WorldWideScience

Sample records for weld pool control

  1. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool.

  2. Convection in arc weld pools

    Energy Technology Data Exchange (ETDEWEB)

    Oreper, G.M.; Eagar, T.W.; Szekely, J.

    1982-11-01

    A mathematical model was developed to account for convection and temperature distributions in stationary arc weld pools driven by buoyancy, electromagnetic and surface tension forces. It is shown that the electromagnetic and surface tension forces dominate the flow behavior. In some cases, these forces produce double circulation loops, which are indirectly confirmed by experimental measurements of segregation in the weld pool. It is also shown that the surface tension driven flows are very effective in dissipating the incident energy flux on the pool surface which, in turn, reduces the vaporization from the weld pool.

  3. Metal vaporization from weld pools

    Science.gov (United States)

    Block-Bolten, A.; Eagar, T. W.

    1984-09-01

    Experimental studies of alloy vaporization from aluminum and stainless steel weld pools have been made in order to test a vaporization model based on thermodynamic data and the kinetic theory of gases. It is shown that the model can correctly predict the dominant metal vapors that form but that the absolute rate of vaporization is not known due to insufficient knowledge of the surface temperature distribution and subsequent condensation of the vapor in the cooler regions of the metal. Values of the net evaporation rates for different alloys have been measured and are found to vary by two orders of magnitude. Estimated maximum weld pool temperatures based upon the model are in good agreement with previous experimental measurements of electron beam welds.

  4. Measurements of fluid flow in weld pools

    NARCIS (Netherlands)

    Zhao, C.

    2011-01-01

    Understanding the fluid flow in weld pools contributes significantly toward controlling the heat distribution in the base material and the mass distribution of molten base and additive materials. Currently, most investigations focus primarily on numerical models, due to the experimental difficulties

  5. Welding and lung cancer in a pooled analysis of case-control studies.

    Science.gov (United States)

    Kendzia, Benjamin; Behrens, Thomas; Jöckel, Karl-Heinz; Siemiatycki, Jack; Kromhout, Hans; Vermeulen, Roel; Peters, Susan; Van Gelder, Rainer; Olsson, Ann; Brüske, Irene; Wichmann, H-Erich; Stücker, Isabelle; Guida, Florence; Tardón, Adonina; Merletti, Franco; Mirabelli, Dario; Richiardi, Lorenzo; Pohlabeln, Hermann; Ahrens, Wolfgang; Landi, Maria Teresa; Caporaso, Neil; Consonni, Dario; Zaridze, David; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Gustavsson, Per; Marcus, Michael; Fabianova, Eleonora; 't Mannetje, Andrea; Pearce, Neil; Tse, Lap Ah; Yu, Ignatius Tak-Sun; Rudnai, Peter; Bencko, Vladimir; Janout, Vladimir; Mates, Dana; Foretova, Lenka; Forastiere, Francesco; McLaughlin, John; Demers, Paul; Bueno-de-Mesquita, Bas; Boffetta, Paolo; Schüz, Joachim; Straif, Kurt; Pesch, Beate; Brüning, Thomas

    2013-11-15

    Several epidemiologic studies have indicated an increased risk of lung cancer among welders. We used the SYNERGY project database to assess welding as a risk factor for developing lung cancer. The database includes data on 15,483 male lung cancer cases and 18,388 male controls from 16 studies in Europe, Canada, China, and New Zealand conducted between 1985 and 2010. Odds ratios and 95% confidence intervals between regular or occasional welding and lung cancer were estimated, with adjustment for smoking, age, study center, and employment in other occupations associated with lung cancer risk. Overall, 568 cases and 427 controls had ever worked as welders and had an odds ratio of developing lung cancer of 1.44 (95% confidence interval: 1.25, 1.67) with the odds ratio increasing for longer duration of welding. In never and light smokers, the odds ratio was 1.96 (95% confidence interval: 1.37, 2.79). The odds ratios were somewhat higher for squamous and small cell lung cancers than for adenocarcinoma. Another 1,994 cases and 1,930 controls had ever worked in occupations with occasional welding. Work in any of these occupations was associated with some elevation of risk, though not as much as observed in regular welders. Our findings lend further support to the hypothesis that welding is associated with an increased risk of lung cancer.

  6. Distortion Control during Welding

    OpenAIRE

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ methods to control welding distortion. In these methods local heating and/or cooling strategies are applied during welding. Additional heating and/or cooling sources can be implemented either stationa...

  7. Experimental investigation on the weld pool formation process in plasma keyhole arc welding

    Science.gov (United States)

    Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu

    2018-01-01

    This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s‑1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.

  8. Distortion Control during Welding

    NARCIS (Netherlands)

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ

  9. A unified model of coupled arc plasma and weld pool for double electrodes TIG welding

    Science.gov (United States)

    Wang, Xinxin; Fan, Ding; Huang, Jiankang; Huang, Yong

    2014-07-01

    A three-dimensional model containing tungsten electrodes, arc plasma and a weld pool is presented for double electrodes tungsten inert gas welding. The model is validated by available experimental data. The distributions of temperature, velocity and pressure of the coupled arc plasma are investigated. The current density, heat flux and shear stress over the weld pool are highlighted. The weld pool dynamic is described by taking into account buoyance, Lorentz force, surface tension and plasma drag force. The turbulent effect in the weld pool is also considered. It is found that the temperature and velocity distributions of the coupled arc are not rotationally symmetrical. A similar property is also shown by the arc pressure, current density and heat flux at the anode surface. The surface tension gradient is much larger than the plasma drag force and dominates the convective pattern in the weld pool, thus determining the weld penetration. The anodic heat flux and plasma drag force, as well as the surface tension gradient over the weld pool, determine the weld shape and size. In addition, provided the welding current through one electrode increases and that through the other decreases, keeping the total current unchanged, the coupled arc behaviour and weld pool dynamic change significantly, while the weld shape and size show little change. The results demonstrate the necessity of a unified model in the study of the arc plasma and weld pool.

  10. Welding Current Distribution in the Work-piece and Pool in Arc Welding

    Directory of Open Access Journals (Sweden)

    A. M. Rybachuk

    2015-01-01

    Full Text Available In order to select the optimal configuration of controlling magnetic fields and build rational construction of magnetic systems, we need to know the distribution of welding current in the molten metal of the weld pool. So the objective of the work is to establish the calculated methods for determining current density in the weld pool during arc welding. The distribution of welding current in the pool depends on the field of the electrical resistance, which is determined by the deformed temperature field while arc moves with the welding speed. The previous works have shown experimentally and by simulation on the conductive paper that deformation of temperature field defines deformation of electric field. On the basis thereof, under certain boundary conditions the problem has been solved to give a general solution of differential equation, which relates the potential distribution to the temperature in the product during arc welding. This solution is obtained under the following boundary conditions: 1 metal is homogeneous; 2 input and output surfaces of heat flux and electric current coincide; 3 input and output surfaces of heat flux and electric current are insulated and equipotential; 4 other (lateral surfaces are adiabatic boundaries. Therefore, this paper pays basic attention to obtaining the analytical solution of a general differential equation, which relates distribution of potential to the temperature in the product. It considers the temperature field of the heat source, which moves at a welding speed with normal-circular distribution of the heat flow at a certain concentration factor. The distribution of current density is calculated on the assumption that the welding current is introduced through the same surface as the heat flux and the distribution of current density corresponds to the normally circular at a certain concentration factor. As a result, we get an expression that allows us to calculate the current density from the known

  11. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    Science.gov (United States)

    Toropchin, A.; Frolov, V.; Pipa, A. V.; Kozakov, R.; Uhrlandt, D.

    2014-11-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.

  12. Robot welding process control

    Science.gov (United States)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  13. Prediction of the weld pool geometry of TIG arc welding by using ...

    African Journals Online (AJOL)

    The present paper describes fuzzy logic simulation of tungsten inert gas welding (TIG) process to predict the weldment macrostructure zones' shape profile characteristics. The prediction of the weld pool geometry together with the shape of the heat affected zone (HAZ) was accomplished taking into account of TIG welding ...

  14. Melt pool vorticity in deep penetration laser material welding

    Indian Academy of Sciences (India)

    In the present study, the vorticity of melt motion in the keyhole and weld pool has been evaluated in case of high power CO2 laser beam welding. The circulation of vorticity is obtained as a function of Reynolds number for a given keyhole volume which is linked to Mach number variation. The shear stress and thermal fluxes ...

  15. Melt pool vorticity in deep penetration laser material welding

    Indian Academy of Sciences (India)

    Abstract. In the present study, the vorticity of melt motion in the keyhole and weld pool has been evaluated in case of high power CO2 laser beam welding. The circulation of vorticity is obtained as a function of Reynolds number for a given keyhole volume which is linked to Mach number variation. The shear stress and ther-.

  16. Weld pool visual sensing without external illumination

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Soren Ingvor

    2011-01-01

    Visual sensing in arc welding has become more and more important, but still remains challenging because of the harsh environment with extremely strong illumination from the arc. This paper presents a low-cost camera-based sensor system, without using external Illumination, but nevertheless able...

  17. A CMOS Visual Sensing System for Welding Control and Information Acquirement in SMAW Process

    Science.gov (United States)

    Anren, Yao; Zhen, Luo; Sansan, Ao

    A sequential research work on visual information of manual arc welding pool dynamics are presented in this paper. An optical inspection system, for monitoring the shielded manual arc welding (SMAW) process is described. The system consisted of a vision sensor that consisted of a Complementary Metal Oxide Semiconductor (CMOS) camera and lenses, image processing algorithms, and a computer controller. During welding, an image of the weld pool and its vicinity was captured when basic current of welding power. Experimental results showed that the temperature signal varies greatly in the case of instabilities of the weld pool that cause weld defects. The visual information acquirement methods are focused in computer vision sensing, image processing and characteristic extraction of the weld pool surface from the single-item pool images by particular algorithms control strategies are developed to control welding pool dynamics during SMAW.

  18. Welding pool measurement using thermal array sensor

    Science.gov (United States)

    Cho, Chia-Hung; Hsieh, Yi-Chen; Chen, Hsin-Yi

    2015-08-01

    Selective laser melting (SLM) is an additive manufacturing (AM) technology that uses a high-power laser beam to melt metal powder in chamber of inert gas. The process starts by slicing the 3D CAD data as a digital information source into layers to create a 2D image of each layer. Melting pool was formed by using laser irradiation on metal powders which then solidified to consolidated structure. In a selective laser melting process, the variation of melt pool affects the yield of a printed three-dimensional product. For three dimensional parts, the border conditions of the conductive heat transport have a very large influence on the melt pool dimensions. Therefore, melting pool is an important behavior that affects the final quality of the 3D object. To meet the temperature and geometry of the melting pool for monitoring in additive manufacturing technology. In this paper, we proposed the temperature sensing system which is composed of infrared photodiode, high speed camera, band-pass filter, dichroic beam splitter and focus lens. Since the infrared photodiode and high speed camera look at the process through the 2D galvanometer scanner and f-theta lens, the temperature sensing system can be used to observe the melting pool at any time, regardless of the movement of the laser spot. In order to obtain a wide temperature detecting range, 500 °C to 2500 °C, the radiation from the melting pool to be measured is filtered into a plurality of radiation portions, and since the intensity ratio distribution of the radiation portions is calculated by using black-body radiation. The experimental result shows that the system is suitable for melting pool to measure temperature.

  19. Study on weld pool behaviors and ripple formation in dissimilar welding under pulsed laser

    Science.gov (United States)

    Liang, Rong; Luo, Yu

    2017-08-01

    A three-transient numerical model is developed to study the dissimilar metal welding under pulsed laser. The melting, resolidification and vaporization inducing recoil pressure are considered in this model. Their effects on molten pool dynamic and the weld bead formation are studied. The similar metal welding and dissimilar metal welding under pulsed laser are respectively simulated by using this model. It is found that surface ripples are caused mainly by the periodical laser and molten pool solidification. In the first, this model is validated by the weld bead geometry comparison between the simulated and experimental results in similar metal welding. Then, this model is applied to simulate the dissimilar metal welding under pulsed laser. The results show that the distributions of the temperature, melt-flow velocity and surface ripples are asymmetric due to the differences in physical properties of the materials. The higher pulse overlapping factor decreases the solidification rate, leading to the more uniform penetration depths and the finer ripples. Good agreements between the experimental observations and simulation results are obtained by the proposed model.

  20. Influence of Welding Parameters on the Weld Pool Dimensions and Shape in a TIG Configuration

    Directory of Open Access Journals (Sweden)

    Marine Stadler

    2017-04-01

    Full Text Available The weld pool shape created by the plasma arc interaction on a workpiece depends on many geometrical and physical parameters and on the operating conditions. Theoretical models are developed in such a way as to predict and to characterize the material. However, these models first need to be validated. Experimental results are hence proposed with parametric studies. Nevertheless, the interaction time is often short and the weld pool shape evolution not presented. In this work, the experimental setup and the diagnostic methods characterizing the workpiece are presented. The weld pool shape was evaluated versus time according to several parameters such as the current intensity value, the distance between the two electrodes, the cathode tip angle or the plasma gas nature. The results show that the depth-to-width ratio alone is not enough to compare the impact of the parameters. The analysis points out the great influence of the current intensity on the increase of the width and depth compared to the influence of the value of the cathode tip angle. The rise of the arc length leads to an increase of the power through a higher arc voltage; nevertheless, for distances of three and five millimeters and a characteristic time of the welding process of one second, this parameter has a weak influence on the energy transferred. The use of helium leads to a bigger volume of the weld pool due to an increase of width and depth.

  1. Analysis of Bubble Flow in the Deep-Penetration Molten Pool of Vacuum Electron Beam Welding

    Science.gov (United States)

    Luo, Yi; Wan, Rui; Zhu, Yang; Xie, Xiaojian

    2015-03-01

    Based on the vacuum electron beam welding with deep-penetration process, the convection phenomenon of the bubble flow in partially penetrated and fully penetrated molten pool of AZ91D magnesium alloy was simulated under the unsteady-state conditions. At the same time, the distributions of the cavity-type defects in deep-penetration weld were studied. The results showed that the cavity-type defects are more prone to distribute at the bottom of the weld and accumulate along the axis of the weld for the partially penetrated weld seam; there is a high incidence of cavity-type defects in the middle of the weld for the fully penetrated weld seam. As a smooth escape channel for the gas phase is formed in the fully penetrated molten pool, the possibility of gas escaping is much higher than that in the partially penetrated molten pool. A high liquid convection velocity is more conducive to the escape of the gas in molten pool. The liquid convection velocity in the fully penetrated molten pool is higher than that in the partially penetrated molten pool. So, the final gas fraction in the fully penetrated molten pool is low. Therefore, the appearance of cavity-type defects in the fully penetrated weld seam is less than that in the partially penetrated weld seam.

  2. Weld formation control at electron beam welding with beam oscillations

    OpenAIRE

    Trushnikov, Dmitriy; Koleva, Elena; Mladenov, Georgy; A. Shcherbakov

    2014-01-01

    Electron beam welding is used extensively to produce essential machine parts. The control of the basic beam parameters beam power or beam current at constant accelerating voltage, welding speed, current of focusing lens and distance between electron gun and welded sample surface is not enough to obtain at most of the regimes sound welds. Control of the focus position using analysis of the high frequency component of the current, collected by plasma, at periodic interactions on the beam (the o...

  3. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  4. Welding process modelling and control

    Science.gov (United States)

    Romine, Peter L.; Adenwala, Jinen A.

    1993-01-01

    The research and analysis performed, and software developed, and hardware/software recommendations made during 1992 in development of the PC-based data acquisition system for support of Welding Process Modeling and Control is reported. A need was identified by the Metals Processing Branch of NASA Marshall Space Flight Center, for a mobile data aquisition and analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC-based system was chosen. The Welding Measurement System (WMS) is a dedicated instrument, strictly for the use of data aquisition and analysis. Although the WMS supports many of the functions associated with the process control, it is not the intention for this system to be used for welding process control.

  5. Experimental characterization of the weld pool flow in a TIG configuration

    Science.gov (United States)

    Stadler, M.; Masquère, M.; Freton, P.; Franceries, X.; Gonzalez, J. J.

    2014-11-01

    Tungsten Inert Gas (TIG) welding process relies on heat transfer between plasma and work piece leading to a metallic weld pool. Combination of different forces produces movements on the molten pool surface. One of our aims is to determine the velocity on the weld pool surface. This provides a set of data that leads to a deeper comprehension of the flow behavior and allows us to validate numerical models used to study TIG parameters. In this paper, two diagnostic methods developed with high speed imaging for the determination of velocity of an AISI 304L stainless steel molten pool are presented. Application of the two methods to a metallic weld pool under helium with a current intensity of 100 A provides velocity values around 0.70 m/s which are in good agreement with literature works.

  6. The influence of arc plasma parameters on the form of a welding pool

    Science.gov (United States)

    Frolov, V. Ya.; Toropchin, A. I.

    2015-07-01

    The influence of the Marangoni force on the form of a welding pool has been considered. Results of computer simulation of the processes of welding arc generation with a non-consumable tungsten electrode in inert gas are shown. The experimental results are reported and comparatively analyzed. The calculations were carried out in a package of applied programs at various currents.

  7. MFDC - technological improvement in resistance welding controls

    Energy Technology Data Exchange (ETDEWEB)

    Somani, A.K.; Naga Bhaskar, V.; Chandramouli, J.; Rameshwara Rao, A. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2008-07-01

    Among the various Resistance Welding operations carried out in the production line of a fuel bundle end plug welding is the most critical operation. Welding controllers play a very vital role in obtaining consistent weld quality by regulating and controlling the weld current. Conventional mains synchronized welding controllers are at best capable of controlling the weld current at a maximum speed of the mains frequency. In view of the very short welding durations involved in the various stages of a fuel bundle fabrication, a need was felt for superior welding controllers. Medium Frequency Welding Controllers offer a solution to these limitations in addition to offering other advantages. Medium Frequency power sources offer precise welding current control as they regulate and correct the welding current faster, typically twenty times faster when operated at 1000Hz. An MFDC was employed on one of the welding machines and its performance was studied. This paper discusses about the various advantages of MFDCs with other controllers employed at NFC to end plug welding operation. (author)

  8. Real time computer controlled weld skate

    Science.gov (United States)

    Wall, W. A., Jr.

    1977-01-01

    A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.

  9. Automatic Control Of Length Of Welding Arc

    Science.gov (United States)

    Iceland, William F.

    1991-01-01

    Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.

  10. Control of Welding Processes.

    Science.gov (United States)

    1987-01-01

    Structures, Office of Deputy Under Secretary of Defense for R&E (ET), Department of Defense, Washington, D.C. CHARLES ZANIS, Assistant Director for Platform... CHARLES NULL, Head, Metals Branch, Naval Sea Systems Command, Washington, D.C. ROBERT A. WEBER, Welding Engineering and Metallurgy, U.S. Army Corps of...Needs. Pp. 487-90. in Papers Presented at the August 3-8, 1Q80, AIME Syi,.posium. Essers, W . ., and R. Walter. Heat transfer and penet ration

  11. THE IMPACT OF SELECTED PROCESSES AND TECHNOLOGICAL PARAMETERS ON THE GEOMETRY OF THE WELD POOL WHEN WELDING IN SHIELS GAS ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    Josef Bradáč

    2017-05-01

    Full Text Available This paper is focused on welding with a consumable electrode in a gas shield atmosphere and its main aim is to show the influence of selected processes and technological parameters on the geometry of the weld pool in terms of theoretical and experimental views. For this purpose, the parametric areas defined by the change of the welding current and welding rate were determined. Apart from the influence of these parametric areas, the influence of other technological input variables, including the wire diameter and preheating temperature, was also studied. The experimentally obtained geometric data of the weld pool can be used for technological welding procedures WPS and especially for simulation calculations to obtain a more accurate numerical model of the heat source. This makes it possible to get accurate simulation results and to better understand the impact of other variables that influence the welding process. This all helps to the optimization of the welding process for several applications.

  12. Welding skate with computerized controls

    Science.gov (United States)

    Wall, W. A., Jr.

    1968-01-01

    New welding skate concept for automatic TIG welding of contoured or double-contoured parts combines lightweight welding apparatus with electrical circuitry which computes the desired torch angle and positions a torch and cold-wire guide angle manipulator.

  13. Peculiarities of welding pool degassing at surface deposition of aluminium alloys with powder wire

    Directory of Open Access Journals (Sweden)

    Володимир Якович Зусін

    2016-11-01

    Full Text Available The article contains the analysis of the conventional methods of surface deposition of aluminium alloys. It was shown that at surface deposition of aluminium alloys interstices, arising at hydrogen bubbles formation in the weld pool lat the moment of its crystallization are the most probable defects. An additional source of hydrogen supply into the weld pool springs up at surface deposition of aluminium alloys-this is the powder electrode charge. So, a model of formation of gas bubbles with due regard to this factor was developed. Presence of various surface defects, like cavities, shears, and micro-cracks is a factor, promoting formation of gaseous hydrogen phase inside a drop of electrode metal. Further development of gas bubbles, entrapped into the weld pool goes on by their consolidation and hydrogen diffusion from the molten metal into gaseous section. Intensification of bubble degassing, both at the stage of molten metal drop and at the welding pool stage is the most efficient way. The process of degassing depends on the amount of hydrogen, introduced into the weld pool. Proposed was an analytical dependence of evaluation of the original hydrogen concentration in the weld pool upon the coefficient of powder wire filling and dimensions of the charge particles. Experimental research of the influence of the parameters of powder wire upon the porosity of deposited metal made it possible to determine an optimal range of charge granulation and the coefficient of powder wire filling, ensuring intensive degassing during the period of its existence in liquid state and reaching deposited metal with sufficient density

  14. A unified 3D model for an interaction mechanism of the plasma arc, weld pool and keyhole in plasma arc welding

    Science.gov (United States)

    Jian, Xiaoxia; Wu, ChuanSong; Zhang, Guokai; Chen, Ji

    2015-11-01

    A 3D model is developed to perform numerical investigation on the coupled interaction mechanism of the plasma arc, weld pool and keyhole in plasma arc welding. By considering the traveling of the plasma arc along the welding direction, unified governing equations are solved in the whole domain including the torch, plasma arc, keyhole, weld pool and workpiece, which involves different physical mechanisms in different zones. The local thermodynamic equilibrium-diffusion approximation is used to treat the interface between the plasma arc and weld pool, and the volume-of-fluid method is used to track the evolution of the keyhole wall. The interaction effects between the plasma arc, keyhole and weld pool as well as the heat, mass and pressure transport phenomena in the whole welding domain are quantitatively simulated. It is found that when the torch is moving along the joint line, the axis of the keyhole channel tilts backward, and the envelope of molten metal surrounding the keyhole wall inside the weld pool is unsymmetrical relative to the keyhole channel. The plasma arc welding tests are conducted, and the predicted keyhole dimensions and the fusion zone shape are in agreement with the experimentally measured results.

  15. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho [Chungbuk National University, Cheongju (Korea, Republic of); Kim, Dong-Yoon; Kang, Moon-Jin [Korea Institute of Industrial Technology, Incheon (Korea, Republic of)

    2017-06-15

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  16. Grain refinement control in TIG arc welding

    Science.gov (United States)

    Iceland, W. F.; Whiffen, E. L. (Inventor)

    1975-01-01

    A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.

  17. Controlling Arc Length in Plasma Welding

    Science.gov (United States)

    Iceland, W. F.

    1986-01-01

    Circuit maintains arc length on irregularly shaped workpieces. Length of plasma arc continuously adjusted by control circuit to maintain commanded value. After pilot arc is established, contactor closed and transfers arc to workpiece. Control circuit then half-wave rectifies ac arc voltage to produce dc control signal proportional to arc length. Circuit added to plasma arc welding machines with few wiring changes. Welds made with circuit cleaner and require less rework than welds made without it. Beads smooth and free of inclusions.

  18. [Impact of introduction of O2 on the welding arc of gas pool coupled activating TIG].

    Science.gov (United States)

    Huang, Yong; Wang, Yan-Lei; Zhang, Zhi-Guo

    2014-05-01

    In the present paper, Boltzmann plot method was applied to analyze the temperature distributions of the are plasma when the gas pool coupled activating TIG welding was at different coupling degrees with the outer gas being O2. Based on this study of temperature distributions, the changing regularities of are voltage and are appearance were studied. The result shows that compared with traditional TIG welding, the introduction of O2 makes the welding arc constricted slightly, the temperature of the are center build up, and the are voltage increase. When argon being the inner gas, oxygen serving as the outer gas instead of argon makes the are constricted more obviously. When the coupling degree increases from 0 to 2, the temperature of the are center and the are voltage both increase slightly. In the gas pool coupled activating TIG welding the are is constricted not obviously, and the reason why the weld penetration is improved dramatically in the welding of stainless steel is not are constriction.

  19. Mathematical modeling for prediction and optimization of TIG welding pool geometry

    Directory of Open Access Journals (Sweden)

    U. Esme

    2009-04-01

    Full Text Available In this work, nonlinear and multi-objective mathematical models were developed to determine the process parameters corresponding to optimum weld pool geometry. The objectives of the developed mathematical models are to maximize tensile load (TL, penetration (P, area of penetration (AP and/or minimize heat affected zone (HAZ, upper width (UW and upper height (UH depending upon the requirements.

  20. Torque Control of Friction Stir Welding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Longhurst Engineering, PLC and Vanderbilt University propose the innovation of torque control of friction stir welding (FSW) as a replacement to force control of...

  1. Laser welding closed-loop power control

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    2003-01-01

    A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser.......A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser....

  2. Acoustic-Emission Weld-Penetration Monitor

    Science.gov (United States)

    Maram, J.; Collins, J.

    1986-01-01

    Weld penetration monitored by detection of high-frequency acoustic emissions produced by advancing weld pool as it melts and solidifies in workpiece. Acoustic emission from TIG butt weld measured with 300-kHz resonant transducer. Rise in emission level coincides with cessation of weld penetration due to sudden reduction in welding current. Such monitoring applied to control of automated and robotic welders.

  3. Computerized adaptive control weld skate with CCTV weld guidance project

    Science.gov (United States)

    Wall, W. A.

    1976-01-01

    This report summarizes progress of the automatic computerized weld skate development portion of the Computerized Weld Skate with Closed Circuit Television (CCTV) Arc Guidance Project. The main goal of the project is to develop an automatic welding skate demonstration model equipped with CCTV weld guidance. The three main goals of the overall project are to: (1) develop a demonstration model computerized weld skate system, (2) develop a demonstration model automatic CCTV guidance system, and (3) integrate the two systems into a demonstration model of computerized weld skate with CCTV weld guidance for welding contoured parts.

  4. Multi-mode ultrasonic welding control and optimization

    Science.gov (United States)

    Tang, Jason C.H.; Cai, Wayne W

    2013-05-28

    A system and method for providing multi-mode control of an ultrasonic welding system. In one embodiment, the control modes include the energy of the weld, the time of the welding process and the compression displacement of the parts being welded during the welding process. The method includes providing thresholds for each of the modes, and terminating the welding process after the threshold for each mode has been reached, the threshold for more than one mode has been reached or the threshold for one of the modes has been reached. The welding control can be either open-loop or closed-loop, where the open-loop process provides the mode thresholds and once one or more of those thresholds is reached the welding process is terminated. The closed-loop control provides feedback of the weld energy and/or the compression displacement so that the weld power and/or weld pressure can be increased or decreased accordingly.

  5. Control of two Wheeled Welding Mobile Manipulator

    Directory of Open Access Journals (Sweden)

    M. D. Ngo

    2007-09-01

    Full Text Available A three-linked manipulator mounted on a two-wheeled mobile platform is used to weld a long curved welding path. A welding torch mounted at the end of a manipulator of the welding mobile manipulator (WMM must be controlled for tracking a welding path with constant velocity and constant welding angle of torch. In this paper, a decentralized control method is applied to control the WMM considered as two separate subsystems such as a mobile platform and a manipulator. Two decentralized motion controllers are designed to control two subsystems of WMM, respectively. Firstly, based on a tracking error vector of the manipulator and a feedback motion of the mobile platform, a kinematic controller is designed for manipulator. Secondly, based on an another tracking error vector of the mobile platform and a feedback angular velocities of revolution joints of three-link, a sliding mode controller is designed for the mobile platform. These controllers are obtained based on the Lyapunov's function and its stability condition to ensure for the tracking error vectors to be asymptotically stable. Furthermore, simulation and experimental results are presented to illustrate the effectiveness of the proposed algorithm.

  6. Control of two Wheeled Welding Mobile Manipulator

    Directory of Open Access Journals (Sweden)

    M. D. Ngo

    2008-11-01

    Full Text Available A three-linked manipulator mounted on a two-wheeled mobile platform is used to weld a long curved welding path. A welding torch mounted at the end of a manipulator of the welding mobile manipulator (WMM must be controlled for tracking a welding path with constant velocity and constant welding angle of torch. In this paper, a decentralized control method is applied to control the WMM considered as two separate subsystems such as a mobile platform and a manipulator. Two decentralized motion controllers are designed to control two subsystems of WMM, respectively. Firstly, based on a tracking error vector of the manipulator and a feedback motion of the mobile platform, a kinematic controller is designed for manipulator. Secondly, based on an another tracking error vector of the mobile platform and a feedback angular velocities of revolution joints of three-link, a sliding mode controller is designed for the mobile platform. These controllers are obtained based on the Lyapunov's function and its stability condition to ensure for the tracking error vectors to be asymptotically stable. Furthermore, simulation and experimental results are presented to illustrate the effectiveness of the proposed algorithm.

  7. Automatic weld torch guidance control system

    Science.gov (United States)

    Smaith, H. E.; Wall, W. A.; Burns, M. R., Jr.

    1982-01-01

    A highly reliable, fully digital, closed circuit television optical, type automatic weld seam tracking control system was developed. This automatic tracking equipment is used to reduce weld tooling costs and increase overall automatic welding reliability. The system utilizes a charge injection device digital camera which as 60,512 inidividual pixels as the light sensing elements. Through conventional scanning means, each pixel in the focal plane is sequentially scanned, the light level signal digitized, and an 8-bit word transmitted to scratch pad memory. From memory, the microprocessor performs an analysis of the digital signal and computes the tracking error. Lastly, the corrective signal is transmitted to a cross seam actuator digital drive motor controller to complete the closed loop, feedback, tracking system. This weld seam tracking control system is capable of a tracking accuracy of + or - 0.2 mm, or better. As configured, the system is applicable to square butt, V-groove, and lap joint weldments.

  8. Advantages of new micro-jet welding technology on weld microstructure control

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2013-01-01

    Full Text Available An innovative apparatus to welding process with micro-jet cooling of the weld made it possible to carry out technological tests, which have proved theoretical considerations about this problem. This project gives real opportunities for professional development in the field of welding with controlling the parameters of weld structure. These tests have proved that the new micro-jet technology has the potential for growth. It may be great achievement of welding technology in order to increase weld metal strength. The new technology with micro-jet cooling may have many practical applications in many fields, for example such as in the transport industry or to repair damaged metal elements. The advantages of the new device over the traditional system are the ability to control the structure of the weld, the weld mechanical performance increases and improve the quality of welded joints.

  9. Plasma effect on weld pool surface reconstruction by shape-from-polarization analysis

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, N.; Mathieu, A., E-mail: alexandre.mathieu@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS/Université de Bourgogne, 12 rue de la Fonderie, 71200 Le Creusot (France); Aubreton, O.; Stolz, C. [Université de Bourgogne Laboratoire Le2i UMR CNRS 6306, allée Alain Savary, 21000 Dijon (France)

    2014-03-31

    The polarimetric state of the thermal radiations emitted by the weld metal contains geometric information about the emitting surface. Even though the analysed thermal radiation has a wavelength corresponding to a blind spectral window of the arc plasma, the physical presence of the arc plasma itself interferes with the rays radiated by the weld pool surface before attaining the polarimeter, thus modifying the geometric information transported by the ray. In the present work, the effect of the arc plasma-surrounding zone on the polarimetric state and propagation direction of the radiated ray is analyzed. The interaction with the arc plasma zone induces a drop in ray intensity and a refraction of ray optical path.

  10. Intelligent Control of Modular Robotic Welding Cell

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Herschel Bernard; Kenney, Kevin Louis; Tolle, Charles Robert

    2002-04-01

    Although robotic machines are routinely used for welding, such machines do not normally incorporate intelligent capabilities. We are studying the general problem of formulating usable levels of intelligence into welding machines. From our perspective, an intelligent machine should: incorporate knowledge of the welding process, know if the process is operating correctly, know if the weld it is making is good or bad, have the ability to learn from its experience to perform welds, and be able to optimize its own performance. To this end, we are researching machine architecture, methods of knowledge representation, decision making and conflict resolution algorithms, methods of learning and optimization, human/machine interfaces, and various sensors. This paper presents work on the machine architecture and the human/machine interface specifically for a robotic, gas metal arc welding cell. Although the machine control problem is normally approached from the perspective of having a central body of control in the machine, we present a design using distributed agents. A prime goal of this work is to develop an architecture for an intelligent machine that will support a modular, plug and play standard. A secondary goal of this work is to formulate a human/machine interface that treats the human as an active agent in the modular structure.

  11. Control of welding distortion during gas metal arc welding of AH36 plates by stress engineering

    NARCIS (Netherlands)

    Pazooki, A.M.A.; Hermans, M.J.M.; Richardson, I.M.

    2017-01-01

    Welding residual stress and distortion are strongly linked together. One of the ways to control or reduce the welding distortions is the manipulation of the generated stresses during welding, and final residual stresses exist in the workpiece (stress engineering). In this paper, the control of gas

  12. Actively controlled vibration welding system and method

    Science.gov (United States)

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  13. Ultra-fast in-situ X-ray studies of evolving columnar dendrites in solidifying steel weld pools

    OpenAIRE

    Mirihanage, W.U.; Di Michiel, M.; Mathiesen, R.H.

    2015-01-01

    High-brilliance polychromatic synchrotron radiation has been used to conduct in-situ studies of the solidification microstructure evolution during simulated welding. The welding simulations were realized by rapidly fusing ~ 5 mm spot in Fe-Cr-Ni steel. During the solid- liquid-solid phase transformations, a section of the weld pool was placed in an incident 50-150 keV polychromatic synchrotron X-ray beam, in a near-horizontal position at a very low inclination angle. Multiple high-resolution ...

  14. Control system of power supply for resistance welding machine

    Directory of Open Access Journals (Sweden)

    Світлана Костянтинівна Поднебенна

    2017-06-01

    Full Text Available This article describes the existing methods of heat energy stabilizing, which are realized in thyristor power supplies for resistance welding machines. The advantages and features of thyristor power supplies have been described. A control system of power supply for resistance welding machine with stabilization of heat energy in a welding spot has been developed. Measurements are performed in primary winding of a welding transformer. Weld spot heating energy is calculated as the difference between the energy, consumed from the mains, and the energy losses in the primary and secondary circuits of the welding transformer as well as the energy losses in the transformer core. Algorithms of digital signal processing of the developed control system are described in the article. All measurements and calculations are preformed automatically in real-time. Input signals to the control system are: transformer primary voltage and current, temperature of the welding circuit. The designed control system ensures control of the welding heat energy and is not influenced by the supply voltage and impedance changes caused by insertion of the ferromagnetic mass in the welding circuit, the temperature change during the welding process. The developed control system for resistance welding machine makes it possible to improve the quality of welded joints, increase the efficiency of the resistance welding machine

  15. Plasma arc welding, equipment, installation and process control

    Science.gov (United States)

    Fuershbach, P. W.

    1985-02-01

    The plasma arc welding (PAW) process can achieve the highest power density of all the conventional arc welding processes and has advantages over laser beam welding (LBW) and electron beam welding (EBW). Power density is an independent variable which can be precisely controlled. The combination of high orifice gas flowrates and arc current pulsation increases weld penetration for thin section partial penetration PAW welds. Contaminants (i.e., oxygen, water vapor) in the orifice gas system are important for stable operation of the pilot arc as is the concentric alignment of the electrode within the nozzle bore. Due to a refractory oxide skin, high heat input is necessary to weld aluminum with conventional arc processes. LBW has not proven practical. Low current ac PAW with 0.035 in. thick aluminum produced small welds with a good depth-to-width ratio.

  16. ARC length control for plasma welding

    Science.gov (United States)

    Iceland, William F. (Inventor)

    1988-01-01

    A control system to be used with a plasma arc welding apparatus is disclosed. The plasma arc welding apparatus includes a plasma arc power supply, a contactor, and an electrode assembly for moving the electrode relative to a work piece. The electrode assembly is raised or lowered by a drive motor. The present apparatus includes a plasma arc adapter connected across the power supply to measure the voltage across the plasma arc. The plasma arc adapter forms a dc output signal input to a differential amplifier. A second input is defined by an adjustable resistor connected to a dc voltage supply to permit operator control. The differential amplifier forms an output difference signal provided to an adder circuit. The adder circuit then connects with a power amplifier which forms the driving signal for the motor. In addition, the motor connects to a tachometor which forms a feedback signal delivered to the adder to provide damping, therby avoiding servo loop overshoot.

  17. Physics of arc welding

    Science.gov (United States)

    Eagar, T. W.

    1982-05-01

    A discussion of the factors controlling the size and shape of the weld fusion zone is presented along with a description of current theories of heat and fluid flow phenomena in the plasma and the molten metal weld pool. Although experimental results confirm that surface tension, plasma jets, and weld pool convection all strongly influence the fusion zone shape; no comprehensive model is available from which to predict welding behavior. It is proposed that the lack of such an understanding is a major impediment to development of automated welding processes. In addition, sensors for weld torch positioning are reviewed in terms of the mechnical and electromagnetic energy spectra which have been used. New developments in this area are also needed in order to advance the technology of automated welding.

  18. Welding.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  19. Heat Control via Torque Control in Friction Stir Welding

    Science.gov (United States)

    Venable, Richard; Colligan, Kevin; Knapp, Alan

    2004-01-01

    In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).

  20. Flexible Vision Control System For Precision Robotic Arc Welding

    Science.gov (United States)

    Richardson, Richard W.

    1989-02-01

    A system is described which is based on a unique weld image sensor design which integrates the optical system into the weld end effector to produce the so-called "coaxial view" of the weld zone. The resulting weld image is processed by a flexible, table driven vision processing system which can be adapted to detect a variety of features and feature relationships. Provision is made for interactive "teaching" of image features for generation of table parameters from test welds. A table driven control program allows various vision control strategies to be invoked. The main result of the system is a level of emulation of the capability of the expert welder or welding operator, essential to successful precision welding robotization.

  1. Control of resistance plug welding using quantitative feedback theory

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, A.E. [Sandia National Lab., Albuquerque, NM (United States); Horowitz, I. [Univ. of California, Davis, CA (United States)]|[Weizmann Inst. of Science, Rehovot (Israel)]|[Wright Patterson Air Force Base, Dayton, OH (United States); Chait, Y.; Rodrigues, J. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-01

    Resistance welding is used extensively throughout the manufacturing industry. Variations in weld quality often result in costly post-weld inspections. Applications of feed-back control to such processes have been limited by the lack of accurate models describing the nonlinear dynamics of this process. A new system based on electrode displacement feedback is developed that greatly improves quality control of the resistance plug welding process. The system is capable of producing repeatable welds of consistent displacement (and thus consistent quality), with wide variations in weld parameters. This paper describes the feedback design of a robust controller using Quantitative Feedback Theory for this highly complex process, and the experimental results of the applied system.

  2. Low Speed Control for Automatic Welding

    Science.gov (United States)

    Iceland, W. E.

    1982-01-01

    Amplifier module allows rotating positioner of automatic welding machine to operate at speeds below normal range. Low speeds are precisely regulated by a servomechanism as are normal-range speeds. Addition of module to standard welding machine makes it unnecessary to purchase new equipment for low-speed welding.

  3. Intelligent Control of Welding Gun Pose for Pipeline Welding Robot Based on Improved Radial Basis Function Network and Expert System

    OpenAIRE

    Jingwen Tian; Meijuan Gao; Yonggang He

    2013-01-01

    Since the control system of the welding gun pose in whole‐position welding is complicated and nonlinear, an intelligent control system of welding gun pose for a pipeline welding robot based on an improved radial basis function neural network (IRBFNN) and expert system (ES) is presented in this paper. The structure of the IRBFNN is constructed and the improved genetic algorithm is adopted to optimize the network structure. This control system makes full use of the characteristics of the IRBFNN...

  4. Gas tungsten arc welding of vanadium alloys with impurity control

    Science.gov (United States)

    Grossbeck, M. L.; King, J. F.; Nagasaka, T.; David, S. A.

    2002-12-01

    Gas tungsten arc welding in vanadium alloys is controlled by interstitial impurities. Techniques have been developed to weld V-4Cr-4Ti in a high-purity argon atmosphere resulting in a DBTT of -20 °C. The atmosphere was controlled by a Zr-Al getter which is activated at high temperature to obtain a clean surface then cooled and allowed to absorb hydrogen and oxygen impurities. Through the use of low-oxygen base metal and high-purity weld filler wire, a DBTT of -145 °C was obtained. Experiments using electron beam welding have shown that grain size also has an important effect on weld ductility. Introduction of nitrogen and yttrium has been used to study their effect on grain size. Using a combination of atmosphere control, alloy purity control, and grain size control, it is anticipated that V-Cr-Ti alloys will be weldable in field conditions.

  5. Development of remote-controlled circumferential TIG welding system. Enkaku sosashiki TIG enshu jido yosetsu koho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, T.; Shiga, A. (Kawasaki Steel Corp., Tokyo (Japan))

    1991-03-01

    Development was made of remotely controlled circumferential tungsten inert gas (TIG) welding system. Outer surface of pipe is installed with a welding head truck, while remotely controlling post is done with a remotely controlling board, mounted with power source, control unit, display and speaker, torch cooling unit by water, etc. The operator commences the welding, only after presetting the standard welding condition in the program box, and minutely adjusts the welding condition, truck speed, etc. through monitoring the image and sound. All those items of operation are remotely controlled. The torch is equipped with a molten pool observation camera and microphone, to catch arc noise, therearound. If there is peripheral room, 200mm in radial space, circumferentially outside the pipe, the operation can be safely made even from a very narrow on-ground post. Liberation being made from skillfulness and heavy labor, inconvenience can be immediately confronted and corrected, and welding defect can be prevented from occurring. The present system, upon being applied to on-site welding of city water supply use stainless pipe and gas pipe, was confirmed to be good in practicability. 2 refs., 13 figs., 6 tabs.

  6. FRICTION - WELDING MACHINE AUTOMATIC CONTROL CIRCUIT DESIGN AND APPLICATION

    Directory of Open Access Journals (Sweden)

    Hakan ATEŞ

    2003-02-01

    Full Text Available In this work, automatic controllability of a laboratory-sized friction-welding machine has been investigated. The laboratory-sized friction-welding machine was composed of motor, brake, rotary and constant samples late pliers, and hydraulic unit. In automatic method, welding parameters such as friction time, friction pressure, forge time and forge pressure can be applied sensitively using time relays and contactors. At the end of the experimental study it's observed that automatic control system has been worked successfully.

  7. Health monitoring of welded structures using statistical process control

    Science.gov (United States)

    Srinivasa Rao, Putti; Ratnam, Ch.

    2012-02-01

    This paper presents health monitoring of welded structures using acceleration time response data. Residual errors are extracted from the measured acceleration time response data using an auto-regressive model. Damage identification is done by monitoring the residual errors using Shewhart and exponentially weighted moving average control charts. The applicability of the proposed method is tested with the welded structure model. Five damage levels are investigated and the damage is introduced by cutting a slot in the weld using an electrical discharge machine. Acceleration time response data are collected using piezoelectric sensors for all damage levels. The results show that both Shewhart and exponentially weighted moving average control charts are capable of identifying the presence of damage in the welded structure model under consideration. Exponentially weighted moving average control charts are more sensitive in damage identification than Shewhart control charts.

  8. Effect of process control mode on weld quality of friction stir welded plates

    Energy Technology Data Exchange (ETDEWEB)

    Shazly, Mostafa; Sorour, Sherif; Alian, Ahmed R. [Faculty of Engineering, The British University in Egypt, Cairo (Egypt)

    2016-01-15

    Friction stir welding (FSW) is a solid state welding process which requires no filler material where the heat input is generated by frictional energy between the tool and workpiece. The objective of the present work is to conduct a fully coupled thermomechanical finite element analysis based on Arbitrary Lagrangian Eulerian (ALE) formulation for both 'Force-Controlled' and 'Displacement-Controlled' FSW process to provide more detailed insight of their effect on the resulting joint quality. The developed finite element models use Johnson- Cook material model and temperature dependent physical properties for the welded plates. Efforts on proper modeling of the underlying process physics are done focusing on the heat generation of the tool/workpiece interface to overcome the shortcomings of previous investigations. Finite elements results show that 'Force-Controlled' FSW process provides better joint quality especially at higher traveling speed of the tool which comes to an agreement with published experimental results.

  9. Multivariable Intelligent Control for M.A.G. Welding Process

    Directory of Open Access Journals (Sweden)

    Constantin MIHOLCA

    2008-07-01

    Full Text Available A neural control technique, applied to the MAG (Metal-Active Gas welding process, is presented in the paper. The static nonlinear model of welding process is based on experimental determinations. The geometric parameters of the welding beam are considered as output parameters of the MAG process (Bs, a, p, and they are measured for different step-variations of the input parameters (Ve, Vs, Ua. The analysis of the output dynamics was further used to model the MAG welding process using a 3- layer neural network with 6 hidden-layer neurons. In order to reject perturbations and cancel the stationary error, an error compensator was used, which consists of the reversedynamic model connected to a proportional integrator controller. imulation results for the multivariable neural controller are presented.

  10. Intelligent Control of Welding Gun Pose for Pipeline Welding Robot Based on Improved Radial Basis Function Network and Expert System

    Directory of Open Access Journals (Sweden)

    Jingwen Tian

    2013-02-01

    Full Text Available Since the control system of the welding gun pose in whole-position welding is complicated and nonlinear, an intelligent control system of welding gun pose for a pipeline welding robot based on an improved radial basis function neural network (IRBFNN and expert system (ES is presented in this paper. The structure of the IRBFNN is constructed and the improved genetic algorithm is adopted to optimize the network structure. This control system makes full use of the characteristics of the IRBFNN and the ES. The ADXRS300 micro-mechanical gyro is used as the welding gun position sensor in this system. When the welding gun position is obtained, an appropriate pitch angle can be obtained through expert knowledge and the numeric reasoning capacity of the IRBFNN. ARM is used as the controller to drive the welding gun pitch angle step motor in order to adjust the pitch angle of the welding gun in real-time. The experiment results show that the intelligent control system of the welding gun pose using the IRBFNN and expert system is feasible and it enhances the welding quality. This system has wide prospects for application.

  11. Robust Control of Welding Robot for Tracking a Rectangular Welding Line

    Directory of Open Access Journals (Sweden)

    Manh Dung Ngo

    2008-11-01

    Full Text Available This paper highlights a welding robot (WR for its end effector to track a rectangular welding line (RWL. The WR includes five actuators which use a DC motor as a power source. Two controllers are proposed to control the WR's end effector: a main controller and a servo controller. Firstly, based on WR's kinematic equations and its feedback errors using backstepping method the main controller is proposed to design the reference-inputs for the WR's actuators in order that the WR's end effector tracks the RWL. Secondly, based on the dynamic equation of WR's actuator, the servo controller is designed using an active disturbance rejection control method. Finally, a control system incorporated with the main controller and the servo controllers make the WR's end effector robustly track a RWL in the presence of the modeling uncertainty and disturbances during the welding process. In experiment, the main controller which has a function as a master of the control system links to the five servo controllers which have a function as a slave via I2C communication. The effectiveness of the proposed control system is proven through the simulation and experimental results.

  12. Robust Control of Welding Robot for Tracking a Rectangular Welding Line

    Directory of Open Access Journals (Sweden)

    Manh Dung Ngo

    2006-09-01

    Full Text Available This paper highlights a welding robot (WR for its end effector to track a rectangular welding line (RWL. The WR includes five actuators which use a DC motor as a power source. Two controllers are proposed to control the WR's end effector: a main controller and a servo controller. Firstly, based on WR's kinematic equations and its feedback errors using backstepping method the main controller is proposed to design the reference-inputs for the WR's actuators in order that the WR's end effector tracks the RWL. Secondly, based on the dynamic equation of WR's actuator, the servo controller is designed using an active disturbance rejection control method. Finally, a control system incorporated with the main controller and the servo controllers make the WR's end effector robustly track a RWL in the presence of the modeling uncertainty and disturbances during the welding process. In experiment, the main controller which has a function as a master of the control system links to the five servo controllers which have a function as a slave via I2C communication. The effectiveness of the proposed control system is proven through the simulation and experimental results.

  13. Weld overlay coatings for erosion control

    Energy Technology Data Exchange (ETDEWEB)

    Levin, B.; DuPont, J.N.; Marder, A.R.

    1993-03-03

    A literature review was made. In spite of similarities between abrasive wear and solid particle erosion, weld overlay hardfacing alloys that exhibit high abrasion resistance may not necessarily have good erosion resistance. The performance of weld overlay hardfacing alloys in erosive environments has not been studied in detail. It is believed that primary-solidified hard phases such as carbides and intermetallic compounds have a strong influence on erosion resistance of weld overlay hardfacing alloys. However, relationships between size, shape, and volume fraction of hard phases in a hardfacing alloys and erosion resistance were not established. Almost all hardfacing alloys can be separated into two major groups based upon chemical compositions of the primary solidified hard phases: (a) carbide hardening alloys (Co-base/carbide, WC-Co and some Fe base superalloys); and (b) intermetallic hardening alloys (Ni-base alloys, austenitic steels, iron-aluminides).

  14. Controlling Force and Depth in Friction Stir Welding

    Science.gov (United States)

    Adams, Glynn; Loftus, Zachary; McCormac, Nathan; Venable, Richard

    2005-01-01

    Feedback control of the penetration force applied to a pin tool in friction stir welding has been found to be a robust and reliable means for controlling the depth of penetration of the tool. This discovery has made it possible to simplify depth control and to weld with greater repeatability, even on workpieces with long weld joints. Prior to this discovery, depths of penetration in friction stir welding were controlled by hard-tooled roller assemblies or by depth actuators controlled by feedback from such external sensors as linear variable-differential transformers or laser-based devices. These means of control are limited: A hard-tooled roller assembly confines a pin tool to a preset depth that cannot be changed easily during the welding process. A measurement by an external sensor is only an indirect indicative of the depth of penetration, and computations to correlate such a measurement with a depth of penetration are vulnerable to error. The present force-feedback approach exploits the proportionality between the depth and the force of penetration Unlike a depth measurement taken by an external sensor, a force measurement can be direct because it can be taken by a sensor coupled directly to the pin tool. The reading can be processed through a modern electronic servo control system to control an actuator to keep the applied penetration force at the desired level. In comparison with the older depth-control methods described above, this method offers greater sensitivity to plasticizing of the workpiece metal and is less sensitive to process noise, resulting in a more consistent process. In an experiment, a tapered panel was friction stir welded while controlling the force of penetration according to this method. The figure is a plot of measurements taken during the experiment, showing that force was controlled with a variation of 200 lb (890 N), resulting in control of the depth of penetration with a variation of 0.004 in. (0.1 mm).

  15. Vision of the Arc for Quality Documentation and for Closed Loop Control of the Welding Process

    DEFF Research Database (Denmark)

    Kristiansen, Morten; Kristiansen, Ewa; Jensen, Casper Houmann

    2014-01-01

    For gas metal arc welding a vision system was developed, which was robust to monitor the position of the arc. The monitoring documents the welding quality indirectly and a closed loop fuzzy control was implemented to control an even excess penetration. For welding experiments on a butt-joint with......For gas metal arc welding a vision system was developed, which was robust to monitor the position of the arc. The monitoring documents the welding quality indirectly and a closed loop fuzzy control was implemented to control an even excess penetration. For welding experiments on a butt...

  16. Hexavalent chromium exposure and control in welding tasks.

    Science.gov (United States)

    Meeker, John D; Susi, Pam; Flynn, Michael R

    2010-11-01

    Studies of exposure to the lung carcinogen hexavalent chromium (CrVI) from welding tasks are limited, especially within the construction industry where overexposure may be common. In addition, despite the OSHA requirement that the use of engineering controls such as local exhaust ventilation (LEV) first be considered before relying on other strategies to reduce worker exposure to CrVI, data on the effectiveness of LEV to reduce CrVI exposures from welding are lacking. The goal of the present study was to characterize breathing zone air concentrations of CrVI during welding tasks and primary contributing factors in four datasets: (1) OSHA compliance data; (2) a publicly available database from The Welding Institute (TWI); (3) field survey data of construction welders collected by the Center for Construction Research and Training (CPWR); and (4) controlled welding trials conducted by CPWR to assess the effectiveness of a portable LEV unit to reduce CrVI exposure. In the OSHA (n = 181) and TWI (n = 124) datasets, which included very few samples from the construction industry, the OSHA permissible exposure level (PEL) for CrVI (5 μg/m(3)) was exceeded in 9% and 13% of samples, respectively. CrVI concentrations measured in the CPWR field surveys (n = 43) were considerably higher, and 25% of samples exceeded the PEL. In the TWI and CPWR datasets, base metal, welding process, and LEV use were important predictors of CrVI concentrations. Only weak-to-moderate correlations were found between total particulate matter and CrVI, suggesting that total particulate matter concentrations are not a good surrogate for CrVI exposure in retrospective studies. Finally, in the controlled welding trials, LEV reduced median CrVI concentrations by 68% (p = 0.02). In conclusion, overexposure to CrVI in stainless steel welding is likely widespread, especially in certain operations such as shielded metal arc welding, which is commonly used in construction. However, exposure could be

  17. Manganese and welding fume exposure and control in construction.

    Science.gov (United States)

    Meeker, John D; Susi, Pam; Flynn, Michael R

    2007-12-01

    Overexposure to welding fume constituents, particularly manganese, is of concern in the construction industry due to the prevalence of welding and the scarcity of engineering controls. The control effectiveness of a commercially available portable local exhaust ventilation (LEV) unit was assessed. It consisted of a portable vacuum and a small bell-shaped hood connected by a flexible 2 inch (50.8 mm) diameter hose, in both experimental and field settings. The experimental testing was done in a semienclosed booth at a pipefitter training facility. Five paired trials of LEV control vs. no control, each approximately 1 hr in duration and conducted during two successive welds of 6 inch (152.4 mm) diameter carbon steel pipe were run in random order. Breathing zone samples were collected outside the welding hood during each trial. In the field scenario, full-shift breathing zone samples were collected from two pipefitters welding carbon steel pipe for a chiller installation on a commercial construction project. Eight days of full-shift sampling were conducted on both workers (n = 16), and the LEV was used by one of the two workers on an alternating basis for 7 of the days. All samples were collected with personal sample pumps calibrated at 2 L/min. Filter cassettes were analyzed for total particulate and manganese concentration by a certified laboratory. In the experimental setting, use of the portable LEV resulted in a 75% reduction in manganese exposure (mean 13 microg/m(3) vs. 51 microg/m(3); p 0.05). These results demonstrate that LEV use can reduce manganese exposure associated with welding tasks in construction.

