y.; Bai, Q.; Dong, S.; Yang, Z. L.; Gao, Y.

    2017-09-01

    The stress corrosion behavior of CCSE40 welded by underwater wet welding with austenitic welding rod in seawater was studied. Microstructure, mechanical property and stress corrosion cracking susceptibility of the underwater wet welding joint were analyzed by metallographic observation, tensile and bending tests, slow strain rate test (SSRT) and SEM. The results indicated that the weld zone (WZ) and the heat affected zone (HAZ) were all sensitive to the stress corrosion, and the WZ was more sensitive than the HAZ.

  14. Research on the Effects of Technical Parameters on the Molding of the Weld by A-TIG Welding

    OpenAIRE

    Shi, Kai; Pan, Wu

    2012-01-01

    The effects of welding parameters on the molding of weld by A-TIG welding of a 4mm thickness mild steel plate is studied in the present paper. The results obtained show that: as welding current increases A-TIG welding penetration gets deeper than TIG welding; size and shape of HAZ has remarkable change; A-TIG welding has the narrower weld pool width than TIG welding.

  15. Automatic welding of stainless steel tubing

    Science.gov (United States)

    Clautice, W. E.

    1978-01-01

    The use of automatic welding for making girth welds in stainless steel tubing was investigated as well as the reduction in fabrication costs resulting from the elimination of radiographic inspection. Test methodology, materials, and techniques are discussed, and data sheets for individual tests are included. Process variables studied include welding amperes, revolutions per minute, and shielding gas flow. Strip chart recordings, as a definitive method of insuring weld quality, are studied. Test results, determined by both radiographic and visual inspection, are presented and indicate that once optimum welding procedures for specific sizes of tubing are established, and the welding machine operations are certified, then the automatic tube welding process produces good quality welds repeatedly, with a high degree of reliability. Revised specifications for welding tubing using the automatic process and weld visual inspection requirements at the Kennedy Space Center are enumerated.

  16. Automatic welding systems for large ship hulls

    Science.gov (United States)

    Arregi, B.; Granados, S.; Hascoet, JY.; Hamilton, K.; Alonso, M.; Ares, E.

    2012-04-01

    Welding processes represents about 40% of the total production time in shipbuilding. Although most of the indoor welding work is automated, outdoor operations still require the involvement of numerous operators. To automate hull welding operations is a priority in large shipyards. The objective of the present work is to develop a comprehensive welding system capable of working with several welding layers in an automated way. There are several difficulties for the seam tracking automation of the welding process. The proposed solution is the development of a welding machine capable of moving autonomously along the welding seam, controlling both the position of the torch and the welding parameters to adjust the thickness of the weld bead to the actual gap between the hull plates.

  17. Microstructural changes of AISI 316L due to structural sensitization and its influence on the fatigue properties

    OpenAIRE

    Sylvia Dundeková; František Nový; Stanislava Fintová

    2014-01-01

    Mechanical and fatigue properties of material are dependent on its microstructure. The microstructure of AISI 316L stainless steel commonly used for the production of medical tools, equipment and implants can be easily influenced by its heat treatment. Microstructural changes and fatigue properties of AISI 316L stainless steel due to the heat treatment consisted of annealing at the temperature of 815°C with the dwell time of 500 hours were analyzed in the present paper. Precipitation of inter...

  18. Microstructure and Mechanical Properties of an Ultrasonic Spot Welded Aluminum Alloy: The Effect of Welding Energy

    National Research Council Canada - National Science Library

    He Peng; Daolun Chen; Xianquan Jiang

    2017-01-01

    The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique-ultrasonic spot welding (USW...

  19. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  20. Real time computer controlled weld skate

    Science.gov (United States)

    Wall, W. A., Jr.

    1977-01-01

    A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.

  1. Control of Welding Processes.

    Science.gov (United States)

    1987-01-01

    Structures, Office of Deputy Under Secretary of Defense for R&E (ET), Department of Defense, Washington, D.C. CHARLES ZANIS, Assistant Director for Platform... CHARLES NULL, Head, Metals Branch, Naval Sea Systems Command, Washington, D.C. ROBERT A. WEBER, Welding Engineering and Metallurgy, U.S. Army Corps of...Needs. Pp. 487-90. in Papers Presented at the August 3-8, 1Q80, AIME Syi,.posium. Essers, W . ., and R. Walter. Heat transfer and penet ration

  2. Assessment of XM-19 as a Substitute for AISI 348 in ATR Service

    Energy Technology Data Exchange (ETDEWEB)

    F. A. Garner; L. R. Greenwood; R. E. Mizia; C. R. Tyler

    2007-11-01

    It has been proposed that XM-19 alloy be considered as a possible replacement steel for AISI 348 in the construction of Advanced Test Reactor (ATR) capsules. AISI 348 works well, but is currently very difficult to obtain commercially. The superior and desirable mechanical properties of XM-19 alloy have been proven in non-nuclear applications, but no data are available regarding its use in radiation environments. While most 300 series alloys will meet the conditions required in ATR , it cannot be confidently assumed that XM-19 can be substituted without prior qualification in a radiation test. Compared to AISI 348, XM-19 will have an enhanced tendency for phase instabilities due to its higher levels of Ni and, especially, Si. However, transmutation of important elemental components in the highly thermalized ATR spectrum may have a very pronounced effect on its performance during irradiation. Not only will strong transmutation of Mn to Fe reduce the ductility and strength advantages provided by the higher initial Mn content of XM-19, but the extensive loss of Mn will also release from solution much of the N upon which the higher strength of XM-19 depends. In addition, the combined influence of transmutation and Inverse Kirkendall processes may lead to gas-bubble-covered grain boundaries, producing a very fragile alloy after significant irradiation has accumulated. At present, there are no radiation data available to substantiate this possible scenario. An alternate proposal is therefore advanced. Since the response of AISI 348 and 347 to radiation are expected to be relatively indistinguishable, the AISI 347 might serve as an acceptable replacement. While AISI 348 is usually chosen for nuclear service in order to reduce the overall radioactivity arising from relatively small amounts of highly transmutable elements such as cobalt, these elements have very little effect on the radiation performance of the steel. In the proposed application, however, the activity

  3. The effect of friction welding self-regulation process on weld structure and hardness

    Directory of Open Access Journals (Sweden)

    W. Ptak

    2010-07-01

    Full Text Available The self-regulation phenomenon that occurs during friction welding process was characterised, and the effect of the self-regulation of theenergy-related parameters on structure and hardness distribution in SW7Mo steel – 55 steel welded joint was determined experimentally.The structure and hardness of the weld zone were examined, the energy required for the stable run of a friction welding process wascalculated, and a relationship between the welding energy and weld hardness was derived.

  4. 10,170 flawless welds

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    The welding of tubes containing the principal current-carrying busbars in the LHC magnets was one of the main activities of the SMACC project. After a year of preparation and another of intense activity in the tunnel, the last weld was completed on Wednesday 14 May. Over 10,170 welds have been inspected and not a single fault has been found.    The welder (above) creates the weld using an orbital welding machine (below) specifically designed for CERN. Each of the eight sectors of the LHC contains around 210 interconnects between the superconducting magnets. Consolidating these interconnections was the SMACC project’s primary objective. One of the last jobs before closing the interconnects is the welding of the M lines: each has a 104 mm diameter and a radial clearance of just 45 mm. In total: 10,170 welds carried out in a single year of activities. A true challenge, which was carried out by a team of 30 highly specialised welders, working under the supervision o...

  5. Laser welding of fused quartz

    Science.gov (United States)

    Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine

    2003-06-10

    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  6. Análisis experimental del torneado de alta velocidad del acero AISI 1045 // Experimental analysis of high speed turning of AISI 1045 steel gears

    OpenAIRE

    Luís Wilfredo Hernández‐González; Roberto Pérez‐Rodríguez; Patricia del Carmen Zambrano‐Robledo; Martha Patricia Guerrero‐Mata; Luminita Dumitrescu

    2012-01-01

    El objetivo de este trabajo es el estudio experimental de la evolución del desgaste del flanco de dosinsertos de carburo recubiertos y un cermet, durante el torneado en seco del acero AISI 1045 con 500 y600 m/min de velocidad de corte. Los resultados fueron comparados utilizando el análisis de varianza y deregresión. La investigación mostró un efecto significativo de la velocidad de corte y del tiempo demaquinado en el desgaste del flanco. El mejor desempeño fue para el carburo recubierto con...

  7. Análisis experimental del torneado de alta velocidad del acero AISI 1045 // Experimental analysis of high speed turning of AISI 1045 steel gears

    Directory of Open Access Journals (Sweden)

    Luís Wilfredo Hernández‐González

    2012-01-01

    Full Text Available El objetivo de este trabajo es el estudio experimental de la evolución del desgaste del flanco de dosinsertos de carburo recubiertos y un cermet, durante el torneado en seco del acero AISI 1045 con 500 y600 m/min de velocidad de corte. Los resultados fueron comparados utilizando el análisis de varianza y deregresión. La investigación mostró un efecto significativo de la velocidad de corte y del tiempo demaquinado en el desgaste del flanco. El mejor desempeño fue para el carburo recubierto con tres capas,mientras que a elevada velocidad de corte el carburo con dos capas sufrió el mayor desgaste, lo cual sedebe a que cuando pierde sus recubrimientos el substrato del inserto queda desprotegido y el desgastecrece rápidamente por la extremas condiciones del mecanizado por alta velocidad. Además, se planteanrecomendaciones del tiempo de maquinado de los insertos dadas las condiciones de elaboración por altavelocidad.Palabras claves: torneado de alta velocidad, desgaste del flanco, acero AISI 1045, estudio experimental.__________________________________________________________________________AbstractThis work deals with the experimental study of the flank wear evolution of two coating carbide inserts and acermet insert during the dry turning of AISI 1045 steel with 500 and 600 m/min cutting speed. The resultswere compared using the variance and regression analysis. The investigation showed a significant effectof cutting speed and machining time on the flank wear in high speed machining. The three coating layersinsert showed the best performance while the two layers insert had the worst behaviour of the cutting toolwear at high cutting speed, this is because once the coating film is peeled off, the substrate of the insertbecomes uncovered and the wear grows rapidly due to the extreme machining conditions for high speed.Besides, the machining time recommendations of inserts for the cutting conditions at high speed areexposed.Key words: high

  8. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    Science.gov (United States)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  9. Review of laser hybrid welding

    DEFF Research Database (Denmark)

    Bagger, Claus

    2004-01-01

    In this artucle an overview og the hybrid welding process is given. After a short historic overview, a review of the fundamental phenomenon taking place when a laser (CO2 or Nd:YAG) interacts in the same molten pool as a more conventional source of energy, e.g. tungsten in-active gas, plasma......, or metal inactive gas/metal active gas.This is followed by reports of how the many process parameters governing the hybrid welding process can be set and how the choice of secondary energy source, shielding gas, etc. can affect the overall welding process....

  10. Novel Process Revolutionizes Welding Industry

    Science.gov (United States)

    2008-01-01

    Glenn Research Center, Delphi Corporation, and the Michigan Research Institute entered into a research project to study the use of Deformation Resistance Welding (DRW) in the construction and repair of stationary structures with multiple geometries and dissimilar materials, such as those NASA might use on the Moon or Mars. Traditional welding technologies are burdened by significant business and engineering challenges, including high costs of equipment and labor, heat-affected zones, limited automation, and inconsistent quality. DRW addresses each of those issues, while drastically reducing welding, manufacturing, and maintenance costs.

  11. Convection in arc weld pools

    Energy Technology Data Exchange (ETDEWEB)

    Oreper, G.M.; Eagar, T.W.; Szekely, J.

    1982-11-01

    A mathematical model was developed to account for convection and temperature distributions in stationary arc weld pools driven by buoyancy, electromagnetic and surface tension forces. It is shown that the electromagnetic and surface tension forces dominate the flow behavior. In some cases, these forces produce double circulation loops, which are indirectly confirmed by experimental measurements of segregation in the weld pool. It is also shown that the surface tension driven flows are very effective in dissipating the incident energy flux on the pool surface which, in turn, reduces the vaporization from the weld pool.

  12. Plasticity Theory of Fillet Welds

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2005-01-01

    This paper deals with simple methods for calculation of fillet welds based on the theory of plasticity. In developing the solutions the lower-bound theorem is used. The welding material and parts of the base material are subdivided into triangular regions with homogeneous stress fields; thereby...... a safe and statically admissible stress distribution is established. The plasticity solutions are compared with tests carried out at the Engineering Academy of Denmark, Lyngby, in the early nineties, and old fillet weld tests. The new failure conditions are in very good agreement with the yield load...

  13. Specification and qualification of welding procedures for metallic materials : welding procedure test : part 1 : arc and gas welding of steels and arc welding of nickel and nickel alloys : technical corrigendum 1

    CERN Document Server

    International Organization for Standardization. Geneva

    2005-01-01

    Specification and qualification of welding procedures for metallic materials : welding procedure test : part 1 : arc and gas welding of steels and arc welding of nickel and nickel alloys : technical corrigendum 1

  14. Automated Variable-Polarity Plasma-Arc Welding

    Science.gov (United States)

    Numes, A. C., Jr.; Bayless, E. O., Jr.; Jones, S. C., III; Munafo, P.; Munafo, A.; Biddle, A.; Wilson, W.

    1984-01-01

    Variable-polarity plasma-arc methods produces better welds at lower cost than gas-shielded tungsten-arc welding in assemblies. Weld porosity very low and costs of joint preparation, depeaking, inspection, and weld repair minimized.

  15. Study of carbonitriding thermochemical treatment by plasma screen in active with pressures main austenitic stainless steels AISI 409 and AISI 316L; Estudo do tratamento termoquimico de carbonitretacao por plasma em tela ativa com pressoes variaveis nos acos inoxidaveis austenitico AISI 316L e ferririco AISI 409

    Energy Technology Data Exchange (ETDEWEB)

    Melo, M.S.; Oliveira, A.M.; Leal, V.S.; Sousa, R.R.M. de; Alves Junior, C. [Centro Federal de Educacao Tecnologica do Maranhao (CEFET/MA), Sao Luis, MA (Brazil); Centro Federal de Educacao Tecnologica do Piaui (CEFET/PI), Teresina, PI (Brazil); Universidade Federal do Rio Grande do Norte (DF/UFRN), Natal, RN (Brazil). Dept. de Fisica. Labplasma

    2010-07-01

    The technique called Active Screen Plasma Nitriding (ASPN) is being used as an alternative once it offers several advantages with respect to conventional DC plasma. In this method, the plasma does not form directly in the sample's surface but on a screen, in such a way that undesired effects such as the edge effect is minimized. Stainless steels present not very satisfactory wearing characteristics. However, plasma carbonitriding has been used as to improve its resistance to wearing due to the formation of a fine surface layer with good properties. In this work, samples of stainless steel AISI 316L and AISI 409 were treated at pressures of 2.5 and 5 mbar. After the treatments they were characterized by microhardness, microscopy and Xray diffraction. Microscopy and hardness analysis showed satisfactory layers and toughness in those steels. (author)

  16. Behavior of cold-worked AISI-304 steel in stress-corrosion cracking process: Microstructural aspects

    Science.gov (United States)

    Zeman, A.; Novotny, R.; Uca, O.; Krsjak, V.; Macak, J.; Debarberis, L.

    2008-10-01

    Austenitic stainless steel is one of the key structural materials for a wide-range of components for present nuclear power plants. Moreover, this type of steel is also foreseen as a key structural material in future reactor systems, the so-called Generation IV. However, for the successful application of these materials in new environmental conditions an integrated Research and Development program needs to be successfully completed. This work is focused to the evaluation of cold-worked AISI-304 stainless steel from 20 to 45% of cold-worked deformation by different spectroscopic techniques within the aim to study the microstructural characteristics. In particular, positron annihilation spectroscopy and small angle neutron scattering have been used for characterization of phase transformation and microstructural behavior. Furthermore, outcomes of corrosion properties of cold-worked AISI-304 stainless steel exposed for 100 and 500 h in super-critical water reactor conditions are correlated with the obtained results.

  17. Sub-surface Fatigue Crack Growth at Alumina Inclusions in AISI 52100 Roller Bearings

    DEFF Research Database (Denmark)

    Cerullo, Michele

    2014-01-01

    Sub-surface fatigue crack growth at non metallic inclusions is studied in AISI 52100 bearing steel under typical rolling contact loads. A first 2D plane strain finite element analysis is carried out to compute the stress history in the innner race at a characteristic depth, where the Dang Van...... damage factor is highest. Subsequently the stress history is imposed as boundary conditions in a periodic unit cell model, where an alumina inclusion is embedded in a AISI 52100 matrix. Cracks are assumed to grow radially from the inclusion under cyclic loading. The growth is predicted by means...... of irreversible fatigue cohesive elements. Different orientations of the cracks and different matrix-inclusion bonding conditions are analyzed and compared....

  18. Behavior of AISI SAE 1020 Steel Implanted by Titanium and Exposed to Bacteria Sulphate Deoxidizer

    Science.gov (United States)

    Niño, Ely Dannier V.; Garnica, Hernán; Dugar-Zhabon, Veleriy; Castillo, Genis

    2014-05-01

    A hybrid technology to treat solid surfaces with the pulse high voltage and electric arc discharges of low pressure with a three-dimensional ion implantation technique (3DII) is applied. This technology is used to protect AISI SAE 1020 steel against a microbiological corrosion. The titanium ion implanted steel samples (coupons) are subjected to a medium of bacteria sulphate deoxidizer (BSD) which are very typical of the hydrocarbon industry and are potentially harmful for structures when are in contact with petroleum and some of its derivatives. The used technology aims to find an effective hybrid procedure to minimize the harmful effects of bacteria on AISI SAE 1020 steel. The hybrid technology efficiency of superficial titanium implantation is estimated through the measurements of the point corrosion characteristics obtained after testing both the treated and non-treated coupons. The three-dimensional surface structures of the samples are reconstructed with help of a confocal microscope.

  19. INFLUENCE OF AISI 316Ti STAINLESS STELL SURFACE TREATMENT ON PITTING CORROSION IN VARIOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Pavol Fajnor

    2010-12-01

    Full Text Available Investigation of the surface treatment effect on the resistance of AISI 316Ti stainless steel to pitting corrosion is presented in this paper. The grinded surfaces without additional chemical treatment, grinded and pickled, grinded, pickled and passivated surfaces are tested. The corrosion tests are carried out by exposition in solution which evoke pitting and by electrochemical cyclic potential - sweep method. According to the results the surface treatment has a great influence on the resistance of the tested material to pitting. It is not possible to estimate the best surface treatment because behavior of AISI 316Ti stainless steel with different surface state depends on the mechanism of corrosion processes which vary in the used experimental methods.

