WorldWideScience

Sample records for weld pool control

  1. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool

  2. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool.

  3. Arc-weld pool interactions

    International Nuclear Information System (INIS)

    Glickstein, S.S.

    1978-08-01

    The mechanisms involved in arc-weld pool interactions are extremely complex and no complete theory is presently available to describe much of the phenomena observed during welding. For the past several years, experimental and analytical studies have been undertaken at the Bettis Atomic Power Laboratory to increase basic understanding of the gas tungsten arc welding process. These studies have included experimental spectral analysis of the arc in order to determine arc temperature and analytical modeling of the arc and weld puddle. The investigations have been directed toward determining the cause and effects of variations in the energy distribution incident upon the weldment. In addition, the effect of weld puddle distortion on weld penetration was investigated, and experimental and analytical studies of weld process variables have been undertaken to determine the effects of the variables upon weld penetration and configuration. A review of the results and analysis of these studies are presented

  4. Weld pool and keyhole dynamic analysis based on visual system and neural network during laser keyhole welding

    OpenAIRE

    Luo, Masiyang

    2014-01-01

    In keyhole fiber laser welding processes, the weld pool behavior and keyhole dynamics are essential to determining welding quality. To observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. In addition, because of the cause-and-effect relationship between the welding defects and stability of the keyhole, which is primarily determined by keyhole geometry during the welding process, the stability of keyhole needs to be consid...

  5. Welding and lung cancer in a pooled analysis of case-control studies.

    Science.gov (United States)

    Kendzia, Benjamin; Behrens, Thomas; Jöckel, Karl-Heinz; Siemiatycki, Jack; Kromhout, Hans; Vermeulen, Roel; Peters, Susan; Van Gelder, Rainer; Olsson, Ann; Brüske, Irene; Wichmann, H-Erich; Stücker, Isabelle; Guida, Florence; Tardón, Adonina; Merletti, Franco; Mirabelli, Dario; Richiardi, Lorenzo; Pohlabeln, Hermann; Ahrens, Wolfgang; Landi, Maria Teresa; Caporaso, Neil; Consonni, Dario; Zaridze, David; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Gustavsson, Per; Marcus, Michael; Fabianova, Eleonora; 't Mannetje, Andrea; Pearce, Neil; Tse, Lap Ah; Yu, Ignatius Tak-Sun; Rudnai, Peter; Bencko, Vladimir; Janout, Vladimir; Mates, Dana; Foretova, Lenka; Forastiere, Francesco; McLaughlin, John; Demers, Paul; Bueno-de-Mesquita, Bas; Boffetta, Paolo; Schüz, Joachim; Straif, Kurt; Pesch, Beate; Brüning, Thomas

    2013-11-15

    Several epidemiologic studies have indicated an increased risk of lung cancer among welders. We used the SYNERGY project database to assess welding as a risk factor for developing lung cancer. The database includes data on 15,483 male lung cancer cases and 18,388 male controls from 16 studies in Europe, Canada, China, and New Zealand conducted between 1985 and 2010. Odds ratios and 95% confidence intervals between regular or occasional welding and lung cancer were estimated, with adjustment for smoking, age, study center, and employment in other occupations associated with lung cancer risk. Overall, 568 cases and 427 controls had ever worked as welders and had an odds ratio of developing lung cancer of 1.44 (95% confidence interval: 1.25, 1.67) with the odds ratio increasing for longer duration of welding. In never and light smokers, the odds ratio was 1.96 (95% confidence interval: 1.37, 2.79). The odds ratios were somewhat higher for squamous and small cell lung cancers than for adenocarcinoma. Another 1,994 cases and 1,930 controls had ever worked in occupations with occasional welding. Work in any of these occupations was associated with some elevation of risk, though not as much as observed in regular welders. Our findings lend further support to the hypothesis that welding is associated with an increased risk of lung cancer.

  6. Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding

    Science.gov (United States)

    Luo, Masiyang; Shin, Yung C.

    2015-01-01

    In keyhole fiber laser welding processes, the weld pool behavior is essential to determining welding quality. To better observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. This work presents a weld pool edge detection technique based on an off axial green illumination laser and a coaxial image capturing system that consists of a CMOS camera and optic filters. According to the difference of image quality, a complete developed edge detection algorithm is proposed based on the local maximum gradient of greyness searching approach and linear interpolation. The extracted weld pool geometry and the width are validated by the actual welding width measurement and predictions by a numerical multi-phase model.

  7. Numerical analysis of weld pool oscillation in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of); Farson, Dave F [The Ohio State University, Columbus (United States); Hollis, Kendall; Milewski, John O. [Los Alamos National Laboratory, Los Alamos (United States)

    2015-04-15

    Volume of fluid (VOF) numerical simulation was used to investigate melt flow and volumetric oscillation of conduction-mode pulsed laser weld pools. The result is compared to high speed video stream of titanium laser spot welding experiment. The total simulation time is 10ms with the first 5 ms being heating and melting under constant laser irradiation and the remaining 5 ms corresponding to resolidification of the weld pool. During the melting process, the liquid pool did not exhibit periodic oscillation but was continually depressed by the evaporation recoil pressure. After the laser pulse, the weld pool was excited into volumetric oscillation by the release of pressure on its surface and oscillation of the weld pool surface was analyzed. The simulation model suggested adjusting thermal diffusivity to match cooling rate and puddle diameter during solidification which is distinguishable from previous weld pool simulation. The frequency continuously increased from several thousand cycles per second to tens of thousands of cycles per second as the weld pool solidified and its diameter decreased. The result is the first trial of investigation of small weld pool oscillation in laser welding although there have been several reports about arc welding.

  8. Prediction of the weld pool geometry of TIG arc welding by using ...

    African Journals Online (AJOL)

    Prediction of the weld pool geometry of TIG arc welding by using fuzzy logic controller. ... The experimental data were then used for building a fuzzy logic model to predict the effects of control factors on the responses. A graphical mapping scheme was employed for the graphical representation of the macrostructure zones' ...

  9. Reflection of illumination laser from gas metal arc weld pool surface

    International Nuclear Information System (INIS)

    Ma, Xiaoji; Zhang, YuMing

    2009-01-01

    The weld pool is the core of the welding process where complex welding phenomena originate. Skilled welders acquire their process feedback primarily from the weld pool. Observation and measurement of the three-dimensional weld pool surface thus play a fundamental role in understanding and future control of complex welding processes. To this end, a laser line is projected onto the weld pool surface in pulsed gas metal arc welding (GMAW) and an imaging plane is used to intercept its reflection from the weld pool surface. Resultant images of the reflected laser are analyzed and it is found that the weld pool surface in GMAW does specularly reflect the projected laser as in gas tungsten arc welding (GTAW). Hence, the weld pool surface in GMAW is also specular and it is in principle possible that it may be observed and measured by projecting a laser pattern and then intercepting and imaging the reflection from it. Due to high frequencies of surface fluctuations, GMAW requires a relatively short time to image the reflected laser

  10. Automatic Welding System of Aluminum Pipe by Monitoring Backside Image of Molten Pool Using Vision Sensor

    Science.gov (United States)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    An automatic welding system using Tungsten Inert Gas (TIG) welding with vision sensor for welding of aluminum pipe was constructed. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position and moving welding torch with the AC welding machine. The monitoring system consists of a vision sensor using a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Neural network model for welding speed control were constructed to perform the process automatically. From the experimental results it shows the effectiveness of the control system confirmed by good detection of molten pool and sound weld of experimental result.

  11. Method for enhanced control of welding processes

    Science.gov (United States)

    Sheaffer, Donald A.; Renzi, Ronald F.; Tung, David M.; Schroder, Kevin

    2000-01-01

    Method and system for producing high quality welds in welding processes, in general, and gas tungsten arc (GTA) welding, in particular by controlling weld penetration. Light emitted from a weld pool is collected from the backside of a workpiece by optical means during welding and transmitted to a digital video camera for further processing, after the emitted light is first passed through a short wavelength pass filter to remove infrared radiation. By filtering out the infrared component of the light emitted from the backside weld pool image, the present invention provides for the accurate determination of the weld pool boundary. Data from the digital camera is fed to an imaging board which focuses on a 100.times.100 pixel portion of the image. The board performs a thresholding operation and provides this information to a digital signal processor to compute the backside weld pool dimensions and area. This information is used by a control system, in a dynamic feedback mode, to automatically adjust appropriate parameters of a welding system, such as the welding current, to control weld penetration and thus, create a uniform weld bead and high quality weld.

  12. Experimental investigation on the weld pool formation process in plasma keyhole arc welding

    Science.gov (United States)

    Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu

    2018-01-01

    This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s-1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.

  13. Distortion Control during Welding

    NARCIS (Netherlands)

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ

  14. 3D finite element simulation of TIG weld pool

    Science.gov (United States)

    Kong, X.; Asserin, O.; Gounand, S.; Gilles, P.; Bergheau, J. M.; Medale, M.

    2012-07-01

    The aim of this paper is to propose a three-dimensional weld pool model for the moving gas tungsten arc welding (GTAW) process, in order to understand the main factors that limit the weld quality and improve the productivity, especially with respect to the welding speed. Simulation is a very powerful tool to help in understanding the physical phenomena in the weld process. A 3D finite element model of heat and fluid flow in weld pool considering free surface of the pool and traveling speed has been developed for the GTAW process. Cast3M software is used to compute all the governing equations. The free surface of the weld pool is calculated by minimizing the total surface energy. The combined effects of surface tension gradient, buoyancy force, arc pressure, arc drag force to drive the fluid flow is included in our model. The deformation of the weld pool surface and the welding speed affect fluid flow, heat flow and thus temperature gradients and molten pool dimensions. Welding trials study is presented to compare our numerical results with macrograph of the molten pool.

  15. Weld pool boundary and weld bead shape reconstruction based on passive vision in P-GMAW

    Institute of Scientific and Technical Information of China (English)

    Yan Zhihong; Zhang Guangjun; Gao Hongming; Wu Lin

    2006-01-01

    A passive visual sensing system is established in this research, and clear weld pool images in pulsed gas metal arc welding ( P-GMA W) can be captured with this system. The three-dimensional weld pool geometry, especially the weld height,is not only a crucial factor in determining workpiece mechanical properties, but also an important parameter for reflecting the penetration. A new three-dimensional (3D) model is established to describe the weld pool geometry in P-GMAW. Then, a series of algorithms are developed to extract the model geometrical parameters from the weld pool images. Furthermore, the method to reconstruct the 3D shape of weld pool boundary and weld bead from the two-dimensional images is investigated.

  16. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    Science.gov (United States)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  17. Welding Current Distribution in the Work-piece and Pool in Arc Welding

    Directory of Open Access Journals (Sweden)

    A. M. Rybachuk

    2015-01-01

    Full Text Available In order to select the optimal configuration of controlling magnetic fields and build rational construction of magnetic systems, we need to know the distribution of welding current in the molten metal of the weld pool. So the objective of the work is to establish the calculated methods for determining current density in the weld pool during arc welding. The distribution of welding current in the pool depends on the field of the electrical resistance, which is determined by the deformed temperature field while arc moves with the welding speed. The previous works have shown experimentally and by simulation on the conductive paper that deformation of temperature field defines deformation of electric field. On the basis thereof, under certain boundary conditions the problem has been solved to give a general solution of differential equation, which relates the potential distribution to the temperature in the product during arc welding. This solution is obtained under the following boundary conditions: 1 metal is homogeneous; 2 input and output surfaces of heat flux and electric current coincide; 3 input and output surfaces of heat flux and electric current are insulated and equipotential; 4 other (lateral surfaces are adiabatic boundaries. Therefore, this paper pays basic attention to obtaining the analytical solution of a general differential equation, which relates distribution of potential to the temperature in the product. It considers the temperature field of the heat source, which moves at a welding speed with normal-circular distribution of the heat flow at a certain concentration factor. The distribution of current density is calculated on the assumption that the welding current is introduced through the same surface as the heat flux and the distribution of current density corresponds to the normally circular at a certain concentration factor. As a result, we get an expression that allows us to calculate the current density from the known

  18. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    International Nuclear Information System (INIS)

    Toropchin, A; Frolov, V; Pipa, A V; Kozakov, R; Uhrlandt, D

    2014-01-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results

  19. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    Science.gov (United States)

    Toropchin, A.; Frolov, V.; Pipa, A. V.; Kozakov, R.; Uhrlandt, D.

    2014-11-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.

  20. Robot welding process control

    Science.gov (United States)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  1. Boosting Active Contours for Weld Pool Visual Tracking in Automatic Arc Welding

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Søren Ingvor

    2015-01-01

    Detecting the shape of the non-rigid molten metal during welding, so-called weld pool visual sensing, is one of the central tasks for automating arc welding processes. It is challenging due to the strong interference of the high-intensity arc light and spatters as well as the lack of robust...... approaches to detect and represent the shape of the nonrigid weld pool. We propose a solution using active contours including an prior for the weld pool boundary composition. Also, we apply Adaboost to select a small set of features that captures the relevant information. The proposed method is applied...... to weld pool tracking and the presented results verified its feasibility....

  2. Melt pool vorticity in deep penetration laser material welding

    Indian Academy of Sciences (India)

    weld pool has been evaluated in case of high power CO2 laser beam welding. The ... The experiments based on twin or triple spot interaction geometry have also ... while the other one is between the liquid and the solid states of the metal.

  3. Molten pool characterization of laser lap welded copper and aluminum

    Science.gov (United States)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu, Jr.

    2013-12-01

    A 3D finite volume simulation model for laser welding of a Cu-Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu-Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint.