  18. Phenomenological study and modelling of weld behaviour for the control of GTA process by computer aided welding; Etude phenomenologique et modelisation du comportement du bain de fusion en soudage TIG en vue d'une application au controle du procede

    Energy Technology Data Exchange (ETDEWEB)

    Tissot, F.X

    1998-07-01

    The CEA-CEREM/LMS has been working on automation of arc welding processes for years. Particularly, a computer aided welding (CAW) system called 'SYLVARC' was developed to compensate the effects of any eventual disturbance, by means of a real-time control of the welding parameters. Images analysis of the topside weld pool permits to maintain its width at a nominal value. For each welding case, the control parameters have to be determined by considering the transient changes in the weld pool shape following a shift of the welding operating conditions around the nominal working setpoint. However, each corresponding empirical law do not allow any prediction nor any interpretation of the variations which are displayed. Thus, a theoretical model has been developed in this study, by using an analytical solution of heat conduction equations in the case of a Gaussian heat source, moving at constant speed at the surface of a thick plate. In parallel, a numerical approach using the finite elements code MARCUS has been carried out to validate the assumption that the eventual effects which could come from the chosen hypothesis (convection flows in the melt, latent heat transfers and temperature-dependence of the thermo-physical properties of the material are neglected) are constant for small variations around the working setpoint. This has shown that the weld behaviour around the working setpoint is easily predicted by the analytical model if restricted to conduction heat transfers. The using conditions of the model have been optimised as a result of a thorough parametric study. Experimental validations of the approach have been carried out focusing on the welding of stainless steel plates of low thickness. Particularly, in the case of a sharp step in the plate thickness, there is a good agreement of the simulation with the transient behaviour of the weld pool. (author)

  19. Welding.

    Science.gov (United States)

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  20. Stress-induced birefringence control in femtosecond laser glass welding

    Science.gov (United States)

    Gstalter, M.; Chabrol, G.; Bahouka, A.; Serreau, L.; Heitz, J.-L.; Taupier, G.; Dorkenoo, K.-D.; Rehspringer, J.-L.; Lecler, S.

    2017-11-01

    Glass welding by femtosecond laser pulses causes microscopic structural modifications, affecting the refractive index due to residual stress. Locally induced birefringence is studied by photoelasticimetry using a polarized light microscope. The study is performed on borosilicate thin glass plates using an industrial femtosecond laser generating 300 fs pulses at 500 kHz, with a 100 mm focusing length F-theta lens allowing fast welding. For low-energy deposition, the principal birefringence axes are determined to be homogenous along the seam and perpendicular and parallel to the laser scanning direction. Tensile stress is induced in the laser scanning direction by the welding seams. The induced birefringence is determined to be equivalent for in-volume irradiated track and welding seams. An inhomogeneity of the birefringence within the seam is observed for the first time at high-energy deposition. The distribution of the birefringence can be controlled with the laser scanning patterns. The amount of residual stress is measured by compensating the local birefringence. The birefringence Δ n is estimated at 2.4 × 10^{-4}, corresponding to a residual stress amount around 59 MPa. The influence of the welding geometry is also illustrated.

  1. Operation of a Fuzzy Controlled Half-Bridge DC-Converter as a Welding Current-Source

    Directory of Open Access Journals (Sweden)

    Kourosh Mahmoodi

    2012-03-01

    Full Text Available In This paper a new Fuzzy Controlled Welding current source is introduced and the results of the new control method are explained. The Fuzzy controller is applied to the welding machine to improve some problems of welding process. The new intelligent controller guaranties a constant current during welding to improve welding quality. It also provides some features such as hot-start and anti-stuck function and a standby mode for energy saving. The effectiveness of this intelligent welding machine was proven by the experimental results and durable test. The results show that designed FCWM (Fuzzy Controlled Welding Machine can be used in mobile welding industries.

  2. Electron Gun for Computer-controlled Welding of Small Components

    Czech Academy of Sciences Publication Activity Database

    Dupák, Jan; Vlček, Ivan; Zobač, Martin

    2001-01-01

    Roč. 62, 2-3 (2001), s. 159-164 ISSN 0042-207X R&D Projects: GA AV ČR IBS2065015 Institutional research plan: CEZ:AV0Z2065902 Keywords : Electron beam-welding machine * Electron gun * Computer- control led beam Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.541, year: 2001

  3. Hybrid Control and Verification of a Pulsed Welding Process

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Larsen, Jesper Abildgaard; Izadi-Zamanabadi, Roozbeh

    Currently systems, which are desired to control, are becoming more and more complex and classical control theory objectives, such as stability or sensitivity, are often not sufficient to cover the control objectives of the systems. In this paper it is shown how the dynamics of a pulsed welding...... process can be reformulated into a timed automaton hybrid setting and subsequently properties such as reachability and deadlock absence is verified by the simulation and verification tool UPPAAL....

  4. Advanced Control Methods for Optimization of Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, J. S.

    Gas Metal Arc Welding (GMAW) is a proces used for joining pieces of metal. Probably, the GMAW process is the most successful and widely used welding method in the industry today. A key issue in welding is the quality of the welds produced. The quality of a weld is influenced by several factors in...

  5. Design, implementation and testing of a fuzzy control scheme for laser welding

    NARCIS (Netherlands)

    Jauregui Becker, Juan Manuel; Aalderink, B.J.; Aalderink, Benno; Aarts, Ronald G.K.M.; Olde Benneker, Jeroen; Meijer, J.

    2008-01-01

    A fuzzy logic controller (FLC) scheme has been developed for laser welding. Process light emissions are measured and combined to determine the current status of the welding process. If the process is not in a desired welding state, the FLC will adapt the laser power. The FLC has been demonstrated

  6. Passive Visual Sensing in Automatic Arc Welding

    DEFF Research Database (Denmark)

    Liu, Jinchao

    For decades much work has been devoted to the research and development of automatic arc welding systems. However, it has remained a challenging problem. Besides the very complex arc welding process itself, the lack of ability to precisely sense the welding process, including the seam geometry...... and the weld pool, has also prevented the realization of a closed-loop control system for many years, even though a variety of sensors have been developed. Among all the sensor systems, visual sensors have the advantage of receiving visual information and have been drawn more and more attentions. Typical...... industrial solutions for seam detection such as using laser scanners suer from several limitations. For instance, it must be positioned some distance ahead to the molten pool and may cause problem when dealing with shiny surfaces. Existing techniques for weld pool sensing mostly rely on auxiliary light...

  7. Study on Intelligent Control of Metal Filling System by Welding Robots in the Open Environment

    Directory of Open Access Journals (Sweden)

    Wei Fu

    2014-08-01

    Full Text Available robot model of three-arm and five-degree freedom plus large scope of traversing welding was established, and decoupling of models of “large scope of traversing”, “triangle movement of two arms” and “spherical movement of one arm” was realized. The model of “triangle movement of two arms ”is able to use geometrical calculation to solve the kinematics inverse problem , avoid the multiplicity, improve the calculation speed, eliminate the blind spots of the motions of welding gun of welding robot, and simplify the kinematic pair of kinematic mechanism for the arc filling strategy during welding travelling of robot. Binocular stereo vision camera was used to detect the edges of welds, and laser array sensor was used to detect the amount of metal filling of welds. In completely open conditions, feedback was fused based on sensor data to realize the welding tracking control by welding robot.

  8. Orographic control of the Bay of Bengal cold pool rainfall

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 8. Orographic control of the Bay of Bengal cold pool ... More interestingly in the absence of WG mountains, the BoB-CP shows a rainfall maxima in the boreal summer similar to that over its surrounding oceans. The WG also impacts the climate over the ...

  9. Design of controller for mobile robot in welding process of shipbuilding engineering

    Directory of Open Access Journals (Sweden)

    Namkug Ku

    2014-10-01

    Full Text Available The present study describes the development of control hardware and software for a mobile welding robot. This robot is able to move and perform welding tasks in a double hull structure. The control hardware consists of a main controller and a welding machine controller. Control software consists of four layers. Each layer consists of modules. Suitable combinations of modules enable the control software to perform the required tasks. Control software is developed using C programming under QNX operating system. For the modularizing architecture of control software, we designed control software with four layers: Task Manager, Task Planner, Actions for Task, and Task Executer. The embedded controller and control software was applied to the mobile welding robot for successful execution of the required tasks. For evaluate this imbedded controller and control software, the field tests are conducted, it is confirmed that the developed imbedded controller of mobile welding robot for shipyard is well designed and implemented.

  10. The Management of Short Circuits’ Mechanism of CO2 Shielded Welding

    Science.gov (United States)

    Knyaz’kov, Anatoliy F.; Knyaz’kov, Sergey A.; Tabanov, Artur M.

    2017-10-01

    It is observed the mechanism of short circuits’ management in the process of which drops of electrode material move to welding pool and all the phases of drops’ formation process are under control. It is shown the role of drop of electrode material and welding pool in the decreasing arc space, providing forced short circuit of arc space at the time of sharp decrease of welding current. Obtained results evidence that it is necessary to consider the movement of welding pool at the time of creation of model of electrode materials movement and creation of process management’s algorithms, especially considering changeable position of welding pool, as the role of drop and welding pool in the decreasing arc space is almost the same.

  11. Theory research of seam recognition and welding torch pose control based on machine vision

    Science.gov (United States)

    Long, Qiang; Zhai, Peng; Liu, Miao; He, Kai; Wang, Chunyang

    2017-03-01

    At present, the automation requirement of the welding become higher, so a method of the welding information extraction by vision sensor is proposed in this paper, and the simulation with the MATLAB has been conducted. Besides, in order to improve the quality of robot automatic welding, an information retrieval method for welding torch pose control by visual sensor is attempted. Considering the demands of welding technology and engineering habits, the relative coordinate systems and variables are strictly defined, and established the mathematical model of the welding pose, and verified its feasibility by using the MATLAB simulation in the paper, these works lay a foundation for the development of welding off-line programming system with high precision and quality.

  12. Residual stress reduction and fatigue strength improvement by controlling welding pass sequences

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Masahito; Hattori, Toshio; Nakakado, Kimiaki

    2000-01-01

    The effects of residual stress on fatigue strength at a weld toe in a multi-pass fillet weld joint were evaluated. The residual stresses in the weld joints were varied by controlling the sequence of welding passes. The residual stress at the weld toe was 80 MPa in the specimen whose last welding pass was on the main plate side, but it was 170 MPa in the specimen whose last pass was on the attachment side. The fatigue strength was nearly the same at high stress amplitude for both specimens, but the fatigue strength of the specimen whose last weld pass on the main plate was higher than that of the other specimen at low stress amplitude. This difference is due to the magnitude of the initial residual stress and the relaxation of the residual stress under fatigue cycling. The effects of the residual stress were shown in a modified Goodman diagram, in which residual stress is treated as a mean stress.

  13. Robot welding process control development task

    Science.gov (United States)

    Romine, Peter L.

    1992-01-01

    The completion of, and improvements made to, the software developed during 1990 for program maintenance on the PC and HEURIKON and transfer to the CYRO, and integration of the Rocketdyne vision software with the CYRO is documented. The new programs were used successfully by NASA, Rocketdyne, and UAH technicians and engineers to create, modify, upload, download, and control CYRO NC programs.

  14. Investigation and control of factors influencing resistance upset butt welding.

    NARCIS (Netherlands)

    Kerstens, N.F.H.

    2010-01-01

    The purpose of this work is to investigate the factors influencing the resistance upset butt welding process to obtain an understanding of the metal behaviour and welding process characteristics, so that new automotive steels can be welded with reduced development time and fewer failures in

  15. Exposure to welding fumes increases lung cancer risk among light smokers but not among heavy smokers: evidence from two case-control studies in Montreal.

    Science.gov (United States)

    Vallières, Eric; Pintos, Javier; Lavoué, Jérôme; Parent, Marie-Élise; Rachet, Bernard; Siemiatycki, Jack

    2012-08-01

    We investigated relationships between occupational exposure to gas and arc welding fumes and the risk of lung cancer among workers exposed to these agents throughout the spectrum of industries. Two population-based case-control studies were conducted in Montreal. Study I (1979-1986) included 857 cases and 1066 controls, and Study II (1996-2001) comprised 736 cases and 894 controls. Detailed job histories were obtained by interview and evaluated by an expert team of chemist-hygienists to estimate degree of exposure to approximately 300 substances for each job. Gas and arc welding fumes were among the agents evaluated. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer using logistic regression, adjusting for smoking history and other covariates. The two studies provided similar results, so a pooled analysis was conducted. Among all subjects, no significant association was found between lung cancer and gas welding fumes (OR = 1.1; 95% CI = 0.9-1.4) or arc welding fumes (OR = 1.0; 95% CI = 0.8-1.2). However, when restricting attention to light smokers, there was an increased risk of lung cancer in relation to gas welding fumes (OR = 2.9; 95% CI = 1.7-4.8) and arc welding fumes (OR = 2.3; 95% CI = 1.3-3.8), with even higher OR estimates among workers with the highest cumulative exposures. In conclusion, there was no detectable excess risk of lung cancer due to welding fumes among moderate to heavy smokers; but among light smokers we found an excess risk related to both types of welding fumes.

  16. Exposure to welding fumes increases lung cancer risk among light smokers but not among heavy smokers: evidence from two case–control studies in Montreal

    Science.gov (United States)

    Vallières, Eric; Pintos, Javier; Lavoué, Jérôme; Parent, Marie-Élise; Rachet, Bernard; Siemiatycki, Jack

    2012-01-01

    We investigated relationships between occupational exposure to gas and arc welding fumes and the risk of lung cancer among workers exposed to these agents throughout the spectrum of industries. Two population-based case–control studies were conducted in Montreal. Study I (1979–1986) included 857 cases and 1066 controls, and Study II (1996–2001) comprised 736 cases and 894 controls. Detailed job histories were obtained by interview and evaluated by an expert team of chemist–hygienists to estimate degree of exposure to approximately 300 substances for each job. Gas and arc welding fumes were among the agents evaluated. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer using logistic regression, adjusting for smoking history and other covariates. The two studies provided similar results, so a pooled analysis was conducted. Among all subjects, no significant association was found between lung cancer and gas welding fumes (OR = 1.1; 95% CI = 0.9–1.4) or arc welding fumes (OR = 1.0; 95% CI = 0.8–1.2). However, when restricting attention to light smokers, there was an increased risk of lung cancer in relation to gas welding fumes (OR = 2.9; 95% CI = 1.7–4.8) and arc welding fumes (OR = 2.3; 95% CI = 1.3–3.8), with even higher OR estimates among workers with the highest cumulative exposures. In conclusion, there was no detectable excess risk of lung cancer due to welding fumes among moderate to heavy smokers; but among light smokers we found an excess risk related to both types of welding fumes. PMID:23342253

  17. Control of Hydrogen Embrittlement in High Strength Steel Using Special Designed Welding Wire

    Science.gov (United States)

    2016-03-01

    microstructure 4. A low near ambient temperature is reached. • All four factor must be simultaneously present 3 Mitigating HIC and Improving Weld Fatigue...Performance Through Weld Residual Stress Control UNCLASIFIED:DISTRIBUTION A. Approved for public release: distribution unlimited. Click to edit Master...title style 4 • Welding of Armor Steels favors all these conditions for HIC • Hydrogen Present in Sufficient Degree – Derived from moisture in the

  18. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2013-10-24

    ... to remove an appendix that has been incorporated into relevant specifications. ADDRESSES: Please... procedure for the control of ferrite content in stainless steel weld metal. This guide provides methods that..., Safety Guide 31, ``Control of Stainless Steel Welding,'' issued August 1972, provided guidance to test...

  19. Synthetic Reference Materials Based on Polymer Films for the Control of Welding Fumes Composition

    Science.gov (United States)

    Kuznetsova, O. V.; Kuznetsova, A. N.; Begunova, L. A.

    2017-04-01

    Analysis of the current hygienic situation in the welding production showed that the intensification of welding processes involves the deterioration of air quality, which negatively affects the welders health. Welders are exposed to a variety of metal fumes, including manganese that may elevate the risk for neurological diseases. The control of metals concentration in the air of the working area is difficult due to the lack of reference materials. The creation of reference materials of welding fumes composition is a challenge due to chemical characteristics of their physical properties. Synthetic samples in a form of the polymer film containing powder particles of welding fumes were create. Studies on the selection of the polymer were done. Experiments proved that the qualitative materials of synthetic welding fumes are obtained by using polyvinyl alcohol. The metals concentration in the samples was determined by X-ray fluorescence analysis. The obtained data demonstrates indirectly the uniform distribution of welding fumes powder particles on the polymer film.

  20. Significance of the Resonance Condition for Controlling the Seam Position in Laser-assisted TIG Welding

    Science.gov (United States)

    Emde, B.; Huse, M.; Hermsdorf, J.; Kaierle, S.; Wesling, V.; Overmeyer, L.; Kozakov, R.; Uhrlandt, D.

    As an energy-preserving variant of laser hybrid welding, laser-assisted arc welding uses laser powers of less than 1 kW. Recent studies have shown that the electrical conductivity of a TIG welding arc changes within the arc in case of a resonant interaction between laser radiation and argon atoms. This paper presents investigations on how to control the position of the arc root on the workpiece by means of the resonant interaction. Furthermore, the influence on the welding result is demonstrated. The welding tests were carried out on a cooled copper plate and steel samples with resonant and non-resonant laser radiation. Moreover, an analysis of the weld seam is presented.

  1. The Design of Intelligent Repair Welding Mechanism and Relative Control System of Big Gear

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available Effective repair of worn big gear has large influence on ensuring safety production and enhancing economic benefits. A kind of intelligent repair welding method was put forward mainly aimed at the big gear restriction conditions of high production cost, long production cycle and high- intensity artificial repair welding work. Big gear repair welding mechanism was designed in this paper. The work principle and part selection of big gear repair welding mechanism was introduced. The three dimensional mode of big gear repair welding mechanism was constructed by Pro/E three dimensional design software. Three dimensional motions can be realized by motor controlling ball screw. According to involute gear feature, the complicated curve motion on curved gear surface can be transformed to linear motion by orientation. By this way, the repair welding on worn gear area can be realized. In the design of big gear repair welding mechanism control system, Siemens S7-200 series hardware was chosen. Siemens STEP7 programming software was chosen as system design tool. The entire repair welding process was simulated by experiment simulation. It provides a kind of practical and feasible method for the intelligent repair welding of big worn gear.

  2. Spectroscopic closed loop control of penetration depth in laser beam welding process

    NARCIS (Netherlands)

    Beyer, Eckhard; Sibillano, Teresa; Ancona, Antonio; Morris, Timothy; Rizzi, Domenico; Mezzapesa, Francesco; Konuk, A.R.; Aarts, Ronald G.K.M.; Huis in 't Veld, Bert; Lugara, Pietro Mario

    2012-01-01

    In-process monitoring and feedback control are fundamental actions for stable and good quality laser welding process. In particular, penetration depth is one of the most critical features to be monitored. In this research, overlap welding of stainless steel is investigated to stably reproduce a

  3. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2012-10-03

    ... Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff... guide describes a method that the staff of the U.S. Nuclear Regulatory Commission (NRC) considers... COMMISSION Control of Ferrite Content in Stainless Steel Weld Metal AGENCY: Nuclear Regulatory Commission...

  4. Pulse current gas metal arc welding characteristics, control and applications

    CERN Document Server

    Ghosh, Prakriti Kumar

    2017-01-01

    This monograph is a first-of-its-kind compilation on high deposition pulse current GMAW process. The nine chapters of this monograph may serve as a comprehensive knowledge tool to use advanced welding engineering in prospective applications. The contents of this book will prove useful to the shop floor welding engineer in handling this otherwise critical welding process with confidence. It will also serve to inspire researchers to think critically on more versatile applications of the unique nature of pulse current in GMAW process to develop cutting edge welding technology.

  5. A Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    1997-01-01

    A prototype shield gas box with different plasma control nozzles have been investigated for laser welding of stainless steel (AISI 316). Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and gas flows show the impact on process...... stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds...... are oxide free. With 2.7 kW power welds have been performed at 4000 mm/min with Ar / He (70%/30%) as coaxial, plasma and shield gas....

  6. Programmable Automated Welding System (PAWS): Control of welding through software and hardware

    Science.gov (United States)

    Kline, Martin D.; Doyle, Thomas E.

    1994-01-01

    The ATD phase of the PAWS program ended in November 1992 and the follow-on ManTech program was started in September 1993. The system will be industrially hardened during the first year of this program. Follow-on years will focus upon the transition into specific end-user sites. These implementations will also expand the system into other welding processes (e.g. FCAW, GTAW, PAW). In addition, the architecture is being developed for application to other non-welding robotic processes (e.g. inspection, surface finishing). Future development is anticipated to encompass hardening for extreme environments, expanded exception handling techniques, and application to a range of manipulators.

  7. Control of GMA Butt Joint Welding Based on Neural Networks

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2004-01-01

    in the challenging field of butt joint welding with full penetration under stochastically changing boundary conditions, e.g. major gap width variations. GMAW experiments performed on mild-steel plates (3 mm of thickness), show that high quality welds with uniform back-bead geometry are achievable for gap width...

  8. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    Directory of Open Access Journals (Sweden)

    Valeriy Shchavlev

    2012-12-01

    Full Text Available Electron beam welding (EBW shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  9. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    Science.gov (United States)

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  10. Quality control on crimping of large diameter welding pipe

    Science.gov (United States)

    Fan, Lifeng; Gao, Ying; Li, Qiang; Xu, Hongshen

    2012-11-01

    Crimping is used in production of large diameter submerged-arc welding pipes. Many researches are focused on crimping in certain manufacturing mode of welding pipe. The application scopes of research achievements become limited due to lack of uniformity in theoretical analysis. In order to propose a crimping prediction method in order to control forming quality, the theory model of crimping based on elastic-plastic mechanics is established. The main technical parameters are determined by theoretical analysis, including length of crimping, base radius of punch, terminal angle of punch, base radius of die, terminal angle of die and horizontal distance between punch and die. In addition, a method used to evaluate the forming quality is presented, which investigates the bending angle after springback, forming force, straight edge length and equivalent radius of curvature. In order to investigate the effects of technical parameters on forming quality, a two-dimensional finite element model is established by finite element software ABAQUS. The finite element model is verified in that its shapes error is less than 5% by comparable experiments, which shows that their geometric precision meets demand. The crimping characteristics is obtained, such as the distribution of stress and strain and the changes of forming force, and the relation curves of technical parameters on forming quality are given by simulation analysis. The sensitivity analysis indicates that the effects of length of crimping, technical parameters of punch on forming quality are significant. In particular, the data from simulation analysis are regressed by response surface method (RSM) to establish prediction model. The feasible technical parameters are obtained from the prediction model. This method presented provides a new thought used to design technical parameters of crimping forming and makes a basis for improving crimping forming quality.

  11. Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove; Petersen, Kaj

    1997-01-01

    An integrated plasma nozzle and a shield gas box have been investigated for laser welding of 2 mm stainless steel sheets. Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and coaxial and plasma flow show the impact on process...... stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds...... are oxide free. With 2.7 kW power welds have been performed at 3000 mm/min with Ar / He (70%/30%) as coaxial, plasma and shield gas....

  12. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    OpenAIRE

    Valeriy Shchavlev; Anatoliy Piskunov; Aleksandr Abdullin; Vladimir Belenkiy; Georgy Mladenov; Dmitriy Trushnikov

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which sub...

  13. Controls on the size and occurrence of pools in coarse-grained forest rivers

    Science.gov (United States)

    John M. Buffington; Thomas E. Lisle; Richard D. Woodsmith; Sue Hilton

    2002-01-01

    Controls on pool formation are examined in gravel- and cobble-bed rivers in forest mountain drainage basins of northern California, southern Oregon, and southeastern Alaska. We demonstrate that the majority of pools at our study sites are formed by flow obstructions and that pool geometry and frequency largely depend on obstruction characteristics (size, type, and...

  14. Welding method, and welding device for use therein, and method of analysis for evaluating welds

    NARCIS (Netherlands)

    Aendenroomer, A.J.; Den Ouden, G.; Xiao, Y.H.; Brabander, W.A.J.

    1995-01-01

    Described is a method of automatically welding pipes, comprising welding with a pulsation welding current and monitoring, by means of a sensor, the variations occurring in the arc voltage caused by weld pool oscillations. The occurrence of voltage variations with only frequency components below 100

  15. Development of precision numerical controlled high vacuum electron beam welding machine

    CERN Document Server

    Li Shao Lin

    2002-01-01

    The structure, main technical parameters and characteristics of the precision numerical controlled high vacuum electron beam welding machine are introduced. The design principle, some features and solutions to some key technique problems of this new type machine are described

  16. Design of Boiler Welding for Improvement of Lifetime and Cost Control.

    Science.gov (United States)

    Thong-On, Atcharawadi; Boonruang, Chatdanai

    2016-11-03

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone.

  17. Design of Boiler Welding for Improvement of Lifetime and Cost Control

    Directory of Open Access Journals (Sweden)

    Atcharawadi Thong-On

    2016-11-01

    Full Text Available Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone.

  18. Design of Boiler Welding for Improvement of Lifetime and Cost Control

    Science.gov (United States)

    Thong-On, Atcharawadi; Boonruang, Chatdanai

    2016-01-01

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone. PMID:28774014

  19. Remotely controlled semi-automatic welding of two revolution symmetrical pieces. Procede de soudage semi-automatique commande a distance de deux pieces symetriques de revolution

    Energy Technology Data Exchange (ETDEWEB)

    Gaudin, J.P.

    1988-07-22

    The welding is controlled from a control station situated at some distance from the welding zone. The welding parameters are fixed before the welding pass by an operator from values furnished by a memory in which the appropriate parameters are stored. After control of these parameters the welding operation is initiated. The welding operation is constantly observed on a remotely placed screen. The welding parameters may be adjusted by the operator in accordance with the image observed. These modifications are controlled by comparison with the memory content.

  20. Research on the Effects of Technical Parameters on the Molding of the Weld by A-TIG Welding

    OpenAIRE

    Shi, Kai; Pan, Wu

    2012-01-01

    The effects of welding parameters on the molding of weld by A-TIG welding of a 4mm thickness mild steel plate is studied in the present paper. The results obtained show that: as welding current increases A-TIG welding penetration gets deeper than TIG welding; size and shape of HAZ has remarkable change; A-TIG welding has the narrower weld pool width than TIG welding.

  1. Enhancing the Mechanical Properties of Electrospun Nanofiber Mats through Controllable Welding at the Cross Points.

    Science.gov (United States)

    Li, Haoxuan; Zhu, Chunlei; Xue, Jiajia; Ke, Qinfei; Xia, Younan

    2017-05-01

    This communication describes a simple and effective method for welding electrospun nanofibers at the cross points to enhance the mechanical properties of their nonwoven mats. The welding is achieved by placing a nonwoven mat of the nanofibers in a capped vial with the vapor of a proper solvent. For polycaprolactone (PCL) nanofibers, the solvent is dichloromethane (DCM). The welding can be managed in a controllable fashion by simply varying the partial pressure of DCM and/or the exposure time. Relative to the pristine nanofiber mat, the mechanical strength of the welded PCL nanofiber mat can be increased by as much as 200%. Meanwhile, such a treatment does not cause any major structural changes, including morphology, fiber diameter, and pore size. This study provides a generic method for improving the mechanical properties of nonwoven nanofiber mats, holding great potential in various applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys

    Science.gov (United States)

    Lee, Hee-Keun; Chun, Kwang-San; Park, Sang-Hyeon; Kang, Chung-Yun

    2015-07-01

    Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG) hybrid (PMH) welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.

  3. Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys

    Directory of Open Access Journals (Sweden)

    Hee-Keun Lee

    2015-07-01

    Full Text Available Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG hybrid (PMH welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.

  4. Increase in oxidative stress levels following welding fume inhalation: a controlled human exposure study.

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Sauvain, Jean-Jacques; Suarez, Guillaume; Wild, Pascal; Danuser, Brigitta; Riediker, Michael

    2016-06-10

    Tungsten inert gas (TIG) welding represents one of the most widely used metal joining processes in industry. It has been shown to generate a large majority of particles at the nanoscale and to have low mass emission rates when compared to other types of welding. Despite evidence that TIG fume particles may produce reactive oxygen species (ROS), limited data is available for the time course changes of particle-associated oxidative stress in exposed TIG welders. Twenty non-smoking male welding apprentices were exposed to TIG welding fumes for 60 min under controlled, well-ventilated settings. Exhaled breathe condensate (EBC), blood and urine were collected before exposure, immediately after exposure, 1 h and 3 h post exposure. Volunteers participated in a control day to account for oxidative stress fluctuations due to circadian rhythm. Biological liquids were assessed for total reducing capacity, hydrogen peroxide (H2O2), malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations at each time point. A linear mixed model was used to assess within day and between day differences. Significant increases in the measured biomarkers were found at 3 h post exposure. At 3 h post exposure, we found a 24 % increase in plasma-H2O2 concentrations ([95%CI: 4 % to 46 %], p = 0.01); a 91 % increase in urinary-H2O2 ([2 % to 258 %], p = 0.04); a 14 % increase in plasma-8-OHdG ([0 % to 31 %], p = 0.049); and a 45 % increase in urinary-8-OHdG ([3 % to 105 %], p = 0.03). Doubling particle number concentration (PNC) exposure was associated with a 22 % increase of plasma-8-OHdG at 3 h post exposure (p = 0.01). A 60-min exposure to TIG welding fume in a controlled, well-ventilated setting induced acute oxidative stress at 3 h post exposure in healthy, non-smoking apprentice welders not chronically exposed to welding fumes. As mass concentration of TIG welding fume particles is very low when compared to other types of welding, it is

  5. Automatic Optimization of Focal Point Position in CO2 Laser Welding with Neural Network in A Focus Control System

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    acquisition card - DAQCard-700, and a self-learning mechanism - Neural Network. The optimization procedure starts with the welding process being carried out by continuously moving the focal point position from above a welding plate to below the plate, thus the process is ensured to be shifted from initially...... surface welding to deep/full penetration welding and back to surface welding again. A clear change on plasma brightness from the process is monitored by the photo diode on the front side of the plate with a viewing angle of 45o. The photo diode signal is acquired with the A/D converter card and installed......-learning mechanism - neural network as the essence of the control system is trained with the photo diode signals extracted from various welding processes with the changes on the laser power, translation speed, material and thickness of the plate, shielding gas type and flow rate, and welding configuration...

  6. Foreground marker controlled watershed on digital radiographic image for weld discontinuity detection

    Science.gov (United States)

    Abd Halim, Suhaila; Zahid, Akhma; Abdul Razak, Nurul Syafinaz; Ibrahim, Arsmah; Manurung, Yupiter HP; Jayes, Mohd Idris

    2013-04-01

    Radiography is one of the most common and widely used non-destructive testing (NDT) technique in inspecting weld discontinuity in welded joints. Conventionally, radiography inspector is requires to do the inspection analysis manually on weld discontinuity based on visual characteristics such as location, shape, length and density. The results can be very subjective, time consuming and inconsistent. Hence, semi-automated inspection using digital image processing and segmentation technique can be applied for weld discontinuity detection. The goal of this work is to detect the weld discontinuity on digital radiographic image using Foreground Marker Controlled Watershed. It is usually implemented in image processing because it always generates closed contour for each region in the image. In this paper, image enhancement on radiographic image is aim to remove image noise and improve image contrast. Then, marker controlled watershed with foreground markers is applied on the image to detect the discontinuity. The accuracy of the technique is evaluated using Receiver Operating Characteristic (ROC) curve. The accuracy of the technique has been compared with the ground truth and the result shows that the accuracy is 67% and area under the curve is 0.7134. The application of image processing technique in detecting weld discontinuity is able to assist radiographer to improve the inconsistent results in evaluating the radiographic image.

  7. Spectroscopic closed loop control of penetration depth in laser beam welding process

    Science.gov (United States)

    Sibillano, Teresa; Ancona, Antonio; Rizzi, Domenico; Mezzapesa, Francesco; Konuk, Ali Riza; Aarts, Ronald; Huis in't Veld, Bert; Lugarà, Pietro Mario

    2012-03-01

    In-process monitoring and feedback control are fundamental actions for stable and good quality laser welding process. In particular, penetration depth is one of the most critical features to be monitored. In this research, overlap welding of stainless steel is investigated to stably reproduce a fixed penetration depth using both CO2 and Nd:YAG lasers. Plasma electron temperatures of Fe(I) and Cr(I) are evaluated as in process monitoring using the measurement of intensities of emission lines with fast spectrometers. The sensor system is calibrated using a quantitative relationship between electron temperature and penetration depth in different welding conditions. Finally closed loop control of the weld penetration depth is implemented by acquiring the electron temperature value and by adjusting the laser power to maintain a pre-set penetration depth. A PI controller is successfully used to stabilize the electron temperature around the set point corresponding to the right penetration depth starting from a wrong value of any initial laser power different than the set point. Optical inspection of the weld surface and macroscopic analyses of cross sections verify the results obtained with the proposed closed-loop system based on a spectroscopic controller and confirms the reliability of our system.

  8. Guidelines for Controlling Indoor Air Quality Problems Associated with Kilns, Copiers, and Welding in Schools. Technical Bulletin.

    Science.gov (United States)

    Turner, Ronald W.; And Others

    Guidelines for controlling indoor air quality problems associated with kilns, copiers, and welding in schools are provided in this document. Individual sections on kilns, duplicating equipment, and welding operations contain information on the following: sources of contaminants; health effects; methods of control; ventilation strategies; and…

  9. Closed loop control of penetration depth during CO2 laser lap welding processes

    NARCIS (Netherlands)

    Sibillano, T.; Rizzi, D.; Mezzapesa, F.P.; Lugara, P.M.; Konuk, A.R.; Aarts, Ronald G.K.M.; Huis in 't Veld, Bert; Ancona, A.

    2012-01-01

    In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to

  10. Sensors for quality control in welding Sensores para controle da qualidade em soldagem

    Directory of Open Access Journals (Sweden)

    Sadek Crisóstomo Absi Alfaro

    2012-09-01

    Full Text Available The classical inspection methods used for detecting and finding disturbances in welding process are based on direct measurement of its parameters as arc voltage, welding current, wire feed speed, etc. Using these inspection methods implies sensors insertion around the welding process and its presence could alter the metallic transference behavior and consequently an uneven quality as well as it can increase the production cost. For reducing these implications is necessary using a non intrusive inspection method. In this paper we will show nonintrusive methods to the weld quality inspection. These methods are based on sensor fusion, the extraction of global information coming from the interrelation data given by each sensor that, for example, sensing the spectroscopy radiation emission, the acoustic sensing of the electrical arc, the infrared emissions indicating the heat content of the weld. Finally, the fusion data will be applied to a statistical control for detecting and finding welding disturbances. The results will show that sensor fusion could be used as a tool to measure indirectly the weld quality in the GMAW process.Os métodos clássicos de inspeção utilizados para detectar e encontrar perturbações nos processos de soldagem são baseados comumente na medição direta de seus parâmetros como da tensão do arco, corrente de soldagem, velocidade de alimentação, etc. Usando esses métodos de inspeção implica inserção dos sensores em todo o processo de soldagem e sua presença poderia alterar o comportamento, por exemplo, da transferência metálica e, consequentemente, uma qualidade irregular da junta soldada, bem como provocaria o aumento do custo de produção. Para reduzir essas implicações é necessário usar um método de inspeção não intrusiva. Neste artigo mostrar-se métodos não intrusivos para a inspeção de qualidade de solda. Estes métodos baseiam-se na fusão de sensores, a extração da informação global

  11. Closed loop control of laser welding using an optical spectroscopic sensor for Nd:YAG and CO2 lasers

    NARCIS (Netherlands)

    Konuk, A.R.; Aarts, R.G.K.M.; Huis in 't Veld, A.J.; Sibillano, T.; Rizzi, D.; Ancona, A.

    2011-01-01

    Recent developments in laser joining show the applicability of spectral analysis of the plasma plume emission to monitor and control the quality of weld. The analysis of the complete spectra makes it possible to measure specific emission lines which reveal information about the welding process. The

  12. The application of fuzzy theory for the control of weld line positions in injection-molded part.

    Science.gov (United States)

    Chen, Mei-Yung; Tzeng, Huan-Wen; Chen, Yi-Cheng; Chen, Shia-Chung

    2008-01-01

    This research proposes the fuzzy theory for the control of weld lines in plastic injection molding. The weld line occurs as a result of geometrical changes in molded parts in the injection molding process. The weld line is one of the defects present in plastic injection-molded parts; the line affects the quality of parts as well as the strength of the products. In the present study, fuzzy theory was applied in the design of injection molding. First, expert experiences were transformed into IF approximately THEN approximately rules to establish the knowledge base for developing fuzzy inference rules. The rules were then used to adjust the molding parameters, which in turn were applied to control the weld line position in the injection molding process. The results indicate that fuzzy theory exhibited favorable applicability in the control of the weld line as well as decreased the simulation time, thereby accelerating the design process of injection molding.

  13. Real-time seam tracking for robotic laser welding using trajectory-based control

    NARCIS (Netherlands)

    de Graaf, M.W.; Aarts, Ronald G.K.M.; Jonker, Jan B.; Meijer, J.

    2010-01-01

    In this paper a real-time seam tracking algorithm is proposed that can cope with the accuracy demands of robotic laser welding. A trajectory-based control architecture is presented, which had to be developed for this seam tracking algorithm. Cartesian locations (position and orientation) are added

  14. Fire control method and analytical model for large liquid hydrocarbon pool fires

    Science.gov (United States)

    Fenton, D. L.

    1986-01-01

    The dominate parameter governing the behavior of a liquid hydrocarbon (JP-5) pool fire is wind speed. The most effective method of controlling wind speed in the vicinity of a large circular (10 m dia.) pool fire is a set of concentric screens located outside the perimeter. Because detailed behavior of the pool fire structure within one pool fire diameter is unknown, an analytical model supported by careful experiments is under development. As a first step toward this development, a regional pool fire model was constructed for the no-wind condition consisting of three zones -- liquid fuel, combustion, and plume -- where the predicted variables are mass burning rate and characteristic temperatures of the combustion and plume zones. This zone pool fire model can be modified to incorporate plume bending by wind, radiation absorption by soot particles, and a different ambient air flow entrainment rate. Results from the zone model are given for a pool diameter of 1.3 m and are found to reproduce values in the literature.

  15. Control of Saturation level in the magnetic core of a welding transformer by Hysteresis Controller (HC and Proportional Integral (PI Controller

    Directory of Open Access Journals (Sweden)

    Rama Subbanna.S

    2016-12-01

    Full Text Available The objective of this paper is to analyse the performances of two controllers such as Hysteresis control (HC and proportional integral (PI control to control saturation level in the magnetic core of a welding transformer in a middle-frequency direct current (MFDC resistance spot welding system(RSWS. It consists of an input converter, welding transformer, and a full-wave rectifier mounted at the transformer secondary. The unequal ohmic resistances of the two transformer’s secondary circuits and the different characteristics of the diodes of output rectifier certainly lead to the magnetic core saturation which, consequently, causes the unwanted spikes in the transformer’s primary current and over-current protection switch-off. The goal is to analyse the performance of both controllers in terms of transients, total harmonic distortion(THD and variations in primary current and flux in the magnetic core of a welding transformer of highly nonlinear system of RSWS. The simulation study has been done in Matlab/Simulink environment and presented performance analysis. The responses shows that from the aforementioned aspects, proportional integral Controller is the better choice for controlling the saturation level in magnetic core of a welding transformer which is widely used in automobile industry welding system.

  16. Hybrid laser arc welding: State-of-art review

    Science.gov (United States)

    Acherjee, Bappa

    2018-02-01

    Hybrid laser arc welding simultaneously utilizes the arc welding and the laser welding, in a common interaction zone. The synergic effects of laser beam and eclectic arc in the same weld pool results in an increase of welding speed and penetration depth along with the enhancement of gap bridging capability and process stability. This paper presents the current status of this hybrid technique in terms of research, developments and applications. Effort is made to present a comprehensive technical know-how about this process through a systematic review of research articles, industrial catalogues, technical notes, etc. In the introductory part of the review, an overview of the hybrid laser arc welding is presented, including operation principle, process requirements, historical developments, benefits and drawbacks of the process. This is followed by a detailed discussion on control parameters those govern the performance of hybrid laser arc welding process. Thereafter, a report of improvements of performance and weld qualities achieved by using hybrid welding process is presented based on review of several research papers. The succeeding sections furnish the examples of industrial applications and the concluding remarks.

  17. Feedback Linearization Based Arc Length Control for Gas Metal Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg

    2005-01-01

    In this paper a feedback linearization based arc length controller for gas metal arc welding (GMAW) is described. A nonlinear model describing the dynamic arc length is transformed into a system where nonlinearities can be cancelled by a nonlinear state feedback control part, and thus, leaving only......, the cancellation of nonlinear terms might give rise to problems with respect to robustness. Robustness of the closed loop system is therefore nvestigated by simulation....

  18. Experimental Investigation on Acoustic Control Droplet Transfer in Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    Science.gov (United States)

    Weifeng, Xie; Chenglei, Fan; Chunli, Yang; Sanbao, Lin

    2018-02-01

    Ultrasonic-wave-assisted gas metal arc welding (U-GMAW) is a new, advanced arc welding method that uses an ultrasonic wave emitted from an ultrasonic radiator above the arc. However, it remains unclear how the ultrasonic wave affects the metal droplet, hindering further application of U-GMAW. In this paper, an improved U-GMAW system was used and its superiority was experimentally demonstrated. Then a series of experiments were designed and performed to study how the ultrasonic wave affects droplet transfer, including droplet size, velocity, and motion trajectory. The behavior of droplet transfer was observed in high-speed images. The droplet transfer is closely related to the distribution of the acoustic field, determined by the ultrasonic current. Moreover, by analyzing the variably accelerated motion of the droplet, the acoustic control of the droplet transfer was intuitively demonstrated. Finally, U-GMAW was successfully used in vertical-up and overhead welding experiments, showing that U-GMAW is promising for use in welding in all positions.

  19. Process control in continuous high-power CO2 laser beam welding

    Science.gov (United States)

    Seidel, Bernd; Beersiek, Jorg; Beyer, Eckhard

    1994-09-01

    The use of high power CO2 lasers in welding enables processing with high laser intensities at the workpiece which is connected with the formation of a laser induced plasma at the surface of the workpiece. Therefore the effect of deep penetration welding by formation of a plasma filled keyhole and plasma plume above the workpiece is possible, including the risk of plasma shielding, which means strong absorption of the incident laser beam above the workpiece and thus interruption of the welding process. The conditions for ignition of plasma shielding, which is determined by electron density, are mainly influenced by laser intensity, process gas and material. Variations of these parameters have been conducted in order to find limits for the appearance of plasma shielding. Experimental data are used to verify a model concerning the absorption mechanism of a stationary shielding plasma state. The dynamic behavior is treated by time resolved spectroscopic analysis of the light emitted by the plasma above the workpiece yielding monitoring signals that have a strong correlation with the formation of plasma shielding. Based on these investigations a closed-loop process control in continuous high power laser welding has been developed. Using the intensity of a spectral line of laser induced plasma as monitoring signal and the regulation of laser intensity via laser power, plasma shielding can be suppressed. From the industrial point of view increase in economy and reliability of the laser welding process combined with quality improvements which are induced by the application of the plasma shielding controller (PSC) are of great importance. For this reason three examples of PSC application are presented.

  20. Concerning Workload Control and Order Release : The Pre-Shop Pool Sequencing Decision

    NARCIS (Netherlands)

    Thürer, Matthias; Land, Martin J.; Stevenson, Mark; Fredendall, Lawrence D.; Godinho Filho, Moacir

    2015-01-01

    Every production planning concept that incorporates controlled order release will initially withhold jobs from the shop floor and create a pre-shop pool. Order release is a key component of the Workload Control concept that aims to maintain work-in-process within limits while ensuring due dates are

  1. Use of a Secondary Current Sensor in Plasma during Electron-Beam Welding with Focus Scanning for Process Control

    OpenAIRE

    Dmitriy Trushnikov; Elena Krotova; Elena Koleva

    2016-01-01

    We consider questions of building a closed-loop focus control system for electron-beam welding. As a feedback signal, we use the secondary current in the plasma that forms above the welding zone. This article presents a model of a secondary current sensor in plasma during electron-beam welding with focus scanning. A comparison of modeled results with experimental data confirms the adequacy of the model. We show that the best results for focus control are obtained when using phase relationship...

  2. Pooled safety and tolerability data from four placebo-controlled teriflunomide studies and extensions.

    Science.gov (United States)

    Comi, Giancarlo; Freedman, Mark S; Kappos, Ludwig; Olsson, Tomas P; Miller, Aaron E; Wolinsky, Jerry S; O'Connor, Paul W; Benamor, Myriam; Dukovic, Deborah; Truffinet, Philippe; Leist, Thomas P

    2016-01-01

    Teriflunomide, a once-daily oral immunomodulator for the treatment of relapsing-remitting multiple sclerosis, has demonstrated consistent efficacy on clinical and MRI parameters in clinical trials. To summarize the safety and tolerability profile of teriflunomide based on data from four placebo-controlled trials. Safety and tolerability were assessed using two teriflunomide clinical program data pools. Pool 1 contained 3044 patients randomized to teriflunomide (14 mg or 7 mg) or placebo in the core studies of one phase 2 trial and three phase 3 trials, with cumulative treatment exposure >1500 patient-years per group. Pool 2 comprised 2338 patients who received teriflunomide treatment in the above trials, including those continuing in extension studies, with a duration of treatment up to 12 years, representing >6800 patient-years. Safety assessments included adverse events, laboratory parameters, and physical examinations. In Pool 1, the number of patients experiencing adverse events and serious adverse events was similar in the three treatment groups. Common events occurring in ≥ 10% of patients in either teriflunomide group, and with an incidence ≥ 2% compared with placebo, were alanine aminotransferase (ALT) increase, headache, diarrhea, hair thinning, and nausea. Overall, the nature of events observed in Pool 2 was similar to Pool 1. The majority of events in both pools were of mild-to-moderate intensity, were self-limiting, and infrequently resulted in discontinuation of therapy. The most common reason for treatment discontinuation in all treatment groups was ALT elevation, reflecting the protocol requirement to discontinue treatment on confirmation of ALT > 3 × the upper limit of normal. No new or unexpected safety signals beyond those detected in individual trials were identified in this pooled analysis with treatment duration exceeding 12 years and a cumulative exposure to teriflunomide exceeding 6800 patient-years. Overall, both doses of teriflunomide

  3. Controlled short-circuiting MIG-MAG welding process and procedures applied to the root pass in pipeline construction; Processo de soldagem MIG/MAG em curto-circuito controlado e procedimentos aplicados ao passe de raiz na construcao de linhas dutoviarias

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Regis H.G. e; Gohr Junior, Raul; Weck, Leonardo W.A. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Soldagem e Mecatronica (LABSOLDA)

    2005-07-01

    The work deals with the study and development of the Controlled Short-Circuiting MIG/MAG Welding Process (CCC) and procedures for the root pass on pipes, in pipelines construction. The developed process (CCC) consists in an semi-automatic slag free operation, yielding higher productivity than the Coated Electrode and TIG processes, with satisfactory properties on the root weld. The significant influence of the welding over the time schedule and construction cost makes the development of this technology attractive, in order to become available at low cost, enhancing the companies' competitiveness in the globalized oil sector. The developed system, a MIG/MAG variant, features the advantages of short-circuiting metal transfer and avoids its inconveniences (mainly with high CO{sub 2} content gases), enabling its use on pipes root welding. This is possible through current waveform control, providing process and weld pool stability. Procedures for the root pass were determined for each of the welding positions reached in thick walled pipes welding, with the CCC. Also, the low welder training time was notable. (author)

  4. Automated control of the laser welding process of heart valve scaffolds

    OpenAIRE

    Weber Moritz; Hoheisel Anna L.; Glasmacher Birgit

    2016-01-01

    Using the electrospinning process the geometry of a heart valve is not replicable by just one manufacturing process. To produce heart valve scaffolds the heart valve leaflets and the vessel have to be produced in separated spinning processes. For the final product of a heart valve they have to be mated afterwards. In this work an already existing three-axes laser was enhanced to laser weld those scaffolds. The automation control software is based on the robot operating system (ROS). The mecha...

  5. A pooled analysis of case-control studies of thyroid cancer - I. Methods

    NARCIS (Netherlands)

    Negri, E; Ron, E; Franceschi, S; Dal Maso, L; Mark, SD; Preston-Martin, S; McTiernan, A; Kolonel, L; Kleinerman, R; Land, C; Jin, F; Wingren, G; Galanti, MR; Hallquist, A; Glattre, E; Lund, E; Levi, F; Linos, D; Braga, C; La Vecchia, C

    Objective. Because the etiology of thyroid cancer is not well described, we conducted a pooled analysis of all published case-control studies, as well as two identified unpublished studies. This paper describes the major characteristics of the 14 studies included in the analysis, as well as the

  6. A Positive Control for Detection of Functional CD4 T Cells in PBMC: The CPI Pool.

    Science.gov (United States)

    Schiller, Annemarie; Zhang, Ting; Li, Ruliang; Duechting, Andrea; Sundararaman, Srividya; Przybyla, Anna; Kuerten, Stefanie; Lehmann, Paul V

    2017-12-07

    Testing of peripheral blood mononuclear cells (PBMC) for immune monitoring purposes requires verification of their functionality. This is of particular concern when the PBMC have been shipped or stored for prolonged periods of time. While the CEF (Cytomegalo-, Epstein-Barr and Flu-virus) peptide pool has become the gold standard for testing CD8 cell functionality, a positive control for CD4 cells is so far lacking. The latter ideally consists of proteins so as to control for the functionality of the antigen processing and presentation compartments, as well. Aiming to generate a positive control for CD4 cells, we first selected 12 protein antigens from infectious/environmental organisms that are ubiquitous: Varicella, Influenza, Parainfluenza, Mumps, Cytomegalovirus, Streptococcus , Mycoplasma , Lactobacillus , Neisseria , Candida , Rubella, and Measles. Of these antigens, three were found to elicited interferon (IFN)-γ-producing CD4 cells in the majority of human test subjects: inactivated cytomegalo-, parainfluenza-, and influenza virions (CPI). While individually none of these three antigens triggered a recall response in all donors, the pool of the three (the 'CPI pool'), did. One hundred percent of 245 human donors tested were found to be CPI positive, including Caucasians, Asians, and African-Americans. Therefore, the CPI pool appears to be suitable to serve as universal positive control for verifying the functionality of CD4 and of antigen presenting cells.

  7. Lung cancer risk and welding--preliminary results from an ongoing case-control study.

    Science.gov (United States)

    Jöckel, K H; Ahrens, W; Bolm-Audorff, U

    1994-06-01

    In a hospital-based case-control study, 391 male cases or primary lung cancer and the same number of controls--matched by sex, age, and region--were personally interviewed for their job and smoking histories. The data reported reflect the midpoint of a study aiming at a total of 1,000 cases. One objective of the study was to assess confounding by asbestos exposure in what was thought to be a welding-associated risk. While the odds ratios (OR) increased steeply with cumulative exposure to tobacco smoke and were raised also for lifelong asbestos exposure of over 4,100 working hours (OR = 1.91), the effect of welding exposure was reduced after adjustment for smoking and exposure to asbestos. Furthermore, no consistent dose-response relationship could be shown in relation to welding hours. Therefore the present study supports the hypothesis that some, if not all, of the excess risk of welders observed in the literature may be due to the exposure to asbestos. The finding that the subgroup of employees in the aircraft industry showed an increased odds ratio of 2.14 after adjustment for smoking and exposure to asbestos deserves further attention. This suggests the need for further research on the role of berryllium-containing alloys, which has been suggested by other authors.

  8. Assessment of skewed exposure in case-control studies with pooling.

    Science.gov (United States)

    Whitcomb, Brian W; Perkins, Neil J; Zhang, Zhiwei; Ye, Aijun; Lyles, Robert H

    2012-09-28

    Pooling-based strategies that combine samples from multiple participants for laboratory assays have been proposed for epidemiologic investigations of biomarkers to address issues including cost, efficiency, detection, and when minimal sample volume is available. A modification of the standard logistic regression model has been previously described to allow use with pooled data; however, this model makes assumptions regarding exposure distribution and logit-linearity of risk (i.e., constant odds ratio) that can be violated in practice. We were motivated by a nested case-control study of miscarriage and inflammatory factors with highly skewed distributions to develop a more flexible model for analysis of pooled data. Using characteristics of the gamma distribution and the relation between models of binary outcome conditional on exposure and of exposure conditional on outcome, we use a modified logistic regression to accommodate nonlinearity because of unequal shape parameters in gamma distributed exposure for cases and controls. Using simulations, we compare our approach with existing methods for logistic regression for pooled data considering: (1) constant and dose-dependent effects; (2) gamma and log-normal distributed exposure; (3) effect size; and (4) the proportions of biospecimens pooled. We show that our approach allows estimation of odds ratios that vary with exposure level, yet has minimal loss of efficiency compared with existing approaches when exposure effects are dose-invariant. Our model performed similarly to a maximum likelihood estimation approach in terms of bias and efficiency, and provides an easily implemented approach for estimation with pooled biomarker data when effects may not be constant across exposure. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Case-control association testing of common variants from sequencing of DNA pools.

    Directory of Open Access Journals (Sweden)

    Allan F McRae

    Full Text Available While genome-wide association studies (GWAS have been successful in identifying a large number of variants associated with disease, the challenge of locating the underlying causal loci remains. Sequencing of case and control DNA pools provides an inexpensive method for assessing all variation in a genomic region surrounding a significant GWAS result. However, individual variants need to be ranked in terms of the strength of their association to disease in order to prioritise follow-up by individual genotyping. A simple method for testing for case-control association in sequence data from DNA pools is presented that allows the partitioning of the variance in allele frequency estimates into components due to the sampling of chromosomes from the pool during sequencing, sampling individuals from the population and unequal contribution from individuals during pool construction. The utility of this method is demonstrated on a sequence from the alcohol dehydrogenase (ADH gene cluster on a case-control sample for heavy alcohol consumption.