  20. Evaluation of structural behaviour and corrosion resistant of austenitic AISI 304 and duplex AISI 2304 stainless steel reinforcements embedded in ordinary Portland cement mortars; Evaluacion del comportamiento estructural y de resistencia a la corrosion de armaduras de acero inoxidable austenitico AISI 304 y duplex AISI 2304 embebidas en morteros de cemento Portland

    Energy Technology Data Exchange (ETDEWEB)

    Medina, E.; Cobo, A.; Bastidas, D. M.

    2012-07-01

    The mechanical and structural behaviour of two stainless steels reinforcements, with grades austenitic EN 1.4301 (AISI 304) and duplex EN 1.4362 (AISI 2304) have been studied, and compared with the conventional carbon steel B500SD rebar. The study was conducted at three levels: at rebar level, at section level and at structural element level. The different mechanical properties of stainless steel directly influence the behaviour at section level and structural element level. The study of the corrosion behaviour of the two stainless steels has been performed by electrochemical measurements, monitoring the corrosion potential and the lineal polarization resistance (LPR), of reinforcements embedded in ordinary Portland cement (OPC) mortar specimens contaminated with different amount of chloride over one year time exposure. Both stainless steels specimens embedded in OPC mortar remain in the passive state for all the chloride concentration range studied after one year exposure. (Author) 26 refs.

  1. Microstructural Characterization Of Laser Heat Treated AISI 4140 Steel With Improved Fatigue Behavior

    Directory of Open Access Journals (Sweden)

    Oh M.C.

    2015-06-01

    Full Text Available The influence of surface heat treatment using laser radiation on the fatigue strength and corresponding microstructural evolution of AISI 4140 alloy steel was investigated in this research. The AISI 4140 alloy steel was radiated by a diode laser to give surface temperatures in the range between 600 and 800°C, and subsequently underwent vibration peening. The fatigue behavior of surface-treated specimens was examined using a giga-cycle ultrasonic fatigue test, and it was compared with that of non-treated and only-peened specimens. Fatigue fractured surfaces and microstructural evolution with respect to the laser treatment temperatures were investigated using an optical microscope. Hardness distribution was measured using Vickers micro-hardness. Higher laser temperature resulted in higher fatigue strength, attributed to the phase transformation.

  2. Laser welding and post weld treatment of modified 9Cr-1MoVNb steel.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z. (Nuclear Engineering Division)

    2012-04-03

    Laser welding and post weld laser treatment of modified 9Cr-1MoVNb steels (Grade P91) were performed in this preliminary study to investigate the feasibility of using laser welding process as a potential alternative to arc welding methods for solving the Type IV cracking problem in P91 steel welds. The mechanical and metallurgical testing of the pulsed Nd:YAG laser-welded samples shows the following conclusions: (1) both bead-on-plate and circumferential butt welds made by a pulsed Nd:YAG laser show good welds that are free of microcracks and porosity. The narrow heat affected zone has a homogeneous grain structure without conventional soft hardness zone where the Type IV cracking occurs in conventional arc welds. (2) The laser weld tests also show that the same laser welder has the potential to be used as a multi-function tool for weld surface remelting, glazing or post weld tempering to reduce the weld surface defects and to increase the cracking resistance and toughness of the welds. (3) The Vicker hardness of laser welds in the weld and heat affected zone was 420-500 HV with peak hardness in the HAZ compared to 240 HV of base metal. Post weld laser treatment was able to slightly reduce the peak hardness and smooth the hardness profile, but failed to bring the hardness down to below 300 HV due to insufficient time at temperature and too fast cooling rate after the time. Though optimal hardness of weld made by laser is to be determined for best weld strength, methods to achieve the post weld laser treatment temperature, time at the temperature and slow cooling rate need to be developed. (4) Mechanical testing of the laser weld and post weld laser treated samples need to be performed to evaluate the effects of laser post treatments such as surface remelting, glazing, re-hardening, or tempering on the strength of the welds.

  3. Use of Direct Current Resistivity Measurements to Assess AISI 304 Austenitic Stainless Steel Sensitization

    OpenAIRE

    Mesquita, Ramaiany Carneiro; Mecury, José Manoel Rivas; Tanaka, Auro Atsumi; Sousa, Regina Célia de

    2015-01-01

    This paper describes the feasibility of using direct current electrical resistivity measurements to evaluate AISI 304 austenitic stainless steel sensitization. ASTM A262 – Practice A and double loop electrochemical potentiodynamic reactivation (DL-EPR) tests were performed to assess the degree of sensitization (DoS) qualitatively and quantitatively, and electrical resistivity (ER) was measured by the four-point direct-current potential drop method. The results indicate that the DoS incr...

  4. Studi Penggunaan Jenis Elektroda Las Yang Berbeda Terhadap Sifat Mekanik Pengelasan SMAW Baja AISI 1045

    OpenAIRE

    Tarkono

    2012-01-01

    Dalam aplikasinya baja AISI 1045 digunakan dalam bidang mechanical engineering. Penyambungan material tersebut dilakukan dengan teknik pengelasan sebab baja karbon sedang mempunyai sifat mudah menjadi keras jika ditambah dengan adanya hidrogen difusi menyebabkan baja ini sangat peka terhadap retak las. Untuk mengurangi hidrogen difusi, harus digunakan elektroda hidrogen rendah.Tujuan dari penggunaan elektroda yang tidak sejenis adalah untuk mengetahui pengaruh jenis elektroda las terhadap...

  5. Martensitic Transformation in Ultrafine-Grained Stainless Steel AISI 304L Under Monotonic and Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Heinz Werner Höppel

    2012-02-01

    Full Text Available The monotonic and cyclic deformation behavior of ultrafine-grained metastable austenitic steel AISI 304L, produced by severe plastic deformation, was investigated. Under monotonic loading, the martensitic phase transformation in the ultrafine-grained state is strongly favored. Under cyclic loading, the martensitic transformation behavior is similar to the coarse-grained condition, but the cyclic stress response is three times larger for the ultrafine-grained condition.

  6. Materials participation in welded joints manufacturing

    Science.gov (United States)

    Ghenghea, L. D.

    2016-08-01

    Management of materials dilution to form a joint with higher features asked by complex metallic structures is a problem that took attention and efforts of welding processes researchers and this communication will give a little contribution presenting some scientific and experimental results of dilution processes studied by Welding Research Group from Iasi, Romania, TCM Department. Liquid state welding processes have a strong dependence related to dilution of base and filler materials, the most important are for automatic joining using welding. The paper presents a review of some scientific works already published and their contributions, results of dilution coefficient evaluation using weighing, graphics and software applied for shielded metal arc welding process. Paper results could be used for welders’ qualification, welding procedure specification and other welding processes researchers’ activities. The results of Welding Research Group from Iasi, Romania, TCM Department, show dilution coefficient values between 20-30 % of base material and 70-80 % of filler material for studied welding process.

  7. Filler wire for aluminum alloys and method of welding

    Science.gov (United States)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)

    2003-01-01

    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  8. MFDC - technological improvement in resistance welding controls

    Energy Technology Data Exchange (ETDEWEB)

    Somani, A.K.; Naga Bhaskar, V.; Chandramouli, J.; Rameshwara Rao, A. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2008-07-01

    Among the various Resistance Welding operations carried out in the production line of a fuel bundle end plug welding is the most critical operation. Welding controllers play a very vital role in obtaining consistent weld quality by regulating and controlling the weld current. Conventional mains synchronized welding controllers are at best capable of controlling the weld current at a maximum speed of the mains frequency. In view of the very short welding durations involved in the various stages of a fuel bundle fabrication, a need was felt for superior welding controllers. Medium Frequency Welding Controllers offer a solution to these limitations in addition to offering other advantages. Medium Frequency power sources offer precise welding current control as they regulate and correct the welding current faster, typically twenty times faster when operated at 1000Hz. An MFDC was employed on one of the welding machines and its performance was studied. This paper discusses about the various advantages of MFDCs with other controllers employed at NFC to end plug welding operation. (author)

  9. Gas Shielding Technology for Welding and Brazing

    Science.gov (United States)

    Nunes, Arthur J.; Gradl, Paul R.

    2012-01-01

    Welding is a common method that allows two metallic materials to be joined together with high structural integrity. When joints need to be leak-tight, light-weight, or free of contaminant-trapping seams or surface asperities, welding tends to be specified. There are many welding techniques, each with its own advantages and disadvantages. Some of these techniques include Forge Welding, Gas Tungsten Arc Welding, Friction Stir Welding, and Laser Beam Welding to name a few. Whichever technique is used, the objective is a structural joint that meets the requirements of a particular component or assembly. A key practice in producing quality welds is the use of shielding gas. This article discusses various weld techniques, quality of the welds, and importance of shielding gas in each of those techniques. Metallic bonds, or joints, are produced when metals are put into intimate contact. In the solid-state "blacksmith welding" process, now called Forge Welding (FOW), the site to be joined is pounded into intimate contact. The surfaces to be joined usually need to be heated to make it easier to deform the metal. The surfaces are sprinkled with a flux to melt surface oxides and given a concave shape so that surface contamination can be squeezed out of the joint as the surfaces are pounded together; otherwise the surface contamination would be trapped in the joint and would weaken the weld. In solid-state welding processes surface oxides or other contamination are typically squeezed out of the joint in "flash."

  10. Influence of the surface finishing on electrochemical corrosion characteristics of AISI 316L stainless steel

    Directory of Open Access Journals (Sweden)

    Sylvia Dundeková

    2015-05-01

    Full Text Available Stainless steels from 316 group are very often and successfully uses for medical applications where the good mechanical and chemical properties in combination with non-toxicity of the material assure its safe and long term usage. Corrosion properties of AISI 361L stainless steel are strongly influenced by surface roughness and treatment of the engineering parts (specimens and testing temperature. Electrochemical characteristics of ground, mechanically polished and passivated AISI 316L stainless steel specimens were examined with the aim to identify the polarization resistance evolution due to the surface roughness decrease. Results obtained on mechanically prepared specimens where only natural oxide layer created due to the exposure of the material to the corrosion environment was protecting the materials were compared to the passivated specimens with artificial oxide layer. Also the influence of temperature and stabilization time before measurement were taken into account when discussing the obtained results. Positive influence of decreasing surface roughness was obtained as well as increase of polarization resistance due to the chemical passivation of the surface. Increase of the testing temperature and short stabilization time of the specimen in the corrosion environment were observed negatively influencing corrosion resistance of AISI 316L stainless steel.

  11. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H., E-mail: helmut.karl@physik.uni-augsburg.de

    2015-12-15

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO{sub 2} implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10{sup 16} cm{sup −2} (Ti{sup +}) and 1 × 10{sup 17} cm{sup −2} (O{sup +}) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10{sup 15} cm{sup −2} (Ti{sup +}) and 1 × 10{sup 16} cm{sup −2} (O{sup +}). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO{sub 2} inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  12. Effects of gaseous nitriding AISI4140 alloy steel on corrosion and hardness properties

    Science.gov (United States)

    Tamil Moli, L.; Wahab, N.; Gopinathan, M.; Karmegam, K.; Maniyarasi, M.

    2016-10-01

    Corrosion is one of the major problems in the industry especially on machinery since it weakens the structure of the machinery part and causes the mechanical failure. This will stop the production and increase the maintenance cost. In this study, the corrosion behaviour of gas nitriding on a screw press machine shaft made from AISI 4140 steel was investigated. Pitting corrosion was identified as a major cause of the shaft failure and this study was conducted to improve the corrosion resistance on the AISI 4140 alloy steel shaft by gas nitriding as a surface hardening treatment. Gas nitriding was performed with composition of 15% ammonia and 85% nitrogen at temperatures of 525 °C, 550 °C and 575 °C and with the soaking time of 30, 45 and 60 minutes, respectively. The samples were prepared as rectangular sized of 30mm x 12mm x 3mm for immersion testing. The results showed that corrosion rate of untreated samples was 77% higher compared to the nitrided samples. It was also found that hardness of the nitrided samples was higher than untreated sample. All in all, it can be concluded that gaseous nitriding can significantly improve the surface hardness and the corrosion resistance of the shaft made of AISI 4140 alloy steel, hence reduces the pitting that is the root cause of failure.

  13. Wear resistance of Fe-Nb-Cr-W, Nb, AISI 1020 and AISI 420 coatings produced by thermal spray wire arc; Resistencia al desgaste de recubrimientos Fe-Nb-Cr-W, Nb, AISI 1020 y AISI 420 producidos por proyeccion termica por arco electrico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Covaleda, E. A.; Mercado-Veladia, J. L.; Olaya-Florez, J. J.

    2013-07-01

    The commercial materials 140MXC (with iron, tungsten, chrome, niobium), 530AS (AISI 1015 steel) and 560AS (AISI 420 steel) on AISI 4340 steel were deposited using thermal spray with arc. The aim of work was to evaluate the best strategy abrasive wear resistance of the system coating-substrate using the following combinations: (1) homogeneous coatings and (2) coatings depositing simultaneously 140MXC + 530AS and 140MXC + 560AS. The coatings microstructure was characterized using Optical microscopy, Scanning electron microscopy and Laser con focal microscopy. The wear resistance was evaluated through dry sand rubber wheel test (DSRW). We found that the wear resistance depends on the quantity of defects and the mechanical properties like hardness. For example, the softer coatings have the biggest wear rates and the failure mode was characterized by plastic deformation caused by particles indentation, and the other hand the failure mode at the harder materials was grooving. The details and wear mechanism of the coatings produced are described in this investigation. (Author)

  14. Welding and Production Metallurgy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 6000 square foot facility represents the only welding laboratory of its kind within DA. It is capable of conducting investigations associated with solid state...

  15. Thermomechanical Modelling of Resistance Welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi

    2007-01-01

    The present paper describes a generic programme for analysis, optimization and development of resistance spot and projection welding. The programme includes an electrical model determining electric current and voltage distribution as well as heat generation, a thermal model calculating heat...

  16. Laser Welding of Ship Steel

    National Research Council Canada - National Science Library

    Brayton, W. C; Banas, C. M; Peters, G. T

    1979-01-01

    ... joint cleanliness and fitup conditions. In the current program, welds were formed between surfaces with nonperfect fitup, between plasma-cut surfaces, between surfaces deliberately mismatched to provide a varging joint gap and under out...

  17. Welding process modelling and control

    Science.gov (United States)

    Romine, Peter L.; Adenwala, Jinen A.

    1993-01-01

    The research and analysis performed, and software developed, and hardware/software recommendations made during 1992 in development of the PC-based data acquisition system for support of Welding Process Modeling and Control is reported. A need was identified by the Metals Processing Branch of NASA Marshall Space Flight Center, for a mobile data aquisition and analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC-based system was chosen. The Welding Measurement System (WMS) is a dedicated instrument, strictly for the use of data aquisition and analysis. Although the WMS supports many of the functions associated with the process control, it is not the intention for this system to be used for welding process control.

  18. Automatic Control Of Length Of Welding Arc

    Science.gov (United States)

    Iceland, William F.

    1991-01-01

    Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.

  19. Ship construction and welding

    CERN Document Server

    Mandal, Nisith R

    2017-01-01

    This book addresses various aspects of ship construction, from ship types and construction materials, to welding technologies and accuracy control. The contents of the book are logically organized and divided into twenty-one chapters. The book covers structural arrangement with longitudinal and transverse framing systems based on the service load, and explains basic structural elements like hatch side girders, hatch end beams, stringers, etc. along with structural subassemblies like floors, bulkheads, inner bottom, decks and shells. It presents in detail double bottom construction, wing tanks & duct keels, fore & aft end structures, etc., together with necessary illustrations. The midship sections of various ship types are introduced, together with structural continuity and alignment in ship structures. With regard to construction materials, the book discusses steel, aluminum alloys and fiber reinforced composites. Various methods of steel material preparation are discussed, and plate cutting and form...

  20. Welding of Prosthetic Alloys

    Directory of Open Access Journals (Sweden)

    Wojciechowska M.

    2015-04-01

    Full Text Available This paper presents the techniques of joining metal denture elements, used in prosthetic dentistry: the traditional soldering technique with a gas burner and a new technique of welding with a laser beam; the aim of the study was to make a comparative assessment of the quality of the joints in view of the possibility of applying them in prosthetic structures. Fractographic examinations were conducted along with tensile strength and impact strength tests, and the quality of the joints was assessed compared to the solid metal. The experiments have shown that the metal elements used to make dentures, joined by the technique which employs a laser beam, have better strength properties than those achieved with a gas burner.

  1. A comparison of the physics of Gas Tungsten Arc Welding (GTAW), Electron Beam Welding (EBW), and Laser Beam Welding (LBW)

    Science.gov (United States)

    Nunes, A. C., Jr.

    1985-01-01

    The physics governing the applicability and limitations of gas tungsten arc (GTA), electron beam (EB), and laser beam (LB) welding are compared. An appendix on the selection of laser welding systems is included.

  2. Upgraded HFIR Fuel Element Welding System

    Energy Technology Data Exchange (ETDEWEB)

    Sease, John D [ORNL

    2010-02-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  3. A study of processes for welding pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Weston, J. (ed.)

    1991-07-01

    A review was made of exisiting and potential processes for welding pipelines: fusion welding (arc, electron beam, laser, thermit) and forge welding (friction, flash, magnetically impelled arc butt, upset butt, explosive, shielded active gas, gas pressure). Consideration of J-lay operations gave indications that were reflections of the status of the processes in terms of normal land and offshore S-lay operation: forge welding processes, although having promise require considerable development; fusion welding processes offer several possibilities (mechanized GMA welding likely to be used in 1991-2); laser welding requires development in all pipeline areas: a production machine for electron beam welding will involve high costs. Nondestructive testing techniques are also reviewed. Demand for faster quality assessment is being addressed by speeding radiographic film processing and through the development of real time radiography and automatic ultrasonic testing. Conclusions on most likely future process developments are: SMAW with cellulosic electrodes is best for tie-ins, short pip runs; SMAW continues to be important for small-diameter lines, although mechanized GMA could be used, along with mechanical joining, MIAB, radial fraction, and flash butt; mechanized GMA welding is likely to predominate for large diameter lines and probably will be used for the first J-lay line (other techniques could be used too); and welding of piping for station facilities involves both shop welding of sub-assemblies and on-site welding of pipe and sub-assemblies to each other (site welding uses both SMAW and GMAW). Figs, tabs.

