WorldWideScience

Sample records for weld solidification cracking

  1. Solidification cracking in austenitic stainless steel welds

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, ... Total crack length (TCL), used extensively in hot cracking assessment, exhibits greater variability due to ... behaviour appear to be complex and the mechanisms thereof are not completely under- stood. Development of ...

  2. Weld solidification cracking in 304 to 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Martinez, Raymond J [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-01-01

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  3. Weld solidification cracking in 304 to 204L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-09-15

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found.This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GTAW showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  4. Analysis of weld solidification cracking in cast nickel aluminide alloys

    International Nuclear Information System (INIS)

    Santella, M.L.; Feng, Z.

    1995-01-01

    A study of the response of several nickel aluminide alloys to SigmaJig testing was done to examine their weld solidification cracking behavior and the effect of Zr concentration. The alloys were based on the Ni-8Al-7.7Cr-1.5Mo-0.003B wt% composition and contained Zr concentrations of 3, 4.5, and 6 wt%. Vacuum induction melted ingots with a diameter of 2.7 in and weight about 18 lb were made of each alloy, and were used to make 2 x 2 x 0.030 in specimens for the Sigmajig test. The gas tungsten arc welds were made at travel speeds of 10, 20, and 30 ipm with heat inputs of 2--2.5 kJ/in. When an arc was established before traveling onto the test specimen centerline cracking was always observed. This problem was overcome by initiating the arc directly on the specimens. Using this approach, the 3 wt% Zr alloy withstood an applied stress of 24 ksi without cracking at a welding speed of 10 ipm. This alloy cracked at 4 ksi applied at 20 ipm, and with no applied load at 30 ipm. Only limited testing was done on the remaining alloys, but the results indicate that resistance to solidification cracking increases with Zr concentration. Zirconium has limited solid solubility and segregates strongly to interdendritic regions during solidification where it forms a Ni solid solution-Ni 5 Zr eutectic. The volume fraction of the eutectic increases with Zr concentration. The solidification cracking behavior of these alloys is consistent with phenomenological theory, and is discussed in this context. The results from SigmaJig testing are analyzed using finite element modeling of the development of mechanical strains during solidification of welds. Experimental data from the test substantially agree with recent analysis results

  5. Effect of Chemical Composition on Susceptibility to Weld Solidification Cracking in Austenitic Weld Metal

    Science.gov (United States)

    Kadoi, Kota; Shinozaki, Kenji

    2017-12-01

    The influence of the chemical composition, especially the niobium content, chromium equivalent Creq, and nickel equivalent Nieq, on the weld solidification cracking susceptibility in the austenite single-phase region in the Schaeffler diagram was investigated. Specimens were fabricated using the hot-wire laser welding process with widely different compositions of Creq, Nieq, and niobium in the region. The distributions of the susceptibility, such as the crack length and brittle temperature range (BTR), in the Schaeffler diagram revealed a region with high susceptibility to solidification cracking. Addition of niobium enhanced the susceptibility and changed the distribution of the susceptibility in the diagram. The BTR distribution was in good agreement with the distribution of the temperature range of solidification (Δ T) calculated by solidification simulation based on Scheil model. Δ T increased with increasing content of alloying elements such as niobium. The distribution of Δ T was dependent on the type of alloying element owing to the change of the partitioning behavior. Thus, the solidification cracking susceptibility in the austenite single-phase region depends on whether the alloy contains elements. The distribution of the susceptibility in the region is controlled by the change in Δ T and the segregation behavior of niobium with the chemical composition.

  6. Numerical Simulation on the Origin of Solidification Cracking in Laser Welded Thick-Walled Structures

    Directory of Open Access Journals (Sweden)

    Nasim Bakir

    2018-06-01

    Full Text Available One of the main factors affecting the use of lasers in the industry for welding thick structures is the process accompanying solidification cracks. These cracks mostly occurring along the welding direction in the welding center, and strongly affect the safety of the welded components. In the present study, to obtain a better understanding of the relation between the weld pool geometry, the stress distribution and the solidification cracking, a three-dimensional computational fluid dynamic (CFD model was combined with a thermo-mechanical model. The CFD model was employed to analyze the flow of the molten metal in the weld pool during the laser beam welding process. The weld pool geometry estimated from the CFD model was used as a heat source in the thermal model to calculate the temperature field and the stress development and distributions. The CFD results showed a bulging region in the middle depth of the weld and two narrowing areas separating the bulging region from the top and bottom surface. The thermo-mechanical simulations showed a concentration of tension stresses, transversally and vertically, directly after the solidification during cooling in the region of the solidification cracking.

  7. On the hot cracking susceptibility of a semisolid aluminium 6061 weld: Application of a coupled solidification- thermomechanical model

    International Nuclear Information System (INIS)

    Rajani, H R Zareie; Phillion, A B

    2015-01-01

    A coupled solidification-thermomechanical model is presented that investigates the hot tearing susceptibility of an aluminium 6061 semisolid weld. Two key phenomena are considered: excessive deformation of the semisolid weld, initiating a hot tear, and the ability of the semisolid weld to heal the hot tear by circulation of the molten metal. The model consists of two major modules: weld solidification and thermomechanical analysis. 1) By means of a multi-scale model of solidification, the microstructural evolution of the semisolid weld is simulated in 3D. The semisolid structure, which varies as a function of welding parameters, is composed of solidifying grains and a network of micro liquid channels. The weld solidification module is utilized to obtain the solidification shrinkage. The size of the micro liquid channels is used as an indicator to assess the healing ability of the semisolid weld. 2) Using the finite element method, the mechanical interaction between the weld pool and the base metal is simulated to capture the transient force field deforming the semisolid weld. Thermomechanical stresses and shrinkage stresses are both considered in the analysis; the solidification contractions are extracted from the weld solidification module and applied to the deformation simulation as boundary conditions. Such an analysis enables characterization of the potential for excessive deformation of the weld. The outputs of the model are used to study the effect of welding parameters including welding current and speed, and also welding constraint on the hot cracking susceptibility of an aluminium alloy 6061 semisolid weld. (paper)

  8. Aluminum alloy weldability. Identification of weld solidification cracking mechanisms through novel experimental technique and model development

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, Nicolas

    2008-07-01

    The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated. Afterwards, cracking models are developed to propose mechanisms for solidification crack initiation and growth. Cracking Sensitivity. Building upon the concept that silicon improves weldability and that weldability can be defined by a critical strain rate, strain rate-composition combinations required for solidification crack formation in the Al- 6060/4043 system were determined using the newly developed Controlled Tensile Weldability (CTW) test utilizing local strain extensometer measurements. Results, presented in a critical strain rate - dilution map, show a crack - no crack boundary which reveals that higher local strain rates require higher 4043 filler dilution to avoid solidification cracking when arc welding Alloy 6060. Using the established crack - no crack boundary as a line of reference, additional parameters were examined and their influence on cracking characterized. These parameter influences have included studies of weld travel speed, weld pool contaminants (Fe, O, and H), and grain refiner additions (TiAl{sub 3} + Boron). Each parameter has been independently varied and its effect on cracking susceptibility quantified in terms of strain rate - composition combinations. Solidification Path. Solidification path of the Al-6060/4043 system was characterized using thermal analysis and phase identification. Increasing 4043 filler dilution from 0 to 16% in Alloy 6060 arc welds resulted in little effect on thermal arrests and microstructure, no effect on

  9. A Three-Stage Mechanistic Model for Solidification Cracking During Welding of Steel

    Science.gov (United States)

    Aucott, L.; Huang, D.; Dong, H. B.; Wen, S. W.; Marsden, J.; Rack, A.; Cocks, A. C. F.

    2018-03-01

    A three-stage mechanistic model for solidification cracking during TIG welding of steel is proposed from in situ synchrotron X-ray imaging of solidification cracking and subsequent analysis of fracture surfaces. Stage 1—Nucleation of inter-granular hot cracks: cracks nucleate inter-granularly in sub-surface where maximum volumetric strain is localized and volume fraction of liquid is less than 0.1; the crack nuclei occur at solute-enriched liquid pockets which remain trapped in increasingly impermeable semi-solid skeleton. Stage 2—Coalescence of cracks via inter-granular fracture: as the applied strain increases, cracks coalesce through inter-granular fracture; the coalescence path is preferential to the direction of the heat source and propagates through the grain boundaries to solidifying dendrites. Stage 3—Propagation through inter-dendritic hot tearing: inter-dendritic hot tearing occurs along the boundaries between solidifying columnar dendrites with higher liquid fraction. It is recommended that future solidification cracking criterion shall be based on the application of multiphase mechanics and fracture mechanics to the failure of semi-solid materials.

  10. Probing liquation cracking and solidification through modeling of momentum, heat, and solute transport during welding of aluminum alloys

    International Nuclear Information System (INIS)

    Mishra, S.; Chakraborty, S.; DebRoy, T.

    2005-01-01

    A transport phenomena-based mathematical model is developed to understand liquation cracking in weldments during fusion welding. Equations of conservation of mass, momentum, heat, and solute transport are numerically solved considering nonequilibrium solidification and filler metal addition to determine the solid and liquid phase fractions in the solidifying region and the solute distribution in the weld pool. An effective partition coefficient that considers the local interface velocity and the undercooling is used to simulate solidification during welding. The calculations show that convection plays a dominant role in the solute transport inside the weld pool. The predicted weld-metal solute content agreed well with the independent experimental observations. The liquation cracking susceptibility in Al-Cu alloy weldments could be reliably predicted by the model based on the computed solidifying weld-metal composition and solid fraction considering nonequilibrium solidification

  11. Effects of nitrogen and pulsed mean welding current in AISI 316 austenitic stainless steel solidification cracks; Efecto del nitrogeno y la corriente media pulsada de soldadura en la formacion de grietas de solidificacion en aceros inoxidables AISI 316L

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, R. E.; Braga, E.; Fals, H. C.

    2002-07-01

    An analysis of the influence of nitrogen concentration in the weld zone and the pulsed mean welding current in the solidification crack formation is presented in this paper. The AISI 316L austenitic stainless steel was employed as the metal base. The welding was done using CC+ pulsed flux cored are welding process and AWS E316L wire type. The tests were conducted using CO{sub 2} shielding gas with four different nitrogen levels (0,5; 10 and 15%) in order to induce different nitrogen weld metal concentrations. The pulsed mean welding current was varied in three levels and the. Transvarestraint tangential strain test was fixed of 5%. The results showed that the solidification cracking decreased as the pulsed mean welding current increase. It was also verified that an increase of the weld zone nitrogen level was associated with a decrease in both the total length of solidification crack and the amount of {delta} ferrite. (AUthor) 20 refs.

  12. Studies of Hot Crack Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther

    During the present work crack testing concerning small and fast solidifying laser welds in austenitic stainless steel has been studied. A set of methods has been applied to investigate alloy properties, including ·Application of known information to predict solidification phases from the alloy...... composition. ·Weld metal solidification rate measurements for prediction of phases. ·Various crack tests to assess the crack susceptibility of alloys. ·A combination of the above for selection of suitable, weldable alloys. The possibility of using such specific methods for alloys and applications has been...... to the crack behaviour, but do not show an expected correlation between the crack resistance and the solidification rate. The employment of pulsed seams is therefore assessed not to be usable in the present selection methods. From evaluation of several crack tests, the Weeter spot weld test has been chosen...

  13. Metallurgical phenomena in laser finishing: Interdependences between solidification morphologies and hot cracking in laser welding of mostly austenitic materials. Final reportc; Metallkundliche Phaenomene der Laserstrahlmaterialbearbeitung. Teilvorhaben: Zusammenhaenge zwischen Erstarrungsmorphologien und Heissrissentstehung beim Laserschweissen von vornehmlich austenitischen Werkstoffen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schobbert, H.

    2000-06-01

    Austentic stainless steels are widely used in safety relevant applications such as chemical plant industry or off-shore industry. Due to the rapid development of laser welding processes, the economical efficiency increases and leads to a growing interest in industry for the production of, for example, straight bead welded pipes. A specific problem of laser welding is the economically desirable high welding speed, which leads in austenitic stainless steels to a change of solidification mode and thus, to a restricted hot cracking resistance. Thus, the solidification morphologies of austenitic stainless steels near the eutectic trough during laser welding were investigated. Thereby, the main aspect was the evaluation of a short-term metallurgical kinetic effects under rapid solidification conditions. It was proven that three widely used stainless steels (1.4828, 1.4306, and 1.4404) show a transition of primary solidifcation mode from primary ferritic to primary austenitic solidification depending on the solidification rate. The approximate value of the critical soldification rate can be determined using a newly developed model by analyzing the geometric structures of solidification. The critical solidification rate for the transition of the solidification mode depends on the chemical composition of the base metal. It was shown that austenitic stainless steels have a critical solidification rate of approximately 1 m/min. As a main result, it was proven that a transition of the solidification mode to primary austenitic solidification promotes the predicted susceptibiliyy of hot cracking. For this, a hot cracking test assembly has been developed in order to determine the hot cracking behavior under laser beam conditions. In contrast to existing hot crack tests, a critical strain rate for hot crack initiation could be measured. A classification of the materials with respect to their hot cracking susceptibility under the solidification conditions during laser welding can

  14. Assessment of Hot Crack Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    2003-01-01

    Crack testing concerning small and fast solidifying laser welds in austenitic stainless steel has been studied. A set of methods has been applied to investigate alloy properties, including (1) Application of known information to predict solidification phases, (2) Weld metal solidification rate...... crack tests, the Weeter spot weld test has been chosen to form a basis for the development of a practicable method to select specific alloys for welding applications. A new test, the Groove weld test was developed, which has reduced the time consumption and lightened the analysis effort considerably...... measurements for prediction of phases, (3) Various crack tests to assess the crack susceptibility of alloys and (4) A combination of the above for selection of suitable, weldable alloys. The possibility of using such specific methods for alloys and applications has been investigated and recommendations...

  15. Effect of chemical composition and cooling conditions on solidification hot cracking of Ni-based alloys

    International Nuclear Information System (INIS)

    De Vito, Sophie

    2000-01-01

    Ni-based alloys 690 present solidification hot cracks during welding of vapour generators. Hot cracks are qualitatively known to be due to the formation of inter-dendritic liquid films and of secondary phases down to low temperatures. This study aims at establishing the link between thermodynamics, solidification and hot cracking. Experimental solidification paths of high purity alloys (with varying Nb and Si contents) are obtained from quenching during directional solidification and TIG-welding experiments. They are compared to Thermo-Calc computations, assuming no diffusion in the solid. From directional solidification samples, good agreement between computed and experimental solidification paths is shown in the quenched liquid. Secondary arms of dendrites are affected by solid state diffusion of Nb. Combined effect of diffusion and solute build-up in the liquid phase modifies micro-segregation in the solid region. Solidification paths from welding specimens are similar to those of the solid region of quenched samples. Nb solid state diffusion is negligible but undercooling compensates the effect of solid state diffusion in directional solidification. Evolution of liquid fraction at the end of the solidification is in accordance with the hot cracking classification of the alloys. Nb favours formation of inter-dendritic liquid films and eutectic-like phases down to low temperature. (author) [fr

  16. Hot-crack test for aluminium alloys welds using TIG process

    Science.gov (United States)

    Niel, A.; Deschaux-Beaume, F.; Bordreuil, C.; Fras, G.

    2010-06-01

    Hot cracking is a critical defect frequently observed during welding of aluminium alloys. In order to better understand the interaction between cracking phenomenon, process parameters, mechanical factors and microstructures resulting from solidification after welding, an original hot-cracking test during welding is developed. According to in-situ observations and post mortem analyses, hot cracking mechanisms are investigated, taking into account the interaction between microstructural parameters, depending on the thermal cycles, and mechanical parameters, depending on geometry and clamping conditions of the samples and on the thermal field on the sample. Finally, a process map indicating the limit between cracking and non-cracking zones according to welding parameters is presented.

  17. Effect of the delta ferrite solidification morphology of austenitic steels weld metal on the joint properties

    International Nuclear Information System (INIS)

    Bilmes, P.; Gonzalez, A.; Llorente, C.; Solari, M.

    1996-01-01

    The properties of austenitic stainless steel weld metals are largely influenced by the appearance in the microstructure of delta ferrite of a given morphology. The susceptibility to hot cracks and low temperature toughness are deeply conditioned by the mixed complex austenitic-ferritic structures which depending on the steel chemical composition and on the cooling rate may be developed. The latest research on this issue points out the importance of the sodification mode as regards to the influence in the appearance of delta ferrite of a certain morphology. In fact, it is very important to understand the solidification sequences, the primary solidification modes which are possible and the subsequent solid state transformations to correlate the structural elements of the weld metal with the parameters of the welding process on the one had, and the weld joint properties on the other. (Author) 19 refs

  18. Contribution to the determination of priority constructive influences on the hot crack initiation of welded components

    International Nuclear Information System (INIS)

    Gollnow, Christian

    2015-01-01

    The previous research results do not allow a general hot crack characterisation although a variety of experimental and numerical knowledge is available. The reason for this is mainly the large number of influencing factors that complicate a complete description of the hot cracking phenomenon and especially solidification cracking. The hot crack formation and thus the solidification crack initiation can be described by the interaction of process, metallurgy and design. However, the literature examination shows that in the solidifaction crack characterisation the influence of the design aspect is often underestimated. The pre-stresses of the structural components is up to now not considered as an essential cause for the formation of solidification cracks. The evaluation of the influence of the various parameters is presented partly inconsistent. In addition, the targeted presentation of the design influence with respect to the solidification cracks in the weld is because the limited transferability of the various component-specific stresses on a laboratory scale and thus to the respective hot cracking tests restricted. Hence, the difficulty to transfer the results between laboratory specimen and component as well as the general hot crack characterisation is given. In this work the different types of stresses from the component welding in the laboratory and to quantify experimentally the solidification crack critical values, displacements and displacement rates were detected. In this regard external loaded hot cracking tests were carried out by using the advantages of contactless measurement techniques close to the weld and to analyse the welding process with respect to various local and global design-specific factors influencing the formation of solidification cracks in high alloyed steel. These investigations were performed on austenitic (1.4828) and ferritic (1.4509) materials with different mechanical and technological properties. To reflect the praxis relevant

  19. Susceptibility of ternary aluminum alloys to cracking during solidification

    International Nuclear Information System (INIS)

    Liu, Jiangwei; Kou, Sindo

    2017-01-01

    The crack susceptibility map of a ternary Al alloy system provides useful information about which alloy compositions are most susceptible to cracking and thus should be avoided by using a filler metal with a significantly different composition. In the present study the crack susceptibility maps of ternary Al alloy systems were calculated based on the maximum |dT/d(f S ) 1/2 | as an index for the crack susceptibility, where T is temperature and f S fraction solid. Due to the complexity associated with ternary alloy solidification, commercial thermodynamic software Pandat and Al database PanAluminum, instead of analytical equations, were used to calculate f S as a function of T and hence the maximum |dT/d(f S ) 1/2 | for ternary Al-Mg-Si, Al-Cu-Mg and Al-Cu-Si alloy systems. A crack susceptibility map covering 121 alloy compositions was constructed for each of the three ternary alloy systems at each of the following three levels of back diffusion: no back diffusion, back diffusion under a 100 °C/s cooling rate, and back diffusion under 20° C/s. The location of the region of high crack susceptibility, which is the most important part of the map, was shown in each of the nine calculated maps. These locations were compared with those observed in crack susceptibility tests by previous investigators. With back diffusion considered, either under 20 or 100 °C/s, the agreement between the calculated and observed maps was good especially for Al-Mg-Si and Al-Cu-Mg. Thus, the maximum |dT/d(f S ) 1/2 | can be used as a crack susceptibility index to construct crack susceptibility maps for ternary Al alloys and to evaluate the effect of back diffusion on their crack susceptibility. - Graphical abstract: The crack susceptibility map of a ternary alloy system indicates the composition range most susceptible to cracking, which should be avoided in welding or casting. The crack susceptibility maps of ternary Al alloy systems Al-Mg-Si, Al-Cu-Mg and Al-Cu-Si were calculated based

  20. Study on crack generation at root of socket welds

    International Nuclear Information System (INIS)

    Iida, K.; Matsuda, F.; Sato, M.; Nayama, M.; Akitomo, N.

    1996-01-01

    Because a power generation facility is made up of structures that contain a large number of welds, the reliability of weld joints is important to ensure the safety of power plants. Surveys and research are conducted on special weld joints to verify the reliability of power plants. The results of the investigation to verify the relation between the welding conditions and quality of small-diameter socket joints are described. Some defects are observed in the roots of socket-pipe joints of carbon steel in this project. The authors investigate experimentally the effect of the welding parameters on the generation of defects. The defects of the root are found experimentally to be solidification cracking (hot cracking). It is also revealed that a higher heat input and lower wire feed rate generate more hot cracking at the root of a weld. The authors also give a hypothesis that explains the generation mechanism of hot cracks at the root of a socket-pipe joint, based on finite element modelling analysis and other information. (orig.)

  1. Solidification paths in modified Inconel 625 weld overlay material

    DEFF Research Database (Denmark)

    Chandrasekaran, Karthik; Tiedje, Niels Skat; Hald, John

    2009-01-01

    Inconel 625 is commonly used for overlay welding to protect the base metal against high temperature corrosion. The efficiency of corrosion protection depends on effective mixing of the overlay weld with the base metal and the subsequent segregation of alloy elements during solidification....... Metallographic analysis of solidified samples of Inconel 625 with addition of selected elements is compared with thermodynamic modelling of segregation during solidification. The influence of changes in the melt chemistry on the formation of intermetallic phases during solidification is shown. In particular...

  2. Structural integrity and fatigue crack propagation life assessment of welded and weld-repaired structures

    Science.gov (United States)

    Alam, Mohammad Shah

    2005-11-01

    Structural integrity is the science and technology of the margin between safety and disaster. Proper evaluation of the structural integrity and fatigue life of any structure (aircraft, ship, railways, bridges, gas and oil transmission pipelines, etc.) is important to ensure the public safety, environmental protection, and economical consideration. Catastrophic failure of any structure can be avoided if structural integrity is assessed and necessary precaution is taken appropriately. Structural integrity includes tasks in many areas, such as structural analysis, failure analysis, nondestructive testing, corrosion, fatigue and creep analysis, metallurgy and materials, fracture mechanics, fatigue life assessment, welding metallurgy, development of repairing technologies, structural monitoring and instrumentation etc. In this research fatigue life assessment of welded and weld-repaired joints is studied both in numerically and experimentally. A new approach for the simulation of fatigue crack growth in two elastic materials has been developed and specifically, the concept has been applied to butt-welded joint in a straight plate and in tubular joints. In the proposed method, the formation of new surface is represented by an interface element based on the interface potential energy. This method overcomes the limitation of crack growth at an artificial rate of one element length per cycle. In this method the crack propagates only when the applied load reaches the critical bonding strength. The predicted results compares well with experimental results. The Gas Metal Arc welding processes has been simulated to predict post-weld distortion, residual stresses and development of restraining forces in a butt-welded joint. The effect of welding defects and bi-axial interaction of a circular porosity and a solidification crack on fatigue crack propagation life of butt-welded joints has also been investigated. After a weld has been repaired, the specimen was tested in a universal

  3. Numerical Analysis of Hot Cracking in Laser-Hybrid Welded Tubes

    Directory of Open Access Journals (Sweden)

    Moritz Oliver Gebhardt

    2013-01-01

    Full Text Available In welding experiments conducted on heavy wall pipes, the penetration mode (full or partial penetration occurred to be a significant factor influencing appearance of solidification cracks. To explain the observed phenomena and support further optimization of manufacturing processes, a computational model was developed, which used a sophisticated strategy to model the material. High stresses emerged in the models in regions which showed cracking during experiments. In partial penetration welding, they were caused by the prevention of weld shrinkage due to the cold and strong material below the joint. Another identified factor having an influence on high stress localization is bulging of the weld.

  4. Cracking in dissimilar laser welding of tantalum to molybdenum

    Science.gov (United States)

    Zhou, Xingwen; Huang, Yongde; Hao, Kun; Chen, Yuhua

    2018-06-01

    Dissimilar joining of tantalum (Ta) to molybdenum (Mo) is of great interest in high temperature structural component applications. However, few reports were found about joining of these two hard-to-weld metals. The objective of this experimental study was to assess the weldability of laser butt joining of 0.2 mm-thick Ta and Mo. In order to study cracking mechanism in Ta/Mo joint, similar Ta/Ta and Mo/Mo joints were compared under the same welding conditions. An optical microscope observation revealed presence of intergranular cracks in the Mo/Mo joint, while both transgranular and intergranular cracks were observed in Ta/Mo joint. The cracking mechanism of the Ta/Mo joint was investigated further by micro-hardness testing, micro X-ray diffraction and scanning electron microscopy. The results showed that solidification cracking tendency of Mo is a main reason for crack initiation in the Ta/Mo joint. Low ductility feature in fusion zone most certainly played a role in the transgranular propagation of cracking.

  5. Assessment of cracking in dissimilar metal welds

    International Nuclear Information System (INIS)

    Jenssen, Anders; Norrgaard, K.; Lagerstroem, J.; Embring, G.; Tice, D.R.

    2001-08-01

    During the refueling in 2000, indications were observed by non-destructive testing at four locations in the reactor pressure vessel (RPV) nozzle to safe end weld in Ringhals 4. All indications were confined to the outlet nozzle (hotleg) oriented at 25 deg, a nozzle with documented repair welding. Six boat samples were removed from the four locations, and the samples were subsequently subjected to a metallographic examination. The objectives were to establish the fracture morphology, and if possible the root cause for cracking. The examination revealed that cracks were present at all four boat sample locations and that they all were confined to the weld metal, alloy 182. Cracking extended in the axial direction of the safe-end. There was no evidence of any cracks extending into the RPV-steel, or the stainless steel safe-end. All cracking was interdendritic and significantly branched. Among others, these observations strongly suggested crack propagation mainly was caused by interdendritic stress corrosion cracking. In addition, crack type defects and isolated areas on the fracture surfaces suggested the presence of hot cracking, which would have been formed during fabrication. The reason for crack initiation could not be established based on the boat samples examined. However, increased stress levels due to repair welding, cold work from grinding, and defects produced during fabrication, e. g. hot cracks, may alone or in combination have contributed to crack initiation

  6. Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam.

    Science.gov (United States)

    Kang, Minjung; Han, Heung Nam; Kim, Cheolhee

    2018-04-23

    Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility.

  7. Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam

    Directory of Open Access Journals (Sweden)

    Minjung Kang

    2018-04-01

    Full Text Available Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility.

  8. Repair welding of cracked steam turbine blades

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.

    1999-01-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER316L austenitic stainless steel filler wire and ER410 martensitic stainless steel filler wire. The repair welding procedure with austenitic filler wire was developed to avoid preheating of the blade as also hydrogen induced cold cracking, and involved evaluation of three different austenitic filler wires, viz. ER309L, ER316L and ERNiCr-3. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microstructural examination. After various trials using different procedures, the procedure of local PWHT using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld, was found to give the most satisfactory results. A similar procedure was used for preheating while using ER410 filler metal. Mechanical testing of weldments before and after PWHT involved tensile tests at room temperature, face and root bend tests, and microhardness measurements across the fusion line and heat affected zone. During procedure qualification, mock-ups and actual repair welding, dye penetrant testing was used at different stages and where ever possible radiography was carried out. These procedures were developed for repair welding of cracked blades in the low-pressure (LP) steam turbines of Indian nuclear power plants. The procedure with ER316 L filler wire has so far been applied for repair welding of 2 cracked blades (made of AISI 410 SS) of LP steam turbines, while the procedure

  9. Case history of tantalum-weld cracking

    International Nuclear Information System (INIS)

    Knorovsky, G.A.

    1982-01-01

    Tantalum welding is normally a routine operation. Of course, the routine involves careful cleaning beforehand, and welding in an atmosphere which excludes reactive gases (O 2 , N 2 , H 2 ). Recently a weld cracking problem was encountered at SNLA despite the fact that normal precautions had been taken. This account reviews what happened, the analytical procedures followed to determine the unusual source of the problem, and the remedy which solved the problem

  10. Heat affected zone liquation cracking in electron beam welded third generation nickel base superalloys

    International Nuclear Information System (INIS)

    Ojo, O.A.; Wang, Y.L.; Chaturvedi, M.C.

    2008-01-01

    The weldability of directionally solidified nickel base superalloy TMS-75 and TMS-75+C was investigated by autogenous bead-on-plate electron beam welding. The analysis of microsegregation that occurred during solidification of the as-cast alloys indicated that while W and Re segregated into the γ dendrites of both the alloys, Ta, Hf and C were rejected into the interdendritic liquid in the TMS-75+C. Heat affected zone intergranular liquation cracking was observed in both the materials and was observed to be closely associated with liquated γ-γ' eutectic microconstituent. The TMS-75+C alloy, however, exhibited a reduced extent of HAZ cracking compared to TMS-75. Suppression of terminal solidification reaction involving non-invariant γ-γ' eutectic transformation due to modification of primary solidification path by carbon addition is suggested to be an important factor contributing to reduced susceptibility of TMS-75+C alloy to HAZ liquation cracking relative to the TMS-75 superalloy

  11. Experimental and numerical approaches to studying hot cracking in stainless steel welds

    International Nuclear Information System (INIS)

    Le, Minh

    2014-01-01

    This work concerns experimental and numerical approaches to studying hot cracking in welds in stainless steel. Metallurgical weldability of two filler products used for the welding of an AISI-316L(N) austenitic stainless steel grade is evaluated. These filler metals are distinguished by their solidification microstructures: austeno-ferritic for the 19Cr-12Ni-2Mo grade and austenitic for the 19-15H Thermanit grade. The study of weldability concerns the assessment of the susceptibility to hot cracking of these three alloys, the proposition of a hot cracking criterion, and the evaluation of its transferability to structure-scale tests. Hot cracks are material separations occurring at high temperatures along the grain boundaries (dendrite boundaries), when the level of strain and the strain rate exceed a certain level. The hot cracks studied are formed during solidification from the liquid phase of weld metals. The bibliography study brings to the fore the complexity of initiation and propagation mechanisms of these material separations. Three types of tests are studied in this work: hot cracking tests, such as trapezoidal and Varestraint tests, allowing to initiate the phenomenon in controlled experimental conditions, and tests on the Gleeble thermomechanical simulator for thermomechanical (materials behavior laws, fracture properties) and metallurgical (brittle temperature range (BTR), evolution of delta ferrite) characterizations of the alloys. All these tests on the three materials were analyzed via numerical modeling and simulations implemented in the Cast3M finite element code in order to bring out a thermomechanical hot cracking criterion. (author) [fr

  12. Welding hot cracking in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Kerrouault, N.

    2001-01-01

    validated, the thermomechanical simulation brings new interpretations of the tests observations and instrumentation results. The comparison of experimental and numerical results make it possible to determine a thermomechanical welding hot cracking criterion during solidification. This criterion simultaneously considers mechanical (strain and strain rates threshold) and thermal (temperature range, thermal gradient) parameters which give the position and orientation of the first crack initiation. The criterion precision are in good agreement with the observations on the two considered weldability tests. (author)

  13. Crack initiation and growth in welded structures

    International Nuclear Information System (INIS)

    Assire, A.

    2000-01-01

    This work concerns the remaining life assessment of a structure containing initial defects of manufacturing. High temperature crack initiation and growth are studied for austenitic stainless steels, and defect assessment methods are improved in order to take into account welded structures. For these one, the probability to have a defect is significant. Two kinds of approaches are commonly used for defect assessment analysis. Fracture mechanics global approach with an energetic criterion, and local approach with a model taking into account the physical damage mechanism. For both approaches mechanical fields (stress and strain) have to be computed everywhere within the structure. Then, Finite Element computation is needed. The first part of the thesis concerns the identification of non linear kinematic and isotropic constitutive models. A pseudo-analytical method is proposed for a 'Two Inelastic Strain' model. This method provides a strategy of identification with a mechanical meaning, and this enables to associate each parameter to a physical phenomenon. Existing identifications are improved for cyclic plasticity and creep on a large range of stress levels. The second part concerns high temperature crack initiation and growth in welded structures. Finite Element analysis on plate and tube experimental configuration enable to understand the phenomenons of interaction between base metal and weld metal under mechanical and thermal loading. Concerning global approach, criteria based on C* parameter (Rice integral for visco-plasticity) are used. Finite Element computations underline the fact that for a defect located in the weld metal, C* values strongly depend on the base metal creep strain rate, because widespread visco-plasticity is located in both metals. A simplified method, based on the reference stress approach, is proposed and validated with Finite Element results. Creep crack growth simplified assessment is a quite good validation of the experimental results

  14. Assessment of The Cracking Properties of Stainless Steel Alloys and their Usability for Laser Welding in Production

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther

    2001-01-01

    Methods to assess stainless steel alloys’ cracking properties and usability for laser welding has been studied. Also tests to assess alloys’ susceptibility to hot cracking has been conducted. Among these is the so-called Weeter test which assesses the alloy by executing a number of spot welds...... to provoke cracking in the alloy. In this work the Weeter test has been modified and changed in order to develop a faster and easier test also applicable to small specimens. The new test, called a Groove test differs from the Weeter test by its procedure in which linear seam welds are conducted instead...... of spot welds. The Groove test has the advantage of an easier microscopy and analysis in the welds. Results from crack tests was partly confirmed by predictions made on the basis of the alloy’s constituents and solidification growth rate....

  15. The Evolution of Cast Microstructures on the HAZ Liquation Cracking of Mar-M004 Weld

    Directory of Open Access Journals (Sweden)

    Yi-Hsin Cheng

    2018-01-01

    Full Text Available The causes of liquation cracking in the heat-affected zone (HAZ of a cast Mar-M004 superalloy weld were investigated. X-ray diffraction (XRD, electron probe microanalyzer (EPMA, and electron backscatter diffraction (EBSD were applied to identify the final microconstituents at the solidification boundaries of the cast alloy. Fine borides and lamellar eutectics were present in front of some γ-γ′ colonies, which were expected to be liquefied prematurely during welding. The metal carbide (MC enriched in Nb, Hf; M3B2 and M5B3 borides enriched in Cr and Mo; and lamellar Ni-Hf intermetallics were mainly responsible for the induced liquation cracking of the Mar-M004 weld, especially the MC carbides. Scanning electron microscope (SEM fractographs showed that the fracture features of those liquation cracks were associated with the interdendritic constituents in the cast superalloy.

  16. Contribution to the determination of priority constructive influences on the hot crack initiation of welded components; Beitrag zur Ermittlung vorrangig konstruktiver Einflussgroessen auf die Heissrissinitiierung an geschweissten Bauteilen

    Energy Technology Data Exchange (ETDEWEB)

    Gollnow, Christian

    2015-07-01

    The previous research results do not allow a general hot crack characterisation although a variety of experimental and numerical knowledge is available. The reason for this is mainly the large number of influencing factors that complicate a complete description of the hot cracking phenomenon and especially solidification cracking. The hot crack formation and thus the solidification crack initiation can be described by the interaction of process, metallurgy and design. However, the literature examination shows that in the solidifaction crack characterisation the influence of the design aspect is often underestimated. The pre-stresses of the structural components is up to now not considered as an essential cause for the formation of solidification cracks. The evaluation of the influence of the various parameters is presented partly inconsistent. In addition, the targeted presentation of the design influence with respect to the solidification cracks in the weld is because the limited transferability of the various component-specific stresses on a laboratory scale and thus to the respective hot cracking tests restricted. Hence, the difficulty to transfer the results between laboratory specimen and component as well as the general hot crack characterisation is given. In this work the different types of stresses from the component welding in the laboratory and to quantify experimentally the solidification crack critical values, displacements and displacement rates were detected. In this regard external loaded hot cracking tests were carried out by using the advantages of contactless measurement techniques close to the weld and to analyse the welding process with respect to various local and global design-specific factors influencing the formation of solidification cracks in high alloyed steel. These investigations were performed on austenitic (1.4828) and ferritic (1.4509) materials with different mechanical and technological properties. To reflect the praxis relevant

  17. Technique to eliminate helium induced weld cracking in stainless steels

    International Nuclear Information System (INIS)

    Chin-An Wang; Chin, B.A.

    1992-01-01

    Experiments have shown that Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 Mpa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials

  18. Crack trajectory near a weld: Modeling and simulation

    DEFF Research Database (Denmark)

    Rashid, M.M.; Tvergaard, Viggo

    2008-01-01

    A 2D computational model of ductile fracture, in which arbitrary crack extension through the mesh is accommodated without mesh bias, is used to study ductile fracture near the weld line in welded aluminum plates. Comparisons of the calculated toughness behavior and crack trajectory are made...

  19. Study on crack generation at root of socket welds

    International Nuclear Information System (INIS)

    Iida, K.; Matsuda, F.; Sato, M.; Nayama, M.; Akitomo, N.

    1994-01-01

    A program to investigate the fatigue strength of the socket welded joint has been carried out by the Japan Power Engineering and Inspection Corporation (JAPEIC) under contract with the Ministry of International Trade and Industry (MITI). In this program, many types of socket welded joints were prepared with parameters varied, and the small cracks were observed at root sections of some welded joints. This study has been carried out to make clear the factors on crack generation at the root sections of the socket welded joints and to understand the cause and mechanism of crack generation. (orig.)

  20. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    Science.gov (United States)

    Asala, G.; Ojo, O. A.

    The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  1. Cracking in fusion zone and heat affected zone of electron beam welded Inconel-713LC gas turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Chamanfar, A., E-mail: achamanfar@gmail.com [Département de Génie Mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3 (Canada); Jahazi, M. [Département de Génie Mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3 (Canada); Bonakdar, A.; Morin, E. [Siemens Canada Limited, 9545 Côte-de-Liesse, Dorval, Québec, Canada H9P 1A5 (Canada); Firoozrai, A. [Département de Génie Mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3 (Canada)

    2015-08-26

    Electron beam welding (EBW) of shrouds in Inconel-713LC low pressure gas turbine blades was associated with cracking in fusion zone (FZ) and heat affected zone (HAZ) leading to a high scrap rate in manufacturing of gas turbine blades. In this study, in order to develop a detailed map of cracks and understand the root cause of cracking, a comprehensive microstructural and numerical analysis was performed. The elemental mapping in scanning electron microscope (SEM)-energy dispersive spectral analysis revealed segregation of alloying elements in the cracked area of FZ and HAZ. In other words, one of the cracking mechanisms in FZ and HAZ was found to be segregation induced liquation and subsequent cracking due to thermal and mechanical tensile stresses generated during EBW. Cracking in FZ also occurred because of low strength of the solidifying weld metal as well as solidification contraction. As well, γ′ dissolution and reprecipitation in HAZ leading to decreased ductility and generation of contraction stresses was another mechanism for cracking in HAZ. The numerical model was capable to predict the cracking location as well as cracking orientation with respect to the weld line.

  2. Cracking susceptibility of aluminum alloys during laser welding

    Directory of Open Access Journals (Sweden)

    Lara Abbaschian

    2003-06-01

    Full Text Available The influence of laser parameters in welding aluminum alloys was studied in order to reduce hot cracking. The extension of cracks at the welding surface was used as a cracking susceptibility (CS index. It has been shown that the CS changes with changing welding velocity for binary Al-Cu alloys. In general, the CS index increased until a maximum velocity and then dropped to zero, generating a typical lambda-curve. This curve is due to two different mechanisms: 1 the refinement of porosities with increasing velocity and 2 the changes in the liquid fraction due to decreasing microsegregation with increasing velocities.

  3. Fatigue crack propagation behavior of stainless steel welds

    Science.gov (United States)

    Kusko, Chad S.

    The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.

  4. Study of creep crack growth behavior of 316LN welds

    International Nuclear Information System (INIS)

    Venugopal, S.; Kumar, Yatindra; Sasikala, G.

    2016-01-01

    Creep crack growth (CCG) behavior plays an important role in the assessment of structural integrity of components operating at elevated temperature under load/stress condition. Integrity of the welded components is decided primarily by that of the weld. Creep crack growth behavior of 316LN welds prepared using consumables developed indigenously for welding the 316L(N) SS components for the Prototype Fast Breeder Reactor has been studied. The composition of the consumable is tailored to ensure about 5 FN (ferrite number) of δ ferrite in the weld deposit. Constant load CCG tests were carried out as per ASTM E1457 at different applied loads at temperatures in the range 823-923 K on CT specimens fabricated from 'V-type' weld joints with notch in the weld centre. The creep crack growth rate (α) is commonly correlated to a time dependent fracture mechanics parameter known as C*. The α3-C* correlations (α=D(C*) φ ) were established in the temperature range 823-923 K. The crack growth rates at different temperature have been compared with that given in RCC-MR. Extensive microstructural and fractographic studies using optical and scanning electron microscopy were carried out on the CCG tested specimens to understand the effect of transformation of delta ferrite on the creep damage and fracture mechanisms associated with CCG in the weld metal at different test conditions. (author)

  5. Detection and measurement of fatigue cracks in welded joints

    International Nuclear Information System (INIS)

    Smith, F.C.

    1985-01-01

    A direct current potential drop system was developed for the detection and measurement of very small fatigue cracks that grow from the toes of welds. Measurement of crack growth less than 0.01 mm and of crack growth rates less than 10 -10 m/cycle, even for cracks less than 1.0 mm deep, is made possible by using a high stability measurement apparatus and an adjustment based on initial conditions. Thus far, the measurement system has successfully examined several aspects of fatigue in welded elements. Crack growth results justified the use of a linear elastic expression for the stress intensity factor and provided an evaluation of a growth law which includes the threshold stress intensity factor. Needle peening fillet welded joints did not change the small proportion of crack initiation life to total fatigue life observed for untreated (not improved) welded joints. However, the measurement system demonstrated that needle peening retarded crack growth rates up to 1 mm depth below the weld toe

  6. Investigation of hot cracking in deep penetration electron beam welds

    Energy Technology Data Exchange (ETDEWEB)

    Thorvaldson, W.G.

    1978-06-10

    A defect in a deep penetration electron beam weld of 304L stainless steel to 21-6-9 stainless steel has been identified as a centerline hot crack. The study discussed in this report was made to define and to eliminate the cause of cracking.

  7. Mechanical behaviour of cracked welded structures including mismatch effect

    International Nuclear Information System (INIS)

    Hornet, P.

    2002-01-01

    The most important parameters for predicting more precisely the fracture behaviour of welded structures have been identified. In particular, the plasticity development at the crack tip in the ligament appeared as a major parameter to evaluate the yield load of such a complex structure. In this way defect assessments procedures have been developed or modified to take into account the mismatch effect that is to say the mechanical properties of the different material constituting the weld joint. This paper is a synthesis of the work done in the past at Electricite de France on this topic in regards with other work done in France or around the World. The most important parameters which control the plasticity development at the crack tip and so mainly influence the fracture behaviour of welded structures are underlined: the mismatch ratio (weld to base metal yield strength ratio), the mismatch ratio (weld to base metal yield strength ratio), the ligament size and the weld width. Moreover, commonly used fracture toughness testing procedures developed in case of homogeneous specimens cannot be used in a straight forward manner and so has to be modified to take into account the mismatch effect. Number or defect assessment procedures taking into account the mismatch effect by considering the yield load of the welded structure are shortly described. Then, the 'Equivalent Material Method' developed at EDF which allows a good prediction of the applied J-Integral at the crack tip is more detailed. This procedure includes not only both weld and base metal yield strength, the structure geometry, the crack size and the weld dimension using the yield load of the real structures but also includes the effect of both weld and base metal strain hardening exponents. Some validations of this method are proposed. Finally, the ability of finite element modelling to predict the behaviour of such welded structures is demonstrated by modelling real experiments: crack located in the middle of

  8. Fracture resistance of welded panel specimen with perpendicular crack in tensile

    International Nuclear Information System (INIS)

    Gochev, Todor; Adziev, Todor

    1998-01-01

    Defects caused by natural crack in welded joints of high-strength low-alloy (HSLA) steels are very often. Perpendicular crack in welded joints and its heat treatment after the welding has also an influence on the fracture resistance. The fracture resistance of welded joints by crack in tense panel specimens was investigated by crack mouse opening displesment (CMOD), the parameter of fracture mechanic. Crack propagation was analysed by using a metallographic analysis of fractured specimens after the test. (Author)

  9. Helium-induced weld cracking in austenitic and martensitic steels

    International Nuclear Information System (INIS)

    Lin, H.T.; Chin, B.A.

    1991-01-01

    Helium was uniformly implanted into type 316 stainless steel and Sandvik HT-9 (12Cr-1MoVW) to levels of 0.18 to 256 and 0.3 to 1 a.p.p.m., respectively, using the ''tritium trick'' technique. Autogenous bead-on-plate, full penetration, welds were then produced under fully constrained conditions using the gas tungsten arc welding (GTAW) process. The control and hydrogen-charged plates of both alloys were sound and free of any weld defects. For the 316 stainless steel, catastrophic intergranular fracture occurred in the heat-affected zone (HAZ) of welds with helium levels ≥ 2.5 a.p.p.m. In addition to the HAZ cracking, brittle fracture along the centreline of the fusion zone was also observed for the welds containing greater than 100 a.p.p.m. He. For HT-9, intergranular cracking occurred in the HAZ along prior-austenite grain boundaries of welds containing 1 a.p.p.m. He. Electron microscopy observations showed that the cracking in the HAZ originated from the growth and coalescence of grain-boundary helium bubbles and that the fusion-zone cracking resulted from the growth of helium bubbles at dendrite boundaries. The bubble growth kinetics in the HAZ is dominated by stress-induced diffusion of vacancies into bubbles. Results of this study indicate that the use of conventional GTAW techniques to repair irradiation-degraded materials containing even small amounts of helium may be difficult. (author)

  10. Welding overlay analysis of dissimilar metal weld cracking of feedwater nozzle

    International Nuclear Information System (INIS)

    Tsai, Y.L.; Wang, Li. H.; Fan, T.W.; Ranganath, Sam; Wang, C.K.; Chou, C.P.

    2010-01-01

    Inspection of the weld between the feedwater nozzle and the safe end at one Taiwan BWR showed axial indications in the Alloy 182 weld. The indication was sufficiently deep that continued operation could not be justified considering the crack growth for one cycle. A weld overlay was decided to implement for restoring the structural margin. This study reviews the cracking cases of feedwater nozzle welds in other nuclear plants, and reports the lesson learned in the engineering project of this weld overlay repair. The overlay design, the FCG calculation and the stress analysis by FEM are presented to confirm that the Code Case structural margins are met. The evaluations of the effect of weld shrinkage on the attached feedwater piping are also included. A number of challenges encountered in the engineering and analysis period are proposed for future study.

  11. Influence of Alloy and Solidification Parameters on Grain Refinement in Aluminum Weld Metal due to Inoculation

    Energy Technology Data Exchange (ETDEWEB)

    Schempp, Philipp [BAM, Germany; Tang, Z. [BIAS, Germany; Cross, Carl E. [Los Alamos National Laboratory; Seefeld, T. [BIAS, Germany; Pittner, A. [BAM, Germany; Rethmeier, M. [BAM, Germany

    2012-06-28

    The goals are: (1) Establish how much Ti/B grain refiner is need to completely refine aluminum weld metal for different alloys and different welding conditions; (2) Characterize how alloy composition and solidification parameters affect weld metal grain refinement; and (3) Apply relevant theory to understand observed behavior. Conclusions are: (1) additions of Ti/B grain refiner to weld metal in Alloys 1050, 5083, and 6082 resulted in significant grain refinement; (2) grain refinement was more effective in GTAW than LBW, resulting in finer grains at lower Ti content - reason is limited time available for equiaxed grain growth in LBW (inability to occlude columnar grain growth); (3) welding travel speed did not markedly affect grain size within GTAW and LBW clusters; and (4) application of Hunt CET analysis showed experimental G to be on the order of the critical G{sub CET}; G{sub CET} was consistently higher for GTAW than for LBW.

  12. Development of neural network models for the prediction of solidification mode, weld bead geometry and sensitisation in austenitic stainless steels

    International Nuclear Information System (INIS)

    Vasudevan, M.; Raj, B.; Prasad Rao, K.

    2005-01-01

    Quantitative models describing the effect of weld composition on the solidification mode, ferrite content and process parameters on the weld bead geometry are necessary in order to design composition of the welding consumable to ensure primary ferritic solidification mode, proper ferrite content and to ensure right choice of process parameters to achieve good bead geometry. A quantitative model on sensitisation behaviour of austenitic stainless steels is also necessary to optimise the composition of the austenitic stainless steel and to limit the strain on the material in order to enhance the resistance to sensitisation. The present paper discuss the development of quantitative models using artificial neural networks to correlate weld metal composition with solidification mode, process parameter with weld bead geometry and time for sensitisation with composition, strain in the material before welding and the temperature of exposure in austenitic stainless steels. (author)

  13. Stress corrosion crack growth rate in dissimilar metal welds

    International Nuclear Information System (INIS)

    Fernandez, M. P.; Lapena, J.; Lancha, A. M.; Perosanz, F. J.; Navas, M.

    2000-01-01

    Dissimilar welds, used to join different sections in light water reactors, are potentially susceptible to stress corrosion cracking (SCC) in aqueous mediums characteristic of nuclear plants. However, the study of these The ma has been limited to evaluating the weld material susceptibility in these mediums. Little scarce data are available on crack growth rates due, fundamentally, to inadequate testing techniques. In order to address this lack of information the crack growth rate at the interface of ferritic SA 533 B-1 alloy and alloy I-82, in a dissimilar weld (SA533B-1/I-82/316L), was studied. Experiments were conducted in water at 288 degree centigrade, 8 ppm of O 2 and 1 μS/cm conductivity. (Author) 33 refs

  14. Deformation behavior of a 16-8-2 GTA weld as influenced by its solidification substructure

    International Nuclear Information System (INIS)

    Foulds, J.R.; Moteff, J.; Sikka, V.K.; McEnerney, J.W.

    1983-01-01

    Weldment sections from formed and welded type 316 stainless steel pipe are characterized with respect to some time-independent (tensile) and time-dependent (creep) mechanical properties at temperatures between 25 0 C and 649 0 C. The GTA weldment, welded with 16-8-2 filler metal, is sectioned from pipe in the formed + welded + solution annealed + straightened condition, as well as in the same condition with an additional re-solution treatment. Detailed room temperature microhardness measurements on these sections before and after reannealing enable a determination of the different recovery characteristics of weld and base metal. The observed stable weld metal solidification dislocation substructure in comparison with the base metal random dislocation structure, in fact, adequately explains weld/base metal elevated temperature mechanical behavior differences from this recovery characteristic standpoint. The weld metal substructure is the only parameter common to the variety of austenitic stainless steel welds exhibiting the consistent parent/weld metal deformation behavior differences described. As such, it must be considered the key to understanding weldment mechanical behavior

  15. Electromagnetic modeling of stress corrosion cracks in Inconel welds

    International Nuclear Information System (INIS)

    Huang, Haoyu; Miya, Kenzo; Yusa, Noritaka; Hashizume, Hidetoshi; Sera, Takehiko; Hirano, Shinro

    2011-01-01

    This study evaluates suitable numerical modeling of stress corrosion cracks appearing in Inconel welds from the viewpoint of electromagnetic nondestructive evaluations. The stress corrosion cracks analyzed in this study are five artificial ones introduced into welded flat plate, and three natural ones found in a pressurized nuclear power plant. Numerical simulations model a crack as a planar region having a uniform conductivity inside and a constant width, and evaluate the width and conductivity that reproduce the maximum eddy current signals obtained by experiments. The results obtained validate the existence of the minimum value of the equivalent resistance, which is defined by the width divided by conductivity. In contrast, the values of the width and conductivity themselves vary across a wide range. The results also lead to a discussion about (1) the effect of probe utilized on the numerical model, (2) the difference between artificial and natural stress corrosion cracks, and (3) the difference between stress corrosion cracks in base metals and those in Inconel welds in their models. Electromagnetic characteristics of four different Inconel weld alloys are additionally evaluated using a resistance tester and a vibrating sample magnetometer to support the validity of the numerical modeling and the generality of results obtained. (author)

  16. MCWASP XIV: International Conference on Modelling of Casting, Welding and Advanced Solidification Processes

    International Nuclear Information System (INIS)

    Yasuda, H

    2015-01-01

    The current volume represents contributed papers of the proceedings of the 14th international conference on ''Modeling of Casting, Welding and Advanced Solidification Processes (MCWASP XIV)'', Yumebutai International Conference Center, Awaji island, Hyogo, Japan on 21 – 26 June, 2016. The first conference of the series 'Modeling of Casting, Welding and Advanced Solidification Processes (MCWASP)' was started up in 1980, and this is the 14th conference. The participants are more than 100 scientists from industry and academia, coming from 19 countries. In the conference, we have 5 invited, 70 oral and 31 poster presentations on different aspects of the modeling. The conference deals with various casting processes (Ingot / shape casting, continuous casting, direct chill casting and welding), fundamental phenomena (nucleation and growth, dendritic growth, eutectic growth, micro-, meso- and macrostructure formation and defect formation), coupling problems (electromagnetic interactions, application of ultrasonic wave), development of experimental / computational methods and so on. This volume presents the cutting-edge research in the modeling of casting, welding and solidification processes. I would like to thank MAGMA Giessereitechnologie GmbH, Germany and SCSK Corporation, Japan for supporting the publication of contributed papers. Hideyuki Yasuda Conference Chairman Department of Materials Science and Engineering, Kyoto University Japan (preface)

  17. Investigation of the susceptibility to solidification cracking in copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Richard [Avesta Sheffield R and D, Avesta (Sweden)

    2000-04-01

    A test procedure has been developed at LuTH for investigating the susceptibility to cracking at high temperatures in weldments. It has been proposed to adapt this testing procedure to investigate the cracking susceptibility at high temperatures during strip casting of certain copper alloys. Six different materials were selected for investigation - OFHC copper, tellurium containing copper, 4% tin bronze, 6% tin bronze, 30% zinc brass and 35% zinc brass. The aim of the investigation was to characterize the cracking susceptibility of the candidate materials so as to be able to rank and compare them in a quantitative manner. A further aim of the work was to study the suitability of using the data on the cracking indices generated in the present work in thermomechanical models of the casting process to optimize the casting parameters for each of the materials.

  18. Applicability assessment of plug weld to ITER vacuum vessel by crack propagation analysis

    International Nuclear Information System (INIS)

    Ohmori, Junji; Nakahira, Masataka; Takeda, Nobukazu; Shibanuma, Kiyoshi; Sago, Hiromi; Onozuka, Masanori

    2006-03-01

    In order to improve the fabricability of the vacuum vessel (VV) of International Thermonuclear Experimental Reactor (ITER), applicability of plug weld between VV outer shell and stiffening ribs/blanket support housings has been assessed using crack propagation analysis for the plug weld. The ITER VV is a double-wall structure of inner and outer shells with ribs and housings between the shells. For the fabrication of VV, ribs and housings are welded to outer shell after welding to inner shell. A lot of weld grooves should be adjusted for welding outer shell. The plug weld is that outer shells with slit at the weld region are set on ribs/housings then outer shells are welded to them by filling the slits with weld metal. The plug weld can allow larger tolerance of weld groove gap than ordinary butt weld. However, un-welded lengths parallel to outer sell surface remain in the plug weld region. It is necessary to evaluate the allowable un-welded length to apply the plug weld to ITER VV fabrication. For the assessment, the allowable un-welded lengths have been calculated by crack propagation analyses for load conditions, conservatively assuming the un-welded region is a crack. In the analyses, firstly allowable crack lengths are calculated from the stresses of the weld region. Then assuming initial crack length, crack propagation is calculated during operation period. Allowable initial crack lengths are determined on the condition that the propagated cracks should not exceed the allowable crack lengths. The analyses have been carried out for typical inboard straight region and inboard upper curved region with the maximum housing stress. The allowable initial cracks of ribs are estimated to be 8.8mm and 38mm for the rib and the housing, respectively, considering inspection error of 4.4mm. Plug weld between outer shell and ribs/housings could be applicable. (author)

  19. Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy

    Science.gov (United States)

    Wang, Jin; Wang, Hui-Ping; Wang, Xiaojie; Cui, Haichao; Lu, Fenggui

    2015-03-01

    This paper investigates hot cracking rate in Al fiber laser welding under various process conditions and performs corresponding process optimization. First, effects of welding process parameters such as distance between welding center line and its closest trim edge, laser power and welding speed on hot cracking rate were investigated experimentally with response surface methodology (RSM). The hot cracking rate in the paper is defined as ratio of hot cracking length over the total weld seam length. Based on the experimental results following Box-Behnken design, a prediction model for the hot cracking rate was developed using a second order polynomial function considering only two factor interaction. The initial prediction result indicated that the established model could predict the hot cracking rate adequately within the range of welding parameters being used. The model was then used to optimize welding parameters to achieve cracking-free welds.

  20. Study on durability of welded bellows. Fatigue life of bellows with crack in welded bead

    International Nuclear Information System (INIS)

    Hirata, Osamu; Okada, Ken; Yanagisawa, Takasi; Nakajima, Akira.

    1994-01-01

    Reports of study for welded bellows with cracks have apparently not been published to date. The purpose of this investigation is to understand the relationship between the state of stress of welded bellows with micro cracks and the fatigue life. Stresses of welded bellows with cracks were calculated for several different crack lengths by finite element method (FEM), and lives of bellows with cracks were examined by fatigue test. The fatigue life, i.e. the number of cycles to failure was arranged against the remaining wall thickness measured after test instead of the crack length. As a result, it was found that there is a regular relationship between the stress amplitude of peak stress calculated by FEM and the fatigue life of bellows. And then, it was shown that the life of bellows becomes longer than the life estimated using a theoretical S-N curve calculated by Manson's method. Stress intensity factor range (ΔK) and crack propagation rate (da/dN) were also calculated using the results of stress analysis by FEM and fatigue test. The relationship between ΔK and da/dN obtained was almost coincident with the earlier result of fatigue crack growth test of Inconel 718 in the region of da/dN > 1.5x10 -6 mm/cycle, and the propriety of the present results was confirmed. (author)

  1. On crack propagation in the welded polyolefin pipes with and without the presence of weld beads

    Czech Academy of Sciences Publication Activity Database

    Mikula, Jakub; Hutař, Pavel; Nezbedová, E.; Lach, R.; Arbeiter, F.; Ševčík, Martin; Pinter, G.; Grellmann, W.; Náhlík, Luboš

    2015-01-01

    Roč. 87, DEC (2015), s. 95-104 ISSN 0264-1275 R&D Projects: GA ČR(CZ) GAP108/12/1560; GA MŠk(CZ) EE2.3.30.0063; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Slow crack growth * Butt weld * Lifetime estimation * Polyolefin pipes * Weld bead Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.997, year: 2015

  2. Fatigue crack growth in welded joints in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, S.B.

    1988-01-01

    A pipe-to-plate specimen has been developed to study the influence of seawater on the fatigue behaviour of welded tubular joints. DC potential drop techniques have been used to detect fatigue crack initiation, and to monitor the subsequent growth of fatigue cracks. Results for three specimens, tested in air are compared with similar data for tubular and T-plate joints. These comparisons indicate that the pipe/plate is a reasonable model of a tubular joint. Testing was performed on a further six specimens in artificial seawater; two each with free corrosion, optimum cathodic protection, and cathodic overprotection. Fatigue life reduction factors compared with corresponding tests in air were 1.8 and 2.8 for free corrosion, 1.7 and 1.1 with cathodic protection, and 4.2 and 3.3 with cathodic over-protection. These fatigue life reduction factors were comparable to results on T-plate specimens, and were strongly dependent on crack shape development. Linear elastic fracture mechanics techniques appear suitable for the calculation of fatigue crack propagation life. Three approximate solution techniques for crack tip stress intensity factors show reasonable agreement with experimentally derived values. It is recommended that forcing functions be used to model crack aspect ratio development in welded joints. Such forcing functions are influenced by the initial stress distribution and the environment. 207 refs., 192 figs., 22 tabs.