  10. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    Science.gov (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  11. Sensor integration for robotic laser welding processes

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Ostendorf, A; Hoult, A.; Lu, Y.

    2005-01-01

    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process,

  12. Automated control of the laser welding process of heart valve scaffolds

    Directory of Open Access Journals (Sweden)

    Weber Moritz

    2016-09-01

    Full Text Available Using the electrospinning process the geometry of a heart valve is not replicable by just one manufacturing process. To produce heart valve scaffolds the heart valve leaflets and the vessel have to be produced in separated spinning processes. For the final product of a heart valve they have to be mated afterwards. In this work an already existing three-axes laser was enhanced to laser weld those scaffolds. The automation control software is based on the robot operating system (ROS. The mechatronically control is done by an Arduino Mega. A graphical user interface (GUI is written with Python and Kivy.

  13. Modeling, simulation and control of pulsed DE-GMA welding process for joining of aluminum to steel

    Science.gov (United States)

    Zhang, Gang; Shi, Yu; Li, Jie; Huang, Jiankang; Fan, Ding

    2014-09-01

    Joining of aluminum to steel has attracted significant attention from the welding research community, automotive and rail transportation industries. Many current welding methods have been developed and applied, however, they can not precisely control the heat input to work-piece, they are high costs, low efficiency and consist lots of complex welding devices, and the generated intermetallic compound layer in weld bead interface is thicker. A novel pulsed double electrode gas metal arc welding(Pulsed DE-GMAW) method is developed. To achieve a stable welding process for joining of aluminum to steel, a mathematical model of coupled arc is established, and a new control scheme that uses the average feedback arc voltage of main loop to adjust the wire feed speed to control coupled arc length is proposed and developed. Then, the impulse control simulation of coupled arc length, wire feed speed and wire extension is conducted to demonstrate the mathematical model and predict the stability of welding process by changing the distance of contact tip to work-piece(CTWD). To prove the proposed PSO based PID control scheme's feasibility, the rapid prototyping experimental system is setup and the bead-on-plate control experiments are conducted to join aluminum to steel. The impulse control simulation shows that the established model can accurately represent the variation of coupled arc length, wire feed speed and the average main arc voltage when the welding process is disturbed, and the developed controller has a faster response and adjustment, only runs about 0.1 s. The captured electric signals show the main arc voltage gradually closes to the supposed arc voltage by adjusting the wire feed speed in 0.8 s. The obtained typical current waveform demonstrates that the main current can be reduced by controlling the bypass current under maintaining a relative large total current. The control experiment proves the accuracy of proposed model and feasibility of new control scheme

  14. Dynamics of space welding impact and corresponding safety welding study.

    Science.gov (United States)

    Fragomeni, James M; Nunes, Arthur C

    2004-03-01

    This study was undertaken in order to be sure that no hazard would exist from impingement of hot molten metal particle detachments upon an astronauts space suit during any future electron beam welding exercises or experiments. The conditions under which molten metal detachments might occur in a space welding environment were analyzed. The safety issue is important during welding with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at low earth orbit. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were determined for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. A weld pool detachment parameter for specifying the conditions for metal weld pool detachment by impact was derived and correlated to the experimental results. The experimental results were for the most part consistent with the theoretical analysis and predictions. c2003 Elsevier Ltd. All rights reserved.

  15. Dynamics of space welding impact and corresponding safety welding study

    Science.gov (United States)

    Fragomeni, James M.; Nunes, Arthur C.

    2004-03-01

    This study was undertaken in order to be sure that no hazard would exist from impingement of hot molten metal particle detachments upon an astronauts space suit during any future electron beam welding exercises or experiments. The conditions under which molten metal detachments might occur in a space welding environment were analyzed. The safety issue is important during welding with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at low earth orbit. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were determined for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. A weld pool detachment parameter for specifying the conditions for metal weld pool detachment by impact was derived and correlated to the experimental results. The experimental results were for the most part consistent with the theoretical analysis and predictions.

  16. Development of laser cutting/welding depth control using laser spectroscopy and open architecture control of a robotic system

    Energy Technology Data Exchange (ETDEWEB)

    McKee, G.R.; Meirans, L.; Schmitt, D.J.; Small, D.; Watterberg, P.A. [Sandia National Labs., Albuquerque, NM (United States); Siegel, S. [PaR Systems, Inc., Shoreview, MN (United States)

    1998-03-01

    This project was driven by the need to identify and provide unique, state-of-the-art solutions to the robotic path planning and precision motion execution problems that face automated processes such as welding and cutting using lasers. The initial LDRD proposal was for a full three years program with a schedule that would create a precision robotic platform capable of providing path planning and precision motion execution using sensor and graphical programming technologies as the first year milestone. Milestones for year two were centered in developing and deploying sensor technologies that support welding and cutting. And year three milestones included the integration of any developed sensors onto the robotic platform under software control to achieve autonomous control of laser welding and cutting processes. The work performed was directed at the goal of establishing a precision robotics platform with the capability to integrate graphical programming, CAD model based path planning, and motion execution under real-time sensor based control. This report covers the progress made toward that goal during the one year of funding.

  17. Local exhaust ventilation for the control of welding fumes in the construction industry--a literature review.

    Science.gov (United States)

    Flynn, Michael R; Susi, Pam

    2012-08-01

    Arc welding is a common unit operation in the construction industry, where frequent changes in location and welding position make it more difficult to control fume exposures than in industries where fixed locations are the norm. Welders may be exposed to a variety of toxic airborne contaminants including manganese (Mn) and hexavalent chromium (CrVI). Local exhaust ventilation (LEV) is a well-known engineering control for welding fumes but has not been adopted widely in the construction industry. This literature review presents data on the performance of a variety of LEV systems for welding fume control from the construction (five references), shipyard (five references), and other industries. The studies indicate that LEV can reduce fume exposures to total particulate, Mn, and CrVI to levels below currently relevant standards. Field studies suggest that 40-50% or more reduction in exposure is possible with portable or fixed LEV systems relative to natural ventilation but that correct positioning of the hood and adequate exhaust flow rates are essential. Successful implementation of extraction guns for gas metal arc welding (GMAW) and flux core arc welding has been demonstrated, indicating that a successful balance between extraction airflow and shielding gas requirements is possible. Work practices are an important part of achieving successful control of fume exposures; in particular, positioning the hood close to the arc, checking exhaust flow rates, and avoiding the plume. Further research is needed on hood size effects for controlling welding fume with portable LEV systems and identifying and overcoming barriers to LEV use in construction.

  18. A Positive Control for Detection of Functional CD4 T Cells in PBMC: The CPI Pool

    Directory of Open Access Journals (Sweden)

    Annemarie Schiller

    2017-12-01

    Full Text Available Testing of peripheral blood mononuclear cells (PBMC for immune monitoring purposes requires verification of their functionality. This is of particular concern when the PBMC have been shipped or stored for prolonged periods of time. While the CEF (Cytomegalo-, Epstein-Barr and Flu-virus peptide pool has become the gold standard for testing CD8 cell functionality, a positive control for CD4 cells is so far lacking. The latter ideally consists of proteins so as to control for the functionality of the antigen processing and presentation compartments, as well. Aiming to generate a positive control for CD4 cells, we first selected 12 protein antigens from infectious/environmental organisms that are ubiquitous: Varicella, Influenza, Parainfluenza, Mumps, Cytomegalovirus, Streptococcus, Mycoplasma, Lactobacillus, Neisseria, Candida, Rubella, and Measles. Of these antigens, three were found to elicited interferon (IFN-γ-producing CD4 cells in the majority of human test subjects: inactivated cytomegalo-, parainfluenza-, and influenza virions (CPI. While individually none of these three antigens triggered a recall response in all donors, the pool of the three (the ‘CPI pool’, did. One hundred percent of 245 human donors tested were found to be CPI positive, including Caucasians, Asians, and African-Americans. Therefore, the CPI pool appears to be suitable to serve as universal positive control for verifying the functionality of CD4 and of antigen presenting cells.

  19. Monitoring and Control of the Hybrid Laser-Gas Metal-Arc Welding Process

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D. C.; McJunkin, T. R.; Nichol, C. I.; Clark, D.; Todorov, E.; Couch, R. D.; Yu, F.

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  20. Melting Efficiency During Plasma Arc Welding

    Science.gov (United States)

    McClure, J.C.; Evans, D. M.; Tang, W.; Nunes, A. C.

    1999-01-01

    A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 aluminum. Arc Efficiency was measured calorimetrically and ranged between 48% and 66%. Melting efficiency depends on the weld pool shape. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Higher currents are thought to raise arc pressure and depress the liquid at the bottom of the weld pool causing a more nearly two dimensional heat flow condition.

  1. Heat sink welding of austenitic stainless steel pipes to control distortion and residual stress

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, H.; Albert, S.K.; Bhaduri, A.K. [Materials Technology Div., Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2007-07-01

    Construction of India's Prototype Fast Breeder Reactor (PFBR) involves extensive welding of austenitic stainless steels pipes of different dimensions. Due to high thermal expansion coefficient and poor thermal conductivity of this class of steels, welding can result in significant distortion of these pipes. Attempts to arrest this distortion can lead to high levels of residual stresses in the welded parts. Heat sink welding is one of the techniques often employed to minimize distortion and residual stress in austenitic stainless steel pipe welding. This technique has also been employed to repair welding of the piping of the Boiling Water Reactors (BWRs) subjected to radiation induced intergranular stress corrosion cracking (IGSCC). In the present study, a comparison of the distortion in two pipe welds, one made with heat sink welding and another a normal welds. Pipes of dimensions 350{phi} x 250(L) x 8(t) mm was fabricated from 316LN plates of dimensions 1100 x 250 x 8 mm by bending and long seam (L-seam) welding by SMAW process. Two fit ups with a root gap of 2 mm, land height of 1mm and a groove angle of 70 were prepared using these pipes for circumferential seam (C-seam) welding. Dimensions at predetermined points in the fit up were made before and after welding to check the variation in radius, circumference and and ovality of the pipes. Root pass for both the pipe fit up were carried out using conventional GTAW process with 1.6 mm AWS ER 16-8-2 as consumables. Welding of one of the pipe fit ups were completed using conventions GTAW process while the other was completed using heat sink welding. For second and subsequent layers of welding using this process, water was sprayed at the root side of the joint while welding was in progress. Flow rate of the water was {proportional_to}6 1/minute. Welding parameters employed were same as those used for the other pipe weld. Results of the dimensional measurements showed that there is no circumferential shrinkage in

  2. The Dynamics and Sliding Mode Control of Multiple Cooperative Welding Robot Manipulators

    Directory of Open Access Journals (Sweden)

    Bin Zi

    2012-08-01

    Full Text Available This paper deals with the design, dynamic modelling and sliding mode control of multiple cooperative welding robot manipulators (MWRMs. The MWRMs can handle complex tasks that are difficult or even impossible for a single manipulator. The kinematics and dynamics of the MWRMs are studied on the basis of the Denavit-Hartenberg and Lagrange method. Following that, considering the MWRM system with nonlinear and unknown disturbances, a non-singular terminal sliding mode control strategy is designed. By means of the Lyapunov function, the stability of the controller is proved. Simulation results indicate that the good control performance of the MWRMs is achieved by the non-singular terminal sliding mode controller, which also illustrates the correctness of the dynamic modelling and effectiveness of the proposed control strategy.

  3. Use of a Secondary Current Sensor in Plasma during Electron-Beam Welding with Focus Scanning for Process Control

    Directory of Open Access Journals (Sweden)

    Dmitriy Trushnikov

    2016-01-01

    Full Text Available We consider questions of building a closed-loop focus control system for electron-beam welding. As a feedback signal, we use the secondary current in the plasma that forms above the welding zone. This article presents a model of a secondary current sensor in plasma during electron-beam welding with focus scanning. A comparison of modeled results with experimental data confirms the adequacy of the model. We show that the best results for focus control are obtained when using phase relationships rather than amplitude relationships. We outline the principles for building an EBW focus control system based on parameters of the secondary current in plasma. We simulate the work of a control system’s circuits and demonstrate the stability of the synthesized system. We have conducted pilot tests on an experimental prototype.

  4. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  5. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    Science.gov (United States)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  6. Modelling and control for laser based welding processes: modern methods of process control to improve quality of laser-based joining methods

    Science.gov (United States)

    Zäh, Ralf-Kilian; Mosbach, Benedikt; Hollwich, Jan; Faupel, Benedikt

    2017-02-01

    To ensure the competitiveness of manufacturing companies it is indispensable to optimize their manufacturing processes. Slight variations of process parameters and machine settings have only marginally effects on the product quality. Therefore, the largest possible editing window is required. Such parameters are, for example, the movement of the laser beam across the component for the laser keyhole welding. That`s why it is necessary to keep the formation of welding seams within specified limits. Therefore, the quality of laser welding processes is ensured, by using post-process methods, like ultrasonic inspection, or special in-process methods. These in-process systems only achieve a simple evaluation which shows whether the weld seam is acceptable or not. Furthermore, in-process systems use no feedback for changing the control variables such as speed of the laser or adjustment of laser power. In this paper the research group presents current results of the research field of Online Monitoring, Online Controlling and Model predictive controlling in laser welding processes to increase the product quality. To record the characteristics of the welding process, tested online methods are used during the process. Based on the measurement data, a state space model is ascertained, which includes all the control variables of the system. Depending on simulation tools the model predictive controller (MPC) is designed for the model and integrated into an NI-Real-Time-System.

  7. An integrated approach for predictive control of extrusion weld seams: experimental support

    NARCIS (Netherlands)

    Bakker, A.J. den; Werkhoven, R.J.; Sillekens, W.H.; Katgerman, L.

    2010-01-01

    In hollow aluminium extrusions, longitudinal weld-seams are formed through a solid-state bonding process at elevated temperatures and under conditions of interfacial pressure and plastic deformation. For structurally loaded components, sound weld seams are imperative. In our research, a weld seam

  8. Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods.

    Science.gov (United States)

    González-Rubio, Guillermo; González-Izquierdo, Jesús; Bañares, Luis; Tardajos, Gloria; Rivera, Antonio; Altantzis, Thomas; Bals, Sara; Peña-Rodríguez, Ovidio; Guerrero-Martínez, Andrés; Liz-Marzán, Luis M

    2015-12-09

    Directed assembly of gold nanorods through the use of dithiolated molecular linkers is one of the most efficient methodologies for the morphologically controlled tip-to-tip assembly of this type of anisotropic nanocrystals. However, in a direct analogy to molecular polymerization synthesis, this process is characterized by difficulties in chain-growth control over nanoparticle oligomers. In particular, it is nearly impossible to favor the formation of one type of oligomer, making the methodology hard to use for actual applications in nanoplasmonics. We propose here a light-controlled synthetic procedure that allows obtaining selected plasmonic oligomers in high yield and with reaction times in the scale of minutes by irradiation with low fluence near-infrared (NIR) femtosecond laser pulses. Selective inhibition of the formation of gold nanorod n-mers (trimers) with a longitudinal localized surface plasmon in resonance with a 800 nm Ti:sapphire laser, allowed efficient trapping of the (n - 1)-mers (dimers) by hot spot mediated photothermal decomposition of the interparticle molecular linkers. Laser irradiation at higher energies produced near-field enhancement at the interparticle gaps, which is large enough to melt gold nanorod tips, offering a new pathway toward tip-to-tip welding of gold nanorod oligomers with a plasmonic response at the NIR. Thorough optical and electron microscopy characterization indicates that plasmonic oligomers can be selectively trapped and welded, which has been analyzed in terms of a model that predicts with reasonable accuracy the relative concentrations of the main plasmonic species.

  9. Analysis of Proportional Integral and Optimized Proportional Integral Controllers for Resistance Spot Welding System (RSWS) - A Performance Perspective

    Science.gov (United States)

    Rama Subbanna, S.; Suryakalavathi, M., Dr.

    2017-08-01

    This paper is an attempt to accomplish a performance analysis of the different control techniques on spikes reduction method applied on the medium frequency transformer based DC spot welding system. Spike reduction is an important factor to be considered while spot welding systems are concerned. During normal RSWS operation welding transformer’s magnetic core can become saturated due to the unbalanced resistances of both transformer secondary windings and different characteristics of output rectifier diodes, which causes current spikes and over-current protection switch-off of the entire system. The current control technique is a piecewise linear control technique that is inspired from the DC-DC converter control algorithms to register a novel spike reduction method in the MFDC spot welding applications. Two controllers that were used for the spike reduction portion of the overall applications involve the traditional PI controller and Optimized PI controller. Care is taken such that the current control technique would maintain a reduced spikes in the primary current of the transformer while it reduces the Total Harmonic Distortion. The performance parameter that is involved in the spikes reduction technique is the THD, Percentage of current spike reduction for both techniques. Matlab/SimulinkTM based simulation is carried out for the MFDC RSWS with KW and results are tabulated for the PI and Optimized PI controllers and a tradeoff analysis is carried out.

  10. In-line process control for laser welding of titanium by high dynamic range ratio pyrometry and plasma spectroscopy

    Science.gov (United States)

    Lempe, B.; Taudt, C.; Baselt, T.; Rudek, F.; Maschke, R.; Basan, F.; Hartmann, P.

    2014-02-01

    The production of complex titanium components for various industries using laser welding processes has received growing attention in recent years. It is important to know whether the result of the cohesive joint meets the quality requirements of standardization and ultimately the customer requirements. Erroneous weld seams can have fatal consequences especially in the field of car manufacturing and medicine technology. To meet these requirements, a real-time process control system has been developed which determines the welding quality through a locally resolved temperature profile. By analyzing the resulting weld plasma received data is used to verify the stability of the laser welding process. The determination of the temperature profile is done by the detection of the emitted electromagnetic radiation from the material in a range of 500 nm to 1100 nm. As detectors, special high dynamic range CMOS cameras are used. As the emissivity of titanium depends on the wavelength, the surface and the angle of radiation, measuring the temperature is a problem. To solve these a special pyrometer setting with two cameras is used. That enables the compensation of these effects by calculating the difference between the respective pixels on simultaneously recorded images. Two spectral regions with the same emissivity are detected. Therefore the degree of emission and surface effects are compensated and canceled out of the calculation. Using the spatially resolved temperature distribution the weld geometry can be determined and the laser process can be controlled. The active readjustment of parameters such as laser power, feed rate and inert gas injection increases the quality of the welding process and decreases the number of defective goods.

  11. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  12. Vertical Stability of Ephemeral Step-Pool Streams Largely Controlled By Tree Roots, Central Kentucky, USA

    Science.gov (United States)

    Macmannis, K. R.; Hawley, R. J.

    2013-12-01

    The mechanisms controlling stability on small streams in steep settings are not well documented but have many implications related to stream integrity and water quality. For example, channel instability on first and second order streams is a potential source of sediment in regulated areas with Total Maximum Daily Loads (TMDLs) on water bodies that are impaired for sedimentation, such as the Chesapeake Bay. Management strategies that preserve stream integrity and protect channel stability are critical to communities that may otherwise require large capital investments to meet TMDLs and other water quality criteria. To contribute to an improved understanding of ephemeral step-pool systems, we collected detailed hydrogeomorphic data on 4 steep (0.06 - 0.12 meter/meter) headwater streams draining to lower relief alluvial valleys in Spencer County, Kentucky, USA. The step-pool streams (mean step height of 0.47 meter, mean step spacing of 4 meters) drained small undeveloped catchments dominated by early successional forest. Data collection for each of the 4 streams included 2 to 3 cross section surveys, bed material particle counts at cross section locations, and profile surveys ranging from approximately 125 to 225 meters in length. All survey data was systematically processed to understand geometric parameters such as cross sectional area, depth, and top width; bed material gradations; and detailed profile measurements such as slope, pool and riffle lengths, pool spacing, pool depth, step height, and step length. We documented the location, frequency, and type of step-forming materials (i.e., large woody debris (LWD), rock, and tree roots), compiling a database of approximately 130 total steps. Lastly, we recorded a detailed tree assessment of all trees located within 2 meters of the top of bank, detailing the species of tree, trunk diameter, and approximate distance from the top of bank. Analysis of geometric parameters illustrated correlations between channel

  13. Control of Cr6+ emissions from gas metal arc welding using a silica precursor as a shielding gas additive.

    Science.gov (United States)

    Topham, Nathan; Wang, Jun; Kalivoda, Mark; Huang, Joyce; Yu, Kuei-Min; Hsu, Yu-Mei; Wu, Chang-Yu; Oh, Sewon; Cho, Kuk; Paulson, Kathleen

    2012-03-01

    Hexavalent chromium (Cr(6+)) emitted from welding poses serious health risks to workers exposed to welding fumes. In this study, tetramethylsilane (TMS) was added to shielding gas to control hazardous air pollutants produced during stainless steel welding. The silica precursor acted as an oxidation inhibitor when it decomposed in the high-temperature welding arc, limiting Cr(6+) formation. Additionally, a film of amorphous SiO(2) was deposited on fume particles to insulate them from oxidation. Experiments were conducted following the American Welding Society (AWS) method for fume generation and sampling in an AWS fume hood. The results showed that total shielding gas flow rate impacted the effectiveness of the TMS process. Increasing shielding gas flow rate led to increased reductions in Cr(6+) concentration when TMS was used. When 4.2% of a 30-lpm shielding gas flow was used as TMS carrier gas, Cr(6+) concentration in gas metal arc welding (GMAW) fumes was reduced to below the 2006 Occupational Safety and Health Administration standard (5 μg m(-3)) and the efficiency was >90%. The process also increased fume particle size from a mode size of 20 nm under baseline conditions to 180-300 nm when TMS was added in all shielding gas flow rates tested. SiO(2) particles formed in the process scavenged nanosized fume particles through intercoagulation. Transmission electron microscopy imagery provided visual evidence of an amorphous film of SiO(2) on some fume particles along with the presence of amorphous SiO(2) agglomerates. These results demonstrate the ability of vapor phase silica precursors to increase welding fume particle size and minimize chromium oxidation, thereby preventing the formation of hexavalent chromium.

  14. Tests of Selection in Pooled Case-Control Data: An Empirical Study

    Directory of Open Access Journals (Sweden)

    Nitin eUdpa

    2011-11-01

    Full Text Available For smaller organisms with faster breeding cycles, artificial selection can be used to create sub-populations with different phenotypic traits. Genetic tests can be employed to identify the causal markers for the phenotypes, as a precursor to engineering strains with a combination of traits. Traditional approaches involve analyzing crosses of inbred strains to test for co-segregation with genetic markers. Here we take advantage of cheaper next generation sequencing techniques to identifygenetic signatures of adaptation to the selection constraints. Obtaining individual sequencing data is often unrealistic due to cost and sample issues, so we focus on pooled genomic data.In this paper, we explore a series of statistical tests for selection using pooled case (under selection and control populations. Extensive simulations are used to show that these approaches work well for a wide range of population divergence times and strong selective pressures. We show that pooling does not have a significant impact on statistical power. The tests are also robust to reasonable variations in several different parameters, including window size, base-calling error rate, and sequencing coverage. We then demonstrate the viability (and the challenges of one of these methods in two independent Drosophila populations (Drosophila melanogaster bred under selectionfor hypoxia and accelerated development, respectively. Testing for extreme hypoxia tolerance showed clear signals of selection, pointing to loci that are important for hypoxia adaptation.Overall, we outline a strategy for finding regions under selection using pooled sequences, then devise optimal tests for that strategy. The approaches show promise for detecting selection, even several generations after fixation of the beneficial allele has occurred.

  15. Factors controlling extremely productive heterotrophic bacterial communities in shallow soda pools.

    Science.gov (United States)

    Eiler, A; Farnleitner, A H; Zechmeister, T C; Herzig, A; Hurban, C; Wesner, W; Krachler, R; Velimirov, B; Kirschner, A K T

    2003-07-01

    Dilute soda lakes are among the world's most productive environments and are usually dominated by dense blooms of cyanobacteria. Up to now, there has been little information available on heterotrophic bacterial abundance, production, and their controlling factors in these ecosystems. In the present study the main environmental factors responsible for the control of the heterotrophic bacterial community in five shallow soda pools in Eastern Austria were investigated during an annual cycle. Extremely high cyanobacterial numbers and heterotrophic bacterial numbers up to 307 x 10(9) L(-1) and 268 x 10(9) L(-1) were found, respectively. Bacterial secondary production rates up to 738 micro g C L(-1) h(-1) and specific growth rates up to 1.65 h(-1) were recorded in summer and represent the highest reported values for natural aquatic ecosystems. The combination of dense phytoplankton blooms, high temperature, high turbidity, and nutrient concentration due to evaporation is supposed to enable the development of such extremely productive microbial populations. By principal component analysis containing the data set of all five investigated pools, two factors were extracted which explained 62.5% of the total variation of the systems. The first factor could be interpreted as a turbidity factor; the second was assigned to as concentration factor. From this it was deduced that bacterial and cyanobacterial abundance were mainly controlled by wind-induced sediment resuspension and turbidity stabilized by the high pH and salinity and less by evaporative concentration of salinity and dissolved organic carbon. Bacterial production was clustered with temperature in factor 3, showing that bacterial growth was mainly controlled by temperature. The concept of describing the turbid water columns of the shallow soda pools as "fluid sediment" is discussed.

  16. Closed Loop Control of Penetration Depth during CO2 Laser Lap Welding Processes

    Directory of Open Access Journals (Sweden)

    Antonio Ancona

    2012-08-01

    Full Text Available In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth.

  17. Indirect control of the intracellular nitrate pool of intertidal sediment by the polychaete Hediste diversicolor

    DEFF Research Database (Denmark)

    Heisterkamp, Ines Maria; Kamp, Anja; Schramm, Angela T.

    2012-01-01

    for anaerobic respiration processes. The origin and some of the ecological controls of this intracellular nitrate pool were investigated in a laboratory experiment. Sediment microcosms were set up with and without the abundant polychaete Hediste diversicolor that is known to stim- ulate nitrate production...... that of the photopigments chlorophyll a and fucoxanthin, strongly suggesting that diatoms were the main nitrate-storing organisms. Intra- cellular nitrate formation is thus stimulated by the interaction of phylogenetically distant groups of organisms: worms enhance nitrification by feeding on particulate organic matter...

  18. Analysis of dose rates received around the storage pool for irradiated control rods in a BWR nuclear power plant.

    Science.gov (United States)

    Ródenas, J; Abarca, A; Gallardo, S

    2011-08-01

    BWR control rods are activated by neutron reactions in the reactor. The dose produced by this activity can affect workers in the area surrounding the storage pool, where activated rods are stored. Monte Carlo (MC) models for neutron activation and dose assessment around the storage pool have been developed and validated. In this work, the MC models are applied to verify the expected reduction of dose when the irradiated control rod is hanged in an inverted position into the pool. 2010 Elsevier Ltd. All rights reserved.

  19. Weld Repair of a Stamped Pressure Vessel in a Radiologically Controlled Zone

    Energy Technology Data Exchange (ETDEWEB)

    Cannell, Gary L. [Fluor Enterprises, Inc.; Huth, Ralph J. [CH2MHill Plateau Remediation Company; Hallum, Randall T. [Fluor Government Group

    2013-08-26

    In September 2012 an ASME B&PVC Section VIII stamped pressure vessel located at the DOE Hanford Site Effluent Treatment Facility (ETF) developed a through-wall leak. The vessel, a steam/brine heat exchanger, operated in a radiologically controlled zone (by the CH2MHill PRC or CHPRC), had been in service for approximately 17 years. The heat exchanger is part of a single train evaporator process and its failure caused the entire system to be shut down, significantly impacting facility operations. This paper describes the activities associated with failure characterization, technical decision making/planning for repair by welding, logistical challenges associated with performing work in a radiologically controlled zone, performing the repair, and administrative considerations related to ASME code requirements.

  20. Pseudomonas aeruginosa in Swimming Pool Water: Evidences and Perspectives for a New Control Strategy

    Directory of Open Access Journals (Sweden)

    Marco Guida

    2016-09-01

    Full Text Available Pseudomonas aeruginosa is frequently isolated in swimming pool settings. Nine recreational and rehabilitative swimming pools were monitored according to the local legislation. The presence of P. aeruginosa was correlated to chlorine concentration. The ability of the isolates to form a biofilm on plastic materials was also investigated. In 59.5% of the samples, microbial contamination exceeded the threshold values. P. aeruginosa was isolated in 50.8% of these samples. The presence of P. aeruginosa was not correlated with free or total chlorine amount (R2 < 0.1. All the isolates were moderate- to strong-forming biofilm (Optical Density O.D.570 range 0.7–1.2. To control biofilm formation and P. aeruginosa colonization, Quantum FreeBioEnergy© (QFBE, FreeBioEnergy, Brisighella, Italy, has been applied with encouraging preliminary results. It is a new, promising control strategy based on the change of an electromagnetic field which is responsible for the proliferation of some microorganisms involved in biofilm formation, such as P. aeruginosa.

  1. Vitamin D and pancreatic cancer: a pooled analysis from the Pancreatic Cancer Case-Control Consortium.

    Science.gov (United States)

    Waterhouse, M; Risch, H A; Bosetti, C; Anderson, K E; Petersen, G M; Bamlet, W R; Cotterchio, M; Cleary, S P; Ibiebele, T I; La Vecchia, C; Skinner, H G; Strayer, L; Bracci, P M; Maisonneuve, P; Bueno-de-Mesquita, H B; Zaton Ski, W; Lu, L; Yu, H; Janik-Koncewicz, K; Polesel, J; Serraino, D; Neale, R E

    2015-08-01

    The potential role of vitamin D in the aetiology of pancreatic cancer is unclear, with recent studies suggesting both positive and negative associations. We used data from nine case-control studies from the International Pancreatic Cancer Case-Control Consortium (PanC4) to examine associations between pancreatic cancer risk and dietary vitamin D intake. Study-specific odds ratios (ORs) were estimated using multivariable logistic regression, and ORs were then pooled using a random-effects model. From a subset of four studies, we also calculated pooled estimates of association for supplementary and total vitamin D intake. Risk of pancreatic cancer increased with dietary intake of vitamin D [per 100 international units (IU)/day: OR = 1.13, 95% confidence interval (CI) 1.07-1.19, P = 7.4 × 10(-6), P-heterogeneity = 0.52; ≥230 versus vitamin A intake. Increased risk of pancreatic cancer was observed with higher levels of dietary vitamin D intake. Additional studies are required to determine whether or not our finding has a causal basis. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Impacts of exotic mangroves and mangrove control on tide pool fish assemblages

    Science.gov (United States)

    Richard A. MacKenzie; Cailtin L. Kryss

    2013-01-01

    Fish were sampled from tide pools in Hawaii to determine how exotic mangroves Rhizophora mangle and the use of herbicides to chemically eradicate them are impacting tide pool fish assemblages. Ecological parameters were compared among mangrove-invaded, native vegetated, and non-vegetated tide pools before and after mangroves had been chemically...

  3. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  4. Relationship between welding fume concentration and systemic inflammation after controlled exposure of human subjects with welding fumes from metal inert gas brazing of zinc-coated materials.

    Science.gov (United States)

    Brand, Peter; Bauer, Marcus; Gube, Monika; Lenz, Klaus; Reisgen, Uwe; Spiegel-Ciobanu, Vilia Elena; Kraus, Thomas

    2014-01-01

    It has been shown that exposure of subjects to emissions from a metal inert gas (MIG) brazing process of zinc-coated material led to an increase of high-sensitivity C-reactive protein (hsCRP) in the blood. In this study, the no-observed-effect level (NOEL) for such emissions was assessed. Twelve healthy subjects were exposed for 6 hours to different concentrations of MIG brazing fumes under controlled conditions. High-sensitivity C-reactive protein was measured in the blood. For welding fumes containing 1.20 and 1.50 mg m zinc, high-sensitivity C-reactive protein was increased the day after exposure. For 0.90 mg m zinc, no increase was detected. These data indicate that the no-observed-effect level for emissions from a MIG brazing process of zinc-coated material in respect to systemic inflammation is found for welding fumes with zinc concentrations between 0.90 and 1.20 mg m.

  5. WOOD WELDING

    OpenAIRE

    Marcos Theodoro Muller; Rafael Rodolfo de Melo; Diego Martins Stangerlin

    2010-01-01

    The term "wood welding" designates what can be defined as "welding of wood surfaces". This new process, that it provides the joint of wood pieces without the use of adhesives or any other additional material, provokes growing interest in the academic environment, although it is still in laboratorial state. Linear friction welding induced bymechanical vibration yields welded joints of flat wood surfaces. The phenomenon of the welding occurs in less time than 10 seconds, with the temperature in...

  6. Local Cooling during Welding : Prediction and Control of Residual Stresses and Buckling Distortion

    NARCIS (Netherlands)

    Van der Aa, E.M.

    2007-01-01

    One of the major problems during welding of thin plate structures is the occurrence of buckling distortion. This type of distortion is caused by the formation of compressive welding stresses; when these stresses exceed a certain critical stress level, the structure will buckle. Most methods for

  7. Improved electron beam weld design and control with beam current profile measurements

    Science.gov (United States)

    Giedt, Warren H.

    The determination of machine settings for making an electron beam weld still involves trial and error tests. Also, even after settings are selected, serious variations in penetration may occur. Results are presented to demonstrate that improved weld consistency and quality can be obtained with measurement of the beam size and intensity distribution.

  8. Prediction of weld data using process control based on surface temperature measurement for high-power energy flow processes

    Science.gov (United States)

    Brueggemann, Gunnar; Benziger, Thomas

    1996-09-01

    The main aim of this article is to obtain the correlation between the thermal cycle and the mechanical properties in the weld seam and the heat-affected zone of mild and stainless steels. Key targeted process is welding using electron beam, laser and plasma. Since these processes are characterized by high heating and cooling rates, wide temperature range, small heat affected zones, they are difficult to control and automize. As a consequence, the quality of the product varies over a large range. Because either temperature measurement on one spot or quasi steady- state surface temperature distribution in a large area are generally unsuitable, temperature gradients need to be controlled directly on-line with a high accuracy. This requires the use of a two dimensional temperature control. An infrared camera systems can be used in order to investigate the cooling process in the weld seam area as well as in the heat affected zone. On the one hand the aim of the experiments is the estimation of the microstructure, especially of the hardness distribution using welding-time- temperature-conversion-diagrams and equations of regression. On the other hand the observation of the cooling cycle allows trends of mechanical diagrams and equations of regression. On the other hand the observation of the cooing cycle allows trends of mechanical properties like stretch limit, tensile strength, breaking elongation to be predicted. Simultaneously it is possible to recognize and to localize pores, voids and bonding defects, losses in penetration, problems with gap and height, appearing during the cooling of the weld.

  9. Slag-metal reactions during welding: Part I. Evaluation and reassessment of existing theories

    Science.gov (United States)

    Mitra, U.; Eagar, T. W.

    1991-02-01

    A critical review of current thermodynamic theories of slag-metal reactions is presented. A series of preliminary experiments indicates that the previously proposed droplet theory is incorrect and the primary reactions controlling Mn, Si, and Cr content occur in the weld pool. In addition, these experiments show that the net transfer of oxygen is independent of the transfer of Mn and Si.

  10. Application of welding science to welding engineering: A lumped parameter gas metal arc welding dynamic process model

    Energy Technology Data Exchange (ETDEWEB)

    Murray, P.E.; Smartt, H.B.; Johnson, J.A. [Lockheed Martin Idaho Technologies, Idaho Falls, ID (United States)

    1997-12-31

    We develop a model of the depth of penetration of the weld pool in gas metal arc welding (GMAW) which demonstrates interaction between the arc, filler wire and weld pool. This model is motivated by the observations of Essers and Walter which suggest a relationship between droplet momentum and penetration depth. A model of gas metal arc welding was augmented to include an improved model of mass transfer and a simple model of accelerating droplets in a plasma jet to obtain the mass and momentum of impinging droplets. The force of the droplets and depth of penetration is correlated by a dimensionless linear relation used to predict weld pool depth for a range of values of arc power and contact tip to workpiece distance. Model accuracy is examined by comparing theoretical predictions and experimental measurements of the pool depth obtained from bead on plate welds of carbon steel in an argon rich shielding gas. Moreover, theoretical predictions of pool depth are compared to the results obtained from the heat conduction model due to Christensen et al. which suggest that in some cases the momentum of impinging droplets is a better indicator of the depth of the weld pool and the presence of a deep, narrow penetration.

  11. Cigarette smoking and risk of ovarian cancer: a pooled analysis of 21 case–control studies

    Science.gov (United States)

    Faber, Mette T.; Kjær, Susanne K.; Dehlendorff, Christian; Chang-Claude, Jenny; Andersen, Klaus K.; Høgdall, Estrid; Webb, Penelope M.; Jordan, Susan J.; Rossing, Mary Anne; Doherty, Jennifer A.; Lurie, Galina; Thompson, Pamela J.; Carney, Michael E.; Goodman, Marc T.; Ness, Roberta B.; Modugnos, Francesmary; Edwards, Robert P.; Bunker, Clareann H.; Goode, Ellen L.; Fridley, Brooke L.; Vierkant, Robert A.; Larson, Melissa C.; Schildkraut, Joellen; Cramer, Daniel W.; Terry, Kathryn L.; Vitonis, Allison F.; Bandera, Elisa V.; Olson, Sara H.; King, Melony; Chandran, Urmila; Kiemeney, Lambertus A.; Massuger, Leon F. A. G.; van Altena, Anne M.; Vermeulen, Sita H.; Brinton, Louise; Wentzensen, Nicolas; Lissowska, Jolanta; Yang, Hannah P.; Moysich, Kirsten B.; Odunsi, Kunle; Kasza, Karin; Odunsi-Akanji, Oluwatosin; Song, Honglin; Pharaoh, Paul; Shah, Mitul; Whittemore, Alice S.; McGuire, Valerie; Sieh, Weiva; Sutphen, Rebecca; Menon, Usha; Gayther, Simon A.; Ramus, Susan J.; Gentry-Maharaj, Aleksandra; Pearce, Celeste Leigh; Wu, Anna H.; Pike, Malcolm C.; Risch, Harvey A.

    2013-01-01

    Purpose The majority of previous studies have observed an increased risk of mucinous ovarian tumors associated with cigarette smoking, but the association with other histological types is unclear. In a large pooled analysis, we examined the risk of epithelial ovarian cancer associated with multiple measures of cigarette smoking with a focus on characterizing risks according to tumor behavior and histology. Methods We used data from 21 case–control studies of ovarian cancer (19,066 controls, 11,972 invasive and 2,752 borderline cases). Study-specific odds ratios (OR) and 95 % confidence intervals (CI) were obtained from logistic regression models and combined into a pooled odds ratio using a random effects model. Results Current cigarette smoking increased the risk of invasive mucinous (OR = 1.31; 95 % CI: 1.03–1.65) and borderline mucinous ovarian tumors (OR = 1.83; 95 % CI: 1.39–2.41), while former smoking increased the risk of borderline serous ovarian tumors (OR = 1.30; 95 % CI: 1.12–1.50). For these histological types, consistent dose– response associations were observed. No convincing associations between smoking and risk of invasive serous and endometrioid ovarian cancer were observed, while our results provided some evidence of a decreased risk of invasive clear cell ovarian cancer. Conclusions Our results revealed marked differences in the risk profiles of histological types of ovarian cancer with regard to cigarette smoking, although the magnitude of the observed associations was modest. Our findings, which may reflect different etiologies of the histological types, add to the fact that ovarian cancer is a heterogeneous disease. PMID:23456270

  12. Improvement of stable technique and welding efficiency of digital controlled pulse MAG welder; Digital seigyo pulse MAG yosetsuki ni okeru anteika gijutsu to yosetsu seino no kojo

    Energy Technology Data Exchange (ETDEWEB)

    Nakamata, T.; Uezono, T. [Daihen Corporation, Osaka (Japan)

    1996-10-01

    This paper describes the digital control technology of pulse MAG welders for stable operation and performance improvement. Pulse welding forms a droplet at a wire tip during pulse period, and separates the droplet by pinching it by pulse electromagnetic pinch force. This technology automatically optimizes and stabilizes welding current waveform by digital control to obtain such smooth one pulse- one droplet transfer under various welding conditions, and also controls external characteristics of welding power sources to obtain a constant arc length regardless of the distance between the tip and matrix. The technology offers superior welding stability in a small current range below 100A, and superior high-speed weldability, arc startability and transient responsibility. The newly developed pulse MAG welder mounts the control function of penetration for the first time as pulse welder, and allows stable penetration regardless of torch height. In addition, the welder allows reduction of noise level, superior weldability of galvanized steel sheets, superior basic welding performance, and automatic setting of welding conditions. 2 refs., 19 figs.

  13. Welding technology for rails. Rail no setsugo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, M.; Karimine, K. (Nippon Steel Corp., Tokyo (Japan)); Uchino, K.; Sugino, K. (Nippon Steel Corp., Kitakyushu, Fukuoka (Japan). Technical Research Inst. of Yawata Works); Ueyama, K. (JR Railway Technical Research Inst., Tokyo (Japan))

    1993-08-01

    The rail joining technology is indispensable for making long welded rails. Flush butt welding, gas welding, enclosed arc welding, and thermit welding are used properly as the welding methods. A method for improving the joint reliability by controlling the residual stress distribution of welded joint is investigated to prepare high carbon component weld metal similar to the rail. Problems with each of the welding methods and the newly developed technology to solve the problems are outlined. Composition of the coating is improved also, and a high C system welding rod is developed which has satisfactory weldability. High performance and high efficient new enclosed arc welding technology not available by now is developed which utilizes high carbon welding metal as a new EA welding work technology, and put to practical use. As a result of this study, useful guides are obtained for the establishment of satisfactory thermit welding technology. 17 refs., 16 figs., 1 tab.

  14. Analysis of Smut Formation Phenomena on MIG and Plasma-MIG Hybrid Weld of Cryogenic Al-Mg Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee-keun [Daewoo Shipbuilding and Marine Engineering, Geoje (Korea, Republic of); Yoon, Tae-jin; Kang, Chung-yun [Pusan National University, Busan (Korea, Republic of)

    2016-02-15

    Black deposits (smut) are created on MIG welds in cryogenic Al alloys. The smut should be removed because it ruins the appearance of the end product and affects surface treatments such as painting. It was recently reported that plasma–MIG hybrid (PMH) welding controls the formation of smut during welding. In order to determine the reason for this, smut formation using both MIG and PMH welding was investigated through metallurgy and arc phenomena analysis. Smut on MIG welds is a Mg–Al–O amorphous layer that includes nano-sized MgO particles less than 100 nm in diameter and MgO particles 1–2 µm in diameter. Smut on MIG welds is created by large amounts of metal vapor from the arc explosion generated between the welding wire and the weld pool after a short circuit transfer. However, smut on PMH welds is not created owing to the small amount of metal vapor produced from a stable globular transfer rather than a short circuit transfer and arc explosion.

  15. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  16. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...

  17. Optimization of the Process Parameters for Controlling Residual Stress and Distortion in Friction Stir Welding

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Schmidt, Henrik Nikolaj Blicher; Hattel, Jesper Henri

    2008-01-01

    , is investigated. The welding process is simulated in 2-dimensions with a sequentially coupled transient thermo-mechanical model using ANSYS. The numerical optimization problem is implemented in modeFRONTIER and solved using the Multi-Objective Genetic Algorithm (MOGA-II). An engineering-wise evaluation or ranking......In the present paper, numerical optimization of the process parameters, i.e. tool rotation speed and traverse speed, aiming minimization of the two conflicting objectives, i.e. the residual stresses and welding time, subjected to process-specific thermal constraints in friction stir welding...

  18. Numerical simulation of welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær; Thorborg, Jesper

    Aim of project:To analyse and model the transient thermal field from arc welding (SMAW, V-shaped buttweld in 15mm plate) and to some extend the mechanical response due to the thermal field. - To implement this model in a general purpose finite element program such as ABAQUS.The simulation...... stress is also taken into account.Work carried out:With few means it is possible to define a thermal model which describes the thermal field from the welding process in reasonable agreement with reality. Identical results are found with ABAQUS and Rosenthal’s analytical solution of the governing heat...... transfer equation under same conditions. It is relative easy tointroduce boundary conditions such as convection and radiation where not surprisingly the radiation has the greatest influence especially from the high temperature regions in the weld pool and the heat affected zone.Due to the large temperature...

  19. Review of laser hybrid welding

    DEFF Research Database (Denmark)

    Bagger, Claus

    2004-01-01

    In this artucle an overview og the hybrid welding process is given. After a short historic overview, a review of the fundamental phenomenon taking place when a laser (CO2 or Nd:YAG) interacts in the same molten pool as a more conventional source of energy, e.g. tungsten in-active gas, plasma......, or metal inactive gas/metal active gas.This is followed by reports of how the many process parameters governing the hybrid welding process can be set and how the choice of secondary energy source, shielding gas, etc. can affect the overall welding process....

  20. Variable-Polarity Plasma Arc Welding Of Alloy 2219

    Science.gov (United States)

    Walsh, Daniel W.; Nunes, Arthur C., Jr.

    1989-01-01

    Report presents results of study of variable-polarity plasma arc (VPPA) welding of aluminum alloy 2219. Consists of two parts: Examination of effects of microsegregation and transient weld stress on macrosegregation in weld pool and, electrical characterization of straight- and reverse-polarity portions of arc cycle.

  1. Reduction in Repair rate of Welding Processes by Determination & Controlling of Critical KPIVs

    Directory of Open Access Journals (Sweden)

    Faheem Yousaf

    2014-01-01

    Full Text Available Six Sigma is being Implemented all over the World as a successful Quality Improvement Methodology. Many Companies are now days are using Six Sigma as an Approach towards zero defects. This article provides a practical case study regarding the implementation of Six Sigma Project in a Welding Facility and discusses the Statistical Analysis performed for bringing the welding processes in the desired sigma Limits.DMAIC was chosen as potential Six Sigma methodology with the help of findings of this Methodology, Six Sigma Team First Identified the critical Factors affecting the Process Yield and then certain Improvement Measures were taken to improve the Capability of Individual welding Processes and also of Overall Welding Facility.   Cost of Quality was also measured to Validate the Improvement results achieved after Conducting the Six Sigma Project.

  2. Automatic welding systems for large ship hulls

    Science.gov (United States)

    Arregi, B.; Granados, S.; Hascoet, JY.; Hamilton, K.; Alonso, M.; Ares, E.

    2012-04-01

    Welding processes represents about 40% of the total production time in shipbuilding. Although most of the indoor welding work is automated, outdoor operations still require the involvement of numerous operators. To automate hull welding operations is a priority in large shipyards. The objective of the present work is to develop a comprehensive welding system capable of working with several welding layers in an automated way. There are several difficulties for the seam tracking automation of the welding process. The proposed solution is the development of a welding machine capable of moving autonomously along the welding seam, controlling both the position of the torch and the welding parameters to adjust the thickness of the weld bead to the actual gap between the hull plates.

  3. Robotic weld overlay coatings for erosion control. Final technical progress report, July 1992--July 1995

    Energy Technology Data Exchange (ETDEWEB)

    Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1995-10-15

    The erosion behavior of weld overlay coatings has been studied. Eleven weld overlay alloys were deposited on 1018 steel substrates using the plasma arc welding process and erosion tested at 400{degrees}C at 90{degrees} and 30{degrees} particle impact angles. The microstructure of each coating was characterized before erosion testing. A relative ranking of the coatings erosion resistance was developed by determining the steady state erosion rates. Ultimet, Inconel-625, and 316L SS coatings showed the best erosion resistance at both impact angles. It was found that weld overlays that exhibit good abrasion resistance did not show good erosion resistance. Erosion tests were also performed for selected wrought materials with chemical composition similar to weld overlays. Eroded surfaces of the wrought and weld alloys were examined by Scanning Electron Microscopy (SEM). Microhardness tests were performed on the eroded samples below the erosion surface to determine size of the plastically deformed region. It was found that one group of coatings experienced significant plastic deformation as a result of erosion while the other did not. It was also established that, in the steady state erosion regime, the size of the plastically deformed region is constant.

  4. Welding Technician

    Science.gov (United States)

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  5. Control of Porosity and Spatter in Laser Welding of Thick AlMg5 Parts Using High-Speed Imaging and Optical Microscopy

    Directory of Open Access Journals (Sweden)

    Andrei C. Popescu

    2017-10-01

    Full Text Available We report on a feedback mechanism for rapid identification of optimal laser parameters during welding of AlMg5 coupons using real-time monitoring by high-speed imaging. The purpose was to constrain the liquid movement in the groove in order to obtain pore-free welds in this otherwise difficult-to-weld alloy. High-speed imaging of the welding process via an optical microscope allowed for recording at millimeter level, providing new information on liquid-metal dynamics during laser irradiation as well as plausible explanations for spatter occurrence and pores formation. The pore formation and especially the position of these pores had to be controlled in order to weld 3 mm thick samples. By tuning both laser power and pulse duration, pores were aligned on a single line, at the bottom of the weld. A laser pass of reduced power on that side was then sufficient for removing all pores and providing a suitable weld.

  6. Lung Cancer Among Firefighters: Smoking-Adjusted Risk Estimates in a Pooled Analysis of Case-Control Studies

    NARCIS (Netherlands)

    Bigert, C; Gustavsson, P; Straif, K; Taeger, D; Pesch, B; Kendzia, B; Schuz, J; Stucker, I; Guida, F; Bruske, I; Wichmann, H E; Pesatori, A C; Landi, M T; Caporaso, N; Tse, L A; Yu, I T; Siemiatycki, J; Lavoue, J; Richiardi, L; Mirabelli, D; Simonato, L; Jockel, K H; Ahrens, W; Pohlabeln, H; Tardon, A; Zaridze, D; Field, J K; t Mannetje, A; Pearce, N; McLaughlin, J; Demers, P; Szeszenia-Dabrowska, N; Lissowska, J; Rudnai, P; Fabianova, E; Stanescu Dumitru, R; Bencko, V; Foretova, L; Janout, V; Boffetta, P; Peters, S|info:eu-repo/dai/nl/304822930; Vermeulen, R|info:eu-repo/dai/nl/216532620; Kromhout, H|info:eu-repo/dai/nl/074385224; Bruning, T; Olsson, A C

    2016-01-01

    OBJECTIVES: The aim of this study was to explore lung cancer risk among firefighters, with adjustment for smoking. METHODS: We used pooled information from the SYNERGY project including 14 case-control studies conducted in Europe, Canada, New Zealand, and China, with lifetime work histories and

  7. Two-signed feedback of cross-isthmus moisture transport on glacial overturning controlled by the Atlantic warm pool

    NARCIS (Netherlands)

    Boer, H.J. de; Roche, D.M.; Renssen, H.; Dekker, S.C.

    2011-01-01

    This paper studies the control of the Atlantic Warm Pool (AWP) on atmospheric moisture transport across the Central American isthmus as a potential feedback on rapid glacial climate fluctuations. Defined as a region of the Atlantic with surface temperatures above 28.5 °C, the modern AWP expands from

  8. Recent Advances in Substrate-Controlled Asymmetric Induction Derived from Chiral Pool α-Amino Acids for Natural Product Synthesis.

    Science.gov (United States)

    Paek, Seung-Mann; Jeong, Myeonggyo; Jo, Jeyun; Heo, Yu Mi; Han, Young Taek; Yun, Hwayoung

    2016-07-21

    Chiral pool α-amino acids have been used as powerful tools for the total synthesis of structurally diverse natural products. Some common naturally occurring α-amino acids are readily available in both enantiomerically pure forms. The applications of the chiral pool in asymmetric synthesis can be categorized prudently as chiral sources, devices, and inducers. This review specifically examines recent advances in substrate-controlled asymmetric reactions induced by the chirality of α-amino acid templates in natural product synthesis research and related areas.

  9. Recent Advances in Substrate-Controlled Asymmetric Induction Derived from Chiral Pool α-Amino Acids for Natural Product Synthesis

    Directory of Open Access Journals (Sweden)

    Seung-Mann Paek

    2016-07-01

    Full Text Available Chiral pool α-amino acids have been used as powerful tools for the total synthesis of structurally diverse natural products. Some common naturally occurring α-amino acids are readily available in both enantiomerically pure forms. The applications of the chiral pool in asymmetric synthesis can be categorized prudently as chiral sources, devices, and inducers. This review specifically examines recent advances in substrate-controlled asymmetric reactions induced by the chirality of α-amino acid templates in natural product synthesis research and related areas.

  10. Technology of welding aluminum alloys-III

    Science.gov (United States)

    Harrison, J. R.; Kor, L. J.; Oleksiak, C. E.

    1978-01-01

    Control of porosity in weld beads was major objective in development of aluminum welding program. Porosity, most difficult defect to control, is caused by hydrogen gas unable to escape during solidification. Hard tooling allows hotter bead than free-fall tooling so hydrogen bubbles can boil out instead of forming pores. Welding position, moisture, and cleanliness are other important factors in control of porosity.

  11. Perspective on Double Pulsed Gas Metal Arc Welding

    OpenAIRE

    Leilei Wang; Jiaxiang Xue

    2017-01-01

    Aluminum alloy welding suffers from problems such as solidification cracking and hydrogen-induced porosity, which are sufficiently severe to limit its potential applications. Because mitigated porosity incidence and solidification cracking are observed in aluminum welds using double pulsed gas metal arc welding (DP-GMAW), a comprehensive review of the mechanism is necessary, but absent from the literature. The oscillation of arc force and droplet pressure causes a weld pool stir effect. The e...

  12. Biologic markers of sun exposure and melanoma risk in women: pooled case-control analysis

    Science.gov (United States)

    Olsen, Catherine M.; Zens, Michael S.; Green, Adele C.; Stukel, Therese A.; Holman, C. D’Arcy J.; Mack, Thomas; Elwood, J. Mark; Holly, Elizabeth A.; Sacerdote, Carlotta; Gallagher, Richard; Swerdlow, Anthony J.; Armstrong, Bruce K.; Rosso, Stefano; Kirkpatrick, Connie; Zanetti, Roberto; Bishop, Julia Newton; Bataille, Veronique; Chang, Yu-Mei; Mackie, Rona; Østerlind, Anne; Berwick, Marianne; Karagas, Margaret R.; Whiteman, David C.