  4. Weld procedure produces quality welds for thick sections of Hastelloy-X

    Science.gov (United States)

    Flens, F. J.; Fletcher, C. W.; Glasier, L. F., Jr.

    1967-01-01

    Welding program produces premium quality, multipass welds in heavy tube sections of Hastelloy-X. It develops semiautomatic tungsten/inert gas procedures, weld wire procurement specifications material weld properties, welder-operator training, and nondestructive testing inspection techniques and procedures.

  5. Laser welding of aluminium-magnesium alloys sheets process optimization and welds characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, C. [GEMPPM (CALFETMAT), 69 - Villeurbanne (France); Fouquet, F. [GEMPPM (CALFETMAT), 69 - Villeurbanne (France); Robin, M. [GEMPPM (CALFETMAT), 69 - Villeurbanne (France)

    1996-12-31

    The purpose of the present study was to obtain good quality welds using a CO2 laser with Al-Mg alloys sheet. Defects formation mechanisms were analyzed and a welding procedure was defined, using several characterization technics, in order to realize low defects welding seams. After laser welding optimization, comparative tensile tests and microstructural analysis were carried out. (orig.)

  6. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-06-01

    Full Text Available Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of nitrogen and oxygen amount in WMD (weld metal deposit.

  7. TECHNOLOGICAL ISSUES IN MECHANISED FEED WIG/TIG WELDING SURFACING OF WELDING

    Directory of Open Access Journals (Sweden)

    BURCA Mircea

    2016-09-01

    manual welding tests in the light of using the process for welding surfacing being known that in such applications mechanised operations are recommended whenever possible given the latter strengths i.e. increased productivity and quality deposits. The research also aims at achieving a comparative a study between wire mechanised feed based WIG manual welding and the manual rod entry based manual welding in terms of geometry deposits, deposits aesthetics, operating technique, productivity, etc . In this regard deposits were made by means of two welding procedures, and subsequently welding surfacing was made with the optimum values of the welding parameters in this case.

  8. Effects of welding parameters on the mechanical properties of inert gas welded 6063 Aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ertan, Taner [MAKO Corporation (Turkey); Uguz, Agah [Uludag Univ. (Turkey). Mechnical Engineering Dept.; Ertan, Rukiye

    2012-07-01

    The influence of welding parameters, namely welding current and gas flow rate, on the mechanical properties of Gas Tungsten Arc Welding (GTAW) and Shielded Metal Arc Welding (SMAW) welded 6063 Aluminum alloy (AA 6063) has been investigated. In order to study the effect of the welding current and gas flow rate, microstructural examination, hardness measurements and room temperature tensile tests have been carried out. The experimental results show that the mechanical properties of GTAW welded joints have better mechanical properties than those of SMAW welded joints. Increasing the welding current appeared to have a beneficial effect on the mechanical properties. However, either increasing or decreasing the gas flow rate resulted in a decrease of hardness and tensile strength. It was also found that, the highest strength was obtained in GTAW welded samples at 220 A and 15 l/min gas flow rate.

  9. Automatic monitoring of vibration welding equipment

    Science.gov (United States)

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  10. Experimental and simulated strength of spot welds

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Bennedbæk, Rune A.K.; Larsen, Morten B.

    2014-01-01

    Weld strength testing of single spots in DP600 steel is presented for the three typical testing procedures, i.e. tensile-shear, cross-tension and peel testing. Spot welds are performed at two sets of welding parameters and strength testing under these conditions is presented by load......-elongation curves revealing the maximum load and the elongation at break. Welding and strength testing is simulated by SORPAS® 3D, which allows the two processes to be prepared in a combined simulation, such that the simulated welding properties are naturally applied to the simulation of strength testing. Besides...... the size and shape of the weld nugget, these properties include the new strength of the material in the weld and the heat affected zone based on the predicted hardness resulting from microstructural phase changes simulated during cooling of the weld before strength testing. Comparisons between overall...

  11. Mathematical Modeling of Weld Bead Geometry, Quality, and Productivity for Stainless Steel Claddings Deposited by FCAW

    Science.gov (United States)

    Gomes, J. H. F.; Costa, S. C.; Paiva, A. P.; Balestrassi, P. P.

    2012-09-01

    In recent years, industrial settings are seeing a rise in the use of stainless steel claddings. The anti-corrosive surfaces are made from low cost materials such as carbon steel or low alloy steels. To ensure the final quality of claddings, however, it is important to know how the welding parameters affect the process's outcome. Beads should be defect free and deposited with the desired geometry, with efficiency, and with a minimal waste of material. The objective of this study then is to analyze how the flux-cored arc welding (FCAW) parameters influence geometry, productivity, and the surface quality of the stainless steel claddings. It examines AISI 1020 carbon steel cladded with 316L stainless steel. Geometry was analyzed in terms of bead width, penetration, reinforcement, and dilution. Productivity was analyzed according to deposition rate and process yield, and surface quality according to surface appearance and slag formation. The FCAW parameters chosen included the wire feed rate, voltage, welding speed, and contact-tip-workpiece distance. To analyze the parameters' influences, mathematical models were developed based on response surface methodology. The results show that all parameters were significant. The degrees of importance among them varied according to the responses of interest. What also proved to be significant was the interaction between parameters. It was found that the combined effect of two parameters significantly affected a response; even when taken individually, the two might produce little effect. Finally, the development of Pareto frontiers confirmed the existence of conflicts of interest in this process, suggesting the application of multi-objective optimization techniques to the sequence of this study.

  12. AvaliaÃÃo Comparativa dos âLININGSâ doa AÃos AISI 444 e AISI 316L para AplicaÃÃo em Torres de DestilaÃÃo de PetrÃleo

    OpenAIRE

    Rodrigo Freitas GuimarÃes

    2005-01-01

    Os elevados teores de enxofre dos petrÃleos processados nas unidades de refino atacam o âcladâ de aÃo AISI 405 ou 410S, expondo o aÃo estrutural ao meio corrosivo. A recuperaÃÃo da regiÃo desgastada à feita pela aplicaÃÃo de um âliningâ de aÃo AISI 316L. Embora o aÃo AISI 316L garanta uma boa resistÃncia à corrosÃo naftÃnica, surgem trincas na zona afetada pelo calor da solda ( ZAC) apÃs um determinado perÃodo de operaÃÃo da unidade, associadas a problemas metalÃrgicos na ZAC e aos esforÃos ...

  13. Thermal treatment of dissimilar steels' welded joints

    Science.gov (United States)

    Nikulina, A. A.; Denisova, A. S.; Gradusov, I. N.; Ryabinkina, P. A.; Rushkovets, M. V.

    2016-04-01

    In this paper combinations of chrome-nickel steel and high-carbon steel, produced by flash butt welding after heat treatment, are investigated. Light and electron microscopic studies show that the welded joints after heat treatment have a complex structure consisting of several phases as initial welded joints. A martensite structure in welded joints after thermal treatment at 300... 800 °C has been found.

  14. Closed circuit television welding alignment system

    Energy Technology Data Exchange (ETDEWEB)

    Darner, G.S.

    1976-09-01

    Closed circuit television (CCTV) weld targeting systems were developed to provide accurate and repeatable positioning of the electrode of an electronic arc welder with respect to the parts being joined. A sliding mirror electrode holder was developed for use with closed circuit television equipment on existing weld fixturing. A complete motorized CCTV weld alignment system was developed to provide weld targeting for even the most critical positioning requirements.

  15. Preventing Contamination In Electron-Beam Welds

    Science.gov (United States)

    Goodin, Wesley D.; Gulbrandsen, Kevin A.; Oleksiak, Carl

    1990-01-01

    Simple expedient eliminates time-consuming, expensive manual hand grinding. Use of groove and backup tube greatly reduces postweld cleanup in some electron-beam welding operations. Tube-backup method developed for titanium parts, configurations of which prevents use of solid-block backup. In new welding configuration, tube inserted in groove to prevent contact between alumina beads and molten weld root. When welding complete and beads and tube removed, only minor spatter remains and is ground away easily.

  16. Evaluation of tensile strength and fracture behavior of friction welded ...

    Indian Academy of Sciences (India)

    In the present study an attempt was made to join austenitic stainless steel (AISI 304) with low alloy steel (AISI 1021) at five different rotational speeds ranging from 800 to 1600 rpm and at as many different axial pressures ranging from 75 MPa to 135 MPa and then determining the strength of the joint by means of tensile ...

  17. Performance of mesh seam welds in tailor welded blanks; Terado blank yo mash seam yosetsubu no tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Uchihara, M.; Takahashi, M.; Kurita, M.; Hirose, Y.; Fukui, K. [Sumitomo Metal Industries, Ltd., Osaka (Japan)

    1997-10-01

    Formability, fatigue properties and corrosion behavior of mash seam welded steel sheets were investigated and the results were compared with laser weld. The stretch formability of mash seam weld and laser weld were same level. Mash seam weld however, showed slightly smaller formability in hole expansion test. The fatigue strength of mash seam welds was lower than that of laser welds in case of differential thickness joints. Corrosion was apt to initiate at weld in both mash seam and laser weld with E-coat. The corrosion resistance of welds was improved by using zinc coated steel. 3 refs., 14 figs., 2 tabs.

  18. Welding technology for rails. Rail no setsugo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, M.; Karimine, K. (Nippon Steel Corp., Tokyo (Japan)); Uchino, K.; Sugino, K. (Nippon Steel Corp., Kitakyushu, Fukuoka (Japan). Technical Research Inst. of Yawata Works); Ueyama, K. (JR Railway Technical Research Inst., Tokyo (Japan))

    1993-08-01

    The rail joining technology is indispensable for making long welded rails. Flush butt welding, gas welding, enclosed arc welding, and thermit welding are used properly as the welding methods. A method for improving the joint reliability by controlling the residual stress distribution of welded joint is investigated to prepare high carbon component weld metal similar to the rail. Problems with each of the welding methods and the newly developed technology to solve the problems are outlined. Composition of the coating is improved also, and a high C system welding rod is developed which has satisfactory weldability. High performance and high efficient new enclosed arc welding technology not available by now is developed which utilizes high carbon welding metal as a new EA welding work technology, and put to practical use. As a result of this study, useful guides are obtained for the establishment of satisfactory thermit welding technology. 17 refs., 16 figs., 1 tab.

  19. 49 CFR 195.224 - Welding: Weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  20. 49 CFR 179.100-9 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.100-9 Section 179.100-9... Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-9 Welding. (a) All..., appendix W (IBR, see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be...

  1. 49 CFR 179.220-10 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.220-10 Section 179.220-10... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints... of this subchapter). Welding procedures, welders, and fabricators shall be approved. (b) Radioscopy...

  2. 49 CFR 179.400-11 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.400-11 Section 179.400-11...-11 Welding. (a) Except for closure of openings and a maximum of two circumferential closing joints in... subchapter). (d) Each welding procedure, welder, and fabricator must be approved. [Amdt. 179-32, 48 FR 27708...

  3. 49 CFR 179.200-10 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.200-10 Section 179.200-10... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-10 Welding. (a) All joints... W (IBR, see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be...

  4. 30 CFR 77.408 - Welding operations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding operations. 77.408 Section 77.408 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... for Mechanical Equipment § 77.408 Welding operations. Welding operations shall be shielded and the...

  5. 30 CFR 75.1729 - Welding operations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding operations. 75.1729 Section 75.1729 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1729 Welding operations. Welding...

  6. Friction welding thermal and metallurgical characteristics

    CERN Document Server

    Yilbas, Bekir Sami

    2014-01-01

    This book provides insight into the thermal analysis of friction welding incorporating welding parameters such as external, duration, breaking load, and material properties. The morphological and metallurgical changes associated with the resulting weld sites are analysed using characterization methods such as electron scanning microscope, energy dispersive spectroscopy, X-ray Diffraction, and Nuclear reaction analysis.

  7. Welding Using Chilled-Inert-Gas Purging

    Science.gov (United States)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Report describes study of fusion welding using chilled inert gas. Marked improvement shown in welding of aluminum using chilled helium gas. Chilling inert gas produces two additional benefits: 1) creation of ultradense inert atmosphere around welds; 2) chilled gas cools metal more quickly down to temperature at which metals not reactive.

  8. 49 CFR 179.11 - Welding certification.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding certification. 179.11 Section 179.11 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Design Requirements § 179.11 Welding certification. (a) Welding procedures, welders and fabricators shall...

  9. 46 CFR 154.665 - Welding procedures.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Welding procedures. 154.665 Section 154.665 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Construction § 154.665 Welding procedures. Welding procedure tests for cargo tanks for a design temperature...

  10. Low Speed Control for Automatic Welding

    Science.gov (United States)

    Iceland, W. E.

    1982-01-01

    Amplifier module allows rotating positioner of automatic welding machine to operate at speeds below normal range. Low speeds are precisely regulated by a servomechanism as are normal-range speeds. Addition of module to standard welding machine makes it unnecessary to purchase new equipment for low-speed welding.

  11. 49 CFR 195.214 - Welding procedures.

    Science.gov (United States)

    2010-10-01

    ... accordance with welding procedures qualified under Section 5 of API 1104 or Section IX of the ASME Boiler and Pressure Vessel Code (incorporated by reference, see § 195.3) . The quality of the test welds used to... 49 Transportation 3 2010-10-01 2010-10-01 false Welding procedures. 195.214 Section 195.214...

  12. Welding multiple plies with an electron beam

    Science.gov (United States)

    Kiluk, F. J.

    1980-01-01

    Method for electron-beam welding of multi-ply metal sheets eliminates ply separation and minimizes porosity. Method was developed for assembling bellows made of four plies of iron/nickel alloy sheets. Method consists of making successive stitch welds with electron beam until weld seam is completely filled in and all plies have been penetrated.

  13. Viewing electron-beam welds in progress

    Science.gov (United States)

    Armenoff, C. T.

    1980-01-01

    With aid of optical filter, operator of electron-beam welding machine can view TV image of joint that is being welded and can make corrections as necessary. Operator can see when weld bead gets out of alinement, for example, and compensate for deflection of electron beam caused by changes in magnetic field.

  14. [Dental welding titanium and its clinical usage].

    Science.gov (United States)

    Li, H; Xiao, M; Zhao, Y

    1998-09-01

    Due to its excellent biocompatibility, desirable chemical and mechanical properties, Titanium has been used for implant denture, RPD and FPD, where welding techniques were indispensable. This paper introduces 5 useful modern ways to weld Titanium and their clinical usage. They are: laser, plasma welding, TIG, infraned brazing and Hruska electrowelding.

  15. Technology of welding aluminum alloys-III

    Science.gov (United States)

    Harrison, J. R.; Kor, L. J.; Oleksiak, C. E.

    1978-01-01

    Control of porosity in weld beads was major objective in development of aluminum welding program. Porosity, most difficult defect to control, is caused by hydrogen gas unable to escape during solidification. Hard tooling allows hotter bead than free-fall tooling so hydrogen bubbles can boil out instead of forming pores. Welding position, moisture, and cleanliness are other important factors in control of porosity.

  16. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool.

  17. Study on visual image information detection of external angle weld based on arc welding robot

    Science.gov (United States)

    Liu, Xiaorui; Liu, Nansheng; Sheng, Wei; Hu, Xian; Ai, Xiaopu; Wei, Yiqing

    2009-11-01

    Nowadays, the chief development trend in modern welding technology is welding automation and welding intelligence. External angle weld has a certain proportion in mechanical manufacture industries. In the real-time welding process, due to hot deformation and the fixture of workpieces used frequently, torch will detach welding orbit causes deviation, which will affect welding quality. Therefore, elimination weld deviation is the key to the weld automatic tracking system. In this paper, the authors use the self-developed structured light vision sensor system which has significant advantage compared with arc sensors to capture real-time weld images. In the project of VC++6.0 real-time weld image processing, after binaryzation with threshold value seventy, 3*1 median filter, thinning, obtain weld main stripe. Then, using the extraction algorithm this paper proposed to obtain weld feature points, and compute position of weld. Experiment result verified that the extraction algorithm can locate feature points rapidly and compute the weld deviation accurately.

  18. Contamination and solid state welds.

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Bernice E.

    2007-05-01

    Since sensitivity to contamination is one of the verities of solid state joining, there is a need for assessing contamination of the part(s) to be joined, preferably nondestructively while it can be remedied. As the surfaces that are joined in pinch welds are inaccessible and thus provide a greater challenge, most of the discussion is of the search for the origin and effect of contamination on pinch welding and ways to detect and mitigate it. An example of contamination and the investigation and remediation of such a system is presented. Suggestions are made for techniques for nondestructive evaluation of contamination of surfaces for other solid state welds as well as for pinch welds. Surfaces that have good visual access are amenable to inspection by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Although other techniques are useful for specific classes of contaminants (such as hydrocarbons), DRIFT can be used most classes of contaminants. Surfaces such as the interior of open tubes or stems that are to be pinch welded can be inspected using infrared reflection spectroscopy. It must be demonstrated whether or not this tool can detect graphite based contamination, which has been seen in stems. For tubes with one closed end, the technique that should be investigated is emission infrared spectroscopy.

  19. Laser welding of selected aerospace alloys

    Science.gov (United States)

    Ebadan, Gracie E.

    The study was aimed at developing an understanding of the microstructural effects of the laser welding process on the alloys, and assessing the structural integrity of the resultant welds. The effect of laser processing parameters such as laser power, laser beam traverse speed, lens focal length, and the manipulation of these parameters on the welding efficiency and weld area integrity was also investigated. Other tasks within the project included a study on the possibility of using an anodic film to enhance the laser weld ability of Al 6061. Finally, attempts were made to identify phases observed in the weld area of the composite materials. Nimonics C263 and PE11 exhibited laser welds free of cracks and porosity. The difference in composition between the two alloys did not result in any significant dissimilarities in their response to the laser welding process. The welds in both alloys exhibited a fine columnar dendritic microstructure, and while carbides were observed in the interdendritic regions of the welds, electron optical analysis did not reveal any gamma' precipitates in this region. It was concluded that for the welding of thin gage materials above a threshold laser power the resultant welding efficiency shows a greater dependence on laser beam mode, and laser spot size, than on laser power, and beam traverse speed. Aluminum 6061 was not easily welded with a laser in its as received form, and the welds showed some degree of porosity. Anodizing was found to improve the welding efficiency in this material. While the presence of an anodic film on the metal surface increased the welding efficiency of the alloy, no relationship was found between the thickness of the anodic film and welding efficiency in the range of film thicknesses investigated. Weld regions were observed to be cellular dendritic in structure, with narrow heat affected zones. No precipitates or low melting point phases could be identified in the weld region. Melt zones were successfully

  20. Preparation of high-performance ultrafine-grained AISI 304L stainless steel under high temperature and pressure

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2016-08-01

    Full Text Available Bulk ultra-fine grained (UFG AISI 304L stainless steel with excellent mechanical properties was prepared by a high-temperature and high-pressure (HTHP method using nanocrystalline AISI 304L stainless steel powders obtained from ball milling. Samples were sintered in high-pressure conditions using the highest martensite content of AISI 304L stainless steel powders milled for 25 h. Analyses of phase composition and grain size were accomplished by X-ray diffraction and Rietveld refinement. By comparing the reverse martensite transformation under vacuum and HTHP treat, we consider that pressure can effectively promote the change in the process of transformation. Compared with the solid-solution-treated 304L, the hardness and yield strength of the samples sintered under HTHP are considerably higher. This method of preparation of UFG bulk stainless steel may be widely popularised and used to obtain UFG metallic materials with good comprehensive performance.