  4. Molten pool characterization of laser lap welded copper and aluminum

    International Nuclear Information System (INIS)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu Jr

    2013-01-01

    A 3D finite volume simulation model for laser welding of a Cu–Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu–Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint. (paper)

  5. Development of maintenance technology with underwater TIG welding for spent fuel storage pool

    International Nuclear Information System (INIS)

    Obana, Takeshi; Hamada, Yasumitsu; Ooeda, Kaoru; Katou, Masahide; Ootsuka, Toshihiro; Toyoda, Seiichi; Hosogane, Atsushi

    2007-01-01

    The core technology of underwater TIG welding process has been developed and welding equipment system has been manufactured, for application to the maintenance of the spent fuel storage pool of Rokkasho reprocessing plant. Basic experiments for understanding the conditions of dry area and the range of welding conditions was performed, and mock examination for simulation of real environment by using the developed welding equipment was also carried out to judge the applicability of the system. For the purpose that can be selected water removing method for different spatial conditions of the parts to be maintained in underwater, two kinds of welding equipment systems of Chamber type and Partition type were developed and manufactured. On the basis of fundamental experiments, the conditions of dry area formation and welding parameters range for high-reliability weld were discussed. Thus the proper condition in this process was able to be established. With the welding equipment systems of the Chamber type and Partition type, the practical use examination of underwater TIG welding process was executed by mock examination for simulating the real environment. As a result, it was confirmed that the underwater TIG welding could obtain the same reliability as a usual in-air TIG welding, and the operation and the control at remote distance were also possible. And the reliability of the patch-plate fillet weld could be evaluated by remote inspection with the expansion visual test. (author)

  6. Weld controller for automated nuclear service welding

    International Nuclear Information System (INIS)

    Barfield, K.L.; Strubhar, P.M.; Green, D.I.

    1995-01-01

    B and W Nuclear Technologies (BWNT) uses many different types of weld heads for automated welding in the commercial nuclear service industry. Some weld heads are purchased as standard items, while others are custom designed and fabricated by BWNT requiring synchronized multiaxis motion control. BWNT recently completed a development program to build a common weld controller that interfaces to all types of weld heads used by BWNT. Their goal was to construct a system that had the flexibility to add different modules to increase the capability of the controller as different application needs become necessary. The benefits from having a common controller are listed. This presentation explains the weld controller system and the types of applications to which it has been applied

  7. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    Science.gov (United States)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  8. Multi-physics modeling and numerical simulation of weld pool in GTA welding

    International Nuclear Information System (INIS)

    Nguyen, Minh-Chien

    2015-01-01

    In this work, we develop a 3D physical and numerical model of the GTA (Gas Tungsten Arc) welding process in order to predict, for given welding parameters, useful quantities for the designer of welded assembly: weld bead shape, fluid flow in the weld pool as well as thermal distribution in the work piece. The model is developed in the Cast3M (http://www-cast3m.cea.fr/) finite element software and takes into account the main physical phenomena acting in the work piece and particularly in the weld pool, subject to source terms modeling the arc part of the welding process. A steady solution of this model is thought for and involves the coupling of the nonlinear thermohydraulics and electromagnetic equations together with the displacement of the deformable free surface of the weld pool. A first step in the development consisted in modeling the electromagnetic phenomena with two different numerical methods, in comparing the numerical results obtained with those of the literature and in quantifying the importance of the Lorentz force and the Joule effect compared to the other mechanical and thermal sources by computing power balances. Then, in order to assess the predictive capability of the model, simulations of various welding configurations are performed: variation in the chemical composition of the material, of the welding speed, of the prescribed arc pressure and of the welding positions, which is a focus of this work, are studied. A good agreement is obtained between the results of our model and other experimental and numerical results of the literature. Eventually, a model accounting for metal filling is proposed and its results are discussed. Thus, our complete model can be seen as a solid foundation towards future totally-coupled 3D welding models including the arc and it will be included in WPROCESS the in-house CEA software dedicated to the numerical simulation of welding. (author) [fr

  9. Study on Dynamic Development of Three-dimensional Weld Pool Surface in Stationary GTAW

    Science.gov (United States)

    Huang, Jiankang; He, Jing; He, Xiaoying; Shi, Yu; Fan, Ding

    2018-04-01

    The weld pool contains abundant information about the welding process. In particular, the type of the weld pool surface shape, i. e., convex or concave, is determined by the weld penetration. To detect it, an innovative laser-vision-based sensing method is employed to observe the weld pool surface of the gas tungsten arc welding (GTAW). A low-power laser dots pattern is projected onto the entire weld pool surface. Its reflection is intercepted by a screen and captured by a camera. Then the dynamic development process of the weld pool surface can be detected. By observing and analyzing, the change of the reflected laser dots reflection pattern, for shape of the weld pool surface shape, was found to closely correlate to the penetration of weld pool in the welding process. A mathematical model was proposed to correlate the incident ray, reflected ray, screen and surface of weld pool based on structured laser specular reflection. The dynamic variation of the weld pool surface and its corresponding dots laser pattern were simulated and analyzed. By combining the experimental data and the mathematical analysis, the results show that the pattern of the reflected laser dots pattern is closely correlated to the development of weld pool, such as the weld penetration. The concavity of the pool surface was found to increase rapidly after the surface shape was changed from convex to concave during the stationary GTAW process.

  10. Weld pool visual sensing without external illumination

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Soren Ingvor

    2011-01-01

    Visual sensing in arc welding has become more and more important, but still remains challenging because of the harsh environment with extremely strong illumination from the arc. This paper presents a low-cost camera-based sensor system, without using external Illumination, but nevertheless able...

  11. Welding pool measurement using thermal array sensor

    Science.gov (United States)

    Cho, Chia-Hung; Hsieh, Yi-Chen; Chen, Hsin-Yi

    2015-08-01

    Selective laser melting (SLM) is an additive manufacturing (AM) technology that uses a high-power laser beam to melt metal powder in chamber of inert gas. The process starts by slicing the 3D CAD data as a digital information source into layers to create a 2D image of each layer. Melting pool was formed by using laser irradiation on metal powders which then solidified to consolidated structure. In a selective laser melting process, the variation of melt pool affects the yield of a printed three-dimensional product. For three dimensional parts, the border conditions of the conductive heat transport have a very large influence on the melt pool dimensions. Therefore, melting pool is an important behavior that affects the final quality of the 3D object. To meet the temperature and geometry of the melting pool for monitoring in additive manufacturing technology. In this paper, we proposed the temperature sensing system which is composed of infrared photodiode, high speed camera, band-pass filter, dichroic beam splitter and focus lens. Since the infrared photodiode and high speed camera look at the process through the 2D galvanometer scanner and f-theta lens, the temperature sensing system can be used to observe the melting pool at any time, regardless of the movement of the laser spot. In order to obtain a wide temperature detecting range, 500 °C to 2500 °C, the radiation from the melting pool to be measured is filtered into a plurality of radiation portions, and since the intensity ratio distribution of the radiation portions is calculated by using black-body radiation. The experimental result shows that the system is suitable for melting pool to measure temperature.

  12. Weld analysis and control system

    Science.gov (United States)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  13. Influence of Welding Parameters on the Weld Pool Dimensions and Shape in a TIG Configuration

    Directory of Open Access Journals (Sweden)

    Marine Stadler

    2017-04-01

    Full Text Available The weld pool shape created by the plasma arc interaction on a workpiece depends on many geometrical and physical parameters and on the operating conditions. Theoretical models are developed in such a way as to predict and to characterize the material. However, these models first need to be validated. Experimental results are hence proposed with parametric studies. Nevertheless, the interaction time is often short and the weld pool shape evolution not presented. In this work, the experimental setup and the diagnostic methods characterizing the workpiece are presented. The weld pool shape was evaluated versus time according to several parameters such as the current intensity value, the distance between the two electrodes, the cathode tip angle or the plasma gas nature. The results show that the depth-to-width ratio alone is not enough to compare the impact of the parameters. The analysis points out the great influence of the current intensity on the increase of the width and depth compared to the influence of the value of the cathode tip angle. The rise of the arc length leads to an increase of the power through a higher arc voltage; nevertheless, for distances of three and five millimeters and a characteristic time of the welding process of one second, this parameter has a weak influence on the energy transferred. The use of helium leads to a bigger volume of the weld pool due to an increase of width and depth.

  14. Use of servo controlled weld head for end closure welding

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, S.K.; Setty, D.S.; Rameswara Rao, A.; Hemantha Rao, G.V.S.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2010-07-01

    In the PHWR fuel fabrication line resistance welding processes are used for joining various zirconium based alloy components to fuel tube of similar material. The quality requirement of these welding processes is very stringent and has to meet all the product requirements. At present these welding processes are being carried out by using standard resistance welding machines. In the resistance welding process in addition to current and time, force is one of the critical and important parameter, which influences the weld quality. At present advanced feed back type fast response medium frequency weld controllers are being used. This has upslope/down slope, constant and repetitive weld pattern selection features makes this critical welding process more reliable. Compared to weld controllers, squeeze force application devices are limited and normally standard high response pneumatic cylinders are used in the welding process. With this type of devices the force is constant during welding process and cannot be varied during welding process as per the material deformation characteristics. Similarly due to non-availability of feed back systems in the squeeze force application systems restricts the accuracy and quality of the welding process. In the present paper the influence of squeeze force pattern on the weld quality using advanced feed back type servo based force control system was studied. Different squeeze forces were used during pre and post weld heat periods along with constant force and compared with the weld quality. (author)

  15. Sensor controlled robotic welding for nuclear power plant operations

    International Nuclear Information System (INIS)

    Chin, B.A.

    1989-01-01

    The objective of the proposed research is to apply real time monitoring, artificial intelligence and on-line correction to dynamically control the depth of weld penetration and weld integrity during the welding process. Welding is a major technique used in the fabrication, construction and maintenance of power generating and energy conversion systems. In the welding process, fluctuations in process variables lead to weld defects such as lack of penetration, cracks, porosity and undesirable metallurgical structures. This research will apply advanced infrared sensing techniques which have been successfully used in seam tracking to the equally complex problem of weld defect and weld puddle penetration control. Thermal temperature distributions of plates being welded will be dynamically measured during welding using infrared techniques. These temperature distributions will be used to interpret changes in the size and shape of the molten metal pool and the presence of conditions that may lead to defects in the solidified weld. The ultimate result of this research will be the development of machines which are capable of sensing and altering process variables to eliminate defective welds and increase the productivity of the welding process. Successful completion of this proposed research will lead to potential major improvements in the fabrication, construction and maintenance of advanced nuclear reactors and promote increased safety and reliability while decreasing construction costs. 47 refs., 50 figs

  16. A stereo vision method for tracking particle flow on the weld pool surface

    NARCIS (Netherlands)

    Zhao, C.X.; Richardson, I.M.; Kenjeres, S.; Kleijn, C.R.; Saldi, Z.

    2009-01-01

    The oscillation of a weld pool surface makes the fluid flow motion quite complex. Two-dimensional results cannot reflect enough information to quantitatively describe the fluid flow in the weld pool; however, there are few direct three-dimensional results available. In this paper, we describe a

  17. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  18. Keyhole behavior and liquid flow in molten pool during laser-arc hybrid welding

    Science.gov (United States)

    Naito, Yasuaki; Katayama, Seiji; Matsunawa, Akira

    2003-03-01

    Hybrid welding was carried out on Type 304 stainless steel plate under various conditions using YAG laser combined with TIG arc. During arc and laser-arc hybrid welding, arc voltage variation was measured, and arc plasma, laser-induced plume and evaporation spots as well as keyhole behavior and liquid flow in the molten pool were observed through CCD camera and X-ray real-time transmission apparatus. It was consequently found that hybrid welding possessed many features in comparison with YAG laser welding. The deepest weld bead could be produced when the YAG laser beam of high power density was shot on the molten pool made beforehand stably with TIG arc. A keyhole was long and narrow, and its behavior was rather stable inside the molten pool. It was also confirmed that porosity was reduced by the suppression of bubble formation in hybrid welding utilizing a laser of a moderate power density.

  19. Measurement of laser welding pool geometry using a closed convex active contour model

    International Nuclear Information System (INIS)

    Zheng, Rui; Zhang, Pu; Duan, Aiqing; Xiao, Peng

    2014-01-01

    The purpose of this study was to develop a computer vision method to measure geometric parameters of the weld pool in a deep penetration CO 2 laser welding system. Accurate measurement was achieved by removing a huge amount of interference caused by spatter, arc light and plasma to extract the true weld pool contour. This paper introduces a closed convex active contour (CCAC) model derived from the active contour model (snake model), which is a more robust high-level vision method than the traditional low-level vision methods. We made an improvement by integrating an active contour with the information that the weld pool contour is almost a closed convex curve. An effective thresholding method and an improved greedy algorithm are also given to complement the CCAC model. These influences can be effectively removed by using the CCAC model to acquire and measure the weld pool contour accurately and relatively fast. (paper)

  20. Analytical real-time measurement of a three-dimensional weld pool surface

    International Nuclear Information System (INIS)

    Zhang, WeiJie; Zhang, YuMing; Wang, XueWu

    2013-01-01

    The ability to observe and measure weld pool surfaces in real-time is the core of the foundation for next generation intelligent welding that can partially imitate skilled welders who observe the weld pool to acquire information on the welding process. This study aims at the real-time measurement of the specular three-dimensional (3D) weld pool surface under a strong arc in gas tungsten arc welding (GTAW). An innovative vision system is utilized in this study to project a dot-matrix laser pattern on the specular weld pool surface. Its reflection from the surface is intercepted at a distance from the arc by a diffuse plane. The intercepted laser dots illuminate this plane producing an image showing the reflection pattern. The deformation of this reflection pattern from the projected pattern (e.g. the dot matrix) is used to derive the 3D shape of the reflection surface, i.e., the weld pool surface. Based on careful analysis, the underlying reconstruction problem is formulated mathematically. An analytic solution is proposed to solve this formulated problem resulting in the weld pool surface being reconstructed on average in 3.04 ms during welding experiments. A vision-based monitoring system is thus established to measure the weld pool surface in GTAW in real-time. In order to verify the effectiveness of the proposed reconstruction algorithm, first numerical simulation is conducted. The proposed algorithm is then tested on a spherical convex mirror with a priori knowledge of its geometry. The detailed analysis of the measurement error validates the accuracy of the proposed algorithm. Results from the real-time experiments verify the robustness of the proposed reconstruction algorithm. (paper)

  1. Experimental characterization of the weld pool flow in a TIG configuration

    Science.gov (United States)

    Stadler, M.; Masquère, M.; Freton, P.; Franceries, X.; Gonzalez, J. J.