    2010-01-01

    A model has been proposed whereby melanomas arise through two distinct pathways dependent upon the relative influence of host susceptibility and sun exposure. Such pathways may explain site-specific patterns of melanoma occurrence. To explore this model, we investigated the relationship between melanoma risk and general markers of acute (recalled sunburns) and chronic (prevalent solar keratoses) sun exposure, stratified by anatomic site and host phenotype. Our working hypothesis was that head and neck melanomas have stronger associations with solar keratoses and weaker associations with sunburn than trunk melanomas. We conducted a collaborative analysis using original data from women subjects of 11 case–control studies of melanoma (2575 cases, 3241 controls). We adjusted for potential confounding effects of sunlamp use and sunbathing. The magnitude of sunburn associations did not differ significantly by melanoma site, nevus count or histologic sub-type of melanoma. Across all sites, relative risk of melanoma increased with an increasing number of reported lifetime ‘painful’ sunburns, lifetime ‘severe’ sunburns and ‘severe’ sunburns in youth (ptrend<0.001), with pooled odds ratios for the highest category of sunburns vs no sunburns of 3.22 (95%CI 2.04–5.09) for lifetime ‘painful’ sunburns, 2.10 (95%CI 1.30–3.38) for lifetime ‘severe’ sunburns, and 2.43 (95%CI 1.61–3.65) for ‘severe’ sunburns in youth. Solar keratoses strongly increased the risk of head and neck melanoma (pOR 4.91, 95% CI 2.10–11.46), but data were insufficient to assess risk for other sites. Reported sunburn is strongly associated with melanoma on all major body sites. PMID:20857492

  13. Life-style related factors and idiopathic dilated cardiomyopathy--a case-control study using pooled controls.

    Science.gov (United States)

    Kodama, K; Toshima, H; Yazaki, Y; Toyoshima, H; Nakagawa, H; Okada, R; Kitabatake, A; Serizawa, T; Tanaka, H; Hosoda, S; Yano, K; Yokoyama, M; Fujita, Y; Kasagi, F; Yokoyama, T; Tanaka, H; Kawamura, T; Ohno, Y; Hashimoto, T

    1999-11-01

    A case-control study was conducted to investigate how basic habits of life including dietary habit, physical activity, cigarette smoking, and drinking, are involved in the development of idiopathic dilated cardiomyopathy (DCM). Collection of cases was entrusted to the clinical research group of DCM, and national pooled controls established by sex and age category by the epidemiological research group of intractable diseases were used to ensure representativeness of the controls. Fifty-eight cases of DCM which developed in and after January 1991 were collected, and 5,912 controls matched with the cases by residential area, sex, and age were selected. Analysis of the results of the study showed that items in the questionnaire suggestive of viral infection, such as "susceptibility to common cold" and "susceptibility to diarrhea", items concerning dietary habit, including "taking no breakfast", "ingestion of salty food", and "ingestion of fatty food", and such items as "cigarette smoking" and "lack of sleep" tended to be observed in the case group at significantly higher frequencies. Since viral infection has been suspected as a causative factor of DCM, further research of this area is thought to be of particular importance for determining the etiology of DCM.

  14. Quality status display for a vibration welding process

    Science.gov (United States)

    Spicer, John Patrick; Abell, Jeffrey A.; Wincek, Michael Anthony; Chakraborty, Debejyo; Bracey, Jennifer; Wang, Hui; Tavora, Peter W.; Davis, Jeffrey S.; Hutchinson, Daniel C.; Reardon, Ronald L.; Utz, Shawn

    2017-03-28

    A system includes a host machine and a status projector. The host machine is in electrical communication with a collection of sensors and with a welding controller that generates control signals for controlling the welding horn. The host machine is configured to execute a method to thereby process the sensory and control signals, as well as predict a quality status of a weld that is formed using the welding horn, including identifying any suspect welds. The host machine then activates the status projector to illuminate the suspect welds. This may occur directly on the welds using a laser projector, or on a surface of the work piece in proximity to the welds. The system and method may be used in the ultrasonic welding of battery tabs of a multi-cell battery pack in a particular embodiment. The welding horn and welding controller may also be part of the system.

  15. Distribution of Argon Arc Contaminated with Nitrogen as Function of Frequency in Pulsed TIG Welding

    Science.gov (United States)

    Takahashi, Hiroki; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru

    2016-09-01

    TIG arc welding is the high-quality and much applicable material joining technology. However, the current has to be small because the cathode melting should be prevented. In this case, the heat input to the welding pool becomes low, then, the welding defect sometimes occurs. The pulsed TIG arc welding is used to improve this disadvantage This welding can be controlled by some current parameters such as frequency However, few report has reported the distribution of argon arc contaminated with nitrogen It is important to prevent the contamination of nitrogen because the melting depth increases in order to prevent the welding defects. In this paper, the distribution of argon arc contaminated as function of frequency with nitrogen in pulsed TIG welding is elucidated. The nitrogen concentration, the radial flow velocity, the arc temperature were calculated using the EMTF simulation when the time reached at the base current. As a result, the nitrogen concentration into the arc became low with increasing the frequency The diffusion coefficient decreased because of the decrement of temperature over 4000 K. In this case, the nitrogen concentration became low near the anode. Therefore, the nitrogen concentration became low because the frequency is high.

  16. Synaptic control of the shape of the motoneuron pool input-output function.

    Science.gov (United States)

    Powers, Randall K; Heckman, Charles J

    2017-03-01

    Although motoneurons have often been considered to be fairly linear transducers of synaptic input, recent evidence suggests that strong persistent inward currents (PICs) in motoneurons allow neuromodulatory and inhibitory synaptic inputs to induce large nonlinearities in the relation between the level of excitatory input and motor output. To try to estimate the possible extent of this nonlinearity, we developed a pool of model motoneurons designed to replicate the characteristics of motoneuron input-output properties measured in medial gastrocnemius motoneurons in the decerebrate cat with voltage-clamp and current-clamp techniques. We drove the model pool with a range of synaptic inputs consisting of various mixtures of excitation, inhibition, and neuromodulation. We then looked at the relation between excitatory drive and total pool output. Our results revealed that the PICs not only enhance gain but also induce a strong nonlinearity in the relation between the average firing rate of the motoneuron pool and the level of excitatory input. The relation between the total simulated force output and input was somewhat more linear because of higher force outputs in later-recruited units. We also found that the nonlinearity can be increased by increasing neuromodulatory input and/or balanced inhibitory input and minimized by a reciprocal, push-pull pattern of inhibition. We consider the possibility that a flexible input-output function may allow motor output to be tuned to match the widely varying demands of the normal motor repertoire. NEW & NOTEWORTHY Motoneuron activity is generally considered to reflect the level of excitatory drive. However, the activation of voltage-dependent intrinsic conductances can distort the relation between excitatory drive and the total output of a pool of motoneurons. Using a pool of realistic motoneuron models, we show that pool output can be a highly nonlinear function of synaptic input but linearity can be achieved through adjusting the

  17. Laser Ultrasonic System for Surface Crack Visualization in Dissimilar Welds of Control Rod Drive Mechanism Assembly of Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Yun-Shil Choi

    2014-01-01

    Full Text Available In this paper, we propose a J-groove dissimilar weld crack visualization system based on ultrasonic propagation imaging (UPI technology. A full-scale control rod drive mechanism (CRDM assembly specimen was fabricated to verify the proposed system. An ultrasonic sensor was contacted at one point of the inner surface of the reactor vessel head part of the CRDM assembly. Q-switched laser beams were scanned to generate ultrasonic waves around the weld bead. The localization and sizing of the crack were possible by ultrasonic wave propagation imaging. Furthermore, ultrasonic spectral imaging unveiled frequency components of damage-induced waves, while wavelet-transformed ultrasonic propagation imaging enhanced damage visibility by generating a wave propagation video focused on the frequency component of the damage-induced waves. Dual-directional anomalous wave propagation imaging with adjacent wave subtraction was also developed to enhance the crack visibility regardless of crack orientation and wave propagation direction. In conclusion, the full-scale specimen test demonstrated that the multiple damage visualization tools are very effective in the visualization of J-groove dissimilar weld cracks.

  18. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  19. Weld overlay coatings for erosion control. Task A: Literature review, progress report

    Energy Technology Data Exchange (ETDEWEB)

    Levin, B.; DuPont, J.N.; Marder, A.R.

    1993-03-03

    A literature review was made. In spite of similarities between abrasive wear and solid particle erosion, weld overlay hardfacing alloys that exhibit high abrasion resistance may not necessarily have good erosion resistance. The performance of weld overlay hardfacing alloys in erosive environments has not been studied in detail. It is believed that primary-solidified hard phases such as carbides and intermetallic compounds have a strong influence on erosion resistance of weld overlay hardfacing alloys. However, relationships between size, shape, and volume fraction of hard phases in a hardfacing alloys and erosion resistance were not established. Almost all hardfacing alloys can be separated into two major groups based upon chemical compositions of the primary solidified hard phases: (a) carbide hardening alloys (Co-base/carbide, WC-Co and some Fe base superalloys); and (b) intermetallic hardening alloys (Ni-base alloys, austenitic steels, iron-aluminides).

  20. Laser-TIG Welding of Titanium Alloys

    Science.gov (United States)

    Turichin, G.; Tsibulsky, I.; Somonov, V.; Kuznetsov, M.; Akhmetov, A.

    2016-08-01

    The article presents the results of investigation the technological opportunity of laser-TIG welding of titanium alloys. The experimental stand for implementation of process with the capability to feed a filler wire was made. The research of the nature of transfer the filler wire into the welding pool has been demonstrated. The influence of distance between the electrode and the surface of the welded plates on the stability of the arc was shown. The relationship between welding velocity, the position of focal plane of the laser beam and the stability of penetration of plates was determined.

  1. Cost effectiveness of levocetirizine in chronic idiopathic urticaria : a pooled analysis of two randomised controlled trials.

    Science.gov (United States)

    Kapp, Alexander; Demarteau, Nadia

    2006-01-01

    Chronic idiopathic urticaria is a distressing condition that severely affects patients' quality of life. The overall costs associated with this disease, both for the healthcare payer and society, are unknown. The objective of this study was to evaluate the cost effectiveness of levocetirizine, a first-line treatment for urticaria. Data were collected from two placebo-controlled trials and from official French databases. The effectiveness of the treatment was assessed by the mean number of pruritus-free days experienced by the patient within a 30-day period (PFD30). Direct cost parameters were medications used, medical procedures and hospitalisations for urticaria or treatment of adverse events. Productivity cost parameters were the workdays lost, defined as absenteeism and/or presenteeism, resulting from urticaria. The costing was performed using a French societal perspective. Costs were reported in euro (2002 values) and were standardised to a 30-day month. Whenever possible, incremental cost-effectiveness ratios (ICERs) were derived from these data. The pooled sample contained 294 patients. Compared with placebo, patients in the levocetirizine group experienced an additional mean 6.5 (95% CI 3.8, 9.3) pruritus-free days per month (p costs, the incremental cost of treatment with levocetirizine was totally offset by the reduction in other medical costs (i.e. reduced cost of additional medications, medical procedures and hospitalisations). From the perspective of society, treatment with levocetirizine was cost saving, with a net gain of Euro 91.93 per patient per month. Treating chronic idiopathic urticaria with levocetirizine is a dominant strategy for society since it is more effective (in terms of pruritus-free days gained) and less costly than placebo.

  2. Survey of welding processes.

    Science.gov (United States)

    2003-07-01

    The current KYTC SPECIAL PROVISION NO. 4 WELDING STEEL BRIDGES prohibits the use of welding processes other than shielded metal arc welding (SMAW) and submerged arc welding (SAW). Nationally, bridge welding is codified under ANSI/AASHTO/AWS D1....

  3. Solidification microstructures in single-crystal stainless steel melt pools

    Energy Technology Data Exchange (ETDEWEB)

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  4. Corrosion fatigue behaviour of aluminium 5083-H111 welded using gas metal arc welding method

    CSIR Research Space (South Africa)

    Mutombo, K

    2011-12-01

    Full Text Available susceptible to hydrogen-induced porosity. The weld pool may dissolve large amount of hydrogen from the arc atmosphere. On solidification, the solubility of hydrogen decreases and the entrapped hydrogen forms gas porosity. Typical sources of hydrogen... Behaviour of Aluminium 5083-H111 Welded Using Gas Metal Arc Welding Method Kalenda Mutombo1 and Madeleine du Toit2 1CSIR/ 2University of Pretoria South Africa 1. Introduction Aluminium and its alloys are widely used as engineering materials...

  5. Control of Softening Processes in the Heat-Affected Zone During Welding of High-Strength Steels

    Science.gov (United States)

    Efimenko, L. A.; Kapustin, O. E.; Ramus', A. A.; Ramus', R. O.

    2016-11-01

    The hardness and the structure of the heat-affected zone (HAZ) under welding of tube steels of strength category K60 - K70 are studied. The steels are treated by regimes imitating the thermal cycles of different welding processes applied to tubes starting with manual arc welding and ending with energy-intensive automatic submerged-arc welding. The welding modes causing maximum decrease in the hardness of HAZ regions are determined. The conditions preventing softening under one-pass and multipass welding of high-strength steels are presented.

  6. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  7. Associations of welding and manganese exposure with Parkinson disease: review and meta-analysis.

    Science.gov (United States)

    Mortimer, James A; Borenstein, Amy R; Nelson, Lorene M

    2012-09-11

    To examine associations of welding and manganese exposure with Parkinson disease (PD) using meta-analyses of data from cohort, case-control, and mortality studies. Epidemiologic studies related to welding or manganese exposure and PD were identified in a PubMed search, article references, published reviews, and abstracts. Inclusion criteria were 1) cohort, case-control, or mortality study with relative risk (RR), odds ratio (OR), or mortality OR (MOR) and 95 confidence intervals (95% CI); 2) RR, OR, and MOR matched or adjusted for age and sex; 3) valid study design and analysis. When participants of a study were a subgroup of those in a larger study, only results of the larger study were included to assure independence of datasets. Pooled RR/OR estimates and 95% CIs were obtained using random effects models; heterogeneity of study effects were evaluated using the Q statistic and I(2) index in fixed effect models. Thirteen studies met inclusion criteria for the welding meta-analysis and 3 studies for the manganese exposure meta-analysis. The pooled RR for the association between welding and PD for all study designs was 0.86 (95% CI 0.80-0.92), with absence of between-study heterogeneity (I(2) = 0.0). Effect measures for cohort, case-control, and mortality studies were similar (0.91, 0.82, 0.87). For the association between manganese exposure and PD, the pooled OR was 0.76 (95% CI 0.41-1.42). Welding and manganese exposure are not associated with increased PD risk. Possible explanations for the inverse association between welding and PD include confounding by smoking, healthy worker effect, and hormesis.

  8. Characterizing Shipyard Welding Emissions and Associated Control Options (The National Shipbuilding Research Program)

    Science.gov (United States)

    1995-08-01

    commbination of flux and gas shielding that protect the weld from nitrogen and oxygen entrapment . Shielding wilI be discussed in the following...Documentation Center The University of Michigan Transportation Research Institute Marine Systems Division 2901 Baxter Road Ann Arbor, MI 48109-2150 Phone: 734-763-2465 Fax: 734-936-1081 E-mail: Doc.Center@umich.edu

  9. The Effects of Laser Welding Direction on Joint Quality for Non-Uniform Part-to-Part Gaps

    Directory of Open Access Journals (Sweden)

    Rocku Oh

    2016-08-01

    Full Text Available Controlling part-to-part gaps is a crucial task in the laser welding of galvanized steel sheets for ensuring the quality of the assembly joint. However, part-to-part gaps are frequently non-uniform. Hence, elevations and depressions from the perspective of the heading direction of the laser beam always exist throughout the gap, creating ascending, descending, and flat travelling paths for laser welding. In this study, assuming non-uniform part-to-part gaps, the effects of welding direction on the quality of the joint of galvanized steel sheets—SGARC440 (lower part and SGAFC590DP (upper part—were examined using 2-kW fiber and 6.6-kW disk laser welding systems. The experimental analysis of coupon tests confirmed that there is no statistically significant correlation between the direction of welding and weld pool quality if the gap exceeds the tolerable range. However, when the gap is controlled within the tolerable range, the welding direction can be considered as an important process control variable to enhance the quality of the joint.

  10. Modal control of unstable boiling states in three-dimensional nonlinear pool-boiling

    NARCIS (Netherlands)

    van Gils, R.W.; Speetjens, M.F.M; Zwart, Heiko J.; Nijmeijer, H.

    2014-01-01

    Topic is feedback stabilisation of a nonlinear pool-boiling system in three spatial dimensions (3D). Regulation of its unstable (non-uniform) equilibria has great potential for application in micro-electronics cooling and thermal-management systems. Here, as a first step, stabilisation of such 3D

  11. Cigarette smoking and risk of ovarian cancer: a pooled analysis of 21 case-control studies

    NARCIS (Netherlands)

    Faber, M.T.; Kjaer, S.K.; Dehlendorff, C.; Chang-Claude, J.; Andersen, K.K.; Hogdall, E.; Webb, P.M.; Jordan, S.J.; Rossing, M.A.; Doherty, J.A.; Lurie, G.; Thompson, P.J.; Carney, M.E.; Goodman, M.T.; Ness, R.B.; Modugno, F.; Edwards, R.P.; Bunker, C.H.; Goode, E.L.; Fridley, B.L.; Vierkant, R.A.; Larson, M.C.; Schildkraut, J.; Cramer, D.W; Terry, K.L.; Vitonis, A.F.; Bandera, E.V.; Olson, S.H.; King, M.; Chandran, U.; Kiemeney, L.A.L.M.; Massuger, L.F.A.G.; Altena, A.M. van; Vermeulen, S.; Brinton, L.; Wentzensen, N.; Lissowska, J.; Yang, H.P.; Moysich, K.B.; Odunsi, K.; Kasza, K.; Odunsi-Akanji, O.; Song, H.; Pharaoh, P.; Shah, M.; Whittemore, A.S.; McGuire, V.; Sieh, W.; Sutphen, R.; Menon, U.; Gayther, S.A.; Ramus, S.J.; Gentry-Maharaj, A.; Pearce, C.L.; Wu, A.H.; Pike, M.C.; Risch, H.A.; Jensen, A.

    2013-01-01

    PURPOSE: The majority of previous studies have observed an increased risk of mucinous ovarian tumors associated with cigarette smoking, but the association with other histological types is unclear. In a large pooled analysis, we examined the risk of epithelial ovarian cancer associated with multiple

  12. Lung cancer risk among bricklayers in a pooled analysis of case-control studies.

    NARCIS (Netherlands)

    Consonni, Dario; De Matteis, Sara; Pesatori, Angela C; Bertazzi, Pier Alberto; Olsson, Ann C; Kromhout, Hans; Peters, Susan; Vermeulen, Roel Ch; Pesch, Beate; Brüning, Thomas; Kendzia, Benjamin; Behrens, Thomas; Stücker, Isabelle; Guida, Florence; Wichmann, Heinz-Erich; Brüske, Irene; Landi, Maria Teresa; Caporaso, Neil E; Gustavsson, Per; Plato, Nils; Tse, Lap Ah; Yu, Ignatius Tak-Sun; Jöckel, Karl-Heinz; Ahrens, Wolfgang; Pohlabeln, Hermann; Merletti, Franco; Richiardi, Lorenzo; Simonato, Lorenzo; Forastiere, Francesco; Siemiatycki, Jack; Parent, Marie-Élise; Tardón, Adonina; Boffetta, Paolo; Zaridze, David; Chen, Ying; Field, John K; 't Mannetje, Andrea; Pearce, Neil; McLaughlin, John; Demers, Paul; Lissowska, Jolanta; Szeszenia-Dabrowska, Neonila; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Rudnai, Peter; Fabiánová, Eleonóra; Stanescu Dumitru, Rodica; Bueno-de-Mesquita, Bas; Schüz, Joachim; Straif, Kurt

    Bricklayers may be exposed to several lung carcinogens, including crystalline silica and asbestos. Previous studies that analysed lung cancer risk among these workers had several study design limitations. We examined lung cancer risk among bricklayers within SYNERGY, a large international pooled

  13. WELDING TORCH

    Science.gov (United States)

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  14. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    Science.gov (United States)

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  15. Examination of the physical processes associated with the keyhole region of variable polarity plasma arc welds in aluminum alloy 2219

    Science.gov (United States)

    Walsh, Daniel W.

    1987-01-01

    The morphology and properties of the Variable Polarity Plasma Arc (VPPA) weld composite zone are intimately related to the physical processes associated with the keyhole. This study examined the effects of oxide, halide, and sulfate additions to the weld plate on the keyhole and the weld pool. Changes in both the arc plasma character and the bead morphology were correlated to the chemical environment of the weld. Pool behavior was observed by adding flow markers to actual VPPA welds. A low temperature analog to the welding process was developed. The results of the study indicate that oxygen, even at low partial pressures, can disrupt the stable keyhole and weld pool. The results also indicate that the Marangoni surface tension driven flows dominate the weld pool over the range of welding currents studied.

  16. Width Criterion For Weld-Seam-Tracking Data

    Science.gov (United States)

    Lincir, Mark R.

    1993-01-01

    Image-processing algorithm in "through-torch-vision" (T3V) system developed to guide gas/tungsten arc welding robot along weld seam modified, according to proposal, reducing incidence of inaccurate tracking of weld seam. Developmental system intended to provide closed-loop control of motion of welding robot along weld seam on basis of lines in T3V image identified by use of image-processing algorithm and assumed to coincide with edges of weld seam. Use of width criterion prevents tracking of many false pairs of lines, with consequent decrease in incidence of inaccurate tracking and increase in confidence in weld-tracking capability of robotic welding system.

  17. Perspective on Double Pulsed Gas Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Leilei Wang

    2017-09-01

    Full Text Available Aluminum alloy welding suffers from problems such as solidification cracking and hydrogen-induced porosity, which are sufficiently severe to limit its potential applications. Because mitigated porosity incidence and solidification cracking are observed in aluminum welds using double pulsed gas metal arc welding (DP-GMAW, a comprehensive review of the mechanism is necessary, but absent from the literature. The oscillation of arc force and droplet pressure causes a weld pool stir effect. The expansion and shrinkage of the weld pool cause unusual remelting and resolidification of the previously solidified metal. DP-GMAW has an increased solidification growth rate and cooling rate, compared with conventional pulsed welding at same heat input. Both numerical and experimental results reveal the remarkable concept that refined microstructure in the fusion zone is obtained by using DP-GMAW. The mechanism of microstructural refinement is revealed as a weld pool stir effect and increased cooling rate. Hydrogen bubbles easily float out and then release from the weld pool originated from the weld pool stir effect. Reduced solidification cracking is achieved due to the refined solidification structure that originated from the increased cooling rate. The advantages, evolution process, and future trend of DP-GMAW are discussed.

  18. Optimization of process parameters during vibratory welding technique using Taguchi's analysis

    OpenAIRE

    Singh, Pravin Kumar; Patel, D.; Prasad,S.B.

    2016-01-01

    With an aim to improve the mechanical properties of a weld joint, a new concept of vibratory setup has been designed which is capable to stir the molten weld pool before it solidifies during shielded metal arc welding (SMAW) operation. Mechanical vibration having resonance frequency of 300 Hz and amplitude of 0.5 mm was transferred to the molten weld pool of 6 mm thick mild steel butt-welded joints during the welding operation. The experimental work was conducted at various ranges of frequenc...

  19. Optimization of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds

    Directory of Open Access Journals (Sweden)

    G. Magudeeswaran

    2014-09-01

    Full Text Available The activated TIG (ATIG welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention. The shape of a weld in terms of its width-to-depth ratio known as aspect ratio has a marked influence on its solidification cracking tendency. The major influencing ATIG welding parameters, such as electrode gap, travel speed, current and voltage, that aid in controlling the aspect ratio of DSS joints, must be optimized to obtain desirable aspect ratio for DSS joints. Hence in this study, the above parameters of ATIG welding for aspect ratio of ASTM/UNS S32205 DSS welds are optimized by using Taguchi orthogonal array (OA experimental design and other statistical tools such as Analysis of Variance (ANOVA and Pooled ANOVA techniques. The optimum process parameters are found to be 1 mm electrode gap, 130 mm/min travel speed, 140 A current and 12 V voltage. The aspect ratio and the ferrite content for the DSS joints fabricated using the optimized ATIG parameters are found to be well within the acceptable range and there is no macroscopically evident solidification cracking.

  20. Closed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Part Qualification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes variables...

  1. Colosed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Ppart Qualification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes variables...

  2. Plasma arc welding weld imaging

    Science.gov (United States)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has a transparent shield cup disposed about the constricting nozzle, the cup including a small outwardly extending polished lip. A guide tube extends externally of the torch and has a free end adjacent to the lip. First and second optical fiber bundle assemblies are supported within the guide tube. Light from a strobe light is transmitted along one of the assemblies to the free end and through the lip onto the weld site. A lens is positioned in the guide tube adjacent to the second assembly and focuses images of the weld site onto the end of the fiber bundle of the second assembly and these images are transmitted along the second assembly to a video camera so that the weld site may be viewed continuously for monitoring the welding process.

  3. Pulsed ultrasonic stir welding method

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  4. Human biomonitoring of aluminium after a single, controlled manual metal arc inert gas welding process of an aluminium-containing worksheet in nonwelders.

    Science.gov (United States)

    Bertram, Jens; Brand, Peter; Hartmann, Laura; Schettgen, Thomas; Kossack, Veronika; Lenz, Klaus; Purrio, Ellwyn; Reisgen, Uwe; Kraus, Thomas

    2015-10-01

    Several existing field studies evaluate aluminium welding works but no thoroughly controlled exposure scenario for welding fume has been described yet. This study provides information about the uptake and elimination of aluminium from welding fumes under controlled conditions. In the Aachen Workplace Simulation Laboratory, we are able to generate welding fumes of a defined particle mass concentration. We exposed 12, until then occupationally unexposed participants with aluminium-containing welding fumes of a metal inert gas (MIG) welding process of a total dust mass concentration of 2.5 mg/m(3) for 6 h. Room air filter samples were collected, and the aluminium concentration in air derived. Urine and plasma samples were collected directly before and after the 6-h lasting exposure, as well as after 1 and 7 days. Human biomonitoring methods were used to determine the aluminium content of the samples with high-resolution continuum source atomic absorption spectrometry. Urinary aluminium concentrations showed significant changes after exposure compared to preexposure levels (mean t(1) (0 h) 13.5 µg/L; mean t(2) (6 h) 23.5 µg/L). Plasma results showed the same pattern but pre-post comparison did not reach significance. We were able to detect a significant increase of the internal aluminium burden of a single MIG aluminium welding process in urine, while plasma failed significance. Biphasic elimination kinetic can be observed. The German BAT of 60 µg/g creatinine was not exceeded, and urinary aluminium returned nearly to baseline concentrations after 7 days.

  5. TIG welding power supply with improved efficiency

    Directory of Open Access Journals (Sweden)

    Сергій Володимирович Гулаков

    2015-03-01

    Full Text Available In the article, the influence of the DC component of the welding current during TIG (Tungsten Inert Gas welding is discussed. Known methods of DC current cancellation are reviewed, such as capacitor bank or diode/thyristor network insertion in the secondary circuit of the welding transformer. A new method of controlling the magnitude and shape of the TIG welding current is proposed. The idea is to insert a controlled voltage source in the secondary circuit of the welding transformer. This controlled voltage source is realized using a full-bridge voltage source inverter (VSI. VSI control system design issues are discussed. VSI is controlled by a three-level hysteretic current controller, while current reference is generated using lookup table driven by PLL (Phase Locked Loop locked to the mains frequency. Simulation results are shown. The proposed topology of TIG power supply allows to provide magnitude and shape control of the welding current, with the limitation that its DC component must be zero. Thus, some capabilities of professional AC-TIG welders are obtained using substantially lower cost components: VSI built using high-current low voltage MOSFETs with control system based on 32-bit ARM microcontroller. The use of proposed TIG welding power supply will eliminate the DC component of the welding current, improve welding transformer’s power factor and improve welding technology by increasing the welding arc stability

  6. Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum.

    Science.gov (United States)

    Chen, Qihao; Lin, Sanbao; Yang, Chunli; Fan, Chenglei; Ge, Hongliang

    2017-11-01

    Under the action of acoustic waves during an ultrasonic-assisted tungsten inert gas (TIG) welding process, a grain of a TIG weld of aluminum alloy is refined by nucleation and grain fragmentation. Herein, effects of ultrasound on grain fragmentation in the TIG weld of aluminum alloy are investigated via systematic welding experiments of pure aluminum. First, experiments involving continuous and fixed-position welding are performed, which demonstrate that ultrasound can break the grain of the TIG weld of pure aluminum. The microstructural characteristics of an ultrasonic-assisted TIG weld fabricated by fixed-position welding are analyzed. The microstructure is found to transform from plane crystal, columnar crystal, and uniform equiaxed crystal into plane crystal, deformed columnar crystal, and nonuniform equiaxed crystal after application of ultrasound. Second, factors influencing ultrasonic grain fragmentation are investigated. The ultrasonic amplitude and welding current are found to have a considerable effect on grain fragmentation. The degree of fragmentation first increases and then decreases with an increase in ultrasonic amplitude, and it increases with an increase in welding current. Measurement results of the vibration of the weld pool show that the degree of grain fragmentation is related to the intensity of acoustic nonlinearity in the weld pool. The greater the intensity of acoustic nonlinearity, the greater is the degree of grain fragmentation. Finally, the mechanism of ultrasonic grain fragmentation in the TIG weld of pure aluminum is discussed. A finite element simulation is used to simulate the acoustic pressure and flow in the weld pool. The acoustic pressure in the weld pool exceeds the cavitation threshold, and cavitation bubbles are generated. The flow velocity in the weld pool does not change noticeably after application of ultrasound. It is concluded that the high-pressure conditions induced during the occurrence of cavitation, lead to grain

  7. Optimization of vibratory welding process parameters using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pravin Kumar; Kumar, S. Deepak; Patel, D.; Prasad, S. B. [National Institute of Technology Jamshedpur, Jharkhand (India)

    2017-05-15

    The current investigation was carried out to study the effect of vibratory welding technique on mechanical properties of 6 mm thick butt welded mild steel plates. A new concept of vibratory welding technique has been designed and developed which is capable to transfer vibrations, having resonance frequency of 300 Hz, into the molten weld pool before it solidifies during the Shielded metal arc welding (SMAW) process. The important process parameters of vibratory welding technique namely welding current, welding speed and frequency of the vibrations induced in molten weld pool were optimized using Taguchi’s analysis and Response surface methodology (RSM). The effect of process parameters on tensile strength and hardness were evaluated using optimization techniques. Applying RSM, the effect of vibratory welding parameters on tensile strength and hardness were obtained through two separate regression equations. Results showed that, the most influencing factor for the desired tensile strength and hardness is frequency at its resonance value, i.e. 300 Hz. The micro-hardness and microstructures of the vibratory welded joints were studied in detail and compared with those of conventional SMAW joints. Comparatively, uniform and fine grain structure has been found in vibratory welded joints.

  8. WELDING METHOD

    Science.gov (United States)

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  9. Robotic-Controlled, Autonomous Friction Stir Welding Processes for In-Situ Fabrication, Maintenance, and Repair

    Science.gov (United States)

    Zhou, W.

    NASA s new vision of human and robotic missions to the Moon Mars and beyond will demand large and permanent infrastructures on the Moon and other planets including power plants communication towers human and biomass habitats launch and landing facilities fabrication and repair workshops and research facilities so that material utilization and product development can be carried out and subsisted in-situ The conventional approach of transporting pre-constructed fabricated structures from earth to the Moon planets will no longer be feasible due to limited lifting capacity and extremely high transportation costs associated with long duration space travel To minimize transport of pre-made large structures between earth and the Moon planets minimize crew time for the fabrication and assembly of infrastructures on the Moon planets and to assure crew safety and maintain quality during the operation there is a strong need for robotic capabilities for in-situ fabrication maintenance and repair Clearly development of innovative autonomous in-situ fabrication maintenance and repair technologies is crucial to the success of both NASA s unmanned preparation missions and manned exploration missions In-space material joining is not new to NASA Many lessons were learned from NASA s International Space Welding Experiment which employed the Electron Beam Welding process for space welding experiments Significant safety concerns related to high-energy beams arcing spatter elecromagnetic fields and molten particles were

  10. Backwater control on riffle pool hydraulics, fish habitat quality, and sediment transport regime in gravel-bed rivers

    Science.gov (United States)

    Pasternack, Gregory B.; Bounrisavong, Michael K.; Parikh, Kaushal K.

    2008-07-01

    SummaryThe importance of channel non-uniformity to natural hydrogeomorphic and ecological processes in gravel-bed rivers is becoming increasingly known, but its use in channel rehabilitation lags behind. Many projects still use methods that assume steady, uniform flow and simple channel geometries. One aspect of channel non-uniformity that has not been considered much is its role in controlling backwater conditions and thus potentially influencing patterns of physical habitat and channel stability in sequences of riffles and pools. In this study, 2D hydrodynamic models of two non-uniform pool-riffle-pool configurations were used to systematically explore the effects of four different downstream water surface elevations at three different discharges (24 total simulations) on riffle-pool ecohydraulics. Downstream water surface elevations tested included backwater, uniform, accelerating, and critical conditions, which are naturally set by downstream riffle-crest morphology but may also be re-engineered artificially. Discharges included a fish-spawning low flow, summer fish-attraction flow, and a peak snowmelt pulse. It was found that the occurrence of a significant area of high-quality fish spawning habitat at low flow depends on riffles being imposed upon by backwater conditions, which also delay the onset of full bed mobility on riffles during floods. The assumption of steady, uniform flow was found to be inappropriate for gravel-bed rivers, since their non-uniformity controls spatial patterns of habitat and sediment transport. Also, model results indicated that a "reverse domino" mechanism can explain catastrophic failure and re-organization of a sequence of riffles based on the water surface elevation response to scour on downstream riffles, which then increases scour on upstream riffles.

  11. Genotoxic Evaluation of Mexican Welders Occupationally Exposed to Welding-Fumes Using the Micronucleus Test on Exfoliated Oral Mucosa Cells: A Cross-Sectional, Case-Control Study.

    Directory of Open Access Journals (Sweden)

    Ana Cecilia Jara-Ettinger

    Full Text Available An estimated 800,000 people worldwide are occupationally exposed to welding-fumes. Previous studies show that the exposure to such fumes is associated with damage to genetic material and increased cancer risk. In this study, we evaluate the genotoxic effect of welding-fumes using the Micronucleus Test on oral mucosa cells of Mexican welders.We conducted a cross-sectional, matched case-control study of n = 66 (33 exposed welders, and 33 healthy controls. Buccal mucosa smears were collected and stained with acridine orange, observed under 100x optical amplification with a fluorescence lamp, and a single-blinded observer counted the number of micronuclei and other nuclear abnormalities per 2,000 observed cells. We compared the frequencies of micronuclei and other nuclear abnormalities, and fitted generalised linear models to investigate the interactions between nuclear abnormalities and the exposure to welding-fumes, while controlling for smoking and age.Binucleated cells and condensed-chromatin cells showed statistically significant differences between cases and controls. The frequency of micronuclei and the rest of nuclear abnormalities (lobed-nuclei, pyknosis, karyolysis, and karyorrhexis did not differ significantly between the groups. After adjusting for smoking, the regression results showed that the occurrence of binucleated cells could be predicted by the exposure to welding-fumes plus the presence of tobacco consumption; for the condensed-chromatin cells, our model showed that the exposure to welding-fumes is the only reliable predictor.Our findings suggest that Mexican welders who are occupationally exposed to welding-fumes have increased counts of binucleated and condensed-chromatin cells. Nevertheless, the frequencies of micronuclei and the rest of nuclear abnormalities did not differ between cases and controls. Further studies should shed more light on this subject.

  12. Patient pools and the use of "patient means" are valuable tools in quality control illustrated by a bone-specific alkaline phosphatase assay

    DEFF Research Database (Denmark)

    Hinge, Maja; Lund, Erik D.; Brandslund, Ivan

    2016-01-01

    AND RESULTS: The present study reports an example where a shift in a BAP assay was detected by use of a patient pool and supported by a retrospective calculation of "patient mean", while the external QC and specific assay control material were unaffected by the shift. CONCLUSIONS: Patient pools and the use...... of patient means remain a useful and inexpensive procedure for internal QC....

  13. Efficacy and safety of intermittent preventive treatment with sulfadoxine-pyrimethamine for malaria in African infants: a pooled analysis of six randomised, placebo-controlled trials

    NARCIS (Netherlands)

    Aponte, John J.; Schellenberg, David; Egan, Andrea; Breckenridge, Alasdair; Carneiro, Ilona; Critchley, Julia; Danquah, Ina; Dodoo, Alexander; Kobbe, Robin; Lell, Bertrand; May, Jürgen; Premji, Zul; Sanz, Sergi; Sevene, Esperanza; Soulaymani-Becheikh, Rachida; Winstanley, Peter; Adjei, Samuel; Anemana, Sylvester; Chandramohan, Daniel; Issifou, Saadou; Mockenhaupt, Frank; Owusu-Agyei, Seth; Greenwood, Brian; Grobusch, Martin P.; Kremsner, Peter G.; Macete, Eusebio; Mshinda, Hassan; Newman, Robert D.; Slutsker, Laurence; Tanner, Marcel; Alonso, Pedro; Menendez, Clara

    2009-01-01

    BACKGROUND: Intermittent preventive treatment (IPT) is a promising strategy for malaria control in infants. We undertook a pooled analysis of the safety and efficacy of IPT in infants (IPTi) with sulfadoxine-pyrimethamine in Africa. METHODS: We pooled data from six double-blind, randomised,

  14. Welding--Trade or Profession?

    Science.gov (United States)

    Albright, C. E.; Smith, Kenneth

    2006-01-01

    This article discusses a collaborative program between schools with the purpose of training and providing advanced education in welding. Modern manufacturing is turning to automation to increase productivity, but it can be a great challenge to program robots and other computer-controlled welding and joining systems. Computer programming and…

  15. The full penetration hole as a stochastic process: controlling penetration depth in keyhole laser-welding processes

    Science.gov (United States)

    Blug, A.; Abt, F.; Nicolosi, L.; Heider, A.; Weber, R.; Carl, D.; Höfler, H.; Tetzlaff, R.

    2012-07-01

    Although laser-welding processes are frequently used in industrial production the quality control of these processes is not satisfactory yet. Until recently, the "full penetration hole" was presumed as an image feature which appears when the keyhole opens at the bottom of the work piece. Therefore it was used as an indicator for full penetration only. We used a novel camera based on "cellular neural networks" which enables measurements at frame rates up to 14 kHz. The results show that the occurrence of the full penetration hole can be described as a stochastic process. The probability to observe it increases near the full penetration state. In overlap joints, a very similar image feature appears when the penetration depth reaches the gap between the sheets. This stochastic process is exploited by a closed-loop system which controls penetration depth near the bottom of the work piece ("full penetration") or near the gap in overlap joints ("partial penetration"). It guides the welding process at the minimum laser power necessary for the required penetration depth. As a result, defects like spatters are reduced considerably and the penetration depth becomes independent of process drifts such as feeding rate or pollution on protection glasses.

  16. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    Science.gov (United States)

    Vasudevan, M.

    2017-03-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  17. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Filacchioni, G. E-mail: gianni.filacchioni@casaccia.enea.it; Montanari, R.; Tata, M.E.; Pilloni, L

    2002-12-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program.

  18. Technical specifications on the welding in fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Karino, Motonobu; Uryu, Mitsuru; Matsui, N.; Nakazawa, Fumio; Imanishi, Makoto; Koizumi; Kazuhiko; Sugawara, Junichi; Tanaka, Hideo

    1999-04-01

    The past specifications SGN of the welding in JNC was reexamined for the reprocessing plants in order to further promote the quality control. The specification first concerns the quality of raw materials, items of the quality tests, material management, and qualification standards of the welders. It extends over details of the welding techniques, welding design, welding testings, inspection and the judgment standards. (H. Baba)

  19. Generation of a dynamic polarized laser beam for applications in laser welding

    Science.gov (United States)

    Gräf, Stephan; Staupendahl, Gisbert; Seiser, Carlo; Meyer, Bernd-Jürgen; Müller, Frank A.

    2010-02-01

    The temporal control and optimization of laser beam parameters, e.g., the beam power, can be employed to enhance the quality and reliability of the welding process. Until now, the influence of a time-dependent beam polarization has been less investigated in welding. The publication describes a new experimental arrangement allowing the fast variation of the polarization of CO2 laser radiation ["dynamic polarization" (DP)]. The key element of the setup is a high power interference laser beam modulator for cw laser power rating of up to 4 kW. Weld seams were produced with different process parameters in the technically relevant steels St37 and Ck45 and in the precoated steel 22MnB5 (USIBOR 1500P). The welds were subsequently characterized by roughness measurements of the top bead surfaces and by the preparation of cross sections and their macroscopic analysis. The experiments on welding with DP showed a significant influence on the keyhole and melt pool dynamics, especially a reduction in the top bead roughness at certain DP frequencies up to a factor of about 3. In addition, a threshold behavior for this effect was observed. It was shown that the cross sectional shape and thus the degree of energy coupling to the material was unaffected by the DP. Finally, during welding USIBOR 1500P with DP an enhanced melt pool stirring was achieved. The results show that the temporal modulation of energy coupling to the material caused by DP is suitable to enhance the quality and reliability of the welding process.

  20. ITER lip seal welding and cutting developments

    Energy Technology Data Exchange (ETDEWEB)

    Levesy, B.; Cordier, J.J.; Jokinen, T. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kujanpää, V.; Karhu, M. [VTT Technical Research Centre of Finland (Finland); Le Barbier, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Määttä, T. [VTT Technical Research Centre of Finland (Finland); Martins, J.P.; Utin, Y. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-10-15

    Highlights: • Different TIG and Laser welding techniques are tested. • Twin spot laser welding techniques is the best. • Limited heat input gives a stable weld pool in all positions. • Penetrations is achieved. • Lip seal welding and cutting with a robotic arm is successfully performed on a representative mock-up. - Abstract: The welded lip seals form part of the torus primary vacuum boundary in between the port plugs and the vacuum vessel, and are classified as Protection Important Component. In order to refurbish the port plugs or the in-vessel components, port plugs have to be removed from the machine. The lip seal design must enable up to ten opening of the vacuum vessel during the life time operation of the ITER machine. Therefore proven, remote reliable cutting and re-welding are essential, as these operations need to be performed in the port cells in a nuclear environment, where human presence will be restricted. Moreover, the combination of size of the components to be welded (∼10 m long vacuum compatible thin welds) and the congested environment close to the core of the machine constraint the type and size of tools to be used. This paper describes the lip seal cutting and welding development programme performed at the VTT Technical Research Centre, Finland. Potential cutting and welding techniques are analyzed and compared. The development of the cutting, TIG and laser welding techniques on samples are presented. Effects of lip seal misalignments and optimization of the 2 welding processes are discussed. Finally, the manufacturing and test of the two 1.2 m × 1 m representative mock-ups are presented. The set-up and use of a robotic arm for the mock-up cutting and welding operations are also described.

  1. Optimization of process parameters during vibratory welding technique using Taguchi's analysis

    Directory of Open Access Journals (Sweden)

    Pravin Kumar Singh

    2016-09-01

    Full Text Available With an aim to improve the mechanical properties of a weld joint, a new concept of vibratory setup has been designed which is capable to stir the molten weld pool before it solidifies during shielded metal arc welding (SMAW operation. Mechanical vibration having resonance frequency of 300 Hz and amplitude of 0.5 mm was transferred to the molten weld pool of 6 mm thick mild steel butt-welded joints during the welding operation. The experimental work was conducted at various ranges of frequencies, welding current and welding speed. Taguchi's analysis technique has been applied to optimize the process parameters; the response values for analysis are yield strength and micro-hardness. The test results showed that with the application of the vibratory treatment the values of hardness and tensile properties increased. The auxiliary vibrations induced into the weld pool resulted in increased micro-hardness of the weld metal which indicates the orientation of the crystal and refinement of grains took place. This study shows that vibration applied into the weld pool can be successfully improved the mechanical properties of welded joints. Thus this research attempt provided an alternative welding technique for grain refinement of weldments.

  2. EFFECTS OF ELECTRODE DEFORMATION OF RESISTANCE SPOT WELDING ON 304 AUSTENITIC STAINLESS STEEL WELD GEOMETRY

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2012-12-01

    Full Text Available The resistance spot welding process is accomplished by forcing huge amounts of current flow from the upper electrode tip through the base metals to the lower electrode tip, or vice versa or in both directions. A weld joint is established between the metal sheets through fusion, resulting in a strong bond between the sheets without occupying additional space. The growth of the weld nugget (bond between sheets is therefore determined from the welding current density; sufficient time for current delivery; reasonable electrode pressing force; and the area provided for current delivery (electrode tip. The welding current and weld time control the root penetration, while the electrode pressing force and electrode tips successfully accomplish the connection during the welding process. Although the welding current and weld time cause the heat generation at the areas concerned (electrode tip area, the electrode tips’ diameter and electrode pressing forces also directly influence the welding process. In this research truncated-electrode deformation and mushrooming effects are observed, which result in the welded areas being inconsistent due to the expulsion. The copper to chromium ratio is varied from the tip to the end of the electrode whilst the welding process is repeated. The welding heat affects the electrode and the electrode itself influences the shape of the weld geometry.

  3. Residual stress characterization of welds and post-weld processes using x-ray diffraction techniques

    Science.gov (United States)

    Brauss, Michael E.; Pineault, James A.; Eckersley, John S.

    1998-03-01

    This paper illustrates the importance of residual stress characterization in welds and post weld processes. The failure to characterize residual stresses created during welding and/or post weld processes can lead to unexpected occurrences of stress corrosion cracking, distortion, fatigue cracking as well as instances of over design or over processing. The development of automated residual stress mapping and the availability of portable and fast equipment have now made the characterization of residual stresses using x-ray diffraction practical for process control and optimization. The paper presents examples where x-ray diffraction residual stress characterization techniques were applied on various kinds of welds including arc welds, TIG welds, resistance welds, laser welds and electron beam welds. The nondestructive nature of the x-ray diffraction technique has made the residual stress characterization of welds a useful tool for process optimization and failure analysis, particularly since components can be measured before and after welding and post welding processes. Some examples presented show the residual stresses before and after the application of post weld processes such as shot peening, grinding and heat treatment.

  4. The post-transcriptional regulatory system CSR controls the balance of metabolic pools in upper glycolysis of Escherichia coli.

    Science.gov (United States)

    Morin, Manon; Ropers, Delphine; Letisse, Fabien; Laguerre, Sandrine; Portais, Jean-Charles; Cocaign-Bousquet, Muriel; Enjalbert, Brice

    2016-05-01

    Metabolic control in Escherichia coli is a complex process involving multilevel regulatory systems but the involvement of post-transcriptional regulation is uncertain. The post-transcriptional factor CsrA is stated as being the only regulator essential for the use of glycolytic substrates. A dozen enzymes in the central carbon metabolism (CCM) have been reported as potentially controlled by CsrA, but its impact on the CCM functioning has not been demonstrated. Here, a multiscale analysis was performed in a wild-type strain and its isogenic mutant attenuated for CsrA (including growth parameters, gene expression levels, metabolite pools, abundance of enzymes and fluxes). Data integration and regulation analysis showed a coordinated control of the expression of glycolytic enzymes. This also revealed the imbalance of metabolite pools in the csrA mutant upper glycolysis, before the phosphofructokinase PfkA step. This imbalance is associated with a glucose-phosphate stress. Restoring PfkA activity in the csrA mutant strain suppressed this stress and increased the mutant growth rate on glucose. Thus, the carbon storage regulator system is essential for the effective functioning of the upper glycolysis mainly through its control of PfkA. This work demonstrates the pivotal role of post-transcriptional regulation to shape the carbon metabolism. © 2016 John Wiley & Sons Ltd.

  5. Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    High temperature oxidation resistant iron-chromium-aluminum (FeCrAl) alloys are candidate alloys for nuclear applications due to their exceptional performance during off-normal conditions such as a loss-of-coolant accident (LOCA) compared to currently deployed zirconium-based claddings [1]. A series of studies have been completed to determine the weldability of the FeCrAl alloy class and investigate the weldment performance in the as-received (non-irradiated) state [2,3]. These initial studies have shown the general effects of composition and microstructure on the weldability of FeCrAl alloys. Given this, limited details on the radiation tolerance of FeCrAl alloys and their weldments exist. Here, the highest priority candidate FeCrAl alloys and their weldments have been investigated after irradiation to enable a better understanding of FeCrAl alloy weldment performance within a high-intensity neutron field. The alloys examined include C35M (Fe-13%Cr-5% Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions. Two different sub-sized tensile geometries, SS-J type and SS-2E (or SS-mini), were neutron irradiated in the High Flux Isotope Reactor to 1.8-1.9 displacements per atom (dpa) in the temperature range of 195°C to 559°C. Post irradiation examination of the candidate alloys was completed and included uniaxial tensile tests coupled with digital image correlation (DIC), scanning electron microscopy-electron back scattered diffraction analysis (SEM-EBSD), and SEM-based fractography. In addition to weldment testing, non-welded parent material was examined as a direct comparison between welded and non-welded specimen performance. Both welded and non-welded specimens showed a high degree of radiation-induced hardening near irradiation temperatures of 200°C, moderate radiation-induced hardening near temperatures of 360°C, and almost no radiation-induced hardening at elevated temperatures near 550°C. Additionally, low-temperature irradiations showed

  6. [New welding processes and health effects of welding].

    Science.gov (United States)

    La Vecchia, G Marina; Maestrelli, Piero

    2011-01-01

    This paper describes some of the recent developments in the control technology to enhance capability of Pulse Gas Metal Arc Welding. Friction Stir Welding (FSW) processing has been also considered. FSW is a new solid-state joining technique. Heat generated by friction at the rotating tool softens the material being welded. FSW can be considered a green and energy-efficient technique without deleterious fumes, gas, radiation, and noise. Application of new welding processes is limited and studies on health effects in exposed workers are lacking. Acute and chronic health effects of conventional welding have been described. Metal fume fever and cross-shift decline of lung function are the main acute respiratory effects. Skin and eyes may be affected by heat, electricity and UV radiations. Chronic effects on respiratory system include chronic bronchitis, a benign pneumoconiosis (siderosis), asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders.

  7. Syllabus in Trade Welding.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  8. Optimized design on condensing tubes high-speed TIG welding technology magnetic control based on genetic algorithm

    Science.gov (United States)

    Lu, Lin; Chang, Yunlong; Li, Yingmin; Lu, Ming

    2013-05-01

    An orthogonal experiment was conducted by the means of multivariate nonlinear regression equation to adjust the influence of external transverse magnetic field and Ar flow rate on welding quality in the process of welding condenser pipe by high-speed argon tungsten-arc welding (TIG for short). The magnetic induction and flow rate of Ar gas were used as optimum variables, and tensile strength of weld was set to objective function on the base of genetic algorithm theory, and then an optimal design was conducted. According to the request of physical production, the optimum variables were restrained. The genetic algorithm in the MATLAB was used for computing. A comparison between optimum results and experiment parameters was made. The results showed that the optimum technologic parameters could be chosen by the means of genetic algorithm with the conditions of excessive optimum variables in the process of high-speed welding. And optimum technologic parameters of welding coincided with experiment results.

  9. Vernal Pools

    Data.gov (United States)

    California Department of Resources — This is a polygon layer representing existing vernal pool complexes in California's Central Valley, as identified and mapped by Dr. Robert F. Holland. The purpose of...

  10. Allergies and Risk of Pancreatic Cancer: A Pooled Analysis From the Pancreatic Cancer Case-Control Consortium

    Science.gov (United States)

    Olson, Sara H.; Hsu, Meier; Satagopan, Jaya M.; Maisonneuve, Patrick; Silverman, Debra T.; Lucenteforte, Ersilia; Anderson, Kristin E.; Borgida, Ayelet; Bracci, Paige M.; Bueno-de-Mesquita, H. Bas; Cotterchio, Michelle; Dai, Qi; Duell, Eric J.; Fontham, Elizabeth H.; Gallinger, Steven; Holly, Elizabeth A.; Ji, Bu-Tian; Kurtz, Robert C.; La Vecchia, Carlo; Lowenfels, Albert B.; Luckett, Brian; Ludwig, Emmy; Petersen, Gloria M.; Polesel, Jerry; Seminara, Daniela; Strayer, Lori; Talamini, Renato

    2013-01-01

    In order to quantify the risk of pancreatic cancer associated with history of any allergy and specific allergies, to investigate differences in the association with risk according to age, gender, smoking status, or body mass index, and to study the influence of age at onset, we pooled data from 10 case-control studies. In total, there were 3,567 cases and 9,145 controls. Study-specific odds ratios and 95% confidence intervals were calculated by using unconditional logistic regression adjusted for age, gender, smoking status, and body mass index. Between-study heterogeneity was assessed by using the Cochran Q statistic. Study-specific odds ratios were pooled by using a random-effects model. The odds ratio for any allergy was 0.79 (95% confidence interval (CI): 0.62, 1.00) with heterogeneity among studies (P < 0.001). Heterogeneity was attributable to one study; with that study excluded, the pooled odds ratio was 0.73 (95% CI: 0.64, 0.84) (Pheterogeneity = 0.23). Hay fever (odds ratio = 0.74, 95% CI: 0.56, 0.96) and allergy to animals (odds ratio = 0.62, 95% CI: 0.41, 0.94) were related to lower risk, while there was no statistically significant association with other allergies or asthma. There were no major differences among subgroups defined by age, gender, smoking status, or body mass index. Older age at onset of allergies was slightly more protective than earlier age. PMID:23820785

  11. ELKS controls the pool of readily releasable vesicles at excitatory synapses through its N-terminal coiled-coil domains.

    Science.gov (United States)

    Held, Richard G; Liu, Changliang; Kaeser, Pascal S

    2016-06-02

    In a presynaptic nerve terminal, synaptic strength is determined by the pool of readily releasable vesicles (RRP) and the probability of release (P) of each RRP vesicle. These parameters are controlled at the active zone and vary across synapses, but how such synapse specific control is achieved is not understood. ELKS proteins are enriched at vertebrate active zones and enhance P at inhibitory hippocampal synapses, but ELKS functions at excitatory synapses are not known. Studying conditional knockout mice for ELKS, we find that ELKS enhances the RRP at excitatory synapses without affecting P. Surprisingly, ELKS C-terminal sequences, which interact with RIM, are dispensable for RRP enhancement. Instead, the N-terminal ELKS coiled-coil domains that bind to Liprin-α and Bassoon are necessary to control RRP. Thus, ELKS removal has differential, synapse-specific effects on RRP and P, and our findings establish important roles for ELKS N-terminal domains in synaptic vesicle priming.