  1. Endurance and failure characteristics of modified Vasco X-2, CBS 600 and AISI 9310 spur gears. [aircraft construction materials

    Science.gov (United States)

    Townsend, D. P.; Zaretsky, E. V.

    1980-01-01

    Gear endurance tests and rolling-element fatigue tests were conducted to compare the performance of spur gears made from AISI 9310, CBS 600 and modified Vasco X-2 and to compare the pitting fatigue lives of these three materials. Gears manufactured from CBS 600 exhibited lives longer than those manufactured from AISI 9310. However, rolling-element fatigue tests resulted in statistically equivalent lives. Modified Vasco X-2 exhibited statistically equivalent lives to AISI 9310. CBS 600 and modified Vasco X-2 gears exhibited the potential of tooth fracture occurring at a tooth surface fatigue pit. Case carburization of all gear surfaces for the modified Vasco X-2 gears results in fracture at the tips of the gears.

  2. Corrosion Inhibition of AISI 316L and Modified-AISI 630 Stainless Steel by the New Organic Inhibitor [(CH32N]3PSe in Chloride Media:Electrochemical and Physical Study

    Directory of Open Access Journals (Sweden)

    Yafa ZARGOUNI

    2015-04-01

    Full Text Available We evaluate the effect of the Tris-dimethylaminoselenophosphoramide (SeAPon the corrosion inhibition of modified-AISI 630 and AISI 316L stainless steel (SS in 3 wt. % NaCl. The electrochemical behaviors of tested SS samples are investigated before and after adding the Seep into the chloride media by potentiodynamic polarization technique. The adsorption of SeAP onto both SS surfaces is verified by global discharge optical emission spectroscopy (GDOES.  SeAP is found to be a good inhibitor for SS corrosion, especially when added at a concentration of 0.5 wt. %.

  3. Borlanmış AISI 5140 ve AISI 420 Çeliklerinin Difüzyon ve Adhezyon Davranışlarının İncelenmesi (015701) (1-8)

    OpenAIRE

    BARUT, Nusrettin; YAVUZ, Demet; KAYALI, Yusuf

    2015-01-01

    In this study, AISI 5140 steel and AISI 420 stainless steel were pack borided at 1123, 1173 and 1223 K for retention times of 2, 4 and 6 h. The morphology of the boride layers formed on the steel surfaces as a result of the experiments was investigated by optical microscopy. The hardness values were measured by a micro-hardness device and the phases formed on the layer were determined by the XRD method. The XRD analysis revealed that FeB, Fe2B, CrB and MnB phases had formed on the boride laye...

  4. Analysis and Comparison of Aluminum Alloy Welded Joints Between Metal Inert Gas Welding and Tungsten Inert Gas Welding

    Science.gov (United States)

    Zhao, Lei; Guan, Yingchun; Wang, Qiang; Cong, Baoqiang; Qi, Bojin

    2015-09-01

    Surface contamination usually occurs during welding processing and it affects the welds quality largely. However, the formation of such contaminants has seldom been studied. Effort was made to study the contaminants caused by metal inert gas (MIG) welding and tungsten inert gas (TIG) welding processes of aluminum alloy, respectively. SEM, FTIR and XPS analysis was carried out to investigate the microstructure as well as surface chemistry. These contaminants were found to be mainly consisting of Al2O3, MgO, carbide and chromium complexes. The difference of contaminants between MIG and TIG welds was further examined. In addition, method to minimize these contaminants was proposed.

  5. Electron Beam Welding to Join Gamma Titanium Aluminide Articles

    Science.gov (United States)

    Kelly, Thomas Joseph (Inventor)

    2008-01-01

    A method is provided for welding two gamma titanium aluminide articles together. The method includes preheating the two articles to a welding temperature of from about 1700 F to about 2100 F, thereafter electron beam welding the two articles together at the welding temperature and in a welding vacuum to form a welded structure, and thereafter annealing the welded structure at an annealing temperature of from about 1800 F to about 2200 F, to form a joined structure.

  6. Materials and welding engineering in advanced coal utilization plants

    Energy Technology Data Exchange (ETDEWEB)

    Schuhmacher, D.; Schulze-Frielinghaus, W.; Puetz, J.; Eichhorn, F.; Gaever, E. van

    1983-08-01

    The authors present the findings of studies on welding methods for high-temperature alloys used in advanced coal gasification plants. They discuss weld preparation, automatic TIG welding, MIG welding (also with pulsed arc) and plasma arc welding. The mechanical properties of welded joints before and after age hardening are investigated, and the results of fatigue and corrosion tests are presented. The welding methods are compared with a view to their suitability for high-temperature materials.

  7. Hardness evolution on annealing in AISI 304 stainless steel; Evolucion de las caracteristicas de dureza del acero AISI 304 con el tratamiento termico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, A.; Alvarez de Sotomayor, A.; Herrera, E. J.

    2001-07-01

    The evolution of the microstructure and hardness of commercial AISI 304 stainless-steel samples with the heat treatment has been studied. Steel specimens in the as-received condition, and after 50% cold rolling, were soaked for 1 hour at various temperatures between 650 and 1200 degree centigree Samples maintain their grain size and hardness until about 900 degree centigree, thereafter, size increases with temperature, while hardness lightly diminishes. Recrystallization of cold-rolled specimens begins at 650 degree centigree, and finishes around 850 degree centigree. Recrystallized grain-size reaches the value found in the as received materials after the treatment at 900 degree centigree. For high her annealing temperatures both grain growth and hardness decrease following the same trend in cold-worked and non-deformed materials. (Author) 10 refs.

  8. Advanced Welding Tool

    Science.gov (United States)

    1982-01-01

    Accutron Tool & Instrument Co.'s welder was originally developed as a tool specifically for joining parts made of plastic or composite materials in any atmosphere to include the airless environment of space. Developers decided on induction or magnetic heating to avoid causing deformation and it also can be used with almost any type of thermoplastic material. Induction coil transfers magnetic flux through the plastic to a metal screen that is sandwiched between the sheets of plastic to be joined. When welder is energized, alternating current produces inductive heating on the screen causing the adjacent plastic surfaces to melt and flow into the mesh, creating a bond on the total surface area. Dave Brown, owner of Great Falls Canoe and Kayak Repair, Vienna, VA, uses a special repair technique based on operation of the Induction Toroid Welder to fix canoes. Whitewater canoeing poses the problem of frequent gashes that are difficult to repair. The main reason is that many canoes are made of plastics. The commercial Induction model is a self-contained, portable welding gun with a switch on the handle to regulate the temperature of the plastic melting screen. Welder has a broad range of applications in the automobile, appliance, aerospace and construction industries.

  9. Effect of weld spacing on microstructure and mechanical properties of CLAM electron beam welding joints

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yutao; Huang, Bo, E-mail: aufa0007@163.com; Zhang, Junyu; Zhang, Baoren; Liu, Shaojun; Huang, Qunying

    2016-11-15

    Highlights: • The welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding, and a simplified model of CLAM sheet was proposed. • The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). • The effect of the welding thermal cycle was significantly when the weld spacings were smaller than 4 mm. • When the weld spacing was small enough, the original microstructures would be fragmented with the high heat input. - Abstract: China low activation martensitic (CLAM) steel has been chosen as the primary structural material in the designs of dual function lithium-lead (DFLL) blanket for fusion reactors, China helium cooled ceramic breeder (HCCB) test blanket module (TBM) for ITER and China fusion engineering test reactor (CFETR) blanket. The cooling components of the blankets are designed with high density cooling channels (HDCCs) to remove the high nuclear thermal effectively. Hence, the welding spacing among the channels are small. In this paper, the welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding (EBW). The weld spacing was designed to be 2 mm, 3 mm, 4 mm, 6 mm and 8 mm. The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). The PWHT is tempering at 740 °C for 120 min. The results showed that the grain size in the heat affected zone (HAZ) increased with the increasing weld spacing, and the joint with small weld spacing had a better performance after PWHT. This work would give useful guidance to improve the preparation of the cooling components of blanket.

  10. Numerical-experimental analysis of a rin AISI{sub 7}Mg Alloy; Analisis numerico experimental de un rin de aleacion AISi{sub 7}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Sauceda Mesa, Israel; Mata Lucero, Omar; Tirado Delgado, Luis; Ocampo Diaz, Juan de Dios [Universidad Autonoma de Baja California, Mexicali, Baja California (Mexico)

    2005-10-15

    The present work shows the results obtained from an investigation mode on the behaviour of a rin of alloy AISi{sub 7}Mg, which is used in compact Volkswagen's cars. Due to two kind of analysis were realized, firstly an experimental and numerical analysis was done, using a special machine for test the flexionante torque and material fatigue, besides was used an equipment of laser to scanner zone with strength concentrations and the maximum displacement amplitudes. The second analysis was done with the finite element technique, using the software ANSYS and CATIA. The difference between life fatigue cycles obtained from the two analyses was 0.6%. While the time optimize by MEF, was of 85% less than experimental analysis. [Spanish] En el presente trabajo se hicieron investigaciones del comportamiento de un rin de aleacion AISi{sub 7}Mg, el cual es usado en automoviles compactos de volkswagen (VW). Para esto, se realizo analisis experimental y numerico. En el primero se utilizo una maquina para prueba de fatiga de momento flexionante, un equipo de medicion de laser escaner donde se detectaron las zonas de concentraciones de esfuerzos y la maxima amplitud de desplazamiento en el rin. Mientras que en el segundo se obtuvieron los esfuerzos que ocasionaban la fatiga por el elemento finito, utilizando los paquetes de computo Ansys y Catia. La diferencia de los ciclos de vida de fatiga obtenidos entre ambos analisis fue del 0.6%. Mientras que el tiempo que se optimizo por el MEF, fue de un 85% menos que el analisis experimental.

  11. Study of Mechanical Properties and Characterization of Pipe Steel welded by Hybrid (Friction Stir Weld + Root Arc Weld) Approach

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yong Chae [ORNL; Sanderson, Samuel [MegaStir Technologies LLC; Mahoney, Murray [Consultant; Wasson, Andrew J [ExxonMobil, Upstream Research Company (URC); Fairchild, Doug P [ExxonMobil, Upstream Research Company (URC); Wang, Yanli [ORNL; Feng, Zhili [ORNL

    2015-01-01

    Friction stir welding (FSW) has recently attracted attention as an alternative construction process for gas/oil transportation applications due to advantages compared to fusion welding techniques. A significant advantage is the ability of FSW to weld the entire or nearly the entire wall thickness in a single pass, while fusion welding requires multiple passes. However, when FSW is applied to a pipe or tube geometry, an internal back support anvil is required to resist the plunging forces exerted during FSW. Unfortunately, it may not be convenient or economical to use internal backing support due to limited access for some applications. To overcome this issue, ExxonMobil recently developed a new concept, combining root arc welding and FSW. That is, a root arc weld is made prior to FSW that supports the normal loads associated with FSW. In the present work, mechanical properties of a FSW + root arc welded pipe steel are reported including microstructure and microhardness.

  12. Metal vaporization from weld pools

    Science.gov (United States)

    Block-Bolten, A.; Eagar, T. W.

    1984-09-01

    Experimental studies of alloy vaporization from aluminum and stainless steel weld pools have been made in order to test a vaporization model based on thermodynamic data and the kinetic theory of gases. It is shown that the model can correctly predict the dominant metal vapors that form but that the absolute rate of vaporization is not known due to insufficient knowledge of the surface temperature distribution and subsequent condensation of the vapor in the cooler regions of the metal. Values of the net evaporation rates for different alloys have been measured and are found to vary by two orders of magnitude. Estimated maximum weld pool temperatures based upon the model are in good agreement with previous experimental measurements of electron beam welds.

  13. Characterization Of Oxide Layers Produced On The AISI 321 Stainless Steel After Annealing

    Directory of Open Access Journals (Sweden)

    Bochnowski W.

    2015-09-01

    Full Text Available In this study, the structure, chemical composition and topography of oxide layers produced on the surface of the AISI 321 austenitic steel in the annealing process were analyzed. Heat treatment was done at 980°C temperature for 1 hour time in different conditions. The annealing was done in a ceramic furnace in oxidation atmosphere and in vacuum furnaces with cylindrical molybdenum and graphite chambers. The analysis was carried out using the following methods: a scanning electron microscope (SEM equipped with an energy-dispersive X-ray spectrometer (EDX, a transmission electron microscope (TEM equipped with an energy-dispersive X-ray spectrometer (EDX, an X-ray diffractometer (XRD, a secondary ion mass spectrometer with time-of-flight mass analyzer (TOF SIMS and an atomic force microscope (AFM. The oxide layer formed during annealing of the AISI 321 steel at 980°C consisted of sub-layers, diversified in the chemical composition. The thickness of the oxidized layer is depended on the annealing conditions. In a ceramic furnace in oxidation atmosphere, the thickness of the oxide layer was of 300-500 nm, in a vacuum furnace with molybdenum and graphite heating chambers, it ranged from 40 to 300 nm and from a few to 50 nm, respectively. TOF SIMS method allows to get average (for the surface of 100 μm × 100 μm depth profiles of concentration of particular elements and elements combined with oxygen. In oxide layers formed in vacuum furnaces there are no iron oxides. Titanium, apart from being bounded with carbon in carbides, is a component of the oxide layer formed on the surface of the AISI 321 steel.

  14. Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Aadhavan, R.; Suresh Babu, K., E-mail: sureshbabu.nst@pondiuni.edu.in

    2017-07-31

    Highlights: • Ceria coating reduced the oxidation kinetics of AISI304 by 3–4 orders. • Lower deposition rate (0.1 Å/s) resulted in dense and uniform coating. • Substrate temperature of 100 °C provided coating with smaller crystallite size. • Surface morphology of the coating has strong influence in oxidation protection. - Abstract: Nanostructured ceria-based coatings are shown to be protective against high-temperature oxidation of AISI 304 due to the dynamics of oxidation state and associated defects. However, the processing parameters of deposition have a strong influence in determining the structural and morphological aspects of ceria. The present work focuses on the effect of variation in substrate temperature (50–300 °C) and deposition rate (0.1–50 Å/s) of ceria in electron beam physical vapour evaporation method and correlates the changes in structure and morphology to high-temperature oxidation protection. Unlike deposition rate, substrate temperature exhibited a profound influence on crystallite size (7–18 nm) and oxygen vacancy concentration. Upon isothermal oxidation at 1243 K for 24 h, bare AISI 304 exhibited a linear mass gain with a rate constant of 3.0 ± 0.03 × 10{sup −3} kg{sup 2} m{sup −4} s{sup −1} while ceria coating lowered the kinetics by 3–4 orders. Though the thickness of the coating was kept constant at 2 μm, higher deposition rate offered one order lower protection due to the porous nature of the coating. Variation in the substrate temperature modulated the porosity as well as oxygen vacancy concentration and displayed the best protection for coatings deposited at moderate substrate temperature. The present work demonstrates the significance of selecting appropriate processing parameters to obtain the required morphology for efficient high-temperature oxidation protection.

  15. STUDY AND ANALYSIS OF THE EFFECT OF WELDING PROCESS ON DISTORTION WITH 304L STAINLESS STEEL WELD JOINTS

    OpenAIRE

    Dhananjay Kumar*, Dharamvir mangal

    2017-01-01

    The effect of welding process on the distortion with 304L stainless steel 12thk weld joints made by TIG (tungsten inert gas) and SMAW (Shielded metal arc welding) welding process involving different type joint configuration have been studied. The joint configurations employed were double V-groove edge preparation for double side SMAW welding and square – butt preparation for double side TIG welding. All weld joints passed by radiographic. Distortion measurements were carried out using height ...

  16. Electrochemical and pitting corrosion resistance of AISI 4145 steel subjected to massive laser shock peening treatment with different coverage layers

    Science.gov (United States)

    Lu, J. Z.; Han, B.; Cui, C. Y.; Li, C. J.; Luo, K. Y.

    2017-02-01

    The effects of massive laser shock peening (LSP) treatment with different coverage layers on residual stress, pitting morphologies in a standard corrosive solution and electrochemical corrosion resistance of AISI 4145 steel were investigated by pitting corrosion test, potentiodynamic polarisation test, and SEM observations. Results showed massive LSP treatment can effectively cause an obvious improvement of pitting corrosion resistance of AISI 4145 steel, and increased coverage layer can also gradually improve its corrosion resistance. Massive LSP treatment with multiple layers was shown to influence pitting corrosion behaviour in a standard corrosive solution.

  17. An Electrochemical Impedance Study of AISI 321 Stainless Steel in 0.5 M H2SO4

    Directory of Open Access Journals (Sweden)

    A. Fattah-Alhosseini

    2011-01-01

    Full Text Available The electrochemical behavior of passive films formed on AISI 321 has been examined using electrochemical impedance spectroscopy. AISI 321 is characterized by high interfacial impedance, thereby illustrating its high corrosion resistance. Results showed that the interfacial impedance and the polarization resistance initially increase with applied potential, within the low potential. However, at a sufficiently high potential (>0.6 V, the interfacial impedance and the polarization resistance decrease with increasing potential. The impedance data were adequately represented by an equivalent electrical circuit model based on point defect model, which described the behavior of the passive film on stainless steel more satisfactorily than the proposed models.

  18. Laser Beam Submerged Arc Hybrid Welding

    Science.gov (United States)

    Reisgen, Uwe; Olschok, Simon; Jakobs, Stefan; Schleser, Markus; Mokrov, Oleg; Rossiter, Eduardo

    The laser beam-submerged arc hybrid welding method originates from the knowledge that, with increasing penetration depth, the laser beam process has a tendency to pore formation in the lower weld regions. The coupling with the energy-efficient submerged-arc process improves degassing and reduces the tendency to pore formation. The high deposition rate of the SA process in combination with the laser beam process offers, providing the appropriate choice of weld preparation, the possibility of welding plates with a thickness larger than 20° mm in a single pass, and also of welding thicker plates with the double-sided single pass technique.