    2014-11-01

    Tungsten Inert Gas (TIG) welding process relies on heat transfer between plasma and work piece leading to a metallic weld pool. Combination of different forces produces movements on the molten pool surface. One of our aims is to determine the velocity on the weld pool surface. This provides a set of data that leads to a deeper comprehension of the flow behavior and allows us to validate numerical models used to study TIG parameters. In this paper, two diagnostic methods developed with high speed imaging for the determination of velocity of an AISI 304L stainless steel molten pool are presented. Application of the two methods to a metallic weld pool under helium with a current intensity of 100 A provides velocity values around 0.70 m/s which are in good agreement with literature works.

  2. Welding process modelling and control

    Science.gov (United States)

    Romine, Peter L.; Adenwala, Jinen A.

    1993-01-01

    The research and analysis performed, and software developed, and hardware/software recommendations made during 1992 in development of the PC-based data acquisition system for support of Welding Process Modeling and Control is reported. A need was identified by the Metals Processing Branch of NASA Marshall Space Flight Center, for a mobile data aquisition and analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC-based system was chosen. The Welding Measurement System (WMS) is a dedicated instrument, strictly for the use of data aquisition and analysis. Although the WMS supports many of the functions associated with the process control, it is not the intention for this system to be used for welding process control.

  3. Adaptive Neuro-Fuzzy Inference System (ANFIS)-Based Models for Predicting the Weld Bead Width and Depth of Penetration from the Infrared Thermal Image of the Weld Pool

    Science.gov (United States)

    Subashini, L.; Vasudevan, M.

    2012-02-01

    Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.

  4. Analysis And Control System For Automated Welding

    Science.gov (United States)

    Powell, Bradley W.; Burroughs, Ivan A.; Kennedy, Larry Z.; Rodgers, Michael H.; Goode, K. Wayne

    1994-01-01

    Automated variable-polarity plasma arc (VPPA) welding apparatus operates under electronic supervision by welding analysis and control system. System performs all major monitoring and controlling functions. It acquires, analyzes, and displays weld-quality data in real time and adjusts process parameters accordingly. Also records pertinent data for use in post-weld analysis and documentation of quality. System includes optoelectronic sensors and data processors that provide feedback control of welding process.

  5. Development of a process model for intelligent control of gas metal arc welding

    International Nuclear Information System (INIS)

    Smartt, H.B.; Johnson, J.A.; Einerson, C.J.; Watkins, A.D.; Carlson, N.M.

    1991-01-01

    This paper discusses work in progress on the development of an intelligent control scheme for arc welding. A set of four sensors is used to detect weld bead cooling rate, droplet transfer mode, weld pool and joint location and configuration, and weld defects during welding. A neural network is being developed as the bridge between the multiple sensor set a conventional proportional-integral controller that provides independent control of process variables. This approach is being developed for the gas metal arc welding process. 20 refs., 8 figs

  6. MFDC - technological improvement in resistance welding controls

    Energy Technology Data Exchange (ETDEWEB)

    Somani, A.K.; Naga Bhaskar, V.; Chandramouli, J.; Rameshwara Rao, A. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2008-07-01

    Among the various Resistance Welding operations carried out in the production line of a fuel bundle end plug welding is the most critical operation. Welding controllers play a very vital role in obtaining consistent weld quality by regulating and controlling the weld current. Conventional mains synchronized welding controllers are at best capable of controlling the weld current at a maximum speed of the mains frequency. In view of the very short welding durations involved in the various stages of a fuel bundle fabrication, a need was felt for superior welding controllers. Medium Frequency Welding Controllers offer a solution to these limitations in addition to offering other advantages. Medium Frequency power sources offer precise welding current control as they regulate and correct the welding current faster, typically twenty times faster when operated at 1000Hz. An MFDC was employed on one of the welding machines and its performance was studied. This paper discusses about the various advantages of MFDCs with other controllers employed at NFC to end plug welding operation. (author)

  7. Real time computer controlled weld skate

    Science.gov (United States)

    Wall, W. A., Jr.

    1977-01-01

    A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.

  8. Advances in automatic welding control

    International Nuclear Information System (INIS)

    White, D.; Woodacre, A.; Taylor, A.F.

    1972-01-01

    The development at the Reactor Fuel Element Laboratories, UKAEA Springfields, of a computer-based welding process control system, was aimed initially at the TIG welding of the end seals of nuclear fuel elements. The system provides for mixed multi-station operation with on-line real-time capability and can be used either as a research tool or for production requirements at competitive costs. The operation of the control system, the form of power source, and the servo motor control units are described. Typically, continuous or pulse-arc welding sequences can be digitally programmed on 0.1 sec increments, with current in 0.5 A increments up to a maximum of 256 A; up to three servo motors can be operated with speeds selected in 0.1 percent increments of their maximum. Up to six welding parameters can be monitored digitally at speeds from once every 10 msec. Some applications are described and it is shown that the equipment has wider uses outside the nuclear fuel element field. High quality industrial welding requirements can also be met and the system is not limited to the TIG process

  9. Advances in automatic welding control

    International Nuclear Information System (INIS)

    White, D.; Woodacre, A.; Taylor, A.F.

    1972-01-01

    The development at the Reactor Fuel Element Laboratories, UKAEA Springfields, of a computer-based welding process control system, was aimed initially at the TIG welding of the end seals of nuclear fuel elements. The system provides for mixed multi-station operation with on-line real-time capability and can be used either as a research tool or for production requirements at competitive costs. The operation of the control system, the form of power source and servo motor control units are described. Typically, continuous or pulse-arc welding sequences can be digitally programmed on 0.1 sec increments, with current in 0.5 A increments up to a maximum of 256 A; up to three servo motors can be operated with speeds selected in 0.1% increments of their maximum. Up to six welding parameters can be monitored digitally at speeds from once every 10 msec. Some applications are described and it is shown that the equipment has wider uses outside the nuclear fuel element field. High quality industrial welding requirements can also be met and the system is not limited to the TIG process. (author)

  10. Effect of Forced Convection Heat Transfer on Weld Pools.

    Science.gov (United States)

    1986-01-01

    Cooling Curves for GTAW Welds Superimposed on CCT Diagram ............. 26 11 - Photomacrographs Showing Weld Macrostructure (TS Plane...decomposition kinetics. Superposition of the weld metal cooling rates measured in this study on the CCT diagram shows that the time for nucleation and growth...m - TABLE 2 - TRANSFORMATION AND COOLING TIMES FROM CCT DIAGRAM *II I I. I I I Cooling Rate I Transformation I Time to Cool tL-I- I Heat Input I

  11. Automatic Control Of Length Of Welding Arc

    Science.gov (United States)

    Iceland, William F.

    1991-01-01

    Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.

  12. Melt pool and keyhole behaviour analysis for deep penetration laser welding

    International Nuclear Information System (INIS)

    Fabbro, R

    2010-01-01

    One usually defines the main characteristic of the welding performances of a given laser system by its 'penetration curve' that corresponds to the welding depth as a function of the welding speed V w for a given set of operating parameters. Analysis of a penetration curve is interesting and gives very fruitful results. Coupled with high-speed video imaging of melt pool surface and ejected plume behaviour, the analysis of this penetration curve on a very large range of welding speeds, typically from 0 to 50 m min -1 , has allowed us to observe very different and characteristic regimes. These regimes are mainly characterized by the physical processes by which they impede the laser beam penetration inside the material. We show that it is only at rather high welding speeds that these limiting processes are reduced. Consequently, the scaling law of welding depth with welding speed is in agreement with adapted modelling of this process. On the other hand, as the welding speed is reduced, different effects depending on the weld pool dynamics and plume interaction strongly disturb the keyhole stability and are responsible for the deviation of the penetration curve from the previous modelling that agrees with a 1/V w scaling law. A corresponding criterion for the occurrence of this effect is defined.

  13. A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding

    International Nuclear Information System (INIS)

    Pang Shengyong; Chen Liliang; Zhou Jianxin; Yin Yajun; Chen Tao

    2011-01-01

    A three-dimensional sharp interface model is proposed to investigate the self-consistent keyhole and weld pool dynamics in deep penetration laser welding. The coupling of three-dimensional heat transfer, fluid flow and keyhole free surface evolutions in the welding process is simulated. It is theoretically confirmed that under certain low heat input welding conditions deep penetration laser welding with a collapsing free keyhole could be obtained and the flow directions near the keyhole wall are upwards and approximately parallel to the keyhole wall. However, significantly different weld pool dynamics in a welding process with an unstable keyhole are numerically found. Many flow patterns in the welding process with an unstable keyhole, verified by x-ray transmission experiments, were successfully simulated and analysed. Periodical keyhole collapsing and bubble formation processes are also successfully simulated and believed to be in good agreement with experiments. The mechanisms of keyhole instability are found to be closely associated with the behaviour of humps on the keyhole wall, and it is found that the welding speed and surface tension are closely related to the formation of humps on the keyhole wall. It is also shown that the weld pool dynamics in laser welding with an unstable keyhole are closely associated with the transient keyhole instability and therefore modelling keyhole and weld pool in a self-consistent way is significant to understand the physics of laser welding.

  14. Using Taguchi method to optimize welding pool of dissimilar laser welded components

    OpenAIRE

    Anawa, E.; Olabi, Abdul-Ghani

    2008-01-01

    In the present work CO2 continuous laser welding process was successfully applied and optimized for joining a dissimilar AISI 316 stainless steel and AISI 1009 low carbon steel plates. Laser power, welding speed, and defocusing distance combinations were carefully selected with the objective of producing welded joint with complete penetration, minimum fusion zone size and acceptable welding profile. Fusion zone area and shape of dissimilar austenitic stainless steel with ferritic low carbon s...

  15. Welding skate with computerized controls

    Science.gov (United States)

    Wall, W. A., Jr.

    1968-01-01

    New welding skate concept for automatic TIG welding of contoured or double-contoured parts combines lightweight welding apparatus with electrical circuitry which computes the desired torch angle and positions a torch and cold-wire guide angle manipulator.

  16. Stochastic modeling of columnar dendritic grain growth in weld pool of Al-Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Z.B.; Tian, N. [The State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin (China); Wei, Y.H. [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing (China); The State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin (China); Zhan, X.H.

    2009-04-15

    A multi-scale model is used to simulate columnar dendritic growth in TIG (tungsten inert-gas) weld molten pool of Al-Cu alloy. The grain morphologies at the edge of the weld pool are studied. The simulated results indicate that the average primary dendrite spacing changes during the solidification process in the weld pool because of the complicated thermal field, solute diffusion field and competitive growth. And it is shown that the secondary dendrite arms grow insufficiently in the space between dendrite trunks if the primary dendrite spacing is small. And the phenomenon has been explained by analyzing the influence of the solute accumulation on the constitutional undercooling and undercooling gradient when there are two different opposite solute diffusion fields. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Use of Aria to simulate laser weld pool dynamics for neutron generator production.

    Energy Technology Data Exchange (ETDEWEB)

    Noble, David R.; Notz, Patrick K.; Martinez, Mario J.; Kraynik, Andrew Michael

    2007-09-01

    This report documents the results for the FY07 ASC Integrated Codes Level 2 Milestone number 2354. The description for this milestone is, 'Demonstrate level set free surface tracking capabilities in ARIA to simulate the dynamics of the formation and time evolution of a weld pool in laser welding applications for neutron generator production'. The specialized boundary conditions and material properties for the laser welding application were implemented and verified by comparison with existing, two-dimensional applications. Analyses of stationary spot welds and traveling line welds were performed and the accuracy of the three-dimensional (3D) level set algorithm is assessed by comparison with 3D moving mesh calculations.

  18. On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles

    International Nuclear Information System (INIS)

    Choo, R.T.C.; Szekely, J.; David, S.A.

    1992-01-01

    By combining a mathematical model of the welding arc and of the weld pool, calculations are presented here to describe the free surface temperature of weld pools for spot welding operations. The novel aspects of the treatment include the calculation of the heat and current fluxes falling on the free weld pool surface from first principles, a realistic allowance for heat losses due to vaporization, and a realistic allowance for the temperature dependence of the surface tension. The most important finding reported in this article is that the free surface temperature of weld pools appears to be limited by Marangoni convection, rather than heat losses due to vaporization. Furthermore, it was found that once thermocapillary flow can produce high enough surface velocities (>25 cm/s), the precise nature of the relationship between temperature and surface tension will become less important

  19. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho [Chungbuk National University, Cheongju (Korea, Republic of); Kim, Dong-Yoon; Kang, Moon-Jin [Korea Institute of Industrial Technology, Incheon (Korea, Republic of)

    2017-06-15

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  20. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    International Nuclear Information System (INIS)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho; Kim, Dong-Yoon; Kang, Moon-Jin

    2017-01-01

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  1. Grain refinement control in TIG arc welding

    Science.gov (United States)

    Iceland, W. F.; Whiffen, E. L. (Inventor)

    1975-01-01

    A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.

  2. [Impact of introduction of O2 on the welding arc of gas pool coupled activating TIG].