  3. Effects of microstructure and residual stress on fatigue crack growth of stainless steel narrow gap welds

    International Nuclear Information System (INIS)

    Jang, Changheui; Cho, Pyung-Yeon; Kim, Minu; Oh, Seung-Jin; Yang, Jun-Seog

    2010-01-01

    The effects of weld microstructure and residual stress distribution on the fatigue crack growth rate of stainless steel narrow gap welds were investigated. Stainless steel pipes were joined by the automated narrow gap welding process typical to nuclear piping systems. The weld fusion zone showed cellular-dendritic structures with ferrite islands in an austenitic matrix. Residual stress analysis showed large tensile stress in the inner-weld region and compressive stress in the middle of the weld. Tensile properties and the fatigue crack growth rate were measured along and across the weld thickness direction. Tensile tests showed higher strength in the weld fusion zone and the heat affected zone compared to the base metal. Within the weld fusion zone, strength was greater in the inner weld than outer weld region. Fatigue crack growth rates were several times greater in the inner weld than the outer weld region. The spatial variation of the mechanical properties is discussed in view of weld microstructure, especially dendrite orientation, and in view of the residual stress variation within the weld fusion zone. It is thought that the higher crack growth rate in the inner-weld region could be related to the large tensile residual stress despite the tortuous fatigue crack growth path.

  4. Probabilistic Model for Fatigue Crack Growth in Welded Bridge Details

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard; Yalamas, Thierry

    2013-01-01

    In the present paper a probabilistic model for fatigue crack growth in welded steel details in road bridges is presented. The probabilistic model takes the influence of bending stresses in the joints into account. The bending stresses can either be introduced by e.g. misalignment or redistribution...... of stresses in the structure. The fatigue stress ranges are estimated from traffic measurements and a generic bridge model. Based on the probabilistic models for the resistance and load the reliability is estimated for a typical welded steel detail. The results show that large misalignments in the joints can...

  5. Effect of Surface Tension Anisotropy and Welding Parameters on Initial Instability Dynamics During Solidification: A Phase-Field Study

    Science.gov (United States)

    Yu, Fengyi; Wei, Yanhong

    2018-05-01

    The effects of surface tension anisotropy and welding parameters on initial instability dynamics during gas tungsten arc welding of an Al-alloy are investigated by a quantitative phase-field model. The results show that the surface tension anisotropy and welding parameters affect the initial instability dynamics in different ways during welding. The surface tension anisotropy does not influence the solute diffusion process but does affect the stability of the solid/liquid interface during solidification. The welding parameters affect the initial instability dynamics by varying the growth rate and thermal gradient. The incubation time decreases, and the initial wavelength remains stable as the welding speed increases. When welding power increases, the incubation time increases and the initial wavelength slightly increases. Experiments were performed for the same set of welding parameters used in modeling, and the results of the experiments and simulations were in good agreement.

  6. Evaluation of cold crack susceptibility on HSLA steel welded joints

    Directory of Open Access Journals (Sweden)

    Silverio-Freire Júnior, R. C.

    2003-04-01

    Full Text Available The present study addresses an evaluation of the effect of several welding parameters on cold cracking formation in welded joints of High Strength and Low Alloy steels, as well as the resulting microstructures and hardness values. The main parameters studied include the variation of the preheating temperature, drying time of the electrode, chemical composition and thickness of the base metal. The presence of cold cracking in the joints was analyzed from Tekken tests using steel plates made of SAR 80 T, 100 T and 120 T with of various thickness. The plates were welded by Shielded Metal Arc Welding either with or without pre-heating. Different preheating temperatures were studied, i.e., 375, 455 and 525 K. AWS E 12018 G and 11018 G electrodes were used under different conditions, i.e., not dried or dried up to 2, 3 and 4 h at 515 K. The results indicated the presence of cracks in the welded metals with the combination of hardness values above 230 HV and the formation of high contents of acicular ferrite (above 93 % in the welds without preheating. Higher crack susceptibility was also observed in the thick welded metal plates.

    Este trabajo evalúa la influencia de la variación de temperatura de precalentamiento, del tiempo de secado del electrodo, de la composición química y del espesor del metal base sobre la formación de fisuras en frío, inducidas por el hidrógeno en juntas soldadas de aceros de alta resistencia y baja aleación y su relación con la microestructura y dureza resultante. Para esto, se analizó la presencia de fisuras en frío en probetas para ensayos Tekken, fabricadas a partir de chapas de aceros SAR 80 T, 100 T y 120 T, con diferentes espesores y soldados por proceso de arco eléctrico con electrodo revestido, sin precalentamiento y con precalentamiento, a 375, 455 y 525 K, empleando electrodos AWS E 12018 G y 11018 G no secados y secados durante 2, 3 y 4 h. Los resultados obtenidos indicaron la presencia de fisuras

  7. Analysis of weld-cracking and improvement of the weld-repair process of superplastic forming tools

    International Nuclear Information System (INIS)

    Duchosal, A.; Deschaux-Beaume, F.; Lours, P.; Haro, S.; Fras, G.

    2013-01-01

    Highlights: ► Characterisation of the microstructure of a heat-resistant austenitic cast steel. ► Failure analysis using in situ tensile tests and isothermal fatigue tests. ► Analyses of weld cracking mechanism during shielded metal arc welding process. ► Improvement of weld-repair method by re-melting of the base material surface with GTAW process. - Abstract: Superplastic forming (SPF) dies are generally made of using heat resistant cast steels, which are very sensitive to weld cracking. In order to improve the weld-repair process of such dies to prevent weld-cracking, the microstructure and the mechanical behaviour of a typical heat-resistant cast steel was first studied, using isothermal low-cycle fatigue tests and in situ tensile tests. The welding behaviour of such steel was also investigated, using a shielded metal arc welding (SMAW) process and welding conditions similar to those employed for weld repair industrial dies. The comparison of the aspect of weld-cracking with the fracture mechanisms observed at room temperature or during isothermal low-cycle fatigue tests suggests a similar brittle failure mechanism, due to the presence of large interdendritic carbides in the cast steel. The melting of the cast steel surface using a gas tungsten arc welding (GTAW) process allowed to refine the primary carbides, and then to reduce the weld-cracking sensitivity. The refining method with GTAW before welding has been successfully tested to weld-repair a sample representative of SPF dies, and is recommended for subsequent repairs of such dies

  8. Partially melted zone cracking in AA6061 welds

    International Nuclear Information System (INIS)

    Prasad Rao, K.; Ramanaiah, N.; Viswanathan, N.

    2008-01-01

    Partially melted zone (PMZ) cracking susceptibility in AA6061 alloy was studied. Role of prior thermal history, gas tungsten arc welding techniques such as continuous current (CC) and pulsed current (PC) and use of different fillers (AA4043 and AA5356) were studied. Role of different grain refiners such as scandium, zirconium and Tibor in the above fillers was studied. Varestraint test was used to study the PMZ cracking susceptibility. Metallurgical analysis was done to corroborate the results. PMZ cracking was severe in T6 temper than in T4 irrespective of filler material. PMZ cracking susceptibility was more with AA5356 than in AA4043. It was less with pulsed current GTAW. PMZ cracking susceptibility was reduced with addition of grain refiners. Out of all, lowest PMZ cracking susceptibility was observed with 0.5%Sc addition to fusion zone through AA4043 filler and PC technique. The concentrations of magnesium and silicon were reduced at the PMZ grain boundaries with grain refiner additions to fusion zone through AA5356 or AA4043

  9. Partially melted zone cracking in AA6061 welds

    Energy Technology Data Exchange (ETDEWEB)

    Prasad Rao, K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai (India)], E-mail: kpr@iitm.ac.in; Ramanaiah, N. [Sri Kalahasteeswara Institute of Technology, Srikalahasti (India); Viswanathan, N. [Defence Research and Development Laboratory, Hyderabad (India)

    2008-07-01

    Partially melted zone (PMZ) cracking susceptibility in AA6061 alloy was studied. Role of prior thermal history, gas tungsten arc welding techniques such as continuous current (CC) and pulsed current (PC) and use of different fillers (AA4043 and AA5356) were studied. Role of different grain refiners such as scandium, zirconium and Tibor in the above fillers was studied. Varestraint test was used to study the PMZ cracking susceptibility. Metallurgical analysis was done to corroborate the results. PMZ cracking was severe in T6 temper than in T4 irrespective of filler material. PMZ cracking susceptibility was more with AA5356 than in AA4043. It was less with pulsed current GTAW. PMZ cracking susceptibility was reduced with addition of grain refiners. Out of all, lowest PMZ cracking susceptibility was observed with 0.5%Sc addition to fusion zone through AA4043 filler and PC technique. The concentrations of magnesium and silicon were reduced at the PMZ grain boundaries with grain refiner additions to fusion zone through AA5356 or AA4043.

  10. The problem of cracking during welding of monel to stainless steel

    International Nuclear Information System (INIS)

    Ahmed, J.; Hussain, S.W.

    1995-01-01

    The problems of severe cracking was encountered while welding monel 400 to 316L stainless steel in the structure of a reaction vessel. It was found that the liquation cracking occurred in the grain boundary regions resulting in the visible cracks in the welds. Different types of filler materials were used without much success. Various factors were controlled such as careful cleaning, heat input, distance of electrode from the weld, feeding rate, etc. It was noted that all these factors influenced the cracking behavior but the most critical was found to be the heat input. Cracking was eliminated when the heat input was decreased to the lowest current to maintain the weld pool. After the successful welding it was found that the strength of the weld was close to that of the individual metals. (author)

  11. Welding metallurgy of austenitic stainless steels

    International Nuclear Information System (INIS)

    Ibrahim, A.N.

    1983-01-01

    Austenitic stainless steels welds are commonly found in nuclear reactor systems. The macrostructure and the transformation of delta -phase into γ - phase which occur during rapid solidification of such welds are discussed. Finally, several types of defects which are derived from the welding operation, particularly defects of crack type, are also discussed in brief. (author)

  12. Development of phased array UT procedure for crack depth sizing on nickel based alloy weld

    International Nuclear Information System (INIS)

    Hirasawa, Taiji; Okada, Hisao; Fukutomi, Hiroyuki

    2012-01-01

    Recently, it is reported that the primary water stress corrosion cracking (PWSCC) has been occurred at the nickel based alloy weld components such as steam generator safe end weld, reactor vessel safe end weld, and so on, in PWR. Defect detection and sizing is important in order to ensure the reliable operation and life extension of nuclear power plants. In the reactor vessel safe end weld, it was impossible to measure crack depth of PWSCC. The crack was detected in the axial direction of the safe end weld. Furthermore, the crack had some features such as shallow, large aspect ratio (ratio of crack depth and length), sharp geometry of crack tip, and so on. Therefore, development and improvement of defect detection and sizing capabilities for ultrasonic inspection technique is required. Phased array UT technique was applied to nickel based alloy weld specimen with SCC cracks. From the experimental results, good accuracy of crack depth sizing by phased array UT for the inside inspection was shown. From these results, UT procedure for crack depth sizing was verified. Therefore, effectiveness of phased array UT for crack depth sizing in the nickel based alloy welds was shown. (author)

  13. Role of ferrite and phosphorus plus sulphur in the crack sensitivity of autogenously welded type 309 stainless steel

    International Nuclear Information System (INIS)

    Lambert, F.J. Jr.

    1976-07-01

    A study on autogenous welding of Type 309 thin stainless steel sheet was made after experiencing cracking difficulties on several commercial heats. A relationship exists between the sum of the phosphorus plus sulfur, the ferrite control of the weld metal, and the crack sensitivity of autogenously made welds. A new simple weld test for thin-gage sheet is utilized for studying the susceptibility to cracking. A chemistry modification is suggested to alleviate possible weld cracking when autogenously welding this grade. The principles of crack sensitivity prediction could apply to other austenitic stainless steel types where chemistry limits are such that ferrite is possible

  14. Crack growth modeling in a specimen with polymer weld

    Czech Academy of Sciences Publication Activity Database

    Ševčík, Martin; Hutař, Pavel; Náhlík, Luboš; Lach, R.; Knésl, Zdeněk; Grellmann, W.

    488-489, č. 1 (2012), s. 158-161 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics - FDM 2011 /10./. Dubrovník, 19.09.2011-21.09.2011] R&D Projects: GA ČR GC101/09/J027; GA ČR GD106/09/H035 Institutional research plan: CEZ:AV0Z20410507 Keywords : polymer weld * crack propagation * graded structure * fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics

  15. Solutions against PWSCC in dissimilar welds cracks of reactor components

    International Nuclear Information System (INIS)

    Schlader, D.; Michaut, B.; Knapp, M

    2005-01-01

    This article provides a brief overview of the experience accumulated by Framatome ANP in the development and use of repair and mitigation techniques of the PWSCC in dissimilar welds cracks of reactor components. A brief description of the alternatives available to the industry for the solution of this problem for both PWR and BWR reactor types is also included. These solutions have been implemented many times by Framatome ANP in Europe and the US. The article also describes the way the know-how is shared among the different regions of the company in order to offer customer specific solutions. (Author)

  16. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    International Nuclear Information System (INIS)

    Taheri, Said; Julan, Emricka; Tran, Xuan-Van; Robert, Nicolas

    2017-01-01

    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  17. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Said, E-mail: Said.taheri@edf.fr [EDF-LAB, IMSIA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Julan, Emricka [EDF-LAB, AMA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Tran, Xuan-Van [EDF Energy R& D UK Centre/School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Robert, Nicolas [EDF-DPN, UNIE, Strategic Center, Saint Denis (France)

    2017-01-15

    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  18. Effect of technological procedures on the crack resistance of nickel alloy welded joints under heat treatment

    International Nuclear Information System (INIS)

    Bagdasarov, Yu.S.; Sorokin, L.I.; Yakushin, B.F.; Moryashchev, S.F.

    1983-01-01

    Comparison of the efficiency of some technological procedures directed to the increase of crack resistance of KhN50MBKTYUR (EhP99) alloy welded joints under heat treatment was conducted. Welded joints were manufactured by the methods of electron beam welding, laser welding, automatic argon-arc welding. The latter was conducted by conventional technology as well as with electromagnetic mixing of liquid metal of welding bath, with compulsory cooling of weld matal, with pulse arc. It is shown that the high fracture resistance of welded joints, manufactured by electron beam and laser welding is achieved by combination of high mechanical properties of heat affected zone metal and reduced elastic potential energy margin of residual welding stresses (as compared to argon-arc welding)

  19. Techniques for intergranular crack formation and assessment in alloy 600 base and alloy 182 weld metals

    International Nuclear Information System (INIS)

    Lee, Tae Hyun; Hwang, Il Soon; Kim, Hong Deok; Kim, Ji Hyun

    2015-01-01

    A technique developed to produce artificial intergranular stress corrosion cracks in structural components was applied to thick, forged alloy 600 base and alloy 182 weld metals for use in the qualification of nondestructive examination techniques for welded components in nuclear power plants. An externally controlled procedure was demonstrated to produce intergranular stress corrosion cracks that are comparable to service-induced cracks in both the base and weld metals. During the process of crack generation, an online direct current potential drop method using array probes was used to measure and monitor the sizes and shapes of the cracks. A microstructural characterization of the produced cracks revealed realistic conformation of the crack faces unlike those in machined notches produced by an electrodischarge machine or simple fatigue loading using a universal testing machine. A comparison with a destructive metallographic examination showed that the characteristics, orientations, and sizes of the intergranular cracks produced in this study are highly reproducible.

  20. Specific energy of cold crack initiation in welding low alloy high-strength steels

    International Nuclear Information System (INIS)

    Brednev, V.I.; Kasatkin, B.S.

    1988-01-01

    Methods for determination of energy spent on cold crack initiation, when testing welded joint samples by the Implant method, are described. Data on the effect of the steel alloying system, cooling rate of welded joints, content of diffusion hydrogen on the critical specific energy spent on the development of local plastic deformation upto cold crack initiation are presented. The value of specific energy spent on cold crack initiation is shown to be by two-three orders lower than the value of impact strength minimum accessible. The possibility to estimate welded joint resistance to cold crack initiation according to the critical specific energy is established

  1. Some aspects on the role of hydrogen in the cold crack develoment process on welding

    International Nuclear Information System (INIS)

    Bourges, P.; Faure, F.

    1983-03-01

    Examination of the hydrogen input during welding (humidity of the electrode coatings, humidity of the wires, ribbon, and weld fluxing) and the means to minimize these hydrogen inputs. Description of various examples of cold crack development in welded joints caused by hydrogen, influence of the chemical composition, of the thermal processing on the two metals joints, influence of sulfur on cold crack on low alloy steels [fr

  2. Hot-crack test for aluminium alloys welds using TIG process

    Directory of Open Access Journals (Sweden)

    Deschaux-beaume F.

    2010-06-01

    Full Text Available Hot cracking is a critical defect frequently observed during welding of aluminium alloys. In order to better understand the interaction between cracking phenomenon, process parameters, mechanical factors and microstructures resulting from solidification after welding, an original hot-cracking test during welding is developed. According to in-situ observations and post mortem analyses, hot cracking mechanisms are investigated, taking into account the interaction between microstructural parameters, depending on the thermal cycles, and mechanical parameters, depending on geometry and clamping conditions of the samples and on the thermal field on the sample. Finally, a process map indicating the limit between cracking and non-cracking zones according to welding parameters is presented.

  3. Thermo-mechanical modelling of high temperature crack growth in electron beam welding of a CuCrZr alloy

    International Nuclear Information System (INIS)

    Wisniewski, J.

    2009-03-01

    The aim of this research thesis is to find out which crack initiation criteria can be applied in the case of electron beam welding of CuCrZr alloy components. After a literature survey on the high temperature cracking phenomenon, the author describes its microscopic origins and presents the main high temperature crack growth criteria. He reports metallurgical, thermal and mechanical characterizations of the studied alloy performed by optical, scanning electronic and transmission electronic microscopy, crystallographic analysis, residual stress determination using the hole method, mechanical testing at room and high temperature (from room temperature to 1000 C), determination of solidification route and of thermal conductivity, and thermal expansion measurements. He describes electron beam weldability tests performed on the alloy. As these tests are performed on simple geometry samples, they allow the high temperature crack growth to be observed. These experiments are then modelled using two finite element codes, Castem and Calcosoft. Then, after a presentation of the main hypotheses used in these numerical models, the author applies the high temperature crack growth criteria. Results obtained for theses criteria are then analysed and discussed

  4. Limit load solution for electron beam welded joints with single edge weld center crack in tension

    Science.gov (United States)

    Lu, Wei; Shi, Yaowu; Li, Xiaoyan; Lei, Yongping

    2012-05-01

    Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments. However, there are no limit load solutions exist for the single edge crack weldments in tension (SEC(T)), which is also a typical geometry in fracture analysis. The mis-matching limit load for thick plate with SEC(T) are investigated and the special limit load solutions are proposed based on the available mis-matching limit load solutions and systematic finite element analyses. The real weld configurations are simplified as a strip, and different weld strength mis-matching ratio M, crack depth/width ratio a/ W and weld width 2H are in consideration. As a result, it is found that there exists excellent agreement between the limit load solutions and the FE results for almost all the mis-matching ration M, a/ W and ligament-to-weld width ratio ( W-a)/ H. Moreover, useful recommendations are given for evaluating the limit loads of the EBW structure with SEC(T). For the EBW joints with SEC(T), the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal, when M changing from 1.6 to 0.6. When M decreasing to 0.4, the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal only for large value of ( W-a)/ H. The recommendations may be useful for evaluating the limit loads of the EBW structures with SEC(T). The engineering simplifications are given for assessing the limit loads of electron beam welded structure with SEC(T).

  5. Research on weld cracking of TP321H stainless steel pipeline under elevated temperature

    International Nuclear Information System (INIS)

    Pan, Jian-hua; Fan, Zhi-cao; Zong, Ning-sheng

    2016-01-01

    The failure of pipeline which adopted material type TP321H austenitic stainless steel and occurred cracking after servicing at elevated temperature for less than two years had been investigated. The cracks were appeared repeatedly although they had been repaired for several times. The pipeline stress analysis was conducted to determine stress levels of cracking positions by finite element analysis software ABAQUS. The mechanical properties of base metals and welds including tensile and charpy impact tests were carried out. The test results showed that ductility of welds cut from the serviced pipeline was very poor. The microstructure investigations suggested that it was intergranular crack located in the HAZ near fusion line. It could be determined that it was reheat cracking based on some other works such as metallographic inspection, SEM, X-ray diffraction, etc. Welds analysis results showed that the welding of pipeline had not been in accord with right qualification of welding procedure leading to poor welding quality. The cracking reasons and preventive measures were discussed. Several suggestions were proposed to help extend service lifetime of the stainless steel pipeline under elevated temperature condition. - Highlights: • The pipeline is calculated by finite element analysis software ABAQUS. • Various tests are made, such as mechanical property, SEM, EDS, X-ray diffraction. • It is reheat cracking or stress relief cracking for the pipeline failure. • The stress levels of pipeline should be as low as possible. • The lifetime of pipeline would be shorten obviously due to poor weld quality.

  6. Welding hot cracking in an austenitic stainless steel; Fissuration a chaud en soudage d'un acier inoxydable austenitique

    Energy Technology Data Exchange (ETDEWEB)

    Kerrouault, N

    2001-07-01

    validated, the thermomechanical simulation brings new interpretations of the tests observations and instrumentation results. The comparison of experimental and numerical results make it possible to determine a thermomechanical welding hot cracking criterion during solidification. This criterion simultaneously considers mechanical (strain and strain rates threshold) and thermal (temperature range, thermal gradient) parameters which give the position and orientation of the first crack initiation. The criterion precision are in good agreement with the observations on the two considered weldability tests. (author)

  7. Effect of heat input on heat affected zone cracking in laser welded ATI Allvac 718Plus superalloy

    International Nuclear Information System (INIS)

    Idowu, O.A.; Ojo, O.A.; Chaturvedi, M.C.

    2007-01-01

    The heat affected zones (HAZs) of low and high heat input laser welds of a newly developed superalloy, ATI Allvac 718Plus, were studied. Low heat input welds suffered significant HAZ grain boundary liquation cracking, while no cracking was observed in spite of a more extensive HAZ intergranular liquation in the higher heat input welds. Combination of lower welding stresses generated during cooling, and relaxation of these stresses by thick intergranular liquid were suggested to be the factors that contributed to the absence of cracking in the high heat input welds. Further, healing of some of the HAZ cracks in lower heat input welds by fusion zone interdendritic liquid occurred through liquid backfilling

  8. Aspects of the transitory deformations correlated with the cracking at heat in welding

    International Nuclear Information System (INIS)

    Miclosi, V.; Solomon, G.; Tonoiu, I.

    1993-01-01

    The cracking at heat is one of the main problems which appear at the austenitic steel welding, especially for the austenitics steel without delta ferite. The susceptibility regarding the cracking at heat can be studied analitically by the correlation between two factors: the factor stress constituted by the tension and the deformations which appear in the welding process (FS) and the resistance factor constituted by the capacity of the material to take the stress and the deformations appeared (FR). As a result of the interaction of the both factors is the possibility of cracking or not cracking into a concrete case, named generally the susceptibility at the heat cracking. The tendency at the cracking at heat can be appreciate with a quantitative estimation, named critical speed of cracking (Vcf). The practical determination of these speed supposed for an concrete example, the knowledge of real plastic deformation at the weld, which are determinated in this paper. (orig.)

  9. Stress corrosion crack initiation of alloy 182 weld metal in primary coolant - Influence of chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Calonne, O.; Foucault, M.; Steltzlen, F. [AREVA (France); Amzallag, C. [EDF SEPTEN (France)

    2011-07-01

    Nickel-base alloys 182 and 82 have been used extensively for dissimilar metal welds. Typical applications are the J-groove welds of alloy 600 vessel head penetrations, pressurizer penetrations, heater sleeves and bottom mounted instrumented nozzles as well as some safe end butt welds. While the overall performance of these weld metals has been good, during the last decade, an increasing number of cases of stress corrosion cracking of Alloy 182 weld metal have been reported in PWRs. In this context, the role of weld defects has to be examined. Their contribution in the crack initiation mechanism requires laboratory investigations with small scale characterizations. In this study, the influence of both alloy composition and weld defects on PWSCC (Stress Corrosion Cracking in Primary Water) initiation was investigated using U-bend specimens in simulated primary water at 320 C. The main results are the following: -) the chemical compositions of the weld deposits leading to a large propensity to hot cracking are not the most susceptible to PWSCC initiation, -) macroscopically, superficial defects did not evolve during successive exposures. They can be included in large corrosion cracks but their role as 'precursors' is not yet established. (authors)

  10. Leak before break analysis for cracking at multiple weld locations in BWR recirculation piping

    International Nuclear Information System (INIS)

    Zahoor, A.; Gamble, R.

    1984-01-01

    Periodically over the past decade, intergranular stress corrosion cracking (IGSCC) has been found in austenitic stainless steel piping at Boiling Water Reactor facilities. The effect of IGSCC on piping integrity has been evaluated previously in various BWR Owners Group and NRC studies. In these studies, the analyses were performed assuming the presence of a crack at a single weld location in the pipe run. The purpose of this investigation was to compare the leak rate and potential for unstable crack extension associated with a throughwall crack for the following two conditions in a BWR recirculation system: (1) the recirculation piping contains part through cracks at multiple weld locations and a single throughwall crack, and (2) the piping contains only a throughwall crack at one weld location. Two type BWRs were evaluated; namely, the ring header and five individual loop designs. The results from the analyses indicate that the potential for unstable crack extension at large bending loads, and leak rate at normal operation are not affected by the presence of part through cracks at multiple weld locations. The differences in the respective calculated L/sub eff/ and leak rates for the single and multiply cracked conditions are less than 2%

  11. Quantitative Acoustic Emission Fatigue Crack Characterization in Structural Steel and Weld

    Directory of Open Access Journals (Sweden)

    Adutwum Marfo

    2013-01-01

    Full Text Available The fatigue crack growth characteristics of structural steel and weld connections are analyzed using quantitative acoustic emission (AE technique. This was experimentally investigated by three-point bending testing of specimens under low cycle constant amplitude loading using the wavelet packet analysis. The crack growth sequence, that is, initiation, crack propagation, and fracture, is extracted from their corresponding frequency feature bands, respectively. The results obtained proved to be superior to qualitative AE analysis and the traditional linear elastic fracture mechanics for fatigue crack characterization in structural steel and welds.

  12. Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques

    Science.gov (United States)

    Todorov, E. I.; Mohr, W. C.; Lozev, M. G.

    2008-02-01

    Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.

  13. Fatigue crack growth of 316NG austenitic stainless steel welds at 325 °C

    Science.gov (United States)

    Li, Y. F.; Xiao, J.; Chen, Y.; Zhou, J.; Qiu, S. Y.; Xu, Q.

    2018-02-01

    316NG austenitic stainless steel is a commonly-used material for primary coolant pipes of pressurized water reactor systems. These pipes are usually joined together by automated narrow gap welding process. In this study, welds were prepared by narrow gap welding on 316NG austenitic stainless steel pipes, and its microstructure of the welds was characterized. Then, fatigue crack growth tests were conducted at 325 °C. Precipitates enriched with Mn and Si were found in the fusion zone. The fatigue crack path was out of plane and secondary cracks initiated from the precipitate/matrix interface. A moderate acceleration of crack growth was also observed at 325°Cair and water (DO = ∼10 ppb) with f = 2 Hz.

  14. Cracked lifting lug welds on ten-ton UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Dorning, R.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

  15. Heat-affected zone liquation crack on resistance spot welded TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Dulal Chandra [Department of Advanced Materials Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of); Chang, InSung [Automotive Production Development Division, Hyundai Motor Company (Korea, Republic of); Park, Yeong-Do, E-mail: ypark@deu.ac.kr [Department of Advanced Materials Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of)

    2014-07-01

    In this study, the heat affected zone (HAZ) liquation crack and segregation behavior of the resistance spot welded twinning induced plasticity (TWIP) steel have been reported. Cracks appeared in the post-welded joints that originated at the partially melted zone (PMZ) and propagated from the PMZ through the heat affected zone (HAZ) to the base metal (BM). The crack length and crack opening widths were observed increasing with heat input; and the welding current was identified to be the most influencing parameter for crack formation. Cracks appeared at the PMZ when nugget diameter reached at 4.50 mm or above; and the liquation cracks were found to occur along two sides of the notch tip in the sheet direction rather than in the electrode direction. Cracks were backfilled with the liquid films which has lamellar structure and supposed to be the eutectic constituent. Co-segregation of alloy elements such as, C and Mn were detected on the liquid films by electron-probe microanalysis (EPMA) line scanning and element map which suggests that the liquid film was enrich of Mn and C. The eutectic constituent was identified by analyzing the calculated phase diagram along with thermal temperature history of finite element simulation. Preliminary experimental results showed that cracks have less/no significant effect on the static cross-tensile strength (CTS) and the tensile-shear strength (TSS). In addition, possible ways to avoid cracking were discussed. - Highlights: • The HAZ liquation crack during resistance spot welding of TWIP steel was examined. • Cracks were completely backfilled and healed with divorced eutectic secondary phase. • Co-segregation of C and Mn was detected in the cracked zone. • Heat input was the most influencing factor to initiate liquation crack. • Cracks have less/no significant effect on static tensile properties.

  16. Heat-affected zone liquation crack on resistance spot welded TWIP steels

    International Nuclear Information System (INIS)

    Saha, Dulal Chandra; Chang, InSung; Park, Yeong-Do

    2014-01-01

    In this study, the heat affected zone (HAZ) liquation crack and segregation behavior of the resistance spot welded twinning induced plasticity (TWIP) steel have been reported. Cracks appeared in the post-welded joints that originated at the partially melted zone (PMZ) and propagated from the PMZ through the heat affected zone (HAZ) to the base metal (BM). The crack length and crack opening widths were observed increasing with heat input; and the welding current was identified to be the most influencing parameter for crack formation. Cracks appeared at the PMZ when nugget diameter reached at 4.50 mm or above; and the liquation cracks were found to occur along two sides of the notch tip in the sheet direction rather than in the electrode direction. Cracks were backfilled with the liquid films which has lamellar structure and supposed to be the eutectic constituent. Co-segregation of alloy elements such as, C and Mn were detected on the liquid films by electron-probe microanalysis (EPMA) line scanning and element map which suggests that the liquid film was enrich of Mn and C. The eutectic constituent was identified by analyzing the calculated phase diagram along with thermal temperature history of finite element simulation. Preliminary experimental results showed that cracks have less/no significant effect on the static cross-tensile strength (CTS) and the tensile-shear strength (TSS). In addition, possible ways to avoid cracking were discussed. - Highlights: • The HAZ liquation crack during resistance spot welding of TWIP steel was examined. • Cracks were completely backfilled and healed with divorced eutectic secondary phase. • Co-segregation of C and Mn was detected in the cracked zone. • Heat input was the most influencing factor to initiate liquation crack. • Cracks have less/no significant effect on static tensile properties

  17. Surface crack behavior in socket weld of nuclear piping under fatigue loading condition

    International Nuclear Information System (INIS)

    Choi, Y.H.; Kim, J.S.; Choi, S.Y.

    2005-01-01

    The ASME B and PV Code Sec. III allows the socket weld for the nuclear piping in spite of the weakness on the weld integrity. Recently, the integrity of the socket weld is regarded as a safety concern in nuclear power plants because many failures and leaks have been reported in the socket weld. OPDE (OECD Piping Failure Data Exchange) database lists 108 socket weld failures among 2,399 nuclear piping failure cases during 1970 to 2001. Eleven failures in the socket weld were also reported in Korean NPPs. Many failure cases showed that the root cause of the failure is the fatigue and the gap requirement for the socket weld given in ASME Code was not satisfied. The purpose of this paper is to evaluate the fatigue crack behavior of a surface crack in the socket weld under fatigue loading condition considering the gap effect. Three-dimensional finite element analysis was performed to estimate the fatigue crack behavior of the surface crack. Three types of loading conditions such as the deflection due to vibration, the pressure transient ranging from P=0 to 15.51 MPa, and the thermal transient ranging from T=25 C to 288 C were considered. The results are as follows; 1) The socket weld is susceptible to the vibration where the vibration levels exceed the requirement in the ASME operation and maintenance (OM) Code. 2) The effect of pressure or temperature transient load on the socket weld integrity is not significant. 3) No-gap condition gives very high possibility of the crack initiation at the socket weld under vibration loading condition. 4) For the specific systems having the vibration condition to exceed the requirement in the ASME Code OM and/or the transient loading condition from P=0 and T=25 C to P=15.51 MPa and T=288 C, radiographic examination to examine the gap during the construction stage is recommended. (orig.)

  18. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    Energy Technology Data Exchange (ETDEWEB)

    Dong, P.; Rahman, S.; Wilkowski, G. [and others

    1997-04-01

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses.

  19. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    International Nuclear Information System (INIS)

    Dong, P.; Rahman, S.; Wilkowski, G.

    1997-01-01

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses

  20. High Temperature Fatigue Crack Growth Rate Studies in Stainless Steel 316L(N Welds Processed by A-TIG and MP-TIG Welding.

    Directory of Open Access Journals (Sweden)

    Thomas Manuel

    2018-01-01

    Full Text Available Welded stainless steel components used in power plants and chemical industries are subjected to mechanical load cycles at elevated temperatures which result in early fatigue failures. The presence of weld makes the component to be liable to failure in view of residual stresses at the weld region or in the neighboring heat affected zone apart from weld defects. Austenitic stainless steels are often welded using Tungsten Inert Gas (TIG process. In case of single pass welding, there is a reduced weld penetration which results in a low depth-to-width ratio of weld bead. If the number of passes is increased (Multi-Pass TIG welding, it results in weld distortion and subsequent residual stress generation. The activated flux TIG welding, a variant of TIG welding developed by E.O. Paton Institute, is found to reduce the limitation of conventional TIG welding, resulting in a higher depth of penetration using a single pass, reduced weld distortion and higher welding speeds. This paper presents the fatigue crack growth rate characteristics at 823 K temperature in type 316LN stainless steel plates joined by conventional multi-pass TIG (MP-TIG and Activated TIG (A-TIG welding process. Fatigue tests were conducted to characterize the crack growth rates of base metal, HAZ and Weld Metal for A-TIG and MP-TIG configurations. Micro structural evaluation of 316LN base metal suggests a primary austenite phase, whereas, A-TIG weld joints show an equiaxed grain distribution along the weld center and complete penetration during welding (Fig. 1. MP-TIG microstructure shows a highly inhomogeneous microstructure, with grain orientation changing along the interface of each pass. This results in tortuous crack growth in case of MP-TIG welded specimens. Scanning electron microscopy studies have helped to better understand the fatigue crack propagation modes during high temperature testing.

  1. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  2. Creep deformation and crack growth in a low alloy steel welded pressure vessel containing defects

    International Nuclear Information System (INIS)

    Coleman, M.C.

    1982-01-01

    A full-size pressure vessel was tested for effects of welding residual stresses on creep deformation and crack growth. The vessel, based on 1/2 Cr 1/2 Mo 1/4 V main steam pipe, contained four 2CrMo manual metal arc welds, two in the as-welded condition and two stress-relieved. All the welds contained pre-existing defects machined in the heat affected zones. Testing was carried out at two internal steam pressures, 250 and 350 bar, and 565 0 C. Cracked and uncracked areas of the vessel were monitored continuously. Results are presented for the continuous creep deformation observed in both the hoop and axial directions of the welds throughout the 11,400 h of testing, as well as the intermittent strain data obtained during inspections. Crack growth observations are described based on nondestructive examination. The residual stresses measured are also given for both the as-welded and stress relieved weldments. Results obtained are discussed in terms of the effects of welding residual stress on the hoop and axial deformations observed in the welds. Similarly, the effects of residual stress on creep crack growth are considered together with compositional and microstructural implications. 9 figures, 5 tables

  3. Hydrogen Assisted Crack in Dissimilar Metal Welds for Subsea Service under Cathodic Protection

    Science.gov (United States)

    Bourgeois, Desmond

    Dissimilar metal welds (DMWs) are routinely used in the oil and gas industries for structural joining of high strength steels in order to eliminate the need for post weld heat treatment (PWHT) after field welding. There have been reported catastrophic failures in these DMWs, particularly the AISI 8630 steel - Alloy 625 DMW combination, during subsea service while under cathodic protection (CP). This is due to local embrittlement that occurs in susceptible microstructures that are present at the weld fusion boundary region. This type of cracking is known as hydrogen assisted cracking (HAC) and it is influenced by base/filler metal combination, and welding and PWHT procedures. DMWs of two material combinations (8630 steel -- Alloy 625 and F22 steel -- Alloy 625), produced with two welding procedures (BS1 and BS3) in as welded and PWHT conditions were investigated in this study. The main objectives included: 1) evaluation of the effect of materials composition, welding and PWHT procedures on the gradients of composition, microstructure, and properties in the dissimilar transition region and on the susceptibility to HAC; 2) investigation of the influence of microstructure on the HAC failure mechanism and identification of microstructural constituents acting as crack nucleation and propagation sites; 3) assessment of the applicability of two-step PWHT to improve the resistance to HAC in DMWs; 4) establishment of non-failure criterion for the delayed hydrogen cracking test (DHCT) that is applicable for qualification of DMWs for subsea service under cathodic protection (CP).

  4. Corrosion fatigue crack growth of pressure vessel welds in PWR environment

    International Nuclear Information System (INIS)

    Bamford, W.H.; Ceschini, L.J.; Moon, D.M.

    1983-01-01

    The fatigue crack growth rate behavior of several pressure vessel steel welds in PWR environment is discussed. The behavior is compared with associated heat-affected zone behavior, and with comparable base metal results. The welds show different degrees of susceptibility to the environmental influence, and this is discussed in some detail, along with fractographic observations on the tested specimens

  5. Fracture toughness and crack growth resistance of pressure vessel plate and weld metal steels

    International Nuclear Information System (INIS)

    Moskovic, R.

    1988-01-01

    Compact tension specimens were used to measure the initiation fracture toughness and crack growth resistance of pressure vessel steel plates and submerged arc weld metal. Plate test specimens were manufactured from four different casts of steel comprising: aluminium killed C-Mn-Mo-Cu and C-Mn steel and two silicon killed C-Mn steels. Unionmelt No. 2 weld metal test specimens were extracted from welds of double V butt geometry having either the C-Mn-Mo-Cu steel (three weld joints) or one particular silicon killed C-Mn steel (two weld joints) as parent plate. A multiple specimen test technique was used to obtain crack growth data which were analysed by simple linear regression to determine the crack growth resistance lines and to derive the initiation fracture toughness values for each test temperature. These regression lines were highly scattered with respect to temperature and it was very difficult to determine precisely the temperature dependence of the initiation fracture toughness and crack growth resistance. The data were re-analysed, using a multiple linear regression method, to obtain a relationship between the materials' crack growth resistance and toughness, and the principal independent variables (temperature, crack growth, weld joint code and strain ageing). (author)

  6. The lack of penetration effect on fatigue crack propagation resistance of atmospheric corrosion resistant steel welded joints

    International Nuclear Information System (INIS)

    Martins, Geraldo de Paula; Cimini Junior, Carlos Alberto; Godefroid, Leonardo Barbosa

    2005-01-01

    The welding process introduces defects on the welded joints, as lack of fusion and penetration, porosity, between others. These defects can compromise the structures or components, relative to the crack propagation. This engagement can be studied by fatigue crack propagation tests. The efficiency of the structure, when submitted to a cyclic loading can be evaluated by these tests. The aim of this work is to study the behavior of welded joints containing defects as lack of penetration at the root or between welding passes relative to crack propagation resistance properties, and to compare these properties with the properties of the welded joints without defects. This study was accomplished from fatigue crack propagation test results, in specimens containing lack of penetration between welding passes. With the obtained results, the Paris equation coefficients and exponents that relate the crack propagation rate with the stress intensity cyclic factor for welded joints with and without defects were obtained. (author)

  7. Application of ultrasonic inspection technique for crack depth sizing on nickel based alloy weld. Part 3. Establishment of UT procedure for crack depth sizing by phased array UT

    International Nuclear Information System (INIS)

    Hirasawa, Taiji; Okada, Hisao; Fukutomi, Hiroyuki

    2012-01-01

    Recently, it is reported that the primary water stress corrosion cracking (PWSCC) was occurred at the nickel based alloy weld components such as steam generator safe end weld, reactor vessel safe end weld, and so on, in PWR. Defect detection and sizing is important in order to ensure the reliable operation and life extension of nuclear power plants. In the reactor vessel safe end weld, it was impossible to measure crack depth of PWSCC. The crack was detected in the axial direction of the safe end weld. Furthermore, the crack had some features such as shallow, large aspect ratio (ratio of crack depth and length), sharp geometry of crack tip, and so on. Therefore, development and improvement of defect detection and sizing capabilities for ultrasonic testing (UT) is required. Phased array technique was applied to nickel based alloy weld specimen with SCC cracks. From the experimental results, good accuracy of crack depth sizing by phased array UT for the inside inspection was shown. From these results, UT procedure for crack depth sizing was verified. Therefore, effectiveness of phased array UT for crack depth sizing in the nickel based alloy welds was shown. (author)

  8. Lamb Wave Line Sensing for Crack Detection in a Welded Stiffener

    Directory of Open Access Journals (Sweden)

    Yun-Kyu An

    2014-07-01

    Full Text Available This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener.

  9. Repair welding of cracked steam turbine blades using austenitic and martensitic stainless-steel consumables

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.

    2001-01-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER 316L austenitic and ER 410 martensitic stainless-steel filler wire. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post-weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microsturctural examination. After various trials using different procedures, the procedure of local PWHT (and preheating when using martensitic stainless-steel filler wire) using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld was found to give the most satisfactory results. These procedures have been developed and/or applied for repair welding of cracked blades in steam turbines

  10. Control of welding residual stress for ensuring integrity against fatigue and stress-corrosion cracking

    International Nuclear Information System (INIS)

    Mochizuki, Masahito

    2007-01-01

    The availability of several techniques for residual stress control is discussed in this paper. The effectiveness of these techniques in protecting from fatigue and stress-corrosion cracking is verified by numerical analysis and actual experiment. In-process control during welding for residual stress reduction is easier to apply than using post-weld treatment. As an example, control of the welding pass sequence for multi-pass welding is applied to cruciform joints and butt-joints with an X-shaped groove. However, residual stress improvement is confirmed for post-weld processes. Water jet peening is useful for obtaining a compressive residual stress on the surface, and the tolerance against both fatigue and stress-corrosion cracking is verified. Because cladding with a corrosion-resistant material is also effective for preventing stress-corrosion cracking from a metallurgical perspective, the residual stress at the interface of the base metal is carefully considered. The residual stress of the base metal near the clad edge is confirmed to be within the tolerance of crack generation. Controlling methods both during and after welding processes are found to be effective for ensuring the integrity of welded components

  11. Analysis of cracks in stainless steel TIG [tungsten inert gas] welds

    International Nuclear Information System (INIS)

    Nakagaki, M.; Marschall, C.; Brust, F.

    1986-12-01

    This report contains the results of a combined experimental and analytical study of ductile crack growth in tungsten inert gas (TIG) weldments of austenitic stainless steel specimens. The substantially greater yield strength of the weld metal relative to the base metal causes more plastic deformation in the base metal adjacent to the weld than in the weld metal. Accordingly, the analytical studies focused on the stress-strain interaction between the crack tip and the weld/base-metal interface. Experimental work involved tests using compact (tension) specimens of three different sizes and pipe bend experiments. The compact specimens were machined from a TIG weldment in Type 304 stainless steel plate. The pipe specimens were also TIG welded using the same welding procedures. Elastic-plastic finite element methods were used to model the experiments. In addition to the J-integral, different crack-tip integral parameters such as ΔT/sub p/* and J were evaluated. Also, engineering J-estimation methods were employed to predict the load-carrying capacity of the welded pipe with a circumferential through-wall crack under bending

  12. TIG Dressing Effects on Weld Pores and Pore Cracking of Titanium Weldments

    Directory of Open Access Journals (Sweden)

    Hui-Jun Yi

    2016-10-01

    Full Text Available Weld pores redistribution, the effectiveness of using tungsten inert gas (TIG dressing to remove weld pores, and changes in the mechanical properties due to the TIG dressing of Ti-3Al-2.5V weldments were studied. Moreover, weld cracks due to pores were investigated. The results show that weld pores less than 300 μm in size are redistributed or removed via remelting due to TIG dressing. Regardless of the temperature condition, TIG dressing welding showed ductility, and there was a loss of 7% tensile strength of the weldments. Additionally, it was considered that porosity redistribution by TIG dressing was due to fluid flow during the remelting of the weld pool. Weld cracks in titanium weldment create branch cracks around pores that propagate via the intragranular fracture, and oxygen is dispersed around the pores. It is suggested that the pore locations around the LBZ (local brittle zone and stress concentration due to the pores have significant effects on crack initiation and propagation.

  13. Multiple Crack Growth Prediction in AA2024-T3 Friction Stir Welded Joints, Including Manufacturing Effects

    DEFF Research Database (Denmark)

    Carlone, Pierpaolo; Citarella, Roberto; Sonne, Mads Rostgaard

    2016-01-01

    A great deal of attention is currently paid by several industries toward the friction stir welding process to realize lightweight structures. Within this aim, the realistic prediction of fatigue behavior of welded assemblies is a key factor. In this work an integrated finite element method - dual...... boundary element method (FEM-DBEM) procedure, coupling the welding process simulation to the subsequent crack growth assessment, is proposed and applied to simulate multiple crack propagation, with allowance for manufacturing effects. The friction stir butt welding process of the precipitation hardened AA...... on a notched specimen. The whole procedure was finally tested comparing simulation outcomes with experimental data. The good agreement obtained highlights the predictive capability of the method. The influence of the residual stress distribution on crack growth and the mutual interaction between propagating...

  14. Characterization for solidification and phase transformations of pure-titanium steel weld metal with time-resolved X-ray diffraction system

    International Nuclear Information System (INIS)

    Terasaki, Hidenori; Komizo, Yu-ichi; Nishino, Fumihiro; Ikeda, Masahiko

    2007-01-01

    Understanding and controlling solidification and phase transformation process of weld metal is essential for forming the microstructure with superior mechanical property. Recent evolution of analysis technique makes for solidification and phase transformation process to be in-situ analyzed, in direct and reciprocal lattice space. In the present work, unidirectional-solidification and phase transformation in the weld metal of commercial pure-titanium in Gas Tungsten Arc welding was in-situ observed by using Time-Resolved X-Ray Diffraction system with two-dimensional pixel detector. An undulator beam was used as a probe. Larger diffraction area could be detected in the time-resolution of 0.05 seconds, in unidirectional solidification and subsequent phase transformation process of pure-titanium weld metal. Furthermore, the microstructure formation during β-α phase transformation was in situ observed with High temperature Laser Scanning Confocal Microscopy. The crystal configurations in unidirectional solidification of weld metal and rapid change of phase ratio in reconstructive phase transformation were clearly analyzed. (author)

  15. Primary water stress corrosion cracking resistance of alloy 690 heat affected zones of butt welds

    International Nuclear Information System (INIS)

    Fournier, L.; Calonne, O.; Toloczko, M.B.; Bruemmer, S.M.; Massoud, J.P.; Lemaire, E.; Gerard, R.; Somville, F.; Richnau, A.; Lagerstrom, J.

    2015-01-01

    A wide V-groove butt weld was fabricated from Alloy 690 plates using Alloy 152 filler material, maximum allowable heat input, and very stiff strong-backs. Alloy 690 heat affected zones (HAZ) was characterized in terms of microstructure and plastic strains induced by weld shrinkage. Crack initiation tests were carried out in pure hydrogenated steam at 400 C. degrees for 4000 h. Crack growth rate tests were performed in simulated PWR primary water at a temperature of 360 C. degrees. A maximum plastic strain around 5% was measured in the vicinity of the fusion line, which decreased almost linearly with the distance from the fusion line. Crack initiation tests on Alloy 690 HAZ specimens as well as on 30% cold-rolled Alloy 690 specimens were performed in pure hydrogenated steam at 400 C. degrees (partial pressure of hydrogen = 0.7 bar) for a total of 4000 h using cylindrical notched tensile specimens, reverse U-bends and flat micro-tensile specimens. No crack initiation was detected. Stress corrosion propagation rates revealed extremely low SCC (Stress Corrosion Cracking) growth rates both in the base metal and in the HAZ region whose magnitudes are of no engineering significance. Overall, the results indicated limited plastic strain induced by weld shrinkage in butt weld HAZ, and to no particular susceptibility of primary water stress corrosion cracking. (authors)

  16. The influence of specimen size on creep crack growth rate in cross-weld CT specimens cut out from a welded component

    International Nuclear Information System (INIS)

    Andersson, Peder; Segle, Peter; Samuelson, Lars Aa.

    1999-04-01

    A 3D finite element study of creep crack growth in cross-weld CT specimens with material properties of 2.25Cr1Mo at 550 deg C is carried out, where large strain and displacement theory is used. The creep crack growth rate is calculated using a creep ductility based damage model, in which the creep strain rate perpendicular to the crack plane ahead of the crack tip is integrated, considering the multiaxial stress state. The influence of specimen size on creep crack growth rate under constant load is given special attention, but the possibility to transfer results from cross-weld CT specimens to welded high temperature components is also investigated. The creep crack growth rate of a crack in a circumferentially welded pipe is compared with the creep crack growth rate of cross-weld CT specimens of three different sizes, cut out from the pipe. Although the constraint ahead of the crack tip is higher for a larger CT specimen, the creep crack growth rate is higher for a smaller specimen than for a larger one if they are loaded to attain the same stress intensity factor. If the specimens are loaded to the same C* value, however, a more complicated pattern occurs; depending on the material properties of the weldment constituents, the CT specimen with the intermediate size will either yield the highest or the lowest creep crack growth rate

  17. A Review on Solidification and Change in Mechanical Properties Under Vibratory Welding Condition

    OpenAIRE

    Jyoti Prakash; Dr. S.P. Tewari; Bipin Kumar Srivastava

    2010-01-01

    Welding has been applied to various industries in particular, automotive, aerospace and microelectronics. Thermal cycle produced near weld line generates residual stress and inhomogeneous plastic deformation in weldments. However there are many methods for welding the workpieces and one of the method among these is vibratory welding. It has the advantages of less investment, more convenient operation, less pollution and shorter manufacturing period. In vibratory welding, workpiece vibrates in...

  18. Welding processes for Inconel 718- A brief review

    Science.gov (United States)

    Tharappel, Jose Tom; Babu, Jalumedi

    2018-03-01

    Inconel 718 is being extensively used for high-temperature applications, rocket engines, gas turbines, etc. due to its ability to maintain high strength at temperatures range 450-700°C complimented by excellent oxidation and corrosion resistance and its outstanding weldability in either the age hardened or annealed condition. Though alloy 718 is reputed to possess good weldability in the context of their resistance to post weld heat treatment cracking, heat affected zone (HAZ) and weld metal cracking problems persist. This paper presents a brief review on welding processes for Inconel 718 and the weld defects, such as strain cracking during post weld heat treatment, solidification cracking, and liquation cracking. The effect of alloy chemistry, primary and secondary processing on the HAZ cracking susceptibility, influence of post/pre weld heat treatments on precipitation, segregation reactions, and effect of grain size etc. discussed and concluded with future scope for research.

  19. Crack initiation and propagation in welded joints of turbine and boiler steels during low cycle fatigue

    International Nuclear Information System (INIS)

    Lindblom, J.; Sandstroem, R.; Linde, L.; Henderson, P.

    1990-01-01

    Low cycle fatigue (LCF) tests have been performed at 300 and 565 degrees C on welded joints and on microstructures to be found in or near welded joints in a low alloy ferritic steel 0.5 Cr, 0.5 Mo, 0.25 V. The difference in lifetimes between the 300 degrees C and 565 degrees C tests was small comparing the same microstructures and strain ranges, although the stress amplitude was greater at 300 degrees C. Under constant stress conditions the fatigue life depended on the fatigue life of the parent metal but under constant strain conditions the lifetime was governed by that of the bainitic structures. Strain controlled LCF tests have been performed at 750 degrees C on welded joints in the austenitic steel AISI 316 and on different parent and weld metals used in these joints. In continuously cycled samples all cracks were transgranular and initiated at the surface; hold-time samples displayed internally initiated intergranular cracking in the weld metal. Under constant strain conditions the 316 parent and weld metals exhibited similar lifetimes. When considering a constant stress situation the strength of the microsturctures decreased in the following order: Sanicro weld metal, cold deformed parent metal, undeformed parent metal and weld metal (K.A.E.)

  20. Surface studies of iridium-alloy grain boundaries associated with weld cracking

    International Nuclear Information System (INIS)

    Mosley, W.C.

    1982-01-01

    Plutonium-238 oxide fuel pellets for the General Purpose Heat Source (GPHS) Radioisotopic Thermoelectric Generators to be used on the NASA Galileo Mission to Jupiter and the International Solar Polar Mission are produced and encapsulated in iridium alloy at the Savannah River Plant (SRP). Underbead cracks occasionally occur in the girth weld on the iridium-alloy-clad vent sets in the region where the gas tungsten arc is quenched. Grain-boundary structures and compositions were characterized by scanning electron microscopy/x-ray energy spectroscopy, electron microprobe analysis and scanning Auger microprobe analysis to determine the cause of weld quench area cracking. Results suggest that weld quench area cracking may be caused by gas porosity or liquation in the grain boundaries

  1. Prevention of microcracking by REM addition to alloy 690 filler metal in laser clad welds

    International Nuclear Information System (INIS)

    Okauchi, Hironori; Saida, Kazuyoshi; Nishimoto, Kazutoshi

    2011-01-01

    Effect of REM addition to alloy 690 filler metal on microcracking prevention was verified in laser clad welding. Laser clad welding on alloy 132 weld metal or type 316L stainless steel was conducted using the five different filler metals of alloy 690 varying the La content. Ductility-dip crack occurred in laser clad welding when La-free alloy 690 filler metal was applied. Solidification and liquation cracks occurred contrarily in the laser cladding weld metal when the 0.07mass%La containing filler metal was applied. In case of laser clad welding on alloy 132 weld metal and type 316L stainless steel, the ductility-dip cracking susceptibility decreased, and solidification/liquation cracking susceptibilities increased with increasing the La content in the weld metal. The relation among the microcracking susceptibility, the (P+S) and La contents in every weld pass of the laser clad welding was investigated. Ductility-dip cracks occurred in the compositional range (atomic ratio) of La/(P+S) 0.99(on alloy 132 weld metal), >0.90 (on type 316L stainless steel), while any cracks did not occur at La/(P+S) being between 0.21-0.99 (on alloy 132 weld metal) 0.10-0.90 (on type 316L stainless steel). Laser clad welding test on type 316L stainless steel using alloy 690 filler metal containing the optimum La content verified that any microcracks did not occurred in the laser clad welding metal. (author)

  2. Cracking generated by arc welding; La fissuration consecutive a l'operation de soudage a l'arc

    Energy Technology Data Exchange (ETDEWEB)

    Carpreau, J.M. [LaMSID UMR EDF-CNRS-CEA 2832, 78 - Chatou (France)

    2010-07-01

    During welding, rapid localized heat transients lead to thermal cycles, resulting in changes in the local metallurgy and mechanical loading of the components to be joined. Depending on the materials, these changes may generate cracks, making the weld structure unable to resist in-service loading. Analysis of various cracking mechanisms showed the role of the thermomechanical loading of the weld or HAZ during cooling after arc welding. Hence, prediction of cracking is based on the calculation of the thermomechanical stress, which often gives an estimated range, or from a mechanistically-based phenomenological approach. (author)

  3. Stress corrosion cracking tests on electron beam welded carbon steel specimens in carbonate-bicarbonate solution

    International Nuclear Information System (INIS)

    Parkins, R.N.

    1985-04-01

    Stress corrosion cracking tests have been performed on tapered carbon steel test pieces containing electron beam welds with a view to defining susceptibility to such cracking in a carbonate-bicarbonate solution at 90 C and an appropriate electrode potential. The tests involved applying cyclic loads to the specimens and it is shown that the threshold stress for cracking reduces linearly with increase in the magnitude of the cyclic load component. Extrapolation of these trends to zero fluctuating stress indicates static load threshold stresses in the vicinity of the yield stress (i.e. about 300 N/mm 2 for parent plate without a weld, 400 N/mm 2 for specimens with welds on one side only and 600 N/mm 2 for specimens having welds penetrating through the thickness of the specimen). The averages of the maximum crack velocities observed were least for parent plate material and greatest for weld metal, the former being essentially intergranular in morphology and the latter mostly transgranular, with heat affected zone material being intermediate between these extremes. (author)

  4. Estimation of stress intensity factors for circumferential cracked pipes under welding residual stress filed

    International Nuclear Information System (INIS)

    Oh, Chang Young; Kim, Yun Jae; Oh, Young Jin; Song, Tae Kwang; Kim, Yong Beum; Oh, Young Jin; Song, Tae Kwang; Kim, Yong Beum

    2012-01-01

    Recently, stress corrosion cracking(SCC) have been found in dissimilar metal welds of nozzles in some pressurized water reactors and on low carbon stainless steel piping systems of boiling water reactors. The important factor of SCC is the residual stress field caused by weld. For the evaluation of crack growth analysis due to SCC, stress intensity factor under a residual stress field should be estimated. Several solutions for stress intensity factor under residual stress field were recommended in flaw assessment codes such as the American Society of Mechanical Engineers (ASME) Section XI, R6, American Petroleum Institute (API579). Some relevant works have been studied. Dong et al. evaluated stress intensity factors in welded structures. Miyazaki et al. estimated stress intensity factors of surface crack in simple stress fields. This paper presents a simple method to estimate stress intensity factors in welding residual stress field. For general application, results of structure integrity assessment codes KI solutions were compared Finite element analyses of welding simulation and cracked pipes are described. Comparison results of KI solutions and proposed simplified solution are presented in the works

  5. Reactor cooling water expansion joint bellows: The role of the seam weld in fatigue crack development

    International Nuclear Information System (INIS)

    West, S.L.; Nelson, D.Z.; Louthan, M.R. Jr.

    1992-01-01

    The secondary cooling water system pressure boundary of Savannah River Site reactors includes expansion joints utilizing a thin-wall bellows. While successfully used for over thirty years, an occasional replacement has been required because of the development of small, circumferential fatigue cracks in a bellows convolute. One such crack was recently shown to have initiated from a weld heat-affected zone liquation microcrack. The crack, initially open to the outer surface of the rolled and seam welded cylindrical bellows section, was closed when cold forming of the convolutes placed the outer surface in residual compression. However, the bellows was placed in tension when installed, and the tensile stresses reopened the microcrack. This five to eight grain diameter microcrack was extended by ductile fatigue processes. Initial extension was by relatively rapid propagation through the large-grained weld metal, followed by slower extension through the fine-grained base metal. A significant through-wall crack was not developed until the crack extended into the base metal on both sides of the weld. Leakage of cooling water was subsequently detected and the bellows removed and a replacement installed

  6. Effect of post-weld aging treatment on mechanical properties of Tungsten Inert Gas welded low thickness 7075 aluminium alloy joints

    International Nuclear Information System (INIS)

    Temmar, M.; Hadji, M.; Sahraoui, T.

    2011-01-01

    Highlights: → The effects of post-weld aging treatment on the properties of joints is studied. → The post-weld aging treatment increases the tensile strength of TIG welded joints. → The strengthening is due to a balance of dissolution, reversion and precipitation. → Simple post-weld aging at 140 o C enhances the properties of the welded joints. -- Abstract: This paper reports the influence of post-weld aging treatment on the microstructure, tensile strength, hardness and Charpy impact energy of weld joints low thickness 7075 T6 aluminium alloy welded by Tungsten Inert Gas (TIG). Hot cracking occurs in aluminium welds when high levels of thermal stress and solidification shrinkage are present while the weld is undergoing various degrees of solidification. Weld fusion zones typically exhibit microstructure modifications because of the thermal conditions during weld metal solidification. This often results in low weld mechanical properties and low resistance to hot cracking. It has been observed that the mechanical properties are very sensitive to microstructure of weld metal. Simple post-weld aging treatment at 140 o C applied to the joints is found to be beneficial to enhance the mechanical properties of the welded joints. Correlations between microstructures and mechanical properties were discussed.