  19. Peculiarities and future development of space welding

    Science.gov (United States)

    Shulym, V. F.; Lapchinskii, V. F.; Nikitskii, V. P.; Demidov, D. L.; Neznamova, L. O.

    The paper deals with the peculiar features of space as a medium in which welding operations are performed. Studies of different methods of welding carried out both in the plane-laboratory and in space are briefly described, and the comparative characteristics of the most promising methods of welding for space conditions are given. The selection of electron beam as a basic method for space is supported. The paper considers the main welding processes performed in space with the help of an electron beam, such as heating, brazing, welding, cutting and coating.

  20. Grain refinement control in TIG arc welding

    Science.gov (United States)

    Iceland, W. F.; Whiffen, E. L. (Inventor)

    1975-01-01

    A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.

  1. Fatigue strength improvement of the AISI 316Ti austenitic stainless steel by shot peening

    Directory of Open Access Journals (Sweden)

    František Nový

    2014-10-01

    Full Text Available Stainless steels are structural materials used for a wide range of applications. One of the fields of application of these highly corrosion resistant materials is for various medical applications. Different methods of mechanical property improvement have been studied in recent years to increase the durability of components manufactured from these materials. The main goal of this study was an analysis of fatigue strength improvement of the AISI 316Ti austenitic stainless steel by shot peening. A significant improvement of surface hardness, yield strength and fatigue limit by shot peening was observed in this study. This is despite increasing the surface roughness which usually degrades material’s fatigue strength.

  2. 1020 AISI-SAE steel Austenitic Nitrocarburising with alcohol and triethanolamine

    Directory of Open Access Journals (Sweden)

    Álvaro Castro P

    2010-04-01

    Full Text Available The present work shows AISI-SAE 1020 steel's nitrocarbide layer's microstructure and micro-hardness profile following 4 hours at 700ºC using methanol, isopropanol and triethanolamine. The steel was then hardened by quenching it in water and then tempered at 350ºC for 1 hour. Its surface had been partially oxidised by heating it at 400ºC for 1 hour. An example is given of other researchers analysing microstructure and propierties in steel having 0,5% C, using endothermic gas and different amounts of ammoniac.

  3. PITTING CORROSION OF AISI 316Ti STAINLESS STEEL WITH POLISHED SURFACE

    Directory of Open Access Journals (Sweden)

    Viera Zatkalíková

    2010-05-01

    Full Text Available AISI 316Ti is Cr–Ni–Mo austenitic stainless steel with the high Pitting Resistance Equivalent Number (PREN. The effect of the surface finishing by polishing on the pitting corrosion resistance was tested in aggressive 5% FeCl3 solution. The immersion tests were curried out at the temperature 30, 50, 80 °C. The electrochemical cyclic potentiodynamic tests were carried out in the same solution at temperature 30 and 50 °C. The evaluation of the corrosion resistance arose from the comparison of the results of the immersion and the cyclic potentiodynamic tests.

  4. Effect of cooling rate on properties of plasma nitrided AISI 1010 steel

    OpenAIRE

    ALVES Jr, Clodomiro; Lima, José de Anchieta; HAJEK, VACLAV; Cunha, João Batista Marimon; Santos,Carlos Alberto

    2007-01-01

    In this work, AISI 1010 steel samples were plasma nitrided into 20% N 2 100 Pa and 400 Pa for N 2 and H 2 , respectively), temperatures of 500 and 580 °C, during 2 h. Three different procedures for cooling were accomplished after nitriding. In the first procedure the cooling occurred naturally, that is, the sample was kept on substrate holder. In the second one the sample was pulled off and cooling in a cold surface. Finally, in the third cooling process the sample was...

  5. Mechanical Properties of Stellite-6 coated AISI 316L Stainless Steel

    Directory of Open Access Journals (Sweden)

    Pushpinderjit Singh

    2016-01-01

    Full Text Available Present paper describes the mechanical properties of Stellite-6 coated AISI 316 L stainless steel. Specimens were coated using Detonation Gun thermal spray process, with different coating thicknesses of Stellite-6 ranging from 50 µm to 150 µm. Afterwards their properties like tensile strength, impact strength and micro hardness were evaluated on the basis of the results obtained from the experimentation. For comparison of substrate and coated material the graphs were plotted. The coated specimens exhibited superior impact strength and microhardness than that of the bare specimens, whereas the tensile strength of coated specimens decreased marginally with the increase in coating thickness.

  6. Martensitic stainless steel AISI 420—mechanical properties, creep and fracture toughness

    Science.gov (United States)

    Brnic, J.; Turkalj, G.; Canadija, M.; Lanc, D.; Krscanski, S.

    2011-11-01

    In this paper some experimental results and analyses regarding the behavior of AISI 420 martensitic stainless steel under different environmental conditions are presented. That way, mechanical properties like ultimate tensile strength and 0.2 percent offset yield strength at lowered and elevated temperatures as well as short-time creep behavior for selected stress levels at selected elevated temperatures of mentioned material are shown. The temperature effect on mentioned mechanical properties is also presented. Fracture toughness was calculated on the basis of Charpy impact energy. Experimentally obtained results can be of importance for structure designers.

  7. Biaxial fatigue tests of notched specimens for AISI 304L stainless steel

    Directory of Open Access Journals (Sweden)

    G. Beretta

    2016-07-01

    Full Text Available High cycle fatigue tests were conducted for stainless steel AISI 304L. The geometry was a thin walled tube with a passing through hole. The tests were axial, torsional and in-phase axial-torsional, all of them under load control with R = −1. The S-N curves were constructed following the ASTM E739 standard and the fatigues limits were calculated following the method of maximum likelihood proposed by Bettinelli. The crack direction along the surface was analysed, with especial attention to the crack initiation zones. The notch fatigue limits for different hole diameters were compared with the predictions done with a microstructural fracture mechanics model.

  8. 1020 AISI-SAE steel Austenitic Nitrocarburising with alcohol and triethanolamine

    OpenAIRE

    Álvaro Castro P.; Carlos Bohórquez

    2010-01-01

    The present work shows AISI-SAE 1020 steel's nitrocarbide layer's microstructure and micro-hardness profile following 4 hours at 700ºC using methanol, isopropanol and triethanolamine. The steel was then hardened by quenching it in water and then tempered at 350ºC for 1 hour. Its surface had been partially oxidised by heating it at 400ºC for 1 hour. An example is given of other researchers analysing microstructure and propierties in steel having 0,5% C, using endothermic gas and different amou...

  9. Isothermal Oxidation Behavior of Aluminized AISI 1020 Steel at the Temperature of 700 OC

    OpenAIRE

    Badaruddin, Mohammad; Suharno, Suharno; Wijaya, Hanif Ari

    2014-01-01

    The AISI 1020 steel was coated by dipping it into the molten Al bath at 700 °C for 16s. The coating layer formed on the steel substrate is consisting of Al with a little Fe, FeAl3 and Fe2Al5 layers. The morphologies of the FeAl3 and Fe2Al5 layers are platelet and columnar structures, respectively. The oxidation test was carried out isothermally at 700 °C for a various time of 1-49 h in static air. The oxidation behaviors of both of the bare steel and the aluminized steel were studied by the o...

  10. Estructura cristalina del acero AISI 1045 deformado plásticamente

    OpenAIRE

    Tomás Fernández Columbié; Isnel Rodríguez González; Dayanis Alcántara Borges

    2008-01-01

    Se abordó el comportamiento microestructural del acero AISI 1045 endurecido mediante la Deformación Plástica Superficial por rodillo, Se establece el mecanismo de endurecimiento del acero por el deslizamiento de los granos en la red cristalina y se demuestra el fenómeno de la acritud, la cual es producto del tensionamiento de los granos cuando el material es sometido al tensionamiento de su estructura cristalina. Se establece el procedimiento experimental realizado después que las probetas fu...

  11. Corrosion behaviour of iron and AISI 304 stainless steel in tungstate aqueous solutions containing chloride

    Directory of Open Access Journals (Sweden)

    Azambuja Denise S.

    2003-01-01

    Full Text Available The corrosion behavior of iron and AISI 304 stainless steel in aqueous tungstate solutions containing chloride ion was investigated by cyclic voltammetry, open circuit measurements and impedance spectroscopy. The obtained results point out that the inhibitive performance of tungstate depends on the presence of dissolved oxygen, being strongly related to the adsorption of this anion on the surface of the electrode. Under anodic polarization, at low sweep rate and electrode rotation the passive film is more stable and the corrosion rate decreases. At the open circuit potential, the EIS data have clearly demonstrated that for longer immersion times the tungstate inhibitive action is considerably improved.

  12. Advantages of new micro-jet welding technology on weld microstructure control

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2013-01-01

    Full Text Available An innovative apparatus to welding process with micro-jet cooling of the weld made it possible to carry out technological tests, which have proved theoretical considerations about this problem. This project gives real opportunities for professional development in the field of welding with controlling the parameters of weld structure. These tests have proved that the new micro-jet technology has the potential for growth. It may be great achievement of welding technology in order to increase weld metal strength. The new technology with micro-jet cooling may have many practical applications in many fields, for example such as in the transport industry or to repair damaged metal elements. The advantages of the new device over the traditional system are the ability to control the structure of the weld, the weld mechanical performance increases and improve the quality of welded joints.

  13. Experimental Study of the Redistribution of Welding Distortion According to the Partial Removal of Welded Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Rae; Wang, Chao; Kim, Jae Woong [Yeungnam University, Kyungsan (Korea, Republic of)

    2015-07-15

    During the welding process, welding distortion is caused by the non-uniformity of the temperature distribution in the weldment. Welding distortion is redistributed because the residual stress and rigidity change according to the removal of the welded structure. In shipbuilding in particular, this phenomenon may be observed during the cutting process of lugs that are attached to blocks for transfer. The redistribution of welding distortion also causes problems, such as damage to the cutting tool. The aim of this study is to experimentally analyze the redistribution of welding distortion because of the partial removal of the welded structure. In the experiments conducted in this study, fillet welding and cutting were performed, and longitudinal bending and angular distortion in the welded structures were then investigated and analyzed.

  14. EFFECTS OF ELECTRODE DEFORMATION OF RESISTANCE SPOT WELDING ON 304 AUSTENITIC STAINLESS STEEL WELD GEOMETRY

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2012-12-01

    Full Text Available The resistance spot welding process is accomplished by forcing huge amounts of current flow from the upper electrode tip through the base metals to the lower electrode tip, or vice versa or in both directions. A weld joint is established between the metal sheets through fusion, resulting in a strong bond between the sheets without occupying additional space. The growth of the weld nugget (bond between sheets is therefore determined from the welding current density; sufficient time for current delivery; reasonable electrode pressing force; and the area provided for current delivery (electrode tip. The welding current and weld time control the root penetration, while the electrode pressing force and electrode tips successfully accomplish the connection during the welding process. Although the welding current and weld time cause the heat generation at the areas concerned (electrode tip area, the electrode tips’ diameter and electrode pressing forces also directly influence the welding process. In this research truncated-electrode deformation and mushrooming effects are observed, which result in the welded areas being inconsistent due to the expulsion. The copper to chromium ratio is varied from the tip to the end of the electrode whilst the welding process is repeated. The welding heat affects the electrode and the electrode itself influences the shape of the weld geometry.

  15. Experimental investigation on the weld pool formation process in plasma keyhole arc welding

    Science.gov (United States)

    Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu

    2018-01-01

    This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s‑1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.

  16. Residual stress characterization of welds and post-weld processes using x-ray diffraction techniques

    Science.gov (United States)

    Brauss, Michael E.; Pineault, James A.; Eckersley, John S.

    1998-03-01

    This paper illustrates the importance of residual stress characterization in welds and post weld processes. The failure to characterize residual stresses created during welding and/or post weld processes can lead to unexpected occurrences of stress corrosion cracking, distortion, fatigue cracking as well as instances of over design or over processing. The development of automated residual stress mapping and the availability of portable and fast equipment have now made the characterization of residual stresses using x-ray diffraction practical for process control and optimization. The paper presents examples where x-ray diffraction residual stress characterization techniques were applied on various kinds of welds including arc welds, TIG welds, resistance welds, laser welds and electron beam welds. The nondestructive nature of the x-ray diffraction technique has made the residual stress characterization of welds a useful tool for process optimization and failure analysis, particularly since components can be measured before and after welding and post welding processes. Some examples presented show the residual stresses before and after the application of post weld processes such as shot peening, grinding and heat treatment.

  17. Weld-brazing of titanium

    Science.gov (United States)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1974-01-01

    A joining process, designated weld-brazing, which combines resistance spotwelding and brazing has been developed at the NASA Langley Research Center. Resistance spot-welding is employed to position and align the parts and to establish a suitable faying surface gap for brazing; it contributes to the integrity of the joint. Brazing enhances the properties of the joint and reduces the stress concentrations normally associated with spotwelds. Ti-6Al-4V titanium alloy joints have been fabricated using 3003 aluminum braze both in a vacuum furnace and in a retort containing an inert gas environment.

  18. Shimmed electron beam welding process

    Science.gov (United States)

    Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  19. Laser welding of micro plastic parts

    Science.gov (United States)

    Haberstroh, E.; Hoffmann, W.-M.

    2007-02-01

    Most welding processes for plastics do not meet the demands of micro technology and thus cannot be applied in this innovative industrial sector. One of the few techniques which are applicable in this sector is the laser transmission welding, which has distinctive advantages like low mechanical and thermal load of the joining parts. This makes the laser particularly suitable for the welding of micro plastics parts. Thereby, contour welding is a process variant of laser transmission welding enabling the welding of complex and even three-dimensional weld contours. But so far it has not yet been applied for welding plastics parts of micro scale in the industrial practice. Recent research at the Institute of Plastics Processing (IKV) at the RWTH Aachen University shows the feasibility of this process to weld small and complex micro parts. Good mechanical properties can be achieved. However, it is necessary to apply measures to reduce the formation of flash. Moreover, it can be shown that there is a strong influence of some material parameters on the laser welding process so that some plastics are more suitable than others for the contour welding in micro technology.

  20. TIG welding power supply with improved efficiency

    Directory of Open Access Journals (Sweden)

    Сергій Володимирович Гулаков

    2015-03-01

    Full Text Available In the article, the influence of the DC component of the welding current during TIG (Tungsten Inert Gas welding is discussed. Known methods of DC current cancellation are reviewed, such as capacitor bank or diode/thyristor network insertion in the secondary circuit of the welding transformer. A new method of controlling the magnitude and shape of the TIG welding current is proposed. The idea is to insert a controlled voltage source in the secondary circuit of the welding transformer. This controlled voltage source is realized using a full-bridge voltage source inverter (VSI. VSI control system design issues are discussed. VSI is controlled by a three-level hysteretic current controller, while current reference is generated using lookup table driven by PLL (Phase Locked Loop locked to the mains frequency. Simulation results are shown. The proposed topology of TIG power supply allows to provide magnitude and shape control of the welding current, with the limitation that its DC component must be zero. Thus, some capabilities of professional AC-TIG welders are obtained using substantially lower cost components: VSI built using high-current low voltage MOSFETs with control system based on 32-bit ARM microcontroller. The use of proposed TIG welding power supply will eliminate the DC component of the welding current, improve welding transformer’s power factor and improve welding technology by increasing the welding arc stability

  1. Experimental analysis of cut welding in aluminium

    DEFF Research Database (Denmark)

    Dorph, Pernille; De Chiffre, Leonardo; Bay, Niels

    1993-01-01

    Cut welding is a newly developed cold pressure welding process. In the present work, an experimental investigation was carried out analyzing the mechanisms involved in cut welding of a block to a strip. Experiments were carried out in technically pure aluminium. The investigation has involved...... tensile testing and metallographic investigations of the welds. The results show that this variant of cut welding is a very reproducible process giving a weld strength equal to 30-40% the strength of the parent material. The experiments have shown that the reason for this relatively low strength...... is an uneven pressure distribution along the weld due to a wave formed during sliding. Attempts to alter the material flow during sliding are presented....

  2. Welding of gamma titanium aluminide alloys

    Science.gov (United States)

    Smashey, Russell W. (Inventor); Kelly, Thomas J. (Inventor); Snyder, John H. (Inventor); Sheranko, Ronald L. (Inventor)

    1998-01-01

    An article made of a gamma titanium aluminide alloy is welded, as for example in the weld repair of surface cracks, by removing foreign matter from the area to be welded, first stress relieving the article, cooling the entire article to a welding temperature of from about 1000.degree. F. to about 1400.degree. F., welding a preselected region in an inert atmosphere at the welding temperature, and second stress relieving the article. Welding is preferably accomplished by striking an arc in the preselected region so as to locally melt the alloy in the preselected region, providing a filler metal having the same composition as the gamma titanium aluminide alloy of the article, and feeding the filler metal into the arc so that the filler metal is melted and fused with the article to form a weldment upon solidification.

  3. Numerical Simulation of Duplex Steel Multipass Welding

    Directory of Open Access Journals (Sweden)

    Giętka T.

    2016-12-01

    Full Text Available Analyses based on FEM calculations have significantly changed the possibilities of determining welding strains and stresses at early stages of product design and welding technology development. Such an approach to design enables obtaining significant savings in production preparation and post-weld deformation corrections and is also important for utility properties of welded joints obtained. As a result, it is possible to make changes to a simulated process before introducing them into real production as well as to test various variants of a given solution. Numerical simulations require the combination of problems of thermal, mechanical and metallurgical analysis. The study presented involved the SYSWELD software-based analysis of GMA welded multipass butt joints made of duplex steel sheets. The analysis of the distribution of stresses and displacements were carried out for typical welding procedure as during real welding tests.

  4. Residual stress simulation of circumferential welded joints

    Directory of Open Access Journals (Sweden)

    Melicher R.

    2007-11-01

    Full Text Available Residual stresses are an important consideration in the component integrity and life assessment of welded structure. The welding process is very complex time dependent physical phenomenon with material nonlinearity. The welding is a thermal process with convection between fluid flow and welding body, between welding bodyand environment. Next type of boundary conditions is radiation and thermo-mechanical contact on the outer surface of gas pipe in the near of weld. The temperature variation so obtained is utilised to find the distribution of the stress field.In this paper, a brief review of weld simulation and residual stress modelling using the finite element method (FEM by commercial software ANSYS is presented. Thermo-elastic-plastic formulations using a von Mises yield criterion with nonlinear kinematics hardening has been employed. Residual axial and hoop stresses obtained from the analysis have been shown. The commercial FEM code ANSYS was used for coupled thermalmechanical analysis.