    Science.gov (United States)

    Huang, Yong; Wang, Yan-Lei; Zhang, Zhi-Guo

    2014-05-01

    In the present paper, Boltzmann plot method was applied to analyze the temperature distributions of the are plasma when the gas pool coupled activating TIG welding was at different coupling degrees with the outer gas being O2. Based on this study of temperature distributions, the changing regularities of are voltage and are appearance were studied. The result shows that compared with traditional TIG welding, the introduction of O2 makes the welding arc constricted slightly, the temperature of the are center build up, and the are voltage increase. When argon being the inner gas, oxygen serving as the outer gas instead of argon makes the are constricted more obviously. When the coupling degree increases from 0 to 2, the temperature of the are center and the are voltage both increase slightly. In the gas pool coupled activating TIG welding the are is constricted not obviously, and the reason why the weld penetration is improved dramatically in the welding of stainless steel is not are constriction.

  3. Mathematical modeling for prediction and optimization of TIG welding pool geometry

    Directory of Open Access Journals (Sweden)

    U. Esme

    2009-04-01

    Full Text Available In this work, nonlinear and multi-objective mathematical models were developed to determine the process parameters corresponding to optimum weld pool geometry. The objectives of the developed mathematical models are to maximize tensile load (TL, penetration (P, area of penetration (AP and/or minimize heat affected zone (HAZ, upper width (UW and upper height (UH depending upon the requirements.

  4. A control system for uniform bead in fillet arc welding on tack welds

    International Nuclear Information System (INIS)

    Kim, Jae Woong; Lee, Jun Young

    2008-01-01

    Positioning a workpiece accurately and preventing weld distortion, tack welding is often adopted before main welding in the construction of welded structures. However, this tack weld deteriorates the final weld bead profile, so that the grinding process is usually performed for a uniform weld bead profile. In this study, a control system for uniform weld bead is proposed for the fillet arc welding on tack welds. The system consists of GMA welding machine, torch manipulator, laser vision sensor for measuring the tack weld size and the database for optimal welding conditions. Experiments have been performed for constructing the database and for evaluating the control capability of the system. It has been shown that the system has the capability to smooth the bead at the high level of quality

  5. Towards and FVE-FAC Method for Determining Thermocapillary Effects on Weld Pool Shape

    Science.gov (United States)

    Canright, David; Henson, Van Emden

    1996-01-01

    Several practical materials processes, e.g., welding, float-zone purification, and Czochralski crystal growth, involve a pool of molten metal with a free surface, with strong temperature gradients along the surface. In some cases, the resulting thermocapillary flow is vigorous enough to convect heat toward the edges of the pool, increasing the driving force in a sort of positive feedback. In this work we examine this mechanism and its effect on the solid-liquid interface through a model problem: a half space of pure substance with concentrated axisymmetric surface heating, where surface tension is strong enough to keep the liquid free surface flat. The numerical method proposed for this problem utilizes a finite volume element (FVE) discretization in cylindrical coordinates. Because of the axisymmetric nature of the model problem, the control volumes used are torroidal prisms, formed by taking a polygonal cross-section in the (r, z) plane and sweeping it completely around the z-axis. Conservation of energy (in the solid), and conservation of energy, momentum, and mass (in the liquid) are enforced globally by integrating these quantities and enforcing conservation over each control volume. Judicious application of the Divergence Theorem and Stokes' Theorem, combined with a Crank-Nicolson time-stepping scheme leads to an implicit algebraic system to be solved at each time step. It is known that near the boundary of the pool, that is, near the solid-liquid interface, the full conduction-convection solution will require extremely fine length scales to resolve the physical behavior of the system. Furthermore, this boundary moves as a function of time. Accordingly, we develop the foundation of an adaptive refinement scheme based on the principles of Fast Adaptive Composite Grid methods (FAC). Implementation of the method and numerical results will appear in a later report.

  6. Development of laser weld monitoring system for PWR space grid

    International Nuclear Information System (INIS)

    Chung, Chin Man; Kim, Cheol Jung; Kim, Min Suk

    1998-06-01

    The laser welding monitoring system was developed to inspect PWR space grid welding for KNFC. The demands for this optical monitoring system were applied to Q.C. and process control in space grid welding. The thermal radiation signal from weld pool can be get the variation of weld pool size. The weld pool size and depth are verified by analyzed wavelength signals from weld pool. Applied this monitoring system in space grid weld, improved the weld productivity. (author). 4 refs., 5 tabs., 31 figs

  7. Laser welding closed-loop power control

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    2003-01-01

    A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser.......A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser....

  8. Preliminary study on detection technology of the cladding weld of spent fuel storage pool

    Science.gov (United States)

    Qi, Pan; Cui, Hongyan; Feng, Meiming; Shao, Wenbin; Liao, Shusheng; Li, Wei

    2018-04-01

    As the first barrier of the Spent fuel storage pool, the steel cladding using different sizes (length×width) of 304L stainless steel with 3˜6mm thickness plate argon arc welded together which is direct contacted with boric acid water. Environmental humidity between the back of steel cladding and concrete, makes phosphate, chloride ion overflowed from the concrete that corroded on the weld zone with different mechanism. Part of the corrosion defects can penetrate leaded to leakage of boric acid water in penetration position accelerated crack propagation. In view of the above situation and combined with the actual needs of the power plant, the development of effective underwater nondestructive testing means of the weld area for periodic inspection and monitoring is necessary. A single method may lead to the missing of defects detection due to weld reinforcement unpolished. In this paper, eddy current array (ARRAY) and Alternating Current Field Measurement (ACFM) are adapted to test the limit sensitivity and resolution through by the specimens with artificial defects which make their detection abilities close to satisfy engineering requirements. The preliminary study found that Φ0.5mm through-wall hole and with 2mm length and 0.3mm width through-wall crack in the weld can be good inspected.

  9. Adaptive control of penetration and joint following for robotic GTA welding

    International Nuclear Information System (INIS)

    Bahram Mir Sadeghi; Hishamuddin Jamaludin; Iskandar Baharin

    1997-01-01

    A statistical-based method for adaptive control of weld pool penetration and joint following in Tungsten Inert Gas Welding as an approach to process and trajectory control of robotic GTA welding has been designed and simulated. Welding process parameters such as: base current and time, pulse current and time, electrode tip to work piece distance, filler travelling speed, torch speed and work piece thickness were used for finding the equations which describe the interrelationship between the aforementioned variables and penetration depth as well as bead width. The calculation of these equations was developed from the statistical regression analysis of 80 welds deposited using various combinations of welding parameters. For monitoring of the work piece thickness variations, an ultrasonic device was used. In order to control the weld trajectory, a CCD camera was also used. The results showed that the misalignment of the progressive heat affected zone which is adjacent to the weld puddle can be detected, and used for control of the weld trajectory. Also, it was found that scanning of a certain region of the captured image in front of the weld puddle decreases the data processing time drastically

  10. Metallographic quality control of welding and brazing

    International Nuclear Information System (INIS)

    Slaughter, G.M.

    1979-01-01

    The value of metallography in assuring integrity in the fabrication of metal and components in energy systems is summarized. Metallography also plays an integral role in quality control of welded and brazed joints

  11. Automatic weld torch guidance control system

    Science.gov (United States)

    Smaith, H. E.; Wall, W. A.; Burns, M. R., Jr.

    1982-01-01

    A highly reliable, fully digital, closed circuit television optical, type automatic weld seam tracking control system was developed. This automatic tracking equipment is used to reduce weld tooling costs and increase overall automatic welding reliability. The system utilizes a charge injection device digital camera which as 60,512 inidividual pixels as the light sensing elements. Through conventional scanning means, each pixel in the focal plane is sequentially scanned, the light level signal digitized, and an 8-bit word transmitted to scratch pad memory. From memory, the microprocessor performs an analysis of the digital signal and computes the tracking error. Lastly, the corrective signal is transmitted to a cross seam actuator digital drive motor controller to complete the closed loop, feedback, tracking system. This weld seam tracking control system is capable of a tracking accuracy of + or - 0.2 mm, or better. As configured, the system is applicable to square butt, V-groove, and lap joint weldments.

  12. Novel low-cost vision-sensing technology with controllable of exposal time for welding

    Science.gov (United States)

    Zhang, Wenzeng; Wang, Bin; Chen, Nian; Cao, Yipeng

    2005-02-01

    In the process of robot Welding, position of welding seam and welding pool shape is detected by CCD camera for quality control and seam tracking in real-time. It is difficult to always get a clear welding image in some welding methods, such as TIG welding. A novel idea that the exposal time of CCD camera is automatically controlled by arc voltage or arc luminance is proposed to get clear welding image. A set of special device and circuits are added to a common industrial CCD camera in order to flexibly control the CCD to start or close exposal by control of the internal clearing signal of the accumulated charge. Two special vision sensors according to the idea are developed. Their exposal grabbing can be triggered respectively by the arc voltage and the variety of the arc luminance. Two prototypes have been designed and manufactured. Experiments show that they can stably grab clear welding images at appointed moment, which is a basic for the feedback control of automatic welding.

  13. Advanced Control Methods for Optimization of Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, J. S.

    Gas Metal Arc Welding (GMAW) is a proces used for joining pieces of metal. Probably, the GMAW process is the most successful and widely used welding method in the industry today. A key issue in welding is the quality of the welds produced. The quality of a weld is influenced by several factors...... in the overall welding process; one of these factors are the ability of the welding machine to control the process. The internal control algorithms in GMAW machines are the topic of this PhD project. Basically, the internal control includes an algorithm which is able to keep the electrode at a given distance...

  14. Advantages of new micro-jet welding technology on weld microstructure control

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2013-01-01

    Full Text Available An innovative apparatus to welding process with micro-jet cooling of the weld made it possible to carry out technological tests, which have proved theoretical considerations about this problem. This project gives real opportunities for professional development in the field of welding with controlling the parameters of weld structure. These tests have proved that the new micro-jet technology has the potential for growth. It may be great achievement of welding technology in order to increase weld metal strength. The new technology with micro-jet cooling may have many practical applications in many fields, for example such as in the transport industry or to repair damaged metal elements. The advantages of the new device over the traditional system are the ability to control the structure of the weld, the weld mechanical performance increases and improve the quality of welded joints.

  15. The effect of controlled shot peening on fusion welded joints

    International Nuclear Information System (INIS)

    Lah, Nur Azida Che; Ali, Aidy; Ismail, Napsiah; Chai, Lim Poon; Mohamed, Abdul Aziz

    2010-01-01

    This work examines the effect of controlled shot peening (CSP) treatment on the fatigue strength of an ASTM A516 grade 70 carbon steel welded joint. Metallurgical modifications, hardness, elemental compositions, and internal discontinuities, such as porosity, inclusions, lack of penetration, and undercut found in treated and untreated fusion welded joints, were characterized. The fatigue results of as-welded and peened skimmed joints were compared. It was observed that the effect of the CSP and skimming processes improved the fatigue life of the fusion weld by 50% on MMA-welded, 63% on MIG-welded, and 60% on TIG-welded samples.

  16. Heat Source - Materials Interactions during Fusion Welding.

    Science.gov (United States)

    1982-04-30

    the capabilities of ultrasonic weld pool measurement, and to address questions of applications to active pool size control. -- mom- 44 TIG welding ...preparation. The fraction of absorbed power increases dramatically upon formation of a keyhole . As a result, welds made with sharply beveled edge...laser end electron beam welding processes characteristically produce a deel,, narrow weld bead. This bead is formed by a keyhole mode of operation in

  17. Intelligent sensing and control of gas metal arc welding

    International Nuclear Information System (INIS)

    Smartt, H.B.; Johnson, J.A.

    1993-01-01

    Intelligent sensing and control is a multidisciplinary approach that attempts to build adequate sensing capability, knowledge of process physics, control capability, and welding engineering into the welding system such that the welding machine is aware of the state of the weld and knows how to make a good weld. The sensing and control technology should reduce the burden on the welder and welding engineer while providing the great adaptability needed to accommodate the variability found in the production world. This approach, accomplished with application of AI techniques, breaks the tradition of separate development of procedure and control technology

  18. Influence of weld discontinuities on strain controlled fatigue behavior of 308 stainless steel weld metal

    International Nuclear Information System (INIS)

    Bhanu Sankara Rao, K.; Valsan, M.; Sandhya, R.; Mannan, S.L.; Rodriguez, P.

    1994-01-01

    Detailed investigations have been performed for assessing the importance of weld discontinuities in strain controlled low cycle fatigue (LCF) behavior of 308 stainless steel (SS) welds. The LCF behavior of 308 SS welds containing defects was compared with that of type 304 SS base material and 308 SS sound weld metal. Weld pads were prepared by shielded metal arc welding process. Porosity and slag inclusions were introduced deliberately into the weld metal by grossly exaggerating the conditions normally causing such defects. Total axial strain controlled LCF tests have been conducted in air at 823 K on type 304 SS base and 308 SS sound weld metal employing strain amplitudes in the range from ±0.25 to ±0.8 percent. A single strain amplitude of ±0.25 percent was used for all the tests conducted on weld samples containing defects. The results indicated that the base material undergoes cyclic hardening whereas sound and defective welds experience cyclic softening. Base metal showed higher fatigue life than sound weld metal at all strain amplitudes. The presence of porosity and slag inclusions in the weld metal led to significant reduction in life. Porosity on the specimen surface has been found to be particularly harmful and caused a reduction in life by a factor of seven relative to sound weld metal

  19. Arc pressure control in GTA welding

    International Nuclear Information System (INIS)

    Cook, G.E.; Wells, F.M.; Levick, P.C.