  12. Proposta do uso de pool de sangue total como controle interno de qualidade em hematologia Proposal for the use of a pool of whole blood as internal quality control in hematology

    Directory of Open Access Journals (Sweden)

    Carina Daniele Schons

    2010-06-01

    Full Text Available INTRODUÇÃO: A confiabilidade dos resultados do laboratório é garantida pela realização do controle de qualidade, que tem como funções básicas análise, pesquisa e prevenção da ocorrência de erros laboratoriais por meio de programas que abrangem tanto o controle interno quanto o externo. OBJETIVO: Propor a padronização de utilização de pool de sangue total como controle interno de qualidade no setor de hematologia. MÉTODO: Foram selecionadas amostras de sangue total, colhidas com ácido etilenodiaminotetracético (EDTA, de mesmos grupo sanguíneo e fator Rh, livres de interferentes, como hemólise, lipemia e icterícia. De um total de 30 ml de sangue total, obtiveram-se três alíquotas de 10 ml cada, às quais foram adicionados, respectivamente, 0 ml (sem adição, 1 ml e 5 ml de glicerol (conservante. As amostras foram avaliadas em contador automático ADVIA® 60. Após determinação dos valores de média e DP, todas as amostras foram avaliadas por um período de 45 dias úteis para confecção do gráfico de Levey-Jennings e verificação da estabilidade da amostra. RESULTADO E CONCLUSÃO: Podemos verificar que o pool de sangue total, preparado de acordo com a metodologia proposta, não apresenta estabilidade necessária para sua utilização, como controle interno alternativo no setor de hematologia.INTRODUCTION: The reliability of laboratory results is ensured by the implementation of quality control, which has basic functions, such as analysis, research and prevention of laboratory errors through programs that encompass both internal and external control. OBJECTIVE: To propose a standard method to use pooled whole blood as internal quality control in the Hematology division. METHOD: The selected whole blood samples were collected with EDTA, belonged to the same blood group and Rh factor and did not present interfering factors, such as hemolysis, lipemia and icterus. From a total of 30 ml of whole blood it was obtained 3

  13. Recreational Physical Activity and Differentiated Thyroid Cancer Risk: A Pooled Analysis of Two Case-Control Studies

    Science.gov (United States)

    Xhaard, Constance; Lence-Anta, Juan J.; Ren, Yan; Borson-Chazot, Françoise; Sassolas, Geneviève; Schvartz, Claire; Colonna, Marc; Lacour, Brigitte; Danzon, Arlette; Velten, Michel; Clero, Enora; Maillard, Stéphane; Marrer, Emilie; Bailly, Laurent; Mariné Barjoan, Eugènia; Schlumberger, Martin; Orgiazzi, Jacques; Adjadj, Elisabeth; Pereda, Celia M.; Turcios, Silvia; Velasco, Milagros; Chappe, Mae; Infante, Idalmis; Bustillo, Marlene; García, Anabel; Salazar, Sirced; Rodriguez, Regla; Benadjaoud, Mohamed Amine; Ortiz, Rosa M.; Rubino, Carole; de Vathaire, Florent

    2016-01-01

    Purpose Physical activity has been hypothesized to influence cancer occurrence through several mechanisms. To date, its relation with thyroid cancer risk has been examined in relatively few studies. We pooled 2 case-control studies conducted in Cuba and Eastern France to assess the relationship between self-reported practice of recreational physical activity since childhood and thyroid cancer risk. Methods This pooled study included 1,008 cases of differentiated thyroid cancer (DTC) matched with 1,088 controls (age range 9-35 and 17-60 years in the French and Cuban studies, respectively). Risk factors associated with the practice of recreational physical activity were estimated using OR and 95% CI. Logistic regressions were stratified by age class, country, and gender and were adjusted for ethnic group, level of education, number of pregnancies for women, height, BMI, and smoking status. Results Overall, the risk of thyroid cancer was slightly reduced among subjects who reported recreational physical activity (OR = 0.8; 95% CI 0.5-1.0). The weekly frequency (i.e. h/week) seems to be more relevant than the duration (years). Conclusion Long-term recreational physical activity, practiced since childhood, may reduce the DTC risk. However, the mechanisms whereby the DTC risk decreases are not yet entirely clear. PMID:27493888

  14. Seam gap bridging of laser based processes for the welding of aluminium sheets for industrial applications

    NARCIS (Netherlands)

    Aalderink, B.J.; Aalderink, Benno; Pathiraj, B.; Aarts, Ronald G.K.M.

    2010-01-01

    Laser welding has a large potential for the production of tailor welded blanks in the automotive industry, due to the low heat input and deep penetration. However, due to the small laser spot and melt pool, laser-based welding processes in general have a low tolerance for seam gaps. In this paper,

  15. Inclusions and Microstructure of Steel Weld Deposits with Nanosize Titanium Oxide Addition

    Directory of Open Access Journals (Sweden)

    Cuixin Chen

    2014-01-01

    Full Text Available Nanosize TiO2 particles were added directly into welding molten pool through electrode for the difficulty of accurate control of oxygen potential and production processing parameters. The characteristics of phase transformation and thermal behavior of inclusions for Fe-C-Mn-Si-Ti-O system and Fe-C-Mn-Si-TiO2 system were analyzed. Results show that the added TiO2 particles are more helpful for the formation of Mn-Ti-O complex inclusion and can induce the decrease of phase transformation temperature of austenite to ferrite. Intragranular ferrite can be obtained under the condition of continuous cooling transformation with cooling rate of 293 K/s–373 K/s. The inclusions in steel welds are spherical in shape and mainly composed of TiO2, Ti3O5, Ti2O3, MnO, and SiO2. The mean size of inclusions is 0.67 μm. These complex inclusions can supply a large number of nucleating cores for their precipitation at higher temperature, which will disturb the growth of columnar crystal during solidification. Moreover, Mn-containing titanium oxides will promote the transformation of austenite to intragranular ferrite for the formation of manganese depleted zones in steel welds around oxides. So it can be concluded that nanosize titanium oxide added directly in welding molten pool can be effectively used to control phase transformation and achieve fine and favorable microstructure.

  16. Validation of the Monte Carlo model developed to estimate doses around the irradiated fuel pool produced by activated control rods discharged from a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Abarca, Agustin; Gallardo, Sergio; Rodenas, Jose [Universidad Politecnica de Valencia (Spain). Dept. de Ingenieria Quimica y Nuclear], e-mail: ergalbe@iqn.upv.es

    2009-07-01

    BWR control rods are irradiated into the reactor by the neutron flux and consequently materials composing the rod become activated. When the control rods are withdrawn from the reactor, they must be stored into the spent fuel storage pool of the plant at a certain depth under water. Doses potentially received by plant workers in the area surrounding the pool edges as well as in a platform moving over the water surface should be calculated to assure the adequate protection. Irradiated fuel elements are stored at the bottom of the pool while controls rods are nearer the surface. Therefore, doses out of the pool are mainly produced by activated control rods. The MCNP5 code based on the Monte Carlo method has been applied to model the pool containing hanger devices with irradiated control rods and to estimate dose rates at points of interest. To obtain dose rates on the pool and around it an F4MESH tally has been used. Furthermore, the SSW/SSR technique has been applied in order to strongly reduce the computer time. Results have been compared with measurements in plant in order to validate the model. An interesting application of the validated model is the assessment of doses when some variation is introduced in the distribution of activated material. (author)

  17. Automatic orbital GTAW welding: Highest quality welds for tomorrow's high-performance systems

    Science.gov (United States)

    Henon, B. K.

    1985-01-01

    Automatic orbital gas tungsten arc welding (GTAW) or TIG welding is certain to play an increasingly prominent role in tomorrow's technology. The welds are of the highest quality and the repeatability of automatic weldings is vastly superior to that of manual welding. Since less heat is applied to the weld during automatic welding than manual welding, there is less change in the metallurgical properties of the parent material. The possibility of accurate control and the cleanliness of the automatic GTAW welding process make it highly suitable to the welding of the more exotic and expensive materials which are now widely used in the aerospace and hydrospace industries. Titanium, stainless steel, Inconel, and Incoloy, as well as, aluminum can all be welded to the highest quality specifications automatically. Automatic orbital GTAW equipment is available for the fusion butt welding of tube-to-tube, as well as, tube to autobuttweld fittings. The same equipment can also be used for the fusion butt welding of up to 6 inch pipe with a wall thickness of up to 0.154 inches.

  18. Performance Improvement of Friction Stir Welds by Better Surface Finish

    Science.gov (United States)

    Russell, Sam; Nettles, Mindy

    2015-01-01

    The as-welded friction stir weld has a cross section that may act as a stress concentrator. The geometry associated with the stress concentration may reduce the weld strength and it makes the weld challenging to inspect with ultrasound. In some cases, the geometry leads to false positive nondestructive evaluation (NDE) indications and, in many cases, it requires manual blending to facilitate the inspection. This study will measure the stress concentration effect and develop an improved phased array ultrasound testing (PAUT) technique for friction stir welding. Post-welding, the friction stir weld (FSW) tool would be fitted with an end mill that would machine the weld smooth, trimmed shaved. This would eliminate the need for manual weld preparation for ultrasonic inspections. Manual surface preparation is a hand operation that varies widely depending on the person preparing the welds. Shaving is a process that can be automated and tightly controlled.

  19. Electron beam welding of iridium heat source capsules

    Science.gov (United States)

    Mustaleski, Thomas M.; Yearwood, J. Cecil; Burgan, Clyde E.; Green, L. A.

    1991-01-01

    The development of the welding procedures for the production of DOP-26 iridium alloy cups for heat source encapsulation is described. All the final assembly welds were made using the electron beam welding process. The welding of the 0.13-mm weld shield required the use of computer controlled X-Y table and a run-off tab. Welding of the frit vent to the cup required that a laser weld be made to hold the frit assembly edges together for the final electron beam weld. Great care is required in tooling design and beam placement to achieve acceptable results. Unsuccessful attempts to use laser beam welding for heat shield butt weld are discussed.

  20. Effects of heat input rates on T-1 and T-1A steel welds

    Science.gov (United States)

    Davis, R. A.; Olsen, M. G.; Worden, S. W.

    1967-01-01

    Technology of T-1 and T-1A steels is emphasized in investigation of their weld-fabrication. Welding heat input rate, production weldment circumstances, and standards of welding control are considered.

  1. The Effects of Pulse Parameters on Weld Geometry and Microstructure of a Pulsed Laser Welding Ni-Base Alloy Thin Sheet with Filler Wire

    Directory of Open Access Journals (Sweden)

    Dongsheng Chai

    2016-10-01

    Full Text Available Due to its excellent resistance to corrosive environments and its superior mechanical properties, the Ni-based Hastelloy C-276 alloy was chosen as the material of the stator and rotor cans of a nuclear main pump. In the present work, the Hastelloy C-276 thin sheet 0.5 mm in thickness was welded with filler wire by a pulsed laser. The results indicated that the weld pool geometry and microstructure were significantly affected by the duty ratio, which was determined by the pulse duration and repetition rate under a certain heat input. The fusion zone area was mainly affected by the duty ratio, and the relationship was given by a quadratic polynomial equation. The increase in the duty ratio coarsened the grain size, but did not obviously affect microhardness. The weld geometry and base metal dilution rate was manipulated by controlling pulsed parameters without causing significant change to the performance of the weld. However, it should be noted that, with a larger duty ratio, the partial molten zone is a potential weakness of the weld.

  2. A Monte Carlo model for 3D grain evolution during welding

    Science.gov (United States)

    Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena

    2017-09-01

    Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bézier curves, which allow for the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. The model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.

  3. Liquid Metal Oscillation and Arc Behaviour during Welding

    NARCIS (Netherlands)

    Yudodibroto, B.Y.B.

    2010-01-01

    The purpose of this research is to obtain insight into the oscillation behaviour of the liquid metal and the arc behaviour during GMA welding. Observations of the weld pool and the arc were undertaken by visual means using a high-speed video and by analysis of the voltage. To deal with the complex

  4. Lasers in car body construction - substitution of conventional welding techniques or supplement

    Energy Technology Data Exchange (ETDEWEB)

    Imhoff, R.; Behler, K.; Beyer, E.

    1988-09-01

    In car body construction, laser beam welding competes with resistance spot welding and with projection welding. There are problems concerning the short bridging distance of the laser beam welding, but there are also some advantages, i.e.: lower weight; higher strength and stiffness of the car body; high welding speed (5 to 10 m/min); triple-pass welding; welding at a present depth for attaching reinforcing elements on the inside of visible car parts for the purpose of vibration and noise damping; good process control characteristics. In the long run, laser beam welding is expected to replace conventional welding techniques in car body construction.

  5. Modelling body mass index and endometrial cancer risk in a pooled-analysis of three case-control studies.

    Science.gov (United States)

    Rota, M; Rumi, F; Bagnardi, V; Dal Maso, L; Zucchetto, A; Levi, F; La Vecchia, C; Tavani, A

    2016-01-01

    To quantify the relation between body mass index (BMI) and endometrial cancer risk, and to describe the shape of such a relation. Pooled analysis of three hospital-based case-control studies. Italy and Switzerland. A total of 1449 women with endometrial cancer and 3811 controls. Multivariate odds ratios (OR) and 95% confidence intervals (95% CI) were obtained from logistic regression models. The shape of the relation was determined using a class of flexible regression models. The relation of BMI with endometrial cancer. Compared with women with BMI 18.5 to endometrial cancer and suggest that the risk in obese women increases in a cubic nonlinear fashion. The relation was stronger in never-users of oral contraceptives and in women with diabetes. © 2015 Royal College of Obstetricians and Gynaecologists.

  6. Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review

    Science.gov (United States)

    Pal, Kamal; Pal, Surjya K.

    2011-08-01

    The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.

  7. Pooled Analysis of Rofecoxib Placebo-Controlled Clinical Trial Data: Lessons for Post-Market Pharmaceutical Safety Surveillance

    Science.gov (United States)

    Ross, Joseph S.; Madigan, David; Hill, Kevin P.; Egilman, David S.; Wang, Yongfei; Krumholz, Harlan M.

    2010-01-01

    Background In September 2004, rofecoxib was voluntarily withdrawn from the worldwide market. Our objective was to determine whether and when analysis of published and unpublished placebo-controlled trials could have revealed cardiovascular risk associated with rofecoxib before its withdrawal as an example to inform future post-market pharmaceutical safety surveillance efforts. Methods We conducted a cumulative subject-level pooled analysis of data from all randomized, placebo-controlled trials of rofecoxib conducted by the manufacturer before September 2004. Our main outcome measurement was incidence of any investigator-reported death from any cause or cardiovascular thromboembolic (CVT) adverse event. Results We identified 30 randomized, placebo-controlled trials of rofecoxib that enrolled 20,152 subjects. Trial duration ranged from 4 weeks to 4 years, enrollment ranged from 17 to 2586 subjects prescribed either rofecoxib or placebo, and rofecoxib dosage ranged from 12.5 mg to 50 mg. As of December 2000, 21 (70%) of these trials had been completed and the risk of CVT adverse event or death was greater among subjects assigned to rofecoxib, with the difference being borderline statistically significant (Rate Ratio [RR]=2.18, 95% Confidence Interval [CI], 0.93–5.81; p=0.07). Subsequently collected data strengthened the statistical association (as of June 2001: RR=1.35, 95% CI, 1.00–1.96; p=0.05; as of April 2002: RR=1.39, 95% CI, 1.07–1.80; p=0.02). Conclusion Cumulative pooled analysis of all randomized, placebo-controlled trials demonstrates a progressing trend toward increased cardiovascular risk associated with rofecoxib compared with placebo as early as December 2000, reaching a P value of 0.05 by June 2001, nearly 3 and a half years before the manufacturer’s voluntary market withdrawal. PMID:19933959

  8. Numerical Simulation Of The Laser Welding

    Directory of Open Access Journals (Sweden)

    Aleksander Siwek

    2008-01-01

    Full Text Available The model takes into consideration thermophysical and metallurgical properties of theremelting steel, laser beam parameters and boundary conditions of the process. As a resultof heating the material, in the area of laser beam operation a weld pool is being created,whose shape and size depends on convection caused by the Marangoni force. The directionof the liquid stream depends on the temperature gradient on the surface and on the chemicalcomposition as well. The model created allows to predict the weld pool shape depending onmaterial properties, beam parameters, and boundary conditions of the sample.

  9. Thermal analysis of laser welding for ITER correction coil case

    Energy Technology Data Exchange (ETDEWEB)

    Fang, C., E-mail: fangchao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 200031 (China); Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); Song, Y.T.; Wu, W.Y.; Wei, J.; Xin, J.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 200031 (China); Wu, H.P.; Salminen, A. [Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland)

    2015-11-15

    Highlights: • Morphology of simulated heat source is found to be close to the welded joint sample. • The FEA temperature distribution shows good agreement with experimental measurements. • Laser welding process used on ITER correction coil case will not harm the winding pack. - Abstract: This paper presents the simulation results of 3D finite element analysis (FEA) of laser welding processes for the ITER correction coil case welding; predicts the temperature distribution and compares it with the experimental result to evaluate the impact to the properties of winding pack during the welding process. A specimen of coil case was modeled and simulated by using specialized welding simulation software SYSWELD, Modeling used austenitic stainless steel 316LN as the specimen material and a 3D Conical Gaussian was used as a heat source model. A plate sample was welded before the FE modeling in order to obtain the laser welding parameters and the Gaussian parameters of molten pool. To verify the simulation results, a coil case sample was welded using laser welding with welding parameters that matched the model, and the corresponding temperature values were measured using thermocouples. Compared with the FEA results, it was found that the FEA temperature distribution shows good agreement with the experimental measurements and the laser welding process will not harm the winding pack.

  10. A pooled analysis of case-control studies of thyroid cancer. VI. Fish and shellfish consumption

    NARCIS (Netherlands)

    Bosetti, C; Kolonel, L; Negri, E; Ron, E; Franceschi, S; Maso, LD; Galanti, MR; Mark, SD; Preston-Martin, S; McTiernan, A; Land, C; Jin, F; Wingren, G; Hallquist, A; Glattre, E; Lund, E; Levi, F; Linos, D; Vecchia, CL

    2001-01-01

    Objective: To better understand the role of fish and shellfish on thyroid cancer risk, we systematically re-analyzed the original data from 13 case-control studies conducted in the US, Japan, China, and Europe. Methods: A total of 2497 cases (2023 women, 474 men) and 4337 controls (3268 women, 1069

  11. The influence of high heat input and inclusions control for rare earth on welding in low alloy high strength steel

    Science.gov (United States)

    Chu, Rensheng; Mu, Shukun; Liu, Jingang; Li, Zhanjun

    2017-09-01

    In the current paper, it is analyzed for the influence of high heat input and inclusions control for rare earth on welding in low alloy high strength steel. It is observed for the structure for different heat input of the coarse-grained area. It is finest for the coarse grain with the high heat input of 200 kJ / cm and the coarse grain area with 400 kJ / cm is the largest. The performance with the heat input of 200 kJ / cm for -20 °C V-shaped notch oscillatory power is better than the heat input of 400 kJ / cm. The grain structure is the ferrite and bainite for different holding time. The grain structure for 5s holding time has a grain size of 82.9 μm with heat input of 200 kJ/cm and grain size of 97.9 μm for 10s holding time. For the inclusions for HSLA steel with adding rare earth, they are Al2O3-CaS inclusions in the Al2O3-CaS-CaO ternary phase diagram. At the same time, it can not be found for low melting calcium aluminate inclusions compared to the inclusions for the HSLA steel without rare earth. Most of the size for the inclusions is between 1 ~ 10μm. The overall grain structure is smaller and the welding performance is more excellent for adding rare earth.

  12. Obesity and the risk of papillary thyroid cancer: a pooled analysis of three case-control studies.

    Science.gov (United States)

    Xu, Li; Port, Matthias; Landi, Stefano; Gemignani, Federica; Cipollini, Monica; Elisei, Rossella; Goudeva, Lilia; Müller, Jörg Andreas; Nerlich, Kai; Pellegrini, Giovanni; Reiners, Christoph; Romei, Cristina; Schwab, Robert; Abend, Michael; Sturgis, Erich M

    2014-06-01

    There is a correlation between temporal trends of obesity prevalence and papillary thyroid cancer (PTC) incidence in the United States. Obesity is a well-recognized risk factor for many cancers, but there are few studies on the association between obesity and PTC risk. We investigated the association between anthropometric measurements and PTC risk using pooled individual data from three case-control populations. Height and weight information were obtained from three independent case-control studies, including 1917 patients with PTC (1360 women and 557 men) and 2127 cancer-free controls from the United States, Italy, and Germany. Body mass index (BMI), body fat percentage, and body surface area (BSA) were calculated. An unconditional logistic regression model was used to calculate odds ratios (ORs) and confidence intervals (CIs) with respect to risk of PTC, adjusted by age, sex, race/ethnicity, and study site. In the pooled population, for both men and women, an increased risk of PTC was found to be associated with greater weight, BMI, body fat percentage, and BSA, whereas a reduced risk of PTC was associated with greater height, in the pooled population for both men and women. Compared with normal-weight subjects (BMI 18.5-24.9 kg/m2), the ORs for overweight (BMI 25-29.9 kg/m2) and obese (BMI≥30 kg/m2) subjects were 1.72 [CI 1.48-2.00] and 4.17 [CI 3.41-5.10] respectively. Compared with the lowest quartile of body fat percentage, the ORs for the highest quartile were 3.83 [CI 2.85-5.15] in women and 4.05 [CI 2.67-6.15] in men. Anthropometric factors, especially BMI and body fat percentage, were significantly associated with increased risk of PTC. Future studies of anthropometric factors and PTC that incorporate intermediate factors, including adiposity and hormone biomarkers, are essential to help clarify potential mechanisms of the relationship.

  13. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  14. Keyhole and weld shapes for plasma arc welding under normal and zero gravity

    Science.gov (United States)

    Keanini, R. G.; Rubinsky, B.

    1990-01-01

    A first order study of the interfacial (keyhole) shape between a penetrating argon plasma arc jet and a stationary liquid metal weld pool is presented. The interface is determined using the Young-Laplace equation by assuming that the plasma jet behaves as a one-dimensional ideal gas flow and by neglecting flow within the weld pool. The solution for the keyhole shape allows an approximate determination of the liquid-solid metal phase boundary location based on the assumption that the liquid melt is a stagnant thermal boundary layer. Parametric studies examine the effect of plasma mass flow rate, initial plasma enthalpy, liquid metal surface tension, and jet shear on weldment shape under both normal and zero gravity. Among the more important findings of this study is that keyhole and weld geometries are minimally affected by gravity, suggesting that data gathered under gravity can be used in planning in-space welding.

  15. A System for Complex Robotic Welding

    DEFF Research Database (Denmark)

    Madsen, Ole; Sørensen, Carsten Bro; Olsen, Birger

    2002-01-01

    This paper presents the architecture of a system for robotic welding of complex tasks. The system integrates off-line programming, control of redundant robots, collision-free motion planning and sensor-based control. An implementation for pipe structure welding made at Odense Steel Shipyard Ltd......., Denmark, demonstrates the system can be used for automatic welding of complex products in one-of-a-kind production....

  16. Braze welding of cobalt with a silver–copper filler

    Directory of Open Access Journals (Sweden)

    Everett M. Criss

    2015-01-01

    Full Text Available A new method of joining cobalt by braze-welding it with a silver–copper filler was developed in order to better understand the residual stresses in beryllium–aluminum/silicon weldments which are problematic to investigate because of the high toxicity of Be. The base and filler metals of this new welding system were selected to replicate the physical properties, crystal structures, and chemical behavior of the Be–AlSi welds. Welding parameters of this surrogate Co–AgCu system were determined by experimentation combining 4-point bending tests and microscopy. Final welds are 5 pass manual TIG (tungsten inert gas, with He top gas and Ar back gas. Control of the welding process produces welds with full penetration melting of the cobalt base. Microscopy indicates that cracking is minimal, and not through thickness, whereas 4-point bending shows failure is not by base-filler delamination. These welds improve upon the original Be–AlSi welds, which do not possess full penetration, and have considerable porosity. We propose that utilization of our welding methods will increase the strength of the Be–AlSi weldments. The specialized welding techniques developed for this study may be applicable not only for the parent Be–AlSi welds, but to braze welds and welds utilizing brittle materials in general. This concept of surrogacy may prove useful in the study of many different types of exotic welds.

  17. Passively damped vibration welding system and method

    Science.gov (United States)

    Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao

    2013-04-02

    A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

  18. Smoking and cervical cancer: pooled analysis of the IARC multi-centric case--control study.

    NARCIS (Netherlands)

    Plummer, M; Herrero, R; Franceschi, S; Meijer, C.J.L.M.; Snijders, P.J.F.; Bosch, F.X.; Sanjose, de S; Munoz, N.

    2003-01-01

    BACKGROUND: Smoking has long been suspected to be a risk factor for cervical cancer. However, not all previous studies have properly controlled for the effect of human papillomavirus (HPV) infection, which has now been established as a virtually necessary cause of cervical cancer. To evaluate the

  19. Numerical Modeling of Fluid Flow, Heat Transfer and Arc-Melt Interaction in Tungsten Inert Gas Welding

    Science.gov (United States)

    Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi

    2017-04-01

    The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.

  20. Patient-Controlled Fentanyl Iontophoretic Transdermal System Improved Postoperative Mobility Compared to Intravenous Patient-Controlled Analgesia Morphine: A Pooled Analysis of Randomized, Controlled Trials.

    Science.gov (United States)

    Oliashirazi, Ali; Wilson-Byrne, Timothy; Shuler, Franklin D; Parvizi, Javad

    2017-02-01

    Postoperative pain management protocols that use patient-controlled analgesia (PCA) can hinder mobility due to attached machinery and tubing. Immobility in the postoperative setting can increase complications, length of stay (LOS), and costs. Early and enhanced mobilization can reduce the cost of care while improving patient outcomes. A needle-free, compact, patient-activated, and portable fentanyl iontophoretic transdermal system (fentanyl ITS, IONSYS; The Medicines Company, Parsippany NJ) has been shown to provide comparable efficacy and tolerability to intravenous (IV) PCA morphine that promotes improved mobility. This pooled analysis of 1,882 patients across three randomized, controlled trials compared fentanyl ITS to IV PCA morphine for postoperative pain management. Outcomes of patient mobility were assessed by a validated Patient Ease of Care Questionnaire that was given to patients, patients' nurses, and physical therapists involved in patient care. Safety was assessed via spontaneously reported treatment-emergent adverse events (TEAE). Fentanyl ITS significantly improved overall patient mobility, each mobility subscore (P mobility assessments. TEAEs were generally similar between the two groups. However, more patients reported an opioid-related TEAE with morphine IV PCA than with fentanyl IV PCA (P = 0.003). Due to improved mobility with fentanyl ITS, complications are expected to be less frequent than with IV PCA and epidural PCA. Incorporation of this strategy into postoperative pain management protocols may reduce LOS and total hospital costs. © 2016 World Institute of Pain.

  1. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    Science.gov (United States)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  2. In-Situ Nondestructive Examination of Weld Penetration

    National Research Council Canada - National Science Library

    Chin, Bryan

    1998-01-01

    The objective of this program is to develop infrared sensing techniques to monitor and control welding penetration in gas tungsten arc and submerged arc welding processes used by the US Navy in the construction of ships...

  3. PENETRATION AND DEFECT FORMATION IN HIGH CURRENT ARC WELDING

    Energy Technology Data Exchange (ETDEWEB)

    MENDEZ,P.F.; EAGAR, T.W.

    2003-01-01

    The work performed during the three previous years can be roughly divided into two main categories: (1) development of advanced modeling techniques; and (2) modeling of arc welding process. The work in the first category comprised the development of the Order of Magnitude Scaling (OMS) technique, which is complementary to numerical modeling techniques such as finite elements, but it provides approximate formulas instead of just numerical results. Borrowing concepts from OMS, another modeling technique based on empirical data was also developed. During this stage special software was also developed. The second category comprised the application of OMS to the three main subsystems of arc welding: the weld pool, the arc, and the electrode. For each of these subsystems they found scaling laws and regimes. With this knowledge, they analyzed the generation of weld pool defects during high current arc welding, proposed a mechanistic description of the process, and possible solutions.

  4. Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (II) - The Effect of Control of Heat Input on Weldability -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Kim, Ji Sung [Korea Maritime and Ocean Univ., Busan (Korea, Republic of)

    2016-12-15

    Laser welding is a high-density energy welding method. Hence, deep penetration and high welding speed can be realized with lower heat input as compared with conventional welding. The heat input of a CW laser welding is determined by laser power and welding speed. In this study, bead and lap welding of 0.5 mmt pure titanium was performed using a fiber laser. Its weldability with laser power and welding speed was evaluated. Penetration, bead width, joining length, and bead shape were investigated, and the mechanical properties were examined through tensile-shear strength tests. Welds with sound joining length were obtained when the laser power and welding speed were respectively 0.5 kW and 2.5 m/min, and 1.5 kW and 6 m/min, and the weld obtained at low output presented better ductility than that obtained at high output.

  5. Effect of welding parameters of plasma transferred arc welding method on abrasive wear resistance of 12V tool steel deposit

    OpenAIRE

    Keränen, Marko

    2010-01-01

    In the plasma transferred arc, PTA, welding method the powder consumable makes it possible to weld wide variety of alloys. The dilution of the deposit is typically 3-10 % and, thus, the properties of the deposit can be achieved with one-layer deposit. The studied alloy was an iron-based 12V tool steel reinforced with primarily precipitating vanadium carbides. Wide deposits are welded by oscillating the plasma arc and overlapping the weld beads. The mobility of the molten pool of 12V tool...

  6. Diabetes and risk of pancreatic cancer: a pooled analysis of three large case–control studies

    Science.gov (United States)

    Tang, Hongwei; Hassan, Manal M.; Holly, Elizabeth A.; Bracci, Paige M.; Silverman, Debra T.

    2017-01-01

    Racial differences in diabetes-associated pancreatic cancer (PC) and the interaction of diabetes with other risk factors are not well established. We determined the association between diabetes and risk of PC in 2,192 cases and 5,113 controls in three large case–control studies conducted at the National Cancer Institute, the University of California San Francisco, and the M.D. Anderson Cancer Center. In multivariable analyses, diabetes was associated with a 1.8-fold risk of PC [95% confidence interval (CI) = 1.5–2.1]. Risk estimates decreased with increasing years with diabetes (≤2 years OR = 2.9, 95% CI = 2.1–3.9; 3–5 years OR = 1.9, 95% CI = 1.3–2.6; 6–10 years OR = 1.6, 95% CI = 1.2–2.3; 11–15 years OR = 1.3, 95% CI = 0.9–2.0; > 15 years OR = 1.4, 95% CI = 1.0–2.0 (p for trend 10 years was associated with a reduced risk of pancreatic cancer (OR = 0.5, 95% CI = 0.3–0.9; p for trend < 0.0001). Hispanic men and Asians had a higher risk of diabetes-associated PC than did whites and blacks, but the differences were not statistically significant. No significant interaction between diabetes and cigarette smoking, alcohol consumption and body mass index was observed. Although reverse causation may explain the association between diabetes diagnosed in close temporal proximity to PC, our results show that long-term diabetes, even though risk diminishes over time, remains a risk factor for PC independent of obesity and smoking. PMID:21104117

  7. Identification of optimum friction stir spot welding process parameters controlling the properties of low carbon automotive steel joints

    Directory of Open Access Journals (Sweden)

    A.K. Lakshminarayanan

    2015-07-01

    Full Text Available Friction stir spot welding is a novel solid state process that has recently received considerable attention from various industries including automotive sectors due to many advantages over the resistance spot welding. However to apply this technique, the process parameters must be optimized to obtain improved mechanical properties compared to resistance spot welding. To achieve this, in this investigation, design of experiments was used to conduct the experiments for exploring the interdependence of the process parameters. A second order quadratic model for predicting the lap shear tensile strength of friction stir spot welded low carbon automotive steel joints was developed from the experimental obtained data. It is found that dwell time plays a major role in deciding the joint properties, which is followed by rotational speed and plunge depth. Further optimum process parameters were identified for maximum lap shear tensile strength using numerical and graphical optimization techniques.

  8. Temporal characterization of plasma cw high-power CO2 laser-matter interaction: contribution to the welding process control

    Science.gov (United States)

    Engel, Thierry; Kane, M.; Fontaine, Joel

    1997-08-01

    During high-power laser welding, gas ionization occurs above the sample. The resulting plasma ignition threshold is related to ionization potential of metallic vapors from the sample, and shielding gases used in the process. In this work, we have characterized the temporal behavior of the radiation emitted by the plasma during laser welding in order to relate the observed signals to the process parameters.

  9. Alcohol consumption and pancreatic cancer: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4).

    Science.gov (United States)

    Lucenteforte, E; La Vecchia, C; Silverman, D; Petersen, G M; Bracci, P M; Ji, B T; Bosetti, C; Li, D; Gallinger, S; Miller, A B; Bueno-de-Mesquita, H B; Talamini, R; Polesel, J; Ghadirian, P; Baghurst, P A; Zatonski, W; Fontham, E; Bamlet, W R; Holly, E A; Gao, Y T; Negri, E; Hassan, M; Cotterchio, M; Su, J; Maisonneuve, P; Boffetta, P; Duell, E J

    2012-02-01

    Heavy alcohol drinking has been related to pancreatic cancer, but the issue is still unsolved. To evaluate the role of alcohol consumption in relation to pancreatic cancer, we conducted a pooled analysis of 10 case-control studies (5585 cases and 11,827 controls) participating in the International Pancreatic Cancer Case-Control Consortium. We computed pooled odds ratios (ORs) by estimating study-specific ORs adjusted for selected covariates and pooling them using random effects models. Compared with abstainers and occasional drinkers (association for light-to-moderate alcohol consumption (≤ 4 drinks per day) and pancreatic cancer risk; however, associations were above unity for higher consumption levels (OR = 1.6, 95% confidence interval 1.2-2.2 for subjects drinking ≥ 9 drinks per day). Results did not change substantially when we evaluated associations by tobacco smoking status, or when we excluded participants who reported a history of pancreatitis, or participants whose data were based upon proxy responses. Further, no notable differences in pooled risk estimates emerged across strata of sex, age, race, study type, and study area. This collaborative-pooled analysis provides additional evidence for a positive association between heavy alcohol consumption and the risk of pancreatic cancer.

  10. Heavy multi-pass TIG welding

    OpenAIRE

    Maske, Tomas

    2017-01-01

    This study aims to find the maximum, usable, feed limit at different arc-energies and use the findings in multi-pass welding planning for robotic welding, taking into consideration the high controllability of robot movements. A combined studies using numerical analyses and practical experiments to calculate the feed limits for different arc energies. Each weld where analysed both mathematical, physical and thru observation. The combined results for one experiment will form the bases for th...

  11. Control of exposure to hexavalent chromium concentration in shielded metal arc welding fumes by nano-coating of electrodes.

    Science.gov (United States)

    Sivapirakasam, S P; Mohan, Sreejith; Santhosh Kumar, M C; Thomas Paul, Ashley; Surianarayanan, M

    2018-02-20

    Background Cr(VI) is a suspected human carcinogen formed as a by-product of stainless steel welding. Nano-alumina and nano-titania coating of electrodes reduced the welding fume levels. Objective To investigate the effect of nano-coating of welding electrodes on Cr(VI) formation rate (Cr(VI) FR) from a shielded metal arc welding process. Methods The core welding wires were coated with nano-alumina and nano-titania using the sol-gel dip coating technique. Bead-on plate welds were deposited on SS 316 LN plates kept inside a fume test chamber. Cr(VI) analysis was done using an atomic absorption spectrometer (AAS). Results A reduction of 40% and 76%, respectively, in the Cr(VI) FR was observed from nano-alumina and nano-titania coated electrodes. Increase in the fume level decreased the Cr(VI) FR. Discussion Increase in fume levels blocked the UV radiation responsible for the formation of ozone thereby preventing the formation of Cr(VI).

  12. A Neural Network Approach for GMA Butt Joint Welding

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2003-01-01

    This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...... penetration, when the gap width is varying during the welding process. The process modeling to facilitate the mapping from joint geometry and reference weld quality to significant welding parameters has been based on a multi-layer feed-forward network. The Levenberg-Marquardt algorithm for non-linear least...

  13. Electron Beam Welding of Gear Wheels by Splitted Beam

    Science.gov (United States)

    Dřímal, Daniel

    2014-06-01

    This contribution deals with the issue of electron beam welding of high-accurate gear wheels composed of a spur gearing and fluted shaft joined with a face weld for automotive industry. Both parts made of the high-strength low-alloy steel are welded in the condition after final machining and heat treatment, performed by case hardening, whereas it is required that the run-out in the critical point of weldment after welding, i. e. after the final operation, would be 0.04 mm max.. In case of common welding procedure, cracks were formed in the weld, initiated by spiking in the weld root. Crack formation was prevented by the use of an interlocking joint with a rounded recess and suitable welding parameters, eliminating crack initiation by spiking in the weld root. Minimisation of the welding distortions was achieved by the application of tack welding with simultaneous splitting of one beam into two parts in the opposite sections of circumferential face weld attained on the principle of a new system of controlled deflection with digital scanning of the beam. This welding procedure assured that the weldment temperature after welding would not be higher than 400 °C. Thus, this procedure allowed achieving the final run-outs in the critical point of gearwheels within the maximum range up to 0.04 mm, which is acceptable for the given application. Accurate optical measurements did not reveal any changes in the teeth dimensions.

  14. Heat transfer and fluid flow during laser spot welding of 304 stainless steel

    CERN Document Server

    He, X; Debroy, T

    2003-01-01

    The evolution of temperature and velocity fields during laser spot welding of 304 stainless steel was studied using a transient, heat transfer and fluid flow model based on the solution of the equations of conservation of mass, momentum and energy in the weld pool. The weld pool geometry, weld thermal cycles and various solidification parameters were calculated. The fusion zone geometry, calculated from the transient heat transfer and fluid flow model, was in good agreement with the corresponding experimentally measured values for various welding conditions. Dimensional analysis was used to understand the importance of heat transfer by conduction and convection and the roles of various driving forces for convection in the weld pool. During solidification, the mushy zone grew at a rapid rate and the maximum size of the mushy zone was reached when the pure liquid region vanished. The solidification rate of the mushy zone/liquid interface was shown to increase while the temperature gradient in the liquid zone at...

  15. Sun exposure and melanoma risk at different latitudes: a pooled analysis of 5700 cases and 7216 controls

    Science.gov (United States)

    Chang, Yu-mei; Barrett, Jennifer H; Bishop, D Timothy; Armstrong, Bruce K; Bataille, Veronique; Bergman, Wilma; Berwick, Marianne; Bracci, Paige M; Elwood, J Mark; Ernstoff, Marc S; Gallagher, Richard P; Green, Adèle C; Gruis, Nelleke A; Holly, Elizabeth A; Ingvar, Christian; Kanetsky, Peter A; Karagas, Margaret R; Lee, Tim K; Le Marchand, Loïc; Mackie, Rona M; Olsson, Håkan; Østerlind, Anne; Rebbeck, Timothy R; Sasieni, Peter; Siskind, Victor; Swerdlow, Anthony J; Titus-Ernstoff, Linda; Zens, Michael S; Newton-Bishop, Julia A

    2009-01-01

    Background Melanoma risk is related to sun exposure; we have investigated risk variation by tumour site and latitude. Methods We performed a pooled analysis of 15 case–control studies (5700 melanoma cases and 7216 controls), correlating patterns of sun exposure, sunburn and solar keratoses (three studies) with melanoma risk. Pooled odds ratios (pORs) and 95% Bayesian confidence intervals (CIs) were estimated using Bayesian unconditional polytomous logistic random-coefficients models. Results Recreational sun exposure was a risk factor for melanoma on the trunk (pOR = 1.7; 95% CI: 1.4–2.2) and limbs (pOR = 1.4; 95% CI: 1.1–1.7), but not head and neck (pOR = 1.1; 95% CI: 0.8–1.4), across latitudes. Occupational sun exposure was associated with risk of melanoma on the head and neck at low latitudes (pOR = 1.7; 95% CI: 1.0–3.0). Total sun exposure was associated with increased risk of melanoma on the limbs at low latitudes (pOR = 1.5; 95% CI: 1.0–2.2), but not at other body sites or other latitudes. The pORs for sunburn in childhood were 1.5 (95% CI: 1.3–1.7), 1.5 (95% CI: 1.3–1.7) and 1.4 (95% CI: 1.1–1.7) for melanoma on the trunk, limbs, and head and neck, respectively, showing little variation across latitudes. The presence of head and neck solar keratoses was associated with increased risk of melanoma on the head and neck (pOR = 4.0; 95% CI: 1.7–9.1) and limbs (pOR = 4.0; 95% CI: 1.9–8.4). Conclusion Melanoma risk at different body sites is associated with different amounts and patterns of sun exposure. Recreational sun exposure and sunburn are strong predictors of melanoma at all latitudes, whereas measures of occupational and total sun exposure appear to predict melanoma predominately at low latitudes. PMID:19359257

  16. WELDING PROCESS

    Science.gov (United States)

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  17. Development and actual application of new welding process for weld-type piston crown in LMC diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, H.; Shimizu, H.; Fujiwara, F.; Tokuoka, T.; Nishimoto, T.; Fujita, R.; Matsui, S.; Nakayama, S.

    1985-04-01

    In the improved LMC diesel engines for saving fuel oil, the piston crown becomes more rigid. Unibody casting cannot achieve sufficiently high quality for piston crowns, in the smoothness of the inner surface of the cooling hole, for example. A welded piston crown would solve this problem, in which various pieces could be machined smoothly and then welded together. Joint locations are selected to satisfy welding and design requirements. Welding sequence and welding restraint are analysed using the finite element method. Because pistons can be welded from outside only, narrow gap TIG welding is applied to obtain a smooth bead. Then, narrow gap MAG welding is applied to reduce welding time. TIG-MAG combined welding equipment including welding torchs manipulator, positioner and controller is designed, fabricated, and assembled. Utilizing this equipment, experiments such as welding condition test, restraint crack test, joint property test, operation tests, and mock-up tests are carried out. Then, the products are welded and welds are inspected by an optical fiber for the appearance of the bead and also by ultrasonic and magnetic tests for defects.

  18. Experimental study of hot cracking at circular welding joints of 42CrMo steel

    Science.gov (United States)

    Zhang, Yan; Chen, Genyu; Chen, Binghua; Wang, Jinhai; Zhou, Cong

    2017-12-01

    The hot cracking at circular welding joints of quenched and tempered 42CrMo steel were studied. The flow of the molten pool and the solidification process of weld were observed with a high-speed video camera. The information on the variations in the weld temperature was collected using an infrared (IR) thermal imaging system. The metallurgical factors of hot cracking were analyzed via metallographic microscope and scanning electron microscope (SEM). The result shows that leading laser laser-metal active gas (MAG) hybrid welding process has a smaller solid-liquid boundary movement rate (VSL) and a smaller solid-liquid boundary temperature gradient (GSL) compared with leading arc laser-MAG hybrid welding process and laser welding process. Additionally, the metal in the molten pool has superior permeability while flowing toward the dendritic roots and can compensate for the inner-dendritic pressure balance. Therefore, leading laser laser-MAG hybrid welding process has the lowest hot cracking susceptibility.

  19. Al/Cu Dissimilar Friction Stir Welding with Ni, Ti, and Zn Foil as the Interlayer for Flow Control, Enhancing Mechanical and Metallurgical Properties

    Science.gov (United States)

    Sahu, Prakash Kumar; Pal, Sukhomay; Pal, Surjya K.

    2017-07-01

    This research investigates the effects of Ni, Ti, and Zn foil as interlayer, inserted between the faying edges of Al and Cu plates, for controlled intermetallic compound (IMC) formation. The weld tensile strength with Ti and Zn as interlayer is superior to Al base metal strength. This is due to controlled flow of IMCs by diffused Ti interlayer and thin, continuous, and uniform IMC formation in the case of Zn interlayer. Improved flexural stress was observed with interlayer. Weld microhardness varied with different interlayers and purely depends on IMCs present at the indentation point, flow of IMCs, and interlayer hardness. Specimens with interlayer failed at the interface of the nugget and thermomechanical-affected zone (TMAZ) with complete and broken three-dimensional (3-D) grains, indicating transgranular fracture. Phase analysis revealed that Al/Cu IMCs are impeded by Ni and Ti interlayer. The minor binary and ternary IMC phases form adjacent to the interlayer due to diffusion of the material with Al/Cu. Line scan and elemental mapping indicate thin, continuous, and uniform IMCs with enhanced weld metallurgical and mechanical properties for the joints with Zn interlayer. Macrostructural analysis revealed IMC flow variations with and without interlayer. Variation in grain size at different zones is also observed for different interlayers.

  20. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  1. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  2. Analysis of the Mechanism of Longitudinal Bending Deformation Due to Welding in a Steel Plate by Using a Numerical Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Rae; Yan, Jieshen; Kim, Jae-Woong [Yeungnam Univ., Gyeongsan (Korea, Republic of); Song, Gyu Yeong [Gyeongbuk Hybrid Technology Institute, Yeongcheon (Korea, Republic of)

    2017-01-15

    Welding deformation is a permanent deformation that is caused in structures by welding heat. Welding distortion is the primary cause of reduced productivity, due to welded structural strength degradation, low dimensional accuracy, and appearance. As a result, research and numerous experiments are being carried out to control welding deformation. The aim of this study is to analyze the mechanism of longitudinal bending deformation due to welding. Welding experiments and numerical analyses were performed for this study. The welding experiments were performed on 4 mm and 8.5 mm thickness steel plates, and the numerical analysis was conducted on the welding deformation using the FE software MSC.marc.

  3. Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case-control studies.

    Science.gov (United States)

    Pearce, Celeste Leigh; Templeman, Claire; Rossing, Mary Anne; Lee, Alice; Near, Aimee M; Webb, Penelope M; Nagle, Christina M; Doherty, Jennifer A; Cushing-Haugen, Kara L; Wicklund, Kristine G; Chang-Claude, Jenny; Hein, Rebecca; Lurie, Galina; Wilkens, Lynne R; Carney, Michael E; Goodman, Marc T; Moysich, Kirsten; Kjaer, Susanne K; Hogdall, Estrid; Jensen, Allan; Goode, Ellen L; Fridley, Brooke L; Larson, Melissa C; Schildkraut, Joellen M; Palmieri, Rachel T; Cramer, Daniel W; Terry, Kathryn L; Vitonis, Allison F; Titus, Linda J; Ziogas, Argyrios; Brewster, Wendy; Anton-Culver, Hoda; Gentry-Maharaj, Alexandra; Ramus, Susan J; Anderson, A Rebecca; Brueggmann, Doerthe; Fasching, Peter A; Gayther, Simon A; Huntsman, David G; Menon, Usha; Ness, Roberta B; Pike, Malcolm C; Risch, Harvey; Wu, Anna H; Berchuck, Andrew

    2012-04-01

    Endometriosis is a risk factor for epithelial ovarian cancer; however, whether this risk extends to all invasive histological subtypes or borderline tumours is not clear. We undertook an international collaborative study to assess the association between endometriosis and histological subtypes of ovarian cancer. Data from 13 ovarian cancer case-control studies, which were part of the Ovarian Cancer Association Consortium, were pooled and logistic regression analyses were undertaken to assess the association between self-reported endometriosis and risk of ovarian cancer. Analyses of invasive cases were done with respect to histological subtypes, grade, and stage, and analyses of borderline tumours by histological subtype. Age, ethnic origin, study site, parity, and duration of oral contraceptive use were included in all analytical models. 13 226 controls and 7911 women with invasive ovarian cancer were included in this analysis. 818 and 738, respectively, reported a history of endometriosis. 1907 women with borderline ovarian cancer were also included in the analysis, and 168 of these reported a history of endometriosis. Self-reported endometriosis was associated with a significantly increased risk of clear-cell (136 [20·2%] of 674 cases vs 818 [6·2%] of 13 226 controls, odds ratio 3·05, 95% CI 2·43-3·84, pSmith Foundation, European Community's Seventh Framework Programme, German Federal Ministry of Education and Research of Germany, Programme of Clinical Biomedical Research, German Cancer Research Centre, Eve Appeal, Oak Foundation, UK National Institute of Health Research, National Health and Medical Research Council of Australia, US Army Medical Research and Materiel Command, Cancer Council Tasmania, Cancer Foundation of Western Australia, Mermaid 1, Danish Cancer Society, and Roswell Park Alliance Foundation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Baseline participant characteristics and risk for dropout from ten obesity randomized controlled trials: a pooled analysis of individual level data

    Directory of Open Access Journals (Sweden)

    Kathryn Ann Kaiser

    2014-12-01

    Full Text Available Introduction: Understanding participant demographic characteristics that inform the optimal design of obesity RCTs have been examined in few studies. The objective of this study was to investigate the association of individual participant characteristics and dropout rates (DORs in obesity randomized controlled trials (RCT by pooling data from several publicly available datasets for analyses. We comprehensively characterize DORs and patterns in obesity RCTs at the individual study level, and describe how such rates and patterns vary as a function of individual-level characteristics. Methods: We obtained and analyzed nine publicly-available, obesity RCT datasets that examined weight loss or weight gain prevention as a primary or secondary endpoint. Four risk factors for dropout were examined by Cox proportional hazards including sex, age, baseline BMI, and race/ethnicity. The individual study data were pooled in the final analyses with a random effect for study, and HR and 95% CIs were computed. Results: Results of the multivariate analysis indicated that the risk of dropout was significantly higher for females compared to males (HR= 1.24, 95% CI = 1.05, 1.46. Hispanics and Non-Hispanic blacks had a significantly higher dropout rate compared to non-Hispanic whites (HR= 1.62, 95% CI = 1.37, 1.91; HR= 1.22, 95% CI = 1.11, 1.35, respectively. There was a significantly increased risk of dropout associated with advancing age (HR= 1.02, 95% CI = 1.01, 1.02 and increasing BMI (HR= 1.03, 95% CI = 1.03, 1.04. Conclusion/Significance: As more studies may focus on special populations, researchers designing obesity RCTs may wish to oversample in certain demographic groups if attempting to match comparison groups based on generalized estimates of expected dropout rates, or otherwise adjust a priori power estimates. Understanding true reasons for dropout may require additional methods of data gathering not generally employed in obesity RCTs, e.g. time on

  5. Baseline Participant Characteristics and Risk for Dropout from 10 Obesity Randomized Controlled Trials: A Pooled Analysis of Individual Level Data

    Science.gov (United States)

    Kaiser, Kathryn Ann; Affuso, Olivia; Desmond, Renee; Allison, David B.

    2014-01-01

    Introduction: Understanding participant demographic characteristics that inform the optimal design of obesity randomized controlled trials (RCTs) have been examined in few studies. The objective of this study was to investigate the association of individual participant characteristics and dropout rates (DORs) in obesity RCTs by pooling data from several publicly available datasets for analyses. We comprehensively characterize DORs and patterns in obesity RCTs at the individual study level, and describe how such rates and patterns vary as a function of individual level characteristics. Methods: We obtained and analyzed nine publicly available, obesity RCT datasets that examined weight loss or weight gain prevention as a primary or secondary endpoint. Four risk factors for dropout were examined by Cox proportional hazards including sex, age, baseline BMI, and race/ethnicity. The individual study data were pooled in the final analyses with a random effect for study, and HR and 95% CIs were computed. Results: Results of the multivariate analysis indicated that the risk of dropout was significantly higher for females compared to males (HR = 1.24, 95% CI = 1.05, 1.46). Hispanics and Non-Hispanic blacks had a significantly higher dropout rate compared to non-Hispanic whites (HR = 1.62, 95% CI = 1.37, 1.91; HR = 1.22, 95% CI = 1.11, 1.35, respectively). There was a significantly increased risk of dropout associated with advancing age (HR = 1.02, 95% CI = 1.01, 1.02) and increasing BMI (HR = 1.03, 95% CI = 1.03, 1.04). Conclusion/Significance: As more studies may focus on special populations, researchers designing obesity RCTs may wish to oversample in certain demographic groups if attempting to match comparison groups based on generalized estimates of expected DORs, or otherwise adjust a priori power estimates. Understanding true reasons for dropout may require additional methods of data gathering not generally employed in obesity

  6. Biogeochemical controls on daily cycling of hydrochemistry and δ13C of dissolved inorganic carbon in a karst spring-fed pool

    Science.gov (United States)

    Jiang, Yongjun; Hu, Yijun; Schirmer, Mario

    2013-01-01

    SummaryVariations in temperature, photosynthesis and respiration can force daily variations in pH, DO and DIC in surface water, potentially driving calcite precipitation or dissolution of calcium carbonate. Diel cycles of hydrochemistry and δ13CDIC were measured at high time-resolution (1 h) to assess the relative magnitudes of biological and geochemical controls on carbonate chemistry and carbon cycling in a spring-fed pool with flourishing submerged plants in Chongqing, SW China under sunny weather. Results show that there were no diurnal variations in the physical and chemical parameters of the Shuifang spring water. However, during the daytime periods, SC, Ca2+, alkalinity, NO3- and pCO2 in the pool water decreased to less than those in the spring water, while pH, DO and δ13CDIC in the pool water became greater than those in the spring water. Conversely, during nighttime periods, pool water SC, Ca2+, alkalinity, NO3- and pCO2 returned to or even became greater than the spring water, while pH, DO and δ13CDIC decreased to less than the spring water. This work shows that photosynthesis and respiration of subaquatic communities are the dominant processes influencing the observed diel variations of hydrochemistry in karst spring-fed pool water. During the daytime, a simultaneous increase of δ13CDIC and DO, and decrease in DIC indicates that photosynthesis was the primary control on hydrochemistry of the pool water. Conversely, the water remained saturated with respect to calcite (SIc ranging from 0.04 to 0.15) and δ13CDIC values decreased at nighttime, indicating that respiration of the subaquatic community had a dominant influence over calcite dissolution and outgassing in the pool water. The total amount of DIC loss was estimated to be about 110,785 mmol/day which represented about 1.33 kg C/day. More specifically, the amount of DIC loss through carbonate precipitation was about 38,775 mmol/day (0.47 kg C/day), whereas photosynthetic uptake was about 60

  7. Can the annual flood control volume at Three Gorges Dam be predicted to size a variable flood control pool?

    Science.gov (United States)

    DONG, Q.; Lall, U.