  5. Yield load solutions of heterogeneous welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, D., E-mail: dkozak@sfsb.h [Mechanical Engineering Faculty in Slavonski Brod, Josip Juraj Strossmayer University of Osijek, Trg Ivane Brlic-Mazuranic 2, Hr-35000 Slavonski Brod (Croatia); Gubeljak, N. [Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor (Slovenia); Konjatic, P.; Sertic, J. [Mechanical Engineering Faculty in Slavonski Brod, Josip Juraj Strossmayer University of Osijek, Trg Ivane Brlic-Mazuranic 2, Hr-35000 Slavonski Brod (Croatia)

    2009-12-15

    The aim of this paper is to establish yield load solutions when the materials inhomogeneity within the weld is present, which is usually the case in repair welding. The effect of yield strength mismatch of welded joints performed with different geometry on the yield load value has been investigated in the context of single edge notched fracture toughness specimen subjected to bending SE(B) using the finite element method. The crack was located in the center of the weld and the two most important geometrical parameters were identified as: crack length ratio a/W as well as slenderness of the welded joint, which were systematically varied. One practical and four additional combinations of filler materials, with the same portion of overmatched part and undermatched part of the weld, were analyzed, and plane strain FE solutions for the case when the crack is located in the overmatched half of the heterogeneous weld were obtained.

  6. Mechanical Properties of Plug Welds after Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Hadryś D.

    2016-12-01

    Full Text Available New technology of micro-jet welding could be regarded as a new way to improve mechanical properties of plug welds. The main purpose of that paper was analyzing of mechanical properties of plug welds made by MIG welding method with micro-jet cooling. The main way for it was comparison of plug welds made by MIG welding method with micro-jet cooling and plug welds made by ordinary MIG welding method. It is interesting for steel because higher amount of acicular ferrite (AF in weld metal deposit (WMD is obtained in MIG welding method with micro-jet cooling in relation to ordinary MIG welding method. This article presents the influence of the cooling medium and the number of micro-jet streams on mechanical properties of the welded joint. Mechanical properties were described by force which is necessary to destroy weld joint.

  7. A Brief Introduction to the Theory of Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and is already an important welding process for the aerospace industry, where welds of optimal quality are demanded. The structure of welds determines weld properties. The structure of friction stir welds is determined by the flow field in the weld metal in the vicinity of the weld tool. A simple kinematic model of the FSW flow field developed at Marshall Space Flight Center, which enables the basic features of FSW microstructure to be understood and related to weld process parameters and tool design, is explained.

  8. Mechanical Properties of Plug Welds after Micro-Jet Cooling

    OpenAIRE

    Hadryś D.

    2016-01-01

    New technology of micro-jet welding could be regarded as a new way to improve mechanical properties of plug welds. The main purpose of that paper was analyzing of mechanical properties of plug welds made by MIG welding method with micro-jet cooling. The main way for it was comparison of plug welds made by MIG welding method with micro-jet cooling and plug welds made by ordinary MIG welding method. It is interesting for steel because higher amount of acicular ferrite (AF) in weld metal deposit...

  9. 49 CFR 192.235 - Preparation for welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Preparation for welding. 192.235 Section 192.235... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.235 Preparation for welding. Before beginning any welding, the welding surfaces must be clean and free of any material that...

  10. Advanced Control Methods for Optimization of Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, J. S.

    Gas Metal Arc Welding (GMAW) is a proces used for joining pieces of metal. Probably, the GMAW process is the most successful and widely used welding method in the industry today. A key issue in welding is the quality of the welds produced. The quality of a weld is influenced by several factors in...

  11. Mathematical Model Of Variable-Polarity Plasma Arc Welding

    Science.gov (United States)

    Hung, R. J.

    1996-01-01

    Mathematical model of variable-polarity plasma arc (VPPA) welding process developed for use in predicting characteristics of welds and thus serves as guide for selection of process parameters. Parameters include welding electric currents in, and durations of, straight and reverse polarities; rates of flow of plasma and shielding gases; and sizes and relative positions of welding electrode, welding orifice, and workpiece.

  12. Analysis of factors affecting fractures of rails welded by alumino-thermic welding

    OpenAIRE

    Sergejs MIKHAYLOVS; Dijs SERGEJEVS

    2008-01-01

    On Latvian Railway, the use of the thermic welding is widespread using the ELECTRO-THERMIT Company technology. Today it is a basic method for rail joints. Experience of the operation of rails welded by the thermic welding showed that every year occur from 2 to 3 fractures of thermic joints on the main tracks between stations of Latvian Railway.Such emergence of cracks in the weld joint alongside the scores indicates of great residual stresses in the weld joints made by the thermic welding.

  13. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.; Piwnik J.

    2015-01-01

    Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was pr...

  14. Resistance spot welding of galvanized steel: Part II. Mechanisms of spot weld nugget formation

    Science.gov (United States)

    Gedeon, S. A.; Eagar, T. W.

    1986-12-01

    Dynamic inspection monitoring of the weld current, voltage, resistance, electrode displacement, and force was performed in conjunction with a detailed study of the effects of material variations and weld process parameter modifications on resistance spot welding of coated and uncoated steels. In order to determine the mechanisms of weld nugget formation and growth, scanning electron microscopy photos were taken of the developing nugget. These physical changes were then related to the dynamic inspection curves and the welding current lobe. The effects of material variations and weld process modifications, the results of which were presented in Part I, can be explained through an understanding of these mechanisms.

  15. Treatment of nitridation by microwave post discharge plasma in an AISI 4140 steel; Tratamiento de nitruracion por plasma post-descarga micro-ondas en un acero AISI 4140

    Energy Technology Data Exchange (ETDEWEB)

    Medina F, A. [Instituto Tecnologico de Morelia, Morelia e Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Rodriguez L, V.; Zamora R, L. [ININ, Mexico D.F. (Mexico); Oseguera P, J

    1998-07-01

    The objective of this work is to determine through X-ray diffraction, microhardness measurement and scanning electron microscopy those main operation parameters of the microwave post discharge treatment (temperature of treatment, gas mixture and permanence time) nitriding an AISI 4140 steel and to characterize the compact layer of nitrides formed during the treatment. (Author)

  16. União de juntas dissimilares alumínio-aço de chapas finas pelo processo de soldagem por atrito com pino não consumível (SAPNC Dissimilar joint of aluminum-steel thin sheet by friction stir welding process

    Directory of Open Access Journals (Sweden)

    Edwar Andrés Torres

    2011-09-01

    Full Text Available Foram obtidas juntas dissimilares da liga de alumínio 6063-T5 e do aço AISI SAE 1020 com espessura de 2,0 mm soldadas por atrito com pino não consumível. O objetivo deste trabalho é avaliar o efeito da penetração e o deslocamento da ferramenta na obtenção de juntas soldadas Al-aço. As juntas foram avaliadas segundo a qualidade da superfície e a profundidade da região soldada. Foi determinado que além das velocidades de rotação (ω e avanço (ν, o deslocamento e a profundidade de penetração da ferramenta são parâmetros fundamentais, pois definem o aporte térmico e, com este, a aderência ou não de alumínio na ferramenta, a qualidade superficial e a formação de defeitos ao longo da linha da junta.Aluminum alloy 6063-T5 and AISI SAE 1020 were obtained with dissimilar welded joints by friction stir welding in 2.0 mm thick sheet. The aim was to evaluate the effect of welding parameters to obtain Al-steel welds. Joints were evaluated according to surface quality and depth of the welded region. It was determined that besides the rotational (ω and forward (ν speeds, the offset and the tool penetration are key parameters because they define the heat input and therefore the adherence of aluminum in the tool, the surface quality and defect formation along the joint line.

  17. Mechanics Model of Plug Welding

    Science.gov (United States)

    Zuo, Q. K.; Nunes, A. C., Jr.

    2015-01-01

    An analytical model has been developed for the mechanics of friction plug welding. The model accounts for coupling of plastic deformation (material flow) and thermal response (plastic heating). The model predictions of the torque, energy, and pull force on the plug were compared to the data of a recent experiment, and the agreements between predictions and data are encouraging.

  18. Fundamentals of Welding. Teacher Edition.

    Science.gov (United States)

    Fortney, Clarence; And Others

    These instructional materials assist teachers in improving instruction on the fundamentals of welding. The following introductory information is included: use of this publication; competency profile; instructional/task analysis; related academic and workplace skills list; tools, materials, and equipment list; and 27 references. Seven units of…

  19. Electrode cartridge for pulse welding

    Energy Technology Data Exchange (ETDEWEB)

    Bonnen, John Joseph Francis; Golovashchenko, Sergey Fedorovich; Mamutov, Alexander; Maison, Lloyd Douglas

    2017-06-14

    A cartridge assembly for a tool includes a cartridge body or casing that contains a conductor. A conductor is connected to a pulse generator or source of stored charge that is discharged to vaporize the conductor and create an electro-hydraulic or electro-magnetic shockwave that is used to impact or pulse weld two parts together.

  20. Mixing weld gases offers advantages

    Science.gov (United States)

    May, J. L.; Mendenhall, M. M.

    1969-01-01

    Argon added to helium during gas tungsten arc cover-pass welding in the horizontal position results in a better controlled wider bead width, increased arc stability, and reduction in heat input. Adequate filler material wetness and penetration pass coverage is possible with only one pass.

  1. Welding the CNGS decay tube

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    3.6 km of welds were required for the 1 km long CERN Neutrinos to Gran Sasso (CNGS) decay tube, in which particles produced in the collision with a proton and a graphite target will decay into muons and muon neutrinos. Four highly skilled welders performed this delicate task.

  2. Physical and Tribological Properties of Nitrided AISI 316 Stainless Steel Balls

    Directory of Open Access Journals (Sweden)

    Yang Shicai

    2016-01-01

    Full Text Available AISI 316 austenitic stainless steel balls (diameters 5.0 and 12.0 mm, typical hardness 250 HV0.3 and flat samples (20×20×2.0 mm were nitrided by a pulsed glow discharge Ar/N2 plasma. Hardness of the ball surfaces was analysed using Vickers indentation. Thermal stability of the nitrided balls (diameter 12.0 mm was studied using a furnace to heat them in air for 8 hours at temperatures up to 700.0°C and then, after cooling to room temperature, the surface hardness of the heated balls was re-measured. Scanning electron microscopy and X-ray diffraction were used to study the microstructures, composition and phase formation of the nitrided sublayers. Unlubricated pin-on-disc wear testing was used to evaluate the wear resistance of nitrided stainless steel balls (5.0 mm diameter and the results were compared with similar testing on hardened Cr-Steel balls (5 mm diameter with hardness of about 650 HV0.3. All the test results indicated that the nitrided AISI 316 austenitic stainless steel balls have advantages over the hardened Cr-Steel balls in terms of retaining high hardness after heat treatment and high resistance to sliding wear at room temperature under higher counterpart stress. These properties are expected to be beneficial for wide range of bearing applications.

  3. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    Science.gov (United States)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-11-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  4. Pitting and Intergranular Corrosion Resistance of AISI Type 301LN Stainless Steels

    Science.gov (United States)

    Ningshen, S.; Kamachi Mudali, U.

    2010-03-01

    The pitting and intergranular corrosion (IGC) resistance of AISI type 301LN stainless steels were evaluated using ASTM methods, anodic polarization, and electrochemical impedance techniques. The IGC results indicated that the microstructure of the samples after sensitization heat treatment at 675 °C for 1 h shows step or dual structure for both imported and indigenous materials indicating insignificant Cr23C6 precipitation. The results of immersion tests in boiling 6% copper sulfate + 16% sulfuric acid + copper solution for 24 h followed by the bend test (ASTM A262 Practice-E method) indicated no crack formation in any of the tested specimens. Pitting corrosion resistance carried out in 6% FeCl3 solution at different temperatures of 22 ± 2 and 50 ± 2 °C (ASTM G 48) up to the period of 72 h revealed pitting corrosion attack in all the investigated alloys. The potentiodynamic anodic polarization results in 0.5 M NaCl revealed variation in passive current density and pitting potential depending on the alloy chemistry and metallurgical condition. The passive film properties studied by electrochemical impedance spectroscopy (EIS) correlated well with the polarization results. The x-ray diffraction (XRD) results revealed the presence of austenite (γ) and martensite (α') phases depending on the material condition. The suitability of three indigenously developed AISI type 301LN stainless steels were compared with imported type 301LN stainless steel and the results are highlighted in this article.

  5. Effects of heat treatment conditions on microstructure and mechanical properties of AISI 420 steel

    Energy Technology Data Exchange (ETDEWEB)

    Scheuer, C.J.; Fraga, R.A.; Cardoso, R.P.; Brunatto, S.F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Departamento de Engenharia Mecanica. Grupo de Tecnologia de Fabricacao Assistida por Plasma e Metalurgia do Po

    2014-07-01

    The cycle control of heat treatments, on the quenching and tempering operation of AISI 420 stainless steel, is essential for improved material performance. The adequate choice of heat treatment parameters, can lead an optimization on its mechanical properties and corrosion resistance. Thus, this paper aims to investigate the effects of quenchants medium, and austenitizing and tempering temperatures, on the microstructure and mechanical properties of AISI 420 steel. Different heat treatments cycles were studied: 1) samples were austenitized at 1050°C and water, oil and air quenched; 2) samples were austenitized at range temperatures of 950-1050°C and oil quenched; and 3) as-quenched samples were tempering at range temperatures of 400-500°C. Treated samples were characterized by optical microscopy, X-ray diffractometry and hardness measurements. The samples hardness increases with increasing cooling rate (water > oil > air quenched). Water quenched samples presented crack after cooling to room temperature. Samples hardness also increases with austenitizing temperature increasing, and decreases with increasing tempering temperature. (author)

  6. OPTIMIZATION OF PROCESSING PARAMETERS IN ELECTROCHEMICAL MACHINING OF AISI 202 USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    V. SATHIYAMOORTHY

    2015-06-01

    Full Text Available This paper attempts to optimize the predominated machining parameters in Electro Chemical Machining (ECM of AISI 202 Austenitic stainless steel using Response Surface Methodology (RSM. The chosen material has been used in railway rolling stock. The selected influencing parameters are applied voltage, electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty six experiments were conducted through design of experiments and central composite design in RSM was applied to identify the optimum conditions which turn into the best Material Removal Rate (MRR and Surface roughness (SR. The experimental analyses reveal that applied voltage of 16 V, tool feed rate of 0.54 mm/min and electrolyte discharge rate of 10 L/min would be the optimum values in ECM of AISI 202 under the selected conditions. For checking the optimality of the developed equation, MRR of 298.276 mm3/min and surface roughness Ra of 2.05 µm were predicted at applied voltage of 12.5 V, tool feed rate of 0.54 mm/min and electrolyte discharge rate of 11.8 L/min with composite desirability of 98.05%. Confirmatory tests showed that the actual performance at the optimum conditions were 291.351 mm3/min and 2.17 µm. The deviation from the predicted performance is less than 6% which proves the composite desirability of the developed models for MRR and surface roughness.

  7. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    Science.gov (United States)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-10-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  8. Characterization of Case Hardened AISI 4130 Steel Using Eddy Current Testing

    Directory of Open Access Journals (Sweden)

    Gukendran R.

    2017-09-01

    Full Text Available Casting is the manufacturing process of pouring the hot liquiduos state metal in to the mold cavity and then allowed it to solidify to obtain the final casting. There are many defects are found in the casting components during the inspection. Some defects are tolerated while others are required to repair. Otherwise the casting component is to be eliminated due to the poor quality level. The aim of the non-destructive inspection is to determine, the flaws, discontinuities on the material, and characteristics of the material. Based on the results by non-destructive evaluation the personnel take the decision on the material object is to be accepted or not as per the criteria. In this paper the hardness attribute of the case hardened AISI 4130 steel samples are studied using Vickers Hardness test. Then the hardness property is correlated with the Eddy Current Testing method. According to the acceptance criterion the suitability of the material is analyzed for the corresponding application or not. In this paper Eddy Current Testing response is analyzed for the AISI 4130 samples to determine the mechanical properties of the material. The main objective of the paper is to investigate the effect of the hardness property of the casting material during various case depth obtained via case hardening process. This technique is effective and best practice for the heat treatment shop floors. By this technique the results are investigated based on the cracks and microstructure of the casting material.

  9. Dependence of corrosion properties of AISI 304L stainless steel on the austenite grain size

    Energy Technology Data Exchange (ETDEWEB)

    Sabooni, Soheil; Rashtchi, Hamed; Eslami, Abdoulmajid; Karimzadeh, Fathallah; Enayati, Mohammad Hossein; Raeissi, Keyvan; Imani, Reihane Faghih [Isfahan Univ. of Technology, Isfahan (Iran, Islamic Republic of). Dept. of Materials Engineering; Ngan, Alfonso Hing Wan [The Univ. of Hong Kong (China). Dept. of Mechanical Engineering

    2017-07-15

    The corrosion resistance of austenitic stainless steels is known to be hampered by the loss of chromium available for passive surface layer formation as a result of chromium carbide precipitation at austenite grain boundaries during annealing treatments. Although high-temperature annealing can promote carbide dissolution leading to better corrosion resistance, grain coarsening also results, which would lead to poorer mechanical properties. Processing methods to achieve both good corrosion resistance and mechanical properties are thus highly desirable for austenitic stainless steels. In the present study, we show that the corrosion resistance of AISI 304L stainless steel can be improved by grain refinement into the ultrafine-grained regime. Specifically, samples with different austenite grain sizes in the range of 0.65-12 μm were studied by potentiodynamic polarization and electrochemical impedance spectroscopy tests in a 3.5 wt.% NaCl solution. All samples showed a typical passive behavior with similar corrosion potential, but the corrosion current density decreased significantly with decreasing grain size. The results show that the sample with the finest grain size had the best corrosion resistance due to a higher resistance of the passive layer to pitting attacks. This study indicates that grain refinement which improves mechanical properties can also significantly improve the corrosion resistance of AISI 304L stainless steel.

  10. Tribological Response of Heat Treated AISI 52100 Steels Against Steel and Ceramic Counterparts

    Directory of Open Access Journals (Sweden)

    Türedi E.