    1986-01-01

    Relationships are established between the peak current of a pulsed, rectangular current waveform and the pulse current duty cycle under conditions of constant arc power. By appropriate choice of these interrelated parameters, it is shown that the arc pressure may be varied over a wide range even though the arc power is held constant. The methodology is suggested as a means of countering the effect of gravity in 5-G welding, while maintaining constant heat input to the weld. Combined with appropriate penetration sensors, the methodology is additionally suggested as a means of controlling penetration

  20. Control system of power supply for resistance welding machine

    Directory of Open Access Journals (Sweden)

    Світлана Костянтинівна Поднебенна

    2017-06-01

    Full Text Available This article describes the existing methods of heat energy stabilizing, which are realized in thyristor power supplies for resistance welding machines. The advantages and features of thyristor power supplies have been described. A control system of power supply for resistance welding machine with stabilization of heat energy in a welding spot has been developed. Measurements are performed in primary winding of a welding transformer. Weld spot heating energy is calculated as the difference between the energy, consumed from the mains, and the energy losses in the primary and secondary circuits of the welding transformer as well as the energy losses in the transformer core. Algorithms of digital signal processing of the developed control system are described in the article. All measurements and calculations are preformed automatically in real-time. Input signals to the control system are: transformer primary voltage and current, temperature of the welding circuit. The designed control system ensures control of the welding heat energy and is not influenced by the supply voltage and impedance changes caused by insertion of the ferromagnetic mass in the welding circuit, the temperature change during the welding process. The developed control system for resistance welding machine makes it possible to improve the quality of welded joints, increase the efficiency of the resistance welding machine

  1. Pitting Corrosion of the Resistance Welding Joints of Stainless Steel Ventilation Grille Operated in Swimming Pool Environment

    Directory of Open Access Journals (Sweden)

    Mirosław Szala

    2018-01-01

    Full Text Available This work focuses on the pitting corrosion of ventilation grilles operated in swimming pool environments. The ventilation grille was made by resistance welding of stainless steel rods. Based on the macroscopic and microscopic examinations, the mechanism of the pitting corrosion was confirmed. Chemical composition microanalysis of sediments as well as base metal using scanning electron microscopy and energy-dispersive spectroscopy (SEM-EDS method was carried out. The weldments did not meet the operating conditions of the swimming pool environment. The wear due to the pitting corrosion was identified in heat affected zones of stainless steel weldment and was more severe than the corrosion of base metal. The low quality finish of the joints and influence of the welding process on the weld metal microstructure lead to accelerated deposition of corrosion effecting elements such as chlorine.

  2. Experimental research on the dynamic behaviors of the keyhole and molten pool in laser deep-penetration welding

    Science.gov (United States)

    Zhang, Yi; Lin, Qida; Yin, Xuni; Li, Simeng; Deng, Jiquan

    2018-04-01

    Both the morphology and temperature are two important characteristics of the keyhole and the molten pool in laser deep-penetration welding. The modified ‘sandwich’ method was adopted to overcome the difficulty in obtaining inner information about the keyhole and the molten pool. Based on this method, experimental platforms were built for observing the variations in the surface morphology, the longitudinal keyhole profile and the internal temperature. The experimental results of three dynamic behaviors exbibit as follows. The key factor, which makes the pool width go into a quasi-steady state, lies in the balance between the vortex and the sideways flows around the keyhole. Experimental observation shows that the keyhole goes through three stages in laser welding: the rapid drilling stage, the slow drilling stage and the quasi-steady state. The time for achieving a relative fixed keyhole depth is close to the formation time of the maximum pool width. The internal temperatures inside the keyhole and the molten pool first experience a rapid increase, then a decrease and finally go into a quasi-steady state. Compared to that in the unstable stage, the liquid–metal uphill formed in the stable stage of laser welding has less influence on the internal temperature.

  3. Welding process decoupling for improved control

    International Nuclear Information System (INIS)

    Hardt, D.E.; Eagar, T.W.; Lang, J.H.; Jones, L.

    1993-01-01

    The Gas Metal Arc Welding Process is characterized by many important process outputs, all of which should be controlled to ensure consistent high performance joints. However, application of multivariable control methods is confounded by the strong physical coupling of typical outputs of bead shape and thermal properties. This coupling arises from the three dimensional thermal diffusion processes inherent in welding, and cannot be overcome without significant process modification. This paper presents data on the extent of coupling of the process, and proposes process changes to overcome such strong output coupling. Work in rapid torch vibration to change the heat input distribution is detailed, and methods for changing the heat balance between base and fill material heat are described

  4. Heat Control via Torque Control in Friction Stir Welding

    Science.gov (United States)

    Venable, Richard; Colligan, Kevin; Knapp, Alan

    2004-01-01

    In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).

  5. Possibility of designing television control system for welded joint formation on electron beam welding

    International Nuclear Information System (INIS)

    Lifshits, M.L.; Lobanova, N.G.

    1987-01-01

    Regression equations (models), connecting seam characteristics: width and depth with the welding bath leading front in joint gap and seam width respectively - are obtained at electron beam welding of circular articles with guaranteed clearance with application of television control system. Dispersion analysis showed the models adequancy to the process in the range, where they were identified

  6. Study of hybrid laser / MAG welding process: characterization of the geometry and the hydrodynamics of the melt pool and development of a 3D thermal model

    International Nuclear Information System (INIS)

    Le Guen, E.

    2010-11-01

    Hybrid laser/MIG-MAG welding shows high advantages compared to laser welding or GMAW arc welding used separately. Thanks to this process, higher productivity can be gained through higher welding speed, higher squeeze tolerance moreover possible improvement of the metallurgical properties of the weld seam can be obtained. However, many operating parameters have to be set up in order to achieve optimal process. The complex physical phenomena, which govern welding process, have to be understood in order to use efficiently this technique in mass production. Understanding of these phenomena is also necessary to program numerical simulations which fit to this process. In the first step, experimental studies have been carried out with GMAW, laser and hybrid welding on samples of S355 steel. Influence of operating parameters has been analyzed through films performed with speed camera and macro-graphies of weld seam cross section. Surface deformations of the melt pool, induced by the arc pressure, weld pool length, droplet detachment and welding speed, have been analyzed precisely from images of the surface melt pool. In a second step, a numerical model was developed using the COMSOL Multiphysics software for MAG, laser and hybrid laser/MAG welding processes. A 3D quasi-stationary model has been calculated from the temperature field within the metal. The originality of the MAG and hybrid model lies in the prediction of the melt pool surface profile used to determine the 3D geometry, by taking into account the material input. The influence of different parameters such as arc power and speed welding on the efficiency as well as the distribution radius of the arc power and the arc pressure are analyzed through validations with different experimental results and different calculation configurations. (author)

  7. FRICTION - WELDING MACHINE AUTOMATIC CONTROL CIRCUIT DESIGN AND APPLICATION

    OpenAIRE

    Hakan ATEŞ; Ramazan BAYINDIR

    2003-01-01

    In this work, automatic controllability of a laboratory-sized friction-welding machine has been investigated. The laboratory-sized friction-welding machine was composed of motor, brake, rotary and constant samples late pliers, and hydraulic unit. In automatic method, welding parameters such as friction time, friction pressure, forge time and forge pressure can be applied sensitively using time relays and contactors. At the end of the experimental study it's observed that automatic control sys...

  8. Low Speed Control for Automatic Welding

    Science.gov (United States)

    Iceland, W. E.

    1982-01-01

    Amplifier module allows rotating positioner of automatic welding machine to operate at speeds below normal range. Low speeds are precisely regulated by a servomechanism as are normal-range speeds. Addition of module to standard welding machine makes it unnecessary to purchase new equipment for low-speed welding.

  9. Electron backscattering for process control in electron beam welding

    International Nuclear Information System (INIS)

    Ardenne, T. von; Panzer, S.

    1983-01-01

    A number of solutions to the automation of electron beam welding is presented. On the basis of electron backscattering a complex system of process control has been developed. It allows an enlarged imaging of the material's surface, improved adjustment of the beam focusing and definite focus positioning. Furthermore, both manual and automated positioning of the electron beam before and during the welding process has become possible. Monitoring of the welding process for meeting standard welding requirements can be achieved with the aid of a control quantity derived from the results of electronic evaluation of the high-frequency electron backscattering

  10. Overview of advanced process control in welding within ERDA

    International Nuclear Information System (INIS)

    Armstrong, R.E.

    1977-01-01

    The special kinds of demands placed on ERDA weapons and reactors require them to have very reliable welds. Process control is critical in achieving this reliability. ERDA has a number of advanced process control projects underway with much of the emphasis being on electron beam welding. These include projects on voltage measurement, beam-current control, beam focusing, beam spot tracking, spike suppression, and computer control. A general discussion of process control in welding is followed by specific examples of some of the advanced joining process control projects in ERDA

  11. Towards predictive control of extrusion weld seams: an integrated approach

    NARCIS (Netherlands)

    Bakker, A.J. den; Werkhoven, R.J.; Sillekens, W.H.; Katgerman, L.

    2010-01-01

    Longitudinal weld seams are an intrinsic feature in hollow extrusions produced with porthole dies. The formation of longitudinal weld seams is a solid bonding process, controlled by the local conditions in the extrusion die. Being the weakest areas within the extrusion cross section, it is desirable

  12. Nondestructive control of residual stresses during welding and recharge processes

    International Nuclear Information System (INIS)

    Suarez, J.C.; Fernandez, L.M.; Cruz, C.; Merino, F.; Aragon, B.

    1993-01-01

    In this work, the stress state of material during welding and recharge processes is controlled with the help of Barkhausen effect. The changes, occurred in the longitudinal and transversal stress profile are show during deposition of welding rings. It is proved that the stress state of the base-material depends on the amount of recharge layers, deposited on it

  13. Torque Control of Friction Stir Welding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Longhurst Engineering, PLC and Vanderbilt University propose the innovation of torque control of friction stir welding (FSW) as a replacement to force control of...

  14. In-process monitoring and adaptive control for gap in micro butt welding with pulsed YAG laser

    International Nuclear Information System (INIS)

    Kawahito, Yousuke; Kito, Masayuki; Katayama, Seiji

    2007-01-01

    A gap is one of the most important issues to be solved in laser welding of a micro butt joint, because the gap results in welding defects such as underfilling or a non-bonded joint. In-process monitoring and adaptive control has been expected as one of the useful procedures for the stable production of sound laser welds without defects. The objective of this research is to evaluate the availability of in-process monitoring and adaptive control in micro butt welding of pure titanium rods with a pulsed neodymium : yttrium aluminium garnet (Nd : YAG) laser beam of a 150 μm spot diameter. It was revealed that a 45 μm narrow gap was detected by the remarkable jump in a reflected light intensity due to the formation of the molten pool which could bridge the gap. Heat radiation signal levels increased in proportion to the sizes of molten pools or penetration depths for the respective laser powers. As for adaptive control, the laser peak power was controlled on the basis of the reflected light or the heat radiation signals to stably produce a sound deeply penetrated weld reduced underfilling. In the case of a 100 μm gap, the underfilling was greatly reduced by half smaller than those made with a conventional rectangular pulse shape in seam welding as well as spot welding with a pulsed Nd : YAG laser beam. Consequently, the adaptive control of the laser peak power on the basis of in-process monitoring could reduce the harmful effects due to a gap in micro butt laser welding with a pulsed laser beam

  15. Welding distortion control in double walled KSTAR vacuum vessel fabrication

    International Nuclear Information System (INIS)

    Oh, D. W.; Lee, G. T.; Kim, H. K.; Yang, H. L.; Bak, J. S.

    2004-01-01

    The KSTAR(Korea Superconducting Tokamak Advanced Research) vacuum vessel is designed to be a double walled structure made of 12mm thick 316LN stainless steel with a D shaped cross-section about 4 m height. Vacuum vessel was pre-fabricated in two parts, 180 degree and 157.5 degree sectors in toroidal direction to meet the transportation purpose. These two parts have to be welded on site with ±2mm allowable fabrication tolerances. 1/3 scaled mock-up model was used to estimate the welding distortion and to ensure the weld quality of vacuum vessel. Gas Tungsten Arc Welding(GTAW), which has been approved by procedure qualification test, was used during mock-up test and vacuum vessel site fabrication. Welding distortion could be managed by allowing for distortion in opposite direction, by applying high restraint using lots of strong backs, by controlling the welding heat input with symmetrical welding sequence. The integrity of the site welding joint was assured by radiographic test, ultrasonic test and leak test with helium detecting method

  16. FRICTION - WELDING MACHINE AUTOMATIC CONTROL CIRCUIT DESIGN AND APPLICATION

    Directory of Open Access Journals (Sweden)

    Hakan ATEŞ

    2003-02-01

    Full Text Available In this work, automatic controllability of a laboratory-sized friction-welding machine has been investigated. The laboratory-sized friction-welding machine was composed of motor, brake, rotary and constant samples late pliers, and hydraulic unit. In automatic method, welding parameters such as friction time, friction pressure, forge time and forge pressure can be applied sensitively using time relays and contactors. At the end of the experimental study it's observed that automatic control system has been worked successfully.

  17. Automatic welding machine for piping

    International Nuclear Information System (INIS)

    Yoshida, Kazuhiro; Koyama, Takaichi; Iizuka, Tomio; Ito, Yoshitoshi; Takami, Katsumi.

    1978-01-01

    A remotely controlled automatic special welding machine for piping was developed. This machine is utilized for long distance pipe lines, chemical plants, thermal power generating plants and nuclear power plants effectively from the viewpoint of good quality control, reduction of labor and good controllability. The function of this welding machine is to inspect the shape and dimensions of edge preparation before welding work by the sense of touch, to detect the temperature of melt pool, inspect the bead form by the sense of touch, and check the welding state by ITV during welding work, and to grind the bead surface and inspect the weld metal by ultrasonic test automatically after welding work. The construction of this welding system, the main specification of the apparatus, the welding procedure in detail, the electrical source of this welding machine, the cooling system, the structure and handling of guide ring, the central control system and the operating characteristics are explained. The working procedure and the effect by using this welding machine, and the application to nuclear power plants and the other industrial field are outlined. The HIDIC 08 is used as the controlling computer. This welding machine is useful for welding SUS piping as well as carbon steel piping. (Nakai, Y.)

  18. Two-process approach to electron beam welding control

    International Nuclear Information System (INIS)

    Lastovirya, V.N.