    2014-12-01

    We consider the empirical prediction of the peak flood volume on the Yangtze River at the Three Gorges Dam. The dam is operated for flood control, hydropower production and irrigation. The flood control space reserved in the reservoir each year during the monsoon season limits the ability to supply hydropower and irrigation services. Allocating a variable amount of flood control space based on a pre-season forecast of the peak event flood volume, or of the flood volume over a specific duration is consequently, more useful than a prediction of the annual maximum peak flow for this dam and for other flood control dams. The joint distribution of annual peak flow, the corresponding flood volume, and the event duration is investigated based on the copula theory. A statistical model is developed for the conditional prediction of this joint distribution using pre-season climate indicators. The potential for the guidance for water management in the Yangtze River basin and for insights to the design of the large flood control reservoirs in the future is illustrated.

  8. A Neural Network Approach for GMA Butt Joint Welding

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2003-01-01

    This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...

  9. Multifaceted empathy of healthy volunteers after single doses of MDMA: A pooled sample of placebo-controlled studies.

    Science.gov (United States)

    Kuypers, Kim Pc; Dolder, Patrick C; Ramaekers, Johannes G; Liechti, Matthias E

    2017-05-01

    Previous placebo-controlled experimental studies have shown that a single dose of MDMA can increase emotional empathy in the multifaceted empathy test (MET) without affecting cognitive empathy. Although sufficiently powered to detect main effects of MDMA, these studies were generally underpowered to also validly assess contributions of additional parameters, such as sex, drug use history, trait empathy and MDMA or oxytocin plasma concentrations. The present study examined the robustness of the MDMA effect on empathy and investigated the moderating role of these additional parameters. Participants ( n = 118) from six placebo-controlled within-subject studies and two laboratories were included in the present pooled analysis. Empathy (MET), MDMA and oxytocin plasma concentrations were assessed after oral administration of MDMA (single dose, 75 or 125 mg). Trait empathy was assessed using the interpersonal reactivity index. We confirmed that MDMA increased emotional empathy at both doses without affecting cognitive empathy. This MDMA-related increase in empathy was most pronounced during presentation of positive emotions as compared with negative emotions. MDMA-induced empathy enhancement was positively related to MDMA blood concentrations measured before the test, but independent of sex, drug use history and trait empathy. Oxytocin concentrations increased after MDMA administration but were not associated with behavioral effects. The MDMA effects on emotional empathy were stable across laboratories and doses. Sex did not play a moderating role in this effect, and oxytocin levels, trait empathy and drug use history were also unrelated. Acute drug exposure was of significant relevance in the MDMA-induced emotional empathy elevation.

  10. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  11. Heat transfer modeling of double-side arc welding

    CERN Document Server

    Sun Jun Sheng; Zhang Yan Ming

    2002-01-01

    If a plasma arc and a TIG arc are connected in serial and with the plasma arc placed on the obverse side and the TIG arc on the opposite side of the workpiece, a special double-side arc welding (DSAW) system will be formed, in which the PAW current is forced to flow through the keyhole along the thickness direction so as to compensate the energy consumed for melting the workpiece and improve the penetration capacity of the PAW arc. By considering the mechanics factors which influence the DSAW pool geometric shape, the control equations of the pool surface deformation are derived, and the mathematics mode for DSAW heat transfer is established by using boundary-fitted non-orthogonal coordinate systems. With this model, the difference between DSAW and PAW heat transfer is analyzed and the reason for the increase of DSAW penetration is explained from the point of heat transfer. The welding process experiments show that calculated results are in good agreement with measured ones

  12. Introduction to Welding.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  13. Friction Pull Plug Welding in Aluminum Alloys

    Science.gov (United States)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  14. Modeling of plasma and thermo-fluid transport in hybrid welding

    Science.gov (United States)

    Ribic, Brandon D.

    Hybrid welding combines a laser beam and electrical arc in order to join metals within a single pass at welding speeds on the order of 1 m min -1. Neither autonomous laser nor arc welding can achieve the weld geometry obtained from hybrid welding for the same process parameters. Depending upon the process parameters, hybrid weld depth and width can each be on the order of 5 mm. The ability to produce a wide weld bead increases gap tolerance for square joints which can reduce machining costs and joint fitting difficulty. The weld geometry and fast welding speed of hybrid welding make it a good choice for application in ship, pipeline, and aerospace welding. Heat transfer and fluid flow influence weld metal mixing, cooling rates, and weld bead geometry. Cooling rate affects weld microstructure and subsequent weld mechanical properties. Fluid flow and heat transfer in the liquid weld pool are affected by laser and arc energy absorption. The laser and arc generate plasmas which can influence arc and laser energy absorption. Metal vapors introduced from the keyhole, a vapor filled cavity formed near the laser focal point, influence arc plasma light emission and energy absorption. However, hybrid welding plasma properties near the opening of the keyhole are not known nor is the influence of arc power and heat source separation understood. A sound understanding of these processes is important to consistently achieving sound weldments. By varying process parameters during welding, it is possible to better understand their influence on temperature profiles, weld metal mixing, cooling rates, and plasma properties. The current literature has shown that important process parameters for hybrid welding include: arc power, laser power, and heat source separation distance. However, their influence on weld temperatures, fluid flow, cooling rates, and plasma properties are not well understood. Modeling has shown to be a successful means of better understanding the influence of

  15. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  16. Assisting Gas Optimization in CO2 Laser Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    1996-01-01

    High quality laser welding is achieved under the condition of optimizing all process parameters. Assisting gas plays an important role for sound welds. In the conventional welding process assisting gas is used as a shielding gas to prevent that the weld seam oxidates. In the laser welding process...... assisting gas is also needed to control the laser induced plasma.Assisting gas is one of the most important parameters in the laser welding process. It is responsible for obtaining a quality weld which is characterized by deep penetration, no interior imperfections, i.e. porosity, no crack, homogeneous seam...... surface, etc. In this work a specially designed flexible off-axis nozzle capable of adjusting the angle of the nozzle, the diameter of the nozzle, and the distance between the nozzle end and the welding zone is tested. In addition to the nozzle parameters three gases, Nitrogen, Argon, and Helium...

  17. SPARC fast reactor design : Design of two passively safe metal-fuelled sodium-cooled pool-type small modular fast reactors with Autonomous Reactivity Control

    OpenAIRE

    Lindström, Tobias

    2015-01-01

    In this master thesis a small modular sodium-cooled metal-fuelled pool-type fast reactor design, called SPARC - Safe and Passive with Autonomous Reactivity control, has been designed. The long term reactivity changes in the SPARC are managed by implementation of the the Autonomous Reactivity Control (ARC) system, which is the novelty of the design. The overall design is mainly based on the Integral Fast Reactor project (IFR), which experimentally demonstrated the passive safety characteristic...

  18. Sensor based robot laser welding - based on feed forward and gain sceduling algorithms

    DEFF Research Database (Denmark)

    Andersen, Henrik John

    2001-01-01

    A real-time control system forlaser welding of thick steel plates are developed and tested in a industrial environment. The robotic execution of the laser welding process is based on measure weld joint geometry and impirically established welding procedures. The influence of industrial production...

  19. Quality status display for a vibration welding process

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, John Patrick; Abell, Jeffrey A.; Wincek, Michael Anthony; Chakraborty, Debejyo; Bracey, Jennifer; Wang, Hui; Tavora, Peter W.; Davis, Jeffrey S.; Hutchinson, Daniel C.; Reardon, Ronald L.; Utz, Shawn

    2017-11-28

    A method includes receiving, during a vibration welding process, a set of sensory signals from a collection of sensors positioned with respect to a work piece during formation of a weld on or within the work piece. The method also includes receiving control signals from a welding controller during the process, with the control signals causing the welding horn to vibrate at a calibrated frequency, and processing the received sensory and control signals using a host machine. Additionally, the method includes displaying a predicted weld quality status on a surface of the work piece using a status projector. The method may include identifying and display a quality status of a suspect weld. The laser projector may project a laser beam directly onto or immediately adjacent to the suspect welds, e.g., as a red, green, blue laser or a gas laser having a switched color filter.

  20. Efficacy comparison of escitalopram and citalopram in the treatment of major depressive disorder: pooled analysis of placebo-controlled trials.

    Science.gov (United States)

    Gorman, Jack M; Korotzer, Andrew; Su, Guojin

    2002-04-01

    Citalopram is a racemic selective serotonin reuptake inhibitor (SSRI) indicated for the treatment of depression. Citalopram is a racemate and its serotonin reuptake inhibitory activity resides primarily in the single S-isomer, escitalopram, which is now being evaluated for its potential usefulness in the treatment of depression and other psychiatric disorders. RESULTS from placebo-controlled studies that also included citalopram as an active control have shown that escitalopram is effective in treating depression and associated symptoms of anxiety. However, none of these studies was powered sufficiently to detect differences between active treatment groups. The goal of the present analysis is to evaluate the efficacy of escitalopram compared with citalopram in the treatment of major depressive disorder. Data were pooled from three similarly designed, randomized, double-blind, placebo-controlled trials of escitalopram (10-20 mg/day) and citalopram (20-40 mg/day). Patients were male or female, greater than or equal to 18 years of age, who met criteria for a major depressive episode with a Montgomery Asberg Depression Rating Scale (MADRS) score greater than or equal to 22 at baseline. Efficacy measures included change from baseline in MADRS score and the Clinical Global Impression of Improvement (CGI-I) scale. Improvement in associated symptoms of anxiety was measured using the change from baseline in the MADRS inner tension item. Both escitalopram and citalopram significantly improved depression and anxiety symptoms compared with placebo, and there were significantly more MADRS responders (defined as >/=50% improvement in MADRS scores at end point) in the escitalopram and citalopram treatment groups. Escitalopram treatment was associated with statistically significant improvements in all efficacy measures relative to placebo after 1 week of treatment, whereas citalopram treatment statistically separated from placebo at the end of week 4 (CGI-I and MADRS inner tension

  1. Assessment of the origin of porosity in electron-beam-welded TA6V plates

    Science.gov (United States)

    Gouret, N.; Ollivier, E.; Dour, G.; Fortunier, R.; Miguet, B.

    2004-03-01

    Experimental and theoretical analysis of the origin of porosity in electron-beam (EB) welding is detailed. The experiments are run with several surface treatments and reasonable welding parameters. The plate faces are characterized before welding with a number of methods, such as scanning electron microscope observation, X-ray photoemission spectroscopy (XPS) and, more significantly, secondary ion mass spectroscopy (SIMS) analysis, elastic-recoil detection analysis (ERDA) for hydrogen analysis, and surface roughness measurement. After welding, pores are sought with X-ray detection, phased-array ultrasonic (US) detection, and destructive control. An original comparison between ERDA and refined SIMS measurements allows a quantitative evaluation of surface pollution with hydrogen, oxygen, and carbon. The theoretical analysis is based on the literature concept that the cavities are nucleated from the adjacent plate faces in the solid state, just before melting. A less classical development is proposed in term of the evolution of bubbles in the weld pool. Once in the liquid, the cavities become bubbles. Their radius oscillates, according to Rayleigh-Plesset equations of bubbles, due to temperature and pressure driving forces. Solidification freezes them as they are, thus, forming pores. The extreme values of the oscillation give a good idea of the range of the size of pores in the weld joint, as the comparison between experiments and prediction states. A criterion of surface cleanliness is set, relating the surface pollution and the surface roughness. Above the criterion, the bubbles remain small during their oscillation. Below the criterion they tend to grow large. All the degraded-surface treatments are in dirty situation (large pores), and the reference surface treatment lies around the criterion for cleanliness.

  2. Inline Repair of Blowouts During Laser Welding

    Science.gov (United States)

    Hansen, K. S.; Olsen, F. O.; Kristiansen, M.; Madsen, O.

    In a current laser welding production process of components of stainless steel, a butt joint configuration may lead to failures in the form of blowouts, causing an unacceptable welding quality. A study to improve the laser welding process was performed with the aim of solving the problem by designing a suitable pattern of multiple small laser spots rather than a single spot in the process zone. The blowouts in the process are provoked by introducing small amounts of zinc powder in the butt joint. When the laser heats up the zinc, this rapidly evaporates and expands, leaving the melt pool to be blown away locally. Multiple spot pattern designs are tested. Spot patterns are produced by applying diffractive optics to a beam from a single mode fiber laser. Results from welding while applying spot patterns both with and without trailing spots are presented. Data showing the power ratio between a trailing spot and two main spots as a function of spot distance is also presented. The results of the study show that applying multiple spots in the welding process may improve the process stability when welding materials with small impurities in the form of zinc particles.

  3. Field efficacy of expanded polystyrene and shredded waste polystyrene beads for mosquito control in artificial pools and field trials, Islamic Republic of Iran.

    Science.gov (United States)

    Soltani, A; Vatandoost, H; Jabbari, H; Mesdaghinia, A R; Mahvi, A H; Younesian, M; Hanafi-Bojd, A A; Bozorgzadeh, S

    2012-10-01

    Concerns about traditional chemical pesticides has led to increasing research into novel mosquito control methods. This study compared the effectiveness of 2 different types of polystyrene beads for control of mosquito larvae in south-east Islamic Republic of Iran. Simulated field trials were done in artificial pools and field trials were carried out in 2 villages in an indigenous malaria area using WHO-recommended methods. Application of expanded polystyrene beads or shredded, waste polystyrene chips to pool surfaces produced a significant difference between pre-treatment and post-treatment density of mosquitoes (86% and 78% reduction respectively 2 weeks after treatment). There was no significant difference between the efficacy of the 2 types of material. The use of polystyrene beads as a component of integrated vector management with other supportive measures could assist in the control of mosquito-borne diseases in the Islamic Republic of Iran and neighbouring countries.

  4. Study on the welding process of the CTB outbox prototype of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chen, E-mail: liuchen@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences (China); Lu, Kun; Song, Yuntao; Zhu, Rui [Institute of Plasma Physics, Chinese Academy of Sciences (China); Bao, Hongwei; Li, Shoukang; Zhang, Chunjie; Tuo, Fuxing [Shanghai Aerospace Equipments Manufacturer (China)

    2015-10-15

    Highlights: • Welding progress simulation of ITER CTB outbox by SYSWELD. • 2 m length box mockup welding for R&D. • Special welding tooling and groove design for welding deformation control and improvement of welding quality. • Double torch automatic MIG welding method application. - Abstract: The current study investigated the main welding process of the box. We first performed a simple simulation of the welding process for the four long weld lines on CTB (Coil Terminal Box) outbox by using the finite element analysis mode of SYSWELD. Then a 2 m length mock up box was welded for R&D to optimize the welding parameters and deformation distribution. Base on the R&D experiences, we designed a special tooling of the prototype box which can be used to control the deformation during the welding process. A 8 m length CTB outbox prototype was successfully welded by using double torch automatic MIG (Metal Inert-Gas) welding. The dimension inspection results confirmed that the welding deformation of the box can be controlled within 3 mm on each side. Based on the ultrasonic inspection, all the welding seams met quality level B by standard EN 5817.

  5. An Assessment of Molten Metal Detachment Hazards for Electron Beam Welding in the Space Environment: Analysis and Test Results

    Science.gov (United States)

    Nunes, A. C., Jr.; Russell, C.; Bhat, B.; Fragomeni, J. M.

    1998-01-01

    Conditions under which molten metal detachments might occur in a space welding environment are analyzed. A weld pool detachment parameter specifying conditions for pool detachment by impact is derived and corroborated by experimental evidence. Impact detachment for the pool is unlikely. Impact detachment for a drop of metal on the end of the weld wire may be possible under extreme conditions. Other potential causes of molten metal detachment considered, vaporization pressure forces and wire flickout from the pool, did not appear to present significant detachment threats.

  6. Safety analysis of welding process in Tehran oil refinery and the effectiveness of the control methods

    Directory of Open Access Journals (Sweden)

    2012-03-01

    The results revealed that in the existing condition, 27.3% of the studied risks have a RPN of 5 (with an extremely high hazard potential, 3% a RPN of 4 (with a high hazard potential and 69.7% with a RPN of 3 (with a medium hazard potential. The results also revealed that with the application of control measures suggested by the expertise team, 21.2% of the studied risks will hold a RPN of 4 (with a high hazard potential, 6.1% will have a RPN of 3 (with a medium hazard potential, 48.5% with a RPN of 2 (with low hazard potential and 18.2% will have a RPN of 1 (with a negligible hazard potential. Statistical tests revealed that the application of control measures, will reduce the average amount of likelihood, severity and risk priority numbers significantly (Pvalue<0.01.

  7. Simulation and sensitivity analysis of controlling parameters in resistance spot welding

    OpenAIRE

    Kim, Euiwhan; Eagar, Thomas W

    2014-01-01

    This study was performed to investigate the fundamental parameters controlling the nugget growth. The parameters were categorized into four groups, i.e. material parameters, electrical parameters, thermal parameters and geometrical parameters. In order to quantify the sensitivity of nugget growth to changes in these parameters, a numerical model which incorporates the electrical, mechanical and thermal contact was developed. As a result, a sensitivity index table was constructed and analyzed ...

  8. Racial/ethnic differences in the epidemiology of ovarian cancer: a pooled analysis of 12 case-control studies.

    Science.gov (United States)

    Peres, Lauren C; Risch, Harvey; Terry, Kathryn L; Webb, Penelope M; Goodman, Marc T; Wu, Anna H; Alberg, Anthony J; Bandera, Elisa V; Barnholtz-Sloan, Jill; Bondy, Melissa L; Cote, Michele L; Funkhouser, Ellen; Moorman, Patricia G; Peters, Edward S; Schwartz, Ann G; Terry, Paul D; Manichaikul, Ani; Abbott, Sarah E; Camacho, Fabian; Jordan, Susan J; Nagle, Christina M; Rossing, Mary Anne; Doherty, Jennifer A; Modugno, Francesmary; Moysich, Kirsten; Ness, Roberta; Berchuck, Andrew; Cook, Linda; Le, Nhu; Brooks-Wilson, Angela; Sieh, Weiva; Whittemore, Alice; McGuire, Valerie; Rothstein, Joseph; Anton-Culver, Hoda; Ziogas, Argyrios; Pearce, Celeste L; Tseng, Chiuchen; Pike, Malcom; Schildkraut, Joellen M

    2017-12-02

    Ovarian cancer incidence differs substantially by race/ethnicity, but the reasons for this are not well understood. Data were pooled from the African American Cancer Epidemiology Study (AACES) and 11 case-control studies in the Ovarian Cancer Association Consortium (OCAC) to examine racial/ethnic differences in epidemiological characteristics with suspected involvement in epithelial ovarian cancer (EOC) aetiology. We used multivariable logistic regression to estimate associations for 17 reproductive, hormonal and lifestyle characteristics and EOC risk by race/ethnicity among 10 924 women with invasive EOC (8918 Non-Hispanic Whites, 433 Hispanics, 911 Blacks, 662 Asian/Pacific Islanders) and 16 150 controls (13 619 Non-Hispanic Whites, 533 Hispanics, 1233 Blacks, 765 Asian/Pacific Islanders). Likelihood ratio tests were used to evaluate heterogeneity in the risk factor associations by race/ethnicity. We observed statistically significant racial/ethnic heterogeneity for hysterectomy and EOC risk (P = 0.008), where the largest odds ratio (OR) was observed in Black women [OR = 1.64, 95% confidence interval (CI) = 1.34-2.02] compared with other racial/ethnic groups. Although not statistically significant, the associations for parity, first-degree family history of ovarian or breast cancer, and endometriosis varied by race/ethnicity. Asian/Pacific Islanders had the greatest magnitude of association for parity (≥3 births: OR = 0.38, 95% CI = 0.28-0.54), and Black women had the largest ORs for family history (OR = 1.77, 95% CI = 1.42-2.21) and endometriosis (OR = 2.42, 95% CI = 1.65-3.55). Although racial/ethnic heterogeneity was observed for hysterectomy, our findings support the validity of EOC risk factors across all racial/ethnic groups, and further suggest that any racial/ethnic population with a higher prevalence of a modifiable risk factor should be targeted to disseminate information about prevention.

  9. Lifetime occupational exposure to metals and welding fumes, and risk of glioma: a 7-country population-based case-control study.

    Science.gov (United States)

    Parent, Marie-Elise; Turner, Michelle C; Lavoué, Jérôme; Richard, Hugues; Figuerola, Jordi; Kincl, Laurel; Richardson, Lesley; Benke, Geza; Blettner, Maria; Fleming, Sarah; Hours, Martine; Krewski, Daniel; McLean, David; Sadetzki, Siegal; Schlaefer, Klaus; Schlehofer, Brigitte; Schüz, Joachim; Siemiatycki, Jack; van Tongeren, Martie; Cardis, Elisabeth

    2017-08-25

    Brain tumor etiology is poorly understood. Based on their ability to pass through the blood-brain barrier, it has been hypothesized that exposure to metals may increase the risk of brain cancer. Results from the few epidemiological studies on this issue are limited and inconsistent. We investigated the relationship between glioma risk and occupational exposure to five metals - lead, cadmium, nickel, chromium and iron- as well as to welding fumes, using data from the seven-country INTEROCC study. A total of 1800 incident glioma cases and 5160 controls aged 30-69 years were included in the analysis. Lifetime occupational exposure to the agents was assessed using the INTEROCC JEM, a modified version of the Finnish job exposure matrix FINJEM. In general, cases had a slightly higher prevalence of exposure to the various metals and welding fumes than did controls, with the prevalence among ever exposed ranging between 1.7 and 2.2% for cadmium to 10.2 and 13.6% for iron among controls and cases, respectively. However, in multivariable logistic regression analyses, there was no association between ever exposure to any of the agents and risk of glioma with odds ratios (95% confidence intervals) ranging from 0.8 (0.7-1.0) for lead to 1.1 (0.7-1.6) for cadmium. Results were consistent across models considering cumulative exposure or duration, as well as in all sensitivity analyses conducted. Findings from this large-scale international study provide no evidence for an association between occupational exposure to any of the metals under scrutiny or welding fumes, and risk of glioma.

  10. Robotic Variable Polarity Plasma Arc (VPPA) Welding

    Science.gov (United States)

    Jaffery, Waris S.

    1993-01-01

    The need for automated plasma welding was identified in the early stages of the Space Station Freedom Program (SSFP) because it requires approximately 1.3 miles of welding for assembly. As a result of the Variable Polarity Plasma Arc Welding (VPPAW) process's ability to make virtually defect-free welds in aluminum, it was chosen to fulfill the welding needs. Space Station Freedom will be constructed of 2219 aluminum utilizing the computer controlled VPPAW process. The 'Node Radial Docking Port', with it's saddle shaped weld path, has a constantly changing surface angle over 360 deg of the 282 inch weld. The automated robotic VPPAW process requires eight-axes of motion (six-axes of robot and two-axes of positioner movement). The robot control system is programmed to maintain Torch Center Point (TCP) orientation perpendicular to the part while the part positioner is tilted and rotated to maintain the vertical up orientation as required by the VPPAW process. The combined speed of the robot and the positioner are integrated to maintain a constant speed between the part and the torch. A laser-based vision sensor system has also been integrated to track the seam and map the surface of the profile during welding.

  11. Sedentary work and the risk of breast cancer in premenopausal and postmenopausal women: a pooled analysis of two case-control studies.

    Science.gov (United States)

    Boyle, Terry; Fritschi, Lin; Kobayashi, Lindsay C; Heyworth, Jane S; Lee, Derrick G; Si, Si; Aronson, Kristan J; Spinelli, John J

    2016-11-01

    There is limited research on the association between sedentary behaviour and breast cancer risk, particularly whether sedentary behaviour is differentially associated with premenopausal and postmenopausal breast cancer. We pooled data from 2 case-control studies from Australia and Canada to investigate this association. This pooled analysis included 1762 incident breast cancer cases and 2532 controls. Participants in both studies completed a lifetime occupational history and self-rated occupational physical activity level. A job-exposure matrix (JEM) was also applied to job titles to assess sedentary work. Logistic regression analyses (6 pooled and 12 study-specific) were conducted to estimate associations between both self-reported and JEM-assessed sedentary work and breast cancer risk among premenopausal and postmenopausal women. No association was observed in the 6 pooled analyses, and 10 of the study-specific analyses also showed null results. 2 study-specific analyses provided inconsistent and contradictory results, with 1 showing statistically significant increased risk of breast cancer for self-reported sedentary work among premenopausal women cancer in the Canadian study, and the other a non-significant inverse association between JEM-assessed sedentary work and breast cancer risk among postmenopausal women in the Australian study. While a suggestion of increased risk was seen for premenopausal women in the Canadian study when using the self-reported measure, overall this pooled study does not provide evidence that sedentary work is associated with breast cancer risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Larval control of Anopheles (Nyssorhinchus) darlingi using granular formulation of Bacillus sphaericus in abandoned gold-miners excavation pools in the Brazilian Amazon rainforest.

    Science.gov (United States)

    Galardo, Allan Kardec Ribeiro; Zimmerman, Robert; Galardo, Clícia Denis

    2013-01-01

    Use of a Bacillus sphaericus based mosquito larvicide was evaluated as an intervention for malaria vector control at a mining site in Amapá, Brazil. Impacts on larval and adult densities of the primary vector Anopheles darlingi were measured over the course of a 52 week study period. In Calçoene, State of Amapá, gold mining activity occurs in 19 mining sites in gold-miners of Lourenço. Large pools are formed in mining sites and naturally colonized by Anopheles darlingi. During one year, the impact of applications of VectoLex® CG to these larval sources was evaluated. Applications of 20kg/ha were made as needed, based on 10 immature (3rd, 4th instars and pupae) surveillance of health and established thresholds. One hundred percent initial control was observed 48h after each treatment. The pools received from 2-10 (5.3±1.6) treatments during the year. The average re-treatment interval in productive pools was 9.4±4.3 weeks. During weeks 3-52 of the study, mean density of late stage larvae was 78% and pupae were 93% lower in the treated pools than in untreated pools (p< 0.0001, n=51) while reduction of adult mosquitoes was 53% in comparison to the untreated area during the last five months of the study, which were the rainy season (p<0.001). VectoLex® CG reduced immature Anopheles darlingi infestation levels during the entire study period, and reduced adult mosquito populations during the rainy season.

  13. Larval control of Anopheles (Nyssorhinchus darlingi using granular formulation of Bacillus sphaericus in abandoned gold-miners excavation pools in the Brazilian Amazon Rainforest

    Directory of Open Access Journals (Sweden)

    Allan Kardec Ribeiro Galardo

    2013-09-01

    Full Text Available INTRODUCTION: Use of a Bacillus sphaericus based mosquito larvicide was evaluated as an intervention for malaria vector control at a mining site in Amapá, Brazil. Impacts on larval and adult densities of the primary vector Anopheles darlingi were measured over the course of a 52 week study period. METHODS: In Calçoene, State of Amapá, gold mining activity occurs in 19 mining sites in gold-miners of Lourenço. Large pools are formed in mining sites and naturally colonized by Anopheles darlingi. During one year, the impact of applications of VectoLex(r CG to these larval sources was evaluated. Applications of 20kg/ha were made as needed, based on 10 immature (3rd, 4th instars and pupae surveillance of health and established thresholds. RESULTS: One hundred percent initial control was observed 48h after each treatment. The pools received from 2-10 (5.3±1.6 treatments during the year. The average re-treatment interval in productive pools was 9.4±4.3 weeks. During weeks 3-52 of the study, mean density of late stage larvae was 78% and pupae were 93% lower in the treated pools than in untreated pools (p< 0.0001, n=51 while reduction of adult mosquitoes was 53% in comparison to the untreated area during the last five months of the study, which were the rainy season (p<0.001. CONCLUSIONS: VectoLex(r CG reduced immature Anopheles darlingi infestation levels during the entire study period, and reduced adult mosquito populations during the rainy season.

  14. Osmotic Control of opuA Expression in Bacillus subtilis and Its Modulation in Response to Intracellular Glycine Betaine and Proline Pools

    Science.gov (United States)

    Hoffmann, Tamara; Wensing, Annette; Brosius, Margot; Steil, Leif; Völker, Uwe

    2013-01-01

    Glycine betaine is an effective osmoprotectant for Bacillus subtilis. Its import into osmotically stressed cells led to the buildup of large pools, whose size was sensitively determined by the degree of the osmotic stress imposed. The amassing of glycine betaine caused repression of the formation of an osmostress-adaptive pool of proline, the only osmoprotectant that B. subtilis can synthesize de novo. The ABC transporter OpuA is the main glycine betaine uptake system of B. subtilis. Expression of opuA was upregulated in response to both sudden and sustained increases in the external osmolarity. Nonionic osmolytes exerted a stronger inducing effect on transcription than ionic osmolytes, and this was reflected in the development of corresponding OpuA-mediated glycine betaine pools. Primer extension analysis and site-directed mutagenesis pinpointed the osmotically controlled opuA promoter. Deviations from the consensus sequence of SigA-type promoters serve to keep the transcriptional activity of the opuA promoter low in the absence of osmotic stress. opuA expression was downregulated in a finely tuned manner in response to increases in the intracellular glycine betaine pool, regardless of whether this osmoprotectant was imported or was newly synthesized from choline. Such an effect was also exerted by carnitine, an effective osmoprotectant for B. subtilis that is not a substrate for the OpuA transporter. opuA expression was upregulated in a B. subtilis mutant that was unable to synthesize proline in response to osmotic stress. Collectively, our data suggest that the intracellular solute pool is a key determinant for the osmotic control of opuA expression. PMID:23175650

  15. Larval control of Anopheles (Nyssorhinchus darlingi using granular formulation of Bacillus sphaericus in abandoned gold-miners excavation pools in the Brazilian Amazon Rainforest

    Directory of Open Access Journals (Sweden)

    Allan Kardec Ribeiro Galardo

    2013-04-01

    Full Text Available INTRODUCTION: Use of a Bacillus sphaericus based mosquito larvicide was evaluated as an intervention for malaria vector control at a mining site in Amapá, Brazil. Impacts on larval and adult densities of the primary vector Anopheles darlingi were measured over the course of a 52 week study period. METHODS: In Calçoene, State of Amapá, gold mining activity occurs in 19 mining sites in gold-miners of Lourenço. Large pools are formed in mining sites and naturally colonized by Anopheles darlingi. During one year, the impact of applications of VectoLex(r CG to these larval sources was evaluated. Applications of 20kg/ha were made as needed, based on 10 immature (3rd, 4th instars and pupae surveillance of health and established thresholds. RESULTS: One hundred percent initial control was observed 48h after each treatment. The pools received from 2-10 (5.3±1.6 treatments during the year. The average re-treatment interval in productive pools was 9.4±4.3 weeks. During weeks 3-52 of the study, mean density of late stage larvae was 78% and pupae were 93% lower in the treated pools than in untreated pools (p< 0.0001, n=51 while reduction of adult mosquitoes was 53% in comparison to the untreated area during the last five months of the study, which were the rainy season (p<0.001. CONCLUSIONS: VectoLex(r CG reduced immature Anopheles darlingi infestation levels during the entire study period, and reduced adult mosquito populations during the rainy season.

  16. The redox potential of the plastoquinone pool of the cyanobacterium Synechocystis species strain PCC 6803 is under strict homeostatic control

    NARCIS (Netherlands)

    Schuurmans, R.M.; Schuurmans, J.M.; Bekker, M.; Kromkamp, J.C.; Matthijs, H.C.P.; Hellingwerf, K.J.

    2014-01-01

    A method is presented for rapid extraction of the total plastoquinone (PQ) pool from Synechocystis sp. strain PCC 6803 cells that preserves the in vivo plastoquinol (PQH2) to -PQ ratio. Cells were rapidly transferred into ice-cold organic solvent for instantaneous extraction of the cellular PQ plus

  17. A GTA Welding Cooling Rate Analysis on Stainless Steel and Aluminum Using Inverse Problems

    Directory of Open Access Journals (Sweden)

    Elisan dos Santos Magalhaes

    2017-01-01

    Full Text Available This work presents an analysis of the thermal influence of the heat transfer by convection and radiation during GTA (gas tungsten arc welding process. The authors’ in-house C++ previously-developed code was modified to calculate the amount of heat transfer by convection and radiation. In this software, an iterative Broydon-Fletcher-Goldfarb-Shanno (BFGS inverse method was applied to estimate the amount of heat delivered to the plate when the appropriate sensitivity criteria were defined. The methodology was validated by accomplishing lab-controlled experiments on stainless steel AISI 304L and aluminum 6065 T5 plates. Due to some experimental singularities, the forced thermal convection induced by the electromagnetic field and thermal-capillary force were disregarded. Significant examples of these singularities are the relatively small weld bead when compared to the sample size and the reduced time of the welding process. In order to evaluate the local Nusselt number, empirical correlations for flat plates were used. The thermal emission was a dominant cooling effect on the aluminum cooling. However, it did not present the same behavior as the stainless steel samples. The study found that the heat losses by convection and radiation of the weld pool do not affect the cooling process significantly.

  18. Particulate and gaseous emissions when welding aluminum alloys.

    Science.gov (United States)

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  19. Hybrid 2D-3D modelling of GTA welding with filler wire addition

    KAUST Repository

    Traidia, Abderrazak

    2012-07-01

    A hybrid 2D-3D model for the numerical simulation of Gas Tungsten Arc welding is proposed in this paper. It offers the possibility to predict the temperature field as well as the shape of the solidified weld joint for different operating parameters, with relatively good accuracy and reasonable computational cost. Also, an original approach to simulate the effect of immersing a cold filler wire in the weld pool is presented. The simulation results reveal two important observations. First, the weld pool depth is locally decreased in the presence of filler metal, which is due to the energy absorption by the cold feeding wire from the hot molten pool. In addition, the weld shape, maximum temperature and thermal cycles in the workpiece are relatively well predicted even when a 2D model for the arc plasma region is used. © 2012 Elsevier Ltd. All rights reserved.

  20. Automated generation of weld path trajectories.

    Energy Technology Data Exchange (ETDEWEB)

    Sizemore, John M. (Northrop Grumman Ship Systems); Hinman-Sweeney, Elaine Marie; Ames, Arlo Leroy

    2003-06-01

    AUTOmated GENeration of Control Programs for Robotic Welding of Ship Structure (AUTOGEN) is software that automates the planning and compiling of control programs for robotic welding of ship structure. The software works by evaluating computer representations of the ship design and the manufacturing plan. Based on this evaluation, AUTOGEN internally identifies and appropriately characterizes each weld. Then it constructs the robot motions necessary to accomplish the welds and determines for each the correct assignment of process control values. AUTOGEN generates these robot control programs completely without manual intervention or edits except to correct wrong or missing input data. Most ship structure assemblies are unique or at best manufactured only a few times. Accordingly, the high cost inherent in all previous methods of preparing complex control programs has made robot welding of ship structures economically unattractive to the U.S. shipbuilding industry. AUTOGEN eliminates the cost of creating robot control programs. With programming costs eliminated, capitalization of robots to weld ship structures becomes economically viable. Robot welding of ship structures will result in reduced ship costs, uniform product quality, and enhanced worker safety. Sandia National Laboratories and Northrop Grumman Ship Systems worked with the National Shipbuilding Research Program to develop a means of automated path and process generation for robotic welding. This effort resulted in the AUTOGEN program, which has successfully demonstrated automated path generation and robot control. Although the current implementation of AUTOGEN is optimized for welding applications, the path and process planning capability has applicability to a number of industrial applications, including painting, riveting, and adhesive delivery.

  1. Episodic therapy for genital herpes in sub-saharan Africa: a pooled analysis from three randomized controlled trials.

    Directory of Open Access Journals (Sweden)

    Helen A Weiss

    Full Text Available BACKGROUND: A randomized controlled trial in South Africa found a beneficial effect of acyclovir on genital ulcer healing, but no effect was seen in trials in Ghana, Central African Republic and Malawi. The aim of this paper is to assess whether the variation in impact of acyclovir on ulcer healing in these trials can be explained by differences in the characteristics of the study populations. METHODOLOGY/PRINCIPAL FINDINGS: Pooled data were analysed to estimate the impact of acyclovir on the proportion of ulcers healed seven days after randomisation by HIV/CD4 status, ulcer aetiology, size and duration before presentation; and impact on lesional HIV-1. Risk ratios (RR were estimated using Poisson regression with robust standard errors. Of 1478 patients with genital ulcer, most (63% had herpetic ulcers (16% first episode HSV-2 ulcers, and a further 3% chancroid, 2% syphilis, 0.7% lymphogranuloma venereum and 31% undetermined aetiology. Over half (58% of patients were HIV-1 seropositive. The median duration of symptoms before presentation was 6 days. Patients on acyclovir were more likely to have a healed ulcer on day 7 (63% vs 57%, RR = 1.08, 95% CI 0.98-1.18, shorter time to healing (p = 0.04 and less lesional HIV-1 RNA (p = 0.03. Small ulcers (<50 mm(2, HSV-2 ulcers, first episode HSV-2 ulcers, and ulcers in HIV-1 seropositive individuals responded best but the better effectiveness in South Africa was not explained by differences in these factors. CONCLUSIONS/SIGNIFICANCE: There may be slight benefit in adding acyclovir to syndromic management in settings where most ulcers are genital herpes. The stronger effect among HIV-1 infected individuals suggests that acyclovir may be beneficial for GUD/HIV-1 co-infected patients. The high prevalence in this population highlights that genital ulceration in patients with unknown HIV status provides a potential entry point for provider-initiated HIV testing.

  2. Automatic inspection of electron beam weld for stainless steel using phased array method; Controle automatique par ultrasons multielements de soudures inox realisees par faisceau d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bleuze, A. [Metalscan - Groupe Tecnatom, 71100 Saint-Remy (France); Schwartz, C. [Commissariat a l' Energie Atomique, Centre de Valduc - 21120 Is-Sur-Tille - (France)

    2007-07-01

    The CEA laboratory of Non destructive testing of Valduc implements various techniques of controls (radiography, sealing by tracer gas helium, ultrasounds...) to check the quality of the welding and health matter of materials. To have a perfect command of the manufacture of the welding and to detect any anomaly during the manufacturing process (lacks of penetration, defects of joining, porosities...), it developed in partnership with company METALSCAN an ultrasonic technique of imagery phased array designed to the complete and automatic control of homogeneous stainless steel welding carried out by electron beam. To achieve this goal, an acoustic study by simulation with software CIVA was undertaken in order to determine the optimal characteristics of the phased array probes (their number and their site). Finally, the developed method allows, on the one hand, to locate lacks of fusion of welding equivalents to flat holes with bottom 0,5 mms in diameter, and on the other hand, to detect lacks of penetration of 0,1 mm. In order to ensure a perfect reproducibility of controls, a mechanical system ensuring the setting in rotation of the part, allows to inspect the whole of the welding. The results are then analyzed automatically using application software ensuring the traceability of controls. The method was first of all validated using parts spread out, then it was brought into service after confrontation of the results obtained on real defects with other techniques (metallographic radiography and characterizations). (authors) [French] Le laboratoire de Controles Non Destructifs du CEA de Valduc met en oeuvre differentes techniques de controles (radiographie, etancheite par gaz traceur helium, ultrasons...) pour verifier la qualite des soudures et la sante matiere des materiaux. Pour maitriser parfaitement la fabrication des soudures et detecter toute anomalie durant le processus de fabrication (manques de penetration, defauts de collage, porosites...), il a developpe

  3. Simulation and sensitivity analysis of controlling parameters in resistance spot welding

    Science.gov (United States)

    Kim, Euiwhan; Eagar, Thomas W.

    2015-03-01

    This study was performed to investigate the fundamental parameters controlling the nugget growth. The parameters were categorized into four groups, i.e. material parameters, electrical parameters, thermal parameters and geometrical parameters. In order to quantify the sensitivity of nugget growth to changes in these parameters, a numerical model which incorporates the electrical, mechanical and thermal contact was developed. As a result, a sensitivity index table was constructed and analyzed to ascertain the relative importance of these characteristic parameters. It was found that the most important factor in determining the variability of nugget growth behavior is the ratio of contact radius to electrode radius and the ratio of electrode radius to the square of specimen thickness. In general for a variation of 10%, the geometrical parameters are most important, followed by the material parameters. The electrical parameters and the thermal parameters are the least important. The importance of contact at the faying interface is greater for the contact area than for the contact resistance.

  4. Hawaii ESI: POOLS (Anchialine Pool Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for anchialine pools in Hawaii. Anchialine pools are small, relatively shallow coastal ponds that occur...

  5. Microstructure Evolution during Friction Stir Spot Welding of TRIP Steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding; Pantleon, Karen; Somers, Marcel A. J.

    2010-01-01

    In this study, the feasibility of friction stir spot welding of TRIP steel is investigated. In addition to manufacturing successful welds, the present study aims at a fundamental understanding of the mechanisms occurring at the (sub)micron scale during friction stir spot welding. As one of the main...... parameters to control friction stir welding, the influence of the rotational speed of the tool was investigated. Three different rotational speeds (500 rpm, 1000 rpm and 1500 rpm, respectively) were applied. The microstructure of the welded samples was investigated with reflected light microscopy, scanning...

  6. New technology for production of granular adding material with nanomodifying additives for steel arc welding

    Directory of Open Access Journals (Sweden)

    BOLDYREV Alexander Mikhaylovich

    2016-12-01

    Full Text Available The chemical analysis of metal seam showed that introduction of titanium dioxide with MCA intensifies transition of Al2O3 from slag into metal pool and provides double concentration of titanium in the seam compared to the one which appears in the interaction of bathtub with melted flux AH-47 without TiO2 additives. The presence of oxides of titanium and aluminium of endogenous origin in the melt leads to formation of refractory particles with the center of TiO2 and Al2O3 in it. These particles are the centers of crystallization in the tail part of the molten pool and they remain in seam metal in the form of evenly distributed fine nonmetallic inclusions, which have crystallographic affinity with a matrix (α-iron. That provides the fine-grained seam structure with the raised and stable strength characteristics. This article compares the existing and developed technologies for production of MCA. The granulometric analysis of the powder TiO2 has demonstrated that when MCA is processed in the planetary mill, particles of titanium dioxide are crushed to a nanodimensional order. It is shown that the preparation of MCA in high-energy planetary mill (due to double increase of durability in coupling of the modifier with granulate provides its stable structure, increases the cold resistance (20–25% and stability of strength characteristics along the length of welded seam. Metalgraphic researches determined that the fine-grained structure which linear size of grain is twice smaller than the one obtained in the old technology welding is formed in a seam. However the direct introduction of nanomodifiers in a molten pool through the flux or an electrode wire is not efficient because of their deactivation and high temperature in welding zone. Therefore it was offered to use modifiers in the mix with the cooling macroparticles in case of automatic welding of a bridge metalware under flux using metalchemical additive (MCA. The MCA consists of a chopped

  7. An Approach to Maximize Weld Penetration During TIG Welding of P91 Steel Plates by Utilizing Image Processing and Taguchi Orthogonal Array

    Science.gov (United States)

    Singh, Akhilesh Kumar; Debnath, Tapas; Dey, Vidyut; Rai, Ram Naresh

    2017-10-01

    P-91 is modified 9Cr-1Mo steel. Fabricated structures and components of P-91 has a lot of application in power and chemical industry owing to its excellent properties like high temperature stress corrosion resistance, less susceptibility to thermal fatigue at high operating temperatures. The weld quality and surface finish of fabricated structure of P91 is very good when welded by Tungsten Inert Gas welding (TIG). However, the process has its limitation regarding weld penetration. The success of a welding process lies in fabricating with such a combination of parameters that gives maximum weld penetration and minimum weld width. To carry out an investigation on the effect of the autogenous TIG welding parameters on weld penetration and weld width, bead-on-plate welds were carried on P91 plates of thickness 6 mm in accordance to a Taguchi L9 design. Welding current, welding speed and gas flow rate were the three control variables in the investigation. After autogenous (TIG) welding, the dimension of the weld width, weld penetration and weld area were successfully measured by an image analysis technique developed for the study. The maximum error for the measured dimensions of the weld width, penetration and area with the developed image analysis technique was only 2 % compared to the measurements of Leica-Q-Win-V3 software installed in optical microscope. The measurements with the developed software, unlike the measurements under a microscope, required least human intervention. An Analysis of Variance (ANOVA) confirms the significance of the selected parameters. Thereafter, Taguchi's method was successfully used to trade-off between maximum penetration and minimum weld width while keeping the weld area at a minimum.

  8. Signal Analysis of Gas Tungsten Arc Welds

    Science.gov (United States)

    Eagar, T. W.

    1985-01-01

    Gas tungsten arc welding is a process in which the input parameters such as current, voltage and travel speed, can be easily controlled and/or monitored. However, weld quality is not solely a function of these parameters. An adaptive method of observing weld quality is desired to improve weld quality assurance. The use of dynamic electrical properties of the welding arc as a weld quality monitor was studied. The electrical properties of the arc are characterized by the current voltage transfer function. The hardware and software necessary to collect the data at a maximum rate of 45 kHz and to allow the off-line processing of this data are tested. The optimum input current waveform is determined. Bead-on-plate welds to observe such characteristics of the weld as the fundamental frequency of the puddle are studied. Future work is planned to observe changes of the arc response with changes in joint geometry, base metal chemistry, and shielding gas composition are discussed.

  9. CLOSURE WELD DEVELOPMENT FOR 3013 OUTER CONTAINERS

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W.; Howard, S.; Peterson, K.; Stokes, M.

    2009-11-10

    Excess plutonium materials in the DOE complex are packaged and stored in accordance with DOE-STD-3013. This standard specifies requirements for the stabilization of such materials and subsequent packaging in dual nested seal-welded containers. Austenitic stainless steels have been selected for container fabrication. The inner 3013 container provides contamination control while the outer 3013 container is the primary containment vessel and is the focus of this paper. Each packaging site chose a process for seal welding the outer 3013 containers in accordance with its needs and expertise. The two processes chosen for weld closure were laser beam welding (LBW) and gas tungsten arc welding (GTAW). Following development efforts, each system was qualified in accordance with DOE-STD-3013 prior to production use. The 3013 outer container closure weld joint was designed to accommodate the characteristics of a laser weld. This aspect of the joint design necessitated some innovative process and equipment considerations in the application of the GTAW process. Details of the weld requirements and the development processes are presented and several potential enhancements for the GTAW system are described.

  10. Reprocessing weld and method

    Energy Technology Data Exchange (ETDEWEB)

    Killian, M.L.; Lewis, H.E.

    1993-08-03

    A process is described for improving the fatigue resistance of a small primary structural weld at a joint between structural members of a weldment, the weld having been made with the welding energy input of E[sub 1], the process comprising: applying a reprocessing weld on at least a portion of either one or both toes of the primary structural weld, thereby covering said toe portion, the reprocessing weld containing a filler metal and having a cross-sectional area which is less than the corresponding cross-sectional area of the primary structural weld, the reprocessing weld extending onto the face of the primary structural weld at one side of the toe portion covered and onto the structural member at the other side of the toe portion covered, and the total welding energy input, E[sub 2], used in said reprocessing the primary structural weld being less than the welding energy input E[sub 1] of the primary structural weld.

  11. Thin plate gap bridging study for Nd:YAG pulsed laser lap welds.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Robert Allen; Fuerschbach, Phillip William; Bernal, John E.; Norris, Jerome T.

    2006-01-01

    In an on going study of gap bridging for thin plate Nd:YAG laser lap welds, empirical data, high speed imaging, and computer modeling were utilized to better understand surface physics attributed to the formation and solidification of a weld pool. Experimental data indicates better gap bridging can be achieved through optimized laser parameters such as pulse length, duration, and energy. Long pulse durations at low energies generating low peak powers were found to create the highest percent of gap bridging ability. At constant peak power, gap-bridging ability was further improved by using a smaller spot diameter resulting in higher irradiances. Hence, welding in focus is preferable for bridging gaps. Gas shielding was also found to greatly impact gap-bridging ability. Gapped lap welds that could not be bridged with UHP Argon gas shielding, were easily bridged when left unshielded and exposed to only air. Incident weld angle and joint offset were also investigated for their ability to improve gap bridging. Optical filters and brightlight surface illumination enabled high-speed imaging to capture the fluid dynamics of a forming and solidifying weld pool. The effects of various laser parameters and the weld pool's interaction with the laser beam could also be observed utilizing the high-speed imaging. The work described is used to develop and validate a computer model with improved weld pool physics. Finite element models have been used to derive insight into the physics of gap bridging. The dynamics of the fluid motion within the weld pool in conjunction with the free surface physics have been the primary focus of the modeling efforts. Surface tension has been found to be a more significant factor in determining final weld pool shape than expected.

  12. Spectral analysis of the process emission during laser welding of AISI 304 stainless steel with disk and Nd:YAG laser

    NARCIS (Netherlands)

    Konuk, A.R.; Aarts, R.G.K.M.; Huis in 't Veld, A.J.

    2009-01-01

    Optical emissions from the laser welding process can be obtained relatively easy in real-time. Such emissions come from the melt pool, keyhole, or plume during welding. Therefore it is very beneficial to establish a clear relation between characteristics of these emissions and the resulting weld

  13. Controlling Angular Distortion in Manual Metal Arc Welding of Austenitic Stainless Steels Using Back-step Technique

    Directory of Open Access Journals (Sweden)

    Abdul Sameea Jasim Abdul Zehra Jilabi

    2018-01-01

    Full Text Available Nowadays, austenitic stainless steels (A.S.S. have many industrial applications in the fields of chemical and petrochemical processing, marine, medicine, water treatment, petroleum refining, food and drinks processing, nuclear power generation etc. The secret behind this wide range of applications is the fact that A.S.S. have great corrosion resistance, high strength and scale resistance at elevated temperatures, good ductility at low temperatures approached to absolute zero in addition to notable weldability. On the other hand, manual metal arc (MMA is probably the most common process used for the welding of A.S.S. Unfortunately, MMA welding of A.S.S. could be associated with considerable distortion. Uncontrolled or excessive distortion usually increases the cost of the production process due to the high expense of rectification or replacing the weldment by a non-distorted one. MMA welding of A.S.S. was carried out using the back-step technique with various bead lengths, and without using this technique for comparison. Results have showed that the angular distortion was a function of the bead length in the back-step welding of A.S.S. The angular distortion decreased by (14.32% when the back-step technique was used with a (60 mm length for each bead, and by (41.08% when the bead length was (40 mm. On the other hand, it increased by (25% when the back-step technique was done with a (30 mm length for each bead.

  14. A DNA pooling-based case-control study of myopia candidate genes COL11A1, COL18A1, FBN1, and PLOD1 in a Chinese population

    Science.gov (United States)

    Leung, Kim Hung; Fung, Wai Yan; Ng, Po Wah; Sham, Pak Chung; Yap, Maurice K.H.

    2011-01-01

    Purpose We examined the relationship between high myopia and common polymorphisms in four candidate genes: collagen, type XI, alpha 1 (COL11A1); collagen, type XVIII, alpha 1 (COL18A1); fibrillin 1 (FBN1); and procollagen-lysine 1,2-oxoglutarate 5-dioxygenase 1 (PLOD1). These genes were selected because rare pathogenic mutations in these genes cause disease syndromes that have myopia, usually high myopia, as one of the common presenting features. Methods This study recruited 600 unrelated Han Chinese subjects including 300 cases with high myopia (spherical equivalent or SE≤-8.00 diopters) and 300 controls (SE within ±1.00 diopter). A total of 66 tag single nucleotide polymorphisms (SNPs) were selected for study from these four candidate genes. The study adopted a DNA pooling strategy with an initial screen of DNA pools to identify putatively positive SNPs and then confirmed the “positive” SNPs by genotyping individual samples forming the original DNA pools. DNA pools were each constructed by mixing equal amounts of DNA from 50 individuals with the same phenotype status. Six case pools were prepared from 300 cases and six control pools from 300 controls. Allele frequencies of DNA pools were estimated by analyzing the primer-extended products with denaturing high performance liquid chromatography and compared between case pools and control pools with nested ANOVA. Results In the first stage, 60 SNPs from the 4 candidate genes were successfully screened using the DNA pooling approach. Of these, 6 SNPs showed a statistical significant difference in estimated allele frequencies between case pools and controls at pmyopia. PMID:21527992

  15. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  16. Friction Stir Spot Welding of 6061 Aluminum-to-Copper

    Science.gov (United States)

    Heideman, Robert J.

    Friction stir spot welding (FSSW) between 1.5mm thick 6061 Al on top and 1.5mm thick Cu at bottom was conducted. First, weld parameters and the weld macrostructure that were necessary to form good quality welds, as determined using lap shear weld strength, were identified. Tool rotation speed and tool pin length are key variables that control weld strength. To obtain high quality strong welds, a Cu ring extruded upward from the lower Cu sheet into the upper 6061 Al-sheet, which promoted bonding and interlocking between the sheets, and an Al-rich stir zone between Cu ring and weld keyhole were both necessary. Second, a technique where the tool remained in the sample after FSSW helped determine the material flow that takes place during high quality weld formation and the functions of the welding tool features. The tool threads cause 6061 Al from the upper sheet to move downward into the region near the threads. The tool shoulder causes a counter flow movement of 6061 Al that results in the formation of the Al-rich stir zone and also causes the upward extrusion of the lower Cu sheet. This technique also identified that a Cu-rich material forms on the tool tip, that this material sheds and rebuilds during subsequent welds, and that this material can form large Cu-rich particles that can completely fill the tool threads, impede proper material flow and lead to a low strength, poor quality weld. Third, to further understand welding parameters, weld temperatures, torque, and vertical forces were measured. Temperature data was collected using a tool holder that permitted wireless thermocouple data collection. Through these measurements, rotational plunge weld energy was recognized as important in determining if a quality weld formed, and weld plunge rate was identified as the welding parameter that significantly impacted rotational weld plunge energy. The final phase of research was to improve weld quality consistency. Through repetitive trials with a single tool

  17. Lung cancer among coal miners, ore miners and quarrymen: smoking-adjusted risk estimates from the synergy pooled analysis of case-control studies.