    2017-09-01

    Full Text Available AISI 52100 bearing steels are commonly used in applications requiring high hardness and abrasion resistance. The bearing steels are working under dynamic loads in service conditions and their toughness properties become important. In order to provide the desired mechanical properties, various heat treatments (austenizing, quenching and tempering are usually applied. In this study, AISI 52100 bearing steel samples were austenized at 900°C for ½ h and water quenched to room temperature. Then tempering was carried out at 795°C, 400°C and 200°C for ½ h. In order to investigate the effect of heat treatment conditions on wear behavior, dry friction tests were performed according to ASTM G99-05 Standard with a ‘ball-on-disk’ type tribometer. The samples were tested against steel and ceramic counterparts using the parameters of 100 m distance and 30 N load and 0.063 m/s rotational speed. After wear test, the surface characterization was carried out using microscopy. Wear loss values were calculated using a novel optical method on both flat and counterpart specimens.

  11. Investigate The Effect Of Welding Parameters On Mechanical Properties During The Welding Of Al-6061 Alloy

    Directory of Open Access Journals (Sweden)

    Rajendra Prasad

    2017-10-01

    Full Text Available Friction welding is a solid state welding technique which is being used in recent times to weld similar as well as dissimilar metals for getting defect free weld. Many combinations like low carbon to stainless steel austenitic to ferrite stainless steel aluminium to copper and titanium to aluminium or steel have been tried out by various solid state welding processes with quite good results. In the present work the 3 level full factorial design has been employed to investigate the effect of welding parameters on tensile strength toughness and heat generation during the welding of Al-6061 alloy. Mathematical relationships between friction welding parameters and mechanical properties like heat generation tensile strength and toughness have also been developed. An attempt has also been made to examine the fracture surfaces of test specimens using SEM. It has been found that welding speed is the most significant parameter thats affect the heat generation tensile strength and toughness. it has been found that tensile strength and toughness during welding increases with increased in welding speed while tensile strength and toughness initially increased as the welding time increases after that it decreased with increase in welding time. The difference in weight of alloying elements can be clearly seen by analyzing spectrum of elements.

  12. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    Science.gov (United States)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  13. Intelligent hybrid system of welding parameters for robotic arc-welding task-level offline programming

    Science.gov (United States)

    Peng, Pai; Tian, Jiansong; Wu, Lin; Dai, Ming

    2000-10-01

    Welding process parameters are indispensable to program arc welding robot. To simplify off-line programming (OLP) for robotic arc welding, we develop an arc welding expert system whcih can generate welding process parameters automatically. Its input data came from the feature database of welding part, which is set up by our feature modeling system. The expert system has become an important module of our RAWTOLPS (Robotic Arc Welding Task-level Off-Line System). It combines case-based reasoning with heuristic rule-based reasoning methods to deal with the welding process design. Moreover, artificial neural networks are introduced to the systems for reasoning and machine learning, and several network modules are developed to learn from welding process database, based on back-propagation neural networks. After some groups of actual welding process data were used to train the network models, several network models are established to both design the welding process and to predict the weld bead shape. Besides the ANN-based learning, cased-based learning are used in the expert system. These two methods have respectively their own characteristics, and can meet qualifications of different users. The experimental data show that the system can accomplish re-learning and expanding of welding process knowledge, and satisfy the command of the off-line programming system.

  14. A unified model of coupled arc plasma and weld pool for double electrodes TIG welding

    Science.gov (United States)

    Wang, Xinxin; Fan, Ding; Huang, Jiankang; Huang, Yong

    2014-07-01

    A three-dimensional model containing tungsten electrodes, arc plasma and a weld pool is presented for double electrodes tungsten inert gas welding. The model is validated by available experimental data. The distributions of temperature, velocity and pressure of the coupled arc plasma are investigated. The current density, heat flux and shear stress over the weld pool are highlighted. The weld pool dynamic is described by taking into account buoyance, Lorentz force, surface tension and plasma drag force. The turbulent effect in the weld pool is also considered. It is found that the temperature and velocity distributions of the coupled arc are not rotationally symmetrical. A similar property is also shown by the arc pressure, current density and heat flux at the anode surface. The surface tension gradient is much larger than the plasma drag force and dominates the convective pattern in the weld pool, thus determining the weld penetration. The anodic heat flux and plasma drag force, as well as the surface tension gradient over the weld pool, determine the weld shape and size. In addition, provided the welding current through one electrode increases and that through the other decreases, keeping the total current unchanged, the coupled arc behaviour and weld pool dynamic change significantly, while the weld shape and size show little change. The results demonstrate the necessity of a unified model in the study of the arc plasma and weld pool.

  15. Automatic orbital GTAW welding: Highest quality welds for tomorrow's high-performance systems

    Science.gov (United States)

    Henon, B. K.

    1985-01-01

    Automatic orbital gas tungsten arc welding (GTAW) or TIG welding is certain to play an increasingly prominent role in tomorrow's technology. The welds are of the highest quality and the repeatability of automatic weldings is vastly superior to that of manual welding. Since less heat is applied to the weld during automatic welding than manual welding, there is less change in the metallurgical properties of the parent material. The possibility of accurate control and the cleanliness of the automatic GTAW welding process make it highly suitable to the welding of the more exotic and expensive materials which are now widely used in the aerospace and hydrospace industries. Titanium, stainless steel, Inconel, and Incoloy, as well as, aluminum can all be welded to the highest quality specifications automatically. Automatic orbital GTAW equipment is available for the fusion butt welding of tube-to-tube, as well as, tube to autobuttweld fittings. The same equipment can also be used for the fusion butt welding of up to 6 inch pipe with a wall thickness of up to 0.154 inches.

  16. Hydrogen embrittlement in superaustenitic stainless steels welded unions in sulfuric acid; Fragilizacao por hidrogenio em juntas soldadas de acos inoxidaveis superausteniticos em acido sulfurico

    Energy Technology Data Exchange (ETDEWEB)

    Berthier, T. [Parana Univ., Curitiba, PR (Brazil). Lab. de Materiais e Tratamento de Superficies (LaMaTS)]. E-mail: thiana@demec.ufpr.br; Kuromoto, N.K. [Parana Univ., Curitiba, PR (Brazil). Lab. de Nanopropriedades Mecanicas; Paredes, R.S.C. [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)

    2003-07-01

    The embrittlement of the austenitic stainless steel by hydrogen has been known for more than four decades. Researches done into the behavior of the hydrogenated homogeneous structures, under cathodic charging at room temperature, have shown that the hydrogen induces phase transformations and nucleation of retarded superficial cracks during the outgassing which is followed by the end of the hydrogenation. The results obtained upon austenitic and superaustenitic stainless steels are few considering the changes produced in welded unions. The aim of this work is to evaluate mechanical properties of material and its relation to the nucleation of the cracks in the austenitic steels welds type AISI 904L submitted to hydrogenated solutions. The samples have been welded through the process MIG/MAG; the hydrogenation has been made catholically in a sulfuric acid solution of 1N, with variable time of 1 to 4 hours at the room temperature. An anode of platinum in and density of current 1000 A/m{sup 2} has been used. The outgassing has occurred at the room temperature. Many retarded superficial cracks with different morphologies have been observed. Regarding the hardness measure, major alterations in all the regions of the sample have not been noticed. (author)

  17. Microstructure and abrasive wear properties of M(Cr,Fe7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW process

    Directory of Open Access Journals (Sweden)

    Soner BUYTOZ

    2010-01-01

    Full Text Available In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD, field-emission scanning electron microscopy (FE-SEM, X-ray energy-dispersive spectroscopy (EDS. Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were carried out on a pin-on-disc apparatus as function of contact load. Wear rates of the all coating layers were decreased as a function of the loading. The improvement of abrasive wear resistance of the coating layer could be attributed to the high hardness of the hypereutectic M7C3 carbides in the microstruc-ture. As a result, the microstructure of surface layers, hardness and abrasive wear behaviours showed different characteristics due to the gas tungsten arc welding parameters.

  18. In-situ investigation of martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen

    2013-01-01

    Martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature was investigated with Vibrating Sample Magnetometry. The investigation reports the stabilization of retained austenite in quenched samples during storage at room temperature and reveals the thermally activated nature...

  19. Void swelling of AISI 321 analog stainless steel irradiated at low dpa rates in the BN-350 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maksimkin, O.P. [Institute of Nuclear Physics, Almaty (Kazakhstan); Tsai, K.V. [Institute of Nuclear Physics, Almaty (Kazakhstan); Turubarova, L.G. [Institute of Nuclear Physics, Almaty (Kazakhstan); Doronina, T. [Institute of Nuclear Physics, Almaty (Kazakhstan); Garner, F.A. [Pacific Northwest National Laboratory, Richland, WA 99354 (United States)]. E-mail: frank.garner@pnl.gov

    2007-08-01

    In several recently published studies conducted on a Soviet analog of AISI 321 stainless steel irradiated in either fast reactors or light water reactors, it was shown that the void swelling phenomenon extended to temperatures as low as {approx}300 {sup o}C or less, when produced by neutron irradiation at dpa rates in the range 10{sup -7}-10{sup -8} dpa/s. Other studies yielded similar results for AISI 316 and the Russian analog of AISI 316. In the current study a blanket assembly duct from BN-350, constructed from the Soviet analog of AISI 321, also exhibits swelling at dpa rates on the order of 10{sup -8} dpa/s, with voids seen as low as 281 {sup o}C and only 0.65 dpa. It appears that low-temperature swelling occurs at low dpa rates in 300 series stainless steels in general, and also occurs during irradiations conducted in either fast or in mixed spectrum reactors as shown in other studies.

  20. The effect of cladding speed on phase constitution and properties of AISI 431 stainless steel laser deposited coatings

    NARCIS (Netherlands)

    Hemmati, I.; Ocelik, V.; De Hosson, J. Th. M.

    2011-01-01

    Shorter processing time has given impetus to laser cladding technology and therefore in this research the AISI 431 martensitic stainless steel coatings are laser deposited at high cladding speeds, i.e. up to 117 mm/s. The analysis of phase constitution and functional properties of the coatings are

  1. Extended X-Ray Absorption Fine Structure Investigation of Carbon Stabilized Expanded Austenite and Carbides in Stainless Steel AISI 316

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny

    2011-01-01

    Low temperature carburized AISI 316 stainless steel - carbon expanded austenite - was investigated with EXAFS and synchrotron diffraction together with synthesized carbides of the type M3C2, M7C3 and M23C6. It was found that the chemical environment of carbon expanded austenite is not associated ...

  2. Laser surface cladding of Ti-6Al-4V on AISI 316L stainless steel for bio-implant application

    CSIR Research Space (South Africa)

    Kumar, A

    2014-01-01

    Full Text Available The present study concerns an in-depth investigation of the influence of laser surface cladding of Ti-6Al-4V on the microstructure (both the top surface, cross-section and interface), wear resistance, corrosion resistance and bio-activity of AISI...

  3. Laser welding of tailored blanks

    Directory of Open Access Journals (Sweden)

    Peças, P.

    1998-04-01

    Full Text Available Laser welding has an incrising role in the automotive industry, namely on the sub-assemblies manufacturing. Several sheet-shape parts are laser welded, on a dissimilar combination of thicknesses and materials, and are afterwards formed (stamped being transformed in a vehicle body component. In this paper low carbon CO2 laser welding, on the thicknesses of 1,25 and 0,75 mm, formability investigation is described. There will be a description of how the laser welded blanks behave in different forming tests, and the influence of misalignment and undercut on the formibility. The quality is evaluated by measuring the limit strain and limit effective strain for the laser welded sheets and the base material, which will be presented in a forming limit diagram.

    A soldadura laser assume um papel cada vez mais importante na indústria automóvel, principalmente para a fabricação de sub-conjuntos constituídos por varias partes de chapa de diferentes espessuras (e diferentes materiais, que depois de estampados constituem um componente para integrar num veículo. Descreve-se neste artigo o trabalho de investigação de enformabilidade de chapa de ac.o de baixo carbono soldada por laser de CO2, nas espessuras de 1,25 e 0,75 mm. Apresenta-se uma descrição do comportamento das chapas soldadas por laser em diferentes testes de enformação, e a influência dos defeitos das soldaduras (desalinhamento e queda do banho-undercut no comportamento à enformação. A qualidade é avaliada pela medição da extensão limite e da extensão limite efectiva no material base e no material soldado, que serão representadas num diagrama de limite de enformabilidade.

  4. Improving fatigue performance of rail thermite welds

    Directory of Open Access Journals (Sweden)

    Winiar L.

    2010-06-01

    Full Text Available Rail transport development offers economic and ecological interests. Nevertheless, it requires heavy investments in rolling material and infrastructure. To be competitive, this transportation means must rely on safe and reliable infrastructure, which requires optimization of all implemented techniques and structure. Rail thermite (or aluminothermic welding is widely used within the railway industry for in-track welding during re-rail and defect replacement. The process provides numerous advantages against other welding technology commonly used. Obviously, future demands on train traffic are heavier axle loads, higher train speeds and increased traffic density. Thus, a new enhanced weld should be developed to prevent accidents due to fracture of welds and to lower maintenance costs. In order to improve such assembly process, a detailed metallurgical study coupled to a thermomechanical modelling of the phenomena involved in the thermite welding process is carried out. Obtained data enables us to develop a new improved thermite weld (type A. This joint is made by modifying the routinely specified procedure (type B used in a railway rail by a standard gap alumino-thermic weld. Joints of type A and B are tested and compared. Based on experimental temperature measurements, a finite element analysis is used to calculate the thermal residual stresses induced. In the vicinity of the weld, the residual stress patterns depend on the thermal conditions during welding as it also shown by litterature [1, 2]. In parallel, X-Ray diffraction has been used to map the residual stress field that is generated in welded rail of types A and B. Their effect on fatigue crack growth in rail welds is studied. An experimental study based on fatigue tests of rails welded by conventional and improved processes adjudicates on the new advances and results will be shown.

  5. ITER lip seal welding and cutting developments

    Energy Technology Data Exchange (ETDEWEB)

    Levesy, B.; Cordier, J.J.; Jokinen, T. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kujanpää, V.; Karhu, M. [VTT Technical Research Centre of Finland (Finland); Le Barbier, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Määttä, T. [VTT Technical Research Centre of Finland (Finland); Martins, J.P.; Utin, Y. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-10-15

    Highlights: • Different TIG and Laser welding techniques are tested. • Twin spot laser welding techniques is the best. • Limited heat input gives a stable weld pool in all positions. • Penetrations is achieved. • Lip seal welding and cutting with a robotic arm is successfully performed on a representative mock-up. - Abstract: The welded lip seals form part of the torus primary vacuum boundary in between the port plugs and the vacuum vessel, and are classified as Protection Important Component. In order to refurbish the port plugs or the in-vessel components, port plugs have to be removed from the machine. The lip seal design must enable up to ten opening of the vacuum vessel during the life time operation of the ITER machine. Therefore proven, remote reliable cutting and re-welding are essential, as these operations need to be performed in the port cells in a nuclear environment, where human presence will be restricted. Moreover, the combination of size of the components to be welded (∼10 m long vacuum compatible thin welds) and the congested environment close to the core of the machine constraint the type and size of tools to be used. This paper describes the lip seal cutting and welding development programme performed at the VTT Technical Research Centre, Finland. Potential cutting and welding techniques are analyzed and compared. The development of the cutting, TIG and laser welding techniques on samples are presented. Effects of lip seal misalignments and optimization of the 2 welding processes are discussed. Finally, the manufacturing and test of the two 1.2 m × 1 m representative mock-ups are presented. The set-up and use of a robotic arm for the mock-up cutting and welding operations are also described.

  6. Research Activities at IPT, DTU on Resistance Projection Welding

    DEFF Research Database (Denmark)

    Bay, Niels

    2000-01-01

    Resistance welding processes and among these especially the resistance projection welding is considered an industrially strategic process with increasing applications as alternative to other welding processes, soldering, brazing and mechanical assembling. This is due to increasing requirements...

  7. The impact of welding wire on the mechanical properties of welded joints

    Directory of Open Access Journals (Sweden)

    Magdalena Mazur

    2014-06-01

    Full Text Available This paper presents results of the mechanical properties of Hardox 450 steel welded joints. These welded joints were made in accordance with welding procedure specifications (WPS, which was prepared and  applied in the Wielton company. Fillers were provided by welding wires with two different diameters. The welding wire was G4Sil with diameter of 1.0 mm and 1.2 mm. The aim of this study was to examine whether the thickness of the welding wire has a direct effect on the properties of welded joints. Test specimens were made in similar parameters of the welding process. Then they were subjected to macroscopic research, tensile strength, impact strength and hardness

  8. Forming Completely Penetrated Welded T-joints when Pulsed Arc Welding

    Science.gov (United States)

    Krampit, N. Yu; Krampit, M. A.; Sapozhkov, A. S.

    2016-04-01

    The paper is focused on revealing the influence of welding parameters on weld formation when pulsed arc welding. As an experimental sample a T-joint over 10 mm was selected. Welding was carried out in flat position, which required no edge preparation but provided mono-directional guaranteed root penetration. The following parameters of welding were subjected to investigation: gap in the joint, wire feed rate and incline angles of the torch along and across the weld axis. Technological recommendations have been made with respect to pulsed arc welding; the cost price of product manufacturing can be reduced on their basis due to reduction of labor input required by machining, lowering consumption of welding materials and electric power.

  9. Simplified welding distortion analysis for fillet welding using composite shell elements

    Directory of Open Access Journals (Sweden)

    Mingyu Kim

    2015-05-01

    Full Text Available This paper presents the simplified welding distortion analysis method to predict the welding deformation of both plate and stiffener in fillet welds. Currently, the methods based on equivalent thermal strain like Strain as Direct Boundary (SDB has been widely used due to effective prediction of welding deformation. Regarding the fillet welding, however, those methods cannot represent deformation of both members at once since the temperature degree of freedom is shared at the intersection nodes in both members. In this paper, we propose new approach to simulate deformation of both members. The method can simulate fillet weld deformations by employing composite shell element and using different thermal expansion coefficients according to thickness direction with fixed temperature at intersection nodes. For verification purpose, we compare of result from experiments, 3D thermo elastic plastic analysis, SDB method and proposed method. Compared of experiments results, the proposed method can effectively predict welding deformation for fillet welds.

  10. Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review

    Science.gov (United States)

    Pal, Kamal; Pal, Surjya K.

    2011-08-01

    The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.