    1987-01-01

    The analysis and synthesis of multi-dimensional welding control systems, which require the usage of computers, should be conducted within the temporal range. From the general control theory point two approaches - one-process and two-process - are possible to electron beam welding. In case of two-process approach, subprocesses of heat source formation and direct metal melting are separated. Two-process approach leads to two-profile control system and provides the complete controlability of electron beam welding within the frameworks of systems with concentrated, as well as, with distributed parameters. Approach choice for the given problem solution is determined, first of all, by stability degree of heat source during welding

  19. Controlling pool depth during VAR of Alloy 718

    Science.gov (United States)

    Lopez, F.; Beaman, J.; Williamson, R.; Evans, D.

    2016-07-01

    A longtime goal of superalloy producers has been to control the geometry of the liquid pool in solidifying ingots. Accurate pool depth control at appropriate values is expected to result in ingots free of segregation defects. This article describes an industrial VAR experiment in which a 430mm (17 in) diameter Alloy 718 electrode was melted into a 510mm (20 in) ingot. In the experiment, the depth of the liquid pool at the mid-radius was controlled to three different set-points: 137 mm (nominal), 193 mm (deep) and 118 mm (shallow). At each level, the pool depth was marked by a power cutback of several minutes. The ingot was sectioned and longitudinal slices were cut out. Analysis of the photographed ingot revealed that accurate control was obtained for both the nominal and deep pool cases, while the third one was not conclusive.

  20. Effect of process control mode on weld quality of friction stir welded plates

    Energy Technology Data Exchange (ETDEWEB)

    Shazly, Mostafa; Sorour, Sherif; Alian, Ahmed R. [Faculty of Engineering, The British University in Egypt, Cairo (Egypt)

    2016-01-15

    Friction stir welding (FSW) is a solid state welding process which requires no filler material where the heat input is generated by frictional energy between the tool and workpiece. The objective of the present work is to conduct a fully coupled thermomechanical finite element analysis based on Arbitrary Lagrangian Eulerian (ALE) formulation for both 'Force-Controlled' and 'Displacement-Controlled' FSW process to provide more detailed insight of their effect on the resulting joint quality. The developed finite element models use Johnson- Cook material model and temperature dependent physical properties for the welded plates. Efforts on proper modeling of the underlying process physics are done focusing on the heat generation of the tool/workpiece interface to overcome the shortcomings of previous investigations. Finite elements results show that 'Force-Controlled' FSW process provides better joint quality especially at higher traveling speed of the tool which comes to an agreement with published experimental results.

  1. Intelligent Control of Welding Gun Pose for Pipeline Welding Robot Based on Improved Radial Basis Function Network and Expert System

    Directory of Open Access Journals (Sweden)

    Jingwen Tian

    2013-02-01

    Full Text Available Since the control system of the welding gun pose in whole-position welding is complicated and nonlinear, an intelligent control system of welding gun pose for a pipeline welding robot based on an improved radial basis function neural network (IRBFNN and expert system (ES is presented in this paper. The structure of the IRBFNN is constructed and the improved genetic algorithm is adopted to optimize the network structure. This control system makes full use of the characteristics of the IRBFNN and the ES. The ADXRS300 micro-mechanical gyro is used as the welding gun position sensor in this system. When the welding gun position is obtained, an appropriate pitch angle can be obtained through expert knowledge and the numeric reasoning capacity of the IRBFNN. ARM is used as the controller to drive the welding gun pitch angle step motor in order to adjust the pitch angle of the welding gun in real-time. The experiment results show that the intelligent control system of the welding gun pose using the IRBFNN and expert system is feasible and it enhances the welding quality. This system has wide prospects for application.

  2. Method of controlling weld chamber purge and cover gas atmosphere

    International Nuclear Information System (INIS)

    Yeo, D.

    1992-01-01

    A method of controlling the gas atmosphere in a welding chamber includes detecting the absence of a fuel rod from the welding chamber and, in response thereto, initiating the supplying of a flow of argon gas to the chamber to purge air therefrom. Further, the method includes detecting the entry of a fuel rod in the welding chamber and, in response thereto, terminating the supplying of the flow of argon gas to the chamber and initiating the supplying of a flow of helium gas to the chamber to purge argon gas therefrom and displace the argon gas in the chamber. Also, the method includes detecting the withdrawal of the fuel rod from the welding chamber and, in response thereto, terminating the supplying of the flow of helium gas to the chamber and initiating the supplying of argon to the chamber to purge the air therefrom. The method also includes detecting the initiation of a weld cycle and, in response thereto, momentarily supplying a flow of argon gas to the welding electrode tip for initiating the welding arc. (Author)

  3. Control of GMA Butt Joint Welding Based on Neural Networks

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2004-01-01

    This paper presents results from an experimentally based research on Gas Metal Arc Welding (GMAW), controlled by the artificial neural network (ANN) technology. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a high degree of quality......-linear least square error minimization, has been used with the back-propagation algorithm for training the network, while a Bayesian regularization technique has been successfully applied for minimizing the risk of inexpedient over-training....

  4. Robotic weld overlay coatings for erosion control

    Science.gov (United States)

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB's.

  5. Robust Control of Welding Robot for Tracking a Rectangular Welding Line

    Directory of Open Access Journals (Sweden)

    Manh Dung Ngo

    2008-11-01

    Full Text Available This paper highlights a welding robot (WR for its end effector to track a rectangular welding line (RWL. The WR includes five actuators which use a DC motor as a power source. Two controllers are proposed to control the WR's end effector: a main controller and a servo controller. Firstly, based on WR's kinematic equations and its feedback errors using backstepping method the main controller is proposed to design the reference-inputs for the WR's actuators in order that the WR's end effector tracks the RWL. Secondly, based on the dynamic equation of WR's actuator, the servo controller is designed using an active disturbance rejection control method. Finally, a control system incorporated with the main controller and the servo controllers make the WR's end effector robustly track a RWL in the presence of the modeling uncertainty and disturbances during the welding process. In experiment, the main controller which has a function as a master of the control system links to the five servo controllers which have a function as a slave via I2C communication. The effectiveness of the proposed control system is proven through the simulation and experimental results.

  6. Robust Control of Welding Robot for Tracking a Rectangular Welding Line

    Directory of Open Access Journals (Sweden)

    Manh Dung Ngo

    2006-09-01

    Full Text Available This paper highlights a welding robot (WR for its end effector to track a rectangular welding line (RWL. The WR includes five actuators which use a DC motor as a power source. Two controllers are proposed to control the WR's end effector: a main controller and a servo controller. Firstly, based on WR's kinematic equations and its feedback errors using backstepping method the main controller is proposed to design the reference-inputs for the WR's actuators in order that the WR's end effector tracks the RWL. Secondly, based on the dynamic equation of WR's actuator, the servo controller is designed using an active disturbance rejection control method. Finally, a control system incorporated with the main controller and the servo controllers make the WR's end effector robustly track a RWL in the presence of the modeling uncertainty and disturbances during the welding process. In experiment, the main controller which has a function as a master of the control system links to the five servo controllers which have a function as a slave via I2C communication. The effectiveness of the proposed control system is proven through the simulation and experimental results.

  7. Weld metal grain refinement of aluminium alloy 5083 through controlled additions of Ti and B

    Energy Technology Data Exchange (ETDEWEB)

    Schempp, Philipp; Rethmeier, Michael [Federal Institute for Materials Research and Testing BAM, Berlin (Germany). Div. ' ' Safety of Joined Components' ' ; Fraunhofer Institute for Production Systems and Design Technology IPK, Berlin (Germany). Dept. ' ' Joining and Coating Technology' ' ; Schwenk, Christopher; Cross, Carl Edward [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2011-07-01

    The refinement of the weld metal grain structure may lead to a significant change in its mechanical properties and in the weldability of the base metal. One possibility to achieve weld metal grain refinement is the inoculation of the weld pool. In this study, it is shown how additions of titanium and boron influence the weld metal grain structure of GTA welds of the aluminium alloy 5083 (Al Mg4.5Mn0.7). For this purpose, inserts consisting of base metal and additions of the master alloy Al Ti5B1 have been cast, deposited in the base metal and fused in a GTA welding process. The increase of the Ti and B content led to a significant decrease of the weld metal mean grain size and to a change in grain shape. The results provide a basis for a more precise definition of the chemical composition of commercial filler wires and rods for aluminium arc welding. (orig.)

  8. Controlling Force and Depth in Friction Stir Welding

    Science.gov (United States)

    Adams, Glynn; Loftus, Zachary; McCormac, Nathan; Venable, Richard

    2005-01-01

    Feedback control of the penetration force applied to a pin tool in friction stir welding has been found to be a robust and reliable means for controlling the depth of penetration of the tool. This discovery has made it possible to simplify depth control and to weld with greater repeatability, even on workpieces with long weld joints. Prior to this discovery, depths of penetration in friction stir welding were controlled by hard-tooled roller assemblies or by depth actuators controlled by feedback from such external sensors as linear variable-differential transformers or laser-based devices. These means of control are limited: A hard-tooled roller assembly confines a pin tool to a preset depth that cannot be changed easily during the welding process. A measurement by an external sensor is only an indirect indicative of the depth of penetration, and computations to correlate such a measurement with a depth of penetration are vulnerable to error. The present force-feedback approach exploits the proportionality between the depth and the force of penetration Unlike a depth measurement taken by an external sensor, a force measurement can be direct because it can be taken by a sensor coupled directly to the pin tool. The reading can be processed through a modern electronic servo control system to control an actuator to keep the applied penetration force at the desired level. In comparison with the older depth-control methods described above, this method offers greater sensitivity to plasticizing of the workpiece metal and is less sensitive to process noise, resulting in a more consistent process. In an experiment, a tapered panel was friction stir welded while controlling the force of penetration according to this method. The figure is a plot of measurements taken during the experiment, showing that force was controlled with a variation of 200 lb (890 N), resulting in control of the depth of penetration with a variation of 0.004 in. (0.1 mm).

  9. Welding wire pressure sensor assembly

    Science.gov (United States)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  10. Welding wire velocity modelling and control using an optical sensor

    DEFF Research Database (Denmark)

    Nielsen, Kirsten M.; Pedersen, Tom S.

    2007-01-01

    In this paper a method for controlling the velocity of a welding wire at the tip of the handle is described. The method is an alternative to the traditional welding apparatus control system where the wire velocity is controlled internal in the welding machine implying a poor disturbance reduction....... To obtain the tip velocity a dynamic model of the wire/liner system is developed and verified.  In the wire/liner system it turned out that backlash and reflections are influential factors. An idea for handling the backlash has been suggested. In addition an optical sensor for measuring the wire velocity...... at the tip has been constructed. The optical sensor may be used but some problems due to focusing cause noise in the control loop demanding a more precise mechanical wire feed system or an optical sensor with better focusing characteristics....

  11. Design of cylindrical pipe automatic welding control system based on STM32

    Science.gov (United States)

    Chen, Shuaishuai; Shen, Weicong

    2018-04-01

    The development of modern economy makes the demand for pipeline construction and construction rapidly increasing, and the pipeline welding has become an important link in pipeline construction. At present, there are still a large number of using of manual welding methods at home and abroad, and field pipe welding especially lacks miniature and portable automatic welding equipment. An automated welding system consists of a control system, which consisting of a lower computer control panel and a host computer operating interface, as well as automatic welding machine mechanisms and welding power systems in coordination with the control system. In this paper, a new control system of automatic pipe welding based on the control panel of the lower computer and the interface of the host computer is proposed, which has many advantages over the traditional automatic welding machine.

  12. Automatic Welding Control Using a State Variable Model.

    Science.gov (United States)

    1979-06-01

    A-A10 610 NAVEAL POSTGRADUATE SCH4O.M CEAY CA0/ 13/ SAUTOMATIC WELDING CONTROL USING A STATE VARIABLE MODEL.W()JUN 79 W V "my UNCLASSIFIED...taverse Drive Unit // Jbint Path /Fixed Track 34 (servomotor positioning). Additional controls of heave (vertical), roll (angular rotation about the

  13. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    Science.gov (United States)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  14. Phenomenological study and modelling of weld behaviour for the control of GTA process by computer aided welding; Etude phenomenologique et modelisation du comportement du bain de fusion en soudage TIG en vue d'une application au controle du procede

    Energy Technology Data Exchange (ETDEWEB)

    Tissot, F.X

    1998-07-01

    The CEA-CEREM/LMS has been working on automation of arc welding processes for years. Particularly, a computer aided welding (CAW) system called 'SYLVARC' was developed to compensate the effects of any eventual disturbance, by means of a real-time control of the welding parameters. Images analysis of the topside weld pool permits to maintain its width at a nominal value. For each welding case, the control parameters have to be determined by considering the transient changes in the weld pool shape following a shift of the welding operating conditions around the nominal working setpoint. However, each corresponding empirical law do not allow any prediction nor any interpretation of the variations which are displayed. Thus, a theoretical model has been developed in this study, by using an analytical solution of heat conduction equations in the case of a Gaussian heat source, moving at constant speed at the surface of a thick plate. In parallel, a numerical approach using the finite elements code MARCUS has been carried out to validate the assumption that the eventual effects which could come from the chosen hypothesis (convection flows in the melt, latent heat transfers and temperature-dependence of the thermo-physical properties of the material are neglected) are constant for small variations around the working setpoint. This has shown that the weld behaviour around the working setpoint is easily predicted by the analytical model if restricted to conduction heat transfers. The using conditions of the model have been optimised as a result of a thorough parametric study. Experimental validations of the approach have been carried out focusing on the welding of stainless steel plates of low thickness. Particularly, in the case of a sharp step in the plate thickness, there is a good agreement of the simulation with the transient behaviour of the weld pool. (author)

  15. Welding.

    Science.gov (United States)

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  16. Electron Gun for Computer-controlled Welding of Small Components

    Czech Academy of Sciences Publication Activity Database

    Dupák, Jan; Vlček, Ivan; Zobač, Martin

    2001-01-01

    Roč. 62, 2-3 (2001), s. 159-164 ISSN 0042-207X R&D Projects: GA AV ČR IBS2065015 Institutional research plan: CEZ:AV0Z2065902 Keywords : Electron beam-welding machine * Electron gun * Computer- control led beam Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.541, year: 2001

  17. Neural Network-Based Resistance Spot Welding Control and Quality Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D., Jr.; Ivezic, N.D.; Zacharia, T.