  7. Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints

    Science.gov (United States)

    Alwin, B.; Lakshminarayanan, A. K.; Vasudevan, M.; Vasantharaja, P.

    2017-12-01

    The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.

  8. Current results for the NRC's short cracks in piping and piping welds research program

    International Nuclear Information System (INIS)

    Wilkowski, G.; Krishnaswamy, P. Brust, F.; Francini, R.; Ghadiali, N.; Kilinski, T.; Marschall, C.; Rahman, S.; Rosenfield, A.; Scott, P.

    1994-01-01

    The overall objective of the Short Cracks in Piping and Piping Welds Program is to verify and improve engineering analyses to predict the fracture behavior of circumferentially cracked pipe under quasi-static loading with particular attention to crack lengths typically used in LBB or flaw evaluation criteria. The program consists of 8 technical tasks as listed below. Task 1 Short through-wall-cracked (TWC) pipe evaluations. Task 2 Short surface-cracked pipe evaluations. Task 3 Bi-metallic weld crack evaluations. Task 4 Dynamic strain aging and crack instabilities. Task 5 Fracture evaluations of anisotropic pipe. Task 6 Crack-opening-area evaluations. Task 7 NRCPIPE Code improvements. Task 8 Additional efforts. Since the last WRSM meeting several additional tasks have been initiated in this program. These are discussed in Task 8. Based on results to date, the first seven tasks have also been modified as deemed necessary. The most significant accomplishments in each of these tasks since the last WRSIM meeting are discussed below. The details of all the results presented here are published in the semiannual reports from this program

  9. Crack Resistance of Welded Joints of Pipe Steels of Strength Class K60 of Different Alloying Systems

    Science.gov (United States)

    Tabatchikova, T. I.; Tereshchenko, N. A.; Yakovleva, I. L.; Makovetskii, A. N.; Shander, S. V.

    2018-03-01

    The crack resistance of welded joints of pipe steels of strength class K60 and different alloying systems is studied. The parameter of the crack tip opening displacement (CTOD) is shown to be dependent on the size of the austenite grains and on the morphology of bainite in the superheated region of the heat-affected zone of the weld. The crack resistance is shown to be controllable due to optimization of the alloying system.

  10. Effect of welding processes and consumables on fatigue crack growth behaviour of armour grade quenched and tempered steel joints

    Directory of Open Access Journals (Sweden)

    G. Magudeeswaran

    2014-03-01

    Full Text Available Quenched and Tempered (Q&T steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC in the heat affected zone (HAZ after welding. The use of austenitic stainless steel (ASS consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic steel (LHF consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. The use of ASS and LHF consumables will lead to distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence in the fatigue crack growth resistance of armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence of welding consumables and welding processes on fatigue crack growth behaviour of armour grade Q&T Steel joints. Shielded metal arc welding (SMAW and Flux cored arc welding (FCAW were used for fabrication of joints using ASS and LHF consumables. The joints fabricated by SMAW process using LHF consumable exhibited superior fatigue crack growth resistance than all other joints.

  11. Stress corrosion cracking of austenitic weld deposits in a salt spray environment

    Energy Technology Data Exchange (ETDEWEB)

    Cai, J.B. [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China); Yu, C.; Shiue, R.K. [Department of Materials Engineering, National Taiwan University, Taipei 106, Taiwan (China); Tsay, L.W., E-mail: b0186@mail.ntou.edu.tw [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2015-10-15

    ER 308L and 309LMo were utilized as the filler metals for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. U-bend and weight-loss tests were conducted by testing the welds in a salt spray containing 10 wt% NaCl at 120 °C. The dissolution of the skeletal structure in the fusion zone (FZ) caused the stress corrosion cracking (SCC) of the weld. The FZ in the cold-rolled condition showed the longest single crack length in the U-bend tests. Moreover, sensitization treatment at 650 °C for 10 h promoted the formation of numerous fine cracks, which resulted in a high SCC susceptibility. The weight loss of the deposits was consistent with the SCC susceptibility of the welds in a salt spray. The 309LMo deposit was superior to the 308L deposit in the salt spray. - Highlights: • ER 308L and 309LMo were utilized as fillers for the groove and overlay welds of a 304L SS. • U-bend and weight-loss tests in a salt spray containing 10 wt% NaCl at 120 °C were performed. • The dissolution of solidified structure caused the SCC of the welds in a salt spray. • Sensitization treatment increased the weight loss and SCC susceptibility of the deposits. • The weight loss of the weld deposits was related to their SCC susceptibility in a salt spray.

  12. Stress corrosion cracking of austenitic weld deposits in a salt spray environment

    International Nuclear Information System (INIS)

    Cai, J.B.; Yu, C.; Shiue, R.K.; Tsay, L.W.

    2015-01-01

    ER 308L and 309LMo were utilized as the filler metals for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. U-bend and weight-loss tests were conducted by testing the welds in a salt spray containing 10 wt% NaCl at 120 °C. The dissolution of the skeletal structure in the fusion zone (FZ) caused the stress corrosion cracking (SCC) of the weld. The FZ in the cold-rolled condition showed the longest single crack length in the U-bend tests. Moreover, sensitization treatment at 650 °C for 10 h promoted the formation of numerous fine cracks, which resulted in a high SCC susceptibility. The weight loss of the deposits was consistent with the SCC susceptibility of the welds in a salt spray. The 309LMo deposit was superior to the 308L deposit in the salt spray. - Highlights: • ER 308L and 309LMo were utilized as fillers for the groove and overlay welds of a 304L SS. • U-bend and weight-loss tests in a salt spray containing 10 wt% NaCl at 120 °C were performed. • The dissolution of solidified structure caused the SCC of the welds in a salt spray. • Sensitization treatment increased the weight loss and SCC susceptibility of the deposits. • The weight loss of the weld deposits was related to their SCC susceptibility in a salt spray.

  13. Diffractive optics for reduction of hot cracking in pulsed mode Nd:YAG laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olesen, Søren; Roos, Sven-Olov

    2001-01-01

    In order to reduce the susceptibility to hot cracking in pulsed mode laser welding of austenitic stainless steel, an optical system for reduction of the cooling rate is sought developed. Based on intensive numerical simulations, an optical system producing three focused spots is made. In a number...

  14. Characterization of Residual Stress Effects on Fatigue Crack Growth of a Friction Stir Welded Aluminum Alloy

    Science.gov (United States)

    Newman, John A.; Smith, Stephen W.; Seshadri, Banavara R.; James, Mark A.; Brazill, Richard L.; Schultz, Robert W.; Donald, J. Keith; Blair, Amy

    2015-01-01

    An on-line compliance-based method to account for residual stress effects in stress-intensity factor and fatigue crack growth property determinations has been evaluated. Residual stress intensity factor results determined from specimens containing friction stir weld induced residual stresses are presented, and the on-line method results were found to be in excellent agreement with residual stress-intensity factor data obtained using the cut compliance method. Variable stress-intensity factor tests were designed to demonstrate that a simple superposition model, summing the applied stress-intensity factor with the residual stress-intensity factor, can be used to determine the total crack-tip stress-intensity factor. Finite element, VCCT (virtual crack closure technique), and J-integral analysis methods have been used to characterize weld-induced residual stress using thermal expansion/contraction in the form of an equivalent delta T (change in local temperature during welding) to simulate the welding process. This equivalent delta T was established and applied to analyze different specimen configurations to predict residual stress distributions and associated residual stress-intensity factor values. The predictions were found to agree well with experimental results obtained using the crack- and cut-compliance methods.

  15. Hydrogen Cracking in Gas Tungsten Arc Welding of an AISI Type 321 Stainless Steel

    Science.gov (United States)

    Rozenak, P.; Unigovski, Ya.; Shneck, R.

    The effects of in situ cathodic charging on the tensile properties and susceptibility to cracking of an AISI type 321 stainless steel, welded by the gas tungsten arc welding (GTAW) process, was studied by various treatments. Appearance of delta-ferrite phase in the as-welded steels in our tested conditions was observed with discontinuous grain boundaries (M23C6) and a dense distribution of metal carbides MC ((Ti, Nb)C), which precipitated in the matrix. Shielding gas rates changes the mechanical properties of the welds. Ultimate tensile strength and ductility are increases with the resistance to the environments related the increase of the supplied shielding inert gas rates. Charged specimens, caused mainly in decreases in the ductility of welded specimens. However, more severe decrease in ductility was obtained after post weld heat treatment (PWHT). The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited massive transgranular regions. Both types of specimen demonstrated narrow brittle zones at the sides of the fracture surface and ductile micro-void coalescences in the middle. Ferrite δ was form after welding with high density of dislocation structures and stacking faults formation and the thin stacking fault plates with e-martensite phase were typically found in the austenitic matrix after the cathodical charging process.

  16. Fatigue crack growth rate studies on pipes and pipe welds made of austenitic stainless steel and carbon steel

    International Nuclear Information System (INIS)

    Arora, Punit; Singh, P.K.; Bhasin, Vivek; Vaze, K.K.; Pukazhendhi, D.M.; Gandhi, P.; Raghava, G.

    2011-01-01

    The objective of the present study is to understand the fatigue crack growth behavior in austenitic stainless steel and carbon steel pipes and pipe welds by carrying out analysis/predictions and experiments. The Paris law has been used for the prediction of fatigue crack growth life. To carry out the analysis, Paris constants have been determined for pipe (base) and pipe weld materials by using Compact Tension (CT)/Three Point Bend (TPB) specimens machined from the actual pipe/pipe weld. Analyses have been carried out to predict the fatigue crack growth life of pipes/pipe welds having part through cracks on the outer surface. In the analyses, Stress Intensity Factors (K) have been evaluated through two different schemes. The first scheme considers the 'K' evaluations at two points of the crack front i.e. maximum crack depth and crack tip at the outer surface. The second scheme accounts for the area averaged root mean square stress intensity factor (K RMS ) at deepest and surface points. In order to validate the analytical procedure/results, experiments have been carried out on full scale pipe and pipe welds with part through circumferential crack. Fatigue crack growth life evaluated using both schemes have been compared with experimental results. Use of stress intensity factor (K RMS ) evaluated using second scheme gives better fatigue crack growth life prediction compared to that of first scheme. (author)

  17. Development of stress corrosion cracking resistant welds of 321 stainless steel by simple surface engineering

    Science.gov (United States)

    Mankari, Kamal; Acharyya, Swati Ghosh

    2017-12-01

    We hereby report a simple surface engineering technique to make AISI grade 321 stainless steel (SS) welds resistant to stress corrosion cracking (SCC) in chloride environment. Heat exchanger tubes of AISI 321 SS, welded either by (a) laser beam welding (LBW) or by (b) metal inert gas welding (MIG) were used for the study. The welds had high magnitude of tensile residual stresses and had undergone SCC in chloride environment while in service. The welds were characterized using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). Subsequently, the welded surfaces were subjected to buffing operation followed by determination of residual stress distribution and surface roughness by XRD and surface profilometer measurements respectively. The susceptibility of the welds to SCC was tested in buffed and un-buffed condition as per ASTM G-36 in boiling MgCl2 for 5 h and 10 h, followed by microstructural characterization by using optical microscope and FESEM. The results showed that the buffed surfaces (both welds and base material) were resistant to SCC even after 10 h of exposure to boiling MgCl2 whereas the un-buffed surfaces underwent severe SCC for the same exposure time. Buffing imparted high magnitude of compressive stresses on the surface of stainless steel together with reduction in its surface roughness and reduction in plastic strain on the surface which made the welded surface, resistant to chloride assisted SCC. Buffing being a very simple, portable and economic technique can be easily adapted by the designers as the last step of component fabrication to make 321 stainless steel welds resistant to chloride assisted SCC.

  18. Effect of the crack-starter weld condition on the nil-ductility transition temperature

    International Nuclear Information System (INIS)

    Satoh, Masanobu; Funada, Tatsuo; Tomimatsu, Minoru

    1985-01-01

    In ASME Code Sec. III, the value of the reference nil-ductility temperature RT sub(EDT) has an important significance to determine the result of the fracture mechanics evaluation. While in the standard both the drop-weight test and Charpy impact test are required to determine the RT sub(NDT), in practice it is normally determined only by the nil-ductility transition temperature (T sub(EDT)) obtained by the drop-weight test. The cases of data scatter in T sub(NDT) were investigated to establish appropriate conditions of crack-starter bead welding. Drop-weight tests were carried out for nuclear vessel steels by changing welding conditions to examine the effects of welding amperage and shapes of welding table on T sub(NDT). The results show that the preparation of crack-starter bead by small welding amperage should not be allowed, because it makes the measured T sub(NDT) non-conservative, and that it is important to use a welding table which increases the cooling rate of specimen. Furthermore, the authors proposed methods for estimating T sub(NDT) of nuclear vessel steels by using Charpy transition temperatures. (author)

  19. Evaluation of stress intensity factors due to welding residual stresses for circumferential cracked pipes

    International Nuclear Information System (INIS)

    Oh, Chang-Young; Kim, Yun-Jae; Oh, Young-Jin; Kim, Jong-Sung; Song, Tae-Kwang; Kim, Yong-Beum

    2013-01-01

    To investigate the applicability of existing methods to estimate stress intensity factors due to welding residual stresses, comparisons with finite element (FE) solutions are made for two types of generic welding residual stress profiles, generated by simulating repair welds. It is found that fitting residual stresses over the crack depth using third-order polynomials gives good estimates of stress intensity factors but fitting over the entire thickness can result in inaccurate estimates even with fourth-order polynomials. Noting that welding residual stresses are often determined from FE analyses, linearization of residual stresses to estimate stress intensity factors is proposed. Comparison with FE solutions shows good agreements. -- Highlights: ► Applicability of K estimation methods is investigated for welding residual stresses. ► Two types of generic residual stress profiles with repair welds are considered. ► Fitting residual stresses over the crack depth gives good estimates of K. ► A method to estimate K by linearising residual stress profiles is proposed

  20. Methodology to evaluate the crack growth rate by stress corrosion cracking in dissimilar metals weld in simulated environment of PWR nuclear reactor

    International Nuclear Information System (INIS)

    Paula, Raphael G.; Figueiredo, Celia A.; Rabelo, Emerson G.

    2013-01-01

    Inconel alloys weld metal is widely used to join dissimilar metals in nuclear reactors applications. It was recently observed failures of weld components in plants, which have triggered an international effort to determine reliable data on the stress corrosion cracking behavior of this material in reactor environment. The objective of this work is to develop a methodology to determine the crack growth rate caused by stress corrosion in Inconel alloy 182, using the specimen (Compact Tensile) in simulated PWR environment. (author)

  1. A new modeling method for natural PWSCC cracking simulation in a dissimilar metal weld

    International Nuclear Information System (INIS)

    Xu, Heqin; Mahmoud, Samer; Nana, Ashok; Killian, Doug

    2014-01-01

    Cracks found in a nuclear power plant reactor coolant system (RCS), such as primary water stress corrosion cracking (PWSCC) and intergranular stress corrosion cracking (IGSCC), usually have natural crack front shapes that can be very different from the idealized semi-elliptical or rectangular shapes considered in engineering handbooks and other analytical solutions based on limited shapes. Simplifications towards semi-elliptical shape or rectangular shape may potentially introduce unnecessary conservatism when the simplified shape has to contain the actual crack shape. On the other hand, it is very time-consuming to create a three-dimensional (3D) finite element (FE) model to simulate crack propagation in a natural shape using existing public-domain software like ABAQUS or ANSYS. In this study, a local deformation-based mesh-mapping (LDMM) method is proposed to model cracks with a natural front shape in any 3D structures. This methodology is first applied to model circumferential surface cracks with a natural crack front shape in the cross-sectional plane of a cylinder. The proposed new method can be applied to simulate both shallow and deep cracks. Also discussed in this paper is a direct method to reproduce welding residual stresses in the crack model using temperature fields combined with other sustained loads to predict crack propagations. With this novel LDMM method, natural crack fronts and non-planar crack faces can be easily modeled. The proposed new method can be used to generate a high-quality finite element model that can be used for both linear-elastic fracture mechanics (LEFM) and elastic–plastic fracture mechanics (EPFM) analyses. The study case illustrates that the proposed LDMM method is easy to implement and more efficient than the existing commercial software

  2. Prediction of residual stress distributions due to surface machining and welding and crack growth simulation under residual stress distribution

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Katsuyama, JInya; Onizawa, Kunio; Hashimoto, Tadafumi; Mikami, Yoshiki; Mochizuki, Masahito

    2011-01-01

    Research highlights: → Residual stress distributions due to welding and machining are evaluated by XRD and FEM. → Residual stress due to machining shows higher tensile stress than welding near the surface. → Crack growth analysis is performed using calculated residual stress. → Crack growth result is affected machining rather than welding. → Machining is an important factor for crack growth. - Abstract: In nuclear power plants, stress corrosion cracking (SCC) has been observed near the weld zone of the core shroud and primary loop recirculation (PLR) pipes made of low-carbon austenitic stainless steel Type 316L. The joining process of pipes usually includes surface machining and welding. Both processes induce residual stresses, and residual stresses are thus important factors in the occurrence and propagation of SCC. In this study, the finite element method (FEM) was used to estimate residual stress distributions generated by butt welding and surface machining. The thermoelastic-plastic analysis was performed for the welding simulation, and the thermo-mechanical coupled analysis based on the Johnson-Cook material model was performed for the surface machining simulation. In addition, a crack growth analysis based on the stress intensity factor (SIF) calculation was performed using the calculated residual stress distributions that are generated by welding and surface machining. The surface machining analysis showed that tensile residual stress due to surface machining only exists approximately 0.2 mm from the machined surface, and the surface residual stress increases with cutting speed. The crack growth analysis showed that the crack depth is affected by both surface machining and welding, and the crack length is more affected by surface machining than by welding.

  3. Stable crack growth behaviors in welded CT specimens -- finite element analyses and simplified assessments

    International Nuclear Information System (INIS)

    Yagawa, Genki; Yoshimura, Shinobu; Aoki, Shigeru; Kikuchi, Masanori; Arai, Yoshio; Kashima, Koichi; Watanabe, Takayuki; Shimakawa, Takashi

    1993-01-01

    The paper describes stable crack growth behaviors in welded CT specimens made of nuclear pressure vessel A533B class 1 steel, in which initial cracks are placed to be normal to fusion line. At first, using the relations between the load-line displacement (δ) and the crack extension amount (Δa) measured in experiments, the generation phase finite element crack growth analyses are performed, calculating the applied load (P) and various kinds of J-integrals. Next, the simplified crack growth analyses based on the GE/EPRI method and the reference stress method are performed using the same experimental results. Some modification procedures of the two simplified assessment schemes are discussed to make them applicable to inhomogeneous materials. Finally, a neural network approach is proposed to optimize the above modification procedures. 20 refs., 13 figs., 1 tab

  4. A non-destructive evaluation of transverse hydrogen cracking in high strength flux-cored weld metal

    International Nuclear Information System (INIS)

    Sterjovski, Z.; Carr, D. G.; Holdstock, R.; Nolan, D.; Norrish, J.

    2007-01-01

    Transverse hydrogen cracking in high strength weld metal (WM) is a potentially serious problem in thick-sections, especially in highly restrained structures. This paper presents preliminary re suits for which transverse weld metal hydrogen cracking was purposefully generated in 40 mm thick high strength WM to study the effectiveness of various non-destructive testing methods in locating and sizing transverse cracks. Transverse WM hydrogen cracking was intentionally produced by: increasing diffusible hydrogen levels through the introduction of 2% hydrogen in CO 2 shielding gas and minimizing interpass temperature and time; increasing the cracking susceptibility of the micro structure by increasing cooling rate with a large-scale test plate and maintaining an interpass temperature below 70 deg C; increasing stress levels with the use of stiffeners and end welds; and rapid postweld cooling to a temperature lower than 100 deg C. The extent of transverse weld metal hydrogen cracking was evaluated by non-destructive testing (NDT), which included conventional ultrasonic testing, radiography, acoustic emission monitoring and magnetic particle inspection. It was established that conventional ultrasonic testing was the most effective of the NDT techniques used. Acoustic emission monitoring revealed that two different types of emissions emanated from the weld metal and that the majority of emissions occurred within the first 48 hours of welding, although there was some evidence of cracking well after this initial 48 hour period. Larger sized cracks were observed near the transverse stiffeners (and weld ends) where tensile residual stresses (both longitudinal and transverse) were thought to be highest and the micro structure was therefore more susceptible to cracking. Additionally, numerous finer cracks were located in the top third of the plate (in the thickness direction) and on both sides of the weld centre line

  5. Effect of weld metal properties on fatigue crack growth behaviour of gas tungsten arc welded AISI 409M grade ferritic stainless steel joints

    International Nuclear Information System (INIS)

    Shanmugam, K.; Lakshminarayanan, A.K.; Balasubramanian, V.

    2009-01-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel and duplex stainless steel on fatigue crack growth behaviour of the gas tungsten arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single 'V' butt welded joints. Centre cracked tensile (CCT) specimens were prepared to evaluate fatigue crack growth behaviour. Servo hydraulic controlled fatigue testing machine was used to evaluate the fatigue crack growth behaviour of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength, hardness and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  6. Rate of fatigue crack growth in residual stress fields of welded titanium joints with different contents of embrittling impurities

    International Nuclear Information System (INIS)

    Troshchenko, V.T.; Pokrovskij, V.V.; Yarusevich, V.L.; Mikhajlov, V.I.; Sher, V.A.

    1990-01-01

    Resistance to fatigue crack growth (FCG) has been studied in welded joints of structural titanium alloys contaminated by embrittling impurities. Besides, effect of crack closing has been taken into account what makes it possible to determine the effective coefficient of the stress intensity. The rate of fatigue crack growth is proved to considerably depend on the value and direction of residual stresses. The rate dependence of FCG in welded joints of structural titanium alloys on the swing of effective coefficient of stress intensity is invariant to the value and direction of weld residual stresses

  7. Effect of Microstructure on Stress Corrosion Cracking Behaviour of High Nitrogen Stainless Steel Gas Tungsten Arc Welds

    Science.gov (United States)

    Mohammed, Raffi; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    Present work is aimed to improve stress corrosion cracking resistance of high nitrogen steel and its welds. An attempt to weld high nitrogen steel of 5 mm thick plate using gas tungsten arc welding (GTAW) with three high strength age hardenable fillers i.e., 11-10 PH filler, PH 13- 8Mo and maraging grade of MDN 250 filler is made. Welds were characterized by optical microscopy and scanning electron microscopy. Vickers hardness testing of the welds was carried out to study the mechanical behaviour of welds. Potentio-dynamic polarization studies were done to determine pitting corrosion resistance in aerated 3.5% NaCl solution. Stress corrosion cracking (SCC) testing was carried out using constant load type machine with applied stress of 50% yield strength and in 45% MgCl2 solution boiling at 155°C. The results of the present investigation established that improvement in resistance to stress corrosion cracking was observed for PH 13- 8Mo GTA welds when compared to 11-10 PH and MDN 250 GTA welds. However, All GTA welds failed in the weld interface region. This may be attributed to relatively lower pitting potential in weld interface which acts as active site and the initiation source of pitting.

  8. Type IIIa cracking at 2CrMo welds in 1/2CrMoV pipework

    Energy Technology Data Exchange (ETDEWEB)

    Brett, S.J.; Smith, P.A. [National Power plc, Swindon (United Kingdom)

    1998-12-31

    The most common form of in-service defect found today on the welds of National Power`s 1/2CrMoV pipework systems is Type IV cracking which occurs in intercritically transformed material at the edge of the heat affected zone. However an alternate form of cracking, termed IIIa, which occurs close to the weld fusion line in fully grain refined heat affected zones, has also been observed. The incidence of Type IIIa cracking has increased in recent years and these defects now constitute a significant part of the total recorded crack population. This presentation describes Type IIIa cracking and compares and contrasts it with the better documented Type IV cracking. Particular reference is made to the role of carbon diffusion at the weld fusion line in promoting Type IIIa damage in preference to Type IV. (orig.) 5 refs.

  9. Type IIIa cracking at 2CrMo welds in 1/2CrMoV pipework

    Energy Technology Data Exchange (ETDEWEB)

    Brett, S J; Smith, P A [National Power plc, Swindon (United Kingdom)

    1999-12-31

    The most common form of in-service defect found today on the welds of National Power`s 1/2CrMoV pipework systems is Type IV cracking which occurs in intercritically transformed material at the edge of the heat affected zone. However an alternate form of cracking, termed IIIa, which occurs close to the weld fusion line in fully grain refined heat affected zones, has also been observed. The incidence of Type IIIa cracking has increased in recent years and these defects now constitute a significant part of the total recorded crack population. This presentation describes Type IIIa cracking and compares and contrasts it with the better documented Type IV cracking. Particular reference is made to the role of carbon diffusion at the weld fusion line in promoting Type IIIa damage in preference to Type IV. (orig.) 5 refs.

  10. Low temperature fatigue crack propagation in neutron irradiated Type 316 steel and weld metal

    International Nuclear Information System (INIS)

    Lloyd, G.J.; Walls, J.D.; Gravenor, J.

    1981-02-01

    The fast cycling fatigue crack propagation characteristics of Type 316 steel and weld metal have been investigated at 380 0 C after irradiation to 1.72-1.92x10 20 n/cm 2 (E>1MeV) and 2.03x10 21 n/cm 2 (E>1MeV) at the same temperature. With mill-annealed Type 316 steel, modest decreases in the rates of crack propagation were observed for both dose levels considered, whereas for cold-worked Type 316 steel irradiation to 2.03x10 21 n/cm 2 (E>1MeV) caused increases in the rate of crack propagation. For Type 316 weld metal, increases in the rate of crack propagation were observed for both dose levels considered. The diverse influences of irradiation upon fatigue crack propagation in these materials are explained by considering a simple continuum mechanics model of crack propagation together with the results of control tensile experiments made on similarly irradiated materials. (author)

  11. On the anomalous temperature dependency of fatigue crack growth of SS 316(N) weld

    Energy Technology Data Exchange (ETDEWEB)

    Babu, M. Nani; Dutt, B. Shashank; Venugopal, S. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sasikala, G., E-mail: gsasi@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Bhaduri, A.K.; Jayakumar, T.; Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2010-07-25

    Fatigue crack growth behaviour of a nuclear grade SS 316(N) weld metal was examined in the Paris and threshold regimes in the as-welded condition, at 300, 573 and 823 K. The {Delta}K{sub th} values were 11.2, 7.5, and 9.5 MPa {radical}m, respectively. These values were corrected for closure effects and the corresponding {Delta}K{sub th,eff} were found to be 7.7, 5.8 and 3.5 MPa {radical}m, respectively. The anomalous behaviour, i.e., the high value of {Delta}K{sub th} at 823 K has been explained based on crack closure effect which is roughness induced at 300 K and oxide induced at 823 K, with both these insignificant at 573 K. The effect of temperature on crack growth mechanism and the associated closure mechanisms are discussed. The stress shielding at the crack tip due to closure is accounted for and the effective stress intensity factor experienced by the crack tip, {Delta}K{sub eff,tip} is determined. It is demonstrated that {Delta}K{sub eff,tip} qualifies as a more appropriate parameter as the driving force for the temperature-dependent crack growth in the near-threshold and Paris regimes.

  12. Experimental assessment of welded joints brittle fracture on the crack arrest criterion for WWER-1000 RPV

    International Nuclear Information System (INIS)

    Blumin, A.A.; Timofeev, B.T.

    2000-01-01

    The crack arrest fracture toughness in a vessel steel used in WWER-1000 reactor, namely in steel 15Kh2NMFA and its submerged arc welded joints, produced with Sv-08KhGNMTA, Sv-12 Kh2NMFA welding wires and NF-18 M, FZ-16 A welding fluxes, is under study. Experimental studies are carried out using three heats with the chemical composition meeting the specifications. Weld specimens 100-200 mm thick are subjected to tempering according various regimes to induce the embrittlement and simulate mechanical properties (yield strength and ductile-brittle transition temperature) corresponding to those at the end of service life under neutron radiation effect. Base metal and weld properties are compared. The wide scatter is noted for experimental data on fracture toughness temperature dependences. A possibility to use the dependence of K Ia = f (T-T k ) for determining the crack arrest fracture toughness is discussed taking in account that K Ia is a stress intensity factor calculated within the frame of static fracture mechanics [ru

  13. Stress corrosion cracking of alloy 182 weld in a PWR water environment

    International Nuclear Information System (INIS)

    Lima, Luciana Iglesias Lourenco; Schvartzman, Monica Maria de Abreu Mendonca; Quinan, Marco Antonio Dutra; Soares, Antonio Edicleto Gomes; Piva, Stephano P.T.

    2011-01-01

    The weld used to connect two different metals is known as dissimilar metal welds (DMW). In the nuclear power plant, this weld is used to join stainless steel nipples to low alloy carbon steel components on the nuclear pressurized water reactor (PWR). In most cases, nickel alloys are used to joint these materials. These alloys are known to accommodate the differences in composition and thermal expansion of the two materials. The stress corrosion cracking (SCC) is a phenomenon that occurs in nuclear power plants metallic components where susceptibility materials are subjected to the simultaneously effect of mechanical stress and an aggressive media with different compositions. SCC is one of degradation process that gradually introduces damage of components, change their characteristics with the operation time. The nickel alloy 600, and their weld metals (nickel alloys 82 and 182), originally selected due to its high corrosion resistance, it exhibit after long operation period (20 years), susceptibility to the SCC. This study presents a comparative work between the SCC in the Alloy 182 filler metal weld in two different temperatures (303 deg C and 325 deg C) in primary water. The susceptibility to stress corrosion cracking was assessed using the slow strain rate tensile (SSRT) test. The results of the SSRT tests indicated that SCC is a thermally-activated mechanism and that brittle fracture caused by the corrosion process was observed at 325 deg C. (author)

  14. An investigation of reheat cracking in the weld heat affected zone of type 347 stainless steel

    Science.gov (United States)

    Phung-On, Isaratat

    2007-12-01

    Reheat cracking has been a persistent problem for welding of many alloys such as the stabilized stainless steels: Types 321 and 347 as well as Cr-Mo-V steels. Similar problem occurs in Ni-base superalloys termed "strain-age cracking". Cracking occurs during the post weld heat treatment. The HAZ is the most susceptible area due to metallurgical reactions in solid state during both heating and cooling thermal cycle. Many investigations have been conducted to understand the RHC mechanism. There is still no comprehensive mechanism to explain its underlying mechanism. In this study, there were two proposed cracking mechanisms. The first is the formation of a PFZ resulting in local weakening and strain localization. The second is the creep-like grain boundary sliding that causes microvoid formation at the grain boundaries and the triple point junctions. Cracking occurs due to the coalescence of the microvoids that form. In this study, stabilized grade stainless steel, Type 347, was selected for investigation of reheat cracking mechanism due to the simplicity of its microstructure and understanding of its metallurgical behavior. The Gleeble(TM) 3800 system was employed due to its capability for precise control of both thermal and mechanical simulation. Cylindrical samples were subjected to thermal cycles for the HAZ simulation followed by PWHT as the reheat cracking test. "Susceptibility C-curves" were plotted as a function of PWHT temperatures and time to failure at applied stress levels of 70% and 80% yield strength. These C-curves show the possible relationship of the reheat cracking susceptibility and carbide precipitation behavior. To identify the mechanism, the sample shape was modified containing two flat surfaces at the center section. These flat surfaces were electro-polished and subjected to the HAZ simulation followed by the placement of the micro-indentation arrays. Then, the reheat cracking test was performed. The cracking mechanism was identified by tracing

  15. Very High Cycle Fatigue Crack Initiation Mechanism in Nugget Zone of AA 7075 Friction Stir Welded Joint

    Directory of Open Access Journals (Sweden)

    Chao He

    2017-01-01

    Full Text Available Very high cycle fatigue behavior of nugget zone in AA 7075 friction stir welded joint was experimentally investigated using ultrasonic fatigue testing system (20 kHz to clarify the crack initiation mechanism. It was found that the fatigue strength of nugget zone decreased continuously even beyond 107 cycles with no traditional fatigue limits. Fatigue cracks initiated from the welding defects located at the bottom side of the friction stir weld. Moreover, a special semicircular zone could be characterized around the crack initiation site, of which the stress intensity factor approximately equaled the threshold of fatigue crack propagation rate. Finally, a simplified model was proposed to estimate the fatigue life by correlating the welding defect size and applied stress. The predicted results are in good agreement with the experimental results.

  16. Relationship Between Solidification Microstructure and Hot Cracking Susceptibility for Continuous Casting of Low-Carbon and High-Strength Low-Alloyed Steels: A Phase-Field Study

    Science.gov (United States)

    Böttger, B.; Apel, M.; Santillana, B.; Eskin, D. G.

    2013-08-01

    Hot cracking is one of the major defects in continuous casting of steels, frequently limiting the productivity. To understand the factors leading to this defect, microstructure formation is simulated for a low-carbon and two high-strength low-alloyed steels. 2D simulation of the initial stage of solidification is performed in a moving slice of the slab using proprietary multiphase-field software and taking into account all elements which are expected to have a relevant effect on the mechanical properties and structure formation during solidification. To account for the correct thermodynamic and kinetic properties of the multicomponent alloy grades, the simulation software is online coupled to commercial thermodynamic and mobility databases. A moving-frame boundary condition allows traveling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. From the simulation results, significant microstructure differences between the steel grades are quantitatively evaluated and correlated with their hot cracking behavior according to the Rappaz-Drezet-Gremaud (RDG) hot cracking criterion. The possible role of the microalloying elements in hot cracking, in particular of traces of Ti, is analyzed. With the assumption that TiN precipitates trigger coalescence of the primary dendrites, quantitative evaluation of the critical strain rates leads to a full agreement with the observed hot cracking behavior.

  17. Residual stress measurement of large scaled welded pipe using neutron diffraction method. Effect of SCC crack propagation and repair weld on residual stress distribution

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Katsuyama, Jinya; Tobita, Tohru; Morii, Yukio

    2011-01-01

    The RESA-1 neutron engineering diffractometer in the JRR-3 (Japan Research Reactor No.3) at the Japan Atomic Energy Agency, which is used for stress measurements, was upgraded to realize residual stress measurements of large scaled mechanical components. A series of residual stress measurements was made to obtain through-thickness residual stress distributions in a Type 304 stainless steel butt-welded pipe of 500A-sch.80 using the upgraded RESA-1 diffractometer. We evaluated effects of crack propagation such as stress corrosion cracking (SCC) and a part-circumference repair weld on the residual stress distributions induced by girth welding. Measured residual stress distributions near original girth weld revealed good agreement with typical results shown in some previous works using finite element method, deep hole drilling as well as neutron diffraction. After introducing a mock crack with 10 mm depth in the heat affected zone on the inside wall of the pipe by electro discharge machining, the axial residual stresses were found to be released in the part of the mock crack. However, changes in the through-wall bending stress component and the self-equilibrated stress component were negligible and hence the axial residual stress distribution in the ligament was remained in the original residual stresses near girth weld without the mock crack. Furthermore, changes in hoop and radial residual stress were also small. The residual stress distributions after a part repair welding on the outer circumference of the girth weld were significantly different from residual stress distributions near the original girth weld. The through-thickness average axial residual stress was increased due to increase of the tensile membrane stress and mitigation of the bending stress after repair welding. Throughout above studies, we evidenced that the neutron diffraction technique is useful and powerful tool for measuring residual stress distributions in large as well as thick mechanical

  18. Effect of composition on diffusible hydrogen content and hydrogen assisted cracking of steel welds

    International Nuclear Information System (INIS)

    Albert, S.K.; Ramasubbu, V.; Bhaduri, A.K.; Parvathavarthini, N.

    2008-01-01

    Study of hydrogen assisted cracking and measurement of diffusible hydrogen content in different Cr-Mo steel welds showed that for identical conditions, susceptibility to cracking increased and diffusible hydrogen content decreased with increase in alloy content. Hydrogen permeation studies showed that hydrogen diffusivity decreases and solubility increases with increase in alloy content. Thus decrease in diffusible hydrogen content with increase in alloying is attributed to increase in apparent solubility and decrease in apparent diffusivity of hydrogen with increase in alloy content. Analysis of the results indicates that variation of diffusible hydrogen content and apparent diffusivity of hydrogen with alloy content can be represented as a function of alloy composition. (author)

  19. Effect of micromorphology at the fatigue crack tip on the crack growth in electron beam welded Ti-6Al-4V joint

    International Nuclear Information System (INIS)

    Tao, Junhui; Hu, Shubing; Ji, Longbo

    2016-01-01

    In this paper, we describe experiments on welded joints of Ti-6Al-4V alloy specimens exhibiting fatigue characteristics in the base metal (BM), hot affected zone (HAZ) and fuse zone (FZ). The effect of micromorphology on crack propagation at the tip of the fatigue crack in joints formed by electron beam welding was investigated using an optical microscope, transmission electron microscope and other methodologies. The results demonstrated that the fatigue crack originated in and propagated along α/β boundaries in the BM. In the HAZ, the fatigue crack occurred at the boundary between martensite laths, and propagated through most irregular-equiaxed α phases and a few martensite laths. In the FZ, the fatigue crack originated at the boundaries between the fine crushing phases among martensite laths, and propagated along a majority of α/β boundaries and several narrow martensite laths. The electron beam welded joint of Ti-6Al-4V alloy showed instances of zigzag fatigue cracks that increased in degree from lowest in the HAZ, moderate in the FZ to greatest in the BM. Conversely, fatigue crack growth rate (FCGR) was greatest in the HAZ, less in the FZ and slowest in the BM. - Highlights: •Ti-6Al-4V welded joint exhibits different fatigue characteristics. •The fatigue crack propagates along α/β boundaries in the BM. •The fatigue crack propagates through α phases and martensite laths in the HAZ. •The fatigue crack propagates along α/β boundaries and martensite laths in the FZ. •Fatigue crack growth rate is fastest in the HAZ, less in the FZ, slowest in the BM.

  20. Liquation Cracking in the Heat-Affected Zone of IN738 Superalloy Weld

    Directory of Open Access Journals (Sweden)

    Kai-Cheng Chen

    2018-05-01

    Full Text Available The main scope of this study investigated the occurrence of liquation cracking in the heat-affected zone (HAZ of IN738 superalloy weld, IN738 is widely used in gas turbine blades in land-based power plants. Microstructural examinations showed considerable amounts of γ’ uniformly precipitated in the γ matrix. Electron probe microanalysis (EPMA maps showed the γ-γ’ colonies were rich in Al and Ti, but lean in other alloy elements. Moreover, the metal carbides (MC, fine borides (M3B2 and M5B3, η-Ni3Ti, σ (Cr-Co and lamellar Ni7Zr2 intermetallic compounds could be found at the interdendritic boundaries. The fracture morphologies and the corresponding EPMA maps confirmed that the liquation cracking in the HAZ of the IN738 superalloy weld resulted from the presence of complex microconstituents at the interdendritic boundaries.

  1. Fatigue Crack Growth Characteristics of Cold Stretched STS 304 Welded Joint

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Won; Na, Seong Hyeon; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Kim, Young Kyun; Kim, Ki Dong [Korea Gas Coporation R& D Division, Daejeon (Korea, Republic of)

    2017-09-15

    STS 304 steel is used as pressure vessel material, and although it exhibits excellent mechanical characteristics at a low temperature, it is heavier than other materials. To address this issue, a method using cold-stretching techniques for STS 304 can be applied. In this study, a cold-stretching part and welded joint specimen were directly obtained from a cold-stretching pressure vessel manufactured according to ASME code. Fatigue crack propagation tests were carried out at room temperature and -170℃ using the compliance method for stress ratios of 0.1 and 0.5. The results indicate that crack growth rate of the welded joint is higher than that of the cold-stretching part within the same stress intensity factor range. The outcome of this work is expected to serve as a basis for the development of a cold-stretched STS 304 pressure vessel.

  2. Hydrogen Assisted Cracking of High Strength Steel Welds

    Science.gov (United States)

    1988-05-01

    differs in general from the previous models in that hydrogen is assumed , to enhance local plasticity rather than truly embrittle the lattice. 5) Formation...measured. - The salient caracteristics of the IIW test include: - A 10mm X 15mm X 30mm specimen machined from mild steel with a sur- . .. face ground...hydrogen so %4. -. ,*. that a crack can grow under a lower applied stress. This theory has been criticized on the basis that the small but finite plastic

  3. Analytical description of fatigue crack propagation regularities taking into account residual welding stresses

    International Nuclear Information System (INIS)

    Trufyakov, V.I.; Knysh, V.V.; Mikheev, P.P.; Kuz'menko, A.Z.

    1983-01-01

    The procedure, accounting the effect of residual stresses on crack resistance of welded constructions under cyclic loads, is described. The procedure is based on the Paris equation modified by the introduction of the coefficient of residual stress intensity through the functional dependence. The dependence is determined for cases of residual stresses of tension and compression. The experimental data for the 15KhSND steel are presented

  4. Crack-arrest tests on two irradiated high-copper welds

    International Nuclear Information System (INIS)

    Iskander, S.K.; Corwin, W.R.; Nanstad, R.K.

    1994-03-01

    The objective of the Heavy-Section Steel Irradiation Program Sixth Irradiation Series is to determine the effect of neutron irradiation on the shift and shape of the lower-bound curve to crack-arrest toughness data. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Crack-arrest specimens fabricated from these welds were irradiated at a nominal temperature of 288 degrees C to an average fluence of 1.9 x 10 19 neutrons/cm 2 (>1 MeV). This is the second report giving the results of the tests on irradiated duplex-type crack-arrest specimens. A previous report gave results of tests on irradiated weld-embrittled-type specimens. Charpy V-notch (CVN) specimens irradiated in the same capsules as the crack-arrest specimens were also tested, and a 41-J transition temperature shift was determined from these specimens. open-quotes Mean close-quote curves of the same form as the American Society of Mechanical Engineers (ASME) K la curve were fit to the data with only the open-quotes reference temperatureclose quotes as a parameter. The shift between the mean curves agrees well with the 41-J transition temperature shift obtained from the CVN specimen tests. Moreover, the four data points resulting from tests on the duplex crack-arrest specimens of the present study did not make a significant change to mean curve fits to either the previously obtained data or all the data combined

  5. Influence of structure on static cracking resistance and fracture of welded joints of pipe steels of strength class K60

    Science.gov (United States)

    Tereshchenko, N. A.; Tabatchikova, T. I.; Yakovleva, I. L.; Makovetskii, A. N.; Shander, S. V.

    2017-07-01

    The static cracking resistance of a number of welded joints made from pipe steels of K60 strength class has been determined. It has been established that the deformation parameter CTOD varies significantly at identical parameters of weldability of steels. The character of fracture has been investigated and the zone of local brittleness of welded joints has been studied. It has been shown that the ability of a metal to resist cracking is determined by the austenite grain size and by the bainite morphology in the region of overheating in the heat-affected zone of a welded joint.

  6. Effect of residual stress on fatigue crack propagation at 200 C in a welded joint austenitic stainless steel - ferritic steel

    International Nuclear Information System (INIS)

    Zahouane, A.I.; Gauthier, J.P.; Petrequin, P.

    1988-01-01

    Fatigue resistance of heterogeneous welded joints between austenitic stainless steels and ferritic steels is evaluated for reactor components and more particularly effect of residual stress on fatigue crack propagation in a heterogeneous welded joint. Residual stress is measured by the hole method in which a hole is drilled through the center of a strain gage glued the surface of the materials. In the non uniform stress field a transmissibility function is used for residual stress calculation. High compression residual stress in the ferritic metal near the interface ferritic steel/weld slow down fatigue crack propagation. 5 tabs., 15 figs., 19 refs [fr

  7. Normalizing effect on fatigue crack propagation at the heat-affected zone of AISI 4140 steel shielded metal arc weldings

    Directory of Open Access Journals (Sweden)

    B. Vargas-Arista

    2013-01-01

    Full Text Available The fractography and mechanical behaviour of fatigue crack propagation in the heat-affected zone (HAZ of AISI 4140 steel welded using the shielded metal arc process was analysed. Different austenitic grain size was obtained by normalizing performed at 1200 °C for 5 and 10 hours after welding. Three point bending fatigue tests on pre-cracked specimens along the HAZ revealed that coarse grains promoted an increase in fatigue crack growth rate, hence causing a reduction in both fracture toughness and critical crack length, and a transgranular brittle final fracture with an area fraction of dimple zones connecting cleavage facets. A fractographic analysis proved that as the normalizing time increased the crack length decreased. The increase in the river patterns on the fatigue crack propagation in zone II was also evidenced and final brittle fracture because of transgranular quasicleavage was observed. Larger grains induced a deterioration of the fatigue resistance of the HAZ.

  8. Three-dimensional cellular automaton-finite element modeling of solidification grain structures for arc-welding processes

    International Nuclear Information System (INIS)

    Chen, Shijia; Guillemot, Gildas; Gandin, Charles-André

    2016-01-01

    Solidification grain structure has significant impact on the final properties of welded parts using fusion welding processes. Direct simulation of grain structure at industrial scale is yet rarely reported in the literature and remains a challenge. A three-dimensional (3D) coupled Cellular Automaton (CA) – Finite Element (FE) model is presented that predicts the grain structure formation during multiple passes Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW). The FE model is established in a level set (LS) approach that tracks the evolution of the metal-shielding gas interface due to the addition of metal. The FE method solves the mass, energy and momentum conservation equations for the metal plus shielding gas system based on an adaptive mesh (FE mesh). Fields are projected in a second FE mesh, named CA mesh. A CA grid made of a regular lattice of cubic cells is created to overlay the fixed CA mesh. The CA model based on the CA grid simulates the melting and growth of the grain boundaries in the liquid pool. In order to handle large computational domains while keeping reasonable computational costs, parallel computations and dynamic strategies for the allocation/deallocation of the CA grid are introduced. These strategies correspond to significant optimizations of the computer memories that are demonstrated. The 3D CAFE model is first applied to the simple configuration of single linear passes by GTAW of a duplex stainless steel URANUS 2202. It is then applied to a more persuasive example considering GMAW in spray transfer mode during multiple passes to fill a V-groove chamfer. Simulations reveal the possibility to handle domains with millions of grains in representative domain sizes while following the formation of textures that result from the growth competition among columnar grains. -- Graphical abstract: Simulated 3D grain structure (3D CAFE model) for GTAW multiple linear passes at the surface of a duplex stainless steel (URANUS 22002

  9. Investigation of UT procedure for crack depth sizing by phased array UT in Ni-based alloy weld

    International Nuclear Information System (INIS)

    Hirasawa, Taiji; Fukutomi, Hiroyuki

    2013-01-01

    Recently, it has been reported that the primary water stress corrosion cracking (PWSCC) has occurred in nickel based alloy weld components such as steam generator safe end weld, reactor vessel safe end weld, and so on, in PWR. Defect detection and sizing are important in order to ensure the reliable operation and life extension of nuclear power plants. In the reactor vessel safe end weld, it was impossible to measure crack depth of PWSCC. The cracks have occurred in the axial direction of the safe end weld. Furthermore, the cracks had some features such as deep, large aspect ratio (ratio of crack depth and length), sharp geometry of crack tip, and so on. Therefore, development and improvement of defect depth sizing capabilities by ultrasonic testing (UT) have been required. Phased array UT technique was applied with regard to defect depth sizing at the inside inspection in Ni-based alloy welds. Phased array UT was examined a standard block specimen with side drilled holes (SDHs). From the experimental results, the performance of linear array probes and dual matrix array probe were investigated. In the basis of the results, UT procedure for defect depth sizing was investigated and proposed. The UT procedure was applied to the defect depth measurement in Ni-based alloy weld specimen with electric discharge machine (EDM) notches. From these results, good accuracy of defect depth sizing by phased array UT for the inside inspection was shown. Therefore, it was clarified the effectiveness of the UT procedure for defect depth sizing in Ni-based alloy weld. (author)

  10. Microstructural analysis of cracks generated during welding of 2195 aluminum-lithium alloy

    Science.gov (United States)

    Talia, George E.

    1994-01-01

    This research summarizes a series of studies conducted at Marshall Space Flight Center to characterize the properties of 2195 Al-Li alloy. 2195 Al-Li alloy, developed by Martin Marietta laboratories, is designated as a replacement of 2219 Al-Cu alloy for the External Tank (E.T.) of the space shuttle. 2195 Al-Li alloy with its advantage of increased strength per weight over its predecessor, 2219 Al-Cu alloy, also challenges current technology. 2195 Al-Li has a greater tendency to crack than its predecessor. The present study began with the observation of pore formation in 2195 Al-Li alloy in a thermal aging process. In preliminary studies, Talia and Nunes found that most of the two pass welds studied exhibited round and crack-like porosity at the weld roots. Furthermore, the porosity observed was associated with the grain boundaries. The porosity level can be increased by thermal treatment in the air. A solid state reaction proceeding from dendritic boundaries in the weld fusion zone was observed to correlate with the generation of the porosity.

  11. Fundamental Metallurgy of Solidification

    DEFF Research Database (Denmark)

    Tiedje, Niels

    2004-01-01

    The text takes the reader through some fundamental aspects of solidification, with focus on understanding the basic physics that govern solidification in casting and welding. It is described how the first solid is formed and which factors affect nucleation. It is described how crystals grow from...

  12. Fusion zone microstructure of laser beam welded directionally solidified Ni3Al-base alloy IC6

    International Nuclear Information System (INIS)

    Ding, R.G.; Ojo, O.A.; Chaturvedi, M.C.

    2006-01-01

    The fusion zone microstructure of laser welded alloy IC6 was examined. Extensive weld-metal cracking was observed to be closely associated with non-equilibrium eutectic-type microconstituents identified as consisting of γ, γ' and NiMo (Y) phases. Their formation has been related to modification of primary solidification path due to reduced solutal microsegregation

  13. Relationship between Microstructure and Ductility Dip Cracking resistance of Alloy 600/690 weld metals

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jae Yong; Lee, Chang Hee [Hanyang University, Seoul (Korea, Republic of); Kim, Min Chul; Lee, Ho Jin; Kim, Keoung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Kwang Soo; Shim, Deog Nam [Doosan HEAVY Industries and Construction, Seoul (Korea, Republic of)

    2009-10-15

    Ni-Cr-Fe alloys are used extensively in nuclear power systems for their resistance to general corrosion, localized corrosion, and environmentally assisted cracking. However, concerns with stress corrosion cracking of moderate chromium (14.22 wt-%) alloys such as Alloy 600 and its filler metals(FMs) (E-182 and EN82) have driven the application of higher chromium (28.30 wt-%) alloys like Alloy 690. While Alloy 690 and its FMs show outstanding resistance to environmentally assisted cracking in most water-reactor environments, these alloys are prone to welding defects, most notably to ductility dip cracking(DDC). The DDC occurs at temperatures between 0.5 and 0.8 of their melting temperature. This ductility drop may result in intergranular elevated temperature cracking often referred to as DDC. The DDC may occur during the high temperature processing of these alloys or during welding if the imposed strain exhausts the available ductility within this temperature range. Several alloy systems including Ni-base alloys, Ni.Cu alloys, Cu alloys, stainless steels and steels, have been reported to be susceptible to DDC. A complete understanding of the DDC mechanism does not exist, which makes DDC control in actual production conditions a very difficult task. In this study, the DDC resistance was evaluated with different FMs which have different chemical composition. The microstructural features of FMs such as precipitation behavior and grain boundaries morphology were observed, and it were correlated with the DDC susceptibility. The hot ductility test and strainto- fracture test was used to evaluate the DDC susceptibility at high temperature.

  14. Relationship between Microstructure and Ductility Dip Cracking resistance of Alloy 600/690 weld metals

    International Nuclear Information System (INIS)

    Ryu, Jae Yong; Lee, Chang Hee; Kim, Min Chul; Lee, Ho Jin; Kim, Keoung Ho; Park, Kwang Soo; Shim, Deog Nam

    2009-01-01

    Ni-Cr-Fe alloys are used extensively in nuclear power systems for their resistance to general corrosion, localized corrosion, and environmentally assisted cracking. However, concerns with stress corrosion cracking of moderate chromium (14.22 wt-%) alloys such as Alloy 600 and its filler metals(FMs) (E-182 and EN82) have driven the application of higher chromium (28.30 wt-%) alloys like Alloy 690. While Alloy 690 and its FMs show outstanding resistance to environmentally assisted cracking in most water-reactor environments, these alloys are prone to welding defects, most notably to ductility dip cracking(DDC). The DDC occurs at temperatures between 0.5 and 0.8 of their melting temperature. This ductility drop may result in intergranular elevated temperature cracking often referred to as DDC. The DDC may occur during the high temperature processing of these alloys or during welding if the imposed strain exhausts the available ductility within this temperature range. Several alloy systems including Ni-base alloys, Ni.Cu alloys, Cu alloys, stainless steels and steels, have been reported to be susceptible to DDC. A complete understanding of the DDC mechanism does not exist, which makes DDC control in actual production conditions a very difficult task. In this study, the DDC resistance was evaluated with different FMs which have different chemical composition. The microstructural features of FMs such as precipitation behavior and grain boundaries morphology were observed, and it were correlated with the DDC susceptibility. The hot ductility test and strainto- fracture test was used to evaluate the DDC susceptibility at high temperature

  15. Fatique crack propagation in bimetallic welds influence of residual stresses and metallurgical look

    International Nuclear Information System (INIS)

    Zahouane, A.I.

    1988-06-01

    Generally, in nuclear power plants, many components made of austenitic stainless steels are very often replaced by low alloyed steels cladded with stainless steels, mainly for economical reasons. Due to cracks existing at the limit of the two kinds of steel, it is interesting to try to understand how they appear. Residual stresses are generally identified as one of the factors which act to produce these cracks. Measurements of such residual stresses have been performed, using the hole drilling method (drilling of a hole at the center of a gauge roset stuck at the surface of the material). Owing to the obtained results, it is possible to explain the decrease in the crack propagation rate observed, on fatigue crack growth test performed on specimens taken in the transition ferritic/austenitic zone. The stress intensity factor due to the residual stresses is valued by weight function method. It is possible to explain qualitatively the phenomena observed under cyclic loading when using the obtained value of this stress intensity factor. A more quantitative approach based on the use of an efficient stress intensity factor, allow to better describe the effect of residual stresses on the fatigue crack propagation in bimetallic welds [fr

  16. Equation of short fatigue crack growth law of 1Cr18Ni9Ti weld metal

    International Nuclear Information System (INIS)

    Zhao Yongxiang; Yang Bing; Gao Qing

    2005-01-01

    The method is investigated for characterizing the short fatigue crack (SFC) behaviour of 1Cr18Ni9Ti weld metal by the 'effective short fatigue crack criterion'. Three considerations are given. Firstly, the dominant effective short fatigue crack (DESFC) behaviour is a result of the interaction and evolution of the collective SFCs and, therefore, it is deemed suitable to describe their collective behaviour. Secondly, the significant character of microstructural short crack (MSC) regime and physical short crack (PSC) regime for the behaviour of SFCs indicates that it should be well exhibited in the characterization. Thirdly, the stronger irregular behaviour of SFCs indicates the single parameter of cyclic stress or strain amplitude for representing driving force of DESFC growth may be not appropriated. A new growth law for the collective SFCs is derived from a consideration of the local cyclic strain energy density driving the DESFC initiation in the initial zone and, then, driving the DESFC growth in the zones around its tips. The final form of this law is relative to the total cyclic strain energy density of remote fields, which circle the initial zone and, then, the zones around the DESFC tips. Availability has been indicated by an analysis of the test data of present material. (authors)

  17. Influence of stress relieve heat treatment on fatigue crack propagation in structural steel resistant to atmospheric corrosion welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Geraldo de Paula; Villela, Jefferson Jose; Rabello, Emerson Giovani [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mails: gpm@cdtn.br; jjv@cdtn.br; egr@cdtn.br; Cimini Junior, Carlos Alberto[Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica]. E-mail: cimini@demet.ufmg.br; Godefroid, Leonardo Barbosa [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Dept. de Metalurgia]. E-mails: leonardo@demet.em.ufop.br

    2007-07-01

    In this work, the influence of stress relieve heat treatment (SRHT) on the fatigue crack propagation in USI-SAC 50 structural welded joints at the heat affected zone (HAZ) region was studied. Hardness measurements before and after the SRHT were made and crack propagation tests in specimens as welded (AW) and in specimens that were submitted to SRHT, which were accomplished. A reduction in hardness at the regions of HAZ and melted zone (MZ) after the SRHT were observed. It were also verified that the crack propagation rates (da/dN) versus DK on the specimens AW presented regions of retardation on the crack propagation rate, and in the specimens that were submitted to SRHT the crack propagation rate were homogeneous. (author)

  18. Evaluation of J-groove weld residual stress and crack growth rate of PWSCC in reactor pressure vessel closure head

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seung Hyuk; Ryu, Tae Young; Park, Seung Hyun; Won, Min Gu; Kang, Seok Jun; Kim, Moon Ki; Choi, Jae Boong [Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Kyoung Soo; Lee, Sung Ho [Korea Hydro and Nuclear Power, Daejeon (Korea, Republic of)

    2015-03-15

    Over the last decade, primary water stress corrosion cracking (PWSCC) has been frequently found in pressurized water reactor (PWR) applications. Especially, PWSCC has occurred in long-term operated PWRs. As this phenomenon leads to serious accidents, we must be beforehand with the anticipated problems. A typical PWR consists of J-groove welded components such as reactor pressure vessel closure head and nozzles. Reactor pressure vessel closure head is made of SA508 and it is covered by cladding. Alloy 600 is used for nozzles. And J-groove weld is conducted with alloy 82/182. Different material properties of these metals lead to residual stress and PWSCC consequentially. In this study, J-groove weld residual stress was investigated by a three-dimensional finite element analysis with an actual asymmetric J-groove weld model and process of construction. Also crack growth rate of PWSCC was evaluated from cracks applied on the penetration nozzles. Based on these two values, one cannot only improve the structural integrity of PWR, but also explain PWSCC behavior such that high residual stress at the J-groove weld area causes crack initiation and propagation through the surface of nozzles. In addition, crack behavior was predicted at the various points around the nozzle.