  11. Repair welding of cast iron coated electrodes

    Science.gov (United States)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  12. Effect of the Ultrasonic Nanocrystalline Surface Modification (UNSM on Bulk and 3D-Printed AISI H13 Tool Steels

    Directory of Open Access Journals (Sweden)

    In-Sik Cho

    2017-11-01

    Full Text Available A comparative study of the microstructure, hardness, and tribological properties of two different AISI H13 tool steels—classified as the bulk with no heat treatment steel or the 3D-printed steel—was undertaken. Both samples were subjected to ultrasonic nanocrystalline surface modification (UNSM to further enhance their mechanical properties and improve their tribological behavior. The objective of this study was to compare the mechanical properties and tribological behavior of these tool steels since steel can exhibit a wide variety of mechanical properties depending on different manufacturing processes. The surface hardness of the samples was measured using a micro-Vickers hardness tester. The hardness of the 3D-printed AISI H13 tool steel was found to be much higher than that of the bulk one. The surface morphology of the samples was characterized by electron backscattered diffraction (EBSD in order to analyze the grain size and number of fractions with respect to the misorientation angle. The results revealed that the grain size of the 3D-printed AISI H13 tool steel was less than 0.5 μm, whereas that of the bulk tool steel was greater than 4 μm. The number of fractions of the bulk tool steel was about 0.5 μm at a low misorientation angle, and it decreased gradually with increasing misorientation angle. The low-angle grain boundary (LAGB and high-angle grain boundary (HAGB of the bulk sample were about 21% and 79%, respectively, and those of the 3D-printed sample were about 8% and 92%, respectively. Moreover, the friction and wear behavior of the UNSM-treated AISI H13 tool steel specimen was better than those of the untreated one. This study demonstrated the capability of 3D-printed AISI H13 tool steel to exhibit excellent mechanical and tribological properties for industrial applications.

  13. Internal structure and reliability of the Attachment Insecurity Screening Inventory (AISI) for children age 6 to 12.

    Science.gov (United States)

    Spruit, Anouk; Wissink, Inge; Noom, Marc J; Colonnesi, Cristina; Polderman, Nelleke; Willems, Lucia; Barning, Charlotte; Stams, Geert Jan J M

    2018-02-05

    The aim of the present study was to examine the internal structure and reliability of the Attachment Insecurity Screening Inventory (AISI) 6-12. The AISI 6-12 years is a parent-report questionnaire for assessing the parents' perspective on the quality of the attachment relationship with their child aged between 6 and 12 years. The sample consisted of 681 mothers and fathers reporting on 372 children (72.3% adoption parents, 14.9% non-biological primary care takers including foster parents, and 12.8% biological parents). The internal structure was assessed with multilevel confirmatory factor analyses (CFA) and the reliability of the scores with Cronbach's and ordinal alphas. Multilevel CFA confirmed a three-factor model of avoidant, ambivalent/resistant and disorganized attachment. Multi-group CFA indicated full configural and metric measurement invariance, and partial scalar and strict measurement invariance across mothers and fathers. Reliability coefficients were found to be sufficient. This study showed the potential of using parental reports in the initial screening of attachment related problems, especially considering the practical approach of parental reports. However, further development of the AISI 6-12 years seems important to increase the validity of the AISI 6-12 years. In addition, future studies are necessary to replicate the current findings, and to strengthen the evidence that the AISI 6-12 years is appropriate for the use in middle childhood and validly assesses the parents' perspective on attachment insecurities in their child.

  14. Risk Communication Concerning Welding Fumes for the Primary Preventive Care of Welding Apprentices in Southern Brazil

    OpenAIRE

    Cezar-Vaz, Marta Regina; Bonow, Clarice Alves; Cezar Vaz, Joana

    2015-01-01

    This study’s aim was to assess the perceptions of welding apprentices concerning welding fumes being associated with respiratory and cardiovascular disorders and assess the implementation of risk communication as a primary prevention tool in the welding training process. This quasi-experimental, non-randomized study with before-and-after design was conducted with 84 welding apprentices in Southern Brazil. Poisson Regression analysis was used. Relative Risk was the measure used with a 95% co...

  15. Analysis of factors affecting fractures of rails welded by alumino-thermic welding

    Directory of Open Access Journals (Sweden)

    Sergejs MIKHAYLOVS

    2008-01-01

    Full Text Available On Latvian Railway the use of the alumino-thermic welding is widespread using the Elektro-Thermit Company technology. Today it is a basic method for rail joints on railway switches. The analysis of the metal structure in the thermic welding and in the thermic welded zone of rails showed that the weld metal had inclusions small pores and nonmetallics. Pores and nonmetallics are not reduce hardness but it is concentrators of stresses and sources of cracks development.

  16. Prediction of numerical distortion after welding with various welding sequences and clampings

    Directory of Open Access Journals (Sweden)

    S. Kastelic

    2010-10-01

    Full Text Available Welding simulation of a test cover for hydropower plant was made due to very large dimensions of the cover. The main aim was to predict distortion after welding in order to avoid machining the cover. Welding process was simulated with the Sysweld program to keep distortion in desired limits. Various welding sequences and clamping conditions were calculated to reduce the distortion. Calculation of microstructure constituents in virtual complex geometry of joints was also analyzed.

  17. Influence of the Initial Fiber Orientation on the Weld Strength in Welding of Glass Fiber Reinforced Thermoplastics

    Directory of Open Access Journals (Sweden)

    Isabel Fiebig

    2016-01-01

    Full Text Available The welding factors are significantly lower in welding of fiber reinforced thermoplastics than in welding of unreinforced thermoplastics due to the fiber orientation in the weld. This paper presents results from investigations on the influence of the initial fiber orientation on the weld strength in hot plate and vibration welding for glass fiber reinforced polypropylene and polyamide 6. Injection molded specimens are compared to specimens with main initial fiber orientation being longitudinal and transverse to the joining direction. The results of CT analysis of the fiber orientation in the weld show the opportunity to achieve a higher weld strength by using specimens with fibers being initially oriented longitudinally to the joining direction. The influence of the initial fiber orientation in the parts to be welded on the weld strength in hot plate welding is more distinct than in vibration welding.

  18. Welding and Joining of Titanium Aluminides

    Science.gov (United States)

    Cao, Jian; Qi, Junlei; Song, Xiaoguo; Feng, Jicai

    2014-01-01

    Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials. PMID:28788113

  19. Laser Peening Effects on Friction Stir Welding

    Science.gov (United States)

    Hatamleh, Omar

    2011-01-01

    Friction Stir Welding (FSW) is a welding technique that uses frictional heating combined with forging pressure to produce high strength bonds. It is attractive for aerospace applications. Although residual stresses in FSW are generally lower when compared to conventional fusion welds, recent work has shown that significant tensile residual stresses can be present in the weld after fabrication. Therefore, laser shock peening was investigated as a means of moderating the tensile residual stresses produced during welding. This slide presentation reviews the effect of Laser Peening on the weld, in tensile strength, strain, surface roughness, microhardness, surface wear/friction, and fatigue crack growth rates. The study concluded that the laser peening process can result in considerable improvement to crack initiaion, propagation and mechanical properties in FSW.

  20. Structural degradation of heterogeneous welded joints

    Directory of Open Access Journals (Sweden)

    Eva Schmidová

    2012-09-01

    Full Text Available Developing the techniques of welding materials with higher dynamic strength onto the rolling surfaces of rails is one of the options for increasing their operational endurance. The subject of this paper is an analyses of heterogeneous weld interfaces experimentally manufactured by welding medium-carbon austenitic steels onto high-carbon unalloyed pearlitic steels. The analyses focus on examinations of the marginal mixing of the materials at the weld interface and the circumstances under which intercrystalline cracks form in the weld deposit layers. Structural analyses, chemical microanalyses and a hardness assessment were performed in order to identify the corresponding structural changes. The proportion of zonal vs. interdendritic segregation of the alloying elements in the degradation of the welded joint was distinguished. We described the nature of the structural heterogeneities produced, locally connected with the martensitic transformation. The chemical heterogeneity leading to the formation of martensite at grain boundaries was identified as the limiting effect.

  1. Femtosecond fiber laser welding of dissimilar metals.

    Science.gov (United States)

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2014-10-01

    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries.

  2. Welding and Joining of Titanium Aluminides.

    Science.gov (United States)

    Cao, Jian; Qi, Junlei; Song, Xiaoguo; Feng, Jicai

    2014-06-25

    Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing-microstructure-property relationships in the welding and joining of titanium aluminides to themselves and to other materials.

  3. Welding and Joining of Titanium Aluminides

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2014-06-01

    Full Text Available Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials.

  4. Passively damped vibration welding system and method

    Science.gov (United States)

    Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao

    2013-04-02

    A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

  5. Friction Stir Welding of Steel Alloys

    Science.gov (United States)

    Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The friction stir welding process has been developed primarily for the welding of aluminum alloys. Other higher melting allows such, as steels are much more difficult to join. Special attention must be given to pin tool material selection and welding techniques. This paper addresses the joining of steels and other high melting point materials using the friction stir welding process. Pin tool material and welding parameters will be presented. Mechanical properties of weldments will also be presented. Significance: There are many applications for the friction stir welding process other than low melting aluminum alloys. The FSW process can be expanded for use with high melting alloys in the pressure vessel, railroad and ship building industries.

  6. Control of welding distortion during gas metal arc welding of AH36 plates by stress engineering

    NARCIS (Netherlands)

    Pazooki, A.M.A.; Hermans, M.J.M.; Richardson, I.M.

    2017-01-01

    Welding residual stress and distortion are strongly linked together. One of the ways to control or reduce the welding distortions is the manipulation of the generated stresses during welding, and final residual stresses exist in the workpiece (stress engineering). In this paper, the control of gas

  7. Prediction of the weld pool geometry of TIG arc welding by using ...

    African Journals Online (AJOL)

    The present paper describes fuzzy logic simulation of tungsten inert gas welding (TIG) process to predict the weldment macrostructure zones' shape profile characteristics. The prediction of the weld pool geometry together with the shape of the heat affected zone (HAZ) was accomplished taking into account of TIG welding ...

  8. Numerical evaluation of multipass welding temperature field in API 5L X80 steel welded joints

    Directory of Open Access Journals (Sweden)

    J Nóbrega

    2016-10-01

    Full Text Available Many are the metallurgical changes suffered by materials when subjected to welding thermal cycle, promoting a considerable influence on the welded structures thermo mechanical properties. In project phase, one alternative for evaluating the welding cycle variable, would be the employment of computational methods through simulation. So, this paper presents an evaluation of the temperature field in a multipass welding of API 5L X80 steel used for oil and gas transportation, using the ABAQUS ® software, based on Finite Elements Method (FEM. During the simulation complex phenomena are considerable including: Variation in physical and mechanical properties of materials as a function of temperature, welding speed and the different mechanisms of heat exchange with the environment (convection and radiation were used. These considerations allow a more robust mathematical modeling for the welding process. An analytical heat source proposed by Goldak, to model the heat input in order to characterize the multipass welding through the GTAW (Gas Tungsten Arc Welding process on root and the SMAW (Shielded Metal Arc Welding process for the filling passes were used. So, it was possible to evaluate the effect of each welding pass on the welded joint temperature field, through the temperature peaks and cooling rates values during the welding process.

  9. Parameter optimization of flux-aided backing-submerged arc welding by using Taguchi method

    Science.gov (United States)

    Pu, Juan; Yu, Shengfu; Li, Yuanyuan

    2017-07-01

    Flux-aided backing-submerged arc welding has been conducted on D36 steel with thickness of 20 mm. The effects of processing parameters such as welding current, voltage, welding speed and groove angle on welding quality were investigated by Taguchi method. The optimal welding parameters were predicted and the individual importance of each parameter on welding quality was evaluated by examining the signal-to-noise ratio and analysis of variance (ANOVA) results. The importance order of the welding parameters for the welding quality of weld bead was: welding current > welding speed > groove angle > welding voltage. The welding quality of weld bead increased gradually with increasing welding current and welding speed and decreasing groove angle. The optimum values of the welding current, welding speed, groove angle and welding voltage were found to be 1050 A, 27 cm/min, 40∘ and 34 V, respectively.

  10. Width Criterion For Weld-Seam-Tracking Data

    Science.gov (United States)

    Lincir, Mark R.

    1993-01-01

    Image-processing algorithm in "through-torch-vision" (T3V) system developed to guide gas/tungsten arc welding robot along weld seam modified, according to proposal, reducing incidence of inaccurate tracking of weld seam. Developmental system intended to provide closed-loop control of motion of welding robot along weld seam on basis of lines in T3V image identified by use of image-processing algorithm and assumed to coincide with edges of weld seam. Use of width criterion prevents tracking of many false pairs of lines, with consequent decrease in incidence of inaccurate tracking and increase in confidence in weld-tracking capability of robotic welding system.

  11. A System for Complex Robotic Welding

    DEFF Research Database (Denmark)

    Madsen, Ole; Sørensen, Carsten Bro; Olsen, Birger

    2002-01-01

    This paper presents the architecture of a system for robotic welding of complex tasks. The system integrates off-line programming, control of redundant robots, collision-free motion planning and sensor-based control. An implementation for pipe structure welding made at Odense Steel Shipyard Ltd......., Denmark, demonstrates the system can be used for automatic welding of complex products in one-of-a-kind production....

  12. Numerical methods in simulation of resistance welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, Paulo A.F.; Zhang, Wenqi

    2015-01-01

    Finite element simulation of resistance welding requires coupling betweenmechanical, thermal and electrical models. This paper presents the numerical models and theircouplings that are utilized in the computer program SORPAS. A mechanical model based onthe irreducible flow formulation is utilized...... a resistance welding point of view, the most essential coupling between the above mentioned models is the heat generation by electrical current due to Joule heating. The interaction between multiple objects is anothercritical feature of the numerical simulation of resistance welding because it influences...

  13. Heavy multi-pass TIG welding

    OpenAIRE

    Maske, Tomas

    2017-01-01

    This study aims to find the maximum, usable, feed limit at different arc-energies and use the findings in multi-pass welding planning for robotic welding, taking into consideration the high controllability of robot movements. A combined studies using numerical analyses and practical experiments to calculate the feed limits for different arc energies. Each weld where analysed both mathematical, physical and thru observation. The combined results for one experiment will form the bases for th...

  14. Occupational rhinitis due to steel welding fumes.

    Science.gov (United States)

    Castano, Roberto; Suarthana, Eva

    2014-12-01

    Exposure to welding fumes is a recognized respiratory hazard. Occupational asthma but not occupational rhinitis has been documented in workers exposed to steel welding fumes. We report a 26-year-old male with work-related rhinitis symptoms as well as lower airways symptoms suggestive of occupational asthma and metal fume fever associated with exposure to steel welding fumes. The diagnosis of occupational rhinitis was confirmed by specific inhalation challenge. © 2014 Wiley Periodicals, Inc.

  15. Effects Of Heat Sinks On VPPA Welds

    Science.gov (United States)

    Nunes, Arthur C.; Steranka, Paul O., Jr.

    1991-01-01

    Report describes theoretical and experimental study of absorption of heat by metal blocks in contact with metal plate while plate subjected to variable-polarity plasma-arc (VPPA) welding. Purpose of study to contribute to development of comprehensive mathematical model of temperature in weld region. Also relevant to welding of thin sheets of metal to thick blocks of metal, heat treatment of metals, and hotspots in engines.

  16. Controlling Arc Length in Plasma Welding

    Science.gov (United States)

    Iceland, W. F.

    1986-01-01

    Circuit maintains arc length on irregularly shaped workpieces. Length of plasma arc continuously adjusted by control circuit to maintain commanded value. After pilot arc is established, contactor closed and transfers arc to workpiece. Control circuit then half-wave rectifies ac arc voltage to produce dc control signal proportional to arc length. Circuit added to plasma arc welding machines with few wiring changes. Welds made with circuit cleaner and require less rework than welds made without it. Beads smooth and free of inclusions.

  17. Friction stir welding of single crystal aluminium

    DEFF Research Database (Denmark)

    Fonda, Richard Warren; Wert, John A.; Reynolds, A.P.

    2007-01-01

    Friction stir welds were prepared in different orientations in an aluminium single crystal. The welds were quenched to preserve the microstructure surrounding the tool and then electron backscattered diffraction was used to reveal the generation of grain boundaries and the evolution...... of crystallographic texture around the tool in each weld. The extent of both dynamic recrystallisation and conventional recrystallisation varied considerably as a function of weld orientation. As the base plate begins to interact with the deformation field surrounding the tool, regions of the single crystal rotate...

  18. Improving Fatigue Performance of AHSS Welds

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [ORNL; Yu, Xinghua [ORNL; ERDMAN III, DONALD L [ORNL; Wang, Yanli [ORNL; Kelly, Steve [ArcelorMittal USA; Hou, Wenkao [ArcelorMittal USA; Yan, Benda [ArcelorMittal USA; Wang, Zhifeng [Colorado School of Mines, Golden; Yu, Zhenzhen [Colorado School of Mines, Golden; Liu, Stephen [Colorado School of Mines, Golden

    2015-03-01

    Reported herein is technical progress on a U.S. Department of Energy CRADA project with industry cost-share aimed at developing the technical basis and demonstrate the viability of innovative in-situ weld residual stresses mitigation technology that can substantially improve the weld fatigue performance and durability of auto-body structures. The developed technology would be costeffective and practical in high-volume vehicle production environment. Enhancing weld fatigue performance would address a critical technology gap that impedes the widespread use of advanced high-strength steels (AHSS) and other lightweight materials for auto body structure light-weighting. This means that the automotive industry can take full advantage of the AHSS in strength, durability and crashworthiness without the concern of the relatively weak weld fatigue performance. The project comprises both technological innovations in weld residual stress mitigation and due-diligence residual stress measurement and fatigue performance evaluation. Two approaches were investigated. The first one was the use of low temperature phase transformation (LTPT) weld filler wire, and the second focused on novel thermo-mechanical stress management technique. Both technical approaches have resulted in considerable improvement in fatigue lives of welded joints made of high-strength steels. Synchrotron diffraction measurement confirmed the reduction of high tensile weld residual stresses by the two weld residual stress mitigation techniques.

  19. New materials for welding and surfacing

    Science.gov (United States)

    Kozyrev, N. A.; Galevsky, G. V.; Kryukov, R. E.; Titova, D. A.; Shurupov, V. M.

    2016-09-01

    The paper provides description of research into the influence of new materials and technologies on quality parameters of welds and deposited metal carried out in the research and production centre “Welding processes and technologies”. New welding technologies of tanks for northern conditions are considered, as well as technologies of submerged arc welding involving fluxing agents AN - 348, AN - 60, AN - 67, OK.10.71 and carbon-fluorine containing additives; new flux cored wires and surfacing technologies, teaching programs and a trainer for welders are designed.

  20. Friction Pull Plug Welding in Aluminum Alloys

    Science.gov (United States)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.