    1999-07-10

    This paper describes the development and evaluation of neural network-based systems for industrial resistance spot welding process control and weld quality assessment. The developed systems utilize recurrent neural networks for process control and both recurrent networks and static networks for quality prediction. The first section describes a system capable of both welding process control and real-time weld quality assessment, The second describes the development and evaluation of a static neural network-based weld quality assessment system that relied on experimental design to limit the influence of environmental variability. Relevant data analysis methods are also discussed. The weld classifier resulting from the analysis successfldly balances predictive power and simplicity of interpretation. The results presented for both systems demonstrate clearly that neural networks can be employed to address two significant problems common to the resistance spot welding industry, control of the process itself, and non-destructive determination of resulting weld quality.

  18. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... Ferrite Content in Stainless Steel Weld Metal.'' This guide (Revision 4) describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. It updates the...

  19. Hybrid Control and Verification of a Pulsed Welding Process

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Larsen, Jesper Abildgaard; Izadi-Zamanabadi, Roozbeh

    Currently systems, which are desired to control, are becoming more and more complex and classical control theory objectives, such as stability or sensitivity, are often not sufficient to cover the control objectives of the systems. In this paper it is shown how the dynamics of a pulsed welding...... process can be reformulated into a timed automaton hybrid setting and subsequently properties such as reachability and deadlock absence is verified by the simulation and verification tool UPPAAL....

  20. Sensor controlled robotic welding for nuclear applications. Annual progress report

    International Nuclear Information System (INIS)

    Chin, B.A.; Madsen, N.H.; Goodling, J.S.

    1986-01-01

    Significant accomplishments towards the development of an adaptive robotic welding system have been made during the first eight months of the project. The project is currently within budget and on schedule. Accomplishments were both scientific and programmatic in form. A list of the scientific accomplishments follows: demonstrated that the thermal profiles generated for intentionally induced defects during the welding process are similar in steel, aluminum and stainless steel. The conclusion is therefore that infrared sensing is applicable to the welding of over 90% of all materials used in the energy industry. Completed design and testing of a first generation communication system used to transfer information from the infrared camera to the computer in a near real time form. This demonstrates that information can be obtained, sorted, transferred and received in a time frame consistent with on-line process control. Demonstrated rudimentary seam tracking using infrared sensing and closed loop logic routines. A linear relationship exists between measured peak surface temperature and depth of penetration. Similarily, a linear relationship exists between measured infrared width and weld bead width. These relations suggest that penetration parameters may be controlled using surface measurements as obtained by infrared thermography

  1. In Silico Pooling of ChIP-seq Control Experiments

    Science.gov (United States)

    Sun, Guannan; Srinivasan, Rajini; Lopez-Anido, Camila; Hung, Holly A.; Svaren, John; Keleş, Sündüz

    2014-01-01

    As next generation sequencing technologies are becoming more economical, large-scale ChIP-seq studies are enabling the investigation of the roles of transcription factor binding and epigenome on phenotypic variation. Studying such variation requires individual level ChIP-seq experiments. Standard designs for ChIP-seq experiments employ a paired control per ChIP-seq sample. Genomic coverage for control experiments is often sacrificed to increase the resources for ChIP samples. However, the quality of ChIP-enriched regions identifiable from a ChIP-seq experiment depends on the quality and the coverage of the control experiments. Insufficient coverage leads to loss of power in detecting enrichment. We investigate the effect of in silico pooling of control samples within multiple biological replicates, multiple treatment conditions, and multiple cell lines and tissues across multiple datasets with varying levels of genomic coverage. Our computational studies suggest guidelines for performing in silico pooling of control experiments. Using vast amounts of ENCODE data, we show that pairwise correlations between control samples originating from multiple biological replicates, treatments, and cell lines/tissues can be grouped into two classes representing whether or not in silico pooling leads to power gain in detecting enrichment between the ChIP and the control samples. Our findings have important implications for multiplexing samples. PMID:25380244

  2. PC-based arc ignition and arc length control system for gas tungsten arc welding

    International Nuclear Information System (INIS)

    Liu, Y.; Cook, G.E.; Barnett, R.J.; Springfield, J.F.

    1992-01-01

    In this paper, a PC-based digital control system for gas tungsten arc welding (GTAW) is presented. This system controls the arc ignition process, the arc length, and the process of welding termination. A DT2818 made by Data Translation is used for interface and A/D and D/A conversions. The digital I/O ports of the DT2818 are used for control of wirefeed, shield gas, cooling water, welding power supply, etc. The DT2818 is housed in a PC. The welding signals and status are displayed on the screen for in-process monitoring. A user can control the welding process by the keyboard

  3. Pulsed TIG welding in the fabrication of nuclear components and structures

    International Nuclear Information System (INIS)

    Lucas, W.; Males, B.O.

    1979-01-01

    TIG welding is an important welding technique in nuclear plant fabrication for the welding of critical components and structures where a high level of weld integrity is demanded. Whilst the process is ideally suited to precision welding, since the arc is a small intense heat source, it has proved to be somewhat intolerant to production variations in 'difficult' applications, such as tube to tube plate welding and orbital tube welding with tube in the fixed position. Whilst the problems directly associated with this intolerance (of the welding process) are less frequently observed when used manually, difficulties are experienced in fully mechanised welding operations particularly when welding to a relatively rigid approved procedure. Pulsing of the welding current was developed as a technique to achieve greater control of the behaviour of the weld pool. Instead of moving the weld pool in a continuous motion around the joint, welding was conducted intermittently in the form of overlapping spots. This technique, which offers significant advantages over continuous current welding has been exploited in nuclear fabrication for welding those components which demand a high level of weld quality. In this paper, the essential features of this technique are described and, in indicating its advantages, examples have been drawn from recent experiences on the welding of two types of joint for the Advanced Gas Cooled Reactor, a tube sheet and a butt joint in the G Position. (author)

  4. Vision of the Arc for Quality Documentation and for Closed Loop Control of the Welding Process

    DEFF Research Database (Denmark)

    Kristiansen, Morten; Kristiansen, Ewa; Jensen, Casper Houmann

    2014-01-01

    For gas metal arc welding a vision system was developed, which was robust to monitor the position of the arc. The monitoring documents the welding quality indirectly and a closed loop fuzzy control was implemented to control an even excess penetration. For welding experiments on a butt......-joint with a V-groove with varying root gapthe system demonstrated increased welding quality compared to the system with no control. The system was implemented with a low cost vision system, which makes the system interesting to apply in industrial welding automation systems....

  5. Design, implementation and testing of a fuzzy control scheme for laser welding

    NARCIS (Netherlands)

    Jauregui Becker, Juan Manuel; Aalderink, B.J.; Aalderink, Benno; Aarts, Ronald G.K.M.; Olde Benneker, Jeroen; Meijer, J.

    2008-01-01

    A fuzzy logic controller (FLC) scheme has been developed for laser welding. Process light emissions are measured and combined to determine the current status of the welding process. If the process is not in a desired welding state, the FLC will adapt the laser power. The FLC has been demonstrated

  6. Spectroscopic analysis technique for arc-welding process control

    Science.gov (United States)

    Mirapeix, Jesús; Cobo, Adolfo; Conde, Olga; Quintela, María Ángeles; López-Higuera, José-Miguel

    2005-09-01

    The spectroscopic analysis of the light emitted by thermal plasmas has found many applications, from chemical analysis to monitoring and control of industrial processes. Particularly, it has been demonstrated that the analysis of the thermal plasma generated during arc or laser welding can supply information about the process and, thus, about the quality of the weld. In some critical applications (e.g. the aerospace sector), an early, real-time detection of defects in the weld seam (oxidation, porosity, lack of penetration, ...) is highly desirable as it can reduce expensive non-destructive testing (NDT). Among others techniques, full spectroscopic analysis of the plasma emission is known to offer rich information about the process itself, but it is also very demanding in terms of real-time implementations. In this paper, we proposed a technique for the analysis of the plasma emission spectrum that is able to detect, in real-time, changes in the process parameters that could lead to the formation of defects in the weld seam. It is based on the estimation of the electronic temperature of the plasma through the analysis of the emission peaks from multiple atomic species. Unlike traditional techniques, which usually involve peak fitting to Voigt functions using the Levenberg-Marquardt recursive method, we employ the LPO (Linear Phase Operator) sub-pixel algorithm to accurately estimate the central wavelength of the peaks (allowing an automatic identification of each atomic species) and cubic-spline interpolation of the noisy data to obtain the intensity and width of the peaks. Experimental tests on TIG-welding using fiber-optic capture of light and a low-cost CCD-based spectrometer, show that some typical defects can be easily detected and identified with this technique, whose typical processing time for multiple peak analysis is less than 20msec. running in a conventional PC.

  7. Passive Visual Sensing in Automatic Arc Welding

    DEFF Research Database (Denmark)

    Liu, Jinchao

    For decades much work has been devoted to the research and development of automatic arc welding systems. However, it has remained a challenging problem. Besides the very complex arc welding process itself, the lack of ability to precisely sense the welding process, including the seam geometry...... and the weld pool, has also prevented the realization of a closed-loop control system for many years, even though a variety of sensors have been developed. Among all the sensor systems, visual sensors have the advantage of receiving visual information and have been drawn more and more attentions. Typical...... industrial solutions for seam detection such as using laser scanners suer from several limitations. For instance, it must be positioned some distance ahead to the molten pool and may cause problem when dealing with shiny surfaces. Existing techniques for weld pool sensing mostly rely on auxiliary light...

  8. Study on Intelligent Control of Metal Filling System by Welding Robots in the Open Environment

    Directory of Open Access Journals (Sweden)

    Wei Fu

    2014-08-01

    Full Text Available robot model of three-arm and five-degree freedom plus large scope of traversing welding was established, and decoupling of models of “large scope of traversing”, “triangle movement of two arms” and “spherical movement of one arm” was realized. The model of “triangle movement of two arms ”is able to use geometrical calculation to solve the kinematics inverse problem , avoid the multiplicity, improve the calculation speed, eliminate the blind spots of the motions of welding gun of welding robot, and simplify the kinematic pair of kinematic mechanism for the arc filling strategy during welding travelling of robot. Binocular stereo vision camera was used to detect the edges of welds, and laser array sensor was used to detect the amount of metal filling of welds. In completely open conditions, feedback was fused based on sensor data to realize the welding tracking control by welding robot.

  9. Work organisation and quality control in a welding robotic cell

    OpenAIRE

    Moniz, António

    1993-01-01

    In this paper is analyzed the work organization and the forms of quality control in a robotic welding station in a company of office equipment and metal components manufacturing. The robotic cell is recent and works in two shifts. Quality and production rationalization implied in this firms the adoption of a strategy of organization of teamwork, and it is supported the collaborative tools to decrease the possibilities for errors and to improve means and methods of manufacturing. The analysis ...

  10. Design of Boiler Welding for Improvement of Lifetime and Cost Control

    OpenAIRE

    Thong-On, Atcharawadi; Boonruang, Chatdanai

    2016-01-01

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of F...

  11. Disinfection Methods for Swimming Pool Water: Byproduct Formation and Control

    Directory of Open Access Journals (Sweden)

    Huma Ilyas

    2018-06-01

    Full Text Available This paper presents a comprehensive and critical comparison of 10 disinfection methods of swimming pool water: chlorination, electrochemically generated mixed oxidants (EGMO, ultraviolet (UV irradiation, UV/chlorine, UV/hydrogen peroxide (H2O2, UV/H2O2/chlorine, ozone (O3/chlorine, O3/H2O2/chlorine, O3/UV and O3/UV/chlorine for the formation, control and elimination of potentially toxic disinfection byproducts (DBPs: trihalomethanes (THMs, haloacetic acids (HAAs, haloacetonitriles (HANs, trihaloacetaldehydes (THAs and chloramines (CAMs. The statistical comparison is carried out using data on 32 swimming pools accumulated from the reviewed studies. The results indicate that O3/UV and O3/UV/chlorine are the most promising methods, as the concentration of the studied DBPs (THMs and HANs with these methods was reduced considerably compared with chlorination, EGMO, UV irradiation, UV/chlorine and O3/chlorine. However, the concentration of the studied DBPs including HAAs and CAMs remained much higher with O3/chlorine compared with the limits set by the WHO for drinking water quality. Moreover, the enhancement in the formation of THMs, HANs and CH with UV/chlorine compared with UV irradiation and the increase in the level of HANs with O3/UV/chlorine compared with O3/UV indicate the complexity of the combined processes, which should be optimized to control the toxicity and improve the quality of swimming pool water.

  12. Automatic reel controls filler wire in welding machines

    Science.gov (United States)

    Millett, A. V.

    1966-01-01

    Automatic reel on automatic welding equipment takes up slack in the reel-fed filler wire when welding operation is terminated. The reel maintains constant, adjustable tension on the wire during the welding operation and rewinds the wire from the wire feed unit when the welding is completed.

  13. Numerical modeling of keyhole dynamics in laser welding

    Science.gov (United States)

    Zhang, Wen-Hai; Zhou, Jun; Tsai, Hai-Lung

    2003-03-01

    Mathematical models and the associated numerical techniques have been developed to study the following cases: (1) the formation and collapse of a keyhole, (2) the formation of porosity and its control strategies, (3) laser welding with filler metals, and (4) the escape of zinc vapor in laser welding of galvanized steel. The simulation results show that the formation of porosity in the weld is caused by two competing mechanisms: one is the solidification rate of the molten metal and the other is the speed that molten metal backfills the keyhole after laser energy is terminated. The models have demonstrated that porosity can be reduced or eliminated by adding filler metals, controlling laser tailing power, or applying an electromagnetic force during keyhole collapse process. It is found that a uniform composition of weld pool is difficult to achieve by filler metals due to very rapid solidification of the weld pool in laser welding, as compared to that in gas metal arc welding.