  19. Development of the advanced phased array UT technique for accurate sizing of cracks in the nozzle welding

    International Nuclear Information System (INIS)

    Nishida, Jun-ichiro; Kawanami, Seiichi; Ideo, Mitsushi; Matsuura, Takayuki; Chigusa, Naoki; Hirano, Shinro; Sera, Takehiko

    2010-01-01

    Recently, preventive maintenance tasks for welding of safe-end nozzles of reactor vessels and steam generators of PWRs in Japan had been carried out sequentially. Before the maintenance tasks, inspection services were carried out and several crack indications were found by eddy current testing (ECT). These indications were found in the welding which made by 600 series nickel base alloy and evaluated as stress corrosion cracks which were oriented to the axial direction of the nozzle. Then investigations to evaluate the depth of cracks were carried out by ultrasonic testing (UT) from inner surface of the nozzles. However they were difficult to evaluate the depth of cracks due to the high attenuation of the ultrasonic propagation caused by large grain structure of welding. And also it was required high resolution near surface region for accurate sizing. Therefore development of advanced phased array UT techniques specialized for the sizing at this portion was carried out. This paper reports the development status and verification test results. Firstly simulations of the ultrasonic propagation in the welding were carried out to optimize beam profiles of phased array probes. Next prototype probes were manufactured and verification tests were conducted to evaluate the accuracy of depth sizing. It is shown that the developed techniques have high sizing accuracy for artificial stress corrosion cracks in the welding. (author)

  20. Evaluation of J-groove weld residual stress and crack growth rate of PWSCC in reactor pressure vessel closure head

    International Nuclear Information System (INIS)

    Oh, Seung Hyuk; Ryu, Tae Young; Park, Seung Hyun; Won, Min Gu; Kang, Seok Jun; Kim, Moon Ki; Choi, Jae Boong; Lee, Kyoung Soo; Lee, Sung Ho

    2015-01-01

    Over the last decade, primary water stress corrosion cracking (PWSCC) has been frequently found in pressurized water reactor (PWR) applications. Especially, PWSCC has occurred in long-term operated PWRs. As this phenomenon leads to serious accidents, we must be beforehand with the anticipated problems. A typical PWR consists of J-groove welded components such as reactor pressure vessel closure head and nozzles. Reactor pressure vessel closure head is made of SA508 and it is covered by cladding. Alloy 600 is used for nozzles. And J-groove weld is conducted with alloy 82/182. Different material properties of these metals lead to residual stress and PWSCC consequentially. In this study, J-groove weld residual stress was investigated by a three-dimensional finite element analysis with an actual asymmetric J-groove weld model and process of construction. Also crack growth rate of PWSCC was evaluated from cracks applied on the penetration nozzles. Based on these two values, one cannot only improve the structural integrity of PWR, but also explain PWSCC behavior such that high residual stress at the J-groove weld area causes crack initiation and propagation through the surface of nozzles. In addition, crack behavior was predicted at the various points around the nozzle.

  1. A fractographic study of cracks produced by thermal shocks in 20MnMoNi55 and comparable weld material in water environment

    International Nuclear Information System (INIS)

    Toerroenen, K.; Rintamaa, R.; Kemppainen, M.

    1983-04-01

    This report gives the results of a fractographic study of cracks produced by thermal shocks in 20MnMoNi55 and comparable weld material in water environment. The basic crack growth mechanism is shown to be by mechanical fatigue, but after some crack growth indications of environmentally assisted cyclic crack growth is seen. (author)

  2. Effects of irradiation on crack-arrest toughness of two high-copper welds

    International Nuclear Information System (INIS)

    Iskander, S.K.; Corwin, W.R.; Nanstad, R.K.

    1990-01-01

    The objective of this study is to determine the effect of neutron irradiation on the shift and shape of the lower-bound curve to crack-arrest data. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Crack-arrest specimens fabricated from these welds were irradiated at a nominal temperature of 288 degree C to an average fluence of 1.9 x 10 19 neutrons/cm 2 (>1 MeV). A preliminary evaluation of the results shows that the neutron-irradiation induced crack-arrest toughness temperature shift is about the same as the Charpy V-notch impact temperature shift at the 41-J energy level. The shape of the lower-bound curves, (for the range of test temperatures covered), compared to those of the ASME K Ia -curve did not seem to have been altered by irradiation. 10 refs., 9 figs., 7 tabs

  3. Round Robin Analyses on Stress Intensity Factors of Inner Surface Cracks in Welded Stainless Steel Pipes

    Directory of Open Access Journals (Sweden)

    Chang-Gi Han

    2016-12-01

    Full Text Available Austenitic stainless steels (ASSs are widely used for nuclear pipes as they exhibit a good combination of mechanical properties and corrosion resistance. However, high tensile residual stresses may occur in ASS welds because postweld heat treatment is not generally conducted in order to avoid sensitization, which causes a stress corrosion crack. In this study, round robin analyses on stress intensity factors (SIFs were carried out to examine the appropriateness of structural integrity assessment methods for ASS pipe welds with two types of circumferential cracks. Typical stress profiles were generated from finite element analyses by considering residual stresses and normal operating conditions. Then, SIFs of cracked ASS pipes were determined by analytical equations represented in fitness-for-service assessment codes as well as reference finite element analyses. The discrepancies of estimated SIFs among round robin participants were confirmed due to different assessment procedures and relevant considerations, as well as the mistakes of participants. The effects of uncertainty factors on SIFs were deducted from sensitivity analyses and, based on the similarity and conservatism compared with detailed finite element analysis results, the R6 code, taking into account the applied internal pressure and combination of stress components, was recommended as the optimum procedure for SIF estimation.

  4. Effects of absorbed hydrogen on crack-tip ductility in the welded A516 steel

    International Nuclear Information System (INIS)

    Khattak, M.A.; Haslan, M.H.; Tamin, M.N.

    2007-01-01

    Effects of absorbed hydrogen on structure and properties of welded A516 Grade-70 steel are investigated. Emphasis is placed on ductility measure of the crack-tip plastic zone under Mode I loading. Specimens are cathodically charged in a cell with dilute sulphuric acid and corrosion inhibitor with uniform charging current density of 20 mA/ cm 2 and at different exposure time. Results indicate a change from coarse- to fine-grained microstructures in the weld region and heat affected zone (HAZ) of hydrogen-charged specimen. Well-defined ferrite-pearlite bands in the base metal are transformed into coarse-grain structure. Hardness variation along radial distance indicates higher values towards the center of the bar, possibly due to faster diffusion rate but limited solubility of hydrogen. Load-COD responses indicate that slow, stable crack propagation occurred in both base metal and HAZ. The measured provisional fracture toughness, K Q is higher for HAZ than that for the base metal. The toughness values decreases significantly for the initial three hours of hydrogen charging. The tensile fracture region in the immediate fatigue pre-crack tip forms a triangular (rough) zone due to limited constraint to free surface deformation in the thin specimen. Fracture surface of HAZ is dominated by intergranular fracture with localized cleavage facets. (author)

  5. Methods for protection of high-strength welded stainless steel from corrosion cracking

    International Nuclear Information System (INIS)

    Lashchevskij, V.B.; Gurvich, L.Ya.; Batrakov, V.P.; Kozheurova, N.S.; Molotova, V.A.; Shvarts, M.M.

    1978-01-01

    The efficiency of protection from corrosion cracking under a bending stress of 100 kgf/mm 2 in a salt mist and in a sulphur dioxide atmosphere, of welded joints of steel 08Kh15N5D2T with metallizing, galvanic and varnish coatings and lubricants, and of steel 1Kh15N4AM3 with sealing compounds has been investigated. Metallization of welded joints with aluminium and zinc efficiently increases corrosion resistance in a salt mist. Galvanic coatings of Cd, Zn, and Cr increase the time to cracking in a salt mist from 2-3 to 60-80 days. The protective properties of varnishes under the effect of a salt mist decrease in the following sequence: epoxy-polyamide enamel EP-140, acrylic enamel C-38, silicone enamels KO-834, KO-811, and KO-814. In an atmosphere containing SO 2 0.15 vol.% at 100% relative humidity, the varnishes investigated, with the exception of the inhibited coating XC-596, show lower protective properties than in a salt mist. The high efficiency of protection from corrosion cracking in a salt mist of slots of steel 1Kh15N4AM3 when using organic sealing compounds U4-21 and U5-21, and also slushing lubricants and oils PVK, TsIATIM-201, K17, and AMS3 was established

  6. Results of crack-arrest tests on two irradiated high-copper welds

    International Nuclear Information System (INIS)

    Iskander, S.K.; Corwin, W.R.; Nanstead, R.K.

    1990-12-01

    The objective of this study was to determine the effect of neutron irradiation on the shift and shape of the lower-bound curve to crack-arrest data. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Crack-arrest specimens fabricated from these welds were irradiated at a nominal temperature of 288 degree C to an average fluence of 1.9 x 10 19 neutrons/cm 2 (>1 MeV). Evaluation of the results shows that the neutron-irradiation-induced crack-arrest toughness temperature shift is about the same as the Charpy V-notch impact temperature shift at the 41-J energy level. The shape of the lower-bound curves (for the range of test temperatures covered) did not seem to have been altered by irradiation compared to those of the ASME K Ia curve. 9 refs., 21 figs., 10 tabs

  7. Round robin analysis on stress intensity factor of inner surface cracks in welded stainless steel pipes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chang Gi; Chang, Yoon Suk [Dept. of Nuclear Engineering, College of Engineering, Kyung Hee University, Yongin (Korea, Republic of); Kim, Jong Sung [Dept. of Mechanical Engineering, Sunchon National University, Sunchon (Korea, Republic of); Kim, Maan Won [Central Research Institute, Korea Hydro and Nuclear Power Company, Daejeon (Korea, Republic of)

    2016-12-15

    Austenitic stainless steels (ASSs) are widely used for nuclear pipes as they exhibit a good combination of mechanical properties and corrosion resistance. However, high tensile residual stresses may occur in ASS welds because postweld heat treatment is not generally conducted in order to avoid sensitization, which causes a stress corrosion crack. In this study, round robin analyses on stress intensity factors (SIFs) were carried out to examine the appropriateness of structural integrity assessment methods for ASS pipe welds with two types of circumferential cracks. Typical stress profiles were generated from finite element analyses by considering residual stresses and normal operating conditions. Then, SIFs of cracked ASS pipes were determined by analytical equations represented in fitness-for-service assessment codes as well as reference finite element analyses. The discrepancies of estimated SIFs among round robin participants were confirmed due to different assessment procedures and relevant considerations, as well as the mistakes of participants. The effects of uncertainty factors on SIFs were deducted from sensitivity analyses and, based on the similarity and conservatism compared with detailed finite element analysis results, the R6 code, taking into account the applied internal pressure and combination of stress components, was recommended as the optimum procedure for SIF estimation.

  8. Fatigue crack growth rate behaviour of friction-stir aluminium alloy AA2024-T3 welds under transient thermal tensioning

    International Nuclear Information System (INIS)

    Ilman, M.N.; Kusmono,; Iswanto, P.T.

    2013-01-01

    Highlights: • FSW enables unweldable aircraft material AA2024-T3 to be welded without cracking. • FSW applied to aircraft structure is required to have superior fatigue resistance. • Transient thermal tensioning (TTT) is being developed for stress relieving in FSW. • The fatigue crack growth rates of FSW joints under TTT are studied. - Abstract: Friction stir welding (FSW) has become a serious candidate technology to join metallic fuselage panels for the next generation of civil aircrafts. However, residual stress introduced during welding which subsequently affects fatigue performance is still a major problem that needs to be paid attention. The present investigation aims to improve fatigue crack growth resistance of friction stir aluminium alloy AA2024-T3 welds using transient thermal tensioning (TTT) treatment. In this investigation, aluminium alloy AA2024-T3 plates were joined using FSW process with and without TTT. The welding parameters used including tool rotation speed (Rt) and the plate travelling speed (v) were 1450 rpm and 30 mm/min respectively. The TTT treatments were carried out by heating both sides of friction stir weld line using moving electric heaters ahead of, beside and behind the tool at a heating temperature of 200 °C. Subsequently, a sequence of tests was carried out including microstructural examination, hardness measurement, tensile test and fatigue crack growth rate (FCGR) test in combination with fractography using scanning electron microscopy (SEM). The FCGR test was carried out using a constant amplitude fatigue experiment with stress ratio (R) of 0.1 and frequency (f) of 11 Hz whereas specimens used were centre-crack tension (CCT) type with the initial crack located at the weld nugget. Results of this investigation showed that at low ΔK, typically below 9 MPa m 0.5 , the friction stir welds under TTT treatments lowered fatigue crack growth rate (da/dN) and the lowest (da/dN) was achieved as the heaters were located ahead of

  9. Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties

    OpenAIRE

    Raffi Mohammed; G. Madhusudhan Reddy; K. Srinivasa Rao

    2017-01-01

    High nitrogen stainless steel (HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poo...

  10. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Osoba, L.O. [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada); Ding, R.G. [Department of Metallurgy and Materials Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Ojo, O.A., E-mail: ojo@cc.umanitoba.ca [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada)

    2012-03-15

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti-Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with the formation of {gamma}-{gamma}' eutectic in {gamma}' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: Black-Right-Pointing-Pointer A newly developed superalloy was welded by CO{sub 2} laser beam joining technique. Black-Right-Pointing-Pointer Electron microscopy characterization of the weld microstructure was performed. Black-Right-Pointing-Pointer Identified interdendritic microconstituents consist of MC-type carbides. Black-Right-Pointing-Pointer Modification of primary solidification path is used to explain cracking resistance.

  11. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    International Nuclear Information System (INIS)

    Osoba, L.O.; Ding, R.G.; Ojo, O.A.

    2012-01-01

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti–Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with the formation of γ–γ' eutectic in γ' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: ► A newly developed superalloy was welded by CO 2 laser beam joining technique. ► Electron microscopy characterization of the weld microstructure was performed. ► Identified interdendritic microconstituents consist of MC-type carbides. ► Modification of primary solidification path is used to explain cracking resistance.

  12. Reheat cracking susceptibility of P23 (7CrWVMoNb9-6) steel welds made using matching and mis-matching filler metals

    Energy Technology Data Exchange (ETDEWEB)

    Nevasmaa, Pekka; Salonen, Jorma; Auerkari, Pertti; Rantala, Juhani; Holmstroem, Stefan [VTT Technical Research Centre of Finland, Espoo (Finland)

    2010-07-01

    Reheat cracking sensitivity of 7CrWVMoNb9-6 (P23) thick-section multipass welds has been investigated by Gleeble simulation, mechanical testing, fractography and metallography. The results demonstrate that the experimental weld metal made using a high-Nb-W-Ti-B type filler metal was sensitive to reheat cracking, with a reduction of area no more than 2-3% in the BWI reheat cracking (RC) test. Welds made using a high-W -low-Ti type filler metal with Nb content similar to the parent steel, as well as welds make using a Ni-Nb-Ti-free-(W-free) type filler metal with the chemical composition closer to P24 grade material, were more ductile and crack-resistant, though with reduced cross-weld creep strength. Fractography of RC test specimens showed evidence of pronounced localisation of damage at the prior austenite grain boundaries of the thermally reheated, experimental P23 weld metal. The reheat cracking susceptibility of the less ductile weld metal was apparently related both to the chemical composition (higher B, Nb and Ti content) and sub-structural features of the coarse-grained reheated weld metal microstructure. Appropriate single- and multi-cycle thermal Gleeble simulations to produce representative HAY and reheated weld metal microstructures (as function of peak temperature), in conjunction with the BWI RC test were successfully applied to characterise the reheat cracking sensitivity of the candidate weld metals and parent steel HAZ. (orig.)

  13. Brittleness, microcracking and crack propagation in stress-relief annealing of welded low-alloyed NiMoCr steels

    International Nuclear Information System (INIS)

    Chen, H.Y.

    1976-01-01

    It in possible to produce the essentially corresponding microstructural states as well as micro or macro crack formation by simulation welding of the coarse grain zone of welded seams and to analyze the conditions for brittleness and crack formation. The metallurgical procedures in the heat affected zone of a welded joint are described. It could be seen from metallographic polished specimens that the crack formation can persue the triple point theory as well as the carity theory. The heating and relaxing process was analyzed on a model and the latter described by the pure relaxation test, relaxation test according to Murray and time-fracture test. The time-fracture test was mainly applied to investigate a possible decrease in toughness and crack formation because it normally does not work in relaxation tests - contrary to the component - to produce crack formation. In order to determine how long it takes for the first micro cracks to occur at a defined stress in short time-fracture testing, metallographic specimens were prepared as well as notched bar impact beneting tests performed. There is a distinct dependence between lasting expansion in the short time-fracture test, notched bar impact strength and the number of cracks; the notched bar impact strength decreases with increasing microcracking (increasing permanent expansion). One must note here that the microstructure can still carry full load although its toughness value has decreased. The maximum brittleness state of the materials depends on time and temperature. (orig.) [de

  14. Effect of heating produced by welding on the microstructure and on the stress corrosion cracking susceptibility of AA7028 alloy

    International Nuclear Information System (INIS)

    Calatayud, A.; Rodenas, M.; Ferrer, C.; Amigo, V.; Salvador, M.D.

    1997-01-01

    The microstructural and stress corrosion cracking changes due to welding are studied for the AA7028 aluminium alloy. Special attention is paid to the characterization of what is known as the white zone. The influence of the delay step between quenching and aging in a T73 treatment on the microstructure and on the characteristics of the heat-affected zone (HAZ) is also studied. Finally the effect of thermal treatments applied on this zone after the welding is analysed. (Author) 7 refs

  15. An investigation of the influence of strength mis-matching and HAZ width on the fracture behaviour of welds with cracks in the WM/HAZ interface

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, D.M.; Menezes, L.F.; Loureiro, A. [Dept of Mechanical Eng., FCTUC, Coimbra (Portugal)

    2004-07-01

    In this paper a numerical study concerning the influence of the mis-match in mechanical properties and of the heat affected zone width on the crack driving force of welds with cracks in the weld metal / heat affected zone interface is described. This work was performed through the numerical simulation of three-point bending tests, using finite element meshes of weld samples with various HAZ widths and two different crack length sizes. The numerical calculation of the J integral and of the stress fields ahead the notch tip was used to evaluate the fracture strength variation in the welds. (orig.)

  16. Uncertainty quantification methodologies development for stress corrosion cracking of canister welds

    Energy Technology Data Exchange (ETDEWEB)

    Dingreville, Remi Philippe Michel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    This letter report presents a probabilistic performance assessment model to evaluate the probability of canister failure (through-wall penetration) by SCC. The model first assesses whether environmental conditions for SCC – the presence of an aqueous film – are present at canister weld locations (where tensile stresses are likely to occur) on the canister surface. Geometry-specific storage system thermal models and weather data sets representative of U.S. spent nuclear fuel (SNF) storage sites are implemented to evaluate location-specific canister surface temperature and relative humidity (RH). As the canister cools and aqueous conditions become possible, the occurrence of corrosion is evaluated. Corrosion is modeled as a two-step process: first, pitting is initiated, and the extent and depth of pitting is a function of the chloride surface load and the environmental conditions (temperature and RH). Second, as corrosion penetration increases, the pit eventually transitions to a SCC crack, with crack initiation becoming more likely with increasing pit depth. Once pits convert to cracks, a crack growth model is implemented. The SCC growth model includes rate dependencies on both temperature and crack tip stress intensity factor, and crack growth only occurs in time steps when aqueous conditions are predicted. The model suggests that SCC is likely to occur over potential SNF interim storage intervals; however, this result is based on many modeling assumptions. Sensitivity analyses provide information on the model assumptions and parameter values that have the greatest impact on predicted storage canister performance, and provide guidance for further research to reduce uncertainties.

  17. Refined Analysis of Fatigue Crack Initiation Life of Beam-to-Column Welded Connections of Steel Frame under Strong Earthquake

    Directory of Open Access Journals (Sweden)

    Weilian Qu

    2017-01-01

    Full Text Available This paper presents a refined analysis for evaluating low-cycle fatigue crack initiation life of welded beam-to-column connections of steel frame structures under strong earthquake excitation. To consider different length scales between typical beam and column components as well as a few crucial beam-to-column welded connections, a multiscale finite element (FE model having three different length scales is formulated. The model can accurately analyze the inelastic seismic response of a steel frame and then obtain in detail elastoplastic stress and strain field near the welded zone of the connections. It is found that the welded zone is subjected to multiaxial nonproportional loading during strong ground motion and the elastoplastic stress-strain field of the welded zone is three-dimensional. Then, using the correlation of the Fatemi-Socie (FS parameter versus fatigue life obtained by the experimental crack initiation fatigue data of the structural steel weldment subjected to multiaxial loading, the refined evaluation approach of fatigue crack initiation life is developed based on the equivalent plastic strain at fatigue critical position of beam end seams of crucial welded connections when the steel frame is subjected to the strong earthquake excitation.

  18. Stress corrosion cracking countermeasure observed on Ni-based alloy welds of BWR core support structure

    International Nuclear Information System (INIS)

    Sagawa, Wataru; Aoki, Takayuki; Itou, Takashi; Enomoto, Kunio; Hayashi, Eisaku; Ishikawa, Tetsuya

    2009-01-01

    The effect of hydrostatic test on the residual stress re-distribution was simulated by experiment to confirm the residual stress behavior of the cone-shaped shroud support to reactor pressure vessel (RPV) weld, where a number of cracks due to stress corrosion cracking (SCC) were observed on the inner side only. Test specimen with tensile residual stress was loaded and unloaded with axial plus bending load, which simulates the hydrostatic test load, and the strain change was measured during the test to observe the residual stress behavior. The results verify that the residual stresses of the shroud support to the RPV weld were reduced and the stresses on inner and outer sides were reversed by the hydrostatic test. As the SCC countermeasure, the shot peening (SP) technology was applied. Residual stress reduction by SP on the complicated configuration, and improvement of SCC resistance and endurance of the compressive residual stress were experimentally confirmed. Then, SP treatment procedures on the actual structure were confirmed and a field application technique was established

  19. Effect of Gas Tungsten Arc Welding Parameters on Hydrogen-Assisted Cracking of Type 321 Stainless Steel

    Science.gov (United States)

    Rozenak, Paul; Unigovski, Yaakov; Shneck, Roni

    2016-05-01

    The susceptibility of AISI type 321 stainless steel welded by the gas tungsten arc welding (GTAW) process to hydrogen-assisted cracking (HAC) was studied in a tensile test combined with in situ cathodic charging. Specimen charging causes a decrease in ductility of both the as-received and welded specimens. The mechanical properties of welds depend on welding parameters. For example, the ultimate tensile strength and ductility increase with growing shielding gas (argon) rate. More severe decrease in the ductility was obtained after post-weld heat treatment (PWHT). In welded steels, in addition to discontinuous grain boundary carbides (M23C6) and dense distribution of metal carbides MC ((Ti, Nb)C) precipitated in the matrix, the appearance of delta-ferrite phase was observed. The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited mainly transgranular regions. High-dislocation density regions and stacking faults were found in delta-ferrite formed after welding. Besides, thin stacking fault plates and epsilon-martensite were found in the austenitic matrix after the cathodic charging.

  20. Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Formed Domes

    Science.gov (United States)

    Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.

    2010-01-01

    Simulated service testing (SST) development was required to help qualify a new 2195 aluminum lithium (Al-Li) alloy spin forming dome fabrication process for the National Aeronautics and Space Administration (NASA) Exploration Development Technology Program. The application for the technology is to produce high strength low weight tank components for NASA s next generation launch vehicles. Since plate material is not currently manufactured large enough to fabricate these domes, two plates are joined by means of friction stir welding. The plates are then pre-contour machined to near final thicknesses allowing for a thicker weld land and anticipating the level of stretch induced by the spin forming process. The welded plates are then placed in a spin forming tool and hot stretched using a trace method producing incremental contours. Finally the dome receives a room temperature contour stretch to final dimensions, heat treatment, quenching, and artificial aging to emulate a T-8 condition of temper. Stress corrosion cracking (SCC) tests were also performed by alternate immersion in a sodium chloride (NaCl) solution using the typical double beam assembly and with 4-point loaded specimens and use of bent-beam stress-corrosion test specimens under alternate immersion conditions. In addition, experiments were conducted to determine the threshold stress intensity factor for SCC (K(sub ISCC)) which to our knowledge has not been determined previously for Al-Li 2195 alloy. The successful simulated service and stress corrosion testing helped to provide confidence to continue to Ares 1 scale dome fabrication

  1. SCC crack propagation behavior in 316L weld metal under high temperature water

    International Nuclear Information System (INIS)

    Nakade, Katsuyuki; Hirasaki, Toshifumi; Suzuki, Shunichi; Takamori, Kenro; Kumagai, Katsuhiko; Tanaka, Yoshihiko; Umeoka, Kuniyoshi

    2008-01-01

    Intergranular stress corrosion cracking (SCC) of 316L weld metal is of concern to the BWR plants. PLR pipes in commercial BWR plants have shown SCC in almost HAZ area in high temperature water, whereas, SCC has been arrested around fusion boundary for long time in the actual PLR pipe. The SCC behavior could be characterized in terms of dendrite direction, which was defined as the angle between dendrite growth direction and macro-SCC direction. In this study, the relationship between dendrite growth direction and macro-SCC direction was clearly showed on the fracture surface. The relative large difference of SCC susceptibility of 316L HAZ and weld metal was observed on the fracture surface. In the case of 0 degree, SCC has rapidly propagated into the weld metal parallel to the dendrite structure. In the case of more than 30 degree SCC direction, SCC was arrested around fusion area, and 60 degree SCC was drastically arrested around the fusion area. The large inclined dendrite structure for SCC is highly resistant to SCC. (author)

  2. Hydrogen assisted stress-cracking behaviour of electron beam welded supermartensitic stainless steel weldments

    International Nuclear Information System (INIS)

    Bala Srinivasan, P.; Sharkawy, S.W.; Dietzel, W.

    2004-01-01

    Supermartensitic stainless steel (SMSS) grades are gaining popularity as an alternate material to duplex and super duplex stainless steels for applications in oil and gas industries. The weldability of these steels, though reported to be better when compared to conventional martensitic stainless steels, so far has been addressed with duplex stainless steel electrodes/fillers. This work addresses the stress-cracking behaviour of weldments of a high-grade supermartensitic stainless steel (11% Cr, 6.5% Ni and 2% Mo) in the presence of hydrogen. Welds were produced with matching consumables, using electron beam welding (EBW) process. Weldments were subjected to slow strain rate tests in 0.1 M NaOH solution, with introduction of hydrogen into the specimens by means of potentiostatic cathodic polarisation at a potential of -1200 mV versus Ag/AgCl electrode. Reference tests were performed in air for comparison, and the results suggest that both the SMSS base material and the EB weld metal are susceptible to embrittlement under the conditions of hydrogen charging

  3. Monitoring of surface-fatigue crack propagation in a welded steel angle structure using guided waves and principal component analysis

    Science.gov (United States)

    Lu, Mingyu; Qu, Yongwei; Lu, Ye; Ye, Lin; Zhou, Limin; Su, Zhongqing

    2012-04-01

    An experimental study is reported in this paper demonstrating monitoring of surface-fatigue crack propagation in a welded steel angle structure using Lamb waves generated by an active piezoceramic transducer (PZT) network which was freely surface-mounted for each PZT transducer to serve as either actuator or sensor. The fatigue crack was initiated and propagated in welding zone of a steel angle structure by three-point bending fatigue tests. Instead of directly comparing changes between a series of specific signal segments such as S0 and A0 wave modes scattered from fatigue crack tips, a variety of signal statistical parameters representing five different structural status obtained from marginal spectrum in Hilbert-huang transform (HHT), indicating energy progressive distribution along time period in the frequency domain including all wave modes of one wave signal were employed to classify and distinguish different structural conditions due to fatigue crack initiation and propagation with the combination of using principal component analysis (PCA). Results show that PCA based on marginal spectrum is effective and sensitive for monitoring the growth of fatigue crack although the received signals are extremely complicated due to wave scattered from weld, multi-boundaries, notch and fatigue crack. More importantly, this method indicates good potential for identification of integrity status of complicated structures which cause uncertain wave patterns and ambiguous sensor network arrangement.

  4. Influence of joint line remnant on crack paths under static and fatigue loadings in friction stir welded Al-Mg-Sc alloy

    Directory of Open Access Journals (Sweden)

    Y. Besel

    2016-01-01

    Full Text Available The influence of the joint line remnant (JLR on tensile and fatigue fracture behaviour has been investigated in a friction stir welded Al-Mg-Sc alloy. JLR is one of the microstructural features formed in friction stir welds depending on welding conditions and alloy systems. It is attributed to initial oxide layer on butting surfaces to be welded. In this study, two different tool travel speeds were used. JLR was formed in both welds but its spatial distribution was different depending on the tool travel speeds. Under the tensile test, the weld with the higher heat input fractured partially along JLR, since strong microstructural inhomogeneity existed in the vicinity of JLR in this weld and JLR had weak bonding. Resultantly, the mechanical properties of this weld were deteriorated compared with the other weld. Fatigue crack initiation was not affected by the existence of JLR in all welds. But the crack propagated preferentially along JLR in the weld of the higher heat input, when it initiated on the retreating side. Consequently, such crack propagation behaviour along JLR could bring about shorter fatigue lives in larger components in which crack growth phase is dominant.

  5. Stress relief cracking by relaxation in austenitic stainless steels welded junctions; Fissuration differee par relaxation des jonctions soudes en aciers inoxydables austenitiques

    Energy Technology Data Exchange (ETDEWEB)

    Allais, L.; Auzoux, Q.; Chabaud-Reytier, M

    2003-07-01

    During service at high temperature (450 to 650 C), austenitic stainless steels are well known to present a risk of cracking near the welded junctions for times under the service life. This intergranular cracking in affected zones has been identified on titanium stabilized steels and is known as relief cracking by relaxation or reheat cracking. In order to control this cracking of welded junctions on titanium stabilized stainless steel AISI 321, a simulation of the affected zone has been realized. The results have been extended to non stabilized steels. (A.L.B.)

  6. Improved Formula for the Stress Intensity Factor of Semi-Elliptical Surface Cracks in Welded Joints under Bending Stress

    Science.gov (United States)

    Peng, Yang; Wu, Chao; Zheng, Yifu; Dong, Jun

    2017-01-01

    Welded joints are prone to fatigue cracking with the existence of welding defects and bending stress. Fracture mechanics is a useful approach in which the fatigue life of the welded joint can be predicted. The key challenge of such predictions using fracture mechanics is how to accurately calculate the stress intensity factor (SIF). An empirical formula for calculating the SIF of welded joints under bending stress was developed by Baik, Yamada and Ishikawa based on the hybrid method. However, when calculating the SIF of a semi-elliptical crack, this study found that the accuracy of the Baik-Yamada formula was poor when comparing the benchmark results, experimental data and numerical results. The reasons for the reduced accuracy of the Baik-Yamada formula were identified and discussed in this paper. Furthermore, a new correction factor was developed and added to the Baik-Yamada formula by using theoretical analysis and numerical regression. Finally, the predictions using the modified Baik-Yamada formula were compared with the benchmark results, experimental data and numerical results. It was found that the accuracy of the modified Baik-Yamada formula was greatly improved. Therefore, it is proposed that this modified formula is used to conveniently and accurately calculate the SIF of semi-elliptical cracks in welded joints under bending stress. PMID:28772527

  7. A review of hot cracking in austenitic stainless steel weldments

    International Nuclear Information System (INIS)

    Shankar, V.; Gill, T.P.S.; Mannan, S.L.; Rodriguez, P.

    1991-01-01

    The occurrence of hot cracking in austenitic stainless steel weldments is discussed with respect to its origin and metallurgical contributory factors. Of the three types of hot cracking, namely solidification cracking, liquation and ductility dip cracking, solidification cracking occurs in the interdendritic regions in weld metal while liquation and ductility dip cracking occur intergranularly in the heat-affected zone (HAZ). Segregation of impurity and minor elements such as sulphur, phosphorous, silicon, niobium, boron etc to form low melting eutectic phases has been found to be the major cause of hot cracking. Control of HAZ cracking requires minimisation of impurity elements in the base metal. In stabilized stainless steels containing niobium, higher amounts of delta-ferrite have been found necessary to prevent cracking than in unstabilized compositions. Titanium compounds have been found to cause liquation cracking in maraging steels and titanium containing stainless steels and superalloys. In nitrogen added stainless steels, cracking resistance decreases when the solidification mode changes to primary austenitic due to nitrogen addition. A review of the test methods to evaluate hot cracking behaviour showed that several external restraint and semi-self-restraint tests are available. The finger Test, WRC Fissure Bend Test, the PVR test and the Varestraint Test are described along with typical test results. Hot ductility testing to reveal HAZ cracking tendency during welding is described, which is of particular importance to stabilized stainless steels. Based on the literature, recommendations are made for welding stabilized and nitrogen added steels, indicating areas of further work. (author). 81 refs., 30 figs., 1 tab

  8. Preventing hydrogen-including cracking after welding of pressure vessel steels by use of low temperature postweld heat treatments

    International Nuclear Information System (INIS)

    Schulze, G.

    1977-01-01

    Based on extensive literature evaluations and an experimental programme, the possibilities and limits of avoiding hydrogen-induced cracking in welded joints through heat treatment are presented. The author refers to a report by J.S. Caplan and E. Landerman, published in 1976. (orig./IHOE) [de

  9. Evaluation on ultrasonic examination methods applied to Ni-base alloy weld including cracks due to stress corrosion cracking found in BWR reactor internal

    International Nuclear Information System (INIS)

    Aoki, Takayuki; Kobayashi, Hiroyuki; Higuchi, Shinichi; Shimizu, Sadato

    2005-01-01

    A Ni-base alloy weld, including cracks due to stress corrosion cracking found in the reactor internal of the oldest BWR in Japan, Tsuruga unit 1, in 1999, was examined by three (3) types of UT method. After this examination, a depth of each crack was confirmed by carrying out a little excavation with a grinder and PT examination by turns until each crack disappeared. Then, the depth measured by the former method was compared with the one measured by the latter method. In this fashion, performances of the UT methods were verified. As a result, a combination of the three types of UT method was found to meet the acceptance criteria given by ASME Sec.XI Appendix VIII, Performance Demonstration for Ultrasonic Examination Systems-Supplement 6. In this paper, the results of the UT examination described above and their evaluation are discussed. (author)

  10. A High-Sensitivity Flexible Eddy Current Array Sensor for Crack Monitoring of Welded Structures under Varying Environment.

    Science.gov (United States)

    Chen, Tao; He, Yuting; Du, Jinqiang

    2018-06-01

    This paper develops a high-sensitivity flexible eddy current array (HS-FECA) sensor for crack monitoring of welded structures under varying environment. Firstly, effects of stress, temperature and crack on output signals of the traditional flexible eddy current array (FECA) sensor were investigated by experiments that show both stress and temperature have great influences on the crack monitoring performance of the sensor. A 3-D finite element model was established using Comsol AC/DC module to analyze the perturbation effects of crack on eddy currents and output signals of the sensor, which showed perturbation effect of cracks on eddy currents is reduced by the current loop when crack propagates. Then, the HS-FECA sensor was proposed to boost the sensitivity to cracks. Simulation results show that perturbation effect of cracks on eddy currents excited by the HS-FECA sensor gradually grows stronger when the crack propagates, resulting in much higher sensitivity to cracks. Experimental result further shows that the sensitivity of the new sensor is at least 19 times that of the original one. In addition, both stress and temperature variations have little effect on signals of the new sensor.

  11. Use of the gapped bead-on-plate test to investigate hydrogen induced cracking of flux cored arc welds of a quenched and tempered steel

    International Nuclear Information System (INIS)

    Chen, Liang; Dunne, Druce; Davidson, Len

    2014-01-01

    Gapped bead-on-plate (G-BOP) testing of flux cored arc welds was conducted to assess the susceptibility to hydrogen induced cold cracking (HICC) of weld metal deposited on a high strength quenched and tempered steel. For preheat temperatures higher than 40°C, no weld metal cracking was observed using a shielding gas consisting of argon with 20% carbon dioxide. In contrast, the no-crack condition was not achieved for a shielding gas consisting of argon-5% carbon dioxide for preheat temperatures lower than 100°C. This extraordinary difference in weld metal HICC resistance indicates that, in general, the shielding gas mixture can exert a major influence on weld metal transverse cold cracking behaviour

  12. Crack initiation and growth in welded structures; Amorcage et propagation de la fissuration dans les jonctions soudees

    Energy Technology Data Exchange (ETDEWEB)

    Assire, A

    2000-10-13

    This work concerns the remaining life assessment of a structure containing initial defects of manufacturing. High temperature crack initiation and growth are studied for austenitic stainless steels, and defect assessment methods are improved in order to take into account welded structures. For these one, the probability to have a defect is significant. Two kinds of approaches are commonly used for defect assessment analysis. Fracture mechanics global approach with an energetic criterion, and local approach with a model taking into account the physical damage mechanism. For both approaches mechanical fields (stress and strain) have to be computed everywhere within the structure. Then, Finite Element computation is needed. The first part of the thesis concerns the identification of non linear kinematic and isotropic constitutive models. A pseudo-analytical method is proposed for a 'Two Inelastic Strain' model. This method provides a strategy of identification with a mechanical meaning, and this enables to associate each parameter to a physical phenomenon. Existing identifications are improved for cyclic plasticity and creep on a large range of stress levels. The second part concerns high temperature crack initiation and growth in welded structures. Finite Element analysis on plate and tube experimental configuration enable to understand the phenomenons of interaction between base metal and weld metal under mechanical and thermal loading. Concerning global approach, criteria based on C* parameter (Rice integral for visco-plasticity) are used. Finite Element computations underline the fact that for a defect located in the weld metal, C* values strongly depend on the base metal creep strain rate, because widespread visco-plasticity is located in both metals. A simplified method, based on the reference stress approach, is proposed and validated with Finite Element results. Creep crack growth simplified assessment is a quite good validation of the experimental

  13. Crack initiation and growth in welded structures; Amorcage et propagation de la fissuration dans les jonctions soudees

    Energy Technology Data Exchange (ETDEWEB)

    Assire, A

    2000-10-13

    This work concerns the remaining life assessment of a structure containing initial defects of manufacturing. High temperature crack initiation and growth are studied for austenitic stainless steels, and defect assessment methods are improved in order to take into account welded structures. For these one, the probability to have a defect is significant. Two kinds of approaches are commonly used for defect assessment analysis. Fracture mechanics global approach with an energetic criterion, and local approach with a model taking into account the physical damage mechanism. For both approaches mechanical fields (stress and strain) have to be computed everywhere within the structure. Then, Finite Element computation is needed. The first part of the thesis concerns the identification of non linear kinematic and isotropic constitutive models. A pseudo-analytical method is proposed for a 'Two Inelastic Strain' model. This method provides a strategy of identification with a mechanical meaning, and this enables to associate each parameter to a physical phenomenon. Existing identifications are improved for cyclic plasticity and creep on a large range of stress levels. The second part concerns high temperature crack initiation and growth in welded structures. Finite Element analysis on plate and tube experimental configuration enable to understand the phenomenons of interaction between base metal and weld metal under mechanical and thermal loading. Concerning global approach, criteria based on C* parameter (Rice integral for visco-plasticity) are used. Finite Element computations underline the fact that for a defect located in the weld metal, C* values strongly depend on the base metal creep strain rate, because widespread visco-plasticity is located in both metals. A simplified method, based on the reference stress approach, is proposed and validated with Finite Element results. Creep crack growth simplified assessment is a quite good validation of the experimental results

  14. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    Energy Technology Data Exchange (ETDEWEB)

    Dr. F. W. Brust; Dr. G. M. Wilkowski; Dr. P. Krishnaswamy; Mr. Keith Wichman

    2010-01-27

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection

  15. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    International Nuclear Information System (INIS)

    Brust, F.W.; Wilkowski, G.M.; Krishnaswamy, P.; Wichman, Keith

    2010-01-01

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection

  16. Short cracks in piping and piping welds. Seventh program report, March 1993-December 1994. Volume 4, Number 1

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.M.; Ghadiali, N.; Rudland, D.; Krishnaswamy, P.; Rahman, S.; Scott, P. [Battelle, Columbus, OH (United States)

    1995-04-01

    This is the seventh progress report of the U.S. Nuclear Regulatory Commission`s research program entitled {open_quotes}Short Cracks in Piping and Piping Welds{close_quotes}. The program objective is to verify and improve fracture analyses for circumferentially cracked large-diameter nuclear piping with crack sizes typically used in leak-before-break (LBB) analyses and in-service flaw evaluations. All work in the eight technical tasks have been completed. Ten topical reports are scheduled to be published. Progress only during the reporting period, March 1993 - December 1994, not covered in the topical reports is presented in this report. Details about the following efforts are covered in this report: (1) Improvements to the two computer programs NRCPIPE and NRCPIPES to assess the failure behavior of circumferential through-wall and surface-cracked pipe, respectively; (2) Pipe material property database PIFRAC; (3) Circumferentially cracked pipe database CIRCUMCK.WKI; (4) An assessment of the proposed ASME Section III design stress rule changes on pipe flaw tolerance; and (5) A pipe fracture experiment on a section of pipe removed from service degraded by microbiologically induced corrosion (MIC) which contained a girth weld crack. Progress in the other tasks is not repeated here as it has been covered in great detail in the topical reports.

  17. Reheat cracking susceptibility of new generation 2%CrMo(W)V P23 steel multipass welds made using matching and mis-matching filler metals

    Energy Technology Data Exchange (ETDEWEB)

    Nevasmaa, P.; Salonen, J.; Holmstroem, S. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2007-06-15

    In comparison with conventional creep resisting grade T/P22, the modified 2%Cr steels T/P23 and T/P24 show nearly twice the creep strength at typical service temperatures of about 520-570 deg C. The possibility of welding thin-wall boiler tubes without preheating or PWHT has promoted the use of T23 and T24 in practical boiler service. For thick-wall applications and multipass welds, welding consumables still require further development to improve creep strength and ductility. Susceptibility to reheat cracking and hydrogen cracking increase with the wall-thickness and structural rigidity of the component. Consequently, thick-wall sections generally require the use of PWHT and sometimes preheating as well. This paper is concerned with weldability of P23 pipe steel, with particular emphasis on reheat cracking sensitivity of simulated HAZ microstructures and thick-section multipass welds made using closely matching and mis-matching filler metals. The results demonstrate that the weld metal is far more critical than the parent steel HAZ, both in terms of reheat cracking sensitivity and ductility and toughness. In the as-welded condition, the weld metal exhibited excessive hardness of {approx}380 HV and only diminutive Charpy toughness at room temperature. Adoption of the PWHT (760 deg C/2h) enhanced the weldment toughness; however, it also inevitably raises risk to reheat cracking in the weld metal that showed values of reduction of area (RA) no more than 2-3% in the BWI cracking test. The results imply that thick-section multipass welds made using filler metal with the chemical composition closer to P24 grade material are much less susceptible to reheat cracking than 'matching' P23 grade welds. (orig.)

  18. Application of the standard options of the FITNET procedure to the structural integrity assessment of welded specimens containing cracks

    International Nuclear Information System (INIS)

    Dzioba, Ihor; Neimitz, Andrzej

    2007-01-01

    In this paper, the structural integrity of welded specimens is assessed. The specimens were welded using a conventional technique, MAG, and an unconventional one, laser technology. Welded specimens were of the central crack under tension (CCT) type. The elements were loaded, the maximum load was recorded, and the second and the third options of the FITNET procedure were utilized to estimate the critical loading. Estimated and recorded loads were compared to verify the conservatism of the estimated results. For comparison, the results obtained using Option 1 of the FITNET procedure (not recommended in the case analysed) are also presented. Results of the mechanical properties, hardness, fracture toughness for the base and the weld material and residual stress distributions are reported for both MAG and laser welding techniques. The results obtained confirm that the FITNET procedures were properly deigned. The higher the level of analysis, the smaller the conservatism of predictions observed. The overconservative conclusions, following from the lower level of analysis, suggest that the structural element is endangered, do not have to exclude it from exploitation. The higher level of analysis can, in some cases, confirm that the structural element containing a crack can still be exploited

  19. Evaluation of Hydrogen Cracking in Weld Metal Deposited using Cellulosic-Coated Electrodes

    Science.gov (United States)

    2009-06-16

    Cellulosic-coated electrodes (primarily AWS EXX10-type) are traditionally used for "stovepipe" welding of pipelines because they are well suited for deposition of pipeline girth welds and are capable of high deposition rates when welding downhill. De...

  20. A Study on the Residual Stress Improvement of PWSCC(Primary Water Stress Corrosion Cracking) in DMW(Dissimilar Metal Weld)

    International Nuclear Information System (INIS)

    Kang, Sung Sik; Kim, Seok Hun; Lee, Seung Gun; Park, Heung Bae

    2010-01-01

    Since 2000s, most of the cracks are found in welds, especially in (DMW) dissimilar metal welds such as pressurizer safety relief nozzle, reactor head penetration, reactor bottom mounted instrumentation (BMI), and reactor nozzles. Even the cracks are revealed as a primary water stress corrosion cracking (PWSCC), it is difficult to find the cracks by current non destructive examination. The PWSCC is occurred by three incident factors, such as susceptible material, environmental corrosive condition, and welding residual stress. If one of the three factors can be erased or decreased, the PWSCC could be prevented. In this study, we performed residual stress analysis for DMW and several residual stress improvement methods. As the preventive methods of PWSCC, we used laser peening(IP) method, inlay weld(IW) method, and induction heating stress improvement(IHSI) method. The effect of residual stress improvement for preventive methods was compared and discussed by finite element modeling and residual stress of repaired DMW

  1. Stress Corrosion Cracking Behavior of Multipass TIG-Welded AA2219 Aluminum Alloy in 3.5 wt pct NaCl Solution

    Science.gov (United States)

    Venugopal, A.; Sreekumar, K.; Raja, V. S.

    2012-09-01

    The stress corrosion cracking (SCC) behavior of the AA2219 aluminum alloy in the single-pass (SP) and multipass (MP) welded conditions was examined and compared with that of the base metal (BM) in 3.5 wt pct NaCl solution using a slow-strain-rate technique (SSRT). The reduction in ductility was used as a parameter to evaluate the SCC susceptibility of both the BM and welded joints. The results showed that the ductility ratio ( ɛ NaCl/( ɛ air) was 0.97 and 0.96, respectively, for the BM and MP welded joint, and the same was marginally reduced to 0.9 for the SP welded joint. The fractographic examination of the failed samples revealed a typical ductile cracking morphology for all the base and welded joints, indicating the good environmental cracking resistance of this alloy under all welded conditions. To understand the decrease in the ductility of the SP welded joint, preexposure SSRT followed by microstructural observations were made, which showed that the decrease in ductility ratio of the SP welded joint was caused by the electrochemical pitting that assisted the nucleation of cracks in the form of corrosion induced mechanical cracking rather than true SCC failure of the alloy. The microstructural examination and polarization tests demonstrated a clear grain boundary (GB) sensitization of the PMZ, resulting in severe galvanic corrosion of the SP weld joint, which initiated the necessary conditions for the localized corrosion and cracking along the PMZ. The absence of PMZ and a refined fusion zone (FZ) structure because of the lesser heat input and postweld heating effect improved the galvanic corrosion resistance of the MP welded joint greatly, and thus, failure occurred along the FZ.

  2. Effects of Heat Input on Microstructure, Corrosion and Mechanical Characteristics of Welded Austenitic and Duplex Stainless Steels: A Review

    Directory of Open Access Journals (Sweden)

    Ghusoon Ridha Mohammed

    2017-01-01

    Full Text Available The effects of input heat of different welding processes on the microstructure, corrosion, and mechanical characteristics of welded duplex stainless steel (DSS are reviewed. Austenitic stainless steel (ASS is welded using low-heat inputs. However, owing to differences in the physical metallurgy between ASS and DSS, low-heat inputs should be avoided for DSS. This review highlights the differences in solidification mode and transformation characteristics between ASS and DSS with regard to the heat input in welding processes. Specifically, many studies about the effects of heat energy input in welding process on the pitting corrosion, intergranular stress, stresscorrosion cracking, and mechanical properties of weldments of DSS are reviewed.

  3. The effect of weld chemistry on the likely primary water stress corrosion cracking susceptibility of alloy 82 dissimilar metal welds

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, S.Y., E-mail: suraj.persaud@mail.utoronto.ca [University of Toronto, Toronto, ON (Canada); Ramamurthy, S. [Surface Science Western, London, ON (Canada); Newman, R.C. [University of Toronto, Toronto, ON (Canada)

    2015-07-01

    Alloy 82 dissimilar weld joints between carbon steel and Alloy 600 were exposed to a simulated primary water environment consisting of hydrogenated steam at 480 {sup o}C and 1 bar. Dilution from the carbon steel to the weld was significant, particularly in the root where Fe was enriched to 35 at. % and Cr was depleted to 10 at. %. The heterogeneous composition of the weld from root to crown resulted in differences in internal and external oxidation tendency. An Fe-rich external surface oxide formed on the weld root which may help to prevent embrittlement and SCC by internal intergranular oxidation. (author)

  4. Effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded high strength aluminium alloy

    International Nuclear Information System (INIS)

    Balasubramanian, V.; Ravisankar, V.; Reddy, G. Madhusudhan

    2007-01-01

    This paper reveals the effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded AA7075 aluminium alloy. This alloy has gathered wide acceptance in the fabrication of light weight structures requiring high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding processes of high strength aluminium alloy are frequently gas tungsten arc welding (GTAW) process and gas metal arc welding (GMAW) process due to their comparatively easier applicability and better economy. Weld fusion zones typically exhibit coarse columnar grains because of the prevailing thermal conditions during weld metal solidification. This often results inferior weld mechanical properties and poor resistance to hot cracking. In this investigation, an attempt has been made to refine the fusion zone grains by applying pulsed current welding technique. Four different welding techniques have been used to fabricate the joints and they are: (i) continuous current GTAW (CCGTAW), (ii) pulsed current GTAW (PCGTAW), (iii) continuous current GMAW (CCGMAW) and (iv) pulsed current GMAW (PCGMAW) processes. As welded joint strength is much lower than the base metal strength and hence, a simple aging treatment has been given to improve the tensile strength of the joints. Current pulsing leads to relatively finer and more equi-axed grain structure in GTA and GMA welds. In contrast, conventional continuous current welding resulted in predominantly columnar grain structures. Post weld aging treatment is accompanied by an increase in tensile strength and tensile ductility

  5. Stripe-PZT Sensor-Based Baseline-Free Crack Diagnosis in a Structure with a Welded Stiffener

    Directory of Open Access Journals (Sweden)

    Yun-Kyu An

    2016-09-01

    Full Text Available This paper proposes a stripe-PZT sensor-based baseline-free crack diagnosis technique in the heat affected zone (HAZ of a structure with a welded stiffener. The proposed technique enables one to identify and localize a crack in the HAZ using only current data measured using a stripe-PZT sensor. The use of the stripe-PZT sensor makes it possible to significantly improve the applicability to real structures and minimize man-made errors associated with the installation process by embedding multiple piezoelectric sensors onto a printed circuit board. Moreover, a new frequency-wavenumber analysis-based baseline-free crack diagnosis algorithm minimizes false alarms caused by environmental variations by avoiding simple comparison with the baseline data accumulated from the pristine condition of a target structure. The proposed technique is numerically as well as experimentally validated using a plate-like structure with a welded stiffener, reveling that it successfully identifies and localizes a crack in HAZ.

  6. Investigation of possible causes for appearance of a crack in the welded joint of the ship winch frame

    Directory of Open Access Journals (Sweden)

    Milos S. Matejic

    2014-11-01

    Full Text Available Ship winches are one of the most important parts of the ship equipment since they perform the most responsible tasks on various ships. In the majority of cases, the ship winches are welded structures. All the necessary calculations according to required standards, that have to be done prior to actual execution of the structure, should also include the verification by the finite elements method. For the high reliability requirements to be met, the welded joints integrity of all the parts must be examined before they are assembled into the winch. After all the tests are conducted and parts are assembled into the winch, the factory acceptance test (FAT must be done. During those tests all the flaws, which can appear during manufacturing, must show. An appearance of a very unusual crack in the ship winch frame, which happened during the FAT, is described in this paper. The simulation by the finite elements method was performed to obtain the stresses at which the crack appeared. The possible causes for that crack appearance are considered. Some measures for reducing appearance of such cracks to a minimum are proposed, as well as certain directions for further research of this problem. 

  7. Stripe-PZT Sensor-Based Baseline-Free Crack Diagnosis in a Structure with a Welded Stiffener.

    Science.gov (United States)

    An, Yun-Kyu; Shen, Zhiqi; Wu, Zhishen

    2016-09-16

    This paper proposes a stripe-PZT sensor-based baseline-free crack diagnosis technique in the heat affected zone (HAZ) of a structure with a welded stiffener. The proposed technique enables one to identify and localize a crack in the HAZ using only current data measured using a stripe-PZT sensor. The use of the stripe-PZT sensor makes it possible to significantly improve the applicability to real structures and minimize man-made errors associated with the installation process by embedding multiple piezoelectric sensors onto a printed circuit board. Moreover, a new frequency-wavenumber analysis-based baseline-free crack diagnosis algorithm minimizes false alarms caused by environmental variations by avoiding simple comparison with the baseline data accumulated from the pristine condition of a target structure. The proposed technique is numerically as well as experimentally validated using a plate-like structure with a welded stiffener, reveling that it successfully identifies and localizes a crack in HAZ.

  8. Short cracks in piping and piping welds. Seventh program report, March 1993-December 1994. Volume 4, Number 1

    International Nuclear Information System (INIS)

    Wilkowski, G.M.; Ghadiali, N.; Rudland, D.; Krishnaswamy, P.; Rahman, S.; Scott, P.

    1995-04-01

    This is the seventh progress report of the U.S. Nuclear Regulatory Commission's research program entitled open-quotes Short Cracks in Piping and Piping Weldsclose quotes. The program objective is to verify and improve fracture analyses for circumferentially cracked large-diameter nuclear piping with crack sizes typically used in leak-before-break (LBB) analyses and in-service flaw evaluations. All work in the eight technical tasks have been completed. Ten topical reports are scheduled to be published. Progress only during the reporting period, March 1993 - December 1994, not covered in the topical reports is presented in this report. Details about the following efforts are covered in this report: (1) Improvements to the two computer programs NRCPIPE and NRCPIPES to assess the failure behavior of circumferential through-wall and surface-cracked pipe, respectively; (2) Pipe material property database PIFRAC; (3) Circumferentially cracked pipe database CIRCUMCK.WKI; (4) An assessment of the proposed ASME Section III design stress rule changes on pipe flaw tolerance; and (5) A pipe fracture experiment on a section of pipe removed from service degraded by microbiologically induced corrosion (MIC) which contained a girth weld crack. Progress in the other tasks is not repeated here as it has been covered in great detail in the topical reports

  9. Low-temperature cyclic cracking resistance of Fe-Cr-Ni and Fe-Cr-Mn steels welded joints

    International Nuclear Information System (INIS)

    Ostash, O.P.; Zhmur-Klimenko, V.T.; Yarema, S.Ya.; Yushchenko, K.A.; Strok, L.P.; Belotserkovets, V.I.

    1983-01-01

    Results of further investigations into regularities of development of low-temperature fatigue fracture of welded oints in 07Kh13G20AN4 steel are presented, they are compared with analogous data traditional cryogenic 0Kh18N10T and 03Kh13AG19 steels. Welded joints have been prepared by means of automatic V-like level arc Welding of plates; 0Kh18N10T and 07Kh13G20AN4 steels have been welded by means of sv-04Kh19N9 wire, 03Kh13AG19 steel-by means of sv-07Kh13AG19 wire. Tests at almost zero (asymmetry coefficient R=0.05) cycle of extension at 15-20 Hz frequency have been conducted on 5 mm thick disk samples at 20 deg C and - 160 deg C according to the given methods. It is shown that by cyclic crack resistance of welded joint zones of 0Kh18N10T steel and chromium-manganese steels at normal temperature the 07Kh13G20AN4 steel exceeds 0Kh18N10T steel, at low temperature it yields to 0Kh18N10T only by fracture toughness of heat affected zones HAZ and weld metal (ne). 07Kh13G20AN4 steel and its welded joints as most hardened and cheap may be a good substituent for 0Kh18N10T steel. Optimization of WM alloying for increase of its cyclic fracture toughness at cryogenic temperatures is necessary

  10. Development of measurement technique for crack depth in weld zone of thick stainless steel pipe with ultrasonic phased array TOFD

    International Nuclear Information System (INIS)

    Ishida, Hitoshi

    2006-01-01

    Phased array TOFD (time of flight diffraction) method which makes possible to detect tip diffraction echoes and measure crack depth in an austenitic stainless steel weld zone with a thickness of more than 25 mm to which region it was difficult to apply ultrasonic test due to scattering of ultrasonic waves has been developed. The developed method uses a single array transducer to have a short distance between incident points of transmitter and receiver in order to propagate waves in shorter pass in the weld region. Transmitting and receiving ultrasonic beams from a single array probe can be set a crossing point and a focal point at desired depth. This method makes possible to scan with 16 kinds of combination of crossing points and focal pints of ultrasonic beam at a time. We have examined fundamental characteristics of depth measurement with electric discharge machining slits on base metal of a stainless steel with a thickness of 35 mm. As the results: (1) We could measure the slit depth with 0.2mm error from the slit depth with a estimating method of a lateral wave propagation time with back wall echo. (2) The largest error of the depth measurement from the slit depth with the ultrasonic beam crossing point set at the 4mm different point from the tip of the slit was 0.3 mm. (3) The largest error of the depth measurements due to the difference of focal point depth of ultrasonic beam was 0.2 mm. (4) The highest tip diffraction echo could be observed with the ultrasonic beam cross point set at the tip of the slit. The difference of 4 mm between the cross point and the tip of the slit caused attenuation of tip diffraction echo height in -6.8 dB. Furthermore we have measured a depth of electric discharge machining slits, fatigue cracks and stress corrosion cracking (SCC) on stainless steel welded pipe specimens with a thickness of 35 mm. As the results: (1) We could detect the tip diffraction echoes which have a signal noise ratio with more than 2.4 from the fatigue

  11. Effects of Thermal Aging on Material Properties, Stress Corrosion Cracking, and Fracture Toughness of AISI 316L Weld Metal

    Science.gov (United States)

    Lucas, Timothy; Forsström, Antti; Saukkonen, Tapio; Ballinger, Ronald; Hänninen, Hannu

    2016-08-01

    Thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels, as well as duplex, and high-Cr ferritic stainless steels. Spinodal decomposition is largely responsible for the well-known "748 K (475 °C) embrittlement" that results in drastic reductions in ductility and toughness in these materials. This process is also operative in welds of either cast or wrought stainless steels where δ-ferrite is present. While the embrittlement can occur after several hundred hours of aging at 748 K (475 °C), the process is also operative at lower temperatures, at the 561 K (288 °C) operating temperature of a boiling water reactor (BWR), for example, where ductility reductions have been observed after several tens of thousands of hours of exposure. An experimental program was carried out in order to understand how spinodal decomposition may affect changes in material properties in Type 316L BWR piping weld metals. The study included material characterization, nanoindentation hardness, double-loop electrochemical potentiokinetic reactivation (DL-EPR), Charpy-V, tensile, SCC crack growth, and in situ fracture toughness testing as a function of δ-ferrite content, aging time, and temperature. SCC crack growth rates of Type 316L stainless steel weld metal under simulated BWR conditions showed an approximate 2 times increase in crack growth rate over that of the unaged as-welded material. In situ fracture toughness measurements indicate that environmental exposure can result in a reduction of toughness by up to 40 pct over the corresponding at-temperature air-tested values. Material characterization results suggest that spinodal decomposition is responsible for the degradation of material properties measured in air, and that degradation of the in situ properties may be a result of hydrogen absorbed during exposure to the high-temperature water environment.

  12. Assessment of the crack growth characteristics at the low fatigue limit of a multi-pass welded Ni-based alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Soo; Bae, Dong Ho [Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-04-15

    It has become known that the most effective methodology for green power plant systems is to increase the generating efficiency of steam power plants. Among the materials developed to improve the performance, it is known that the most practical and applicable materials are Ni-based Alloys. However, it is necessary to first guarantee mechanical reliability of the weld for applying these Ni-based Alloys. In this study, firstly, the fatigue strength of multi-pass welded Ni-based Alloy 617 in as-welded and post weld heat-treated conditions were assessed. And then the crack growth characteristics at the low fatigue limit of them were assessed. From the results, fatigue strength of the welds those were post weld heat treated did not show large difference compare to not heat-treated ones. These results mean that the weld of Ni-based Alloy 617 is not influenced remarkably by post weld heat treatment in the metallurgical and mechanical changes. However, it was found that the fatigue crack grew at the low fatigue limit, which was about 48.4% (327 MPa) of the static tensile strength(675.1 MPa) of the weld, and 43.1% of the base material (759.4 MPa).

  13. Crack

    Science.gov (United States)

    ... spending time in a rehab facility or getting cognitive-behavioral therapy or other treatments. Right now, there are no medicines to treat a crack addiction. If you smoke crack, talking with a counselor ...