    Science.gov (United States)

    Taeger, Dirk; Pesch, Beate; Kendzia, Benjamin; Behrens, Thomas; Jöckel, Karl-Heinz; Dahmann, Dirk; Siemiatycki, Jack; Kromhout, Hans; Vermeulen, Roel; Peters, Susan; Olsson, Ann; Brüske, Irene; Wichmann, Heinz-Erich; Stücker, Isabelle; Guida, Florence; Tardón, Adonina; Merletti, Franco; Mirabelli, Dario; Richiardi, Lorenzo; Pohlabeln, Hermann; Ahrens, Wolfgang; Landi, Maria Teresa; Caporaso, Neil; Pesatori, Angela Cecilia; Mukeriya, Anush; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Gustavsson, Per; Field, John; Marcus, Michael W; Fabianova, Eleonora; 't Mannetje, Andrea; Pearce, Neil; Rudnai, Peter; Bencko, Vladimir; Janout, Vladimir; Dumitru, Rodica Stanescu; Foretova, Lenka; Forastiere, Francesco; McLaughlin, John; Paul Demers, Paul Demers; Bueno-de-Mesquita, Bas; Schüz, Joachim; Straif, Kurt; Brüning, Thomas

    2015-09-01

    Working in mines and quarries has been associated with an elevated lung cancer risk but with inconsistent results for coal miners. This study aimed to estimate the smoking-adjusted lung cancer risk among coal miners and compare the risk pattern with lung cancer risks among ore miners and quarrymen. We estimated lung cancer risks of coal and ore miners and quarrymen among 14 251 lung cancer cases and 17 267 controls from the SYNERGY pooled case-control study, controlling for smoking and employment in other at-risk occupations. Ever working as miner or quarryman (690 cases, 436 controls) was associated with an elevated odds ratio (OR) of 1.55 [95% confidence interval (95% CI) 1.34-1.79] for lung cancer. Ore miners (53 cases, 24 controls) had a higher OR (2.34, 95% CI 1.36-4.03) than quarrymen (67 cases, 39 controls; OR 1.92, 95% CI 1.21-3.05) and coal miners (442 cases, 297 controls; OR 1.40, 95% CI 1.18-1.67), but CI overlapped. We did not observe trends by duration of exposure or time since last exposure. This pooled analysis of population-based studies demonstrated an excess lung cancer risk among miners and quarrymen that remained increased after adjustment for detailed smoking history and working in other at-risk occupations. The increase in risk among coal miners were less pronounced than for ore miners or quarrymen.

  18. Mixing weld gases offers advantages

    Science.gov (United States)

    May, J. L.; Mendenhall, M. M.

    1969-01-01

    Argon added to helium during gas tungsten arc cover-pass welding in the horizontal position results in a better controlled wider bead width, increased arc stability, and reduction in heat input. Adequate filler material wetness and penetration pass coverage is possible with only one pass.

  19. Inclusions and Microstructure of Steel Weld Deposits with Nanosize Titanium Oxide Addition

    OpenAIRE

    Cuixin Chen; Haitao Xue; Huifen Peng; Liang Yan; Lei Zhi; Sixu Wang

    2014-01-01

    Nanosize TiO2 particles were added directly into welding molten pool through electrode for the difficulty of accurate control of oxygen potential and production processing parameters. The characteristics of phase transformation and thermal behavior of inclusions for Fe-C-Mn-Si-Ti-O system and Fe-C-Mn-Si-TiO2 system were analyzed. Results show that the added TiO2 particles are more helpful for the formation of Mn-Ti-O complex inclusion and can induce the decrease of phase transformation temper...

  20. Investigation on edge joints of Inconel 625 sheets processed with laser welding

    Science.gov (United States)

    Caiazzo, F.; Alfieri, V.; Cardaropoli, F.; Sergi, V.

    2017-08-01

    Laser welding of Inconel 625 edge joint beads in square groove configuration was investigated. The use of different weld geometries in new aerospace solutions explains research on edge joints. A structured plan was carried out in order to characterize the process defining the influence of laser power and welding speed and to study possible interactions among the governing factors. As weld pool protection is crucial in order to obtain sound joints when processing superalloys, a special glove box for gas supply was designed to upgrade the welding head. Welded joints were characterized referring to bead profile, microstructure and X-rays. It was found that heat input plays an important role as it affects welding stability, porosity content and bead shape. Results suggest operating with low values of heat input to reduce porosity and guarantee stable bead conformation. Furthermore, a decrease in the grain size has been observed as a consequence of decreasing heat input.

  1. Autocorrelation Function for Monitoring the Gap between The Steel Plates During Laser Welding

    Science.gov (United States)

    Mrna, Libor; Hornik, Petr

    Proper alignment of the plates prior to laser welding represents an important factor that determines the quality of the resulting weld. A gap between the plates in a butt or overlap joint affects the oscillations of the keyhole and the surrounding weld pool. We present an experimental study of the butt and overlap welds with the artificial gap of the different thickness of the plates. The welds were made on a 2 kW fiber laser machine for the steel plates and the various welding parameters settings. The eigenfrequency of the keyhole oscillations and its changes were determined from the light emissions of the plasma plume using an autocorrelation function. As a result, we describe the relations between the autocorrelation characteristics, the thickness of the gap between plates and the weld geometry.

  2. Welding Course Curriculum.

    Science.gov (United States)

    Genits, Joseph C.

    This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part…

  3. Instructional Guidelines. Welding.

    Science.gov (United States)

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  4. Low temperature friction stir welding of P91 steel

    Directory of Open Access Journals (Sweden)

    Prasad Rao Kalvala

    2016-08-01

    Full Text Available Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds (100 and 1000 RPM to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior (by impression creep tests. The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below Ac1 temperature of P91 steel while it was above Ac3 with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.

  5. The variable polarity plasma arc welding process: Characteristics and performance

    Science.gov (United States)

    Hung, R. J.; Zhu, G. J.

    1991-01-01

    Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. The power distribution was analyzed for an argon plasma gas flow constituting the fluid in the VPPA Welding Process. The major heat loss at the torch nozzle is convective heat transfer; in the space between the outlet of the nozzle and the workpiece; radiative heat transfer; and in the keyhole in the workpiece, convective heat transfer. The power absorbed at the workpiece produces the molten puddle that solidifies into the weld bead. Crown and root widths, and crown and root heights of the weld bead are predicted. The basis is provided for an algorithm for automatic control of VPPA welding machine parameters to obtain desired weld bead dimensions.

  6. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    Science.gov (United States)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  7. Does addition of `mud-pack and hot pool treatment' to patient education make a difference in fibromyalgia patients? A randomized controlled single blind study

    Science.gov (United States)

    Bağdatlı, Ali Osman; Donmez, Arif; Eröksüz, Rıza; Bahadır, Güler; Turan, Mustafa; Erdoğan, Nergis

    2015-12-01

    The aim of this randomized controlled single-blind study is to explore whether addition of mud-pack and hot pool treatments to patient education make a significant difference in short and mild term outcomes of the patients with fibromyalgia. Seventy women with fibromyalgia syndrome were randomly assigned to either balneotherapy with mud-pack and hot pool treatments (35) or control (35) groups. After randomization, five patients from balneotherapy group and five patients from control group were dropped out from the study with different excuses. All patients had 6-h patient education programme about fibromyalgia syndrome and were given a home exercise programme. The patients in balneotherapy group had heated pool treatment at 38 °C for 20 min a day, and mud-pack treatment afterwards on back region at 45 °C. Balneotherapy was applied on weekdays for 2 weeks. All patients continued to take their medical treatment. An investigator who was blinded to the intervention assessed all the patients before and after the treatment, at the first and the third months of follow-up. Outcome measures were FIQ, BDI and both patient's and physician's global assessments. Balneotherapy group was significantly better than control group at after the treatment and at the end of the first month follow-up assessments in terms of patient's and physician's global assessment, total FIQ score, and pain intensity, fatigue, non-refreshed awaking, stiffness, anxiety and depression subscales of FIQ. No significant difference was found between the groups in terms of BDI scores. It is concluded that patient education combined with 2 weeks balneotherapy application has more beneficial effects in patients with fibromyalgia syndrome as compared to patient education alone.

  8. Does addition of 'mud-pack and hot pool treatment' to patient education make a difference in fibromyalgia patients? A randomized controlled single blind study.

    Science.gov (United States)

    Bağdatlı, Ali Osman; Donmez, Arif; Eröksüz, Rıza; Bahadır, Güler; Turan, Mustafa; Erdoğan, Nergis

    2015-12-01

    The aim of this randomized controlled single-blind study is to explore whether addition of mud-pack and hot pool treatments to patient education make a significant difference in short and mild term outcomes of the patients with fibromyalgia. Seventy women with fibromyalgia syndrome were randomly assigned to either balneotherapy with mud-pack and hot pool treatments (35) or control (35) groups. After randomization, five patients from balneotherapy group and five patients from control group were dropped out from the study with different excuses. All patients had 6-h patient education programme about fibromyalgia syndrome and were given a home exercise programme. The patients in balneotherapy group had heated pool treatment at 38 °C for 20 min a day, and mud-pack treatment afterwards on back region at 45 °C. Balneotherapy was applied on weekdays for 2 weeks. All patients continued to take their medical treatment. An investigator who was blinded to the intervention assessed all the patients before and after the treatment, at the first and the third months of follow-up. Outcome measures were FIQ, BDI and both patient's and physician's global assessments. Balneotherapy group was significantly better than control group at after the treatment and at the end of the first month follow-up assessments in terms of patient's and physician's global assessment, total FIQ score, and pain intensity, fatigue, non-refreshed awaking, stiffness, anxiety and depression subscales of FIQ. No significant difference was found between the groups in terms of BDI scores. It is concluded that patient education combined with 2 weeks balneotherapy application has more beneficial effects in patients with fibromyalgia syndrome as compared to patient education alone.

  9. Thermal Stir Welding Development at Marshall Space Flight Center

    Science.gov (United States)

    Ding, Robert J.

    2008-01-01

    Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.

  10. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing

    Science.gov (United States)

    Villegas, Irene F.; Palardy, Genevieve

    2016-01-01

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints. PMID:26890931

  11. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    Science.gov (United States)

    Villegas, Irene F; Palardy, Genevieve

    2016-02-11

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.

  12. Development of laser beam welding transverse-varestraint test for assessment of solidification cracking susceptibility in laser welds

    Science.gov (United States)

    Chun, Eun-Joon; Baba, Hayato; Nishimoto, Kazutoshi; Saida, Kazuyoshi

    2015-05-01

    In order to quantitatively evaluate the solidification cracking susceptibility in laser welds of type 310S stainless steel, a transverse-Varestraint testing system using a laser beam welding apparatus was newly constructed. The timing-synchronization between the laser oscillator, welding robot and hydraulic pressure devices was established by employing high-speed camera observations together with electrical signal control among the three components. Moreover, the yoke-drop time measured by the camera was used to prevent underestimation of the crack length. The laser beam melt-run welding used a variable welding speed from 10.0 to 40.0 mm/s, while the gas tungsten arc welding varied the welding speed from 1.67 to 5.00 mm/s. As the welding speed increased from 1.67 to 40.0mm/s, the solidification brittle temperature range of type 310S stainless steel welds was reduced from 146 to 120 K. It follows that employing the laser beam welding process mitigates the solidification cracking susceptibility for type 310S stainless steel welds.

  13. The Effect of Welding Current and Composition of Stainless steel on the Panetration in GTAW

    Directory of Open Access Journals (Sweden)

    Ramazan Yılmaz

    2012-06-01

    Full Text Available In this study, welding was performed on the plates of two different types of AISI 316 and AISI 316Ti austenitic stainless steels by GTAW (Gas Tungsten Arc Welding without using welding consumable in flat position. Automatic GTAW welding machine was used to control and obtain the exact values. The effects of welding currents used in welding process and the compositions of the stainless steels materials on the penetration were investigated. Weld bead size and shape such as bead width and dept were important considerations for penetration. Welding process was performed using various welding current values. The study showed that both welding parameters and composition of the stainless steels has influence on the penetration and It is increased with increasing of welding current. Besides, P/W rate of the weldments were influenced by the current and hardness values of the weld metal decrease with increasing welding current. The microstructure of the weld metal was also changed by variation of welding current.

  14. Pre-Industry-Optimisation of the Laser Welding Process

    DEFF Research Database (Denmark)

    Gong, Hui

    This dissertation documents the investigations into on-line monitoring the CO2 laser welding process and optimising the process parameters for achieving high quality welds. The requirements for realisation of an on-line control system are, first of all, a clear understanding of the dynamic...... phenomena of the laser welding process including the behaviour of the keyhole and plume, and the correlation between the adjustable process parameters: laser power, welding speed, focal point position, gas parameters etc. and the characteristics describing the quality of the weld: seam depth and width......, porosity etc. Secondly, a reliable monitoring system for sensing the laser-induced plasma and plume emission and detecting weld defects and process parameter deviations from the optimum conditions. Finally, an efficient control system with a fast signal processor and a precise feed-back controller...

  15. Dual wire weld feed proportioner

    Science.gov (United States)

    Nugent, R. E.

    1968-01-01

    Dual feed mechanism enables proportioning of two different weld feed wires during automated TIG welding to produce a weld alloy deposit of the desired composition. The wires are fed into the weld simultaneously. The relative feed rates of the wires and the wire diameters determine the weld deposit composition.

  16. Strain signatures associated to the formation of hot cracks during laser beam welding of aluminum alloys

    Science.gov (United States)

    Hagenlocher, Christian; Stritt, Peter; Weber, Rudolf; Graf, Thomas

    2018-01-01

    The local surface displacement during the laser beam welding process of MgSi alloyed aluminum sheets (AA6014) in overlap configuration was optically determined near the weld seam by means of digital correlation of images recorded with a high-speed video camera. The analysis allowed the time- and space-resolved determination of the plane strain in the immediate vicinity of the solidification zone behind the weld pool. The observations revealed characteristic signatures in the temporal evolution of the strain that are related to the formation of centerline cracks in laser beam welding.

  17. Control of Microstructures and the Practical Properties of API X80 Grade Heavy-Wall High-Frequency Electric Resistance-Welded Pipe with Excellent Low-Temperature Toughness

    Science.gov (United States)

    Goto, Sota; Nakata, Hiroshi; Toyoda, Shunsuke; Okabe, Takatoshi; Inoue, Tomohiro

    2017-10-01

    This paper describes development of heavy-walled API X80 grade high-frequency electric resistance-welded (HFW) line pipes and conductor-casing pipes with wall thicknesses up to 20.6 mm. A fine bainitic-ferrite microstructure, which is preferable for low-temperature toughness, was obtained by optimizing the carbon content and applying the thermomechanical controlled hot-rolling process. As a result, the Charpy ductile-brittle transition temperature (DBTT) was well below 227 K (-46 °C) in the base metal of the HFW line pipe. When the controlled hot-rolling ratio (CR) was increased from 23 to 48 pct, the area average grain size decreased from 15 to 8 μm. The dependence of CTOD properties on CR was caused by the largest grain which is represented by the area average grain size. No texture development due to the increase of CR from 23 to 48 pct was observed. In addition, because controlled in-line heat treatment of the longitudinal weld seam also produced the fine bainitic-ferrite microstructure at the weld seam, DBTT was lower than 227 K (-46 °C) at the weld portion. The developed pipes showed good girth weldability without preheat treatment, and fracture in the tensile test initiated from the base metal in all cases.

  18. Thermal modelling of friction stir welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blicher; Hattel, Jesper Henri

    2008-01-01

    The objective of the present work is to present the basic elements of the thermal modelling of friction stir welding as well as to clarify some of the uncertainties in the literature regarding the different contributions to the heat generation. Some results from a new thermal pseudomechanical model...... in which the temperature-dependent yield stress of the weld material controls the heat generation are also presented....

  19. GMAW (Gas Metal Arc Welding) process development for girth welding of high strength pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, Vaidyanath; Daniel, Joe; Quintana, Marie [The Lincoln Electric Company, Cleveland, OH (United States); Chen, Yaoshan [Center for Reliable Energy Systems (CRES), Dublin, OH (United States); Souza, Antonio [Lincoln Electric do Brasil, Guarulhos, SP (Brazil)

    2009-07-01

    This paper highlights some of the results and findings from the first phase of a consolidated program co-funded by US Department of Transportation Pipeline and Hazardous Materials Safety Administration (PHMSA) and Pipeline Research Council Inc (PRCI) to develop pipe weld assessment and qualification methods and optimize X 100 pipe welding technologies. One objective of the program is to establish the range of viable welding options for X 100 line pipe, and define the essential variables to provide welding process control for reliable and consistent mechanical performance of the weldments. In this first phase, a series of narrow gap girth welds were made with pulsed gas metal arc welding (GMAW), instrumented with thermocouples in the heat affected zone (HAZ) and weld metal to obtain the associated thermal profiles, and instrumented to measure true energy input as opposed to conventional heat input. Results reveal that true heat input is 16%-22% higher than conventional heat input. The thermal profile measurements correlate very well with thermal model predictions using true energy input data, which indicates the viability of treating the latter as an essential variable. Ongoing microstructural and mechanical testing work will enable validation of an integrated thermal-microstructural model being developed for these applications. Outputs from this model will be used to correlate essential welding process variables with weld microstructure and hardness. This will ultimately enable development of a list of essential variables and the ranges needed to ensure mechanical properties are achieved in practice, recommendations for controlling and monitoring these essential variables and test methods suitable for classification of welding consumables. (author)

  20. Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process

    Science.gov (United States)

    Ahmadi, E.; Ebrahimi, A. R.

    2015-02-01

    The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.

  1. Alpine plant community controls on ecosystem N pools under the influence of N deposition using an enriched 15N tracer experiment

    Science.gov (United States)

    Churchill, A. C.; Bowman, W. D.

    2016-12-01

    Plant communities are assemblages of species with unique traits, and by comparing different communities we can infer how those traits affect ecosystem processes. In particular, plant feedbacks affecting the N cycle can drive processing of N in numerous pools within an ecosystem, both as individuals and as a part of the larger community. Global nitrogen (N) deposition rates have increased dramatically since the industrial revolution and an understanding of how plant feedbacks may contribute to ecosystem responses is needed. We used an enriched 15N isotope tracer to compare ecosystem N pools associated with plant processing of N among three alpine plant communities (dry, moist, and wet meadows) with diverse characteristics. We applied NH4NO3 as a fertilizer at two treatment levels, ambient deposition (control) and 30 kg N ha-1 yr-1 (fertilized) and collected measurements of enrichment in ecosystem plant and soil N pools following two growing seasons after our application of the isotopic tracer (fall 2014 and fall 2015). We found that the 15N enrichment (‰) of aboveground plant litter declined in all communities between 2014 and 2015, with greater loss of enrichment in fertilized plots in both the dry and wet meadow communities. This decline between years is expected, as litter is decomposed or if plants translocate N into belowground structures, however these results suggest that increased N deposition promotes plant N leakiness for communities with higher species diversity. Despite this trend, aboveground litter from fertilized plots remained more enriched than controls in both the dry and wet meadow communities, perhaps associated with overall greater capacity of those plant individuals to retain N. For control plots, the 15N enrichment of aboveground plant litter was comparable among the dry and moist communities, but the wet meadow was more enriched relative to the moist meadow. Fertilized plots showed a different pattern of enrichment: moist meadow < dry

  2. Pelvic Inflammatory Disease and the Risk of Ovarian Cancer and Borderline Ovarian Tumors: A Pooled Analysis of 13 Case-Control Studies.

    Science.gov (United States)

    Rasmussen, Christina B; Kjaer, Susanne K; Albieri, Vanna; Bandera, Elisa V; Doherty, Jennifer A; Høgdall, Estrid; Webb, Penelope M; Jordan, Susan J; Rossing, Mary Anne; Wicklund, Kristine G; Goodman, Marc T; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Edwards, Robert P; Schildkraut, Joellen M; Berchuck, Andrew; Olson, Sara H; Kiemeney, Lambertus A; Massuger, Leon F A G; Narod, Steven A; Phelan, Catherine M; Anton-Culver, Hoda; Ziogas, Argyrios; Wu, Anna H; Pearce, Celeste L; Risch, Harvey A; Jensen, Allan

    2017-01-01

    Inflammation has been implicated in ovarian carcinogenesis. However, studies investigating the association between pelvic inflammatory disease (PID) and ovarian cancer risk are few and inconsistent. We investigated the association between PID and the risk of epithelial ovarian cancer according to tumor behavior and histotype. We pooled data from 13 case-control studies, conducted between 1989 and 2009, from the Ovarian Cancer Association Consortium (OCAC), including 9,162 women with ovarian cancers, 2,354 women with borderline tumors, and 14,736 control participants. Study-specific odds ratios were estimated and subsequently combined into a pooled odds ratio using a random-effects model. A history of PID was associated with an increased risk of borderline tumors (pooled odds ratio (pOR) = 1.32, 95% confidence interval (CI): 1.10, 1.58). Women with at least 2 episodes of PID had a 2-fold increased risk of borderline tumors (pOR = 2.14, 95% CI: 1.08, 4.24). No association was observed between PID and ovarian cancer risk overall (pOR = 0.99, 95% CI: 0.83, 1.19); however, a statistically nonsignificantly increased risk of low-grade serous tumors (pOR = 1.48, 95% CI: 0.92, 2.38) was noted. In conclusion, PID was associated with an increased risk of borderline ovarian tumors, particularly among women who had had multiple episodes of PID. Although our results indicated a histotype-specific association with PID, the association of PID with ovarian cancer risk is still somewhat uncertain and requires further investigation. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. A Neural Network Approach for GMA Butt Joint Welding

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2003-01-01

    This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...... penetration, when the gap width is varying during the welding process. The process modeling to facilitate the mapping from joint geometry and reference weld quality to significant welding parameters has been based on a multi-layer feed-forward network. The Levenberg-Marquardt algorithm for non-linear least...... squares has been used with the back-propagation algorithm for training the network, while a Bayesian regularization technique has been successfully applied for minimizing the risk of inexpedient over-training. Finally, a predictive closed-loop control strategy based on a so-called single-neuron self...

  4. Numerical Simulations on the Laser Spot Welding of Zirconium Alloy Endplate for Nuclear Fuel Bundle Assembly

    Science.gov (United States)

    Satyanarayana, G.; Narayana, K. L.; Boggarapu, Nageswara Rao

    2018-01-01

    In the nuclear industry, a critical welding process is joining of an end plate to a fuel rod to form a fuel bundle. Literature on zirconium welding in such a critical operation is limited. A CFD model is developed and performed for the three-dimensional non-linear thermo-fluid analysis incorporating buoyancy and Marnangoni stress and specifying temperature dependent properties to predict weld geometry and temperature field in and around the melt pool of laser spot during welding of a zirconium alloy E110 endplate with a fuel rod. Using this method, it is possible to estimate the weld pool dimensions for the specified laser power and laser-on-time. The temperature profiles will estimate the HAZ and microstructure. The adequacy of generic nature of the model is validated with existing experimental data.

  5. Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties

    Directory of Open Access Journals (Sweden)

    Raffi Mohammed

    2017-04-01

    Full Text Available High nitrogen stainless steel (HNS is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties. The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding (SMAW, gas tungsten arc welding (GTAW, electron beam welding (EBW and friction stir welding (FSW processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds. Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds. Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.

  6. Microstructure and properties of weld joint during 10 kW laser welding with surface-active element sulfur

    Science.gov (United States)

    Li, Shichun; Deng, Zhaohui; Deng, Hui; Xu, Wei

    2017-12-01

    The present work has been focused on the effects of surface-active element sulfur on welding properties during 10 kW high power laser welding of 304 stainless steel thick plate. Molten pool behavior, morphology feature of sulfide inclusions, metallographic structures, XRD patterns, microhardness, potentiodynamic polarization curves and pitted surface have been investigated and discussed. The results indicated that the added sulfur powder improved the weld depth by increasing molten metal fluidity, elongating molten pool and promoting heat transmission. The observed sulfide inclusions had small particle size of 0.65 μm in average and were distributed sparsely in weld joint. The WWS (weld joint with sulfur powder) had higher δ-ferrite content and finer grain size than the WWOS (weld joint without sulfur powder) and BM (base metal) due to the effects of sulfide inclusions on crystallizing process. The preferred orientations of γ-austenite along the (200) and (220) directions were promoted both in WWS and WWOS. Fine grain size and high δ-ferrite content led to high microhardness. The WWS had the highest microhardness among all the specimens. The WWOS and BM had a similar corrosion resistance. By comprehensive comparison, the WWS had a relative lower corrosion resistance than others, since sulfide inclusions in WWS not only had some benefits but also had some bad effects on corrosion property.

  7. Modern Methods of Rail Welding

    Science.gov (United States)

    Kozyrev, Nikolay A.; Kozyreva, Olga A.; Usoltsev, Aleksander A.; Kryukov, Roman E.; Shevchenko, Roman A.

    2017-10-01

    Existing methods of rail welding, which are enable to get continuous welded rail track, are observed in this article. Analysis of existing welding methods allows considering an issue of continuous rail track in detail. Metallurgical and welding technologies of rail welding and also process technologies reducing aftereffects of temperature exposure are important factors determining the quality and reliability of the continuous rail track. Analysis of the existing methods of rail welding enable to find the research line for solving this problem.

  8. Gas Contamination In Plasma-Arc-Welded Aluminum

    Science.gov (United States)

    Mcclure, John C.; Torres, Martin R.; Gurevitch, Alan C.; Newman, Robert A.

    1992-01-01

    Document describes experimental investigation on visible and tactile effects of gaseous contaminants in variable-polarity plasma arc (VPPA) welding of 2219 T-87 aluminum alloy. Contaminant gases (nitrogen, methane, oxygen, and hydrogen) introduced in argon arc and in helium shield gas in various controlled concentrations. Report represents results of experiments in form of photographs of fronts, backs, polished cross sections, and etched cross sections of welds made with various contaminants at various concentrations. Provides detailed discussion of conditions under which welds made.

  9. On the effects of gravity and sulfur content on the weld shape in horizontal narrow gap GTAW of stainless steels

    KAUST Repository

    Traidia, Abderrazak

    2013-07-01

    A simplified 2D axisymmetric model and a comprehensive 3D weld pool model, accounting for the free surface deformation and the filler metal addition, have been developed to investigate the factors that lead to asymmetric bead shapes in horizontal GTA welding of stainless steels. Buoyancy-induced flow and the sagging of the pool free surface, under the action of gravity, are found to be responsible for the weld asymmetry and the decrease in the weld penetration at the bottom sidewall. The numerical results clearly emphasized the beneficial role of the Marangoni shear stress in limiting the asymmetry of horizontal GTA welds. An additional experimental investigation showed that the asymmetry in the weld shape can be reduced when placing the lowest sulfur content component at the bottom side. © 2013 Elsevier B.V. All rights reserved.

  10. Remote Welding, NDE and Repair of DOE Standardized Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Eric Larsen; Art Watkins; Timothy R. McJunkin; Dave Pace; Rodney Bitsoi

    2006-05-01

    The U.S. Department of Energy (DOE) created the National Spent Nuclear Fuel Program (NSNFP) to manage DOE’s spent nuclear fuel (SNF). One of the NSNFP’s tasks is to prepare spent nuclear fuel for storage, transportation, and disposal at the national repository. As part of this effort, the NSNFP developed a standardized canister for interim storage and transportation of SNF. These canisters will be built and sealed to American Society of Mechanical Engineers (ASME) Section III, Division 3 requirements. Packaging SNF usually is a three-step process: canister loading, closure welding, and closure weld verification. After loading SNF into the canisters, the canisters must be seal welded and the welds verified using a combination of visual, surface eddy current, and ultrasonic inspection or examination techniques. If unacceptable defects in the weld are detected, the defective sections of weld must be removed, re-welded, and re-inspected. Due to the high contamination and/or radiation fields involved with this process, all of these functions must be performed remotely in a hot cell. The prototype apparatus to perform these functions is a floor-mounted carousel that encircles the loaded canister; three stations perform the functions of welding, inspecting, and repairing the seal welds. A welding operator monitors and controls these functions remotely via a workstation located outside the hot cell. The discussion describes the hardware and software that have been developed and the results of testing that has been done to date.

  11. Numerical Modeling Analysis of Hydrodynamic and Microbial Controls on DNAPL Pool Dissolution and Detoxification: Dehalorespirers in Co-culture

    Energy Technology Data Exchange (ETDEWEB)

    Wesseldyke, Eric S.; Becker, Jennifer G.; Seagren, Eric A.; Mayer, Alex S.; Zhang, Changyong

    2015-04-01

    Dissolution of dense non-aqueous phase liquid (DNAPL) contaminants like tetrachloroethene (PCE) can be “bioenhanced” via biodegradation, which increases the concentration gradient at the DNAPL–water interface. Model simulations were used to evaluate the impact of ecological interactions between different dehalorespiring strains and hydrodynamics on the bioenhancement effect and the extent of PCE dechlorination. Simulations were performed using a two-dimensional coupled flow-transport model, with a DNAPL pool source and two microbial species, Dehalococcoides mccartyi 195 and Desulfuromonas michiganensis, which compete for electron acceptors (e.g., PCE), but not for their electron donors. Under biostimulation, low vx conditions, D. michiganensis alone significantly enhanced dissolution by rapidly utilizing aqueous-phase PCE. In co-culture under these conditions, D. mccartyi 195 increased this bioenhancement modestly and greatly increased the extent of PCE transformation. Although D. michiganensis was the dominant population under low velocity conditions, D. mccartyi 195 dominated under high velocity conditions due to bioclogging effects.

  12. Challenges to Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    This report originates from the compulsory defense during my Ph.D. study at the Technical University of Denmark. Resistance welding is an old and well-proven technology. Yet the emergence of more and more new materials, new designs, invention off new joining techniques, and more stringent...... requirement in quality have imposed challenges to the resistance welding. More some research and development have to be done to adapt the old technology to the manufacturing industry of the 21st century. In the 1st part of the report, the challenging factors to the resistance welding are reviewed. Numerical...... simulation of resistance welding has been under development for many years. Yet it is no easy to make simulation results reliable and accurate because of the complexity of resistance welding process. In the 2nd part of the report numerical modeling of resistance welding is reviewed, some critical factors...

  13. Modelling of Energy Expenditure at Welding Workstations: Effect of ...

    African Journals Online (AJOL)

    The welding workstation usually generates intense heat during operations, which may affect the welder's health if not properly controlled, and can also affect the performance of the welder at work. Consequently, effort to control the conditions of the welding workstation is essential, and is therefore pursued in this paper.

  14. Comparison of critical circumferential through-wall-crack-lengths in welds between pieces of straight pipes to welds between straigth pipes and bends with and without internal pressure at force- and displacement-controlled bending load; Vergleich kritischer Umfangsdurchrisslaengen in Schweissnaehten zwischen Geradrohrstuecken mit Schweissnaehten an Rohrbogen-Geradrohrverbindungen mit und ohne Innendruck bei kraft- und wegkontrollierter Biegebelastung

    Energy Technology Data Exchange (ETDEWEB)

    Steinbuch, R. [Fachhochschule fuer Technik und Wirtschaft Reutlingen (Germany). Fachbereich Maschinenbau

    1998-11-01

    Methods for calculation of critical, circumferential through-wall crack lengths in pipes have been developed and verified by several research projects. In applications during the last few years it has been found that the force or displacement-controlled loads have to be considered separately, and this approach was integrated into the recent methods. Methods so far assumed cracks to be located in welds joining straight pipes. But this approach starts from an incomplete picture of reality, as with today`s technology, circumferential welds are less frequent in straight pipes and much more frequent in pipework of other geometry, as for instance in welds joining straight pipes and bends, or bends with longer legs, nozzles, or T-pieces. The non-linear FEM parameter study presented in the paper, covering cases with internal pressure of pipes and one-dimensional bending loads, is based on current geometries of pipework in the primary and secondary loops of industrial plants and compares the conditions induced by circumferential through-wall cracks in welds joining only straight pipes and in those joining bended and straight pipes. At the relevant, displacement-controlled bending loads due to hampered thermal expansion of the pipe system, the critical through-wall cracks lengths occurring in pipe-to-bend welds are of about the same size and importance as those in pipe-to-pipe welds. As for the case of force-controlled loads, the technical codes calculate more serious effects and require lower bending load limits. Within the range of admissible loads given in the codes, the critical through-wall crack lengths occurring in pipe-to-bend welds are similar in size to those in straight pipe welds. It is therefore a conservative or realistic approach to apply the values determined for critical through-wall crack lengths in pipe-to-pipe joints also to pipe-to-bend welds. (orig./CB) [Deutsch] Verfahren zur Berechnung kritischer Umfangdurchrisslaengen in Rohrleitungen wurden in

  15. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  16. Microsoldering and microminiature welding with lasers

    Energy Technology Data Exchange (ETDEWEB)

    Jellison, J.L.; Keicher, D.M.

    1988-01-01

    Miniature welding of electronic and electromechanical components with lasers is a rapidly maturing technology. Extending the use of lasers to microsoldering and microminiature welding applications has also generated moderate interest. Use of lasers for microminiature soldering or welding permits the delivery of accurately controlled amounts of heat to the precise area required. By applying small amounts of heat locally, rework can be accomplished in densely packed circuits without damaging heat sensitive components to conductors. Also, localization of heat obviates the need for using solder alloys of different melting points, which can simplify design. Laser soldering has been applied to conductors ranging from 25 ..mu..m dia. wires to coaxial cables in the 0.3 to 1.25 mm range. For the most part, these conductors were soldered to metallized alumina substrates, although in some instances soft substrates were also used. The potential advantages of microminiature welding have also been explored. 9 refs., 6 figs., 1 tab.

  17. Studies of welded joints

    Directory of Open Access Journals (Sweden)

    J. M. Krupa

    2010-07-01

    Full Text Available Studies of a welded joint were described. The joint was made as a result of the reconstruction of a truss and one of the possible means to make a repair. The studies were of a simulation character and were targeted at the detection of welding defects and imperfections thatshould be eliminated in a real structure. A model was designed and on this model the tests and examinations were carried out. The modelwas made under the same conditions as the conditions adopted for repair. It corresponded to the real object in shape and dimensions, and in the proposed technique of welding and welding parameters. The model was composed of five plates joined together with twelve beads.The destructive and non-destructive tests were carried out; the whole structure and the respective welds were also examined visually. Thedefects and imperfections in welds were detected by surface methods of inspection, penetration tests and magnetic particle flaw detection.The model of the welded joint was prepared by destructive methods, a technique that would never be permitted in the case of a realstructure. For the investigations it was necessary to cut out the specimens from the welded joint in direction transverse to the weld run. The specimens were subjected to metallographic examinations and hardness measurements. Additionally, the joint cross-section was examined by destructive testing methods to enable precise determination of the internal defects and imperfections. The surface methods were applied again, this time to determine the severity of welding defects. The analysis has proved that, fabricated under proper conditions and with parameters of the welding process duly observed, the welded joint has good properties and repairs of this type are possible in practice.

  18. Ultrasonic metal welding with a vibration source using longitudinal and torsional vibration transducers

    Science.gov (United States)

    Asami, Takuya; Tamada, Yosuke; Higuchi, Yusuke; Miura, Hikaru

    2017-07-01

    Conventional ultrasonic metal welding for joining dissimilar metals uses a linear vibration locus, although this method suffers from problems such as low overall weld strength. Our previous studies have shown that ultrasonic welding with a planar vibration locus improves the weld strength. However, the vibration source in our previous studies had problems in longitudinal-torsional vibration controllability and small welding tip. Therefore, the study of the optimal shape of the vibration locus was difficult. Furthermore, improvement of weld strength cannot be expected. We have developed a new ultrasonic vibration source that can control the longitudinal-torsional vibration and can connect to a large welding tip. In this study, we clarified the longitudinal-torsional vibration controllability of the developed ultrasonic vibration source. Moreover, we clarified that using the planar locus of the developed vibration source produced a higher weld strength than our previous studies, and clarified the optimal shape of the vibration locus.

  19. MICROSTRUCTURE AND FATIGUE PROPERTIES OF DISSIMILAR SPOT WELDED JOINTS OF AISI 304 AND AISI 1008

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2013-06-01

    Full Text Available Carbon steel and stainless steel composites are being more frequently used for applications requiring a corrosion resistant and attractive exterior surface and a high strength structural substrate. Spot welding is a potentially useful and efficient jointing process for the production of components consisting of these two materials. The spot welding characteristics of weld joints between these two materials are discussed in this paper. The experiment was conducted on dissimilar weld joints using carbon steel and 304L (2B austenitic stainless steel by varying the welding currents and electrode pressing forces. Throughout the welding process; the electrical signals from the strain sensor, current transducer and terminal voltage clippers are measured in order to understand each and every millisecond of the welding process. In doing so, the dynamic resistances, heat distributions and forging forces are computed for various currents and force levels within the good welds’ regions. The other process controlling parameters, particularly the electrode tip and weld time, remained constant throughout the experiment. The weld growth was noted for the welding current increment, but in the electrode force increment it causes an adverse reaction to weld growth. Moreover, the effect of heat imbalance was clearly noted during the welding process due to the different electrical and chemical properties. The welded specimens finally underwent tensile, hardness and metallurgical testing to characterise the weld growth.

  20. The Study on Welding Performance Improvement of Spot Welding with Dynamic Resistance Character

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.M.; Kim, Y.C.; Won, C.Y. [Sung Kyun Kwan University (Korea, Republic of); Kim, K.S. [Seoul City University (Korea, Republic of); Kim, Y.L. [Anyang University (Korea, Republic of)

    1997-04-01

    This paper presents a new spatter reduction method of DC spot welder, incorporating single phase full bridge inverter driving high frequency transformer. also, We proposed to the constant power control strategy to improve quality of the welding product of spot welding with dynamic resistance character. Throughout simulation and prototype test, the system is verified with constant power control, and is implemented field test. (author). 6 refs., 17 figs.

  1. Swimming Pool Safety

    Science.gov (United States)

    ... Prevention Listen Español Text Size Email Print Share Swimming Pool Safety Page Content ​What is the best way to keep my child safe around swimming pools? An adult should actively watch children at ...

  2. Retractable Pin Tools for the Friction Stir Welding Process

    Science.gov (United States)

    1998-01-01

    Two companies have successfully commercialized a specialized welding tool developed at the Marshall Space Flight Center (MSFC). Friction stir welding uses the high rotational speed of a tool and the resulting frictional heat created from contact to crush, 'stir' together, and forge a bond between two metal alloys. It has had a major drawback, reliance on a single-piece pin tool. The pin is slowly plunged into the joint between two materials to be welded and rotated as high speed. At the end of the weld, the single-piece pin tool is retracted and leaves a 'keyhole,' something which is unacceptable when welding cylindrical objects such as drums, pipes and storage tanks. Another drawback is the requirement for different-length pin tools when welding materials of varying thickness. An engineer at the MSFC helped design an automatic retractable pin tool that uses a computer-controlled motor to automatically retract the pin into the shoulder of the tool at the end of the weld, preventing keyholes. This design allows the pin angle and length to be adjusted for changes in material thickness and results in a smooth hole closure at the end of the weld. Benefits of friction stir welding, using the MSFC retractable pin tool technology, include the following: The ability to weld a wide range of alloys, including previously unweldable and composite materials; provision of twice the fatigue resistance of fusion welds and no keyholes; minimization of material distortion; no creation of hazards such as welding fumes, radiation, high voltage, liquid metals, or arcing; automatic retraction of the pin at the end of the weld; and maintaining full penetration of the pin.

  3. Explosive Welding of Pipes

    Science.gov (United States)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  4. Pool fencing for preventing drowning in children.

    Science.gov (United States)

    Thompson, D C; Rivara, F P

    2000-01-01

    In most industrialized countries, drowning ranks second or third behind motor vehicles and fires as a cause of unintentional injury deaths to children under the age of 15. Death rates from drowning are highest in children less than five years old. Pool fencing is a passive environmental intervention designed to reduce unintended access to swimming pools and thus prevent drowning in the preschool age group. Because of the magnitude of the problem and the potential effectiveness of fencing we decided to evaluate the effect of pool fencing as a drowning prevention strategy for young children. To determine if pool fencing prevents drowning in young children. We used Cochrane Collaboration search strategy of electronic databases, searched reference lists of past reviews and review articles, Cochrane International Register of RCT's, studies from government agencies in the United States and Australia, and contacted colleagues from International Society for Child and Adolescent Injury Prevention, World Injury Network, and CDC funded Injury Control and Research Centers. In order to be selected a study had to be designed to evaluate pool fencing in a defined population and provide relevant and interpretable data which objectively measured the risk of drowning or near drowning or provided rates of these outcomes in fenced and unfenced pools. The completed studies meeting selection criteria employed a case-control design. No randomized controlled studies have been identified. Three published studies met selection criteria. Data were extracted by two reviewers using standard abstract form. Odds ratios with 95% CI, and incidence rates, were calculated for drowning and near-drowning. Attributable Risk percent (AR%) was calculated to report the reduction in drowning due to pool fencing. Case control studies which evaluate pool fencing interventions indicate that pool fencing significantly reduces the risk of drowning. Odds ratio for the risk of drowning or near drowning in a

  5. Laser beam welding of titanium nitride coated titanium using pulse-shaping

    Directory of Open Access Journals (Sweden)

    Milton Sergio Fernandes de Lima

    2005-09-01

    Full Text Available A new welding method which allows the assembly of two titanium nitride coated titanium parts is proposed. The welding procedure utilizes the possibility for pulse-shaping in order to change the energy distribution profile during the laser pulse. The pulse-shaping is composed of three elements: a a short high power pulse for partial ablation at the surface; b a long pulse for thermal penetration; and c a quenching slope for enhanced weldability. The combination of these three elements produces crack-free welds. The weld microstructure is changed in comparison to normal welding, i.e. with a rectangular pulse, as the nitrogen and the microhardness are more homogenously distributed in the weld under pulse-shaping conditions. This laser pulse dissolves the TiN layer and allows nitrogen to diffuse into the melt pool, also contributing to an enhanced weldability by providing suitable thermal conditions.

  6. The science of pooling

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, E.

    1995-10-01

    The pooling of data from radon studies is described. Pooling refers to the analysis of original data from several studies, not meta-analysis in which summary measures from published data are analyzed. A main objective for pooling is to reduce uncertainty and to obtain more precise estimates of risk than would be available from any single study.

  7. Basic study of heat flow in fusion welding. Progress report to the US Department of Energy, October 1, 1980-October 1, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Szekely, J.; Eagar, T.W.

    1981-10-15

    Progress is reported in an investigation whose purpose is the development of a fundamental understanding of heat and fluid flow in fusion welding operations and of the role played by heat and fluid flow in determining the mechanical and structural properties of the welds produced. To date, a good quantitative description has been developed of the temperature profiles for electroslag welding systems and an understanding has been derived of factors that determine the size of the heat-affected zone (HAZ). Mathematical models of heat and fluid flow in the weld pool and of the temperature distribution in weldments using a moving heat source were developed. Experiments were performed to determine the effects of welding process parameters on the size and shape of the weld pool and of the HAZ. An unexpected finding was that the size of the HAZ was not markedly dependent on any of the welding process parameters. (LCL)

  8. The electron beam welding of dissimilar materials - case study

    Science.gov (United States)

    Munteanu, A.

    2016-11-01

    The modalities to realize the welding workpieces are multiple. The electron beam welding is one of them. One can weld two different types of materials that give the possibility to reduce the cost of workpiece, if the active part is realised of rich materials welded on components with inferior phisico-mecanical characteristics. The procedure provides great flexibility to the product designs through efficient use of each type of material. So this aspects lead to the necessity to join dissimilar metals. Different tables are given in the specific literature regarding the possible combination. Conflicts may arise by the compromises required for to the optimum heat control of the two dissimilar materials used. But nowadays, more and more frequently are meet the welding of dissimilar metals, thus, the objective of this article is to provide information regarding the particular case of welding between stainless steel and copper without the filler material use.

  9. IIW guidelines on weld quality in relationship to fatigue strength

    CERN Document Server

    Jonsson, Bertil; Hobbacher, A F; Kassner, M; Marquis, G

    2016-01-01

    This book presents guidelines on quantitative and qualitative measures of the geometric features and imperfections of welds to ensure that it meets the fatigue strength requirements laid out in the recommendations of the IIW (International Institute of Welding). Welds that satisfy these quality criteria can be assessed in accordance with existing IIW recommendations based on nominal stress, structural stress, notch stress or linear fracture mechanics. Further, the book defines more restrictive acceptance criteria based on weld geometry features and imperfections with increased fatigue strength. Fatigue strength for these welds is defined as S-N curves expressed in terms of nominal applied stress or hot spot stress. Where appropriate, reference is made to existing quality systems for welds.In addition to the acceptance criteria and fatigue assessment curves, the book also provides guidance on their inspection and quality control. The successful implementation of these methods depends on adequate training for o...

  10. Ship construction and welding

    CERN Document Server

    Mandal, Nisith R

    2017-01-01

    This book addresses various aspects of ship construction, from ship types and construction materials, to welding technologies and accuracy control. The contents of the book are logically organized and divided into twenty-one chapters. The book covers structural arrangement with longitudinal and transverse framing systems based on the service load, and explains basic structural elements like hatch side girders, hatch end beams, stringers, etc. along with structural subassemblies like floors, bulkheads, inner bottom, decks and shells. It presents in detail double bottom construction, wing tanks & duct keels, fore & aft end structures, etc., together with necessary illustrations. The midship sections of various ship types are introduced, together with structural continuity and alignment in ship structures. With regard to construction materials, the book discusses steel, aluminum alloys and fiber reinforced composites. Various methods of steel material preparation are discussed, and plate cutting and form...

  11. High quality joining techniques: in-process assurance (IPA) welding system

    Energy Technology Data Exchange (ETDEWEB)

    Kaihara, Shoichiro [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1996-08-01

    On July 1, 1995, the Product Liability Law was enforced, and in industrial world, further reliability has been demanded. Recently, accompanying the progress of electronics, the proportion taken by automatic welders and robots increased in welding. By memorizing proper welding conditions, the welding from initial to final passes can be done fully automatically. Also feedback mechanism was equipped to mechanized welders, and the in-process control has become to be feasible. The way of thinking on confirming in process welding quality in arc welding is explained. IPA welding system utilizes the multi-media collecting images and sound, samples the change of welding conditions and the state of arc on a same screen, and monitors the deviation from the range of proper welding conditions. At the time of abnormality, inspector or a computer carries out image diagnosis and welding control, and the system indicates the soundness of welded parts. The basic concept and the flow chart of this system are shown. The experiment of applying the system to arc welding is reported. The correlation of welding phenomena and welding conditions is examined. (K.I.)

  12. Chlamydia trachomatis and invasive cervical cancer: a pooled analysis of the IARC multicentric case-control study.

    NARCIS (Netherlands)

    Smith, J.S.; Bosetti, C; Munoz, N.; Herrero, R; Bosch, F.X.; Eluf-Neto, J; Meijer, C.J.L.M.; Brule, van den AJ; Franceschi, S; Peeling, RW

    2004-01-01

    To determine whether Chlamydia trachomatis infection is consistently associated with an increased risk of invasive cervical carcinoma (ICC) after accounting for the strong effect of human papillomavirus (HPV) infection, a case-control study of 1,238 cases of ICC and 1,100 control women from 7

  13. A pooled analysis of case-control studies of thyroid cancer. VII. Cruciferous and other vegetables (International)

    NARCIS (Netherlands)

    Bosetti, C; Negri, E; Kolonel, L; Ron, E; Franceschi, S; Preston-Martin, S; McTiernan, A; Dal Maso, L; Mark, SD; Mabuchi, K; Land, C; Jin, F; Wingren, G; Galanti, MR; Hallquist, A; Glattre, E; Lund, E; Levi, F; Linos, D; La Vecchia, C

    2002-01-01

    Objective: To investigate the association between cruciferous and other vegetables and thyroid cancer risk we systematically reanalyzed the original data from 11 case-control studies conducted in the US, Asia, and Europe. Methods: A total of 2241 cases (1784 women, 457 men) and 3716 controls (2744

  14. Applying of dilatometric effect for resistance welding automation

    Directory of Open Access Journals (Sweden)

    Bondarenko O. F.

    2017-06-01

    Full Text Available The important issue of resistance spot welding control to obtain high quality welded joints, especially in living tissue welding, is considered. The actual state of the issue is described and analyzed. In order to improve the quality of welded joints, the applying of dilatometric effect to control the resistance spot welding process, namely of shifting the welding electrodes, is suggested. To register the shifting, the use of modern inertial microelectromechanical sensors (MEMS is proposed. The experimental measuring system, which processes the MEMS-sensor signal and makes it suitable for use as a feedback signal, is developed. The structure and operational algorithm of the system are described. The abilities of measuring with MEMS-sensors the values of electrode shifting caused by dilatometric effect under resistance welding are assessed. These method and equipment are recommended for welding the metals, as well as for welding the living tissues. The results of preliminary studies prove the advisability and relevance of the suggested solutions.

  15. Bond strength of gold alloys laser welded to cobalt-chromium alloy.

    Science.gov (United States)

    Watanabe, Ikuya; Wallace, Cameron

    2008-01-01

    The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneously-welded groups showed inferior fracture load compared to corresponding control groups, except for Co-Cr. In the specimens welded heterogeneously to Co-Cr, Type IV was the greatest, followed by low-gold and Type II. There was no statistical difference (Palloys tested, the Type IV gold alloy was the most suitable alloy for laser-welding to Co-Cr.

  16. Practical significance of weld strength matching

    Energy Technology Data Exchange (ETDEWEB)

    Sloterdijk, W. [N.V. Nederlandse Gasunie, Groningen (Netherlands); Schipaanboord, W.N. [N.V. Nederlandse Gasunie, Groningen (Netherlands)

    1996-10-01

    Defect tolerance in welds in pipelines constructed in modern high strength material depends on the balance in strength between weld material and pipe material. The Guidelines on the assessment of girth weld defects published by the European Pipeline Research Group (EPRG) define in Tier 2 defect limits assuming that the (actual) weld metal yield strength is equal or greater than the yield strength of the parent material. The defect limits according to Tier 2 exceed the defect limits in `workmanship standards` (l>25 mm). Nevertheless, the draft European welding standard EN 288 does not yet require a test to measure and verify the weld metal yield strength. Gasunie has performed a test program with the aim to look at the practical significance of weld strength matching in a strain controlled situation and to verify the relevance of limits given in the European welding and line pipe codes, in combination with the EPRG Guidelines. It is concluded that the results of the tests confirm the defect acceptance limits according to Tier 2 of the EPRG Guidelines. (orig.) [Deutsch] Die Zulaessigkeit von Fehlern in Rundschweissnaehten in Rohrleitungen aus modernen hochfesten Baustaehlen haengt von dem Verhaeltnis der Werkstofffestigkeit des Schweissgutes zu der des Grundwerkstoffs ab. Die von der European Pipeline Research Group (EPRG) veroeffentlichte Richtlinie zur Bewertung von Schweissnahtfehlern gibt in der zweiten Bewertungsstufe (Tier 2) Werte fuer zulaessige Schweissnahtfehlergroessen unter der Bedingung an, dass die Dehngrenze des Schweissgutes groesser oder gleich der Dehngrenze des Grundwerkstoffs ist. Die nach Tier 2 zulaessigen Fehler sind groesser als die in `Good-workmanship`-Regelwerken angegebenen Fehlerlaenge (l>25 mm). Demgegenueber fehlt im Entwurf der europaeischen Schweissnorm EN 288 bislang ein solcher Dehngrenzennachweis. Gasunie hat ein Versuchsprogramm durchgefuehrt, um die Bedeutung der Schweissgutfestigkeit bei dehnungskontrollierter Belastung sowie

  17. Welding Behavior of Free Machining Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    BROOKS,JOHN A.; ROBINO,CHARLES V.; HEADLEY,THOMAS J.; MICHAEL,JOSEPH R.

    2000-07-24

    The weld solidification and cracking behavior of sulfur bearing free machining austenitic stainless steel was investigated for both gas-tungsten arc (GTA) and pulsed laser beam weld processes. The GTA weld solidification was consistent with those predicted with existing solidification diagrams and the cracking response was controlled primarily by solidification mode. The solidification behavior of the pulsed laser welds was complex, and often contained regions of primary ferrite and primary austenite solidification, although in all cases the welds were found to be completely austenite at room temperature. Electron backscattered diffraction (EBSD) pattern analysis indicated that the nature of the base metal at the time of solidification plays a primary role in initial solidification. The solid state transformation of austenite to ferrite at the fusion zone boundary, and ferrite to austenite on cooling may both be massive in nature. A range of alloy compositions that exhibited good resistance to solidification cracking and was compatible with both welding processes was identified. The compositional range is bounded by laser weldability at lower Cr{sub eq}/Ni{sub eq} ratios and by the GTA weldability at higher ratios. It was found with both processes that the limiting ratios were somewhat dependent upon sulfur content.

  18. Optimization of hybrid laser - TIG welding of 316LN steel using response surface methodology (RSM)

    Science.gov (United States)

    Ragavendran, M.; Chandrasekhar, N.; Ravikumar, R.; Saxena, Rajesh; Vasudevan, M.; Bhaduri, A. K.

    2017-07-01

    In the present study, the hybrid laser - TIG welding parameters for welding of 316LN austenitic stainless steel have been investigated by combining a pulsed laser beam with a TIG welding heat source at the weld pool. Laser power, pulse frequency, pulse duration, TIG current were presumed as the welding process parameters whereas weld bead width, weld cross-sectional area and depth of penetration (DOP) were considered as the process responses. Central composite design was used to complete the design matrix and welding experiments were conducted based on the design matrix. Weld bead measurements were then carried out to generate the dataset. Multiple regression models correlating the process parameters with the responses have been developed. The accuracy of the models were found to be good. Then, the desirability approach optimization technique was employed for determining the optimum process parameters to obtain the desired weld bead profile. Validation experiments were then carried out from the determined optimum process parameters. There was good agreement between the predicted and measured values.

  19. Measuring weld heat to evaluate weld integrity

    Energy Technology Data Exchange (ETDEWEB)

    Schauder, V., E-mail: schauder@hks-prozesstechnik.de [HKS-Prozesstechnik GmbH, Halle (Germany)

    2015-11-15

    Eddy current and ultrasonic testing are suitable for tube and pipe mills and have been used for weld seam flaw detection for decades, but a new process, thermography, is an alternative. By measuring the heat signature of the weld seam as it cools, it provides information about weld integrity at and below the surface. The thermal processes used to join metals, such as plasma, induction, laser, and gas tungsten arc welding (GTAW), have improved since they were developed, and they get better with each passing year. However, no industrial process is perfect, so companies that conduct research in flaw detection likewise continue to develop and improve the technologies used to verify weld integrity: ultrasonic testing (UT), eddy current testing (ET), hydrostatic, X-ray, magnetic particle, and liquid penetrant are among the most common. Two of these are used for verifying the integrity of the continuous welds such as those used on pipe and tube mills: UT and ET. Each uses a transmitter to send waves of ultrasonic energy or electrical current through the material and a receiver (probe) to detect disturbances in the flow. The two processes often are combined to capitalize on the strengths of each. While ET is good at detecting flaws at or near the surface, UT penetrates the material, detecting subsurface flaws. One drawback is that sound waves and electrical current waves have a specific direction of travel, or an alignment. A linear defect that runs parallel to the direction of travel of the ultrasonic sound wave or a flaw that is parallel to the coil winding direction of the ET probe can go undetected. A second drawback is that they don't detect cold welds. An alternative process, thermography, works in a different fashion: It monitors the heat of the material as the weld cools. Although it measures the heat at the surface, the heat signature provides clues about cooling activity deep in the material, resulting in a thorough assessment of the weld's integrity It

  20. Fine welding with lasers.

    Science.gov (United States)

    MacLellan, D

    2008-01-01

    The need for micro joining metallic alloys for surgical instruments, implants and advanced medical devices is driving a rapid increase in the implementation of laser welding technology in research, development and volume production. This article discusses the advantages of this welding method and the types of lasers used in the process.