  14. Statistical aspects of fatigue crack growth life of base metal, weld metal and heat affected zone in FSWed 7075-T651aluminum alloy

    International Nuclear Information System (INIS)

    Sohn, Hye Jeong; Haryadi, Gunawan Dwi; Kim, Seon Jin

    2014-01-01

    The statistical aspects of fatigue crack growth life of base metal (BM), weld metal (WM) and heat affected zone (HAZ) in friction stir welded (FSWed) 7075-T651 aluminum alloy has been studied by Weibull statistical analysis. The fatigue crack growth tests were performed at room temperature on ASTM standard CT specimens under three different constant stress intensity factor range controls. The main objective of this paper is to investigate the effects of statistical aspects of fatigue crack growth life on stress intensity factor ranges and material properties, namely BM, WM and HAZ specimens. In this work, the Weibull distribution was employed to estimate the statistical aspects of fatigue crack growth life. The shape parameter of Weibull distribution for fatigue crack growth life was significantly affected by material properties and the stress intensity factor range. The scale parameter of WM specimen exhibited the lowest value at all stress intensity factor ranges.

  15. Numerical Analysis of Crack Progress in Different Areas of a Friction Stir Welded Bead for an 5251 H14 Aluminum Alloy Specimen

    Directory of Open Access Journals (Sweden)

    Y. Kambouz

    2014-02-01

    Full Text Available The assemblies welded by Friction Stir Welding have a major advantage which is the absence of a metal filler. This process contributes to the welding of materials that are known to be difficult to weld using the conventional techniques often employed in the field of transport, for example in the automobile body by applying a spot welding. The numerical modeling of this type of process is complex, not only in terms of the variety of physical phenomena which must be considered, but also because of the experimental procedure that must be followed in order to verify and validate numerical predictions. In this work, a finite element model is proposed in order to simulate the crack propagation under monotonic loading in different areas of the weld seam of a strain hardening CT-50 aluminum alloy 5251H14 specimen.

  16. Prediction of long time creep rupture properties of welded joints using the results of short duration creep crack incubation tests

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, E.

    2013-07-01

    This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the applicability of the LICON methodology for the prediction of long-time creep rupture strength of a dissimilar metal weld. The LICON methodology is an approach for predicting the lifetime of materials under creep loading conditions. It predicts long-time uniaxial creep strength using the results from several short duration creep crack incubation tests in conjunction with the outcome of a mechanical analysis on the test-piece. This study has re-examined the previous application of the LICON methodology for 9%Cr and 1CrMoV steels. It has shown that application of the original Lion method (based on reference stress solutions) for certain materials is not appropriate. This study therefore proposes a new development for the Lion approach which uses finite-element analysis to account for the generated multiaxial stress states within welded uniaxial test-pieces.

  17. Prediction of long time creep rupture properties of welded joints using the results of short duration creep crack incubation tests

    International Nuclear Information System (INIS)

    Hosseini, E.

    2013-01-01

    This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the applicability of the LICON methodology for the prediction of long-time creep rupture strength of a dissimilar metal weld. The LICON methodology is an approach for predicting the lifetime of materials under creep loading conditions. It predicts long-time uniaxial creep strength using the results from several short duration creep crack incubation tests in conjunction with the outcome of a mechanical analysis on the test-piece. This study has re-examined the previous application of the LICON methodology for 9%Cr and 1CrMoV steels. It has shown that application of the original Lion method (based on reference stress solutions) for certain materials is not appropriate. This study therefore proposes a new development for the Lion approach which uses finite-element analysis to account for the generated multiaxial stress states within welded uniaxial test-pieces

  18. Hot cracking characteristic of welding using Nd:YAG laser beam

    International Nuclear Information System (INIS)

    Ro, Kyoung Bo; Yoo, Young Tae; Oh, Yong Seak; Shin, Ho Jun; Kim, Ji Hwan

    2003-01-01

    The Nd:YAG laser process is known to have high speed and deep penetration capability to become one of the most advanced welding technologies. In spite of its good mechanical characteristics, SM45C carbon steel has a high carbon contents and suffers a limitation in the industrial application due to the poor welding properties. The major process parameters studied in the present laser welding experiment were position of focus, travel speed and laser power

  19. Welding Metallurgy of Alloy HR-160

    International Nuclear Information System (INIS)

    DuPont, J.N.; Michael, J.R.; Newbury, B.D.

    1999-01-01

    The solidification behavior and resultant solidification cracking susceptibility of autogenous gas tungsten arc fusion welds in alloy HR-160 was investigated by Varestraint testing, differential thermal analysis, and various microstructural characterization techniques. The alloy exhibited a liquidus temperature of 1387 degC and initiated solidification by a primary L - γ reaction in which Ni, Si, and Ti segregated to the interdendritic liquid and Co segregated to the γ dendrite cores. Chromium exhibited no preference for segregation to the solid or liquid phase during solidification. Solidification terminated at ∼ 1162 degC by a eutectic-type L - [γ+ (Ni,Co) 16 (Ti,Cr) 6 Si 7 ] reaction. The (Ni,Co) 16 (Ti,Cr) 6 Si 7 phase is found to be analogous to the G phase which forms in the Ni-Ti-Si and Co-Ti-Si ternary systems, and similarities are found to exist between the solidification behavior of this commercial multicomponent alloy and the simple Ni-Si and Ni-Ti binary systems. Reasonable agreement is obtained between the calculated and measured volume percent of the [γ +(Ni,Co) l6 (Ti,Cr) 6 Si 7 ] eutectic-typr constituent with the Scheil equation using experimentally determined k values for Si and Ti from electron microprobe data. The alloy exhibited a very high susceptibility to solidification cracking in the Varestraint test. This is attributed to a large solidification temperature range of 225 degC and the presence of 2 to 5 vol% solute rich interdendritic liquid which preferentially wets the grain boundaries and interdendritic regions

  20. Stress Corrosion Cracking Behaviour of Dissimilar Welding of AISI 310S Austenitic Stainless Steel to 2304 Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Thiago AmaroVicente

    2018-03-01

    Full Text Available The influence of the weld metal chemistry on the stress corrosion cracking (SCC susceptibility of dissimilar weldments between 310S austenitic stainless steel and 2304 duplex steels was investigated by constant load tests and microstructural examination. Two filler metals (E309L and E2209 were used to produce fusion zones of different chemical compositions. The SCC results showed that the heat affected zone (HAZ on the 2304 base metal side of the weldments was the most susceptible region to SCC for both filler metals tested. The SCC results also showed that the weldments with 2209 duplex steel filler metal presented the best SCC resistance when compared to the weldments with E309L filler metal. The lower SCC resistance of the dissimilar joint with 309L austenitic steel filler metal may be attributed to (1 the presence of brittle chi/sigma phase in the HAZ on the 2304 base metal, which produced SC cracks in this region and (2 the presence of a semi-continuous delta-ferrite network in the fusion zone which favored the nucleation and propagation of SC cracks from the fusion zone to HAZ of the 2304 stainless steel. Thus, the SC cracks from the fusion zone associated with the SC cracks of 2304 HAZ decreased considerably the time-of-fracture on this region, where the fracture occurred. Although the dissimilar weldment with E2209 filler metal also presented SC cracks in the HAZ on the 2304 side, it did not present the delta ferrite network in the fusion zone due to its chemical composition. Fractography analyses showed that the mixed fracture mode was predominant for both filler metals used.

  1. Susceptibility to hydrogen-induced cracking in H2S corrosion environment of API 5L-X80 weld metal

    International Nuclear Information System (INIS)

    Hilton, J.; Fals, H. C.; Trevisan, R. E.

    2009-01-01

    The susceptibility to hydrogen-induced cracking in H 2 S environment of welded API X80 steel was studied. The flux cored arc welding (FCAW) process was employed with E71-T1 and E71-T8K6 wires. The welding parameters were kept constant, but the samples were welded using different preheat temperatures (room temperature and 100 degree centigrade). The gapped bead-on-plate (G-BOP) test was used. The specimens of modified G-BOP tests were exposed to an environment saturated in H 2 S, as recommended by the NACE TM0284 standard. The weld beads were characterized by optical microscopy and the level of residual hydrogen in the samples was measured. The fracture surface areas of hydrogen-induced cracking were calculated and the fracture mode was discussed. It was found that the preheating temperature of 100 degree centigrade was enough to avoid cracking, even in the presence of H 2 S. It was also found that the E71- T8K6 wire was more susceptible to cracking, and the typical mixed-mode fracture was predominant in all samples. (Author) 15 refs

  2. Hot cracking of welded joints of the 7CrMoVTiB 10-10 (T/P24) steel

    Energy Technology Data Exchange (ETDEWEB)

    Adamiec, J, E-mail: janusz.adamiec@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    Bainitic steel 7CrMoVTiB10-10 is one the newest steels for waterwalls of modern industrial boilers. In Europe, attempts have been made to make butt welded joints of pipes made of this steel of the diameter up to 51 mm and thickness up to 8 mm. Many cracks have been observed in the welded joint, both during welding and transport and storage. The reasons of cracking and the prevention methods have not been investigated. No comprehensive research is carried out in Europe in order to automate the welding process of the industrial boiler elements made of modern bainitic steel, such as 7CrMoVTiB10-10. There is no information about its overall, operative and local weldability, influence of heat treatment, as well as about resistance of the joints to cracking during welding and use. The paper presents experience of Energoinstal SA from development of technology and production of waterwalls of boilers made of the 7CrMoVTiB 10-10 steel on a multi-head automatic welder for submerged arc welding.

  3. Comparisons of irradiation-induced shifts in fracture toughness, crack arrest toughness, and Charpy impact energy in high-copper welds

    International Nuclear Information System (INIS)

    Corwin, W.R.; Nanstad, R.K.; Iskander, S.K.

    1991-01-01

    The Heavy-Section Steel Irradiation (HSSI) Program is examining relative shifts and changes in shape of fracture and crack-arrest toughness versus temperature behavior for two high-copper welds. Fracture toughness 100-MPa√m temperature shifts are greater than Charpy 41-J shifts for both welds. Mean curve fits to the fracture toughness data provide mixed results regarding curve shape changes, but curves constructed as lower boundaries indicate lower slopes. Preliminary crack-arrest toughness results indicate that shifts of lower-bound curves are approximately the same as CVN 41-J shifts with no shape changes

  4. Characterization of microstructure and local deformation in 316NG weld heat-affected zone and stress corrosion cracking in high temperature water

    International Nuclear Information System (INIS)

    Lu Zhanpeng; Shoji, Tetsuo; Meng Fanjiang; Xue He; Qiu Yubing; Takeda, Yoichi; Negishi, Koji

    2011-01-01

    Research highlights: → Away from the fusion line, kernel average misorientation and hardness decrease. → Away from the fusion line, the fraction of Σ3 boundaries increases. → Crack growth in high temperature water correlates to kernel average misorientation and hardness. → SCC along random boundaries as well as extensive intergranular branching near the fusion line. - Abstract: Microstructure and local deformation in 316NG weld heat-affected zones were measured by electron-back scattering diffraction and hardness measurements. With increasing the distance from the fusion line, kernel average misorientation decreases and the fraction of Σ3 boundaries increases. Stress corrosion cracking growth rates in high temperature water were measured at different locations in the heat-affected zones that correspond to different levels of strain-hardening represented by kernel average misorientation and hardness distribution. Intergranular cracking along random boundaries as well as extensive intergranular crack branching is observed in the heat-affected zone near the weld fusion line.

  5. Stress corrosion cracking in repair-welded 3.5 NiCrMoV steel in an actual turbine environment

    International Nuclear Information System (INIS)

    Hitomi, Itoh; Takashi, Shige; Takashi, Momoo

    2001-01-01

    Temporary welding repairs are sometimes needed when damage occurs at the teeth of blade grooves in a low-pressure turbine rotor operated at the dry/wet boundary region. When repair welding has been performed for the 3,5 NiCrMoV steel used in low-pressure turbines, the soundness of the weld must be confirmed. For this reason, a laboratory investigation of susceptibility for stress corrosion cracking (SCC) was conducted for test specimens taken from simulated welds, and then an exposure test was conducted in an actual turbine environment for approximately 7,000 hours. As no SCC initiation was detected and also the propagation was extremely small, repair welding is deemed to be applicable. (author)

  6. Evaluation of Electron Beam Welding Performance of AA6061-T6 Plate-type Fuel Assembly

    International Nuclear Information System (INIS)

    Kim, Soo-Sung; Seo, Kyoung-Seok; Lee, Don-Bae; Park, Jong-Man; Lee, Yoon-Sang; Lee, Chong-Tak

    2014-01-01

    As one of the most commonly used heat-treatable aluminum alloys, AA6061-T6 aluminum alloy is available in a wide range of structural materials. Typically, it is used in structural members, auto-body sheet and many other applications. Generally, this alloy is easily welded by conventional GTAW (Gas Tungsten Arc Welding), LBW (Laser Beam Welding) and EBW(Electron Beam Welding). However, certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes possess the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the plate-type nuclear fuel fabrication and assembly, a fundamental electron beam welding experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the suitable welding process, and satisfy the requirements of the weld quality, EBW apparatus using an electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. The EB weld quality of AA6061-T6 aluminum alloy for the plate-type fuel assembly has been also studied by the weld penetrations of side plate to end fitting and fixing bar and weld inspections using computed tomography

  7. Stress Corrosion Cracking Susceptibility of 304L Substrate and 308L Weld Metal Exposed to a Salt Spray

    Directory of Open Access Journals (Sweden)

    Chia-Hao Hsu

    2017-02-01

    Full Text Available 304 stainless steels (SS were considered as the materials for a dry storage canister. In this study, ER (Electrode Rod 308L was utilized as the filler metal for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. The electron backscatter diffraction (EBSD map was used to identify the inherent microstructures in distinct specimens. U-bend and weight-loss tests were conducted by testing the 304L substrates and welds in a salt spray containing 5 wt % NaCl at 80 °C to evaluate their susceptibility to stress corrosion cracking (SCC. Generally, the weight loss of the ER 308L deposit was higher than that of the 304L substrate in a salt spray in the same sample-prepared condition. The dissolution of the skeletal structure in the fusion zone (FZ was responsible for a greater weight loss of the 308L deposit, especially for the cold-rolled and sensitized specimen. Cold rolling was detrimental and sensitization after cold rolling was very harmful to the SCC resistance of the 304L substrate and 308L deposit. Overall, the SCC susceptibility of each specimen was correlated with its weight loss in each group.

  8. Effects of microstructure and local mechanical fields on intergranular stress corrosion cracking of a friction stir welded aluminum–copper–lithium 2050 nugget

    International Nuclear Information System (INIS)

    Dhondt, Matthieu; Aubert, Isabelle; Saintier, Nicolas; Olive, Jean Marc

    2014-01-01

    Highlights: • Applied stress changes the corrosion mode from pitting to intergranular cracking. • Residual stresses are sufficient to induce intergranular stress corrosion cracking. • Effect of crystallographic texture on the development of IGSCC evidenced by EBSD. • Cubic elasticity drives the local orientation of the intergranular cracking. • Tomography observations show the 3D nature of the corrosion development. - Abstract: The effects of the microstructure and mechanical fields on intergranular stress corrosion cracking (IGSCC) of the nugget zone of heat treated welds obtained by friction stir welding in the AA2050 aluminum alloy have been investigated at different scales. At low strain rate, in 1.0 NaCl aqueous solution, IGSCC develops in the microstructure, whereas only pitting corrosion is observed without any mechanical stress. Based on surface observations, EBSD analysis and X-ray tomography, the key role of sub-millimetric textured bands (induced by the welding process) on the IGSCC is demonstrated. Analyses at a more local scale show the grain boundary (low angle boundary, special coincident site lattice boundary or high angle boundary) do not have a significant effect on crack initiation. Crystal plasticity finite element calculations show that the threshold normal stress at grain boundaries for IGSCC development is about 80% of the macroscopic stress. It is also highlighted by crystal plasticity calculations that there is a drastic effect of the local stress field on the shape of cracks. Finally, it is shown that plasticity induced residual stresses are sufficient for the formation of IGSCC

  9. High-power laser and arc welding of thorium-doped iridium alloys

    International Nuclear Information System (INIS)

    David, S.A.; Liu, C.T.

    1980-05-01

    The arc and laser weldabilities of two Ir-0.3% W alloys containing 60 and 200 wt ppM Th have been investigated. The Ir-.03% W alloy containing 200 wt ppM Th is severely prone to hot cracking during gas tungsten-arc welding. Weld metal cracking results from the combined effects of heat-affected zone liquation cracking and solidification cracking. Scanning electron microscopic analysis of the fractured surface revealed patches of low-melting eutectic. The cracking is influenced to a great extent by the fusion zone microstructure and thorium content. The alloy has been welded with a continuous-wave high-power CO 2 laser system with beam power ranging from 5 to 10 kW and welding speeds of 8 to 25 mm/s. Successful laser welds without hot cracking have been obtained in this particular alloy. This is attributable to the highly concentrated heat source available in the laser beam and the refinement in fusion zone microstructure obtained during laser welding. Efforts to refine the fusion zone structure during gas tungsten-arc welding of Ir-0.3 % W alloy containing 60 wt ppM Th were partially successful. Here transverse arc oscillation during gas tungsten-arc welding refines the fusion zone structure to a certain extent. However, microstructural analysis of this alloy's laser welds indicates further refinement in the fusion zone microstructure than in that from the gas tungsten-arc process using arc oscillations. The fusion zone structure of the laser weld is a strong function of welding speed

  10. Assessment of Crack Detection in Heavy-Walled Cast Stainless Steel Piping Welds Using Advanced Low-Frequency Ultrasonic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Denslow, Kayte M.; Diaz, Aaron A.; Doctor, Steven R.

    2007-03-01

    Studies conducted at the Pacific Northwest National Laboratory in Richland, Washington, have focused on assessing the effectiveness and reliability of novel approaches to nondestructive examination (NDE) for inspecting coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the U.S. Nuclear Regulatory Commission on the effectiveness and reliability of advanced NDE methods as related to the inservice inspection of safety-related components in pressurized water reactors (PWRs). This report provides progress, recent developments, and results from an assessment of low frequency ultrasonic testing (UT) for detection of inside surface-breaking cracks in cast stainless steel reactor piping weldments as applied from the outside surface of the components. Vintage centrifugally cast stainless steel piping segments were examined to assess the capability of low-frequency UT to adequately penetrate challenging microstructures and determine acoustic propagation limitations or conditions that may interfere with reliable flaw detection. In addition, welded specimens containing mechanical and thermal fatigue cracks were examined. The specimens were fabricated using vintage centrifugally cast and statically cast stainless steel materials, which are typical of configurations installed in PWR primary coolant circuits. Ultrasonic studies on the vintage centrifugally cast stainless steel piping segments were conducted with a 400-kHz synthetic aperture focusing technique and phased array technology applied at 500 kHz, 750 kHz, and 1.0 MHz. Flaw detection and characterization on the welded specimens was performed with the phased array method operating at the frequencies stated above. This report documents the methodologies used and provides results from laboratory studies to assess baseline material noise, crack detection, and length-sizing capability for low-frequency UT in cast stainless steel piping.

  11. Crack growth analysis in a weld-heat-affected zone using S-version FEM

    International Nuclear Information System (INIS)

    Kikuchi, Masanori; Wada, Yoshitaka; Shimizu, Yuto; Li, Yulong

    2012-01-01

    The objective of this study is the prediction of crack propagation under thermal, residual stress fields using S-Version FEM (S-FEM). By using the S-FEM technique, only the local mesh should be re-meshed and it becomes easy to simulate crack growth. By combining with an auto-meshing technique, the local mesh is re-meshed automatically, and a curved crack path is modeled easily. Virtual crack closure integral method (VCCM) is used to evaluate energy release rate at the crack tip. For crack growth analyses, crack growth rate and growth direction are determined using criteria for mixed mode loading condition. In order to confirm the validity of this analysis, some comparisons with previously reported analyses were done, and good agreement obtained. In this study, residual stress data were provided by JAEA, Japan Atomic Energy Agency, based on their numerical simulation. Stress corrosion crack (SCC) growth analyses in a pipe are conducted in two-dimensional and three-dimensional fields. Two cases, for an axi-symmetric distribution of residual stress in the pipe wall and a non-axisymmetric one are assumed. Effects of residual stress distribution patterns on SCC cracking are evaluated and discussed.

  12. Creep-fatigue propagation of semi-elliptical crack at 650 deg. C in 316L(N) stainless steel plates with or without welded joints

    International Nuclear Information System (INIS)

    Curtit, F.

    2000-01-01

    This study realised in LISN Laboratory of CEA Saclay, deals with the creep fatigue propagation of semi elliptical crack at the temperature of 650 deg C in 316L(N) stainless steel plates with or without welded joints. A vast majority of the studies on creep fatigue propagation models are based on specimen (CT) especially designed for crack propagation study. The PLAQFLU program performed in LISN laboratory deals with the application and adaptation of these models to complex crack shape, which are more representative of the cracks observed in industrial components. In this scope, we use propagation tests realised at the temperature of 650 deg C with wide plates containing semi elliptical defects. For some of them, the initial defect is machined in the middle of a welded joint, which constitute a privileged site for the crack initiation. The approach used in this study is based on global parameters of fracture mechanics. At first, tests on CT specimen are used in order to determine the propagation laws correlating the crack growth rate to the global parameters K or C * . These laws are then supposed to be intrinsic to our materials and are used to analysed the semi elliptical crack propagation. The analysis of the comportment of the crack during the hold time demonstrates the possibility to establish a correlation between the crack propagation both in the deepest and the surface point and the local value of C * . These correlations are coherent in the different points of the crack front for the different applied hold times, and they present a reasonably good agreement with the creep propagation law identified on CT specimen. The simulation of test performed on based metal specimen with a model of summation of both creep and pure fatigue crack growth gives acceptable results when the calculus of the simplified expression of C * s considers a continuous evolution of creep deformations rate during the all test. (author)

  13. Effect of Repair Welding on Electrochemical Corrosion and Stress Corrosion Cracking Behavior of TIG Welded AA2219 Aluminum Alloy in 3.5 Wt Pct NaCl Solution

    Science.gov (United States)

    Venugopal, A.; Sreekumar, K.; Raja, V. S.

    2010-12-01

    The stress corrosion cracking (SCC) behavior of AA2219 aluminum alloy in the as-welded (AW) and repair-welded (RW) conditions was examined and compared with that of the base metal (BM) in 3.5 wt pct NaCl solution using the slow strain rate technique (SSRT). The reduction in ductility was used as a parameter to evaluate the SCC susceptibility of both BM and welded joints. The results show that the ductility ratio ( ɛ NaCl/( ɛ air)) of the BM was close to one (0.97) and reduced to 0.9 for the AW joint. This value further reduced to 0.77 after carrying out one repair welding operation. However, the RW specimen exhibited higher ductility than the single-weld specimens even in 3.5 wt pct NaCl solution. SSRT results obtained using pre-exposed samples followed by post-test metallographic observations clearly showed localized pitting corrosion along the partially melted zone (PMZ), signifying that the reduction in ductility ratio of both the AW and RW joints was more due to mechanical overload failure, caused by the localized corrosion and a consequent reduction in specimen thickness, than due to SCC. Also, the RW joint exhibited higher ductility than the AW joint both in air and the environment, although SCC index (SI) for the former is lower than that of the latter. Fractographic examination of the failed samples, in general, revealed a typical ductile cracking morphology for all the base and welded joints, indicating the good environmental cracking resistance of this alloy. Microstructural examination and polarization tests further demonstrate grain boundary melting along the PMZ, and that provided the necessary electrochemical condition for the preferential cracking on that zone of the weldment.

  14. Fabrication of AA6061-T6 Plate Type Fuel Assembly Using Electron Beam Welding Process

    International Nuclear Information System (INIS)

    Kim, Soosung; Seo, Kyoungseok; Lee, Donbae; Park, Jongman; Lee, Yoonsang; Lee, Chongtak

    2014-01-01

    AA6061-T6 aluminum alloy is easily welded by conventional GTAW (Gas Tungsten Arc Welding), LBW (Laser Beam Welding) and EBW. However, certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes possess the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the nuclear fuel plate fabrication and assembly, a fundamental EBW experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the welding process, and satisfy the requirements of the weld quality, EBW apparatus using an electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. The EB weld quality of AA6061-T6 aluminum alloy for the fuel plate assembly has been also studied by the shrinkage measurement and weld inspection using computed tomography. This study was carried out to determine the suitable welding parameters and to evaluate tensile strength of AA6061-T6 aluminum alloy. In the present experiment, satisfactory electron beam welding process of the full-sized sample was being developed. Based on this fundamental study, fabrication of the plate-type fuel assembly will be provided for the future Ki-Jang research reactor project

  15. Crack Characterisation for In-service Inspection Planning - An Update

    Energy Technology Data Exchange (ETDEWEB)

    Waale, Jan [lnspecta Technology AB, Stockholm (Sweden)

    2006-05-15

    ; Mechanical fatigue; and Solidification cracking in weld metal. The evaluated parameters were divided into visually detectable and metallurgical parameters, which need to be evaluated from a cross-section. The visually detectable parameters are; location, orientation and shape in surface direction and finally the number of cracks in the cracked region. The metallurgical parameters are; orientation and shape in the through thickness direction, macroscopic branching, crack tip radius, crack surface roughness, crack width and finally discontinuous appearance. The morphology parameters were statistically processed and the results are presented as minimum, maximum. mean, median and scatter values for each data group, both in tables and in various graphs. Finally each morphology parameter is compared between the seven data groups. A brief description of typical characteristics of each data group is given below. Most IGSCC develop next to welds with straight or winding cracks oriented almost parallel to the weld. Single cracking is most common but occasionally two cracks are formed on each side of the weld. In the through thickness direction IGSCC is typically winding or lightly bend and macroscopic branching is rare. The surface roughness is normally on a grain size magnitude and the cracks are particularly narrow providing secondary corrosion is small. Similar characteristics to IGSCC in austenitic stainless steels may be expected. However, cracking close to weld are less frequent and macroscopic branching is more common for IGSCC in nickel base alloys compared to austenitic stainless steels. Typically IDSCC is winding or straight, single cracking in the weld metal transverse to the weld. In the through thickness direction IDSCC cause typically winding, non branched cracks with large surface roughness due to course solidification microstructure. The crack width often shows large variation along the crack and a width close to zero at the surface intersection is common. Typically

  16. Crack Characterisation for In-service Inspection Planning - An Update

    International Nuclear Information System (INIS)

    Waale, Jan

    2006-05-01

    ; Mechanical fatigue; and Solidification cracking in weld metal. The evaluated parameters were divided into visually detectable and metallurgical parameters, which need to be evaluated from a cross-section. The visually detectable parameters are; location, orientation and shape in surface direction and finally the number of cracks in the cracked region. The metallurgical parameters are; orientation and shape in the through thickness direction, macroscopic branching, crack tip radius, crack surface roughness, crack width and finally discontinuous appearance. The morphology parameters were statistically processed and the results are presented as minimum, maximum. mean, median and scatter values for each data group, both in tables and in various graphs. Finally each morphology parameter is compared between the seven data groups. A brief description of typical characteristics of each data group is given below. Most IGSCC develop next to welds with straight or winding cracks oriented almost parallel to the weld. Single cracking is most common but occasionally two cracks are formed on each side of the weld. In the through thickness direction IGSCC is typically winding or lightly bend and macroscopic branching is rare. The surface roughness is normally on a grain size magnitude and the cracks are particularly narrow providing secondary corrosion is small. Similar characteristics to IGSCC in austenitic stainless steels may be expected. However, cracking close to weld are less frequent and macroscopic branching is more common for IGSCC in nickel base alloys compared to austenitic stainless steels. Typically IDSCC is winding or straight, single cracking in the weld metal transverse to the weld. In the through thickness direction IDSCC cause typically winding, non branched cracks with large surface roughness due to course solidification microstructure. The crack width often shows large variation along the crack and a width close to zero at the surface intersection is common. Typically

  17. Radioactive waste solidification material

    International Nuclear Information System (INIS)

    Nishihara, Yukio; Wakuta, Kuniharu; Ishizaki, Kanjiro; Koyanagi, Naoaki; Sakamoto, Hiroyuki; Uchida, Ikuo.

    1992-01-01

    The present invention concerns a radioactive waste solidification material containing vermiculite cement used for a vacuum packing type waste processing device, which contains no residue of calcium hydroxide in cement solidification products. No residue of calcium hydroxide means, for example, that peak of Ca(OH) 2 is not recognized in an X ray diffraction device. With such procedures, since calcium sulfoaluminate clinker and Portland cement themselves exhibit water hardening property, and slugs exhibit hydration activity from the early stage, the cement exhibits quick-hardening property, has great extension of long term strength, further, has no shrinking property, less dry- shrinkage, excellent durability, less causing damages such as cracks and peeling as processing products of radioactive wastes, enabling to attain highly safe solidification product. (T.M.)

  18. Fatigue crack growth prediction in 2xxx AA with friction stir weld HAZ properties

    Directory of Open Access Journals (Sweden)

    A. Tzamtzis

    2016-02-01

    Full Text Available An analytical model is developed to predict fatigue crack propagation rate under mode I loading in 2024 aluminum alloy with FSW HAZ material characteristics. Simulation of the HAZ local properties in parent 2024 AA was performed with overaging using specific heat treatment conditions. The model considers local cyclic hardening behavior in the HAZ to analyze crack growth. For the evaluation of the model, the analytical results have been compared with experimental fatigue crack growth on overaged 2024 alloy simulating material behavior at different positions within the HAZ. The analytical results showed that cyclic hardening at the crack tip can be used successfully with the model to predict FCG in a material at overaged condition associated with a location in the FSW HAZ.

  19. Fatigue strength of repaired cracks in welded connections made of very high strength steels

    NARCIS (Netherlands)

    Akyel, A.

    2017-01-01

    For cyclically loaded structures, fatigue design becomes one of the important design criteria. The state of art shows that with modification of the conventional structural design methodology, the use of very high strength steels may have a positive effect on fatigue strength of welded connections.

  20. Ductile Crack Initiation Criterion with Mismatched Weld Joints Under Dynamic Loading Conditions.

    Science.gov (United States)

    An, Gyubaek; Jeong, Se-Min; Park, Jeongung

    2018-03-01

    Brittle failure of high toughness steel structures tends to occur after ductile crack initiation/propagation. Damages to steel structures were reported in the Hanshin Great Earthquake. Several brittle failures were observed in beam-to-column connection zones with geometrical discontinuity. It is widely known that triaxial stresses accelerate the ductile fracture of steels. The study examined the effects of geometrical heterogeneity and strength mismatches (both of which elevate plastic constraints due to heterogeneous plastic straining) and loading rate on critical conditions initiating ductile fracture. This involved applying the two-parameter criterion (involving equivalent plastic strain and stress triaxiality) to estimate ductile cracking for strength mismatched specimens under static and dynamic tensile loading conditions. Ductile crack initiation testing was conducted under static and dynamic loading conditions using circumferentially notched specimens (Charpy type) with/without strength mismatches. The results indicated that the condition for ductile crack initiation using the two parameter criterion was a transferable criterion to evaluate ductile crack initiation independent of the existence of strength mismatches and loading rates.

  1. On the effect of β phase on the microstructure and mechanical properties of friction stir welded commercial brass alloys.

    Science.gov (United States)

    Heidarzadeh, Akbar; Saeid, Tohid

    2015-12-01

    Conventional fusion welding of brass (Cu-Zn) alloys has some difficulties such as evaporation of Zn, toxic behavior of Zn vapor, solidification cracking, distortion, and oxidation [1], [2], [3]. Fortunately, friction stir welding (FSW) has been proved to be a good candidate for joining the brass alloys, which can overcome the fusion welding short comes [4], [5], [6], [7]. The data presented here relates to FSW of the single and double phase brass alloys. The data is the microstructure and mechanical properties of the base metals and joints.

  2. Flaw preparations for HSST program vessel fracture mechanics testing: mechanical-cyclic pumping and electron-beam weld-hydrogen-charge cracking schemes

    International Nuclear Information System (INIS)

    Holz, P.P.

    1980-06-01

    The purpose of the document is to present schemes for flaw preparations in heavy section steel. The ability of investigators to grow representative sharp cracks of known size, location, and orientation is basic to representative field testing to determine data for potential flaw propagation, fracture behavior, and margin against fracture for high-pressure-, high-temperature-service steel vessels subjected to increasing pressurization and/or thermal shock. Gaging for analytical stress and strain procedures and ultrasonic and acoustic emission instrumentation can then be applied to monitor the vessel during testing and to study crack growth. This report presents flaw preparations for HSST fracture mechanics testing. Cracks were grown by two techniques: (1) a mechanical method wherein a premachined notch was sharpened by pressurization and (2) a method combining electron-beam welds and hydrogen charging to crack the chill zone of a rapidly placed autogenous weld. The mechanical method produces a naturally occurring growth shape controlled primarily by the shape of the machined notch; the welding-electrochemical method produces flaws of uniform depth from the surface of a wall or machined notch. Theories, details, discussions, and procedures are covered for both of the flaw-growing schemes

  3. Optimization of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds

    Directory of Open Access Journals (Sweden)

    G. Magudeeswaran

    2014-09-01

    Full Text Available The activated TIG (ATIG welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention. The shape of a weld in terms of its width-to-depth ratio known as aspect ratio has a marked influence on its solidification cracking tendency. The major influencing ATIG welding parameters, such as electrode gap, travel speed, current and voltage, that aid in controlling the aspect ratio of DSS joints, must be optimized to obtain desirable aspect ratio for DSS joints. Hence in this study, the above parameters of ATIG welding for aspect ratio of ASTM/UNS S32205 DSS welds are optimized by using Taguchi orthogonal array (OA experimental design and other statistical tools such as Analysis of Variance (ANOVA and Pooled ANOVA techniques. The optimum process parameters are found to be 1 mm electrode gap, 130 mm/min travel speed, 140 A current and 12 V voltage. The aspect ratio and the ferrite content for the DSS joints fabricated using the optimized ATIG parameters are found to be well within the acceptable range and there is no macroscopically evident solidification cracking.

  4. Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties

    Directory of Open Access Journals (Sweden)

    Raffi Mohammed

    2017-04-01

    Full Text Available High nitrogen stainless steel (HNS is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties. The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding (SMAW, gas tungsten arc welding (GTAW, electron beam welding (EBW and friction stir welding (FSW processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds. Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds. Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.

  5. A FEM based methodology to simulate multiple crack propagation in friction stir welds

    DEFF Research Database (Denmark)

    Lepore, Marcello; Carlone, Pierpaolo; Berto, Filippo

    2017-01-01

    . The residual stress field was inferred by a thermo-mechanical FEM simulation of the process, considering temperature dependent elastic-plastic material properties, material softening and isotropic hardening. Afterwards, cracks introduced in the selected location of FEM computational domain allow stress...

  6. Welding.

    Science.gov (United States)

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  7. Method of storing solidification products

    International Nuclear Information System (INIS)

    Tani, Yutaro.

    1985-01-01

    Purpose: To enable to efficiently and satisfactorily cool and store solidification products of liquid wastes generated from the reactor spent fuel reprocessing process by a simple facility. Method: Liquid wastes generated from the reactor spent fuel reprocessing process are caused to flow from the upper opening to the inside of a spherical canistor. The opening of the spherical canistor is welded with a lid by a remote control and the liquid wastes are tightly sealed within the spherical canistor as glass solidification products. Spherical canistors having the solidification products tightly sealed therein are sent into and stored in a hopper by the remote control. Further, a blower is driven upon storing to suck cooling air from the cooling air intake port to the inside of the hopper to absorb the decay heat of radioactive materials in the solidification products and the air is discharged from the duct and through the stack to the atmosphere. (Kawakami, Y.)

  8. Effect of pre-strain on creep of three AISI 316 austenitic stainless steels in relation to reheat cracking of weld-affected zones

    Science.gov (United States)

    Auzoux, Q.; Allais, L.; Caës, C.; Monnet, I.; Gourgues, A. F.; Pineau, A.

    2010-05-01

    Microstructural modifications induced by welding of 316 stainless steels and their effect on creep properties and relaxation crack propagation were examined. Cumulative strain due to multi-pass welding hardens the materials by increasing the dislocation density. Creep tests were conducted on three plates from different grades of 316 steel at 600 °C, with various carbon and nitrogen contents. These plates were tested both in the annealed condition and after warm rolling, which introduced pre-strain. It was found that the creep strain rate and ductility after warm rolling was reduced compared with the annealed condition. Moreover, all steels exhibited intergranular crack propagation during relaxation tests on Compact Tension specimens in the pre-strained state, but not in the annealed state. These results confirmed that the reheat cracking risk increases with both residual stress triaxiality and pre-strain. On the contrary, high solute content and strain-induced carbide precipitation, which are thought to increase reheat cracking risk of stabilised austenitic stainless steels did not appear as key parameters in reheat cracking of 316 stainless steels.

  9. Effect of pre-strain on creep of three AISI 316 austenitic stainless steels in relation to reheat cracking of weld-affected zones

    International Nuclear Information System (INIS)

    Auzoux, Q.; Allais, L.; Caes, C.; Monnet, I.; Gourgues, A.F.; Pineau, A.

    2010-01-01

    Microstructural modifications induced by welding of 316 stainless steels and their effect on creep properties and relaxation crack propagation were examined. Cumulative strain due to multi-pass welding hardens the materials by increasing the dislocation density. Creep tests were conducted on three plates from different grades of 316 steel at 600 deg. C, with various carbon and nitrogen contents. These plates were tested both in the annealed condition and after warm rolling, which introduced pre-strain. It was found that the creep strain rate and ductility after warm rolling was reduced compared with the annealed condition. Moreover, all steels exhibited intergranular crack propagation during relaxation tests on Compact Tension specimens in the pre-strained state, but not in the annealed state. These results confirmed that the reheat cracking risk increases with both residual stress triaxiality and pre-strain. On the contrary, high solute content and strain-induced carbide precipitation, which are thought to increase reheat cracking risk of stabilised austenitic stainless steels did not appear as key parameters in reheat cracking of 316 stainless steels.

  10. Mis-Match Limit Load Analyses and Fracture Mechanics Assessment for Welded Pipe with Circumferential Crack at the Center of Weldment

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Jeon, Jun Young; Shim, Kwang Bo; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Kim, Jong Sung [Sunchon University, Suncheon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company, Daejeon (Korea, Republic of)

    2010-01-15

    In this paper, limit load analyses and fracture mechanics analyses were conducted via finite element analyses for the welded pipe with circumferential crack at the center of the weldment. Systematic changes for strength mismatch ratio, width of weldment, crack shape and thickness ratio of the pipe were considered to provide strength mismatch limit load. And J-integral calculations based on reference stress method were conducted for two materials, stainless steel and ferritic steel. Reference stress defined by provided strength mis-match limit load gives much more accurate J-integral.

  11. The Appropriate Welding Process of Repairing Crack of Converter Supporting Ring%转炉托圈裂纹修复的焊接工艺

    Institute of Scientific and Technical Information of China (English)

    马海超; 刘子龙

    2014-01-01

    The present paper introduces the process for repairing crack of converter supporting ring. Perfect result has been gained by analysing the weldability, selecting the suitable welding material, and making the appropriate welding process. It offers the practical experience for repairing crack of converter supporting ring.%本文介绍了转炉托圈裂纹的焊接修复过程。通过分析材料的焊接性,选择合适的焊接材料并且制定了合适的焊接工艺,取得了比较满意的结果,为托圈裂纹的焊接修复提供了实践经验。

  12. Mitigation of stress corrosion cracking in pressurized water reactor (PWR) piping systems using the mechanical stress improvement process (MSIPR) or underwater laser beam welding

    International Nuclear Information System (INIS)

    Rick, Grendys; Marc, Piccolino; Cunthia, Pezze; Badlani, Manu

    2009-01-01

    A current issue facing pressurized water reactors (PWRs) is primary water stress corrosion cracking (PWSCC) of bi metallic welds. PWSCC in a PWR requires the presence of a susceptible material, an aggressive environment and a tensile stress of significant magnitude. Reducing the potential for SCC can be accomplished by eliminating any of these three elements. In the U.S., mitigation of susceptible material in the pressurizer nozzle locations has largely been completed via the structural weld overlay (SWOL) process or NuVision Engineering's Mechanical Stress Improvement Process (MSIP R) , depending on inspectability. The next most susceptible locations in Westinghouse designed power plants are the Reactor Vessel (RV) hot leg nozzle welds. However, a full SWOL Process for RV nozzles is time consuming and has a high likelihood of in process weld repairs. Therefore, Westinghouse provides two distinctive methods to mitigate susceptible material for the RV nozzle locations depending on nozzle access and utility preference. These methods are the MSIP and the Underwater Laser Beam Welding (ULBW) process. MSIP applies a load to the outside diameter of the pipe adjacent to the weld, imposing plastic strains during compression that are not reversed after unloading, thus eliminating the tensile stress component of SCC. Recently, Westinghouse and NuVision successfully applied MSIP on all eight RV nozzles at the Salem Unit 1 power plant. Another option to mitigate SCC in RV nozzles is to place a barrier between the susceptible material and the aggressive environment. The ULBW process applies a weld inlay onto the inside pipe diameter. The deposited weld metal (Alloy 52M) is resistant to PWSCC and acts as a barrier to prevent primary water from contacting the susceptible material. This paper provides information on the approval and acceptance bases for MSIP, its recent application on RV nozzles and an update on ULBW development

  13. An Investigation into Stress Corrosion Cracking of Dissimilar Metal Welds with 304L Stainless Steel and Alloy 82 in High Temperature Pure Water

    Science.gov (United States)

    Yeh, Tsung-Kuang; Huang, Guan-Ru; Tsai, Chuen-Horng; Wang, Mei-Ya

    For a better understanding toward stress corrosion cracking (SCC) in dissimilar metal welds with 304L stainless steel and Alloy 82, the SCC growth behavior in the transition regions of weld joints was investigated via slow strain rate tensile (SSRT) tests in 280 oC pure water with a dissolve oxygen level of 300 ppb. Prior to the SSRT tests, samples with dissimilar metal welds were prepared and underwent various pretreatments, including post-weld heat treatment (PWHT), shot peening, solution annealing, and mechanical grinding. In addition to the SSRT tests, measurements of degree of sensitization and micro-hardness on the transition regions of the metal welds were also conducted. According to the test results, the samples having undergone PWHTs exhibited relatively high degrees of sensitization. Distinct decreases in hardness were observed in the heat-affected zones of the base metals in all samples. Furthermore, the fracture planes of all samples after the SSRT tests were located at the stainless steel sides and were in parallel with the fusion lines. Among the treating conditions investigated in this study, a PWHT would pose a detrimental effect on the samples in the aspects of mechanical property and degree of SCC. Solution annealing would lead to the greatest improvement in ductility and SCC retardation, and shot peening would provide the treated samples with a positive improvement in ductility and corrosion retardation, but not to a great extent.

  14. Implant test and acoustic emission technique used to investigate hydrogen assisted cracking in the melted zone of a welded HSLA-80 steel

    International Nuclear Information System (INIS)

    Fals, H. C.; Trevisan, R. E.

    1999-01-01

    Weld metal hydrogen assisted cracking was studied using two flux cored wire (AWS E 70T-5 and AWS E 120 T5-K4) and a mixture gas of CO 2 +5% H 2 to induce values of diffusible hydrogen in high strength low alloy steel (HSLA-80) weldments. An acoustical Emission Measurement System (AEMS) RMS voltmeter was coupled to the implant test (NF 89-100) apparatus to determine energy, amplitude and event numbers of signal. All cracks were initiated in the partially melted zone and propagated into the coarse-grained region of the heat affected zone when E 70 T5 consumable was used, and the quasi-cleavage fracture mode was predominant. When E 120 T5 K4 consumable was used the cracks propagated vertically across the fusion zone, and a mixed fracture mode was the most important. A significant relationship between acoustic emission parameters and fracture modes was found. (Author) 12 refs

  15. The Relation Between Alloy Chemistry and Hot-Cracking

    Science.gov (United States)

    Nunes, A. C., Jr.; Talia, J. E.

    2000-01-01

    Hot cracking is a problem in welding 2195 aluminum-lithium alloy. Weld wire additives seem to reduce the problem. This study proposes a model intended to clarify the way alloying elements affect hot-cracking. The brittle temperature range of an alloy extends wherever the tensile stress required to move the meniscus of the liquid film at the grain/dendrite boundaries is less than the bulks flow stress Sigma(sub B) of the grains: 2gamma/delta alloys outgas.) If the above condition is not met, the grains deform under stress and the liquid film remains in place. Curves of 2gamma/delta and sigma(sub B) vs. temperature in the range just below the melting temperature determine the hot cracking susceptibility of an alloy. Both are zero at onset of solidification. sigma(sub B) rises as the thermal activation of the slip mechanism is reduced. 2gamma/delta rises as the film thickness delta which can be estimated from the Scheil equation, drops. But, given an embrittled alloy, whether the alloy actually cracks is determined by the strain imposed upon it in the embrittled condition. A critical strain is estimated, Epsilon(sub C) on the order of Epsilon(sub C) is approximately delta/l where L = grain size and where the the volume increment due to the strain, concentrated at the liquid film, is on the order of the liquid film volume. In the early 80's an empirical critical strain cracking envelope Epsilon(sub C)(T) was incorporated into a damage criterion to estimate the effect of welding parameters on the formation of microfissures in a superalloy with good results. These concepts, liquid film decoherence vs. grain bulk deformation and critical strain, form the key elements of a quantitative theory of hot-cracking applicable for assessing the effect of alloying elements on hot-cracking during welding.

  16. Investigation of mixing and diffusion processes in hybrid spot laser-MIG keyhole welding

    International Nuclear Information System (INIS)

    Zhou, J; Tsai, H L

    2009-01-01

    In hybrid laser-MIG keyhole welding, anti-crack elements can be added into the weld pool through a filler metal in anticipation of compensating mass loss, preventing porosity formation and improving compositional and mechanical properties of the welds. Understanding the mixing and diffusion of the filler metal in the molten pool is vital to achieve these desired objectives. In this study, mathematical models and associated numerical techniques have been developed to investigate the mixing and diffusion processes in hybrid laser-MIG keyhole welding. The transient interactions between droplets and weld pool and dynamics of the melt flow are studied. The effects of key process parameters, such as droplet size (wire diameter), droplet generation frequency (wire feed speed) and droplet impinging speed, on mixing/diffusion are systematically investigated. It was found that compositional homogeneity of the weld pool is determined by the competition between the mixing rate and the solidification rate. A small-size filler droplet together with high generation frequency can increase the latitudinal diffusion of the filler metal into the weld pool, while the large-size droplet along with the low generation frequency helps to get more uniform longitudinal diffusion. Increasing the impinging velocity of the filler droplet can improve the latitudinal diffusion of the filler metal. However, a high impinging velocity can cause a lower diffusion zone in the upper part of the welds. This study provides a good foundation for optimizing the hybrid laser-MIG keyhole welding process to achieve quality welds with desired properties.

  17. Application of YAG Laser TIG Arc Hybrid Welding to Thin AZ31B Magnesium Alloy Sheet

    Science.gov (United States)

    Kim, Taewon; Kim, Jongcheol; Hasegawa, Yu; Suga, Yasuo

    A magnesium alloy is said to be an ecological material with high ability of recycling and lightweight property. Especially, magnesium alloys are in great demand on account of outstanding material property as a structural material. Under these circumstances, research and development of welding process to join magnesium alloy plates are of great significance for wide industrial application of magnesium. In order to use it as a structure material, the welding technology is very important. TIG arc welding process is the most ordinary process to weld magnesium alloy plates. However, since the heat source by the arc welding process affects the magnesium alloy plates, HAZ of welded joint becomes wide and large distortion often occurs. On the other hand, a laser welding process that has small diameter of heat source seems to be one of the possible means to weld magnesium alloy in view of the qualitative improvement. However, the low boiling point of magnesium generates some weld defects, including porosity and solidification cracking. Furthermore, precise edge preparation is very important in butt-welding by the laser welding process, due to the small laser beam diameter. Laser/arc hybrid welding process that combines the laser beam and the arc is an effective welding process in which these two heat sources influence and assist each other. Using the hybrid welding, a synegistic effect is achievable and the disadvantages of the respective processes can be compensated. In this study, YAG laser/TIG arc hybrid welding of thin magnesium alloy (AZ31B) sheets was investigated. First of all, the effect of the irradiation point and the focal position of laser beam on the quality of a weld were discussed in hybrid welding. Then, it was confirmed that a sound weld bead with sufficient penetration is obtained using appropriate welding conditions. Furthermore, it was made clear that the heat absorption efficiency is improved with the hybrid welding process. Finally, the tensile tests

  18. Microstructure, local mechanical properties and stress corrosion cracking susceptibility of an SA508-52M-316LN safe-end dissimilar metal weld joint by GTAW

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Hongliang; Zhu, Ruolin [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Zhang, Zhiming [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, En.-Hou.; Ke, Wei [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Su, Mingxing [Shanghai Research Center for Weld and Detection Engineering Technique of Nuclear Equipment, Shanghai 201306 (China)

    2016-07-04

    The microstructure, local mechanical properties and local stress corrosion cracking susceptibility of an SA508-52M-316LN domestic dissimilar metal welded safe-end joint used for AP1000 nuclear power plant prepared by automatic gas tungsten arc welding was studied in this work by optical microscopy, scanning electron microscopy (with electron back scattering diffraction and an energy dispersive X-ray spectroscopy system), micro-hardness testing, local mechanical tensile testing and local slow strain rate tests. The micro-hardness, local mechanical properties and stress corrosion cracking susceptibility across this dissimilar metal weld joint vary because of the complex microstructure across the fusion area and the dramatic chemical composition change across the fusion lines. Briefly, Type I boundaries and Type II boundaries exist in 52Mb near the SA508-52Mb interface, a microstructure transition was found in SA508 heat affected zone, the residual strain and grain boundary character distribution changes as a function of the distance from the fusion boundary in 316LN heat affected zone, micro-hardness distribution and local mechanical properties along the DMWJ are heterogeneous, and 52Mw-316LN interface has the highest SCC susceptibility in this DMWJ while 316LN base metal has the lowest one.

  19. New measurement technique of ductility curve for ductility-dip cracking susceptibility in Alloy 690 welds

    Energy Technology Data Exchange (ETDEWEB)

    Kadoi, Kota, E-mail: kadoi@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Uegaki, Takanori; Shinozaki, Kenji; Yamamoto, Motomichi [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan)

    2016-08-30

    The coupling of a hot tensile test with a novel in situ observation technique using a high-speed camera was investigated as a high-accuracy quantitative evaluation method for ductility-dip cracking (DDC) susceptibility. Several types of Alloy 690 filler wire were tested in this study owing to its susceptibility to DDC. The developed test method was used to directly measure the critical strain for DDC and high temperature ductility curves with a gauge length of 0.5 mm. Minimum critical strains of 1.3%, 4.0%, and 3.9% were obtained for ERNiCrFe-7, ERNiCrFe-13, and ERNiCrFe-15, respectively. The DDC susceptibilities of ERNiCrFe-13 and ERNiCrFe-15 were nearly the same and quite low compared with that of ERNiCrFe-7. This was likely caused by the tortuosity of the grain boundaries arising from the niobium content of around 2.5% in the former samples. Besides, ERNiCrFe-13 and ERNiCrFe-15 indicated higher minimum critical strains even though these specimens include higher content of sulfur and phosphorus than ERNiCrFe-7. Thus, containing niobium must be more effective to improve the susceptibility compared to sulfur and phosphorous in the alloy system.

  20. New measurement technique of ductility curve for ductility-dip cracking susceptibility in Alloy 690 welds

    International Nuclear Information System (INIS)

    Kadoi, Kota; Uegaki, Takanori; Shinozaki, Kenji; Yamamoto, Motomichi

    2016-01-01

    The coupling of a hot tensile test with a novel in situ observation technique using a high-speed camera was investigated as a high-accuracy quantitative evaluation method for ductility-dip cracking (DDC) susceptibility. Several types of Alloy 690 filler wire were tested in this study owing to its susceptibility to DDC. The developed test method was used to directly measure the critical strain for DDC and high temperature ductility curves with a gauge length of 0.5 mm. Minimum critical strains of 1.3%, 4.0%, and 3.9% were obtained for ERNiCrFe-7, ERNiCrFe-13, and ERNiCrFe-15, respectively. The DDC susceptibilities of ERNiCrFe-13 and ERNiCrFe-15 were nearly the same and quite low compared with that of ERNiCrFe-7. This was likely caused by the tortuosity of the grain boundaries arising from the niobium content of around 2.5% in the former samples. Besides, ERNiCrFe-13 and ERNiCrFe-15 indicated higher minimum critical strains even though these specimens include higher content of sulfur and phosphorus than ERNiCrFe-7. Thus, containing niobium must be more effective to improve the susceptibility compared to sulfur and phosphorous in the alloy system.

  1. Tube welding by the pulsed tig method

    International Nuclear Information System (INIS)

    Dick, N.T.

    1973-01-01

    During the construction of the helical wound boiler pods for the AGR stations at Hartlepool and Heysham, automatic TIG-welding techniques were used. In some cases limited access excluded the use of wire feed techniques and autogenous techniques had to be used. To resolve the problem of excessive concavity which occurred when using constant current autogenous techniques on 14.5 mm OD mild steel tubes of 1.8 mm thickness, pulsed-TIG welding was applied. By modifying the trailing edge of the pulse to produce a crater fill with each pulse, susceptibility to porosity and solidification cracking was reduced. The incorporation of digital counter permitted pulse duration, background duration, and electrode indexing distance to be monitored. (U.K.)

  2. Physical and welding metallurgy of Gd-enriched austenitic alloys for spent nuclear fuel applications. Part II, nickel base alloys

    International Nuclear Information System (INIS)

    Mizia, Ronald E.; Michael, Joseph Richard; Williams, David Brian; Dupont, John Neuman; Robino, Charles Victor

    2004-01-01

    The physical and welding a metallurgy of gadolinium- (Gd-) enriched Ni-based alloys has been examined using a combination of differential thermal analysis, hot ductility testing. Varestraint testing, and various microstructural characterization techniques. Three different matrix compositions were chosen that were similar to commercial Ni-Cr-Mo base alloys (UNS N06455, N06022, and N06059). A ternary Ni-Cr-Gd alloy was also examined. The Gd level of each alloy was ∼2 wt-%. All the alloys initiated solidification by formation of primary austenite and terminated solidification by a Liquid γ + Ni 5 Gd eutectic-type reaction at ∼1270 C. The solidification temperature ranges of the alloys varied from ∼100 to 130 C (depending on alloy composition). This is a substantial reduction compared to the solidification temperature range to Gd-enriched stainless steels (360 to 400 C) that terminate solidification by a peritectic reaction at ∼1060 C. The higher-temperature eutectic reaction that occurs in the Ni-based alloys is accompanied by significant improvements in hot ductility and solidification cracking resistance. The results of this research demonstrate that Gd-enriched Ni-based alloys are excellent candidate materials for nuclear criticality control in spent nuclear fuel storage applications that require production and fabrication of large amounts of material through conventional ingot metallurgy and fusion welding techniques

  3. Statistical investigation of the crack initiation lives of piping structural welded joint in low cycle fatigue test of 240 degree C

    International Nuclear Information System (INIS)

    Zhao Yongxiang; Gao Qing; Cai Lixun

    1999-01-01

    A statistical investigation into the fitting of four possible fatigue assumed distributions (three parameter Weibull, two parameter Weibull, lognormal and extreme maximum value distributions) for the crack initiation lives of piping structural welded joint in low cycle fatigue test of 240 degree C is performed by linear regression and least squares methods. The results reveal that the three parameters Weibull distribution may give misleading results in fatigue reliability analysis because the shape parameter is often less than 1. This means that the failure rate decreases with fatigue cycling which is contrary to the general understanding of the behaviour of welded joint. Reliability analyses may also affected by the slightly nonconservative evaluations in tail regions of this distribution. The other three distributions are slightly poor in the total fit effects, but they can be safety assumed in reliability analyses due to the non-conservative evaluations in tail regions mostly and the consistency with the fatigue physics of the structural behaviour of welded joint in the range of engineering practice. In addition, the extreme maximum value distribution is in good consists with the general physical understanding of the structural behaviour of welded joint

  4. Evidence of cracks in austenitic pipe weldings with a radiometric inspection system; Nachweis von Rissen in austenitischen Rohrleitungsnaehten mit einem radiometrischen Pruefsystem

    Energy Technology Data Exchange (ETDEWEB)

    Maier, H.J.; Wuensch, W. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1999-08-01

    The paper reports the development of a radiometric prototype device and its application to inspection of austenitic weldings with intercrystalline crack defects. The device initially was intended to be used for supplemental inspection for clarification of contradictory or unclear testing results, but the results obtained justify to consider the possibility of using it as an independent, full-scope testing instrument. (orig./CB) [Deutsch] Berichtet wird ueber die Entwicklung eines Prototypes eines Radiometrie-Geraetes zur Pruefung von austenitischen Schweissnaehten mit interkristalliner Rissbildung, zunaechst als Entscheidungshilfe bei unklaren bzw. sich widersprechenden Pruefresultaten. Zwischenzeitlich wird auch daran gedacht, ein solches Geraet fuer eine vollstaendige Pruefung weiter zu entwickeln. (orig./DGE)

  5. Effects of irradiation on initiation and crack-arrest toughness of two high-copper welds and on stainless steel cladding

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Iskander, S.K.; Haggag, F.M.

    1990-01-01

    The objective of the study on the high-copper welds is to determine the effect of neutron irradiation on the shift and shape of the ASME K Ic and K Ia toughness curves. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Compact specimens fabricated from these welds were irradiated at a nominal temperature of 288 degree C to fluences from 1.5 to 1.9 x 10 19 neutrons/cm 2 (>1 MeV). The fracture toughness test results show that the irradiation-induced shifts at 100 MPa/m were greater than the Charpy 41-J shifts by about 11 and 18 degree C. Mean curve fits indicate mixed results regarding curve shape changes, but curves constructed as lower boundaries to the data do indicate curves of lower slopes. A preliminary evaluation of the crack-arrest results shows that the neutron-irradiation induced crack-arrest toughness temperature shift is about the same as the Charpy V-notch impact temperature shift at the 41-J energy level. The shape of the lower bound curves (for the range of test temperatures covered), compared to those of the ASME K Ia curve did not appear to have been altered by the irradiation. Three-wire stainless steel weld overlay cladding was irradiated at 288 degree C to fluences of 2 and 5 x 10 19 neutrons/cm 2 (>1 MeV). Charpy 41-J temperature shifts of 13 and 28 degree C were observed, respectively. For the lower fluence only, 12.7-mm thick compact specimens showed decreases in both J Ic and the tearing modulus. Comparison of the fracture toughness results with typical plate and a low upper-shelf weld reveals that the irradiated stainless steel cladding possesses low ductile initiation fracture toughness comparable to the low upper-shelf weld. 8 refs., 12 figs., 2 tabs

  6. Microstructure and stress corrosion cracking of the fusion boundary region in an alloy 182-A533B low alloy steel dissimilar weld joint

    International Nuclear Information System (INIS)

    Hou, Juan; Peng, Qunjia; Takeda, Yoichi; Kuniya, Jiro; Shoji, Tetsuo

    2010-01-01

    Research highlights: → High-angle misorientation at FB, type-II and type-I boundaries. → Highest residual strain and hardness in the zone between FB and type-II boundary. → Type-II and type-I boundaries had lower resistance to SCC growth than the FB. → Crack growth blunted by pitting at the FB. → Reactivation of crack growth from the pitting by oxidation along the grain boundary. - Abstract: Stress corrosion cracking (SCC) in the fusion boundary (FB) region of an Alloy 182-A533B low alloy steel (LAS) dissimilar weld joint in high temperature water doped with sulfate was studied following a microstructure characterization of the FB region. The microstructure characterization suggested the type-II and type-I boundaries in the dilution zone (DZ) adjacent to the FB had lower resistance to SCC growth than the FB. Crack propagating perpendicular to the FB in the DZ was observed to be blunted by pitting at the FB, followed by the reactivation from the pitting by localized oxidation along the grain boundary in LAS.