  1. Laser Welding in Space

    Science.gov (United States)

    Workman, Gary L.; Kaukler, William F.

    1989-01-01

    Solidification type welding process experiments in conditions of microgravity were performed. The role of convection in such phenomena was examined and convective effects in the small volumes obtained in the laser weld zone were observed. Heat transfer within the weld was affected by acceleration level as indicated by the resulting microstructure changes in low gravity. All experiments were performed such that both high and low gravity welds occurred along the same weld beam, allowing the effects of gravity alone to be examined. Results indicate that laser welding in a space environment is feasible and can be safely performed IVA or EVA. Development of the hardware to perform the experiment in a Hitchhiker-g platform is recomended as the next step. This experiment provides NASA with a capable technology for welding needs in space. The resources required to perform this experiment aboard a Shuttle Hitchhiker-pallet are assessed. Over the four year period 1991 to 1994, it is recommended that the task will require 13.6 manyears and $914,900. In addition to demonstrating the technology and ferreting out the problems encountered, it is suggested that NASA will also have a useful laser materials processing facility for working with both the scientific and the engineering aspects of materials processing in space. Several concepts are also included for long-term optimization of available solar power through solar pumping solid state lasers directly for welding power.

  2. DC arc weld starter

    Science.gov (United States)

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  3. Gas metal arc welding of butt joint with varying gap width based on neural networks

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2005-01-01

    This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...

  4. State-of-art and prospects of development of electron beam welding of aerospace vehicles

    Science.gov (United States)

    Kazakov, V. A.; Nazarenko, O. K.

    The paper presents information about industrial application of technological processes of electron beam welding EBW of aerospace objects. The characteristics of advanced equipment are given for welding electron guns, power sources, and control systems. Different types of EBW equipment of chamber-type, with a local and mobile evacuation of welding zone, are described.

  5. Effect of Convection on Weld Pool Shape and Microstructure.

    Science.gov (United States)

    1986-07-01

    Two Succesive Frames Showing the Motion of the Tungsten Particle .......... 122 Figure 3.4.5 Color Enhanced of X-ray Shadow Graph Showing the...of the vertical planes at x* = 0 and x* = 0 are plotted in Figs. 3.1.5 and 3.1.6, respectively. xi is the scanning direction. The vertical plant at xl

  6. Effect of Electrode Types on the Solidification Cracking Susceptibility of Austenitic Stainless Steel Weld Metal

    OpenAIRE

    J. U. Anaele; O. O. ONYEMAOBI; C. S. Nwobodo; C. C. Ugwuegbu

    2015-01-01

    The effect of electrode types on the solidification cracking susceptibility of austenitic stainless steel weld metal was studied. Manual metal arc welding method was used to produce the joints with the tungsten inert gas welding serving as the control. Metallographic and chemical analyses of the fusion zones of the joints were conducted. Results indicate that weldments produced from E 308-16 (rutile coated), E 308-16(lime-titania coated) electrodes, and TIG welded joints fall within the range...

  7. 13 CFR 120.1704 - Pool Loans eligible for Pooling.

    Science.gov (United States)

    2010-01-01

    ... Loans eligible for Pooling. (a) General Pool Loan eligibility requirements. For a First Lien Position... zoos—712130 (“Zoos and Botanical Gardens”). (b) SBA review of a Pool Loan prior to pool formation. SBA...

  8. Development of Alternative Technology to PWHT in Site Welding

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jin; Lee, B. S.; Jang, J. S.; Kim, K. H.; Park, S. D.; Yoon, J. H.; Kim, M. C.; Kim, K. B.; Sung, K. W

    2007-04-15

    ASME Section IX added requirements for qualification when using temper bead welding in the 2004 edition. The temper bead welding techniques which can satisfy the requirements of the Code are needed to use them in the site repair welding. The optimized welding parameters can be obtained when controlling the process to supercritically-reheat and to subcritically-reheat the coarse grain region sequently. The microstructures of SCFGCG obtained from the Gleegle simulated specimens and those of post weld heat treated coarse grain region are compared. The obtained both microstructures showed almost similar patterns. mid bead deposition technique Suggested in this study has a technical concept that the mid beads are deposited between the deposited initial beads repeatedly in a bead layer, which gives a lot of reheating effects on brittle microstructure in HAZ. This newly suggested technique is considered to have more effective tempering effect than the conventional temper bead technique which has concept to deposit one type of beads in a bead layer. The suggested modeling in this study can simulate well the SMAW process. Hence this modeling was used in analyzing the more complicated welding process of multi-layer welding. The modeling was used to analyze the tempering effect on the microstructures of HAZ by considering the patterns of overlapping of the reheating regions under the consequently deposited beads. When considering the crack path in the ever-matched weld metal condition, the interface may have a resistance against the crack propagation. A182 filler and A625 filler were used to make the weld specimens which have different weld metal conditions. The crack directed toward the under-matched weld metal may propagate across the fusion line easier than that of the even-matched weld metal condition.

  9. Low temperature friction stir welding of P91 steel

    National Research Council Canada - National Science Library

    Kalvala, Prasad Rao; Akram, Javed; Misra, Mano; Ramachandran, Damodaram; Gabbita, Janaki Ram

    2016-01-01

    ... RPM was well below Ac1 temperature of P91 steel while it was above Ac3 with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.

  10. INCREASE OF THE OPERATIONAL PROPERTIES OF WELD AND PLASMA COATINGS USING NANOPOWDERS

    Directory of Open Access Journals (Sweden)

    Andrii Chornyi

    2016-07-01

    Full Text Available In this work, studies concerning determination of the oxide nanoparticles effect on structure and performance of the welds and plasma coatings were conducted. Ways of introducing nanodisperse refractory powders to the weld pool and how to cover with the deactivation of nanoparticles powder were determined. Introducing of the nanoparticles in the molten pool during the deposition and the coating was carried out by preparing a powder mixture by mechano-chemical processing in special high-energy intensive planetary mills. Structural studies of welds with nanooxides additives in the weld pool showed the formation of milled dispersed structure with microhardness 264-304 MPa. Statistical mean value of the number of non-metallic inclusions was defined. Mechanical testing of welds showed growth of the yield as well as tensile strength, when titanium and aluminum nanooxides were introduced into the weld pool. The most significant effect on these parameters has aluminum nanooxide in an amount of 0.5 vol.%, increasing the yield strength by 49 % and the tensile strength by 23 %. The toughness is mostly affected by titanium oxide in an amount of 1 vol.%., increasing its value by about 2 times. In turn, the introduction of alumina nanopowder in quantity 1,5 vol.% into the plasma coatings allowed to reduce friction and increase wear resistance of coatings by 2-3 times.

  11. Double-Sided Single-Pass Submerged Arc Welding for 2205 Duplex Stainless Steel

    Science.gov (United States)

    Luo, Jian; Yuan, Yi; Wang, Xiaoming; Yao, Zongxiang

    2013-09-01

    The duplex stainless steel (DSS), which combines the characteristics of ferritic steel and austenitic steel, is used widely. The submerged arc welding (SAW) method is usually applied to join thick plates of DSS. However, an effective welding procedure is needed in order to obtain ideal DSS welds with an appropriate proportion of ferrite (δ) and austenite (γ) in the weld zone, particularly in the melted zone and heat-affected zone. This study evaluated the effectiveness of a high efficiency double-sided single-pass (DSSP) SAW joining method for thick DSS plates. The effectiveness of the converse welding procedure, characterizations of weld zone, and mechanical properties of welded joint are analyzed. The results show an increasing appearance and continuous distribution feature of the σ phase in the fusion zone of the leading welded seam. The converse welding procedure promotes the σ phase to precipitate in the fusion zone of leading welded side. The microhardness appears to significantly increase in the center of leading welded side. Ductile fracture mode is observed in the weld zone. A mixture fracture feature appears with a shear lip and tears in the fusion zone near the fusion line. The ductility, plasticity, and microhardness of the joints have a significant relationship with σ phase and heat treatment effect influenced by the converse welding step. An available heat input controlling technology of the DSSP formation method is discussed for SAW of thick DSS plates.

  12. Research on the welding process of aluminum alloy based on high power fiber laser

    Science.gov (United States)

    Zhang, Jian; Zhang, Wei; Pan, Xiaoming; Huang, Shanshi; Liu, Wenwen

    2017-08-01

    To research the formation and variation principle of the weld seam and molten pool for aluminum alloy high power fiber laser welding, the welding experiments for 5052 aluminum alloy were carried out. The influences of laser power, scanning velocity and protection gas on the welding process were systematically researched. The results show that with the increase of power and scanning velocity, the depth to width ratio first increases and then decreases. The ratio reaches the maximum value at 2.6 KW and 30 mm/s, respectively. When the power located at 2.6 KW to 2.8 KW or the velocity located at 25 mm/s to 30 mm/s, stable deep penetration welding can be obtained. The weld seam shows relative flat appearance and the molten pool presents typical "T shape" topography. Moreover, the protection gas also influences the appearance of the weld seam. Using the independently designed fixture, the quality of the weld seam can be well improved.

  13. Thermoplastic welding apparatus and method

    Science.gov (United States)

    Matsen, Marc R.; Negley, Mark A.; Geren, William Preston; Miller, Robert James

    2017-03-07

    A thermoplastic welding apparatus includes a thermoplastic welding tool, at least one tooling surface in the thermoplastic welding tool, a magnetic induction coil in the thermoplastic welding tool and generally encircling the at least one tooling surface and at least one smart susceptor in the thermoplastic welding tool at the at least one tooling surface. The magnetic induction coil is adapted to generate a magnetic flux field oriented generally parallel to a plane of the at least one smart susceptor.

  14. Laser forming and welding processes

    CERN Document Server

    Yilbas, Bekir Sami; Shuja, Shahzada Zaman

    2013-01-01

    This book introduces model studies and experimental results associated with laser forming and welding such as laser induced bending, welding of sheet metals, and related practical applications. The book provides insight into the physical processes involved with laser forming and welding. The analytical study covers the formulation of laser induced bending while the model study demonstrates the simulation of bending and welding processes using the finite element method. Analytical and numerical solutions for laser forming and welding problems are provided.

  15. Development of sensor augmented robotic weld systems for aerospace propulsion system fabrication

    Science.gov (United States)

    Jones, C. S.; Gangl, K. J.

    1986-01-01

    In order to meet stringent performance goals for power and reuseability, the Space Shuttle Main Engine was designed with many complex, difficult welded joints that provide maximum strength and minimum weight. To this end, the SSME requires 370 meters of welded joints. Automation of some welds has improved welding productivity significantly over manual welding. Application has previously been limited by accessibility constraints, requirements for complex process control, low production volumes, high part variability, and stringent quality requirements. Development of robots for welding in this application requires that a unique set of constraints be addressed. This paper shows how robotic welding can enhance production of aerospace components by addressing their specific requirements. A development program at the Marshall Space Flight Center combining industrial robots with state-of-the-art sensor systems and computer simulation is providing technology for the automation of welds in Space Shuttle Main Engine production.

  16. Efficient Simulation of Welding Distortion in Large Structures and Its Reduction by Jig Constraints

    Science.gov (United States)

    Ma, Ninshu; Huang, Hui

    2017-10-01

    Two large construction machinery structures were welded separately with and without jig constraints. The welding distortion of the entire structure was measured by a 3D coordinate measuring system and simulated by elastic FEM using the inherent deformation method. To obtain an accurate inherent deformation, a thermal elastoplastic FE analysis of simple one-side fillet joints with and without jig constraints was performed. Efficient simulation of welding distortion in large structures was accomplished by applying inherent deformation in a localized region, and the effect of jig constraint on the reduction of welding distortion was clarified. The computation of inherent deformation, the weld zone definition and the conversion of inherent deformation into inherent strain were automated. Measured and computed welding distortions in large structures had a good correspondence with respect to both tendency and magnitude. Further investigation of jig configuration was performed for enhanced reduction of welding distortion. Alternative controlling techniques for common welded structures were also addressed.

  17. The effect of impurity gasses on variable polarity plasma arc welded 2219 aluminum

    Science.gov (United States)

    Mcclure, John C.; Torres, Martin R.; Gurevitch, Alan C.; Newman, Robert A.

    1989-01-01

    Variable polarity plasma arc (VPPA) welding has been used with considerable success by NASA for the welds on the Space Shuttle External Tank as well as by others concerned with high quality welded structures. The effects of gaseous contaminants on the appearance of VPPA welds on 2219 aluminum are examined so that a welder can recognize that such contamination is present and take corrective measures. There are many possible sources of such contamination including, contaminated gas bottles, leaks in the gas plumbing, inadequate shield gas flow, condensed moisture in the gas lines or torch body, or excessive contaminants on the workpiece. The gasses chosen for study in the program were nitrogen, oxygen, methane, and hydrogen. Welds were made in a carefully controlled environment and comparisons were made between welds with various levels of these contaminants and welds made with research purity (99.9999 percent) gasses. Photographs of the weld front and backside as well as polished and etched cross sections are presented.

  18. Efficient Simulation of Welding Distortion in Large Structures and Its Reduction by Jig Constraints

    Science.gov (United States)

    Ma, Ninshu; Huang, Hui

    2017-11-01

    Two large construction machinery structures were welded separately with and without jig constraints. The welding distortion of the entire structure was measured by a 3D coordinate measuring system and simulated by elastic FEM using the inherent deformation method. To obtain an accurate inherent deformation, a thermal elastoplastic FE analysis of simple one-side fillet joints with and without jig constraints was performed. Efficient simulation of welding distortion in large structures was accomplished by applying inherent deformation in a localized region, and the effect of jig constraint on the reduction of welding distortion was clarified. The computation of inherent deformation, the weld zone definition and the conversion of inherent deformation into inherent strain were automated. Measured and computed welding distortions in large structures had a good correspondence with respect to both tendency and magnitude. Further investigation of jig configuration was performed for enhanced reduction of welding distortion. Alternative controlling techniques for common welded structures were also addressed.

  19. The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024-T351

    DEFF Research Database (Denmark)

    Jariyaboon, M; Davenport, A.J.; Ambat, Rajan

    2007-01-01

    The effect of welding parameters (rotation speed and travel speed) on the corrosion behaviour of friction stir welds in the high strength aluminium alloy AA2024-T351 was investigated. It was found that rotation speed plays a major role in controlling the location of corrosion attack. Localised...

  20. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    Science.gov (United States)

    Ding, Robert

    2013-01-01

    This method is a solid-state weld process capable of joining metallic alloys without melting. The weld workpieces to be joined by thermal stir welding (TSW) are drawn, by heavy forces, between containment plates past the TSW stir tool that then causes joining of the weld workpiece. TSW is similar to friction stir welding (FSW) in that material is heated into a plastic state (not melted) and stirred using a stir rod. The FSW pin tool is an integrated geometrical structure consisting of a large-diameter shoulder, and a smaller-diameter stir pin protruding from the shoulder. When the pin is plunged into a weld workpiece, the shoulder spins on the surface of the weld workpiece, thus inducing frictional heat into the part. The pin stirs the fraying surfaces of the weld joint, thus joining the weld workpiece into one structure. The shoulder and stir pin of the FSW pin tool must rotate together at a desired rotational speed. The induced frictional energy control and stir pin control of the pin tool cannot be de-coupled. The two work as one integrated unit. TSW, on the other hand, de-couples the heating and stirring of FSW, and allows for independent control of each process element. A uniquely designed induction coil heats the weld workpiece to a desired temperature, and once heated, the part moves into a stir rod whose RPM is also independently controlled. As the weld workpiece moves into the stir rod, the piece is positioned, or sandwiched, between upper and lower containment plates. The plate squeezes together, thus compressing the upper and lower surfaces of the weld workpiece. This compressive force, also called consolidation force, consolidates the plastic material within the weld nugget material as it is being stirred by the stir rod. The stir rod is positioned through the center of the top containment plate and protrudes midway through the opposite lower containment plate where it is mechanically captured. The upper and lower containment plates are separated by a

  1. First Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Xunxiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    The present report summarizes and discusses the first year efforts towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Significant efforts have been made within the first year of this project including the fabrication of seven candidate FeCrAl alloys with well controlled chemistry and microstructure, the microstructural characterization of these alloys using standardized and advanced techniques, mechanical properties testing and evaluation of base alloys, the completion of welding trials and production of weldments for subsequent testing, the design of novel tensile specimen geometry to increase the number of samples that can be irradiated in a single capsule and also shorten the time of their assessment after irradiation, the development of testing procedures for controlled hydrogen ingress studies, and a detailed mechanical and microstructural assessment of weldments prior to irradiation or hydrogen charging. These efforts and research results have shown promise for the FeCrAl alloy class as a new nuclear grade alloy class.

  2. Incidence and time course of extrapyramidal symptoms with oral and long-acting injectable paliperidone: a posthoc pooled analysis of seven randomized controlled studies

    Directory of Open Access Journals (Sweden)

    Gopal S

    2013-09-01

    Full Text Available Srihari Gopal,1 Yanning Liu,1 Larry Alphs,2 Adam Savitz,1 Isaac Nuamah,1 David Hough1 1Janssen Research and Development, LLC, Raritan, 2Janssen Scientific Affairs, LLC, Titusville, NJ, USA Background: The purpose of this study was to compare incidence rates and time course of extrapyramidal symptom (EPS-related treatment-emergent adverse events (TEAEs between oral and long-acting injectable (LAI paliperidone. Methods: The analysis included pooled data (safety analysis set, 2,256 antipsychotic-treated and 865 placebo-treated patients with schizophrenia from seven randomized, double-blind, placebo-controlled paliperidone studies (three oral [6 weeks each] and four LAI [9–13 weeks] and assessed comparable doses (oral, 3–15 mg; LAI, 25–150 mg eq. [US doses 39–234 mg]. We summarized incidence rates and time of onset for EPS-related TEAE, categorized by EPS group terms, ie, tremor, dystonia, hyperkinesia, parkinsonism, and dyskinesia, and use of anti-EPS medication. Mean scores over time for the Abnormal Involuntary Movement Scale (AIMS, for dyskinesia, Barnes Akathisia Rating Scale (BARS, for akathisia, and Simpson Angus Rating Scale (SAS, for parkinsonism were graphed. Results: Incidence rates for all categories of spontaneously reported EPS-related TEAEs except for hyperkinesia, were numerically lower in pooled LAI studies than in pooled oral studies. Highest rates were observed in the first week of paliperidone-LAI (for all EPS symptoms except dyskinesia and oral paliperidone treatment (except parkinsonism and tremor. Anti-EPS medication use was significantly lower in LAI (12% versus oral studies (17%, P = 0.0035. Mean values for EPS scale scores were similar between LAI and oral treatment at endpoint, and no dose response was evident. Mean reductions (standard deviation from baseline to endpoint in EPS scale scores were larger for LAI (AIMS, −0.10 [1.27]; BARS, −0.09 [1.06]; SAS, −0.04 [0.20] versus oral studies (AIMS, −0.08 [1

  3. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2003-01-01

    Deals with the main commercially significant and commonly used welding processes. This title takes the student or novice welder through the individual steps involved in each process in an easily understood way. It covers many of the requirements referred to in European Standards including EN719, EN 729, EN 729 and EN 287.$bWelding processes handbook is a concise, explanatory guide to the main commercially significant and commonly-used welding processes. It takes the novice welder or student through the individual steps involved in each process in a clear and easily understood way. It is intended to provide an up-to-date reference to the major applications of welding as they are used in industry. The contents have been arranged so that it can be used as a textbook for European welding courses in accordance with guidelines from the European Welding Federation. Welding processes and equipment necessary for each process are described so that they can be applied to all instruction levels required by the EWF and th...

  4. Acarbose reduces body weight irrespective of glycemic control in patients with diabetes: results of a worldwide, non-interventional, observational study data pool.

    Science.gov (United States)

    Schnell, Oliver; Weng, Jianping; Sheu, Wayne H-H; Watada, Hirotaka; Kalra, Sanjay; Soegondo, Sidartawan; Yamamoto, Noriyuki; Rathod, Rahul; Zhang, Cheryl; Grzeszczak, Wladyslaw

    2016-01-01

    The objective of this study is to examine the effect of acarbose, an alpha-glucosidase inhibitor, on body weight in a real-life setting by pooling data from post-marketing surveillance. Data from 10 studies were pooled (n=67,682) and the effect of acarbose on body weight was analysed taking into account baseline body weight, glycemic parameters and other baseline characteristics. The mean relative reduction in body weight was 1.45 ± 3.24% at the 3-month visit (n=43,510; mean baseline 73.4 kg) and 1.40 ± 3.28% at the last visit (n=54,760; mean baseline 73.6 kg) (both pbody weight (overweight: -1.33 ± 2.98% [n=13,498; mean baseline 71.6 kg]; obese: -1.98 ± 3.40% [n=20,216; mean baseline 81.3 kg]). When analysed by baseline glycemic parameter quartiles, the reduction was independent of fasting plasma glucose (FPG), postprandial plasma glucose (PPG), glycated hemoglobin (HbA1c) and postprandial glucose excursion (PPGE). A bivariate analysis of covariance identified female sex, South East Asian and East Asian ethnicity, younger age, higher body mass index, short duration of diabetes, and no previous treatment as factors likely to impact positively on body weight reduction with acarbose. This post-hoc analysis showed that acarbose treatment reduces body weight independent of glycemic control status but dependent on baseline body weight. Copyright © 2016. Published by Elsevier Inc.

  5. The association between socioeconomic status and tumour stage at diagnosis of ovarian cancer: A pooled analysis of 18 case-control studies.

    Science.gov (United States)

    Præstegaard, Camilla; Kjaer, Susanne K; Nielsen, Thor S S; Jensen, Signe M; Webb, Penelope M; Nagle, Christina M; Høgdall, Estrid; Risch, Harvey A; Rossing, Mary Anne; Doherty, Jennifer A; Wicklund, Kristine G; Goodman, Marc T; Modugno, Francesmary; Moysich, Kirsten; Ness, Roberta B; Edwards, Robert P; Goode, Ellen L; Winham, Stacey J; Fridley, Brooke L; Cramer, Daniel W; Terry, Kathryn L; Schildkraut, Joellen M; Berchuck, Andrew; Bandera, Elisa V; Paddock, Lisa; Kiemeney, Lambertus A; Massuger, Leon F; Wentzensen, Nicolas; Pharoah, Paul; Song, Honglin; Whittemore, Alice S; McGuire, Valerie; Sieh, Weiva; Rothstein, Joseph; Anton-Culver, Hoda; Ziogas, Argyrios; Menon, Usha; Gayther, Simon A; Ramus, Susan J; Gentry-Maharaj, Aleksandra; Wu, Anna H; Pearce, Celeste L; Pike, Malcolm C; Lee, Alice W; Chang-Claude, Jenny; Jensen, Allan

    2016-04-01

    Socioeconomic status (SES) is a known predictor of survival for several cancers and it has been suggested that SES differences affecting tumour stage at diagnosis may be the most important explanatory factor for this. However, only a limited number of studies have investigated SES differences in tumour stage at diagnosis of ovarian cancer. In a pooled analysis, we investigated whether SES as represented by level of education is predictive for advanced tumour stage at diagnosis of ovarian cancer, overall and by histotype. The effect of cigarette smoking and body mass index (BMI) on the association was also evaluated. From 18 case-control studies, we obtained information on 10,601 women diagnosed with epithelial ovarian cancer. Study specific odds ratios (ORs) with corresponding 95% confidence intervals (CI) were obtained from logistic regression models and combined into a pooled odds ratio (pOR) using a random effects model. Overall, women who completed ≤high school had an increased risk of advanced tumour stage at diagnosis compared with women who completed >high school (pOR 1.15; 95% CI 1.03-1.28). The risk estimates for the different histotypes of ovarian cancer resembled that observed for ovarian cancers combined but did not reach statistical significance. Our results were unchanged when we included BMI and cigarette smoking. Lower level of education was associated with an increased risk of advanced tumour stage at diagnosis of ovarian cancer. The observed socioeconomic difference in stage at diagnosis of ovarian cancer calls for further studies on how to reduce this diagnostic delay. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Slag Metal Reactions during Submerged Arc Welding of Alloy Steels

    Science.gov (United States)

    Mitra, U.; Eagar, T. W.

    1984-01-01

    The transfer of Cr, Si, Mn, P, S, C, Ni, and Mo between the slag and the weld pool has been studied for submerged arc welds made with calcium silicate and manganese silicate fluxes. The results show a strong interaction between Cr and Si transfer but no interaction with Mn. The manganese silicate flux produces lower residual sulfur while the calcium silicate fluxes are more effective for removal of phosphorus. The effective oxygen reaction temperature lies between 1700 and 2000 °C for all elements studied. Evidence of Cr and Mn loss by metal vaporization is also presented.

  7. Clinical Cold Welding of the Modular Total Hip Arthroplasty Prosthesis.

    Science.gov (United States)

    Whittaker, Robert K; Zaghloul, Ahmed M; Hothi, Harry S; Siddiqui, Imran A; Blunn, Gordon W; Skinner, John A; Hart, Alister J

    2017-02-01

    A head that is "clinically cold welded" to a stem is one of the commonest reasons for unplanned removal of the stem. It is not clear which hip designs are at greatest risk of clinical cold welding. This was a case-control study of consecutively received hip implant retrievals; we chose the design of hip that had the greatest number of truly cold-welded heads (n = 11). For our controls, we chose retrieved hips of the same design but without cold welding of the head (n = 35). We compared the clinical variables between these 2 groups using nonparametric Mann-Whitney tests to investigate the significance of differences between the cold-welded and non-cold-welded groups. The design that most commonly caused cold welding was a combination of a Ti stem and Ti taper: 11 out of 48 (23%) were truly cold welded. Comparison of the clinical data showed that no individual factor could be used to predict this preoperatively with none of the 4 predictors tested showing any significance: (1) time to revision (P = .687), (2) head size (P = .067), (3) patient age at primary (P = .380), and (4) gender (P = .054). We have shown that clinical cold welding is most prevalent in Ti-Ti combinations of the stem and taper; approximately 25% of cases received at our center were cold welded. Analysis of clinical variables showed that it is not possible to predict which will be cold welded preoperatively. Surgeons should be aware of this potential complication when revising a Ti-Ti stem/head junction. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Safety and tolerability of tapentadol extended release in moderate to severe chronic osteoarthritis or low back pain management: pooled analysis of randomized controlled trials.

    Science.gov (United States)

    Etropolski, Mila; Kuperwasser, Brigitte; Flügel, Maren; Häufel, Thomas; Lange, Bernd; Rauschkolb, Christine; Laschewski, Frank

    2014-06-01

    This analysis of pooled data from four randomized, controlled-dose adjustment, phase 3 studies (three 15-week, double-blind, placebo- and active-controlled studies and a 1-year, open-label, active-controlled safety study) in patients with chronic osteoarthritis hip or knee pain or low back pain evaluated the safety and tolerability of tapentadol extended release (ER) for the management of moderate to severe, chronic pain. In the three 15-week studies, patients were randomized (1:1:1) to twice-daily (bid) doses of placebo, tapentadol ER (100-250 mg), or oxycodone hydrochloride (HCl) controlled release (CR; 20-50 mg). In the 1-year safety study, patients were randomized (4:1) to tapentadol ER (100-250 mg bid) or oxycodone HCl CR (20-50 mg bid). Adverse events (AEs) and discontinuations were recorded in each study; pooled results were analyzed by treatment group. In the placebo (n = 993), tapentadol ER (n = 1,874), and oxycodone CR (n = 1,224) groups, respectively, 40.7%, 48.4%, and 62.3% of patients discontinued treatment prematurely and 58.7%, 79.0%, and 86.6% of patients experienced ≥ 1 treatment-emergent AE (TEAE). Incidences of gastrointestinal TEAEs in the placebo, tapentadol ER, and oxycodone CR groups, respectively, were 26.6%, 47.3%, and 65.4%; incidences of nervous system TEAEs were 22.5%, 42.6%, and 45.1%, respectively. Moderate or severe gastrointestinal TEAEs were reported for 10.9% of patients who received placebo, 25.3% of patients who received tapentadol ER, and 42.3% of patients who received oxycodone CR, and moderate or severe nervous system TEAEs were reported for 10.6%, 22.1%, and 25.2% of patients, respectively. In the placebo, tapentadol ER, and oxycodone CR groups, respectively, incidences of gastrointestinal TEAEs leading to study discontinuation were 2.1%, 8.3%, and 24.1%; incidences of nervous system TEAEs leading to discontinuation were 1.4%, 7.9%, and 16.3%, respectively. Results from this large patient population showed that tapentadol

  9. Preferred roles in treatment decision making among patients with cancer: a pooled analysis of studies using the Control Preferences Scale.

    Science.gov (United States)

    Singh, Jasvinder A; Sloan, Jeff A; Atherton, Pamela J; Smith, Tenbroeck; Hack, Thomas F; Huschka, Mashele M; Rummans, Teresa A; Clark, Matthew M; Diekmann, Brent; Degner, Lesley F

    2010-09-01

    To collect normative data, assess differences between demographic groups, and indirectly compare US and Canadian medical systems relative to patient expectations of involvement in cancer treatment decision making. Meta-analysis. Individual patient data were compiled across 6 clinical studies among 3491 patients with cancer who completed the 2-item Control Preferences Scale indicating the roles they preferred versus actually experienced in treatment decision making. The roles in treatment decision making that patients preferred were 26% active, 49% collaborative, and 25% passive. The roles that patients reported actually experiencing were 30% active, 34% collaborative, and 36% passive. Roughly 61% of patients reported having their preferred role; only 6% experienced extreme discordance between their preferred versus actual roles. More men than women (66% vs 60%, P = .001) and more US patients than Canadian patients (84% vs 54%, P women than men reported taking a passive role (40% vs 24%, P communication styles into treatment plans.

  10. Electron beam welding and beam positioning

    OpenAIRE

    MOROZOV M.Y.; BRAVERMAN V.Y.; MEDNIKOV D.M.

    2015-01-01

    Programs for control of mutual movements of the welded parts and EB gun are written in the unified language ISO-7bit. Beam settings control uses electronic charts or optional languages, sometimes self-designed. Operator coordinates movements and beam settings manually.

  11. Thermal stir welding process

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2012-01-01

    A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  12. Thermal stir welding apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2011-01-01

    A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  13. Solar array welding developement

    Science.gov (United States)

    Elms, R. V., Jr.

    1974-01-01

    The present work describes parallel gap welding as used for joining solar cells to the cell interconnect system. Sample preparation, weldable cell parameter evaluation, bond scheduling, bond strength evaluation, and bonding and thermal shock tests are described. A range of weld schedule parameters - voltage, time, and force - can be identified for various cell/interconnect designs that will provide adequate bond strengths and acceptably small electrical degradation. Automation of solar array welding operations to a significant degree has been achieved in Europe and will be receiving increased attention in the U.S. to reduce solar array fabrication costs.

  14. Review of Welding Terminology

    Directory of Open Access Journals (Sweden)

    Angelika Petrėtienė

    2011-04-01

    Full Text Available The paper discusses welding terms in accordance with the Lithuanian standard LST EN 1792 „Welding. The multilingual list of welding terms and similar processes”, „The Russian–Lithuanian dictionary of the terms of mechanical engineering technology and welding“ and the examples from postgraduates‘ final works. It analyses the infringement of lexical, word-building and morphological rules. First-year students should already be familiar with the standardized terms of their speciality. More active propagation of the terms should help to avoid terminology mistakes in various scientific spheres.

  15. Optimization of welding parameters using a genetic algorithm: A robotic arm–assisted implementation for recovery of Pelton turbine blades

    National Research Council Canada - National Science Library

    Pérez Pozo, Luis; Olivares Z, Fernando; Durán A, Orlando

    2015-01-01

    .... The welding curves correspond to the profile of a blade-shaped Pelton turbine. The procedure involved the development of a series of tests and observation of the parameters that will be controlled during the welding process...

  16. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  17. Simulation of the welding of irradiated materials

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hua Tay

    1989-07-01

    Helium was uniformly implanted using the ''tritium trick'' technique to levels of 0.18, 2.5, 27, 105 and 256 atomic part per million (appm) for type 316 stainless steel, and 0.3 and 1 appm for Sandvik HT-9 (12 Cr-1MoVW). Both full penetration as well as partial penetration welds were then produced on control and helium-containing materials using the autogenous gas tungsten arc (GTA) welding process under full constraint conditions. For full penetration welds, both materials were successfully welded when they contained less than 0.3 appm helium. However, welds of both materials, when containing greater than 1 appm helium, were found to develop cracks during cooling of the weld. Transmission and scanning electron microscopy indicated that the HAZ cracking was caused by the growth and coalescence of grain boundary (GB) helium bubbles. This cracking occurred as a result of the combination of high temperatures and high shrinkage tensile stresses. The cracking in the fusion zone was found to result from the precipitation of helium along dendrite interfaces. A model based on the kinetics of diffusive cavity growth is presented to explain the observed results. The model proposes a helium bubble growth mechanism which leads to final intergranular rupture in the heat-affected zone. Results of the present study demonstrate that the use of conventional fusion welding techniques to repair materials degraded by exposure to irradiation environments may be difficult if the irradiation results in the generation of helium equal to or greater than 1 appm.

  18. Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics

    Science.gov (United States)

    Hu, Haoyue; Eberhard, Peter

    2017-10-01

    Process simulations of conduction mode laser welding are performed using the meshless Lagrangian smoothed particle hydrodynamics (SPH) method. The solid phase is modeled based on the governing equations in thermoelasticity. For the liquid phase, surface tension effects are taken into account to simulate the melt flow in the weld pool, including the Marangoni force caused by a temperature-dependent surface tension gradient. A non-isothermal solid-liquid phase transition with the release or absorption of additional energy known as the latent heat of fusion is considered. The major heat transfer through conduction is modeled, whereas heat convection and radiation are neglected. The energy input from the laser beam is modeled as a Gaussian heat source acting on the initial material surface. The developed model is implemented in Pasimodo. Numerical results obtained with the model are presented for laser spot welding and seam welding of aluminum and iron. The change of process parameters like welding speed and laser power, and their effects on weld dimensions are investigated. Furthermore, simulations may be useful to obtain the threshold for deep penetration welding and to assess the overall welding quality. A scalability and performance analysis of the implemented SPH algorithm in Pasimodo is run in a shared memory environment. The analysis reveals the potential of large welding simulations on multi-core machines.

  19. Ensuring comparability of benzene exposure estimates across three nested case-control studies in the petroleum industry in support of a pooled epidemiological analysis.

    Science.gov (United States)

    Glass, D C; Armstrong, T W; Pearlman, E D; Verma, D K; Schnatter, A R; Rushton, L

    2010-03-19

    Three case-control studies each nested within a cohort of petroleum workers assessed exposure to benzene in relation to risk of haematopoietic cancers. These studies have each been updated and the cases will be pooled to derive a more powerful study. The benzene exposure of new leukemia cases and controls was estimated in accordance with each respective study's original methods. An essential component of the process of pooling the data was comparison and rationalisation of the exposure estimates to ensure accuracy and consistency of approach. This paper describes this process and presents comparative estimates before and after appropriate revision took place. The original petroleum industry studies, in Canada, the UK and Australia, were conducted at different points in time by different study teams, but the industry used similar technology in similar eras in each of these countries. A job history for each subject giving job title, dates of starting and leaving the job and location of work, was assembled. For each job or task, the average benzene exposure (Base Estimate (BE) in ppm) was derived from measurements collected at applicable worksites. Estimates of exposure intensity (workplace exposure estimates (WE)) were then calculated for each line of work history by adjusting the BEs for site- and era-specific exposure-related variables such as loading technology and percentage benzene in the product. To ensure that the exposure estimates were comparable among the studies, the WEs were allocated to generic Job Categories, e.g. Tanker Driver (by technology used e.g. bottom loading), Motor Mechanic. The WEs were stratified into eras, reflecting technological changes in the industry. The arithmetic mean (AM), geometric mean (GM) and range of the stratified WEs were calculated, by study, for each generic Job Category. These were then compared. The AMs of the WEs were regarded as substantially similar if they were within 20% in all three studies in one era or for at

  20. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space

    Science.gov (United States)

    Fragomeni, James M.; Nunes, Arthur C., Jr.

    1998-01-01

    The safety issue has been raised with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. This investigation was undertaken to evaluate if molten metal could detach and come in contact with astronauts and burn through the fabric of the astronauts' Extravehicular Mobility Unit (EMU) during electron beam welding in space. Molten metal detachments from either the weld/cut substrate or weld wire could present harm to a astronaut if the detachment was to burn through the fabric of the EMU. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at Low Earth Orbit (LEO). The primary molten metal detachment concerns were those cases of molten metal separation from the metal surface due to metal cutting, weld pool splashing, entrainment and release of molten metal due to filler wire snap-out from the weld puddle, and molten metal accumulation and release from the end of the weld wire. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were developed for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. The surface tension represents the force opposing the liquid metal drop from detaching whereas the weight of the liquid metal droplet represents a force that is tending to detach the molten metal drop. Theoretical calculations have indicated that only a small amount of energy is required to detach a liquid metal drop; however, much of the energy of an impact is absorbed in the sample or weld plate before it reaches the metal drop on the cut edge or surface. The tendency for detachment is directly proportional to the weld pool radius and metal density and inversely proportional to the surface

  1. Friction stir welding tool

    Science.gov (United States)

    Tolle,; Charles R. , Clark; Denis E. , Barnes; Timothy, A [Ammon, ID

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  2. CO2 laser welding of magnesium alloys

    Science.gov (United States)

    Dhahri, Mohammed; Masse, Jean Eric; Mathieu, J. F.; Barreau, Gerard; Autric, Michel L.

    2000-02-01

    Metallic alloys with a low mass density can be considered to be basic materials in aeronautic and automotive industry. Magnesium alloys have better properties than aluminum alloys in respect of their low density and high resistance to traction. The main problems of magnesium alloy welding are the inflammability, the crack formation and the appearance of porosity during the solidification. The laser tool is efficient to overcome the difficulties of manufacturing by conventional processing. Besides, the laser processing mainly using shielding gases allows an effective protection of the metal against the action of oxygen and a small heat affected zone. In this paper, we present experimental results about 5 kW CO2 laser welding of 4 mm-thick magnesium alloy plates provided by Eurocopter France. The focused laser beam has about 0.15 mm of diameter. We have investigated the following sample: WE43, alloy recommended in aeronautic and space applications, is constituted with Mg, Y, Zr, rare earth. More ductile, it can be used at high temperatures until 250 degrees Celsius for times longer than 5000 hours without effects on its mechanical properties. A sample of RZ5 (French Norm: GZ4TR, United States Norm ZE41) is composed of Mg, Zn, Zr, La, rare earth. This alloy has excellent properties of foundry and it allows to the realization of components with complex form. Also, it has a good resistance and important properties of tightness. The parameters of the process were optimized in the following fields: laser power: 2 to 5 kW, welding speed: 1 to 4.5 m/min, focal position: -3 mm to +3 mm below or on the top of the metal surface, shielding gas: helium with a flow of 10 to 60 l/min at 4 bars. Metallurgical analyses and mechanical control are made (macroscopic structure, microscopic structure, interpretations of the structures and localization of possible defects, analyse phases, chemical composition, hardness, tensile test etc.) to understand the parameters influence of welding

  3. Concurrent ultrasonic weld evaluation system

    Science.gov (United States)

    Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.

    1987-01-01

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  4. Metal flow of a tailor-welded blank in deep drawing process

    Science.gov (United States)

    Yan, Qi; Guo, Ruiquan

    2005-01-01

    Tailor welded blanks were used in the automotive industry to consolidate parts, reduce weight, and increase safety. In recent years, this technology was developing rapidly in China. In Chinese car models, tailor welded blanks had been applied in a lot of automobile parts such as rail, door inner, bumper, floor panel, etc. Concerns on the properties of tailor welded blanks had become more and more important for automobile industry. A lot of research had shown that the strength of the welded seam was higher than that of the base metal, such that the weld failure in the aspect of strength was not a critical issue. However, formability of tailor welded blanks in the stamping process was complex. Among them, the metal flow of tailor welded blanks in the stamping process must be investigated thoroughly in order to reduce the scrap rate during the stamping process in automobile factories. In this paper, the behavior of metal flow for tailor welded blanks made by the laser welding process with two types of different thickness combinations were studied in the deep drawing process. Simulations and experiment verification of the movement of weld line for tailor welded blanks were discussed in detail. Results showed that the control on the movement of welded seam during stamping process by taking some measures in the aspect of blank holder was effective.

  5. Research of Technological Properties of Steel X6CRNITI18-10 Welded Joints Exploited in Nitric Acid Medium

    Directory of Open Access Journals (Sweden)

    Gediminas Mikalauskas

    2016-04-01

    Full Text Available The repair of chemical industry equipments often requires to replace long time operated pipes or welded inserts with the simi-lar chemical composition. During the study the joints from corro-sion resistant steel X6CrNiTi18-10 were welded by manual metal arc welding with covered electrodes (MMA process 111 and tungsten inert gas welding (TIG process 141 at different welding parameters. The visual, radiographic, penetrant control and ferrite content analysis were carried out. The transverse tensile and bending samples were produced from welded samples; also the macroscopic and microscopic analyse were carried out.

  6. Tensile and flexural strength of commercially pure titanium submitted to laser and tungsten inert gas welds.

    Science.gov (United States)

    Atoui, Juliana Abdallah; Felipucci, Daniela Nair Borges; Pagnano, Valéria Oliveira; Orsi, Iara Augusta; Nóbilo, Mauro Antônio de Arruda; Bezzon, Osvaldo Luiz

    2013-01-01

    This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (α=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84 ± 19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90 ± 37.76; laser=515.85 ± 62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations.

  7. Influence of Processing Parameters on the Flow Path in Friction Stir Welding

    Science.gov (United States)

    Schneider, J. A.; Nunes, A. C., Jr.

    2006-01-01

    Friction stir welding (FSW) is a solid phase welding process that unites thermal and mechanical aspects to produce a high quality joint. The process variables are rpm, translational weld speed, and downward plunge force. The strain-temperature history of a metal element at each point on the cross-section of the weld is determined by the individual flow path taken by the particular filament of metal flowing around the tool as influenced by the process variables. The resulting properties of the weld are determined by the strain-temperature history. Thus to control FSW properties, improved understanding of the processing parameters on the metal flow path is necessary.

  8. Bond Strength of Gold Alloys Laser Welded to Cobalt-Chromium Alloy

    OpenAIRE

    Watanabe, Ikuya; Wallace, Cameron

    2008-01-01

    The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneo...

  9. Simulation of Welding Distortions in Theory and Practice

    DEFF Research Database (Denmark)

    Birk-Sørensen, Martin; Kierkegaard, Henning

    1997-01-01

    . A finite element program has been used to simulate a one-sided fillet weld. The simulation agrees reasonably with the measurements. The analysis is divided into two tasks: temperature distribution and non-linear elalstic-plastic behaviour of the material. The temperature distribution is found by use......In the last few years the use of robot welding processes has increased significatnly. The programming of the robots has until now mainly focused on high efficiency, i.e.high torch rate time, and hence, minimising the inefficient "travelling" time. Together with developing high-performance welding...... due to cutting and welding and parlty in the form of dimensional variation due to human factors. Measurements have been made of the production line for assemblies. The measurements show that distortions related to the multirobot welding are a factor which can rather easily be controlled...

  10. Plasma arc welding repair of space flight hardware

    Science.gov (United States)

    Hoffman, David S.

    1993-01-01

    Repair and refurbishment of flight and test hardware can extend the useful life of very expensive components. A technique to weld repair the main combustion chamber of space shuttle main engines has been developed. The technique uses the plasma arc welding process and active cooling to seal cracks and pinholes in the hot-gas wall of the main combustion chamber liner. The liner hot-gas wall is made of NARloyZ, a copper alloy previously thought to be unweldable using conventional arc welding processes. The process must provide extensive heat input to melt the high conductivity NARloyZ while protecting the delicate structure of the surrounding material. The higher energy density of the plasma arc process provides the necessary heat input while active water cooling protects the surrounding structure. The welding process is precisely controlled using a computerized robotic welding system.

  11. Weld overlay cladding with iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, G.M. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    The author has established a range of compositions for these alloys within which hot cracking resistance is very good, and within which cold cracking can be avoided in many instances by careful control of welding conditions, particularly preheat and postweld heat treatment. For example, crack-free butt welds have been produced for the first time in 12-mm thick wrought Fe{sub 3}Al plate. Cold cracking, however, still remains an issue in many cases. The author has developed a commercial source for composite weld filler metals spanning a wide range of achievable aluminum levels, and are pursuing the application of these filler metals in a variety of industrial environments. Welding techniques have been developed for both the gas tungsten arc and gas metal arc processes, and preliminary work has been done to utilize the wire arc process for coating of boiler tubes. Clad specimens have been prepared for environmental testing in-house, and a number of components have been modified and placed in service in operating kraft recovery boilers. In collaboration with a commercial producer of spiral weld overlay tubing, the author is attempting to utilize the new filler metals for this novel application.

  12. PDA: Pooled DNA analyzer

    Directory of Open Access Journals (Sweden)

    Lin Chin-Yu

    2006-04-01

    Full Text Available Abstract Background Association mapping using abundant single nucleotide polymorphisms is a powerful tool for identifying disease susceptibility genes for complex traits and exploring possible genetic diversity. Genotyping large numbers of SNPs individually is performed routinely but is cost prohibitive for large-scale genetic studies. DNA pooling is a reliable and cost-saving alternative genotyping method. However, no software has been developed for complete pooled-DNA analyses, including data standardization, allele frequency estimation, and single/multipoint DNA pooling association tests. This motivated the development of the software, 'PDA' (Pooled DNA Analyzer, to analyze pooled DNA data. Results We develop the software, PDA, for the analysis of pooled-DNA data. PDA is originally implemented with the MATLAB® language, but it can also be executed on a Windows system without installing the MATLAB®. PDA provides estimates of the coefficient of preferential amplification and allele frequency. PDA considers an extended single-point association test, which can compare allele frequencies between two DNA pools constructed under different experimental conditions. Moreover, PDA also provides novel chromosome-wide multipoint association tests based on p-value combinations and a sliding-window concept. This new multipoint testing procedure overcomes a computational bottleneck of conventional haplotype-oriented multipoint methods in DNA pooling analyses and can handle data sets having a large pool size and/or large numbers of polymorphic markers. All of the PDA functions are illustrated in the four bona fide examples. Conclusion PDA is simple to operate and does not require that users have a strong statistical background. The software is available at http://www.ibms.sinica.edu.tw/%7Ecsjfann/first%20flow/pda.htm.

  13. Fully Automatic Spot Welding System for Application in Automotive Industry

    Directory of Open Access Journals (Sweden)

    Peter Puschner

    2015-12-01

    Full Text Available Abstract A Virtual Machine has led to a fully automatic spot welding system. All necessary parameters are created by measuring systems and algorithms running in the Virtual Machine. A hybrid operating circuit allows the Virtual Machine to read the exact process voltage between the tips of the electrodes every 50 µs. Actual welding voltage and current allow for the first time reading process impedance, electric power and total energy being transferred to the spot weld. Necessary energy input is calculated by a calorimetric model after measuring the total thickness of the materials to be welded as soon as the welding gun is positioned at the workpiece. A precision potentiometer implemented in the gun delivers the total material thickness within the 0.1 mm range during the pre-pressure phases. The internal databank of the Virtual Machine controls all essential parameters to guide the total welding process. Special generator characteristics of the welding power unit are created by the Virtual Machine just during the upslope and the welding phases. So the process will be initialized in differentiating the kind of material, mild steel or high strengthen steel. This will affect the kind of energy input and current decrease during the upslope and downslope phases.

  14. Mechanistic understanding of hydrogen in steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Suh, D.; Eagar, T.W. [Massachusetts Inst. of Technology, Boston, MA (United States)

    1999-07-01

    Moisture in the flux or the shielding gases, water in the form of hydrated oxides, hydrocarbons, oil, dirt, etc. represent the main sources of hydrogen in welding consumables. Monoatomic and diatomic hydrogen are present in the arc plasma, regardless of the source. The author used the viewpoint of a new absorption model based on the monoatomic and diatomic hydrogen to describe the behaviour of hydrogen in steel welds. The model indicated that the monoatomic hydrogen was absorbed more readily than diatomic hydrogen. The results of the study also indicated that the cooler outer edge represented the main absorption zone of the weld pool, and not the high-temperature central region. This new theory, based on monoatomic hydrogen yielded predictions that are in sharp contrast to those obtained using Sievert's law. Future research is required for the design and development of testing procedures that would allow to differentiate between these theories. Additional research is also required in the field of hydrogen diffusion. 14 refs., 4 figs.

  15. Contribution to arc plasma modeling for welding TIG application

    Science.gov (United States)

    Borel, Damien; Delalondre, Clarisse; Carpreau, Jean-Michel; Chéron, B. G.; Boubert, J.-P.

    2014-06-01

    In this paper we present a numerical model that simulates transferred energy by a welding thermal plasma to the weld pool. This energy transfer allows materials melting. The originality of our model is to include the modeling of transition zones and the vaporization of the anode. The cathodic and anodic areas are taken into account in the model by means of heat balance at the gas-solid interfaces. We report the heating and cooling effects they induce on the solid (cathode, anode) and plasma. Code_Saturne® the CFD software developed at EDF R&D is used for this work Comparisons between simulations and measurements of temperature and electron density confirm the model assumptions for TIG welding.

  16. The structure and properties of autogenous laser beam welds in aluminium alloys

    OpenAIRE

    Whitaker, Iain Robert

    1994-01-01

    Autogenous laser beam welds were made in sheets of the aluminium alloys 8090, 8009 and 6061. The Al-Li based alloy 8090 was subjected to both continuous wave CO2 and pulsed Nd:YAG thermal cycles with average powers of 1.5-3.8 kW and 0.8- 0.9 kW respectively. The two techniques were compared for their influence on the 8090 solidified weld pool shape, the fusion zone microstructure and microhardness, the HAZ and the susceptibility of the fusion zone to post-weld heat treatment. It was found tha...

  17. Basic Phenomena In High Energy-Density Beam Welding And Cutting

    Science.gov (United States)

    Arata, Yoshiaki

    1983-08-01

    Essential features in the dynamic behaviours of welding and cutting processes with high energy density beams are reviewed and clarified by the efficient usage of various cineradiographic diagnosises. Formation of a deep beam hole in the weld pool are described and the important effect of the front wall characters in the beam hole is demonstrated on the natures of deep penetration and defect formations such as spiking and porosity. The cutting process is also interpreted in the frame of the same physical viewpoint with the welding. A new and efficient suppression method of spiking, porosity and humping are examined and confirmed using Tandem Electron Beam developed by the author.

  18. Slag-metal reactions during welding: Part III. Verification of the Theory

    Science.gov (United States)

    Mitra, U.; Eagar, T. W.

    1991-02-01

    A previously developed kinetic model of alloy transfer (Part II)[1] is tested experimentally for transfer of Mn, Si, Cr, P, S, Ni, Cu, and Mo. The results show very good agreement between theory and experiment. The transfer of carbon and oxygen is also discussed. It is shown that the transfer of oxygen into the weld metal occurs in the zone of droplet reactions, whereas oxygen is lost by formation and separation of inclusions in the solidifying weld pool. Methods of applying this analysis to multipass welds and active fluxes containing ferroalloy additions are also described.

  19. Nanoparticle-assisted Frenkel-Poole emission in two-terminal charging-controlled memory devices based on Si-rich silicon nitride thin films

    Science.gov (United States)

    Liu, Zhen; Wang, Xiao Lin; Wong, Jen It; Cen, Zhan Hong; Chen, T. P.; Zhang, Hai Yan

    2017-10-01

    Silicon nanoparticle (Si-NP)-embedded silicon nitride (Si3N4) thin films have been synthesized by implantation of Si ions into Si3N4 thin films followed by high-temperature thermal annealing. With different implant dosage of Si ions, the concentration of Si-NPs has been varied in the Si3N4 matrix. By forming an Al/Si-NP-embedded Si3N4/ p-Si structure, memory behavior was observed through charging-caused modulation in the device current. The current-voltage measurements were then conducted to study the carrier transport mechanism and thus to understand the origin of charging-induced variation in device resistance. It was found that the current exhibited a hopping-based conduction mechanism at low electric field. While at high electric field, a Frenkel-Poole (F-P) emission was found to dominate the current conduction. As a result, the charging-caused electron trapping under positive voltage in Si-NPs of the nitride film enhances the F-P emission, leading to a significant reduction in resistance. However, negative voltage-caused hole trapping suppresses the current conduction. The two-terminal devices based on such Si-NP-embedded Si3N4 thin films are promising to be used as charging-controlled memory devices.

  20. Comparative pain and mood effects in patients with comorbid fibromyalgia and major depressive disorder: secondary analyses of four pooled randomized controlled trials of duloxetine.

    Science.gov (United States)

    Marangell, Lauren B; Clauw, Daniel J; Choy, Ernest; Wang, Fujun; Shoemaker, Scarlett; Bradley, Laurence; Mease, Philip; Wohlreich, Madelaine M

    2011-01-01

    The objective of this paper is to better understand the relationship of pain and mood in patients with fibromyalgia and comorbid major depressive disorder (MDD). Pooled data from 4 double-blind, placebo-controlled, randomized trials of duloxetine hydrochloride 60-120mg/day in patients with fibromyalgia were included (N=1332). Of these, 350 (26% [147 placebo, 203 duloxetine]) had comorbid MDD (per Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition Text Revision criteria) and were included in these analyses. Primary measures included Brief Pain Inventory average pain; Hamilton Depression Rating Scale or Beck Depression Inventory. Logistic regression was used to evaluate the consistency of treatment effect across various subgroups. Path analysis was used to assess the effect of duloxetine on improvement in pain in the presence of improvement in mood and vice versa. Results indicated that 69% of improvement in pain was a direct effect of treatment, with improvement in mood accounting for 31% of pain response. In conclusion, consistent with our hypothesis, duloxetine produced a substantial direct effect on pain improvement and change in mood exerted a modest indirect effect on pain improvements in patients with fibromyalgia and MDD. Hence, both direct and indirect analgesic and antidepressant properties appear to be relevant for the treatment of these comorbid patients with duloxetine. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.