  7. Role of the micro/macro structure of welds in crack nucleation and propagation in aerospace aluminum-lithium alloy

    Science.gov (United States)

    Talia, George E.

    1996-01-01

    Al-Li alloys offer the benefits of increased strength, elastic modulus and lower densities as compared to conventional aluminum alloys. Martin Marietta Laboratories has developed an Al-Li alloy designated 2195 which is designated for use in the cryogenic tanks of the space shuttle. The Variable Polarity Plasma Arc (VPPA) welding process is currently being used to produce these welds [1]. VPPA welding utilizes high temperature ionized gas (plasma) to transfer heat to the workpiece. An inert gas, such as Helium, is used to shield the active welding zone to prevent contamination of the molten base metal with surrounding reactive atmospheric gases. [1] In the Space Shuttle application, two passes of the arc are used to complete a butt-type weld. The pressure of the plasma stream is increased during the first pass to force the arc entirely through the material, a practice commonly referred to as keyholing. Molten metal forms on either side of the arc and surface tension draws this liquid together as the arc passes. 2319 Al alloy filler material may also be fed into the weld zone during this pass. During the second pass, the plasma stream pressure is reduced such that only partial penetration of the base material is obtained. Al 2319 filler material is added during this pass to yield a uniform, fully filled welded joint. This additional pass also acts to alter the grain structure of the weld zone to yield a higher strength joint.

  8. Microstructure and Ductility-Dip Cracking Susceptibility of Circumferential Multipass Dissimilar Weld Between 20MND5 and Z2CND18-12NS with Ni-Base Filler Metal 52

    Science.gov (United States)

    Qin, Renyao; Duan, Zhaoling; He, Guo

    2013-10-01

    The large circumferential multipass dissimilar weld between 20MND5 steel and Z2CND18-12NS stainless steel welded with FM52 filler material was investigated in terms of the diluted composition, the grain boundary precipitation, and the ductility-dip cracking (DDC) susceptibility of the weld. The diluted composition of the weld is composed of 37 to 47 pct Ni, 21 to 24 pct Cr, and 28 to 40 pct Fe, which are inhomogeneous along the depth and over the width of the deep weld. The carbon content has a distribution in the region of the surface weld from a high level (~0.20 pct) in the zone near 20MND5 steel to a normal level (~0.03 pct) in the zone near Z2CND18-12NS stainless steel. The carbon distribution is corresponding to the grain boundary carbides. The minimum threshold strains for DDC occur in the temperature range of 1223 K to 1323 K (950 °C to 1050 °C), which are 0.5, 0.35, and 0.4 pct for the root weld, middle region, and the surface weld, respectively. The dissimilar weld has the largest susceptibility to the DDC compared to the filler metal 52 and the Inconel 690.

  9. An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel

    International Nuclear Information System (INIS)

    Mortezaie, A.; Shamanian, M.

    2014-01-01

    In the present study, dissimilar welding between Inconel 718 nickel-base superalloy and 310S austenitic stainless steel using gas tungsten arc welding process was performed to determine the relationship between the microstructure of the welds and the resultant mechanical and corrosion properties. For this purpose, three filler metals including Inconel 625, Inconel 82 and 310 stainless steel were used. Microstructural observations showed that weld microstructures for all filler metals were fully austenitic. In tension tests, welds produced by Inconel 625 and 310 filler metals displayed the highest and the lowest ultimate tensile strength, respectively. The results of Charpy impact tests indicated that the maximum fracture energy was related to Inconel 82 weld metal. According to the potentiodynamic polarization test results, Inconel 82 exhibited the highest corrosion resistance among all tested filler metals. Finally, it was concluded that for the dissimilar welding between Inconel 718 and 310S, Inconel 82 filler metal offers the optimum properties at room temperature. - Highlights: • Three filler metals including Inconel 625, Inconel 82 and 310 SS were used. • A columnar to equiaxed dendritic structure was seen for IN-625 weld metal. • A granular austenitic microstructure obtained for Inconel 82 weld metal. • Microstructure of 310 weld metal includes solidification cracks along SSGB. • IN-82 weld metal showed the highest corrosion potential

  10. Prediction of non-brittle fracture in the welded joint of C-Mn steel in the brittle-ductile transition domain

    International Nuclear Information System (INIS)

    Nguyen, Thai Ha

    2009-11-01

    This work concerns the nuclear safety, specifically the secondary circuit integrity of pressurized water reactors (PWR). The problem is that of the fracture of a thin tubular structure in ferritic steel with many welded joints. The ferritic steel and weld present a brittle/ductile tenacity transition. Moreover, the welds present geometry propitious to the appearance of fatigue cracks, due to vibrations and expansions. These cracks may cause the complete fracture of the structure. The objectives of this work are to establish a criterion of non-fracture by cleavage of thin welded structures in ferritic steel, applicable to actual structures. Therefore, the present study focuses on the fracture behaviour of welded thin structures in brittle/ductile transition. It aims at developing the threshold stress model initially proposed by Chapuliot, to predict the non-brittle-fracture of this welded structure. The model is identified for the welded joint in C-Mn steel for nuclear construction, specifically in the upper part of the transition. A threshold stress, below which the cleavage cannot take place, is identified using tensile tests at low temperature on axis-symmetrical notched specimens taken in welded joint. This threshold stress is used to define the threshold volume where the maximum principal stress exceeds the threshold stress during the test. The analysis by SEM of specimen fracture surfaces shows that the gross solidification molten zone in the weld is the most likely to cleave. The relation between the brittle fracture probability and the threshold volume in the gross solidification molten zone is established via a sensitivity function, using multi-materials simulations. The model thus identified is tested for the prediction of non-brittle-fracture of SENT specimens taken in the welded joint and tested in tension. The results obtained are encouraging with regards to the transferability of the model to the actual structure. (author)

  11. Influence of Laser Welding Speed on the Morphology and Phases Occurring in Spray-Compacted Hypereutectic Al-Si-Alloys

    Directory of Open Access Journals (Sweden)

    Thomas Gietzelt

    2016-11-01

    Full Text Available Normally, the weldability of aluminum alloys is ruled by the temperature range of solidification of an alloy according to its composition by the formation of hot cracks due to thermal shrinkage. However, for materials at nonequilibrium conditions, advantage can be taken by multiple phase formation, leading to an annihilation of temperature stress at the microscopic scale, preventing hot cracks even for alloys with extreme melting range. In this paper, several spray-compacted hypereutectic aluminum alloys were laser welded. Besides different silicon contents, additional alloying elements like copper, iron and nickel were present in some alloys, affecting the microstructure. The microstructure was investigated at the delivery state of spray-compacted material as well as for a wide range of welding speeds ranging from 0.5 to 10 m/min, respectively. The impact of speed on phase composition and morphology was studied at different disequilibrium solidification conditions. At high welding velocity, a close-meshed network of eutectic Al-Si-composition was observed, whereas the matrix is filled with nearly pure aluminum, helping to diminish the thermal stress during accelerated solidification. Primary solidified silicon was found, however, containing considerable amounts of aluminum, which was not expected from phase diagrams obtained at the thermodynamic equilibrium.

  12. High-energy-beam welding of type 316LN stainless steel for cryogenic applications

    International Nuclear Information System (INIS)

    Siewert, T.A.; Gorni, D.; Kohn, G.

    1988-01-01

    Laser and electron beam welds in 25-mm-thick AISI 316LN specimens containing 0.16 wt.$% N were evaluated for fusion reactor applications and their mechanical properties were compared with those of welds generated by lower productivity processes such as shielded-metal-arc and gas-metal-arc welding. Tensile tests were performed on transverse tensile specimens at 4 K. For both welding processes the fractures occurred in the base metal at a strength level near 950 MPa. This indicated that the weld and heat affected zone had a strength similar to that of the base metal. The 4 K weld fracture toughness was only slightly less than that for the base metal and comparable to the best values achieved with conventional welding processes in 316Ln weld metal. The Charpy V-notch absorbed energies averaged near 70 J at 76 K. Metallographic analysis revealed cellular and fully austenitic solidification with little porosity and no evidence of hot cracking

  13. Microstructural, mechanical and weldability assessments of the dissimilar welds between γ′- and γ″-strengthened nickel-base superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Naffakh Moosavy, Homam, E-mail: homam_naffakh@iust.ac.ir [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Mapelli, Carlo [Dipartimento di Meccanica, Politecnico di Milano, Via La Massa 34, Milan 20156 (Italy)

    2013-08-15

    Dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys has been investigated to identify the relationship between the microstructure of the welds and the resultant mechanical and weldability characteristics. γ′-Strengthened nickel-base Alloy 500 and γ″-strengthened nickel-base Alloy 718 were used for dissimilar welding. Gas tungsten arc welding operations were utilized for performing the autogenous dissimilar welding. Alloy 500 and Alloy 718 base metals showed various types of phases, carbides, intermetallics and eutectics in their microstructure. The results for Alloy 500 weld metal showed severe segregation of titanium to the interdendritic regions. The Alloy 718 weld metal compositional analysis confirmed the substantial role of Nb in the formation of low-melting eutectic-type morphologies which can reduce the weldability. The microstructure of dissimilar weld metal with dilution level of 65% wt.% displayed semi-developed dendritic structure. The less segregation and less formation of low-melting eutectic structures caused to less susceptibility of the dissimilar weld metal to the solidification cracking. This result was confirmed by analytic modeling achievements. Dissolution of γ″-Ni{sub 3}Nb precipitations took place in the Alloy 718 heat-affected zone leading to sharp decline of the microhardness in this region. Remelted and resolidified regions were observed in the partially-melted zone of Alloy 500 and Alloy 718. Nevertheless, no solidification and liquation cracking happened in the dissimilar welds. Finally, this was concluded that dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys can successfully be performed. - Highlights: • Dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys is studied. • Microstructural, mechanical and weldability aspects of the welds are assessed. • Microstructure of welds, bases and heat-affected zones is characterized in detail. • The type

  14. Stress corrosion crack growth studies on nitrogen added AISI type 316 stainless steel and its weld metal in boiling acidified sodium chloride solution using the fracture mechanics approach

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, H.; George, G.; Khatak, H.S. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Div. of Metallurgy; Schneider, F.; Mummert, K. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany). Inst. fuer Metallische Werkstoffe

    2000-10-01

    Compact tension specimens of nitrogen-added AISI type 316 austenitic stainless steel and its weld metal were subject to stress corrosion cracking (SCC) testing in a boiling solution containing 5 M sodium chloride + 0.15 M sodium sulphate + 2.5 ml/l hydrochloric acid solution using the constant extension rate testing (CERT) technique. The extension rate of testing was 10 microns per hour. The threshold values of stress intensify factor (K{sub ISCC}) and J-integral (J{sub ISCC}) were taken as those values of K{sub I} and J{sub I} at which about 25 microns of SCC crack growth was observed. These threshold values were about four times higher and plateau crack growth rates (PCGR) were nearly one order of magnitude lower for the base metal vis-a-vis the weld metal. Fractographic observations indicated failure by transgranular SCC (TGSCC) of austenite in both the base and weld metal. No stress-assisted dissolution of delta-ferrite or its interface with austenite, was observed. (orig.) [German] CT-Proben von Grund- und Schweissnahtwerkstoff des stickstoffhaltigen Stahles AISI 316 LN wurden Spannungsrisskorrosionstests in siedender chloridhaltiger Loesung (5 M Natriumchlorid/0,15 M Natriumsulfat/0,03 M Salzsaeure) unterzogen. Die Tests erfolgten bei konstanter Dehnrate (CERT-Test) von 10 {mu}m/h. Als Schwellwerte der Initiierung von Spannungsrisskorrosion K{sub ISCC} und I{sub ISCC} wurden die Werte des Spannungsintensitaetsfaktors K{sub I} und des J-Integrals J{sub I} ermittelt, bei denen ein Risswachstum von 25 {mu}m auftrat. Dabei wies der Grundwerkstoff 4-fach hoehere Schwellwerte K{sub ISCC} und J{sub ISCC} auf als der Schweissnahtwerkstoff. Auch die Risswachstumsraten im Plateaubereich der Risswachstumsrate-Spannungsintensitaetskruven waren am Grundwerkstoff um eine Groessenordnung geringer als am Schweissnahtwerkstoff. Die fraktorgrahischen Untersuchungen zeigten an beiden Materialien Schaedigung durch transkristalline Spannungsrisskorrosion. Eine

  15. Effect of pulsed current welding on fatigue behaviour of high strength aluminium alloy joints

    International Nuclear Information System (INIS)

    Balasubramanian, V.; Ravisankar, V.; Madhusudhan Reddy, G.

    2008-01-01

    High strength aluminium alloys (Al-Zn-Mg-Cu alloys) have gathered wide acceptance in the fabrication of light weight structures requiring high strength-to weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding processes of high strength aluminium alloy are frequently gas tungsten arc welding (GTAW) process and gas metal arc welding (GMAW) process due to their comparatively easier applicability and better economy. Weld fusion zones typically exhibit coarse columnar grains because of the prevailing thermal conditions during weld metal solidification. This often results inferior weld mechanical properties and poor resistance to hot cracking. In this investigation, an attempt has been made to refine the fusion zone grains by applying pulsed current welding technique. Rolled plates of 6 mm thickness have been used as the base material for preparing single pass welded joints. Single V butt joint configuration has been prepared for joining the plates. The filler metal used for joining the plates is AA 5356 (Al-5Mg (wt%)) grade aluminium alloy. Four different welding techniques have been used to fabricate the joints and they are: (i) continuous current GTAW (CCGTAW), (ii) pulsed current GTAW (PCGTAW), (iii) continuous current GMAW (CCGMAW) and (iv) pulsed current GMAW (PCGMAW) processes. Argon (99.99% pure) has been used as the shielding gas. Fatigue properties of the welded joints have been evaluated by conducting fatigue test using rotary bending fatigue testing machine. Current pulsing leads to relatively finer and more equi-axed grain structure in gas tungsten arc (GTA) and gas metal arc (GMA) welds. In contrast, conventional continuous current welding resulted in predominantly columnar grain structures. Grain refinement is accompanied by an increase in fatigue life and endurance limit

  16. An evaluation of detection ability of ultrasonic testing with a large aperture transducer for axial cracks in cast stainless steel pipe welds

    International Nuclear Information System (INIS)

    Nishikawa, Yoshito; Ishida, Hitoshi; Kurozumi, Yasuo

    2013-01-01

    Ultrasonic testing is difficult to apply to cast stainless steel which is the material of the main coolant pipes in pressurized water reactors, because of the large attenuation and scattering of ultrasonic waves caused by its macro structure. In this study, ultrasonic testing for progression of axial fatigue cracks of a welded area in the test piece of cast stainless steel pipe was performed using double big-size ultrasonic probes which were formerly developed in INSS. It was found that detection of defects that were over 6% of the target depth for the specimen thickness of 69mm is possible, and detection of defects with over 10% of the target depth is possible for all test conditions. (author)

  17. Method of plastic solidification of radioactive wastes

    International Nuclear Information System (INIS)

    Oikawa, Yasuo; Tokimitsu, Fujio.

    1986-01-01

    Purpose: To prevent occurrence of deleterious cracks to the inside and the surface of solidification products, as well as eliminate gaps between the products and the vessel inner wall upon plastic solidification processing for powdery or granular radioactive wastes. Method: An appropriate amount of thermoplastic resins such as styrenic polymer or vinyl acetate type polymer as a low shrinking agent is added and mixed with unsaturated polyester resins to be mixed with radioactive wastes so as to reduce the shrinkage-ratio to 0 % upon curing reaction. Thus, a great shrinkage upon hardening the mixture is suppressed to prevent the occurrence of cracks to the surface and the inside of the solidification products, as well as prevent the gaps between the inner walls of a drum can vessel and the products upon forming solidification products to the inside of the drum can. The resultant solidification products have a large compression strength and can sufficiently satisfy the evaluation standards as the plastic solidification products of radioactive wastes. (Horiuchi, T.)

  18. Hot cracks formation nature in welds Al-Mg-Li and Al-Cu-Li alloy systems

    International Nuclear Information System (INIS)

    Ryazantsev, V.I.; Fedoseev, V.A.

    1997-01-01

    Mechanism of cleavage formation in alloy systems Al-Mg-Li and Al-Cu-Li welds at thermal test is proposed. This mechanism is connected with stitching spacing and stretching in direction of main deformation of intermetallic compounds inclusions and with active gases movement into the liquid phase [ru

  19. Preliminary stress corrosion cracking modeling study of a dissimilar material weld of alloy (INCONEL) 182 with Stainless Steel 316

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Omar F.; Mattar Neto, Miguel, E-mail: ofaly@ipen.br, E-mail: mmattar@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Schvartzman, Monica M.A.M., E-mail: monicas@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Dissimilar welds (DW) are normally used in many components junctions in structural project of PWR (Pressurized Water Reactors) in Nuclear Plants. One had been departed of a DW of a nozzle located at a Reactor Pressure Vessel (RPV) of a PWR reactor, that joins the structural vessel material with an A316 stainless steel safe end. This weld is basically done with Alloy 182 with a weld buttering of Alloy 82. It had been prepared some axial cylindrical specimens retired from the Alloy 182/A316 weld end to be tested in the slow strain rate test machine located at CDTN laboratory. Based in these stress corrosion susceptibility results, it was done a preliminary semi-empirical modeling application to study the failure initiation time evolution of these specimens. The used model is composed by a deterministic part, and a probabilistic part according to the Weibull distribution. It had been constructed a specific Microsoft Excel worksheet to do the model application of input data. The obtained results had been discussed according with literature and also the model application limits. (author)

  20. Characterization and Modeling of Microstructure Development in Nickel-base Superalloy Welds

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S.S.; David, S.A.; Miller, M.K.; Vitek, J.M.

    1999-11-01

    Welding is important for economical reuse and reclamation of used and failed nickel-base superalloy blades, respectively [1]. Solidification and solid state decomposition of {gamma} (Face Centered Cubic, FCC) phase into {gamma}{prime} (L1{sub 2}-ordered) phase control the properties of these welds. In previous publications, the microstructure development in electron beam welds of PWA-1480 alloy [2] and laser beam welds of CMSX-4 alloy [3] were presented. These results showed that the weld cracking in these alloys were associated with low melting point eutectic at the dendrite boundaries [1,2]. The eutectic-{gamma}{prime} precipitation was reduced at rapid weld cooling rates and the partitioning between {gamma}-{gamma}{prime} phase was found to be far from equilibrium conditions [3,4]. This observation was related to diffusional growth of {gamma}{prime} precipitate into {gamma} phase. Subsequent to the above work, the precipitation characteristics of {gamma}{prime} phase from {gamma} phase were evaluated during continuous cooling conditions [5]. The results show that the number density of {gamma} precipitates increased with an increase in cooling rate. However, the details of this decomposition and also the fine-scale elemental partitioning characteristics between {gamma}-{gamma}{prime} were not investigated. In this paper, the precipitation characteristics of {gamma}{prime} from {gamma} during continuous cooling conditions were investigated with transmission electron microscopy, and atom probe field ion microscopy. In addition, thermodynamic and kinetic models were used to describe microstructure development in Ni-base superalloy welds.

  1. Crack growth rates in thick materials of alloy 600 and weld metals of alloy 182 in laboratory primary water comparison with field Experience

    Energy Technology Data Exchange (ETDEWEB)

    Vaillant, F.; Moulart, P.; Boursier, J.M. [Electricite de France (EDF), 75 - Paris (France). Region d' Equipement; Amzallag, C. [Electricite de France (EDF), DIS/SEPTEN, 75 - Paris (France); Daret, J. [CEA Saclay, Dept. de Physico-Chimie DPC/SCCME, 91 - Gif sur Yvette (France)

    2002-07-01

    Since 1991, when a first leakage occurred on the vessel head of Bugey 3 RPV, an important investigation program was undertaken in laboratory in order to assess crack growth rates (CGRs) of vessel head penetrations (VHPs) in alloy 600 and weld metal in alloy 182 in primary environments. SCC (stress corrosion cracking) tests were performed between 290 C and 360 C on pre-cracked specimens under static loading. Alloy 600: On VHPs with YS{sub 20} ranging from 300 MPa to 468 MPa, it was found that the upper bound for CGRs were dependant on (K(T initial)-K(iscc)){sup 0.3}, in accordance with field experience. In laboratory condition, the activation energy was 130 {+-} 20 kJ/mol, the yield stress increased significantly CGRs but some coupling effects were noted with the microstructure. Cold work increased slightly CGRs on a VHP with initial YS = 468 MPa. Additional tests were performed at 290 C and 325 C on rolled bars, rolled plates and forged plates representative of the other components in alloy 600 of the primary circuit: products with low YS and high GBC had low sensitivity to SCC but it could be significantly increased with cold work raising at the level of 468 MPa, the highest YS investigated on VHPs. Stress relief treatment did not significantly modify SCC resistance. On ten products from the various components, the measured CGRs were strongly correlated to the material susceptibility index for SCC initiation. Alloy 182: Some comparisons were performed in laboratory, with different orientations. Similar trends to alloy 600 were found for the influences of K and temperature on CGRs. 10% cold work increased and stress relief treatment decreased CGRs by a factor 2. CGRs of cracks propagating in the direction of dendrites were 2 to 5 times higher than for cracks propagating in the perpendicular direction. For both alloys 600 and 182, a model is proposed to account for the effects of the main parameters on CGRs and the relevance to field experience is discussed

  2. Crack growth rates in thick materials of alloy 600 and weld metals of alloy 182 in laboratory primary water comparison with field Experience

    International Nuclear Information System (INIS)

    Vaillant, F.; Moulart, P.; Boursier, J.M.; Daret, J.

    2002-01-01

    Since 1991, when a first leakage occurred on the vessel head of Bugey 3 RPV, an important investigation program was undertaken in laboratory in order to assess crack growth rates (CGRs) of vessel head penetrations (VHPs) in alloy 600 and weld metal in alloy 182 in primary environments. SCC (stress corrosion cracking) tests were performed between 290 C and 360 C on pre-cracked specimens under static loading. Alloy 600: On VHPs with YS 20 ranging from 300 MPa to 468 MPa, it was found that the upper bound for CGRs were dependant on (K(T initial)-K(iscc)) 0.3 , in accordance with field experience. In laboratory condition, the activation energy was 130 ± 20 kJ/mol, the yield stress increased significantly CGRs but some coupling effects were noted with the microstructure. Cold work increased slightly CGRs on a VHP with initial YS = 468 MPa. Additional tests were performed at 290 C and 325 C on rolled bars, rolled plates and forged plates representative of the other components in alloy 600 of the primary circuit: products with low YS and high GBC had low sensitivity to SCC but it could be significantly increased with cold work raising at the level of 468 MPa, the highest YS investigated on VHPs. Stress relief treatment did not significantly modify SCC resistance. On ten products from the various components, the measured CGRs were strongly correlated to the material susceptibility index for SCC initiation. Alloy 182: Some comparisons were performed in laboratory, with different orientations. Similar trends to alloy 600 were found for the influences of K and temperature on CGRs. 10% cold work increased and stress relief treatment decreased CGRs by a factor 2. CGRs of cracks propagating in the direction of dendrites were 2 to 5 times higher than for cracks propagating in the perpendicular direction. For both alloys 600 and 182, a model is proposed to account for the effects of the main parameters on CGRs and the relevance to field experience is discussed. (authors)

  3. Identifying Combination of Friction Stir Welding Parameters to Maximize Strength of Lap Joints of AA2014-T6 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Rajendrana C.

    2017-01-01

    Full Text Available AA2014 aluminum alloy (Al-Cu alloy has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE, analysis of variance (ANOVA, response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.

  4. Structure-property investigations on a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications. Part II: resistance to fatigue crack propagation and fracture

    Energy Technology Data Exchange (ETDEWEB)

    Horstmann, M.; Ventzke, V.; Petrovski, B.; Kocak, M. [GKSS Research Centre Geesthacht, Institute of Materials Research, Materials Mechanics, Geesthacht (Germany); Kocik, R.; Tempus, G. [AIRBUS Deutschland GmbH, Metal Technology, Bremen (Germany); Vaidya, W.V.

    2009-10-15

    Investigations were continued on the dissimilar laser beam welds of AA6056 and Ti6Al4V, fabricated by inserting Ti-sheet into the profiled Al-sheet and melting AA6056 alone. By using microstructure, hardness and strength as the criteria, sites exhibiting non-uniform microstructure and localized plastic deformation due to strength mismatch were investigated in two orientations: crack parallel to the weld and crack perpendicular to the weld for fatigue crack propagation and fracture toughness at room temperature. Effect of temper of AA6056 on these properties was studied for two conditions; welding in T4 followed by post weld heat treatment T6, and welding in T6 and naturally aged for a defined period. The orientation ''crack parallel to the weld'' was investigated in 3 locations on the side of AA6056: the interface and the two changeovers on the Al-side. Firstly, between the fusion zone and the heat affected zone (3 mm from the interface) and secondly, between (primary) heat affected zone and towards the base material (7 mm from the interface). Although brittle intermetallic TiAl{sub 3} had been formed at the interface, uncontrolled separation or debonding at the interface was not observed. Insofar the bond quality of the weld was good. However, the ranking of interface was the lowest since fatigue crack propagation was relatively faster than that in the fusion zone and heat affected zone, and fracture toughness was low. Therefore, unstable fatigue crack propagation is observed when the crack propagates perpendicular to the weld from AA6056 towards Ti6Al4V. The results have shown that the dissimilar joints exhibit improved performance when laser beam welded in the T6 condition. (Abstract Copyright [2009], Wiley Periodicals, Inc.) [German] Teil II: Widerstand gegen Ermuedungsrissausbreitung und Bruch Die Untersuchungen an der laserstrahlgeschweissten Mischverbindung aus AA6056 und Ti6Al4V wurden fortgesetzt. Fuer die Ermuedungsrissausbreitungs

  5. Effect of scandium additions on microstructure and mechanical properties of Al-Zn-Mg alloy welds

    International Nuclear Information System (INIS)

    Dev, Selvi; Stuart, A. Archibald; Kumaar, R.C. Ravi Dev; Murty, B.S.; Rao, K. Prasad

    2007-01-01

    The microstructure and mechanical properties of fusion zones of medium strength Al-Zn-Mg alloy (RDE-40) welds obtained by using different fillers containing various amount of scandium was investigated. It was observed that addition of scandium led to very significant grain refinement in the fusion zone especially for scandium levels greater than the eutectic composition (0.55 wt%). The grain refinement led to the reduction in solidification cracking and improved the tensile properties of fusion zone compared to the ones obtained by the commercial AA5556 filler

  6. Fundamental Study of Electron Beam Welding of AA6061-T6 Aluminum Alloy for Nuclear Fuel Plate Assembly (II)

    International Nuclear Information System (INIS)

    Kim, Soosung; Lee, Haein; Lee, Donbae; Park, Jongman; Lee, Yoonsang

    2013-01-01

    Certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes posses the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the nuclear fuel plate fabrication and assembly, a fundamental EBW experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the welding process, and satisfy the requirements of the weld quality, EBW apparatus using a electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. In this experiment, a feasibility test was carried out by tensile tester, bead-on-plate welding and metallographic examination to comply with the aluminum welding procedure. The EB weld quality of AA6061-T6 aluminum alloy for the fuel plate assembly has been also studied by the mechanical testing and microstructure examinations. This study was carried out to determine the suitable welding process and to investigate tensile strength of AA6061-T6 aluminum alloy. In the present experiment, satisfactory EBW of the square butt weld specimens was developed. In comparison with the rolling directions of test specimens, the tensile strengths were no difference between the longitudinal and transverse welds. Based on this fundamental study, fabrication and assembly of the nuclear fuel plates will be provided for the future Kijang research reactor project

  7. Primary water stress corrosion cracks in nickel alloy dissimilar metal welds: Detection and sizing using established and emerging nondestructive examination techniques

    International Nuclear Information System (INIS)

    Braatz, B.G.; Doctor, S.R.; Cumblidge, S.E.; Prokofiev, I.G.

    2012-01-01

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (∼400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional and phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (∼900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for

  8. Primary Water Stress Corrosion Cracks in Nickel Alloy Dissimilar Metal Welds: Detection and Sizing Using Established and Emerging Nondestructive Examination Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Braatz, Brett G.; Cumblidge, Stephen E.; Doctor, Steven R.; Prokofiev, Iouri

    2012-12-31

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (≈400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional and phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (≈900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for

  9. Crack repair welding by CMT brazing using low melting point filler wire for long-term used steam turbine cases of Cr-Mo-V cast steels

    Energy Technology Data Exchange (ETDEWEB)

    Kadoi, Kota, E-mail: kadoi@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Murakami, Aoi; Shinozaki, Kenji; Yamamoto, Motomichi [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Matsumura, Hideo [Chugoku Electric Power Co., 3-9-1 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan)

    2016-06-01

    Surface melting by gas tungsten arc (GTA) welding and overlaying by cold metal transfer (CMT) brazing using low melting point filler wire were investigated to develop a repair process for cracks in worn cast steel of steam turbine cases. Cr-Mo-V cast steel, operated for 188,500 h at 566 °C, was used as the base material. Silver and gold brazing filler wires were used as overlaying materials to decrease the heat input into the base metal and the peak temperature during the welding thermal cycle. Microstructural analysis revealed that the worn cast steel test samples contained ferrite phases with intragranular precipitates of Cr{sub 7}C{sub 3}, Mo{sub 2}C, and CrSi{sub 2} and grain boundary precipitates of Cr{sub 23}C{sub 6} and Mo{sub 2}C. CMT brazing using low melting point filler wire was found to decrease the heat input and peak temperature during the thermal cycle of the process compared with those during GTA surface melting. Thus, the process helped to inhibit the formation of hardened phases such as intermetallics and martensite in the heat affected zone (HAZ). Additionally, in the case of CMT brazing using BAg-8, the change in the hardness of the HAZ was negligible even though other processes such as GTA surface melting cause significant changes. The creep-fatigue properties of weldments produced by CMT brazing with BAg-8 were the highest, and nearly the same as those of the base metal owing to the prevention of hardened phase formation. The number of fracture cycles using GTA surface melting and CMT brazing with BAu-4 was also quite small. Therefore, CMT brazing using low melting point filler wire such as BAg-8 is a promising candidate method for repairing steam turbine cases. However, it is necessary to take alloy segregation during turbine operation into account to design a suitable filler wire for practical use.

  10. Inspection method for solidification product of radioactive waste and method of preparing solidification product of radiation waste

    International Nuclear Information System (INIS)

    Izumida, Tatsuo; Tamada, Shin; Matsuda, Masami; Kamata, Shoji; Kikuchi, Makoto.

    1993-01-01

    A powerful X-ray generation device using an electron-ray accelerator is used for inspecting presence or absence of inner voids in solidification products of radioactive wastes during or after solidification. By installing the X-ray CT system and the radioactive waste solidifying facility together, CT imaging for solidification products is conducted in a not-yet cured state of solidifying materials during or just after the injection. If a defect that deteriorates the durability of the solidification products should be detected, the solidification products are repaired, for example, by applying vibrations to the not-yet cured solidification products. Thus, since voids or cracks in the radioactive wastes solidification products, which were difficult to be measured so far, can be measured in a short period of time accurately thereby enabling to judge adaptability to the disposal standards, inspection cost for the radioactive waste solidification product can be saved remarkably. Further, the inside of the radioactive waste solidification products can be evaluated correctly and visually, so that safety in the ground disposal storage of the radioactive solidification products can be improved remarkably. (N.H.)

  11. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    International Nuclear Information System (INIS)

    Kikel, J.M.; Parker, D.M.

    1998-01-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility was compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC

  12. Prediction of non-brittle fracture in the welded joint of C-Mn steel in the brittle-ductile transition domain; Prediction de la non-rupture fragile dans un joint soude en acier C-Mn dans le domaine de la transition fragile/ductile

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thai Ha

    2009-11-15

    This work concerns the nuclear safety, specifically the secondary circuit integrity of pressurized water reactors (PWR). The problem is that of the fracture of a thin tubular structure in ferritic steel with many welded joints. The ferritic steel and weld present a brittle/ductile tenacity transition. Moreover, the welds present geometry propitious to the appearance of fatigue cracks, due to vibrations and expansions. These cracks may cause the complete fracture of the structure. The objectives of this work are to establish a criterion of non-fracture by cleavage of thin welded structures in ferritic steel, applicable to actual structures. Therefore, the present study focuses on the fracture behaviour of welded thin structures in brittle/ductile transition. It aims at developing the threshold stress model initially proposed by Chapuliot, to predict the non-brittle-fracture of this welded structure. The model is identified for the welded joint in C-Mn steel for nuclear construction, specifically in the upper part of the transition. A threshold stress, below which the cleavage cannot take place, is identified using tensile tests at low temperature on axis-symmetrical notched specimens taken in welded joint. This threshold stress is used to define the threshold volume where the maximum principal stress exceeds the threshold stress during the test. The analysis by SEM of specimen fracture surfaces shows that the gross solidification molten zone in the weld is the most likely to cleave. The relation between the brittle fracture probability and the threshold volume in the gross solidification molten zone is established via a sensitivity function, using multi-materials simulations. The model thus identified is tested for the prediction of non-brittle-fracture of SENT specimens taken in the welded joint and tested in tension. The results obtained are encouraging with regards to the transferability of the model to the actual structure. (author)

  13. Morphology, microstructure, and mechanical properties of laser-welded joints in GH909 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunming; Cai, Yuanzheng; Hu, Chongjing; Zhang, Xiong; Yan, Fei; Hu, Xiyuan [Huazhong University of Science and Technology, Wuhan (China)

    2017-05-15

    The experimental laser welding of GH909 alloy was conducted in this study. The morphology, microstructure, and mechanical properties of laser-welded joints were analyzed by scanning electron microscopy, energy diffraction spectroscopy, and other techniques. Results revealed that the microstructure of the welded joints mainly consisted of tiny cellular structures, dendritic structures, and equiaxed crystals. Pores appeared in the interdendritic regions because of the insufficient local feeding of molten metal during solidification. Nb segregation in the heat-affected zone caused liquation cracking, whereas C segregation further induced the formation of carbide precipitates along the grain boundaries during the welding thermal cycle. The instability of the keyhole significantly promoted the escape of the metal vapor/plasma from the hole; as a result, porosity defects formed in the weld. The average tensile strength of the test joints was 756 MPa, which is 93.1 % of that of the base metal. The average microhardness of the weld zone (250 HV) was higher than that of the GH909 alloy substrate (208 HV), peaking at 267 HV. Microcracks appeared along the grain boundaries, proving that the grain boundaries were the weakest areas in the joint.

  14. Recent Advances in Study of Solid-Liquid Interfaces and Solidification of Metals

    Directory of Open Access Journals (Sweden)

    Mohsen Asle Zaeem

    2018-02-01

    Full Text Available Solidification occurs in several material processing methods, such as in casting, welding, and laser additive manufacturing of metals, and it controls the nano- and microstructures, as well as the overall properties of the products[...

  15. Repair welding of fusion reactor components

    International Nuclear Information System (INIS)

    Chin, B.A.

    1993-01-01

    Experiments have shown that irradiated Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 MPa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials

  16. Fracture assessment of laser welde joints using numerical crack propagation simulation with a cohesive zone model; Bruchmechanische Bewertung von Laserschweissverbindungen durch numerische Rissfortschrittsimulation mit dem Kohaesivzonenmodell

    Energy Technology Data Exchange (ETDEWEB)

    Scheider, I.

    2001-07-01

    This thesis introduces a concept for fracture mechanical assessment of structures with heterogenuous material properties like weldments. It is based on the cohesive zone model for numerical crack propagation analysis. With that model the failure of examined structures due to fracture can be determined. One part of the thesis contains the extension of the capabilities of the cohesive zone model regarding modelling threedimensional problems, shear fracture and unloading. In a second part new methods are developed for determination of elastic-plastic and fracture mechanical material properties, resp., which are based on optical determination of the specimen deformation. The whole concept has been used successfully for the numerical simulation of small laser welded specimens. (orig.) [German] In der vorliegenden Arbeit wird ein Konzept vorgestellt, mit dem es moeglich ist, Bauteile mit heterogenen Materialeigenschaften, wie z.B. Schweissverbindungen, bruchmechanisch zu bewerten. Es basiert auf einem Modell zur numerischen Rissfortschrittsimulation, dem Kohaesivzonenmodell, um das Versagen des zu untersuchenden Bauteils infolge von Bruch zu bestimmen. Ein Teil der Arbeit umfasst die Weiterentwicklung des Kohaesivzonenmodells zur Vorhersage des Bauteilversagens in Bezug auf die Behandlung dreidimensionaler Probleme, Scherbuch und Entlastung. In einem zweiten Teil werden Methoden zur Bestimmung sowohl der elastischplastischen als auch der bruchmechanischen Materialparameter entwickelt, die zum grossen Teil auf optischen Auswertungsmethoden der Deformationen beruhen. Das geschlossene Konzept wird erfolgreich auf lasergeschweisste Kleinproben angewendet. (orig.)

  17. THE NEED FOR A NEW JOINING TECHNOLOGY FOR THE CLOSURE WELDING OF RADIOACTIVE MATERIALS CONTAINERS

    International Nuclear Information System (INIS)

    CANNELL GR; HILL BE; GRANT GJ

    2008-01-01

    One of the activities associated with cleanup throughout the Department of Energy (DOE) complex is packaging radioactive materials into storage containers. Much of this work will be performed in high-radiation environments requiring fully remote operations, for which existing, proven systems do not currently exist. These conditions demand a process that is capable of producing acceptable (defect-free) welds on a consistent basis; the need to perform weld repair, under fully-remote operations, can be extremely costly and time consuming. Current closure welding technology (fusion welding) is not well suited for this application and will present risk to cleanup cost and schedule. To address this risk, Fluor and the Pacific Northwest National Laboratory (PNNL), are proposing that a new and emerging joining technology, Friction Stir Welding (FSW), be considered for this work. FSW technology has been demonstrated in other industries (aerospace and marine) to produce near flaw-free welds on a consistent basis. FSW is judged capable of providing the needed performance for fully-remote closure welding of containers for radioactive materials for the following reasons: FSW is a solid-state process; material is not melted. As such, FSW does not produce the type of defects associated with fusion welding, e.g., solidification-induced porosity, cracking, distortion due to weld shrinkage, and residual stress. In addition, because FSW is a low-heat input process, material properties (mechanical, corrosion and environmental) are preserved and not degraded as can occur with 'high-heat' fusion welding processes. When compared to fusion processes, FSW produces extremely high weld quality. FSW is performed using machine-tool technology. The equipment is simple and robust and well-suited for high radiation, fully-remote operations compared to the relatively complex equipment associated with the fusion-welding processes. Additionally, for standard wall thicknesses of radioactive materials

  18. Stress corrosion cracking growth rate of TT alloy 690 and its weld joint in simulated PWR primary water

    International Nuclear Information System (INIS)

    Yonezawa, T.

    2015-01-01

    Recently, some researchers reported that the SCC growth rate (SCCGR) of cold worked thermally treated (TT) Alloy 690 was significantly different in heat by heat. But, author has hypothesized that these high SCCGRs in cold worked TT Alloy 690 could be due to the metallurgical characteristics of these heats. In order to confirm this hypothesis, this study has been started in the author's laboratory, and the following 4 new evidences were obtained. First, microcracks of carbides and voids were observed in eutectic M 23 C 6 GB carbides (primary carbides) for cold rolled laboratory heat after as cast or lightly forged condition or for chemical composition simulated Bettis'TT Alloy 690 heat, after cold rolling, before SCC test. However, microcracks in primary carbides along grain boundaries and voids were rarely detected in the cold rolled commercial heat of TT Alloy 690 used for CRDM penetrations. Secondly, the SCCGR observed in TT Alloy 690 was different in each hot working process and each heat. Comparing the SCCGRs for all heats of cold worked TT Alloy 690, the SCCGR decreased with increasing of Vickers hardness. However, in same heats of cold worked TT Alloy 690, the SCCGR increased with increasing of Vickers hardness. Thirdly, the SCCGR in cold rolled TT Alloy 690 should be integrated by the effect of hardness or cold working ratio and by the effect of existing ratio of primary M23C6 carbides with cracks and Voids due to chemical composition and the fabrication process of TT Alloy 690. Fourthly, it is argued that the high SCCGRs in highly cold rolled TT Alloy 690 are not representative of the practical situation with TT Alloy 690 in service for CRDM adapter nozzles etc. The high SCCGR of highly cold rolled TT Alloy 690 is not thought to be an accurate tool in predicting the possibility of cracking of TT Alloy 690 for CRDM adapter nozzles. (author)

  19. Comparison of critical circumferential through-wall-crack-lengths in welds between pieces of straight pipes to welds between straigth pipes and bends with and without internal pressure at force- and displacement-controlled bending load; Vergleich kritischer Umfangsdurchrisslaengen in Schweissnaehten zwischen Geradrohrstuecken mit Schweissnaehten an Rohrbogen-Geradrohrverbindungen mit und ohne Innendruck bei kraft- und wegkontrollierter Biegebelastung

    Energy Technology Data Exchange (ETDEWEB)

    Steinbuch, R [Fachhochschule fuer Technik und Wirtschaft Reutlingen (Germany). Fachbereich Maschinenbau

    1998-11-01

    Methods for calculation of critical, circumferential through-wall crack lengths in pipes have been developed and verified by several research projects. In applications during the last few years it has been found that the force or displacement-controlled loads have to be considered separately, and this approach was integrated into the recent methods. Methods so far assumed cracks to be located in welds joining straight pipes. But this approach starts from an incomplete picture of reality, as with today`s technology, circumferential welds are less frequent in straight pipes and much more frequent in pipework of other geometry, as for instance in welds joining straight pipes and bends, or bends with longer legs, nozzles, or T-pieces. The non-linear FEM parameter study presented in the paper, covering cases with internal pressure of pipes and one-dimensional bending loads, is based on current geometries of pipework in the primary and secondary loops of industrial plants and compares the conditions induced by circumferential through-wall cracks in welds joining only straight pipes and in those joining bended and straight pipes. At the relevant, displacement-controlled bending loads due to hampered thermal expansion of the pipe system, the critical through-wall cracks lengths occurring in pipe-to-bend welds are of about the same size and importance as those in pipe-to-pipe welds. As for the case of force-controlled loads, the technical codes calculate more serious effects and require lower bending load limits. Within the range of admissible loads given in the codes, the critical through-wall crack lengths occurring in pipe-to-bend welds are similar in size to those in straight pipe welds. It is therefore a conservative or realistic approach to apply the values determined for critical through-wall crack lengths in pipe-to-pipe joints also to pipe-to-bend welds. (orig./CB) [Deutsch] Verfahren zur Berechnung kritischer Umfangdurchrisslaengen in Rohrleitungen wurden in

  20. Radioactive gas solidification apparatus

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Seki, Eiji; Yabu, Tomohiko; Matsunaga, Hiroyuki.

    1990-01-01

    Handling of a solidification container from the completion for the solidifying processing to the storage of radioactive gases by a remote control equipment such as a manipulator requires a great cost and is difficult to realize. In a radioactive gas solidification device for injection and solidification in accumulated layers of sputtered metals by glow discharge, radiation shieldings are disposed surrounding the entire container, and cooling water is supplied to a cooling vessel formed between the container and the shielding materials. The shielding materials are divided into upper and lower shielding materials, so that solidification container can be taken out from the shielding materials. As a result, the solidification container after the solidification of radioactive gases can be handled with ease. Further, after-heat can be removed effectively from the ion injection electrode upon solidifying treatment upon storage, to attain a radioactive gas solidifying processing apparatus which is safe, economical and highly reliable. (N.H.)

  1. Three-dimensional chemical analysis of laser-welded NiTi–stainless steel wires using a dual-beam FIB

    International Nuclear Information System (INIS)

    Burdet, P.; Vannod, J.; Hessler-Wyser, A.; Rappaz, M.; Cantoni, M.

    2013-01-01

    The biomedical industry has an increasing demand for processes to join dissimilar metals, such as laser welding of NiTi and stainless steel wires. A region of the weld close to the NiTi interface, which previously was shown to be prone to cracking, was further analyzed by energy dispersive spectrometry (EDS) extended in the third dimension using a focused ion beam. As the spatial resolution of EDS analysis is not precise enough to resolve the finest parts of the microstructure, a new segmentation method that uses in addition secondary-electron images of higher spatial resolution was developed. Applying these tools, it is shown that this region of the weld close to the NiTi interface does not comprise a homogeneous intermetallic layer, but is rather constituted by a succession of different intermetallics, the composition of which can be directly correlated with the solidification path in the ternary Fe–Ni–Ti Gibbs simplex

  2. Influence of Loading Direction and Weld Reinforcement on Fatigue Performance of TIG Weld Seam

    Directory of Open Access Journals (Sweden)

    HUI Li

    2018-02-01

    Full Text Available The influence of loading direction and weld reinforcement on fatigue performance of TC2 titanium alloy TIG weld seam was investigated via fatigue experiments and SEM fracture observation. The results show that the fatigue life of retaining weld reinforcement specimens is lower than that of removing one in the same weld direction. The fatigue life of oblique weld specimens is higher than that of straight one with the same weld reinforcement treatment. The initiation of removing weld reinforcement specimens' fatigue crack sources is in the hole defect, but the weld reinforcement specimen initiate at the weld toes. During the early stage of fatigue crack propagation, the cracks all grow inside the weld seam metal with obvious fatigue striation. And the fatigue cracks of oblique weld specimens pass through the weld seam into the base with a typical toughness fatigue striation during the last stage of fatigue crack propagation. The dimple of straight weld specimens is little and shallow in the final fracture zone. The oblique weld specimens broke in the base metal area, and the dimple is dense.

  3. Stress corrosion cracking of A515 grade 60 carbon steel

    International Nuclear Information System (INIS)

    Moore, E.L.

    1971-01-01

    An investigation was conducted to evaluate the effect of welding method plate thickness, and subsequent stress relief treatment on the stress corrosion cracking propensity of ASTM A515 Grade 60 carbon steel plate exposed to a 5 M NaNO 3 solution at 190 0 F for eight weeks. It was found that all weld coupons receiving no thermal stress relief treatment cracked within eight weeks; all weld coupons given a vibratory stress relief cracked within eight weeks; two of the eight weld coupons stress relieved at 600 0 F for one hour cracked within eight weeks; none of the weld coupons stress relieved at 1100 0 F for one hour cracked within eight weeks; and that cracking was generally more severe in coupons fabricated from 7/8 inch plate by shielded metal arc welding than it was in coupons fabricated by other welding methods. (U.S.)

  4. The improvement of ultrasonic characteristics in weld metal of austenitic stainless steel using magnetic stirring method

    International Nuclear Information System (INIS)

    Arakawa, T.; Tomisawa, Y.

    1988-01-01

    The magnetic stirring welding process was tested to save the difficulty of ultrasonic testing of austenitic stainless steel overlayed welds, due to grain refinement of weld solidification structure. The testing involved stirring the molten pool with Lorenz force induced by the interaction of welding current and alternative magnetic field applied from the outside magnetic coil. This report summarizes improvement of ultrasonic characteristic in austenitic stainless steel overlayed welds caused by magnetic stirring welding process

  5. Effect of constraint condition and internal medium on residual stress under overlay welding for dissimilar metal welding

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong; Kim, Jong Sung; Kim, Jin Weon

    2007-01-01

    In nuclear power plants, residual stress of dissimilar metal weld propagates cracks in the weld metal which is susceptible to stress corrosion cracking. Overlay welding is a process widely used to mitigate residual stress replacing inside tensile stress by compression stress. However, according to the result of this study the effect of overlay welding on residual stress depends on both internal medium and constraint condition. The purpose of this study is to maximize the positive effect of overlay welding by finite element analyses

  6. 46 CFR 59.10-5 - Cracks.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING REPAIRS TO BOILERS, PRESSURE VESSELS AND... consecutive cracked ligaments nor more than a total of six cracked ligaments in any one girth joint. (c... ligaments may be repaired by welding. (n) Welding repairs to drums of power boilers, except as otherwise...

  7. Solidification microstructure development

    Indian Academy of Sciences (India)

    Unknown

    A majority of manufacturing processes involve melting and solidification of metals and ... In such a case (for example, chill casting), the solidification thickness (S) is ... (5). Here, LX is the system length scale in one dimension and DS is the solute diffusivity in solid. Thermal and solutal diffusivities are finite and usually very ...

  8. INERT GAS SHIELD FOR WELDING

    Science.gov (United States)

    Jones, S.O.; Daly, F.V.

    1958-10-14

    S>An inert gas shield is presented for arc-welding materials such as zirconium that tend to oxidize rapidly in air. The device comprises a rectangular metal box into which the welding electrode is introduced through a rubber diaphragm to provide flexibility. The front of the box is provided with a wlndow having a small hole through which flller metal is introduced. The box is supplied with an inert gas to exclude the atmosphere, and with cooling water to promote the solidification of the weld while in tbe inert atmosphere. A separate water-cooled copper backing bar is provided underneath the joint to be welded to contain the melt-through at the root of the joint, shielding the root of the joint with its own supply of inert gas and cooling the deposited weld metal. This device facilitates the welding of large workpieces of zirconium frequently encountered in reactor construction.

  9. Microstructural study of weld fusion zone of TIG welded IN 738LC nickel-based superalloy

    International Nuclear Information System (INIS)

    Ojo, O.A.; Richards, N.L.; Chaturvedi, M.C.

    2004-01-01

    The weld fusion zone microstructure of a commercial aerospace superalloy IN 738 was examined. Elemental segregation induced interdendritic microconstituents were identified to include terminal solidification product M 3 B 2 and Ni 7 Zr 2 in association with γ-γ' eutectic constituent, which require proper consideration during the development of optimum post weld heat treatment

  10. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2016-01-01

    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced...... residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature failure in the weld components. This paper deals with the influence and impact of welding method on the welding...... induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...

  11. Evaluating the SCC resistance of underwater welds in sodium tetrathionate

    International Nuclear Information System (INIS)

    White, R.A.; Angeliu, T.M.

    1997-01-01

    The susceptibility of welds to stress corrosion cracking (SCC) is enhanced by the surface residual tensile stresses generated by the typical welding process. However, underwater plasma transferred arc (PTA) welding has been shown to produce compressive surface residual stresses, an encouraging result if repairs of cracked boiling water reactor (BWR) components are to be made without further endangering them to SCC. This program was designed to verify that underwater PTA welds are resistant to SCC and to determine if underwater PTA welding could mitigate SCC in potentially susceptible welds. This was achieved by exposing various welds on solution annealed (SA) and SA + thermally sensitized 304 stainless steel at 25 C in a solution of 1.5 gm/liter of sodium sulfide added to 0.05M sodium tetrathionate, titrated to a pH of 1.25 with H 2 SO 4 . The autogeneous welds were produced using gas tungsten arc (GTA) and plasma transferred arc (PTA) welding under atmospheric conditions, and PTA welding underwater. After 1 hour of sodium tetrathionate exposure, GTA and air PTA welds exhibited SCC while the underwater PTA weld heat affected zones were more resistant. Underwater PTA welds bisecting a GTA weld eliminated the cracking in the GTA weld heat affected zone under certain conditions. The lack of IG cracking in the region influenced by the underwater PTA weld is consistent with the measurement of compressive surface residual stresses inherent to the underwater welding process

  12. Advances in Solidification Processing

    Directory of Open Access Journals (Sweden)

    Hugo F. Lopez

    2015-08-01

    Full Text Available Melt solidification is the shortest and most viable route to obtain components, starting from the design to the finished products. Hence, a sound knowledge of the solidification of metallic materials is essential for the development of advanced structural metallic components that drive modern technological societies. As a result, there have been innumerable efforts and full conferences dedicated to this important subject [1–6]. In addition, there are various scientific journals fully devoted to investigating the various aspects which give rise to various solidification microstructures [7–9]. [...

  13. Multipass welding of nuclear reactor components - computations

    International Nuclear Information System (INIS)

    Hedblom, E.

    2002-01-01

    The finite element method is used to compare different welding procedures. The simulations are compared with measurements. Two different geometries and two different welding procedures are evaluated. It is found that a narrow gap weld gives smaller tensile residual axial stresses on the inside of the pipe. This is believed to reduce the risk for intergranular stress corrosion cracking

  14. Summary of the guideline on underwater laser beam repair welding

    International Nuclear Information System (INIS)

    Ichikawa, Hiroya; Yoda, Masaki; Motora, Yuichi

    2013-01-01

    It is known that stress corrosion cracking (SCC) might occur at the weld of a reactor pressure vessel or core internals. Underwater laser beam clad welding for mitigation of SCC has been already established and the guideline 'Underwater laser beam clad welding' was published. Moreover, the guideline 'Seal welding' was also published as a repair method for SCC. In addition to these guidelines, the guideline 'Underwater laser beam repair welding' was newly published in November, 2012 for the repair welding after completely removing a SCC crack occurred in weld or base metal. This paper introduces the summary of this guideline. (author)

  15. Numerical analysis of weld pool oscillation in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of); Farson, Dave F [The Ohio State University, Columbus (United States); Hollis, Kendall; Milewski, John O. [Los Alamos National Laboratory, Los Alamos (United States)

    2015-04-15

    Volume of fluid (VOF) numerical simulation was used to investigate melt flow and volumetric oscillation of conduction-mode pulsed laser weld pools. The result is compared to high speed video stream of titanium laser spot welding experiment. The total simulation time is 10ms with the first 5 ms being heating and melting under constant laser irradiation and the remaining 5 ms corresponding to resolidification of the weld pool. During the melting process, the liquid pool did not exhibit periodic oscillation but was continually depressed by the evaporation recoil pressure. After the laser pulse, the weld pool was excited into volumetric oscillation by the release of pressure on its surface and oscillation of the weld pool surface was analyzed. The simulation model suggested adjusting thermal diffusivity to match cooling rate and puddle diameter during solidification which is distinguishable from previous weld pool simulation. The frequency continuously increased from several thousand cycles per second to tens of thousands of cycles per second as the weld pool solidified and its diameter decreased. The result is the first trial of investigation of small weld pool oscillation in laser welding although there have been several reports about arc welding.

  16. A Correlation of Welding Solidification Parameters to Weld Macrostructure

    Science.gov (United States)

    1992-06-18

    BY THE START PROGRAMS. C C PROGRAM GVPLOT C DIMENSION TEMP(27,27,8),ZMELT(27,27),GRAD(27,27),V(27,27) DIMENSION TMAP (27,8),TMAP2(17,5),TEMPIMP(5...DATA GRAD /729*0./ DATA TMAP /216*0.0/ TMELT = 1770.0 79 READ(I) TIME READ(l) (((TEMP(I,J,K),I=1,27),J=1,27),K=1,8) READ(l) VTORCH C C C ACQUIRE A...MAP OF MAX TEMPERATURES IN (X,Z) IN ORDER TO DEFINE THE C FUSION ZONE DO 300 1=1,27 DO 300 J= 1,27 DO 300 K=1,8 IF (TEMP(I,J,K).GT.TMAP(I,9-K)) TMAP (I

  17. Chemical radwaste solidification processes

    International Nuclear Information System (INIS)

    Malloy, C.W.

    1979-01-01

    Some of these processes and their problems are briefly reviewed: early cement systems; urea-formaldehyde; Dow solidification process; low-viscosity chemical agents (POLYPAC); and water-extensible polyester. 9 refs

  18. Residual stress reduction in the penetration nozzle weld joint by overlay welding

    International Nuclear Information System (INIS)

    Jiang, Wenchun; Luo, Yun; Wang, B.Y.; Tu, S.T.; Gong, J.M.

    2014-01-01

    Highlights: • Residual stress reduction in penetration weld nozzle by overlay welding was studied. • The overlay weld can decrease the residual stress in the weld root. • Long overlay welding is proposed in the actual welding. • Overlay weld to decrease residual stress is more suitable for thin nozzle. - Abstract: Stress corrosion cracking (SCC) in the penetration nozzle weld joint endangers the structural reliability of pressure vessels in nuclear and chemical industries. How to decrease the residual stress is very critical to ensure the structure integrity. In this paper, a new method, which uses overlay welding on the inner surface of nozzle, is proposed to decrease the residual stresses in the penetration joint. Finite element simulation is used to study the change of weld residual stresses before and after overlay welding. It reveals that this method can mainly decrease the residual stress in the weld root. Before overlay welding, large tensile residual stresses are generated in the weld root. After overlay weld, the tensile hoop stress in weld root has been decreased about 45%, and the radial stress has been decreased to compressive stress, which is helpful to decrease the susceptibility to SCC. With the increase of overlay welding length, the residual stress in weld root has been greatly decreased, and thus the long overlay welding is proposed in the actual welding. It also finds that this method is more suitable for thin nozzle rather than thick nozzle

  19. Solidification and casting

    CERN Document Server

    Cantor, Brian

    2002-01-01

    INDUSTRIAL PERSPECTIVEDirect chillcasting of aluminium alloysContinuous casting of aluminium alloysContinuous casting of steelsCastings in the automotive industryCast aluminium-silicon piston alloysMODELLING AND SIMULATIONModelling direct chill castingMold filling simulation of die castingThe ten casting rulesGrain selection in single crystal superalloy castingsDefects in aluminium shape castingPattern formation during solidificationPeritectic solidificationSTRUCTURE AND DEFECTSHetergeneous nucleation in aluminium alloysCo

  20. High chromium nickel base alloys hot cracking susceptibility

    International Nuclear Information System (INIS)

    Tirand, G.; Primault, C.; Robin, V.

    2014-01-01

    High Chromium nickel based alloys (FM52) have a higher ductility dip cracking sensitivity. New filler material with higher niobium and molybdenum content are developed to decrease the hot crack formation. The behavior of these materials is studied by coupling microstructural analyses and hot cracking test, PVR test. The metallurgical analyses illustrate an Nb and Mo enrichment of the inter-dendritic spaces of the new materials. A niobium high content (FM52MSS) induces the formation of primary carbide at the end of solidification. The PVR test reveal a solidification crack sensitivity of the new materials, and a lowest ductility dip cracking sensitivity for the filler material 52MSS. (authors)

  1. Techniques for intergranular crack formation and assessment in alloy 600 base and alloy 182 weld metals

    Directory of Open Access Journals (Sweden)

    Tae Hyun Lee

    2015-02-01

    Conclusion: A comparison with a destructive metallographic examination showed that the characteristics, orientations, and sizes of the intergranular cracks produced in this study are highly reproducible.

  2. Study on mechanism of intergranular stress corrosion cracking and analysis of residual stress and work hardening in welds of low-carbon austenitic stainless steel with hard surface machining

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Toyoda, Masao; Katsuyama, Jinya

    2007-01-01

    In order to make clear the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in the welds of Type 316L low-carbon austenitic stainless steel with surface hardening, the residual stress and hardness in the butt-joint of pipes as a typical example of the actual structure were estimated and the grain boundary sliding was analyzed from the viewpoint of micro-deformation. On the basis of these results, the mechanism of IGSCC was discussed by the integrated knowledge between metallurgy and mechanics. The relationship between plastic strain and hardness in hard-machined surface near welds was clarified from the experimented relationship and the analysis method by the thermal elastic-plastic analysis. The distributions of hardness and residual stress with the actual surface machining could be simulated. It was made clear that grain boundary sliding occurred in the steel at 561K by a constant strain rate tensile test. From the comparison of grain boundary sliding behavior between solution treated specimen and cold-rolled one, it was found that the grain boundary sliding in cold-rolled one occurs in smaller strain conditions than that in as received one, and the amount of grain boundary sliding in cold-rolled one increases remarkably with increases in rolling reduction. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of Type 316L low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding induced by residual stress of multi pass welding and surface hardening. (author)

  3. Numerical modeling of keyhole dynamics in laser welding

    Science.gov (United States)

    Zhang, Wen-Hai; Zhou, Jun; Tsai, Hai-Lung

    2003-03-01

    Mathematical models and the associated numerical techniques have been developed to study the following cases: (1) the formation and collapse of a keyhole, (2) the formation of porosity and its control strategies, (3) laser welding with filler metals, and (4) the escape of zinc vapor in laser welding of galvanized steel. The simulation results show that the formation of porosity in the weld is caused by two competing mechanisms: one is the solidification rate of the molten metal and the other is the speed that molten metal backfills the keyhole after laser energy is terminated. The models have demonstrated that porosity can be reduced or eliminated by adding filler metals, controlling laser tailing power, or applying an electromagnetic force during keyhole collapse process. It is found that a uniform composition of weld pool is difficult to achieve by filler metals due to very rapid solidification of the weld pool in laser welding, as compared to that in gas metal arc welding.

  4. Torque Measurement of Welding of Endplug-Endplate using Multi-pin Remote Welding System

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae-Seo; Kim, Soo-Sung; Park, Geun-Il; Lee, Jung-Won; Song, Kee-Chan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    As fuel bundles in PHWR irradiates, inner pressure in claddings of fuel rods increases owing to outer pressure and fission products of nuclear fissions. Because of leak possibility of welding between cladding and end plug, this welding part connects with safety of nuclear fuel rods. Because of importance of this welding part, weldability of end plug-cladding of nuclear fuel rods is continually researched. Welding method for research and commercialization is classified as melting, solid type welding or resistance welding. End plug cladding welding of nuclear fuel rods in PHWR takes advantage of resistance upset butt welding using multicycle mode. This method makes weld flash and shapes re-entrant corner owing to welding heat due to resistivity, contact resistance of cladding-end plug, and inelasticity deformation due to pressure. Welding part between cladding and end plug receives stresses and makes small cracks. In this study, remote welding system for multi-pin assembly was designed, fabricated and welding specimens of end plug-endplate were made using electrical resistance method. The torques of welding between end plug and endplate were measured. These results on welding current, pressure of main electrode and pressure of branch electrode were analyzed. Weldability between end plug and endplate was confirmed through metallographic examinations. In the future, optimal welding examinations due to welding current, welding pressure and welding time will be performed to improve weldability of end plug-endplate.

  5. Creep-fatigue propagation of semi-elliptical crack at 650 deg. C in 316L(N) stainless steel plates with or without welded joints; Propagation de fissures semi-elliptiques en fatigue-fluage a 650 deg. C dans des plaques d'acier 316L(N) avec ou sans joints soudes

    Energy Technology Data Exchange (ETDEWEB)

    Curtit, F

    2000-07-01

    This study realised in LISN Laboratory of CEA Saclay, deals with the creep fatigue propagation of semi elliptical crack at the temperature of 650 deg C in 316L(N) stainless steel plates with or without welded joints. A vast majority of the studies on creep fatigue propagation models are based on specimen (CT) especially designed for crack propagation study. The PLAQFLU program performed in LISN laboratory deals with the application and adaptation of these models to complex crack shape, which are more representative of the cracks observed in industrial components. In this scope, we use propagation tests realised at the temperature of 650 deg C with wide plates containing semi elliptical defects. For some of them, the initial defect is machined in the middle of a welded joint, which constitute a privileged site for the crack initiation. The approach used in this study is based on global parameters of fracture mechanics. At first, tests on CT specimen are used in order to determine the propagation laws correlating the crack growth rate to the global parameters K or C{sup *}. These laws are then supposed to be intrinsic to our materials and are used to analysed the semi elliptical crack propagation. The analysis of the comportment of the crack during the hold time demonstrates the possibility to establish a correlation between the crack propagation both in the deepest and the surface point and the local value of C{sup *}. These correlations are coherent in the different points of the crack front for the different applied hold times, and they present a reasonably good agreement with the creep propagation law identified on CT specimen. The simulation of test performed on based metal specimen with a model of summation of both creep and pure fatigue crack growth gives acceptable results when the calculus of the simplified expression of C{sup *}{sub s} considers a continuous evolution of creep deformations rate during the all test. (author)

  6. Solidification microstructures and solid-state parallels: Recent developments, future directions

    Energy Technology Data Exchange (ETDEWEB)

    Asta, M. [Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616 (United States); Beckermann, C. [Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242 (United States); Karma, A. [Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115 (United States); Kurz, W. [Institute of Materials, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)], E-mail: wilfried.kurz@epfl.ch; Napolitano, R. [Department of Materials Science and Engineering, Iowa State University, and Ames Laboratory USDOE, Ames, IA 50011 (United States); Plapp, M. [Physique de la Matiere Condensee, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Purdy, G. [Department of Materials Science and Engineering, McMaster University, Hamilton, Ont., L8S 4L7 (Canada); Rappaz, M. [Institute of Materials, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Trivedi, R. [Department of Materials Science and Engineering, Iowa State University, and Ames Laboratory USDOE, Ames, IA 50011 (United States)

    2009-02-15

    Rapid advances in atomistic and phase-field modeling techniques as well as new experiments have led to major progress in solidification science during the first years of this century. Here we review the most important findings in this technologically important area that impact our quantitative understanding of: (i) key anisotropic properties of the solid-liquid interface that govern solidification pattern evolution, including the solid-liquid interface free energy and the kinetic coefficient; (ii) dendritic solidification at small and large growth rates, with particular emphasis on orientation selection; (iii) regular and irregular eutectic and peritectic microstructures; (iv) effects of convection on microstructure formation; (v) solidification at a high volume fraction of solid and the related formation of pores and hot cracks; and (vi) solid-state transformations as far as they relate to solidification models and techniques. In light of this progress, critical issues that point to directions for future research in both solidification and solid-state transformations are identified.

  7. Galvanic corrosion of beryllium welds

    International Nuclear Information System (INIS)

    Hill, M.A.; Butt, D.P.; Lillard, R.S.

    1997-01-01

    Beryllium is difficult to weld because it is highly susceptible to cracking. The most commonly used filler metal in beryllium welds is Al-12 wt.% Si. Beryllium has been successfully welded using Al-Si filler metal with more than 30 wt.% Al. This filler creates an aluminum-rich fusion zone with a low melting point that tends to backfill cracks. Drawbacks to adding a filler metal include a reduction in service temperature, a lowering of the tensile strength of the weld, and the possibility for galvanic corrosion to occur at the weld. To evaluate the degree of interaction between Be and Al-Si in an actual weld, sections from a mock beryllium weldment were exposed to 0.1 M Cl - solution. Results indicate that the galvanic couple between Be and the Al-Si weld material results in the cathodic protection of the weld and of the anodic dissolution of the bulk Be material. While the cathodic protection of Al is generally inefficient, the high anodic dissolution rate of the bulk Be during pitting corrosion combined with the insulating properties of the Be oxide afford some protection of the Al-Si weld material. Although dissolution of the Be precipitate in the weld material does occur, no corrosion of the Al-Si matrix was observed

  8. Detailed Microstructural Characterization and Restoration Mechanisms of Duplex and Superduplex Stainless Steel Friction-Stir-Welded Joints

    Science.gov (United States)

    Santos, T. F. A.; Torres, E. A.; Lippold, J. C.; Ramirez, A. J.

    2016-12-01

    Duplex stainless steels are successfully used in a wide variety of applications in areas such as the food industry, petrochemical installations, and sea water desalination plants, where high corrosion resistance and high mechanical strength are required. However, during fusion welding operations, there can be changes to the favorable microstructure of these materials that compromise their performance. Friction stir welding with a non-consumable pin enables welded joints to be obtained in the solid state, which avoids typical problems associated with solidification of the molten pool, such as segregation of alloying elements and the formation of solidification and liquefaction cracks. In the case of superduplex stainless steels, use of the technique can avoid unbalanced proportions of ferrite and austenite, formation of deleterious second phases, or growth of ferritic grains in the heat-affected zone. Consolidated joints with full penetration were obtained for 6-mm-thick plates of UNS S32101 and S32205 duplex stainless steels, and S32750 and S32760 superduplex steels. The welding heat cycles employed avoided the conditions required for formation of deleterious phases, except in the case of the welded joint of the S32760 steel, where SEM images indicated the formation of secondary phases, as corroborated by decreased mechanical performance. Analysis using EBSD and transmission electron microscopy revealed continuous dynamic recrystallization by the formation of cellular arrays of dislocations in the ferrite and discontinuous dynamic recrystallization in the austenite. Microtexture evaluation indicated the presence of fibers typical of shear in the thermomechanically affected zone. These fibers were not obviously present in the stir zone, probably due to the intensity of microstructural reformulation to which this region was subjected.

  9. Hot ductility testing and weld simulation tests

    International Nuclear Information System (INIS)

    Weber, G.; Schick, M.

    1999-01-01

    The objective of the project was to enhance the insight into the causes of intergranular cracks detected in austenitic circumferential welds at BWR pipes. The susceptibility of a variety of austenitic pipe materials to hot cracking during welding and in-service intergranular crack corrosion was examined. The assumption was cracking in the root area of the HAZ of a multiple-layer weld. Hot-ductility tests and weld simulation tests specifically designed for the project were performed with the austenitic LWR pipe materials 1.4553 (X6 CrNiNb 18 10 S), 1.4550 (X10 CrNiNb 18 9), 1.4533 (X6 CrNiTi 18 9, two weld pools), and a non-stabilized TP 304 (X5 CrNi 18 10). (orig./CB) [de

  10. The Effect of Weld Reinforcement and Post-Welding Cooling Cycles on Fatigue Strength of Butt-Welded Joints under Cyclic Tensile Loading.

    Science.gov (United States)

    Araque, Oscar; Arzola, Nelson; Hernández, Edgar

    2018-04-12

    This research deals with the fatigue behavior of butt-welded joints, by considering the geometry and post-welding cooling cycles, as a result of cooling in quiet air and immersed in water. ASTM A-36 HR structural steel was used as the base metal for the shielded metal arc welding (SMAW) process with welding electrode E6013. The welding reinforcement was 1 mm and 3 mm, respectively; axial fatigue tests were carried out to determine the life and behavior in cracks propagation of the tested welded joints, mechanical characterization tests of properties in welded joints such as microhardness, Charpy impact test and metallographic analysis were carried out. The latter were used as input for the analysis by finite elements which influence the initiation and propagation of cracks and the evaluation of stress intensity factors (SIF). The latter led to obtaining the crack propagation rate and the geometric factor. The tested specimens were analyzed, by taking photographs of the cracks at its beginning in order to make a count of the marks at the origin of the crack. From the results obtained and the marks count, the fatigue crack growth rate and the influence of the cooling media on the life of the welded joint are validated, according to the experimental results. It can be concluded that the welded joints with a higher weld reinforcement have a shorter fatigue life. This is due to the stress concentration that occurs in the vicinity of the weld toe.

  11. Control of the development of residual stresses and heat affected zone (HAZ) microstructure during welding of low alloy steels and influence on stress relieve cracking

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, J.; Rui Wu; Sandstroem, R.; von Walden, E. [Swedish Inst. for Metals Research, Stockholm (Sweden)

    1990-12-31

    Creep resistant 1 Cr 0.5 Mo steels are frequently used as steam pipes at operating temperature of 450 degree C to 500 degrees C. Welded joints have been post weld heat treated (PWHT). The results show: - In fully refined microstructures close to the fusion boundary of the weldments a reduction of the grain size by a factor of 3-4 was measured. The impact transition temperature was up to 27 degree C lower for test series notched in the refined HAZ (Heat Affected Zone) than in the coarse grained HAZ of the as welded condition. The overlay heat treatments were not observed to significantly influence the hardness and the room temperature tensile properties of the weldments. - The influence of refinement on impact transition temperature (ITT) and upper shelf energy was beneficial. In the coarse grained HAZ, for which the ITT was significantly higher than for weld metal and base metal, the refinement resulted in a 30 degrees C lower value of the ITT. The influence of PWHT on impact properties was also studied. The PWHT raised the upper shelf energy greatly. The effect on the ITT was smaller than that of refinement. - For cross welds in the as-welded (AW) condition refinement improved the creep properties. After PWHT the creep ductility was significantly increased at the same as a considerable reduction of life was observed. At lower stresses the effects of refinement and especially PWHT were less pronounced. Beneficial influence of refinement in inhibiting the formation of creep cavitation was apparent regardless stress level in both AW and PWHT conditions. (K.A.E).

  12. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-07-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR.

  13. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR

  14. Analysis of steady-state ductile crack growth

    DEFF Research Database (Denmark)

    Niordson, Christian

    1999-01-01

    The fracture strength under quasi-static steady-state crack growth in an elastic-plastic material joined by a laser weld is analyzed. Laser welding gives high mismatch between the yield stress within the weld and the yield stress in the base material. This is due to the fast termic cycle, which...... the finite element mesh remains fixed relative to the tip of the growing crack. Fracture is modelled using two different local crack growth criteria. One is a crack opening displacement criterion, while the other is a model in which a cohesive zone is imposed in front of the crack tip along the fracture zone....... Both models predict that in general a thinner laser weld gives higher interface strength. Furthermore, both fracture criteria show, that the preferred path of the crack is close outside the weld material; a phenomenon also observed in experiments....

  15. Polymer solidification national program

    International Nuclear Information System (INIS)

    Kalb, P.D.; Colombo, P.

    1993-04-01

    Brookhaven National Laboratory (BNL) has developed several new and innovative polymer processes for the solidification of low-level radioactive, hazardous and mixed wastes streams. Polyethylene and modified sulfur cement solidification technologies have undergone steady, gradual development at BNL over the past nine years. During this time they have progressed through each of the stages necessary for logical technology maturation: from process conception, parameter optimization, waste form testing, evaluation of long-term durability, economic analysis, and scale-up feasibility. This technology development represents a significant investment which can potentially provide DOE with both short- and long-term savings

  16. Experimental and numerical approach on fracture behaviour of four inches diameter carbon-manganese cracked welded pipes in four point bending

    International Nuclear Information System (INIS)

    Semete, P.; Faidy, C.; Lautier, J.L.

    2001-01-01

    EDF has conducted a research programme to demonstrate the fracture resistance of carbon-manganese welded pipes. The main task of this programme consisted of testing three four inches diameter (114.3 mm O.D.) thin welded pipes (8.56 mm thick) which are representative of those of the sites. The three pipes were loaded under four point bending at a quasi-static rate at -20 C till their maximum bending moment was reached. This paper presents the experimental results, finite element calculations and their comparison with the simplified fracture assessment method of the RSE-M Code. (author)

  17. Electron beam welding of aluminium components

    International Nuclear Information System (INIS)

    Maajid, Ali; Vadali, S.K.; Maury, D.K.

    2015-01-01

    Aluminium is one of the most widely used materials in industries like transportation, shipbuilding, manufacturing, aerospace, nuclear, etc. The challenges in joining of aluminium are distortion, cleanliness and quality. Main difficulties faced during fusion welding of aluminium components are removal of surface oxide layer, weld porosity, high heat input requirement, distortion, hot cracking, etc. Physical properties of aluminium such as its high thermal conductivity, high coefficient of thermal expansion, no change in colour at high temperature, large difference in the melting points of the metal and its oxide (∼ 1400 °C) compound the difficulties faced during welding. Gas Tungsten Arc Welding (GTAW), Gas Metal Arc Welding (GMAW), Plasma Arc Welding (PAW), etc are generally used in industries for fusion welding of aluminium alloys. However in case of thicker jobs the above processes are not suitable due to requirements of elaborate edge preparation, preheating of jobs, fixturing to prevent distortion, etc. Moreover, precise control over the heat input during welding and weld bead penetration is not possible with above processes. Further, if heat sensitive parts are located near the weld joint then high energy density beam welding process like Electron Beam Welding (EBW) is the best possible choice for aluminium welding.This paper discusses EB welding of aluminium components, typical geometry of components, selection/optimization of welding parameters, problems faced during standardization of welding and process parameters and their remedies etc.

  18. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G., E-mail: wrcc@cdtn.br, E-mail: camilarezende.cr@gmail.com, E-mail: egr@cdtn.br, E-mail: vladimirsoler@hotmail.com, E-mail: ahfv02@outlook.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  19. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    International Nuclear Information System (INIS)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G.

    2017-01-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  20. Species redistribution during solidification of nuclear fuel waste metal castings

    Energy Technology Data Exchange (ETDEWEB)

    Naterer, G F; Schneider, G E [Waterloo Univ., ON (Canada)

    1994-12-31

    An enthalpy-based finite element model and a binary system species redistribution model are developed and applied to problems associated with solidification of nuclear fuel waste metal castings. Minimal casting defects such as inhomogeneous solute segregation and cracks are required to prevent container corrosion and radionuclide release. The control-volume-based model accounts for equilibrium solidification for low cooling rates and negligible solid state diffusion for high cooling rates as well as intermediate conditions. Test problems involving nuclear fuel waste castings are investigated and correct limiting cases of species redistribution are observed. (author). 11 refs., 1 tab., 13 figs.

  1. Welding iridium heat-source capsules for space missions

    International Nuclear Information System (INIS)

    Kanne, W.R. Jr.

    1982-03-01

    A remote computer-controlled welding station was developed to encapsulate radioactive PuO 2 in iridium. Weld quench cracking caused an interruption in production of capsules for upcoming space missions. Hot crack sensitivity of the DOP-26 iridium alloy was associated with low melting constituents in the grain boundaries. The extent of cracking was reduced but could not be eliminated by changes to the welding operation. An ultrasonic test was developed to detect underbead cracks exceeding a threshold size. Production was continued using the ultrasonic test to reject capsules with detectable cracks

  2. Radioactive gas solidification treatment device

    International Nuclear Information System (INIS)

    Igarashi, Ryokichi; Watanabe, Yu; Seki, Eiji.

    1992-01-01

    In a radioactive gas solidification treatment device by using sputtering, spiral pipelines are disposed with a gap therebetween for cooling an ion injection electrode by passing cooling water during operation of the solidification treatment. During the operation of the solidification treatment, cooling water is passed in the pipelines to cool the ion injection electrode. During storage, a solidification vessel is cooled by natural heat dissipation from an exposed portion at the surface of the solidification vessel. Accordingly, after-heat of radioactive gas solidified in a metal accumulation layer can be removed efficiently, safely and economically to improve the reliability. (N.H.)

  3. Depressurization of a spread of Brazil-Bolivia gas pipeline and the emergency repair of a weld crack in a instrument derivation at Campo Grande compression station; Despressurizacao de trecho do gasoduto Bolivia-Brazil para reparo emergencial de trinca em uma derivacao de instrumento de temperatura na Estacao de Compressao de Campo Grande - MS

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Carlos Ribeiro; Leite Junior, Ismael Casano [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    The purpose of this paper is to report the actions taken to repair a gas leak, at an original pressure of 100 kgf/cm{sup 2}, occurred due to a 1 1/2'' branch pipe weld crack, located on the 24'' Campo Grande - Mato Grosso do Sul Compression Station discharge pipe. This branch pipe was used to a thermo well installation and was submitted to an additional strength caused by thermo well vibration. The weld repair actions required an urgent depressurization of a 33 km spread of Bolivia-Brazil Pipeline in a timely manner, to avoid any negative impact in the operational schedule. (author)

  4. Heat transfer and fluid flow during laser spot welding of 304 stainless steel

    CERN Document Server

    He, X; Debroy, T

    2003-01-01

    The evolution of temperature and velocity fields during laser spot welding of 304 stainless steel was studied using a transient, heat transfer and fluid flow model based on the solution of the equations of conservation of mass, momentum and energy in the weld pool. The weld pool geometry, weld thermal cycles and various solidification parameters were calculated. The fusion zone geometry, calculated from the transient heat transfer and fluid flow model, was in good agreement with the corresponding experimentally measured values for various welding conditions. Dimensional analysis was used to understand the importance of heat transfer by conduction and convection and the roles of various driving forces for convection in the weld pool. During solidification, the mushy zone grew at a rapid rate and the maximum size of the mushy zone was reached when the pure liquid region vanished. The solidification rate of the mushy zone/liquid interface was shown to increase while the temperature gradient in the liquid zone at...

  5. New process for weld metal reliability

    International Nuclear Information System (INIS)

    Hebel, A.G.

    1985-01-01

    The industry-wide nature of weld cracking alerts one to the possibility that there is a fundamental law being overlooked. And in overlooking this law, industry is unable to counteract it. That law mandates that restraint during welding causes internal stress; internal stress causes weld metal to crack. Component restraint during welding, according to the welding standard, is the major cause of weld metal failures. When the metal working industry accepts this fact and begins to counter the effects of restraint, the number of weld failures experienced fall dramatically. Bonal Technologies, inc., of Detroit, has developed the first consistently effective non-thermal process to relieve stress caused by restraint during welding. Bonal's patented Mets-Lax sub-resonant stress relief acts as a restraint neutralizer when used during welding. Meta-Lax weld conditioning produces a finer more uniform weld grain structure. A finer, more uniform grain structure is a clear metallurgical indication of improved mechanical weld properties. Other benefits like less internal stress, and less warpage are also achieved

  6. Microstructure and Mechanical Properties of an Ultrasonic Spot Welded Aluminum Alloy: The Effect of Welding Energy

    Directory of Open Access Journals (Sweden)

    He Peng

    2017-04-01

    Full Text Available The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique–ultrasonic spot welding (USW–at different energy levels. An ultra-fine necklace-like equiaxed grain structure is observed along the weld line due to the occurrence of dynamic crystallization, with smaller grain sizes at lower levels of welding energy. The tensile lap shear strength, failure energy, and critical stress intensity of the welded joints first increase, reach their maximum values, and then decrease with increasing welding energy. The tensile lap shear failure mode changes from interfacial fracture at lower energy levels, to nugget pull-out at intermediate optimal energy levels, and to transverse through-thickness (TTT crack growth at higher energy levels. The fatigue life is longer for the joints welded at an energy of 1400 J than 2000 J at higher cyclic loading levels. The fatigue failure mode changes from nugget pull-out to TTT crack growth with decreasing cyclic loading for the joints welded at 1400 J, while TTT crack growth mode remains at all cyclic loading levels for the joints welded at 2000 J. Fatigue crack basically initiates from the nugget edge, and propagates with “river-flow” patterns and characteristic fatigue striations.

  7. Significance of residual stress on fatigue properties of welded pipes

    International Nuclear Information System (INIS)

    Ohta, A.; Maeda, Y.; Kanao, M.

    1984-01-01

    The mean stress effect on the fatigue properties of two kinds of welded pipes was investigated in cantilever bending. The fatigue strength changed with the mean stress on fillet welded pipes, but did not change on butt welded pipes. The fatigue crack initiated from the toe of weld on the outer surface of fillet welded pipes and from the undercut on the inner surface of butt welded pipes. The measurement of the fatigue crack propagation rate and the residual stress distribution through the thickness of pipe revealed that the difference in the fatigue properties between fillet and butt welded pipes arose from the weld-induced residual stress, tension on the inner surface and compression on the outer surface. It is suggested that the production of compressive residual stress along the inner surface would be an effective means for improving the fatigue strength of butt welded pipes. (author)

  8. Nuclear waste solidification

    Science.gov (United States)

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  9. Nuclear waste solidification

    International Nuclear Information System (INIS)

    Bjorklund, W.J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition

  10. Process gas solidification system

    International Nuclear Information System (INIS)

    1980-01-01

    A process for withdrawing gaseous UF 6 from a first system and directing same into a second system for converting the gas to liquid UF 6 at an elevated temperature, additionally including the step of withdrawing the resulting liquid UF 6 from the second system, subjecting it to a specified sequence of flash-evaporation, cooling and solidification operations, and storing it as a solid in a plurality of storage vessels. (author)

  11. Microwave solidification project overview

    Energy Technology Data Exchange (ETDEWEB)

    Sprenger, G.

    1993-01-01

    The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included.

  12. Microwave solidification project overview

    International Nuclear Information System (INIS)

    Sprenger, G.

    1993-01-01

    The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included

  13. Effect of zirconium addition on welding of aluminum grain refined by titanium plus boron

    Science.gov (United States)

    Zaid, A. I. O.

    2014-06-01

    Aluminum oxidizes freely in ordinary atmosphere which makes its welding difficult and weak, particularly it solidifies in columnar structure with large grains. Therefore, it is anticipated that the effect of addition of some grain refiners to its melt before solidification is worth while investigating as it may enhance its weldabilty and improve its mechanical strength. In this paper, the effect of addition of zirconium at a weight of 0.1% (which corresponds to the peretictic limit on the aluminum-zirconium base phase diagram) to commercially pure aluminum, grain refined by Ti+B on its weldability, using gas tungsten arc welding, GTAW, method which was formerly known as TIG. A constant current level of 30 AC Ampere was used because it removes the oxides during the welding process. Metallographic examination of the weldments of the different combinations of Al with Al and Al with its microalloys: in the heat affected zone, HAZ, and away from it was carried out and examined for HAZ width, porosity, cracks and microhardness. It was found that grain refining by Ti+B or Zr resulted in enhancement of the weldment.

  14. Effect of zirconium addition on welding of aluminum grain refined by titanium plus boron

    International Nuclear Information System (INIS)

    Zaid, A. I. O.

    2013-01-01

    Aluminum oxidizes freely in ordinary atmosphere which makes its welding difficult and weak, particularly it solidifies in columnar structure with large grains. Therefore, it is anticipated that the effect of addition of some grain refiners to its melt before solidification is worth while investigating as it may enhance its weldabilty and improve its mechanical strength. In this paper, the effect of addition of zirconium at a weight of 0.1 percentage (which corresponds to the peretictic limit on the aluminum-zirconium base phase diagram) to commercially pure aluminum, grain refined by Tau i+Beta on its weldability, using gas tungsten arc welding, GTAW, method which was formerly known as TIG. A constant current level of 30 AC Ampere was used because it removes the oxides during the welding process. Metallographic examination of the weldments of the different combinations of Al with Al and Al with its microalloys: in the heat affected zone, HAZ, and away from it was carried out and examined for HAZ width, porosity, cracks and microhardness. It was found that grain refining by Tau i+Beta or Zr resulted in enhancement of the weldment. (author)

  15. Effect of zirconium addition on welding of aluminum grain refined by titanium plus boron

    International Nuclear Information System (INIS)

    Zaid, A I O

    2014-01-01

    Aluminum oxidizes freely in ordinary atmosphere which makes its welding difficult and weak, particularly it solidifies in columnar structure with large grains. Therefore, it is anticipated that the effect of addition of some grain refiners to its melt before solidification is worth while investigating as it may enhance its weldabilty and improve its mechanical strength. In this paper, the effect of addition of zirconium at a weight of 0.1% (which corresponds to the peretictic limit on the aluminum-zirconium base phase diagram) to commercially pure aluminum, grain refined by Ti+B on its weldability, using gas tungsten arc welding, GTAW, method which was formerly known as TIG. A constant current level of 30 AC Ampere was used because it removes the oxides during the welding process. Metallographic examination of the weldments of the different combinations of Al with Al and Al with its microalloys: in the heat affected zone, HAZ, and away from it was carried out and examined for HAZ width, porosity, cracks and microhardness. It was found that grain refining by Ti+B or Zr resulted in enhancement of the weldment

  16. Advanced modeling of solidification

    International Nuclear Information System (INIS)

    Bousquet-Melou, P.; Fichot, F.; Goyeau, B.; Gobin, D.; Quintard, M.

    2001-01-01

    A theoretical and numerical macroscopic modeling of the solidification of binary mixtures is presented. The growth of a solid-liquid region (mushy zone), represented by a non-homogeneous porous medium, is considered. A macroscopic model for momentum, heat and mass transfer during solidification is derived using the volume averaging method, and the effective transport properties (permeability, effective diffusivities, mass exchange coefficients) are defined by associated closure problems (set of microscopic balance equations). Consequently, the effects of the dendritic geometry (tortuosity) and of microscopic transfer phenomena (dispersion, interfacial exchange) are introduced in the averaged balance equations and in the representation of the effective transport coefficients. This closure method provides an original approach of solidification modeling. The resulting macroscopic model is based on the local thermal equilibrium assumption (one-temperature model) while a two-phase description of macroscopic species transfer is introduced using solid and liquid mass exchange coefficients. The phase diagram is used to predict the solid and liquid equilibrium concentrations at the solid-liquid interface. This two-phase approach extends the classical limiting cases that correspond to the lever-rule and Scheil descriptions. (authors)

  17. Influence of weld structure on cross-weld creep behavior in P23 steel

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J.; Degnan, C.C. [E.ON Engineering (United Kingdom); Brett, S.J. [RWE npower (United Kingdom); Buchanan, L.W. [Doosan Babcock (United Kingdom)

    2010-07-01

    A thick section pipe weld in low alloy steel P23 has been characterised by cross-weld creep rupture testing at a range of stresses, together with all-weld-metal and parent material testing, under the auspices of the UK High Temperature Power Plant Forum. The results generally show that the weld metal can be weak when tested in the transverse (cross-weld) orientation, and can fail with limited overall ductility by cracking in the zone of refined weld metal beneath the fusion boundary of the superposed weld bead. However, one specimen showed a much superior performance, which could be understood in terms of its locally more creep resistant weld macrostructure. The implications for P23 performance and weld manufacture are discussed. (orig.)

  18. Welding hazards

    International Nuclear Information System (INIS)

    Khan, M.A.

    1992-01-01

    Welding technology is advancing rapidly in the developed countries and has converted into a science. Welding involving the use of electricity include resistance welding. Welding shops are opened in residential area, which was causing safety hazards, particularly the teenagers and children who eagerly see the welding arc with their naked eyes. There are radiation hazards from ultra violet rays which irritate the skin, eye irritation. Welding arc light of such intensity could damage the eyes. (Orig./A.B.)

  19. Investigation of fracture in pressurized gas metal arc welded beryllium

    International Nuclear Information System (INIS)

    Heiple, C.R.; Merlini, R.J.; Adams, R.O.

    1976-01-01

    Premature failures during proof testing of pressurized-gas-metal-arc (PGMA) welded beryllium assemblies were investigated. The failures were almost entirely within the beryllium (a forming grade, similar to HP-10 or S-240), close to and parallel to the weld interface. The aluminum-silicon weld filler metal deposit was not centered in the weld groove in the failed assemblies, and failure occurred on the side of the weld opposite the bias in the weld deposit. Tensile tests of welded samples demonstrated that the failures were unrelated to residual machining damage from cutting the weld groove, and indicated small lack-of-fusion areas near the weld start to be the most likely origin of the failures. Acoustic emission was monitored during tensile tests of the welds. The majority of acoustic emission was probably from crack propagation through the weld filler metal. Tensile bars cut from the region of the weld start behaved differently; they failed at lower loads and exhibited an acoustic emission behavior believed to be from cracking in the weld metal-beryllium interface. Improvement in the quality of these and similar beryllium welds can therefore most likely be made by centering the weld deposit and reducing the size of the weld start defect. 21 fig

  20. Welding superalloy sheet for superconducting cable jackets

    International Nuclear Information System (INIS)

    Summers, L.T.; Strum, M.J.; Morris, J.W. Jr.

    1983-08-01

    Autogenous gas tungsten arc welds produced in A-286 exhibit significantly lower yield and ultimate tensile strengths than comparably heat-treated base metal. Deformation in the aged weld metal is highly localized and delineates the dendritic microstructure. The observed mechanical properties are caused by the formation of precipitate-free regions located at the dendrite cores. These regions form as the result of titanium segregation during weld pool solidification which yields dendrite cores sufficiently lean in titanium as to prevent nucleation of the hardening phase

  1. Mechanisms of the porosity formation during the fiber laser lap welding of aluminium alloy

    Directory of Open Access Journals (Sweden)

    J. Wang

    2015-10-01

    Full Text Available When joining the aluminum alloys, one of the biggest challenges is the formation of porosity, which deteriorates mechanical properties of welds. In this study, the lap welding was conducted on an aluminum alloy 5754 metal sheets with a thickness of 2 mm. The effects of various laser welding parameters on the weld quality were investigated. The porosity content was measured by X-ray inspections. The key is to control the solidification duration of molten pool. When the solidification duration of molten pool is large enough, more bubbles can escape from the molten pool and less remain as porosity.

  2. Comparative estimation of the properties of heat resisting nickel alloy welded joints made by electron-beam and arc welding

    International Nuclear Information System (INIS)

    Morochko, V.P.; Sorokin, L.I.; Yakushin, B.F.; Moryakov, V.F.

    1977-01-01

    As compared to argon arc welding of refractory nickel alloys at 15 m/hour rate, electron beam welding decreases energy consumption per unit length (from 4300 to 2070 cal/cm), the weld area (from 108 to 24 mm 2 ), and the length of the thermal effect zone (from 0.9-1.8 to 0.4-0.8 mm). Electron beam welding also provides for better resistance to hot cracking in the weld metal and in the near-weld zone, as compared to automatic argon arc welding and manual welding with addition of the basic metal. However, this advantage is observed only at welding rates less than 45 m/hour. Electron beam welded joints of refractory nickel alloys with intermetallide reinforcement have higher strength, plasticity and impact strength, and lower scattering of these properties than arc welded joints

  3. Underwater laser beam welding of Alloy 690

    International Nuclear Information System (INIS)

    Hino, Takehisa; Tamura, Masataka; Kono, Wataru; Kawano, Shohei; Yoda, Masaki

    2009-01-01

    Stress Corrosion Clacking (SCC) has been reported at Alloy 600 welds between nozzles and safe-end in Pressurized Water Reactor (PWR) plant. Alloy 690, which has higher chromium content than Alloy 600, has been applied for cladding on Alloy 600 welds for repairing damaged SCC area. Toshiba has developed Underwater Laser Beam Welding technique. This method can be conducted without draining, so that the repairing period and the radiation exposure during the repair can be dramatically decreased. In some old PWRs, high-sulfur stainless steel is used as the materials for this section. It has a high susceptibility of weld cracks. Therefore, the optimum welding condition of Alloy 690 on the high-sulfur stainless steel was investigated with our Underwater Laser Beam Welding unit. Good cladding layer, without any crack, porosity or lack of fusion, could be obtained. (author)

  4. Effect of preemptive weld overlay on residual stress mitigation for dissimilar metal weld of nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a Preemptive Weld OverLay(PWOL). In Pressurized Water Reactor(PWR) dissimilar metal weld is susceptible region for Primary Water Stress Corrosion Cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment

  5. Effect of preemptive weld overlay on residual stress mitigation for dissimilar metal weld of nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a Preemptive Weld OverLay(PWOL). In Pressurized Water Reactor(PWR) dissimilar metal weld is susceptible region for Primary Water Stress Corrosion Cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment.

  6. Assessment of repair welding technologies of irradiated materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Damages on reactor internals of stainless steels caused by stress corrosion cracking and fatigue were identified in aged BWR plants. Repair-welding is one of the practical countermeasure candidates to restore the soundness of components and structures. The project of 'Assessment of Repair welding Technologies of Irradiated Materials' has been carried out to develop the technical guideline regarding the repair-welding of reactor internals. In FY 2011, we investigated the fatigue strength of stainless steel SUS316L irradiated by YAG laser welding. Furthermore, revision of the technical guideline regarding the repair-welding of reactor internals was discussed. Diagram of tungsten inert gas (TIG) weld cracking caused by entrapped Helium was modified. Helium concentration for evaluation-free of TIG weld cracking caused by entrapped Helium was revised to 0.007appm from 0.01appm. (author)

  7. Stress Distribution in the Dissimilar Metal Butt Weld of Nuclear Reactor Piping due to the Simulation Technique for the Repair Welding

    International Nuclear Information System (INIS)

    Lee, Hweeseung; Huh, Namsu; Kim, Jinsu; Lee, Jinho

    2013-01-01

    During welding, the dissimilar metal butt welds of nuclear piping are typically subjected to repair welding in order to eliminate defects that are found during post-weld inspection. It has been found that the repair weld can significantly increase the tensile residual stress in the weldment, and therefore, accurate estimation of the weld residual stress due to repair weld, especially for dissimilar metal welds using Ni-based alloy 82/182 in nuclear components, is of great importance in order to assess susceptibility to primary water stress corrosion cracking. In the present study, the stress distributions of dissimilar metal butt welds in nuclear reactor piping subjected to repair weld were investigated based on detailed nonlinear finite element analyses. Particular emphasis was placed on the variation of the stress distribution in the dissimilar metal butt weld according to the finite element welding analysis sequence for the repair welding process

  8. Prediction of microsegregation and pitting corrosion resistance of austenitic stainless steel welds by modelling

    Energy Technology Data Exchange (ETDEWEB)

    Vilpas, M. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1999-07-01

    The present study focuses on the ability of several computer models to accurately predict the solidification, microsegregation and pitting corrosion resistance of austenitic stainless steel weld metals. Emphasis was given to modelling the effect of welding speed on solute redistribution and ultimately to the prediction of weld pitting corrosion resistance. Calculations were experimentally verified by applying autogenous GTA- and laser processes over the welding speed range of 0.1 to 5 m/min for several austenitic stainless steel grades. Analytical and computer aided models were applied and linked together for modelling the solidification behaviour of welds. The combined use of macroscopic and microscopic modelling is a unique feature of this work. This procedure made it possible to demonstrate the effect of weld pool shape and the resulting solidification parameters on microsegregation and pitting corrosion resistance. Microscopic models were also used separately to study the role of welding speed and solidification mode in the development of microsegregation and pitting corrosion resistance. These investigations demonstrate that the macroscopic model can be implemented to predict solidification parameters that agree well with experimentally measured values. The linked macro-micro modelling was also able to accurately predict segregation profiles and CPT-temperatures obtained from experiments. The macro-micro simulations clearly showed the major roles of weld composition and welding speed in determining segregation and pitting corrosion resistance while the effect of weld shape variations remained negligible. The microscopic dendrite tip and interdendritic models were applied to welds with good agreement with measured segregation profiles. Simulations predicted that weld inhomogeneity can be substantially decreased with increasing welding speed resulting in a corresponding improvement in the weld pitting corrosion resistance. In the case of primary austenitic

  9. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  10. Milestones in welding technology

    Science.gov (United States)

    Dolby, Richard E.

    2013-09-01

    Sir Alan's PhD thesis describes his research into cracking during arc welding of armour steels. Throughout his career, he had a strong interest in defects of all types, how they formed in metallic structures and how the larger ones could be detected and sized by non-destructive techniques. He was also vitally concerned with how defects impacted on the engineering integrity of welded structures, particularly the risk of fracture in nuclear plant. This study presents a view of some of the major milestones in global welding technology that took place over the 60 or more years of Sir Alan's career and highlights those where he had a personal and direct involvement.

  11. Artificial defects detection and location during welding

    International Nuclear Information System (INIS)

    Asty, M.

    1978-01-01

    Welding control by acoustic emission allows defects detection as soon as they are created. Acoustic testing saves time and gives better quality assurance in the case of multiple pass welding of plates. A welded joint was performed on A533B steel plates 250 mm thick by submerged arc welding. Artificial defects were implanted to determine significative parameters of acoustic reception. In operating conditions a significant acoustic activity takes place only during welding as shown by preliminary tests. At the same time an important noise is created by the arc, scories cooling and metal solidification and cooling. These problems are solved by an original processing in time-space detecting and locating defects with a good approximation [fr

  12. Solidification process for sludge residue

    International Nuclear Information System (INIS)

    Pearce, K.L.

    1998-01-01

    This report investigates the solidification process used at 100-N Basin to solidify the N Basin sediment and assesses the N Basin process for application to the K Basin sludge residue material. This report also includes a discussion of a solidification process for stabilizing filters. The solidified matrix must be compatible with the Environmental Remediation Disposal Facility acceptance criteria

  13. Origin of grain orientation during solidification of an aluminum alloy

    International Nuclear Information System (INIS)

    Wei, H.L.; Elmer, J.W.; DebRoy, T.

    2016-01-01

    The evolution of grain morphology during solidification of a moving aluminum alloy pool is simulated by considering heat transfer, flow of liquid metal in the molten pool and solidification parameters. The computationally efficient model consists of a 3D coupled heat transfer and fluid flow simulation to predict the molten pool shape and temperature field, and a 2D model of grain formation in the molten pool. The results demonstrate that columnar grains grow in a curved pattern rather than along straight lines from the fusion boundary towards the center of the molten pool. The calculated results are validated with independent experimental data. The computed ratio of local temperature gradient to solidification rate, G/R, is used to model the columnar to equiaxed transition during solidification. The simulated results show that only curved columnar grains are formed when the scanning speed is low (2.0 mm/s). In contrast, a transition from curved columnar to equiaxed morphologies occurs at the higher scanning speeds of 8.0 mm/s and 11.5 mm/s, with higher equiaxed grain fraction at higher speed. The similarities between the physical processes governing fusion welding and additive manufacturing (AM) make the model capable of predicting grain orientation in both processes.

  14. Effects of Flux Precoating and Process Parameter on Welding Performance of Inconel 718 Alloy TIG Welds

    Science.gov (United States)

    Lin, Hsuan-Liang; Wu, Tong-Min; Cheng, Ching-Min

    2014-01-01

    The purpose of this study is to investigate the effect of activating flux on the depth-to-width ratio (DWR) and hot cracking susceptibility of Inconel 718 alloy tungsten inert gas (TIG) welds. The Taguchi method is employed to investigate the welding parameters that affect the DWR of weld bead and to achieve optimal conditions in the TIG welds that are coated with activating flux in TIG (A-TIG) process. There are eight single-component fluxes used in the initial experiment to evaluate the penetration capability of A-TIG welds. The experimental results show that the Inconel 718 alloy welds precoated with 50% SiO2 and 50% MoO3 flux were provided with better welding performance such as DWR and hot cracking susceptibility. The experimental procedure of TIG welding process using mixed-component flux and optimal conditions not only produces a significant increase in DWR of weld bead, but also decreases the hot cracking susceptibility of Inconel 718 alloy welds.

  15. Low-level radwaste solidification

    International Nuclear Information System (INIS)

    Naughton, M.D.; Miller, C.C.; Nelson, R.A.; Tucker, R.F.

    1983-01-01

    This paper reports on a study of ''Advanced Low-Level Radioactive Waste Treatment Systems'' conducted under an EPRI contract. The object of the study is to identify advanced lowlevel radwaste treatment systems that are commercially available or are expected to be in the near future. The current state-ofthe-art in radwaste solidification technology is presented. Related processing technologies, such as the compaction of dry active waste (DAW), containers available for radwaste disposal, and the regulatory aspects of radwaste transportation and solidification, are described. The chemical and physical properties of the currently acceptable solidification agents, as identified in the Barnwell radwaste burial site license, are examined. The solidification agents investigated are hydraulic cements, thermoplastic polymers, and thermosetting polymers. It is concluded that solidification processes are complex and depend not only on the chemical and physical properties of the binder material and the waste, but also on how these materials are mixed

  16. Plastic solidification of radioactive wastes

    International Nuclear Information System (INIS)

    Moriyama, Noboru

    1981-01-01

    Over 20 years have elapsed after the start of nuclear power development, and the nuclear power generation in Japan now exceeds the level of 10,000 MW. In order to meet the energy demands, the problem of the treatment and disposal of radioactive wastes produced in nuclear power stations must be solved. The purpose of the plastic solidification of such wastes is to immobilize the contained radionuclides, same as other solidification methods, to provide the first barrier against their move into the environment. The following matters are described: the nuclear power generation in Japan, the radioactive wastes from LWR plants, the position of plastic solidification, the status of plastic solidification in overseas countries and in Japan, the solidification process for radioactive wastes with polyethylene, and the properties of solidified products, and the leachability of radionuclides in asphalt solids. (J.P.N.)

  17. Databases in welding engineering - definition and starting phase of the integrated welding engineering information system

    International Nuclear Information System (INIS)

    Barthelmess, H.; Queren, W.; Stracke, M.

    1989-01-01

    The structure and function of the Information AAssociation for Welding Engineering, newly established by the Deutscher Verband fuer Schweisstechnik, are presented. Examined are: special literature for welding techniques - value and prospects; databases accessible to the public for information on welding techniques; concept for the Information Association for Welding Engineering; the four phases to establish databasis for facts and expert systems of the Information Association for Welding Engineering; the pilot project 'MVT-Data base' (hot crack data base for data of modified varestraint-transvarestraint tests). (orig./MM) [de

  18. Solidification of ion exchange resin wastes

    International Nuclear Information System (INIS)

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of 137 Cs, 85 Sr, and 60 Co from resins modified in portland type III and high alumina cements. The cumulative 137 Cs fraction release was at least an order of magnitude greater than that of either 85 Sr or 60 Co. Release rates of 137 Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. 137 Cs, 85 Sr, and 60 Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement

  19. Intergranular stress corrosion cracking: A rationalization of apparent differences among stress corrosion cracking tendencies for sensitized regions in the process water piping and in the tanks of SRS reactors

    International Nuclear Information System (INIS)

    Louthan, M.R.

    1990-01-01

    The frequency of stress corrosion cracking in the near weld regions of the SRS reactor tank walls is apparently lower than the cracking frequency near the pipe-to-pipe welds in the primary cooling water system. The difference in cracking tendency can be attributed to differences in the welding processes, fabrication schedules, near weld residual stresses, exposure conditions and other system variables. This memorandum discusses the technical issues that may account the differences in cracking tendencies based on a review of the fabrication and operating histories of the reactor systems and the accepted understanding of factors that control stress corrosion cracking in austenitic stainless steels

  20. Steel weldability. Underbead cold cracking

    International Nuclear Information System (INIS)

    Marquet, F.; Defourny, J.; Bragard, A.

    1977-01-01

    The problem of underbead cold cracking has been studied by the implant technique. This approach allows to take into account in a quantitative manner the different factors acting on the cold cracking phenomenon: structure under the weld bead, level of restraint, hydrogen content in the molten metal. The influence of the metallurgical factors depending from the chemical composition of the steel has been examined. It appeared that carbon equivalent is an important factor to explain cold cracking sensitivity but that it is not sufficient to characterize the steel. The results have shown that vanadium may have a deleterious effect on the resistance to cold cracking when the hydrogen content is high and that small silicon additions are beneficient. The influence of the diffusible hydrogen content has been checked and the important action of pre- and postheating has been shown. These treatments allow the hydrogen to escape from the weld before the metal has been damaged. Some inclusions (sulphides) may also decrease the influence of hydrogen. A method based on the implant tests has been proposed which allows to choose and to control safe welding conditions regarding cold cracking

  1. Metallurgical and fatigue assessments of welds in cast welded hydraulic turbine runners

    International Nuclear Information System (INIS)

    Trudel, A; Sabourin, M

    2014-01-01

    Decades of hydraulic turbine operation around the world have shown one undeniable fact; welded turbine runners can be prone to fatigue cracking, especially in the vicinity of welds. In this regard, three factors are essential to consider in runner fatigue assessments: (1) the runner's design, which can induce stress concentrations in the fillets, (2) the casting process, which inherently creates defects such as shrinkage cavities and (3) the welding process, which induces significant residual stresses as well as a heat affected zone in the cast pieces near the interface with the filler metal. This study focuses on the latter, the welding process, with emphasis on the influence of the heat affected zone on the runner's fatigue behavior. In a recently concluded study by a large research consortium in Montreal, the microstructure and fatigue crack propagation properties of a CA6NM runner weld heat affected zone were thoroughly investigated to find if this zone deteriorates the runner's resistance to fatigue cracking. The main results showed that this zone's intrinsic fatigue crack propagation resistance is only slightly lower than the unaffected base metal because of its somewhat finer martensitic microstructure leading to a less tortuous crack path. However, it was also confirmed that weld-induced residual stresses represent the dominant influencing factor regarding fatigue crack propagation, though post-weld heat treatments are usually very effective in reducing such residual stresses. This paper aims to further confirm, through a case study, that the weld-induced heat affected zone does not compromise the reliability of welded turbine runners when its fatigue crack propagation properties are considered in fatigue damage models

  2. Microstructure and fatigue properties of Mg-to-steel dissimilar resistance spot welds

    International Nuclear Information System (INIS)

    Liu, L.; Xiao, L.; Chen, D.L.; Feng, J.C.; Kim, S.; Zhou, Y.

    2013-01-01

    Highlights: ► Mg/steel dissimilar spot weld had the same fatigue strength as Mg/Mg similar weld. ► Crack propagation path of Mg/Mg and Mg/steel welds was the same. ► Penetration of Zn into the Mg base metal led to crack initiation of Mg/steel weld. ► HAZ weakening and stress concentration led to crack initiation of Mg/Mg weld. -- Abstract: The structural application of lightweight magnesium alloys in the automotive industry inevitably involves dissimilar welding with steels and the related durability issues. This study was aimed at evaluating the microstructural change and fatigue resistance of Mg/steel resistance spot welds, in comparison with Mg/Mg welds. The microstructure of Mg/Mg spot welds can be divided into: base metal, heat affected zone and fusion zone (nugget). However, the microstructure of Mg/steel dissimilar spot welds had three different regions along the joined interface: weld brazing, solid-state joining and soldering. The horizontal and vertical Mg hardness profiles of Mg/steel and Mg/Mg welds were similar. Both Mg/steel and Mg/Mg welds were observed to have an equivalent fatigue resistance due to similar crack propagation characteristics and failure mode. Both Mg/steel and Mg/Mg welds failed through thickness in the magnesium sheet under stress-controlled cyclic loading, but fatigue crack initiation of the two types of welds was different. The crack initiation of Mg/Mg welds was occurred due to a combined effect of stress concentration, grain growth in the heat affected zone (HAZ), and the presence of Al-rich phases at HAZ grain boundaries, while the penetration of small amounts of Zn coating into the Mg base metal stemming from the liquid metal induced embrittlement led to crack initiation in the Mg/steel welds.

  3. Recent progress of welding technology applied for nuclear components

    International Nuclear Information System (INIS)

    Kobayashi, T.; Hoshino, T.; Koide, H.; Yamamoto, T.; Takahashi, T.; Hashimoto, T.

    2005-01-01

    More than 30 years have been passed since the first nuclear power plant was in operation. Various needs for welding technology have been emerged and the technology has been developed. This paper first describes the key technologies in BWR power plants and then introduces ones in PWR power plants. Welding techniques are introduced in detail. Applications of arc welding, gas tungsten arc welding, electroslag welding, electron beam welding are explained. In order to avoid stress corrosion cracking, water jet and laser peening techniques are used. (author)

  4. Electron-beam fusion welding of beryllium

    International Nuclear Information System (INIS)

    Campbell, R.P.; Dixon, R.D.; Liby, A.L.

    1978-01-01

    Ingot-sheet beryllium (Be) having three different chemistries and three different thicknesses was fusion-welded by the electron-beam process. Several different preheats were used to obtain 100% penetration and crack-free welds. Cracking susceptability was found to be related to aluminum (Al) content; the higher Al-content material was most susceptable. However, adequate preheat allowed full penetration and crack-free welds to be made in all materials tested. The effect of a post-weld heat treatment on the mechanical properties of these compositions was also determined. The heat treatment produced no significant effect on the ultimate tensile strength. However, the yield strength was decreased and the ductility was increased. These changes are attributed to the formation of AlFeBe 4 and FeBe 11

  5. Solidification method of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Tsutomu; Chino, Koichi; Sasahira, Akira; Ikeda, Takashi

    1992-07-24

    Metal solidification material can completely seal radioactive wastes and it has high sealing effect even if a trace amount of evaporation should be caused. In addition, the solidification operation can be conducted safely by using a metal having a melting point of lower than that of the decomposition temperature of the radioactive wastes. Further, the radioactive wastes having a possibility of evaporation and scattering along with oxidation can be solidified in a stable form by putting the solidification system under an inert gas atmosphere. Then in the present invention, a metal is selected as a solidification material for radioactive wastes, and a metal, for example, lead or tin having a melting point of lower than that of the decomposition temperature of the wastes is used in order to prevent the release of the wastes during the solidification operation. Radioactive wastes which are unstable in air and scatter easily, for example, Ru or the like can be converted into a stable solidification product by conducting the solidification processing under an inert gas atmosphere. (T.M.).

  6. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  7. Effect of high energy shot peening pressure on the stress corrosion cracking of the weld joint of 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Zhiming, Lu; Laimin, Shi; Shenjin, Zhu; Zhidong, Tang; Yazhou, Jiang

    2015-01-01

    The weld joint of 304 stainless steel is treated using high energy shot peening(HESP) with various shot peening pressures. The grain size and metallographic microstructure of the specimen surface layer are analyzed using the X-ray diffraction method, and the surface hardness is measured. Slow strain rate tension tests are then performed to investigate the effect of shot peening pressure on the stress corrosion sensitivity. The results show that in the surface layer of the specimen, the grain refinement, hardness and the strain-induced plastic deformation all increase with the increasing shot peening pressure. Martensitic transformation is observed in the surface layer after being treated with HESP. The martensite phase ratio is found to increase with increasing shot peening pressure. The result also shows that the effects of the shot peening treatment on the stress corrosion sensitivity index depend on the shot peening pressure. When the shot peening pressure is less than 0.4 MPa, the grain refinement effect plays the main role, and the stress corrosion sensitivity index decreases with the increasing shot peening pressure. In contrast, when the shot peening pressure is higher than 0.4 MPa, the martensite transformation effect plays the main role, the stress corrosion sensitivity index increases with increasing shot peening pressure

  8. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  9. Resistance seam welding

    International Nuclear Information System (INIS)

    Schueler, A.W.

    1977-01-01

    The advantages and disadvantages of the resistance seam welding process are presented. Types of seam welds, types of seam welding machines, seam welding power supplies, resistance seam welding parameters and seam welding characteristics of various metals

  10. Rock solidification method

    International Nuclear Information System (INIS)

    Nakaya, Iwao; Murakami, Tadashi; Miyake, Takafumi; Funakoshi, Toshio; Inagaki, Yuzo; Hashimoto, Yasuhide.

    1985-01-01

    Purpose: To convert radioactive wastes into the final state for storage (artificial rocks) in a short period of time. Method: Radioactive burnable wastes such as spent papers, cloths and oils and activated carbons are burnt into ashes in a burning furnace, while radioactive liquid wastes such as liquid wastes of boric acid, exhausted cleaning water and decontaminating liquid wastes are powderized in a drying furnace or calcining furnace. These powders are joined with silicates as such as white clay, silica and glass powder and a liquid alkali such as NaOH or Ca(OH) 2 and transferred to a solidifying vessel. Then, the vessel is set to a hydrothermal reactor, heated and pressurized, then taken out about 20 min after and tightly sealed. In this way, radioactive wastes are converted through the hydrothermal reactions into aqueous rock stable for a long period of time to obtain solidification products insoluble to water and with an extremely low leaching rate. (Ikeda, J.)

  11. MODELING SOLIDIFICATION-INDUCED STRESSES IN CERAMIC WASTE FORMS CONTAINING NUCLEAR WASTES

    International Nuclear Information System (INIS)

    Solbrig, Charles W.; Bateman, Kenneth J.

    2010-01-01

    The goal of this work is to produce a ceramic waste form (CWF) that permanently occludes radioactive waste. This is accomplished by absorbing radioactive salts into zeolite, mixing with glass frit, heating to a molten state 915 C to form a sodalite glass matrix, and solidifying for long-term storage. Less long term leaching is expected if the solidifying cooling rate doesn't cause cracking. In addition to thermal stress, this paper proposes that a stress is formed during solidification which is very large for fast cooling rates during solidification and can cause severe cracking. A solidifying glass or ceramic cylinder forms a dome on the cylinder top end. The temperature distribution at the time of solidification causes the stress and the dome. The dome height, ''the length deficit,'' produces an axial stress when the solid returns to room temperature with the inherent outer region in compression, the inner in tension. Large tensions will cause cracking of the specimen. The temperature deficit, derived by dividing the length deficit by the coefficient of thermal expansion, allows solidification stress theory to be extended to the circumferential stress. This paper derives the solidification stress theory, gives examples, explains how to induce beneficial stresses, and compares theory to experimental data.

  12. The effect of welding process and shielding atmosphere on the AlMg4.5Mn weld metal properties

    Energy Technology Data Exchange (ETDEWEB)

    Prokic Cvetkovic, Radica; Popovic, Olivera [Belgrade Univ. (Serbia). Faculty of Mechanical Engineering; Burzic, Meri; Jovicic, Radomir [Belgrade Univ. (Serbia). Innovation Center; Kastelec Macura, Sandra [Technikum Taurunum, Zemun (Serbia); Buyukyildirim, Galip [IWE, Istanbul (Turkey)

    2013-01-15

    In this paper, the AlMg4.5Mn alloy has been welded using tungsten inert gas (TIG) and metal inert gas (MIG) processes with different gas shielding atmospheres. Tensile strength, hardness, impact and fracture toughness, fatigue crack growth parameters ({Delta}K{sub th}, da/dN), as well as microstructure were determined. By comparing results for different gas mixtures, the main conclusion for TIG welding was that increased helium content has an important effect on toughness and fatigue crack growth parameters, whereas its effect on other mechanical properties is not significant. On the other hand, in the case of MIG welding, adding helium does not affect mechanical properties, except the fatigue crack growth rate. It was also established that adding nitrogen (TIG welding) and oxygen (MIG welding) reduces toughness and increases crack growth rate, so their use in shielding mixtures is not recommended. (orig.)

  13. Fatigue strength depending on position of cracks for weldments

    International Nuclear Information System (INIS)

    Lee, Hae Woo; Park, Won Jo

    2006-01-01

    This is a study of fatigue strength of weld deposits with transverse cracks in plate up to 50 mm thick. It is concerned with the fatigue properties of welds already with transverse cracks. A previous study of transverse crack occurrence, location and microstructure in accordance with welding conditions was published in the Welding Journal (Lee et al., 1998). A fatigue crack develops as a result of stress concentration and extends with each load cycle until fatigue occurs, or until the cyclic loads are transferred to redundant members. The fatigue performance of a member is more dependent on the localized state of stress than the static strength of the base metal or the weld metal. Fatigue specimens were machined to have transverse cracks located on the surface and inside the specimen. Evaluation of fatigue strength depending on location of transverse cracks was then performed. When transverse cracks were propagated in a quarter-or half-circle shape, the specimen broke at low cycle in the presence of a surface crack. However, when the crack was inside the specimen, it propagated in a circular or elliptical shape and the specimen showed high fatigue strength, enough to reach the fatigue limit within tolerance of design stresses

  14. Development of Weld Metal Microstructures in Pulsed Laser Welding of Duplex Stainless Steel

    Science.gov (United States)

    Mirakhorli, F.; Malek Ghaini, F.; Torkamany, M. J.

    2012-10-01

    The microstructure of the weld metal of a duplex stainless steel made with Nd:YAG pulsed laser is investigated at different travel speeds and pulse frequencies. In terms of the solidification pattern, the weld microstructure is shown to be composed of two distinct zones. The presence of two competing heat transfer channels to the relatively cooler base metal and the relatively hotter previous weld spot is proposed to develop two zones. At high overlapping factors, an array of continuous axial grains at the weld centerline is formed. At low overlapping factors, in the zone of higher cooling rate, a higher percentage of ferrite is transformed to austenite. This is shown to be because with extreme cooling rates involved in pulsed laser welding with low overlapping, the ferrite-to-austenite transformation can be limited only to the grain boundaries.

  15. Two-dimensional time-resolved X-ray diffraction study of directional solidification in steels

    International Nuclear Information System (INIS)

    Yonemura, Mitsuharu

    2009-01-01

    Full text: The high intensity heat source used for fusion welding creates steep thermal gradients of 100 degree C/s from 1800 degree Celsius. Further, the influence of a preferred orientation is serious for observation of a directional solidification that follows the dendrite growth along the direction toward the moving heat source. Therefore, we observed the rapid solidification of weld metal at a time resolution of 0.01∼0.1seconds by the Two-Dimensional Time-Resolved X-ray Diffraction (2DTRXRD) system for real welding. The diffraction ring was dynamically observed by 2DTRXRD during arc-passing over the irradiation area of X-ray with synchrotron energy of 18 KeV. The arc power output was 10 V - 150 A, and a scan speed of the arc was 1.0 mm/s. The temperature rise of instruments was suppressed by the water-cooled copper plate under the sample. Further, the temperature distribution of the weld metal was measured by the thermocouple and related to the diffraction patterns. Consequently, solidification and solid phase transformation of low carbon steels and stainless steels were observed during rapid cooling by 2DTRXRD. In the low-carbon steel, the microstructure is formed in the 2 step process; (i) formation of crystallites and (ii) increase of crystallinity. In the stainless steel, the irregular interface layer of σ/y in the quenched metal after solidification is expected that it is easy for dendrites to move at the lower temperature. In the carbide precipitation stainless steel, it is easy for NbC to grow on σ phase with a little under cooling. Further, a mist-like pattern, which differs from the halo-pattern, in the fusion zone gave some indication of the possibilities to observe the nucleation and the early solidification by 2DTRXRD. (author)

  16. Welding Technician

    Science.gov (United States)

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  17. Quality evaluation of PHWR fuel element end cap weld joints by ultrasonic testing technique

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J L; Nair, V R; Ramadasan, E; Majumdar, S; Sahoo, K C [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.; Kumar, Arun [Atomic Fuel Fabrication Facility, Tarapur (India)

    1994-12-31

    An ultrasonic testing technique has been developed for effective quality evaluation of Pressurised Heavy Water Reactor (PHWR) fuel end plug welds. A focused high frequency shear wave is directed to the weld zone from half skip distance to detect lack of fusion, porosities and wall cracks in the weld zone. A tentative select/reject level has been evolved to sort out the defective weld by examining more than 700 PHWR fuel pin welds. (author). 5 refs., 5 figs.

  18. Creep properties of EB welded joint on Hastelloy X

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Susei, Shuzo; Shimizu, Shigeki; Satoh, Keisuke; Nagai, Hiroyoshi.

    1980-01-01

    In order to clarify the creep properties of EB welds on Hastelloy X which is one of the candidate alloys for components of VHTR, creep tests on EB weld metal and welded joint were carried out. The results were discussed in comparison with those of base metal and TIG welds. Further, EB welds were evaluated from the standpoint of high temperature structural design. The results obtained are summarized as follows. 1) Both creep rupture strengths of EB weld metal and EB welded joint are almost equal to that of base metal, but those of TIG welds are lower than base metal. As for the secondary creep rate, EB weld metal is higher and TIG weld metal is lower than base metal. As for the time to onset of tertiary creep, no remarkable difference among base metal, EB weld metal and TIG weld metal is observed. 2) In case of EB weld metal, although anisotropy is slightly observed, the ductility is same or more as compared with base metal. In case of TIG weld metal, on the contrary, anisotropy is not observed and the ductility is essentially low. 3) Such rupture morphology of EB weld metal as appears to have resulted from interconnection of voids which occurred at grain boundary is similar to base metal. In case of TIG weld metal, however, many cracks with sharp tips are observed at grain boundary, and the rupture appears to have occurred in brittle by propagation and connection of the cracks. 4) It can be said from the standpoint of high temperature structural design that EB welding is very suitable to welding for structure where creep effects are significant, because both of the creep ductility and the rupture strength are almost equal to those of base metal. (author)

  19. Cracking susceptibility of stainless steel subjected to plasma disruption

    International Nuclear Information System (INIS)

    Madarame, H.

    1995-01-01

    The similarities and differences in the cracking susceptibility between welding and resolidification after plasma disruption were examined experimentally using a number of primary candidate alloy samples with different chemical compositions. The product of the number density and the average depth of the cracks was measured after simulated disruption, employing a hydrogen ion beam as the heat source, and was compared with the Varestraint test result. An adequate correlation was observed between them, which indicates that the cracking susceptibility during plasma disruption can be well estimated from the welding cracking susceptibility. (orig.)

  20. Tensile and fatigue properties of weld-bonded and adhesive-bonded magnesium alloy joints

    International Nuclear Information System (INIS)

    Xu, W.; Liu, L.; Zhou, Y.; Mori, H.; Chen, D.L.

    2013-01-01

    The microstructures, tensile and fatigue properties of weld-bonded (WB) AZ31B-H24 Mg/Mg joints with different sizes of bonding area were evaluated and compared with the adhesive-bonded (AB) Mg/Mg joints. Typical equiaxed dendritic structures containing divorced eutectic Mg 17 Al 12 particles formed in the fusion zone of both WB-1 (with a bonding area of 35 mm×35 mm) and WB-0.5 (with a bonding area of 17.5 mm×35 mm) joints. Less solidification shrinkage cracking was observed in the WB-0.5 joints than WB-1 joints. While the WB-0.5 joints exhibited a slightly lower maximum tensile shear stress than the AB-0.5 joints (with a bonding area of 17.5 mm×35 mm), the energy absorption was equivalent. Although the AB-0.5 joints exhibited a higher fatigue resistance at higher cyclic stress levels, both the AB-0.5 and WB-0.5 joints showed an equivalent fatigue resistance at lower cyclic stress levels. A higher fatigue limit was observed in the WB-0.5 joints than in the WB-1 joints owing to the presence of fewer shrinkage pores. Cohesive failure mode along the adhesive layer in conjunction with partial nugget pull-out from the weld was observed at the higher cyclic loads, and fatigue failure occurred in the base metal at the lower cyclic loads

  1. Quantitative influence of minor and impurity elements on hot cracking susceptibility of extra high-purity type 310 stainless steel

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi; Matsushita, Hideki; Nishimoto, Kazutoshi; Kiuchi, Kiyoshi; Nakayama, Junpei

    2013-01-01

    To evaluate the influence of minor and impurity elements such as C, Mn, P and S on the solidification and ductility-dip cracking susceptibilities of extra high-purity type 310 stainless steels, the transverse-Varestraint test was conducted by using several type 310 stainless steels with different amounts of C, Mn, P and S. Two types of hot cracks occurred in these steels by Varestraint test; solidification and ductility-dip cracks. The solidification cracking susceptibility was significantly reduced as the amounts of C, P and S decreased. The ductility-dip cracking susceptibility also reduced with a decrease in P and S contents. It adversely, however, increased as the C content of the steels was reduced. Mn didn't greatly affect the hot cracking susceptibility of the extra high-purity steels. The characteristic influence on solidification cracking was the ratio of P:S:C=1:1.3:0.56, while Mn negligibly ameliorated solidification cracking in the extra low S (and P) steels. The numerical analysis on the solidification brittle temperature range (BTR) revealed that the reduced solidification cracking susceptibility with decreasing the amounts of C, P and S in steel could be attributed to the reduced BTR due to the suppression of solidification segregation of minor and impurity elements in the finally solidified liquid film between dendrites. On the other hand, a molecular orbital analysis to estimate the binding strength of the grain boundary suggested that the increased ductility-dip cracking susceptibility in extra high-purity steels was caused by grain boundary embrittlement due to the refining of beneficial elements for grain boundary strengthening such as C. (author)

  2. Braze welding of cobalt with a silver–copper filler

    Directory of Open Access Journals (Sweden)

    Everett M. Criss

    2015-01-01

    Full Text Available A new method of joining cobalt by braze-welding it with a silver–copper filler was developed in order to better understand the residual stresses in beryllium–aluminum/silicon weldments which are problematic to investigate because of the high toxicity of Be. The base and filler metals of this new welding system were selected to replicate the physical properties, crystal structures, and chemical behavior of the Be–AlSi welds. Welding parameters of this surrogate Co–AgCu system were determined by experimentation combining 4-point bending tests and microscopy. Final welds are 5 pass manual TIG (tungsten inert gas, with He top gas and Ar back gas. Control of the welding process produces welds with full penetration melting of the cobalt base. Microscopy indicates that cracking is minimal, and not through thickness, whereas 4-point bending shows failure is not by base-filler delamination. These welds improve upon the original Be–AlSi welds, which do not possess full penetration, and have considerable porosity. We propose that utilization of our welding methods will increase the strength of the Be–AlSi weldments. The specialized welding techniques developed for this study may be applicable not only for the parent Be–AlSi welds, but to braze welds and welds utilizing brittle materials in general. This concept of surrogacy may prove useful in the study of many different types of exotic welds.

  3. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...... this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling...

  4. Mechanical and Microstructural Evaluation of DMAG Welding of Structural Steel

    Directory of Open Access Journals (Sweden)

    Tolga Mert

    2015-01-01

    Full Text Available Double channel torch, which allows concentric flow of two different shielding gases, was designed and manufactured in order to pursue double channel torch gas metal arc welding of unalloyed structural steel S235JR (EN 10025-2 with fourteen passes. Tensile and Charpy V-notch tests were realized and the results were compared with those of conventional gas metal arc welding. In order to evaluate mechanical testing results, microstructural analyses were conducted. It was found that the increase with double channel gas metal arc welding process in yield and tensile strengths as well as in toughness tests, especially in subzero temperatures, compared with conventional gas metal arc welding was due to longer columnar grains and finer tempered zone grain structure between passes and due to solidification and less dendritic structure formation in all-weld metal in double channel gas metal arc welding.

  5. Microstructural evaluation of a low carbon steel submitted to boriding treatment pre and post GTAW welding; Avaliacao microestrutural de um aco de baixo carbono submetido ao tratamento de boretacao pre e pos-soldagem GTAW

    Energy Technology Data Exchange (ETDEWEB)

    Pollnow, Edilson Nunes; Osorio, Alice Goncalves, E-mail: edilson.pollnow@hotmail.com, E-mail: osorio.alice@gmail.com [Universidade Federal de Pelotas (CDTec/UFPel), Pelotas, RS (Brazil). Centro de Desenvolvimento Tecnologico; Araujo, Douglas Bezerra de, E-mail: dbaraujo@ufu.br [Universidade Federal de Uberlandia (FEMEC/UFU), Uberlandia, MG (Brazil). Faculdade de Engenharia Mecanica; Passos, Thais Andrezza dos; Souza, Daniel, E-mail: thais.andrezza.passos@gmail.com, E-mail: danielsouza@furg.br [Universidade Federal do Rio Grande (EE/FURG), Rio Grande, RS (Brazil). Escola de Engenharia

    2017-04-15

    Studies on surface engineering area are given great importance due to the improvement that surface modifications provide to materials. With a global market that has the need to provide parts and equipment with extended service life and low cost, to support stringent requests and thus maintain its high performance, surface treatments may bring what was impossible into reality. Among the surface treatments that have received attention recently, we have the thermochemical process of boriding. The boriding process consists of saturate the surface of steels and metal alloys with boron. This saturation provides an increase in the surface properties not inherent to the base metal, such as hardness, resistance to abrasion and corrosion. Although the properties of boriding steels have already been studied, the effects that the boriding process perform on the steel during or after the welding processes are not known. Hence, it is the purpose of this study to evaluate the microstructure of a low carbon steel treated with boriding before and after GTAW welding. The results indicated poor metallurgical weldability of low carbon steel with boride layer, with the presence of solidification cracks. Nonetheless, the steel welded previous to boring treatment presented a more ductile nucleus, with harder surface. Although the values of hardness within the nucleus of the steel had dropped drastically at the welded zone after the boring, the surface of this steel showed higher values of hardness due to the boriding layer. This fact should be considered when applications where wear resistance is needed. (author)

  6. The welding of alloy 800

    International Nuclear Information System (INIS)

    Ward, M.; Norman, P.L.

    1975-01-01

    This paper reviews the technical literature published on the welding of alloy 800. Much of this work has been carried out using the Varestraint and Gleeble tests to investigate the susceptibility of the alloy and of high nickel consumables to hot-cracking. Inspite of much reported work, it is pointed out that many years of experience in the use of alloy 800 shows it to be readily weldable without any major problems occurring due to hot-cracking. The elements investigated include titanium, aluminium, sulphur, phosphorus and carbon, and the effects of these elements are discuused in terms of their effects on the hot-ductility curves obtained by Gleeble testing. Conclusions reached by various researchers state that the individual effects of the above five elements may be masked by other unknown factors. It is concluded that with correct welding procedures alloy 800 can be welded without cracking problems even with high heat input welding processes using either high-nickel filler wires or a matching electrode. Matching composition filler wires have been used with success but none are at present available commercially. (author)

  7. Solidification behavior of austenitic stainless steel filler metals

    International Nuclear Information System (INIS)

    David, S.A.; Goodwin, G.M.; Braski, D.N.

    1980-02-01

    Thermal analysis and interrupted solidification experiments on selected austenitic stainless steel filler metals provided an understanding of the solidification behavior of austenitic stainless steel welds. The sequences of phase separations found were for type 308 stainless steel filler metal, L + L + delta + L + delta + γ → γ + delta, and for type 310 stainless steel filler metal, L → L + γ → γ. In type 308 stainless steel filler metal, ferrite at room temperature was identified as either the untransformed primary delta-ferrite formed during the initial stages of solidification or the residual ferrite after Widmanstaetten austenite precipitation. Microprobe and scanning transmission electron microscope microanalyses revealed that solute extensively redistributes during the transformation of primary delta-ferrite to austenite, leading to enrichment and stabilization of ferrite by chromium. The type 310 stainless steel filler metal investigated solidifies by the primary crystallization of austenite, with the transformation going to completion at the solidus temperature. In our samples residual ferrite resulting from solute segregation was absent at the intercellular or interdendritic regions

  8. Damage tolerance reliability analysis of automotive spot-welded joints

    International Nuclear Information System (INIS)

    Mahadevan, Sankaran; Ni Kan

    2003-01-01

    This paper develops a damage tolerance reliability analysis methodology for automotive spot-welded joints under multi-axial and variable amplitude loading history. The total fatigue life of a spot weld is divided into two parts, crack initiation and crack propagation. The multi-axial loading history is obtained from transient response finite element analysis of a vehicle model. A three-dimensional finite element model of a simplified joint with four spot welds is developed for static stress/strain analysis. A probabilistic Miner's rule is combined with a randomized strain-life curve family and the stress/strain analysis result to develop a strain-based probabilistic fatigue crack initiation life prediction for spot welds. Afterwards, the fatigue crack inside the base material sheet is modeled as a surface crack. Then a probabilistic crack growth model is combined with the stress analysis result to develop a probabilistic fatigue crack growth life prediction for spot welds. Both methods are implemented with MSC/NASTRAN and MSC/FATIGUE software, and are useful for reliability assessment of automotive spot-welded joints against fatigue and fracture

  9. A Probabilistic Damage Tolerance Concept for Welded Joints

    DEFF Research Database (Denmark)

    Lassen, T.; Sørensen, John Dalsgaard

    2002-01-01

    The present paper presents the necessary crack growth statistics and suggests stochastic models for a reliability analysis of the fatigue fracture of welded steel plate joints. The reliability levels are derived from extensive testing with fillet-welded joints for which the entire crack growth...... history has been measured, not only the final fatigue life. The statistics for the time to reach given crack depths are determined. Fracture-mechanics-derived crack growth curves are fitted to the measured experimental curves and the best fit defines the growth parameters involved for each test specimen...

  10. Residual stresses in zircaloy welds

    International Nuclear Information System (INIS)

    Santisteban, J. R.; Fernandez, L; Vizcaino, P.; Banchik, A.D.; Samper, R; Martinez, R. L; Almer, J; Motta, A.T.; Colas, K.B; Kerr, M.; Daymond, M.R

    2009-01-01

    Welds in Zirconium-based alloys are susceptible to hydrogen embrittlement, as H enters the material due to dissociation of water. The yield strain for hydride cracking has a complex dependence on H concentration, stress state and texture. The large thermal gradients produced by the applied heat; drastically changes the texture of the material in the heat affected zone, enhancing the susceptibility to delayed hydride cracking. Normally hydrides tend to form as platelets that are parallel to the normal direction, but when welding plates, hydride platelets may form on cooling with their planes parallel to the weld and through the thickness of the plates. If, in addition to this there are significant tensile stresses, the susceptibility of the heat affected zone to delayed hydride cracking will be increased. Here we have measured the macroscopic and microscopic residual stressed that appear after PLASMA welding of two 6mm thick Zircaloy-4 plates. The measurements were based on neutron and synchrotron diffraction experiments performed at the Isis Facility, UK, and at Advanced Photon Source, USA, respectively. The experiments allowed assessing the effect of a post-weld heat treatment consisting of a steady increase in temperature from room temperature to 450oC over a period of 4.5 hours; followed by cooling with an equivalent cooling rate. Peak tensile stresses of (175± 10) MPa along the longitudinal direction were found in the as-welded specimen, which were moderately reduced to (150±10) MPa after the heat-treatment. The parent material showed intergranular stresses of (56±4) MPa, which disappeared on entering the heat-affected zone. In-situ experiments during themal cyclong of the material showed that these intergranular stresses result from the anisotropy of the thermal expansion coefficient of the hexagonal crystal lattice. [es

  11. Development of resistance welding process. 6. Evaluation test of welding properties of martensitic ODS steel)

    International Nuclear Information System (INIS)

    Kono, Shusaku; Seki, Masayuki; Ishibashi, Fujio

    2003-05-01

    The welding condition and the heat-treatment condition were optimized to evaluate welding properties of the martensitic ODS steel cladding tube. The test pieces for evaluation of strength properties of the welded zone were produced by the optimized welding condition. In order to evaluate the strength of the welded zone, the internal creep rapture test, the single axis creep rapture test, the burst test and the tensile test were conducted. Following results were obtained in these tests. (1) Weld ability: An excellent welding characteristic was observed. The micro cracks, etc. were not served at the joint starting point. The joint starting points were connected uniformly with errors less than 0.05 mm. It is considered that an excellent welding characteristic was result of homogeneous micro structure of cladding material. (2) End plug material: In case of the material of end plug was martensitic ODS steel as same as that of cladding tube, the micro structure and the precipitation state carbide near the welded zone were found to be almost same as that of cladding tube. (3) Optimization of heat-treatment condition: The heat treatments of normalizing (1050degC) and tempering (780degC) were performed after welding and the micro structure near the welded zone was the isometric structure with low dislocation density, the precipitation state of carbide was uniform as same as that of cladding tube. These heat treatments can relax the residual stress accumulated when welding; it is considered that these heat treatments after welding are indispensable. (4) Strength of welded zone: The strength of the welded zone was found to be equal to that of cladding tube in all the strength tests. Therefore, it is concluded that the welding technology for the martensitic ODS steel is completed. (author)

  12. Weld repair of helium degraded reactor vessel material

    International Nuclear Information System (INIS)

    Kanne, W.R. Jr.; Lohmeier, D.A.; Louthan, M.R. Jr.; Rankin, D.T.; Franco-Ferreira, E.A.; Bruck, G.J.; Madeyski, A.; Shogan, R.P.; Lessmann, G.G.

    1990-01-01

    Welding methods for modification or repair of irradiated nuclear reactor vessels are being evaluated at the Savannah River Site. A low-penetration weld overlay technique has been developed to minimize the adverse effects of irradiation induced helium on the weldability of metals and alloys. This technique was successfully applied to Type 304 stainless steel test plates that contained 3 to 220 appm helium from tritium decay. Conventional welding practices caused significant cracking and degradation in the test plates. Optical microscopy of weld surfaces and cross sections showed that large surface toe cracks formed around conventional welds in the test plates but did not form around overlay welds. Scattered incipient underbead cracks (grain boundary separations) were associated with both conventional and overlay test welds. Tensile and bend tests were used to assess the effect of base metal helium content on the mechanical integrity of the low-penetration overlay welds. The axis of tensile specimens was perpendicular to the weld-base metal interface. Tensile specimens were machined after studs were resistance welded to overlay surfaces

  13. A 1993 review of welding in Japan

    Science.gov (United States)

    1994-07-01

    This paper describes a prospect on Japanese welding technologies available in 1993. Amid the increasing research publications on non-ferrous metals as structural materials, publications are also increasing on steel materials as to their fracture and welding mechanics, and structural control. Studies are being made on ceramics with respect to its bonding, interface reaction mechanisms, and mechanical characteristics. The paper describes the progress and improvement in conventional technologies in welding and cutting processes. Especially active is the study on solid face welding such as pressure welding and diffusion. A considerable decrease is seen in reports on thermal spraying. The paper also introduces surface processing and hydrostatic pressure processing as new processing techniques. In the area of welding devices, practical use of arc welding robots has come to near a completion stage. Technological development and cost reduction are indispensable to transfer to visual sensing with a higher intelligence level. With respect to the performance of joints, a large number of research has been reported on welding deformation and residual stress. The paper also dwells on corrosion resistance and welding cracks. Quality assurance, inspection, and related standards are described. Details are given on application of welding to different industrial fields.

  14. Method of manufacturing borosilicate glass solidification products

    International Nuclear Information System (INIS)

    Tanaka, Tsuneya.

    1986-01-01

    Purpose: To obtain glass solidification products efficiently in a dry process from medium and high level radioactive liquid wastes discharged from PWR type reactors. Method: Boric acid-containing radioactive liquid wastes generated from primary coolants of PWR type reactors are evaporated to condensate as the pre-treatment. The concentrated liquid wastes are supplied to a drum type rotary kiln. While on the other hand, usual glass frits are introduced into the kiln. The liquid wastes are dried in the rotary kiln, as well as B 2 O 3 and the glass frits in the liquid wastes are combined into glass particles. In this case, since the kiln is rotated, no glass particles are deposited on the wall of the kiln. Then, the glass particles are introduced for melting into a high frequency melting furnace made of metal. The melting temperature is set to 1100 - 1150 deg C. The molten borosilicate glass is recovered from the bottom of the melting furance, contained in a canister and cooled for several hours, and then a cover is welded to the canister. (Ikeda, J.)

  15. On the role of solidification modelling in Integrated Computational Materials Engineering “ICME”

    International Nuclear Information System (INIS)

    Schmitz, G J; Böttger, B; Apel, M

    2016-01-01

    Solidification during casting processes marks the starting point of the history of almost any component or product. Integrated Computational Materials Engineering (ICME) [1-4] recognizes the importance of further tracking the history of microstructure evolution along the subsequent process chain. Solidification during joining processes in general happens quite late during production, where the parts to be joined already have experienced a number of processing steps which affected their microstructure. Reliable modelling of melting and dissolution of these microstructures represents a key issue before eventually modelling ‘re’-solidification e.g. during welding or soldering. Some instructive examples of microstructure evolution during a joining process obtained on the basis of synthetic and simulated initial microstructures of an Al-Cu binary model system are discussed. (paper)

  16. Microstructural characteristics on bead on plate welding of AISI 904 ...

    African Journals Online (AJOL)

    user

    with low impurity level, hot crack formation during welding can be avoided despite ... duration, these carbides are usually replaced by intermetallic compounds, such ... dendritic and austenitic although the interdendritic materials are richer in ...

  17. Ultrasonic testing of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Nishino, Shunichi; Hida, Yoshio; Yamamoto, Michio; Ando, Tomozumi; Shirai, Tasuku.

    1982-05-01

    Ultrasonic testing of austenitic stainless steel welds has been considered difficult because of the high noise level and remarkable attenuation of ultrasonic waves. To improve flaw detectability in this kind of steel, various inspection techniques have been studied. A series of tests indicated: (1) The longitudinal angle beam transducers newly developed during this study can detect 4.8 mm dia. side drilled holes in dissimilar metal welds (refraction angle: 55 0 from SUS side, 45 0 from CS side) and in cast stainless steel welds (refraction angle: 45 0 , inspection frequency: 1 MHz). (2) Cracks more than 5% t in depth in the heat affected zones of fine-grain stainless steel pipe welds can be detected by the 45 0 shear wave angle beam method (inspection frequency: 2 MHz). (3) The pattern recognition method using frequency analysis technology was presumed useful for discriminating crack signals from spurious echoes. (author)

  18. Assisting Gas Optimization in CO2 Laser Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    1996-01-01

    High quality laser welding is achieved under the condition of optimizing all process parameters. Assisting gas plays an important role for sound welds. In the conventional welding process assisting gas is used as a shielding gas to prevent that the weld seam oxidates. In the laser welding process...... assisting gas is also needed to control the laser induced plasma.Assisting gas is one of the most important parameters in the laser welding process. It is responsible for obtaining a quality weld which is characterized by deep penetration, no interior imperfections, i.e. porosity, no crack, homogeneous seam...... surface, etc. In this work a specially designed flexible off-axis nozzle capable of adjusting the angle of the nozzle, the diameter of the nozzle, and the distance between the nozzle end and the welding zone is tested. In addition to the nozzle parameters three gases, Nitrogen, Argon, and Helium...

  19. Determination of Elements and Carbon Content of Stainless Steel Welded Pipeline

    Directory of Open Access Journals (Sweden)

    Pavel Hudeček

    2016-01-01

    Full Text Available Find out defects or problems of welds are not so simple from time to time. Specially, if weld has been made in rough environmental conditions like high temperature, dusty wind and humidity. It is important to assure have good conditions to realize basic step of welding. For welding, have been used welding procedures specification and procedure qualification record. However, difficult conditions, documentations rightness or human errors are always here. Common weld defects like cracks, porosity, lack of penetration and distortion can compromise the strength of the base metal, as well as the integrity of the weld. According of site inspection, there were suspicion of inclusions, leaker or segregation in root of weld. Surface treatment after welding and keep the intervals between single welds to not overheat the pipes. To recognize those suspicions, mechanical testing around weld joint, determination of carbon content and inductively coupled plasma atomic emission spectroscopy will be done.

  20. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  1. Recent Developments and Research Progress on Friction Stir Welding of Titanium Alloys: An Overview

    Science.gov (United States)

    Karna, Sivaji; Cheepu, Muralimohan; Venkateswarulu, D.; Srikanth, V.

    2018-03-01

    Titanium and its alloys are joined by various welding processes. However, Fusion welding of titanium alloys resulted solidification problems like porosity, segregation and columnar grains. The problems occurred in conventional welding processes can be resolved using a solid state welding i.e. friction stir welding. Aluminium and Magnesium alloys were welded by friction stir welding. However alloys used for high temperature applications such as titanium alloys and steels are arduous to weld using friction stir welding process because of tool limitations. Present paper summarises the studies on joining of Titanium alloys using friction stir welding with different tool materials. Selection of tool material and effect of welding conditions on mechanical and microstructure properties of weldments were also reported. Major advantage with friction stir welding is, we can control the welding temperature above or below β-transus temperature by optimizing the process parameters. Stir zone in below beta transus condition consists of bi-modal microstructure and microstructure in above β-transus condition has large prior β- grains and α/β laths present in the grain. Welding experiments conducted below β- transus condition has better mechanical properties than welding at above β-transus condition. Hardness and tensile properties of weldments are correlated with the stir zone microstructure.

  2. WELDING TORCH

    Science.gov (United States)

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  3. Welding stresses

    International Nuclear Information System (INIS)

    Poirier, J.; Barbe, B.; Jolly, N.

    1976-01-01

    The aim is to show how internal stresses are generated and to fix the orders of magnitude. A realistic case, the vertical welding of thick plates free to move one against the other, is described and the deformations and stresses are analyzed. The mathematical model UEDA, which accounts for the elastic modulus, the yield strength and the expansion coefficient of the metal with temperature, is presented. The hypotheses and results given apply only to the instantaneous welding of a welded plate and to a plate welded by a moving electrode [fr

  4. High-strength structural steels; their properties, and the problems encountered during the welding process

    International Nuclear Information System (INIS)

    Uwer, D.

    1978-01-01

    High-strength structural steels, manufacture, properties. Requirements to be met by the welded joints of high-strength structural steels. Influence of the welding conditions on the mechanical properties in the heat-affected zone. Cold-cracking behaviour of welded joints. Economic efficiency of high-strength structural steels. Applications. (orig.) [de

  5. Weld overlay cladding with iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, G.M. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    The author has established a range of compositions for these alloys within which hot cracking resistance is very good, and within which cold cracking can be avoided in many instances by careful control of welding conditions, particularly preheat and postweld heat treatment. For example, crack-free butt welds have been produced for the first time in 12-mm thick wrought Fe{sub 3}Al plate. Cold cracking, however, still remains an issue in many cases. The author has developed a commercial source for composite weld filler metals spanning a wide range of achievable aluminum levels, and are pursuing the application of these filler metals in a variety of industrial environments. Welding techniques have been developed for both the gas tungsten arc and gas metal arc processes, and preliminary work has been done to utilize the wire arc process for coating of boiler tubes. Clad specimens have been prepared for environmental testing in-house, and a number of components have been modified and placed in service in operating kraft recovery boilers. In collaboration with a commercial producer of spiral weld overlay tubing, the author is attempting to utilize the new filler metals for this novel application.

  6. Creep deformation behavior of weld metal and heat affected zone on 316FR steel thick plate welded joint

    International Nuclear Information System (INIS)

    Hongo, Hiromichi; Yamazaki, Masayoshi; Watanabe, Takashi; Kinugawa, Junichi; Tanabe, Tatsuhiko; Monma, Yoshio; Nakazawa, Takanori

    1999-01-01

    Using hot-rolled 316FR stainless plate (50 mm thick) and 16Cr-8Ni-2Mo filler wire, a narrow-gap welded joint was prepared by GTAW (gas tungsten arc welding) process. In addition to conventional round bar specimens of base metals and weld metal, full-thickness joint specimens were prepared for creep test. Creep tests were conducted at 550degC in order to examine creep deformation and rupture behavior in the weld metal of the welded joint. Creep strain distribution on the surface of the joint specimen was measured by moire interferometry. In the welded joint, creep strength of the weld metal zone apart from the surface was larger than that in the vicinity of the surface due to repeating heat cycles during welding. Creep strain and creep rate within the HAZ adjacent to the weld metal zone were smaller than those within the base metal zone. Creep rate of the weld metal zone in the welded joint was smaller than that of the weld metal specimen due to the restraint of the hardened HAZ adjacent to the zone. The full-thickness welded joint specimens showed longer lives than weld metal specimens, though the lives of the latter was shorter than those of the base metal (undermatching). In the full-thickness welded joint specimen, crack started from the last pass layer of the weld metal zone and fracture occurred at the zone. From the results mentioned above, in order to evaluate the creep properties of the welded joint correctly, it is necessary to conduct the creep test using the full-thickness welded joint specimen which includes the weakest zones of the weld metal, the front and back sides of the plate. (author)

  7. Dissimilar weld failure analysis and development program

    International Nuclear Information System (INIS)

    Holko, K.H.; Li, C.C.

    1982-01-01

    The problem of dissimilar weld cracking and failure is examined. This problem occurs in boiler superheater and reheater sections as well as main steam piping. Typically, a dissimilar weld joins low-alloy steel tubing such as Fe-2-1/4 Cr-1Mo to stainless steel tubing such as 321H and 304H. Cracking and failure occur in the low-alloy steel heat-affected zone very close to the weld interface. The 309 stainless steel filler previously used has been replaced with nickel-base fillers such as Inconel 132, Inconel 182, and Incoweld A. This change has extended the time to cracking and failure, but has not solved the problem. To illustrate and define the problem, the metallography of damaged and failed dissimilar welds is described. Results of mechanical tests of dissimilar welds removed from service are presented, and factors believed to be influential in causing damage and failure are discussed. In addition, the importance of dissimilar weldment service history is demonstrated, and the Dissimilar Weld Failure Analysis and Development Program is described. 15 figures

  8. A study on the fatigue characteristics of SM 490 A material due to the welding type

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hoon; Goo, Byung Choon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2004-07-01

    This study investigates the fatigue characteristics of SM 490 A material specimens for the railway vehicle due to the welding type. The more stress ratio decreases, the more strength of fillet welded specimen decreases. At specially, when the stress ratio of TN(Plate with transverse fillet welded rib) specimens decreases 0.5, 0.1, and -0.1, the fatigue limit decreases uniformly. The strength of TN is higher than it of NCN in the compare of fillet welding type, but the strength of NCN(Non load-carrying cruciform fillet welded joint) is higher than it of CN(Load-carrying cruciform fillet welded joint), which these specimens have the rib in the both side. We analysis the strains on the weld positions of the TN specimens during the fatigue test for the investigation of crack initiation and crack growth. In the theses results, we could find the fatigue crack initiation point and time.

  9. The effect of flux on properties of weld in submerged arc welding with filler metal

    International Nuclear Information System (INIS)

    Fattahpour, Iran.

    1984-01-01

    In the submerged-arc welding, the electrode wire is shielded by a blanket of granular fusible material called a flux. This granular material, flux, must ensure the deposition of weld metal of given chemical composition and specified mechanical properties. The flux must also ensure stable burning of the welding arc and contribute to the formation of a dense weld of required shape and size, and free from pores, cracks and slag inclusions. As the deposited molten metal solidifies, the flux must form a slag crust, easily separable from the surface of the weld. This material must be of a certain chemical composition and possess definite physical properties, such as melting point, viscosity, bulk weight. The chemical composition of the flux is chosen, depending on the composition of the welded metal and electrode wire used. (Author)

  10. Underwater laser cladding and seal welding for INCONEL 52

    International Nuclear Information System (INIS)

    Tamura, Masataka; Kouno, Wataru; Makino, Yoshinobu; Kawano, Shohei; Yoda, Masaki

    2007-01-01

    Recently, stress corrosion cracking (SCC) has been observed at aged components of nuclear power plants under water environment and high exposure of radiation. Toshiba has been developing both an underwater laser welding directly onto surface of the aged components as maintenance and repair techniques. This paper reports underwater laser cladding and seal welding for INCONEL 52. (author)

  11. Laser power coupling efficiency in conduction and keyhole welding ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    tomacrograph showing grain orientation ... steep columnar grains of the fusion .... viz. pre-oxidation of metal surface by laser heating in air, chemical ... 4.1b Sheets of 0.5 mm thickness: Laser welds of 0.5-mm thick sheets exhibited steep angles ... boundaries of solidifying weld metal which leads to intergranular cracking ...

  12. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  13. Improving fatigue performance of rail thermite welds

    Science.gov (United States)

    Jezzini-Aouad, M.; Flahaut, P.; Hariri, S.; Winiar, L.

    2010-06-01

    Rail transport development offers economic and ecological interests. Nevertheless, it requires heavy investments in rolling material and infrastructure. To be competitive, this transportation means must rely on safe and reliable infrastructure, which requires optimization of all implemented techniques and structure. Rail thermite (or aluminothermic) welding is widely used within the railway industry for in-track welding during re-rail and defect replacement. The process provides numerous advantages against other welding technology commonly used. Obviously, future demands on train traffic are heavier axle loads, higher train speeds and increased traffic density. Thus, a new enhanced weld should be developed to prevent accidents due to fracture of welds and to lower maintenance costs. In order to improve such assembly process, a detailed metallurgical study coupled to a thermomechanical modelling of the phenomena involved in the thermite welding process is carried out. Obtained data enables us to develop a new improved thermite weld (type A). This joint is made by modifying the routinely specified procedure (type B) used in a railway rail by a standard gap alumino-thermic weld. Joints of type A and B are tested and compared. Based on experimental temperature measurements, a finite element analysis is used to calculate the thermal residual stresses induced. In the vicinity of the weld, the residual stress patterns depend on the thermal conditions during welding as it also shown by litterature [1, 2]. In parallel, X-Ray diffraction has been used to map the residual stress field that is generated in welded rail of types A and B. Their effect on fatigue crack growth in rail welds is studied. An experimental study based on fatigue tests of rails welded by conventional and improved processes adjudicates on the new advances and results will be shown.

  14. UNCONSTRAINED MELTING AND SOLIDIFICATION INSIDE ...

    African Journals Online (AJOL)

    2015-09-01

    Sep 1, 2015 ... There is a large number of experimental and numerical works on melting and solidification of PCM[6-10], and also its usage as thermal management in building [11-14], electronic devices [15-16] and solar energy. [17-20].Most investigated geometries in melting and freezing process are sphere (spherical.

  15. Eddy current technique for detecting and sizing surface cracks in steel components

    International Nuclear Information System (INIS)

    Cecco, V.S.; Carter, J.R.; Sullivan, S.P.

    1995-01-01

    Cracking has occurred in pressure vessel nozzles and girth welds due to thermal fatigue. Pipe welds, welds in support structures, and welds in reactor vault liner panels in nuclear facilities have failed because of cracks. Cracking can also occur in turbine rotor bore surfaces due to high cycle fatigue. Dye penetrant, magnetic particle and other surface NDT methods are used to detect cracks but cannot be used for depth sizing. Crack depth can be measured with various NDT methods such as ultrasonic time-of-flight diffraction (TOFD), potential drop, and eddy current. The TOFD technique can be difficult to implement on nozzle welds and is best suited for sizing deep cracks (>5 mm). The conventional eddy current method is easy to implement, but crack sizing is normally limited to shallow cracks ( 2 mm) cracks. Eddy current testing (ET) techniques are readily amenable to remote/automatic inspections. These new probes could augment present magnetic particle (MT) and dye penetrant (PT) testing through provision of reliable defect depth information. Reliable crack sizing permits identification of critical cracks for plant life extension and licensing purposes. In addition, performing PT and MT generates low level radioactive waste in some inspection applications in nuclear facilities. Replacing these techniques with ET for some components will eliminate some of this radioactive waste. (author)

  16. Stress corrosion crack preventive method for long housing

    International Nuclear Information System (INIS)

    Sugano, Maki.

    1992-01-01

    If a neutron flux monitoring housing or a control rod driving mechanism (CRD) housing, as a long housing, is welded to reactor container, a portion of the long housing put under the effect of heat upon welding is converted to a sensitized austenite stainless steel, to cause stress corrosion cracks (SCC). Then, the inner surface of the a region of the long housing put under the effect of heat by welding is melted by a relatively low amount of heat input so that δ-ferrite tissues are caused to deposit in this region. With such procedures, crack sensitivity can be lowered, thereby enabling to improve SCC resistance. (T.M.)

  17. Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings: for improvements in fusion welding

    International Nuclear Information System (INIS)

    Norman, A.F.; Hyde, K.; Costello, F.; Thompson, S.; Birley, S.; Prangnell, P.B.

    2003-01-01

    It has been reported that small additions of scandium (Sc) can improve the weldability and mechanical properties of some aluminium aerospace alloys that are normally considered to be 'unweldable'. In order to determine the mechanisms by which these improvements occur, and more rapidly arrive at optimum Sc addition levels, small wedge-shaped castings have been used to simulate the cooling rates found in MIG/TIG welds. Using this technique, a range of Sc addition levels have been made to two typical Al-aerospace alloys, 2024 and 7475. It has been found that when the Sc level exceeds a critical concentration, small Al 3 Sc primary particles form in the melt and act as very efficient grain nucleants, resulting in simulated fusion zone grain sizes as fine as 15 μm. This exceptional level of grain refinement produced an unusual grain structure that exhibited no dendritic, or cellular, substructure and a large increase in strength and ductility of the castings. Sc also produced changes in the alloy's freezing paths, which cannot yet be fully explained, but led to the appearance of the W phase in the 2024 alloy and, in both alloys, an overall reduction in the amount of eutectic formed during solidification. When coupled with the high level of grain refinement, this behaviour could be used to explain the increased strength and ductility of the castings. In 2000 and 7000 series aluminium alloys, it is therefore, anticipated that optimised Sc bearing filler wires will significantly improve the mechanical properties of the weld metal, as well as reducing the tendency for solidification cracking

  18. Thermal-deformation effect of welding on A 1 reactor pressure vessel weld joints properties and state of stress

    International Nuclear Information System (INIS)

    Becka, J.; Kupka, I.

    1976-01-01

    The methods are compared of electroslag welding and of arc welding with a view to their possible application in welding the Bohunice A-1 reactor pressure vessel. Considered are the thermal deformation effects of welding on the physical properties and the stress present in welded joints. For testing, plates were used having the dimensions of 1100x2300x200 mm and rings with 4820 mm outer diameter, 1800 mm height and 170 mm thickness made of steel CSN 413O30 modified with Ni, Al+Ti. The deformation effect of welding on the residual surface and triaxial stress, the specific stored energy, the initiation temperature of brittle crack and the critical size of the initiation defect corresponding to the thermal deformation effect of welding were determined. It was found that for electroslag welding, there is a low probability of crack formation in the joints, a low level of residual stress and a low level of specific stored energy in a relatively wide joint zone. For arc welding there is a considerable probability of defect formation in the vicinity of the sharp boundary of the joint, a high level of the triaxial state of stress in the tensile region, and a high level of specific stored energy concentrated in the narrow zone of weld joints. The recommended thermal process is given for welding pressure vessels made of the CSN 413030 steel modified with Ni, Al+Ti, and 150 to 200 mm in thickness. (J.P.)

  19. Simulation of continuous cast steel product solidification

    Directory of Open Access Journals (Sweden)

    Ardelean, E.

    2007-06-01

    Full Text Available Primary cooling – inside the tundish – has a great impact over the thickness of the solidified steel crust. If on exiting the tundish the crust is too thin, it can punch and break, as a result of the ferrostatic pressure exerted from the inside by the liquid steel as well as because of the weight of the molten steel. The parameters that influence the amount of dissipated heat depend on the cooling water flow of the tundish, on the pressure and temperature of the cooling water but also on the overheating of the continuously cast steel. The secondary cooling takes place at the exit of the semi-finished product from the tundish, when the solidification is supposed to take place all along the cross section of the strand. In order to achieve it, in addition to a correctly managed primary cooling, it is necessary to obtain the proper correlation of the factors that influence the secondary cooling as well: the water flow rate long the three zones of the installation and its pressure in the secondary circuit. All these have in view a proper solidification length; an intense cooling can generate cracks due to the thermal stress, while a too slow cooling can generate a partial solidification of the strand up to the cropping machine area. The paper presents a mathematical simulation of the continuously cast steel solidification.

    El enfriamiento primario del cristalizador tiene una gran importancia sobre el espesor de la costra de acero solidificado. Si al salir del cristalizador, esta costra es demasiado sutil, bajo la acción de la presión ferro estática ejercitada por el acero líquido del interior y gracias el peso propio del hilo, ésta, puede perforar resultando su rompimiento. Los parámetros que influenyen sobre la cantidad de calor cedida dependen del agua de enfriamiento del catalizador, de la presión y de la temperatura de agua de enfriamiento, pero también del sobrecalentamiento del acero fundido continuamente. A la salida del

  20. Philosophy of weld repair of steam turbine rotors

    International Nuclear Information System (INIS)

    Bertilsson, J.E.; Scarlin, R.B.; Faber, G.

    1987-01-01

    Weld repair of a cracked rotor should never be limited to simply grinding out cracks and filling up with weld metal. It is essential to know where and why a crack appeared. In several instances in the past weld repairs have been made of fatigue cracked rotors which have been placed successfully into service. Prolonged further operation can be assured only if the cause of cracking is known and if the design weakness demonstrated in this way is eliminated. However, in cases where creep cracking is encountered or where the creep life is approaching exhaustion, a local repair even if achieved crack-free, cannot ensure successful long-term further operation. The decision must be made to replace a major section of the rotor. The paper describes weld repair trials performed on an HP rotor after 100,000 hours of operation. The results demonstrate the feasibility of making weld repairs of low-toughness CrMoV rotors according to this philosophy

  1. WELDING METHOD

    Science.gov (United States)

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  2. Small Bore Piping Socket Weld Evaluation System

    International Nuclear Information System (INIS)

    Lee, Dong Min; Cho, Hong Seok; Choi, Sang Hoon; Cho, Ki Hyun; Lee, Jang Wook

    2009-01-01

    Kori unit 3 had stopped operation due to leakage at Steam Generator drain line socket weld on June 6, 2008. The Cause of socket weld damage was known as a fatigue crack. According to this case, all socket welds located in RCS pressure boundary are carrying out Radiographic Testing. But to inspect socket welds by RT has some problems. The result of EPRI study showed that RT has limitation to find flaws at socket welds.The orientation of flaws has big influence on RT inspection capability and there is not enough space at socket welds for RT, dose problems as well. Although the gap between coupling and pipe at socket welds must follow up code, surface inspection can't inspect the gap. If there is absence of the gap, socket welds are damaged during operation. The gap should be identified by RT but the distance of gap can't be measured. As this paper, the ultrasonic inspection system was introduced to figure out indication and gap in the socket welds

  3. Recent studies on the welding of austenitic stainless steel piping for BWR service

    International Nuclear Information System (INIS)

    Childs, W.J.

    1986-01-01

    The incidence of intergranular stress corrosion cracking (IGSCC) in stainless steel piping in BWR power plants has led to the development of various countermeasures. Replacement of the susceptible Type 304 stainless steel with Type 316 nuclear grade stainless steel has been done by a number of plants. In order to minimize radiation exposure to welding personnel, automatic GTA welding has been used wherever possible when we make the field welds. Studies have shown that the residual stresses in the welded butt joints are affected by the welding process, weld joint design and welding procedures. A new weld joint design has been developed which minimizes the volume of deposited metal while providing adequate access for welding. It also minimizes axial and radial shrinkage and the resulting residual stresses. Other countermeasures, which have been used, include stress modifications such as induction heating stress improvement (IHSI) and last pass heat sink welding (LPHSW). It has been shown that these remedies must be process adjusted to account for the welding process employed. In some cases where UT cracking indication have been detected or where through wall cracking has occurred, weld surfacing has been used to extend life. A further approach to preventing IGSCC in the weld HAZ has been through improvement of the water chemistry by injecting hydrogen to reduce the oxygen level and by keeping the impurity level low

  4. Sensor controlled robotic welding for nuclear power plant operations

    International Nuclear Information System (INIS)

    Chin, B.A.

    1989-01-01

    The objective of the proposed research is to apply real time monitoring, artificial intelligence and on-line correction to dynamically control the depth of weld penetration and weld integrity during the welding process. Welding is a major technique used in the fabrication, construction and maintenance of power generating and energy conversion systems. In the welding process, fluctuations in process variables lead to weld defects such as lack of penetration, cracks, porosity and undesirable metallurgical structures. This research will apply advanced infrared sensing techniques which have been successfully used in seam tracking to the equally complex problem of weld defect and weld puddle penetration control. Thermal temperature distributions of plates being welded will be dynamically measured during welding using infrared techniques. These temperature distributions will be used to interpret changes in the size and shape of the molten metal pool and the presence of conditions that may lead to defects in the solidified weld. The ultimate result of this research will be the development of machines which are capable of sensing and altering process variables to eliminate defective welds and increase the productivity of the welding process. Successful completion of this proposed research will lead to potential major improvements in the fabrication, construction and maintenance of advanced nuclear reactors and promote increased safety and reliability while decreasing construction costs. 47 refs., 50 figs

  5. Three Transducer Ultrasonic Examination of Nuclear Fuel Rod Flush Welds At ENUSA

    International Nuclear Information System (INIS)

    Domingo, A.; Jimenez, J.M.

    1998-01-01

    From 1991 ENUSA are using UT microscope examination of flush weld with longitudinal wave (perpendicular to weld) looking for welding defects as porosity, weld thickness and penetration. In 1994 we included a new transducer off set placed, with shear waves to control cracks in welding. In 1997 we incorporated a new shear transducer, 30 degree centigrade angle, in order to control different orientation of cracks or Grain Boundary Separation (GBS) and to improve software capabilities. Then actual UT microscope equipment used to inspect rod welds consist, mainly in three transducer of 50 MHz mounted over a rotatory head. UT system is electronically synchronized and obtains 750 data points per revolution by transducer. A set of seven images of approx 100.000 data points is obtained for each weld. Thickness, pore size, pore depth, two of crack size and two of crack depth are presented and evaluated evaluated by the computer to obtain weld disposition. Resolution of 0,05 mm pore size is achieved by this equipment, thickness and penetration precision should be in the order of 0,005 mm and 0,05 mm respectively. Crack detection depend basically on its orientation, nevertheless position of transducer assures a high capability detection of cracks which should be formed at these welds. (Author)

  6. Correlation of fatigue properties and microstructure in investment cast Ti-6Al-4V welds

    International Nuclear Information System (INIS)

    Oh, Jinkeun; Kim, Nack J.; Lee, Sunghak; Lee, Eui W.

    2003-01-01

    The effect of microstructural characteristics on high-cycle fatigue properties and fatigue crack propagation behavior of welded regions of an investment cast Ti-6Al-4V were investigated. High-cycle fatigue and fatigue crack propagation tests were conducted on the welded regions, which were processed by two different welding methods: tungsten inert gas (TIG) and electron beam (EB) welding. Test data were analyzed in relation to microstructure, tensile properties, and fatigue fracture mode. The base metal was composed of an alpha plate colony structure transformed to a basket-weave structure with thin α platelets after welding and annealing. High-cycle fatigue results indicated that fatigue strength of the EB weld was lower than that of the base metal or the TIG weld because of the existence of large micropores formed during welding, although it had the highest yield strength. In the case of the fatigue crack propagation, the EB weld composed of thinner α platelets had a faster crack propagation rate than the base metal or the TIG weld. The effective microstructural feature determining the fatigue crack propagation rate was found to be the width of α platelets because it was well matched with the reversed cyclic plastic zone size calculated in the threshold ΔK regime

  7. PREFACE: Third International Conference on Advances in Solidification Processes (ICASP - 3)

    Science.gov (United States)

    Zimmermann, Gerhard; Ratke, Lorenz

    2012-01-01

    The 3rd International Conference on Advances in Solidification Processes was held in the Rolduc Abbey in the Netherlands a few kilometres away from Aachen. Around 200 scientists from 24 countries come in for the four day meeting. They found a stimulating but also relaxing environment and atmosphere, with beautiful weather and the medieval abbey inviting for walks, discussions, sitting outside and drinking a beer or wine. The contributions given at the conference reflected recent advances in various topics of solidification processes, ranging from fundamental aspects to applied casting technologies. In 20 oral sessions and a large poster session innovative results of segregation phenomena, microstructure evolution, nucleation and growth, phase formation, polyphase solidification, rapid solidification and welding, casting technology, thermophysics of molten alloys, solidification with forced melt flow and growth of single crystals and superalloys together with innovative diagnostic techniques were presented. Thereby, findings from experiments as well as from numerical modeling on different lengths scales were jointly discussed and contribute to new insight in solidification behaviour. The papers presented in this open access proceedings cover about half the oral and poster presentations given. They were carefully reviewed as in classical peer reviewed journals by two independent referees and most of them were revised and thus improved according to the reviewers comments. We think that this collection of papers presented at ICASP-3 gives an impression of the excellent contributions made. The papers embrace both the basic and applied aspects of solidification. We especially wish to express our appreciation for the team around Georg Schmitz and Margret Nienhaus organising this event and giving us their valued advice and support at every stage in preparing the conference. We also thank Lokasenna Lektorat for taking the task of checking all language-associated issues and

  8. Microstructure, mechanical behavior and corrosion properties of friction stir welded aluminum alloys used in the aerospace industry

    OpenAIRE

    Alfaro Mercado, Ulises

    2011-01-01

    Friction stir welding (FSW) has been identified as “key” technology for the production of primary aerospace structures, being able to substitute conventional riveted airframes. FSW is a solid state welding process that avoids any problems caused by the solidification of the melted weld pool. Besides the production of high quality similar joints from high strength aluminum alloys, it allows for joining materials of different metallurgical characteristics. However, problems concerning the corro...

  9. Real weld geometry determining mechanical properties of high power laser welded medium plates

    Science.gov (United States)

    Liu, Sang; Mi, Gaoyang; Yan, Fei; Wang, Chunming; Li, Peigen

    2018-06-01

    Weld width is commonly used as one of main factors to assess joint performances in laser welding. However, it changes significantly through the thickness direction in conditions of medium or thick plates. In this study, high-power autogenous laser welding was conducted on 7 mm thickness 201 stainless steel to elucidate the factor of whole weld transverse shape critically affecting the mechanical properties with the aim of predicting the performance visually through the weld appearance. The results show that single variation of welding parameters could result in great changes of weld pool figures and subsequently weld transverse shapes. All the obtained welds are composed of austenite containing small amount of cellular dendritic δ-Ferrite. The 0.2% proof stresses of Nail- and Peanut-shaped joint reach 458 MPa and 454 MPa, 88.2% and 87.5% of the base material respectively, while that of Wedge-shaped joint only comes to 371 MPa, 71.5% of the base material. The deterioration effect is believed to be caused by the axial grain zone in the weld center. The fatigue strength of joint P is a bit lower than N, but much better than W. Significant deformation incompatibility through the whole thickness and microstructure resistance to crack initiation should be responsible for the poor performance of W-shaped joints.

  10. Hydrogen induced cold cracking studies on armour grade high strength, quenched and tempered steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Magudeeswaran, G.; Balasubramanian, V. [Centre for Materials Joining Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu (India); Madhusudhan Reddy, G. [Metal Joining Section, Defence Metallurgical Research Laboratory (DMRL), Kanchanbagh (P.O.) Hyderabad 560 058 Andhra Pradesh (India)

    2008-04-15

    Quenched and tempered (Q and T) steels are prone to hydrogen induced cracking (HIC) in the heat affected zone after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q and T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic (LHF) steel consumables can be used to weld Q and T steels, which can give very low hydrogen levels in the weld deposits. In this investigation an attempt has been made to study the influence of welding consumables and welding processes on hydrogen induced cold cracking of armour grade Q and T steel welds by implant testing. Shielded metal arc welding (SMAW) and flux cored arc welding (FCAW) processes were used for making welds using ASS and LHF welding consumables. ASS welds made using FCAW process offered a higher resistance to HIC than all other welds considered in this investigation. (author)

  11. Simulation of the welding of irradiated materials

    International Nuclear Information System (INIS)

    Lin, Hua Tay

    1989-07-01

    Helium was uniformly implanted using the ''tritium trick'' technique to levels of 0.18, 2.5, 27, 105 and 256 atomic part per million (appm) for type 316 stainless steel, and 0.3 and 1 appm for Sandvik HT-9 (12 Cr-1MoVW). Both full penetration as well as partial penetration welds were then produced on control and helium-containing materials using the autogenous gas tungsten arc (GTA) welding process under full constraint conditions. For full penetration welds, both materials were successfully welded when they contained less than 0.3 appm helium. However, welds of both materials, when containing greater than 1 appm helium, were found to develop cracks during cooling of the weld. Transmission and scanning electron microscopy indicated that the HAZ cracking was caused by the growth and coalescence of grain boundary (GB) helium bubbles. This cracking occurred as a result of the combination of high temperatures and high shrinkage tensile stresses. The cracking in the fusion zone was found to result from the precipitation of helium along dendrite interfaces. A model based on the kinetics of diffusive cavity growth is presented to explain the observed results. The model proposes a helium bubble growth mechanism which leads to final intergranular rupture in the heat-affected zone. Results of the present study demonstrate that the use of conventional fusion welding techniques to repair materials degraded by exposure to irradiation environments may be difficult if the irradiation results in the generation of helium equal to or greater than 1 appm

  12. Two-dimensional time-resolved x-ray diffraction study of dual phase rapid solidification in steels

    Science.gov (United States)

    Yonemura, Mitsuharu; Osuki, Takahiro; Terasaki, Hidenori; Komizo, Yuichi; Sato, Masugu; Toyokawa, Hidenori; Nozaki, Akiko

    2010-01-01

    The high intensity heat source used for fusion welding creates steep thermal gradients of 100 °C/s from 1800 °C. Further, the influence of preferred orientation is important for the observation of a directional solidification that follows the dendrite growth along the ⟨100⟩ direction toward the moving heat source. In the present study, we observed the rapid solidification of weld metal at a time resolution of 0.01-0.1 s by a two-dimensional time-resolved x-ray diffraction (2DTRXRD) system for real welding. The diffraction rings were dynamically observed by 2DTRXRD with synchrotron energy of 18 keV while the arc passes over the irradiation area of the x-rays. The arc power output was 10 V-150 A, and the scan speed of the arc was 1.0 mm/s. The temperature rise in instruments was suppressed by a water-cooled copper plate under the specimen. Further, the temperature distribution of the weld metal was measured by a thermocouple and correlated with the diffraction patterns. Consequently, solidification and solid phase transformation of low carbon steels and stainless steels were observed during rapid cooling by 2DTRXRD. In the low carbon steel, the microstructure is formed in a two step process, (i) formation of crystallites and (ii) increase of crystallinity. In stainless steel, the irregular interface layer of δ/γ in the quenched metal after solidification is expected to show the easy movement of dendrites at a lower temperature. In carbide precipitation stainless steel, it is easy for NbC to grow on δ phase with a little undercooling. Further, a mistlike pattern, which differs from the halo pattern, in the fusion zone gave some indication of the possibilities to observe the nucleation and the early solidification by 2DTRXRD.

  13. Investigation on fracture toughness of laser beam welded steels

    International Nuclear Information System (INIS)

    Riekehr, S.; Cam, G.; Santos, J.F. dos; Kocak, M.; Klein, R.M.; Fischer, R.

    1999-01-01

    Laser beam welding is currently used in the welding of a variety of structural materials including hot and cold rolled steels, high strength low alloy and stainless steels, aluminium and titanium alloys, refractory and high temperature alloys and dissimilar materials. This high power density welding process has unique advantages of cost effectiveness, low distortion, high welding speed, easy automation, deep penetration, narrow bead width, and narrow HAZ compared to the conventional fusion welding processes. However, there is a need to understand the deformation and fracture properties of laser beam weld joints in order to use this cost effective process for fabrication of structural components fully. In the present study, an austenitic stainless steel, X5CrNi18 10 (1.4301) and a ferritic structural steel, RSt37-2 (1.0038), with a thickness of 4 mm were welded by 5 kW CO 2 laser process. Microhardness measurements were conducted to determine the hardness profiles of the joints. Flat micro-tensile specimens were extracted from the base metal, fusion zone, and heat affected zone of ferritic joint to determine the mechanical property variation across the joint and the strength mismatch ratio between the base metal and the fusion zone. Moreover, fracture mechanics specimens were extracted from the joints and tested at room temperature to determine fracture toughness, Crack Tip Opening Displacement (CTOD), of the laser beam welded specimens. The effect of the weld region strength mis-matching on the fracture toughness of the joints have been evaluated. Crack initiation, crack growth and crack deviation processes have also been examined. These results were used to explain the influence of mechanical heterogeneity of the weld region on fracture behaviour. This work is a part of the ongoing Brite-Euram project Assessment of Quality of Power Beam Weld Joints (ASPOW). (orig.)

  14. Development of underwater laser cladding and underwater laser seal welding techniques for reactor components

    International Nuclear Information System (INIS)

    Hino, Takehisa; Tamura, Masataka; Tanaka, Yoshimi; Kouno, Wataru; Makino, Yoshinobu; Kawano, Shohei; Matsunaga, Keiji

    2009-01-01

    Stress corrosion cracking (SCC) has been reported at the aged components in many nuclear power plants. Toshiba has been developing the underwater laser welding. This welding technique can be conducted without draining the water in the reactor vessel. It is beneficial for workers not to exposure the radiation. The welding speed can be attaining twice as fast as that of Gas Tungsten Arc Welding (GTAW). The susceptibility of SCC can also be lower than the Alloy 600 base metal. (author)

  15. Fabrication of electroslag welded Magnox fuel transport flasks

    International Nuclear Information System (INIS)

    Tuliani, S.S.

    1979-01-01

    The high weld metal deposition rate of the electroslag welding process offers an attractive method of fabricating nuclear fuel transport flasks from 370 mm (14.5in) thick steel plates. The paper describes pre-production trials carried out on full scale corner-section joints to establish that the weld metal meets the exacting mechanical property requirements for the Nuclear Industry. The paper presents results obtained on welds produced using two base metal compositions and two wires, one recommended for submerged-arc and the other for electroslag welding processes. Details of mechanical tests and metallographic examinations are given which led to the selection of the latter type of wire. It was found that while the weld metal deposited by this process may be sensitive to cracking, this can be avoided by careful selection of welding consumables and sound joints can be obtained under production conditions. (author)