  14. Robot welding process control development task

    Science.gov (United States)

    Romine, Peter L.

    1992-01-01

    The completion of, and improvements made to, the software developed during 1990 for program maintenance on the PC and HEURIKON and transfer to the CYRO, and integration of the Rocketdyne vision software with the CYRO is documented. The new programs were used successfully by NASA, Rocketdyne, and UAH technicians and engineers to create, modify, upload, download, and control CYRO NC programs.

  15. Modeling and control of a DC upset resistance butt welding process

    NARCIS (Netherlands)

    Naus, G.J.L.; Meulenberg, R.; Molengraft, van de M.J.G.

    2007-01-01

    This paper presents the analysis and synthesis of modeling and control of the DC upset resistance butt welding process used in rim production lines. A new control strategy is developed, enabling active control of the welding seam temperature and the upset size. As a result, set-up times and energy

  16. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2012-10-03

    ... NUCLEAR REGULATORY COMMISSION [[NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... draft regulatory guide (DG), DG-1279, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in...

  17. Investigation and control of factors influencing resistance upset butt welding.

    OpenAIRE

    Kerstens, N.F.H.

    2010-01-01

    The purpose of this work is to investigate the factors influencing the resistance upset butt welding process to obtain an understanding of the metal behaviour and welding process characteristics, so that new automotive steels can be welded with reduced development time and fewer failures in production. In principle the welding process is rather simple, the materials to be joined are clamped between two electrodes and pressed together. Because there is an interface present with a higher resist...

  18. Investigation and control of factors influencing resistance upset butt welding.

    NARCIS (Netherlands)

    Kerstens, N.F.H.

    2010-01-01

    The purpose of this work is to investigate the factors influencing the resistance upset butt welding process to obtain an understanding of the metal behaviour and welding process characteristics, so that new automotive steels can be welded with reduced development time and fewer failures in

  19. Mechanisms of the porosity formation during the fiber laser lap welding of aluminium alloy

    Directory of Open Access Journals (Sweden)

    J. Wang

    2015-10-01

    Full Text Available When joining the aluminum alloys, one of the biggest challenges is the formation of porosity, which deteriorates mechanical properties of welds. In this study, the lap welding was conducted on an aluminum alloy 5754 metal sheets with a thickness of 2 mm. The effects of various laser welding parameters on the weld quality were investigated. The porosity content was measured by X-ray inspections. The key is to control the solidification duration of molten pool. When the solidification duration of molten pool is large enough, more bubbles can escape from the molten pool and less remain as porosity.

  20. Exposure to welding fumes increases lung cancer risk among light smokers but not among heavy smokers: evidence from two case–control studies in Montreal

    Science.gov (United States)

    Vallières, Eric; Pintos, Javier; Lavoué, Jérôme; Parent, Marie-Élise; Rachet, Bernard; Siemiatycki, Jack

    2012-01-01

    We investigated relationships between occupational exposure to gas and arc welding fumes and the risk of lung cancer among workers exposed to these agents throughout the spectrum of industries. Two population-based case–control studies were conducted in Montreal. Study I (1979–1986) included 857 cases and 1066 controls, and Study II (1996–2001) comprised 736 cases and 894 controls. Detailed job histories were obtained by interview and evaluated by an expert team of chemist–hygienists to estimate degree of exposure to approximately 300 substances for each job. Gas and arc welding fumes were among the agents evaluated. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer using logistic regression, adjusting for smoking history and other covariates. The two studies provided similar results, so a pooled analysis was conducted. Among all subjects, no significant association was found between lung cancer and gas welding fumes (OR = 1.1; 95% CI = 0.9–1.4) or arc welding fumes (OR = 1.0; 95% CI = 0.8–1.2). However, when restricting attention to light smokers, there was an increased risk of lung cancer in relation to gas welding fumes (OR = 2.9; 95% CI = 1.7–4.8) and arc welding fumes (OR = 2.3; 95% CI = 1.3–3.8), with even higher OR estimates among workers with the highest cumulative exposures. In conclusion, there was no detectable excess risk of lung cancer due to welding fumes among moderate to heavy smokers; but among light smokers we found an excess risk related to both types of welding fumes. PMID:23342253

  1. Exposure to welding fumes increases lung cancer risk among light smokers but not among heavy smokers: evidence from two case-control studies in Montreal.

    Science.gov (United States)

    Vallières, Eric; Pintos, Javier; Lavoué, Jérôme; Parent, Marie-Élise; Rachet, Bernard; Siemiatycki, Jack

    2012-08-01

    We investigated relationships between occupational exposure to gas and arc welding fumes and the risk of lung cancer among workers exposed to these agents throughout the spectrum of industries. Two population-based case-control studies were conducted in Montreal. Study I (1979-1986) included 857 cases and 1066 controls, and Study II (1996-2001) comprised 736 cases and 894 controls. Detailed job histories were obtained by interview and evaluated by an expert team of chemist-hygienists to estimate degree of exposure to approximately 300 substances for each job. Gas and arc welding fumes were among the agents evaluated. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer using logistic regression, adjusting for smoking history and other covariates. The two studies provided similar results, so a pooled analysis was conducted. Among all subjects, no significant association was found between lung cancer and gas welding fumes (OR = 1.1; 95% CI = 0.9-1.4) or arc welding fumes (OR = 1.0; 95% CI = 0.8-1.2). However, when restricting attention to light smokers, there was an increased risk of lung cancer in relation to gas welding fumes (OR = 2.9; 95% CI = 1.7-4.8) and arc welding fumes (OR = 2.3; 95% CI = 1.3-3.8), with even higher OR estimates among workers with the highest cumulative exposures. In conclusion, there was no detectable excess risk of lung cancer due to welding fumes among moderate to heavy smokers; but among light smokers we found an excess risk related to both types of welding fumes.

  2. Control of Hydrogen Embrittlement in High Strength Steel Using Special Designed Welding Wire

    Science.gov (United States)

    2016-03-01

    microstructure 4. A low near ambient temperature is reached. • All four factor must be simultaneously present 3 Mitigating HIC and Improving Weld Fatigue...Performance Through Weld Residual Stress Control UNCLASIFIED:DISTRIBUTION A. Approved for public release: distribution unlimited. Click to edit Master...title style 4 • Welding of Armor Steels favors all these conditions for HIC • Hydrogen Present in Sufficient Degree – Derived from moisture in the

  3. Environmental controls of C, N and P biogeochemistry in peatland pools.

    Science.gov (United States)

    Arsenault, Julien; Talbot, Julie; Moore, Tim R

    2018-08-01

    Pools are common in northern peatlands but studies have seldom focused on their nutrient biogeochemistry, especially in relation to their morphological characteristics and through seasons. We determined the environmental characteristics controlling carbon (C), nitrogen (N) and phosphorus (P) biogeochemistry in pools and assessed their evolution over the course of the 2016 growing season in a subboreal ombrotrophic peatland of eastern Canada. We showed that water chemistry variations in 62 pools were significantly explained by depth (81.9%) and the surrounding vegetation type (14.8%), but not by pool area or shape. Shallow pools had larger dissolved organic carbon (DOC) and total nitrogen (TN) concentrations and lower pH than deep pools, while pools surrounded by coniferous trees had more recalcitrant DOC than pools where vegetation was dominated by mosses. The influence of depth on pool biogeochemistry was confirmed by the seasonal survey of pools of different sizes with 47.1% of the variation in pool water chemistry over time significantly explained. Of this, 67.3% was explained by the interaction between time and pool size and 32.7% by pool size alone. P concentrations were small in all pools all summer long and combined with high N:P ratios, are indicative of P-limitation. Our results show that pool biogeochemistry is influenced by internal processes and highlight the spatial and temporal heterogeneity of nutrient biogeochemistry in ombrotrophic peatlands. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Significance of the Resonance Condition for Controlling the Seam Position in Laser-assisted TIG Welding

    Science.gov (United States)

    Emde, B.; Huse, M.; Hermsdorf, J.; Kaierle, S.; Wesling, V.; Overmeyer, L.; Kozakov, R.; Uhrlandt, D.

    As an energy-preserving variant of laser hybrid welding, laser-assisted arc welding uses laser powers of less than 1 kW. Recent studies have shown that the electrical conductivity of a TIG welding arc changes within the arc in case of a resonant interaction between laser radiation and argon atoms. This paper presents investigations on how to control the position of the arc root on the workpiece by means of the resonant interaction. Furthermore, the influence on the welding result is demonstrated. The welding tests were carried out on a cooled copper plate and steel samples with resonant and non-resonant laser radiation. Moreover, an analysis of the weld seam is presented.

  5. The Design of Intelligent Repair Welding Mechanism and Relative Control System of Big Gear

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available Effective repair of worn big gear has large influence on ensuring safety production and enhancing economic benefits. A kind of intelligent repair welding method was put forward mainly aimed at the big gear restriction conditions of high production cost, long production cycle and high- intensity artificial repair welding work. Big gear repair welding mechanism was designed in this paper. The work principle and part selection of big gear repair welding mechanism was introduced. The three dimensional mode of big gear repair welding mechanism was constructed by Pro/E three dimensional design software. Three dimensional motions can be realized by motor controlling ball screw. According to involute gear feature, the complicated curve motion on curved gear surface can be transformed to linear motion by orientation. By this way, the repair welding on worn gear area can be realized. In the design of big gear repair welding mechanism control system, Siemens S7-200 series hardware was chosen. Siemens STEP7 programming software was chosen as system design tool. The entire repair welding process was simulated by experiment simulation. It provides a kind of practical and feasible method for the intelligent repair welding of big worn gear.

  6. Controls on the size and occurrence of pools in coarse-grained forest rivers

    Science.gov (United States)

    John M. Buffington; Thomas E. Lisle; Richard D. Woodsmith; Sue Hilton

    2002-01-01

    Controls on pool formation are examined in gravel- and cobble-bed rivers in forest mountain drainage basins of northern California, southern Oregon, and southeastern Alaska. We demonstrate that the majority of pools at our study sites are formed by flow obstructions and that pool geometry and frequency largely depend on obstruction characteristics (size, type, and...

  7. Controls on Filling and Evacuation of Sediment in Waterfall Plunge Pools

    Science.gov (United States)

    Scheingross, J. S.; Lamb, M. P.

    2014-12-01

    Many waterfalls are characterized by the presence of deep plunge pools that experience periods of sediment fill and evacuation. These cycles of sediment fill are a first order control on the relative magnitude of lateral versus vertical erosion at the base of waterfalls, as vertical incision requires cover-free plunge pools to expose the bedrock floor, while lateral erosion can occur when pools are partially filled and plunge-pool walls are exposed. Currently, there exists no mechanistic model describing sediment transport through waterfall plunge pools, limiting our ability to predict waterfall retreat. To address this knowledge gap, we performed detailed laboratory experiments measuring plunge-pool sediment transport capacity (Qsc_pool) under varying waterfall and plunge-pool geometries, flow hydraulics, and sediment size. Our experimental plunge-pool sediment transport capacity measurements match well with a mechanistic model we developed which combines existing waterfall jet theory with a modified Rouse profile to predict sediment transport capacity as a function of water discharge and suspended sediment concentration at the plunge-pool lip. Comparing the transport capacity of plunge pools to lower gradient portions of rivers (Qsc_river) shows that, for transport limited conditions, plunge pools fill with sediment under modest water discharges when Qsc_river > Qsc_pool, and empty to bedrock under high discharges when Qsc_pool > Qsc_river. These results are consistent with field observations of sand-filled plunge pools with downstream boulder rims, implying filling and excavation of plunge pools over single-storm timescales. Thus, partial filling of waterfall plunge pools may provide a mechanism to promote lateral undercutting and retreat of waterfalls in homogeneous rock in which plunge-pool vertical incision occurs during brief large floods that expose bedrock, whereas lateral erosion may prevail during smaller events.

  8. Pulse current gas metal arc welding characteristics, control and applications

    CERN Document Server

    Ghosh, Prakriti Kumar

    2017-01-01

    This monograph is a first-of-its-kind compilation on high deposition pulse current GMAW process. The nine chapters of this monograph may serve as a comprehensive knowledge tool to use advanced welding engineering in prospective applications. The contents of this book will prove useful to the shop floor welding engineer in handling this otherwise critical welding process with confidence. It will also serve to inspire researchers to think critically on more versatile applications of the unique nature of pulse current in GMAW process to develop cutting edge welding technology.

  9. Study on robot motion control for intelligent welding processes based on the laser tracking sensor

    Science.gov (United States)

    Zhang, Bin; Wang, Qian; Tang, Chen; Wang, Ju

    2017-06-01

    A robot motion control method is presented for intelligent welding processes of complex spatial free-form curve seams based on the laser tracking sensor. First, calculate the tip position of the welding torch according to the velocity of the torch and the seam trajectory detected by the sensor. Then, search the optimal pose of the torch under constraints using genetic algorithms. As a result, the intersection point of the weld seam and the laser plane of the sensor is within the detectable range of the sensor. Meanwhile, the angle between the axis of the welding torch and the tangent of the weld seam meets the requirements. The feasibility of the control method is proved by simulation.

  10. A Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    1997-01-01

    A prototype shield gas box with different plasma control nozzles have been investigated for laser welding of stainless steel (AISI 316). Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and gas flows show the impact on process...... stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds...... are oxide free. With 2.7 kW power welds have been performed at 4000 mm/min with Ar / He (70%/30%) as coaxial, plasma and shield gas....

  11. Quality assurance and control for robotic GMA welding

    International Nuclear Information System (INIS)

    Xie Max X.

    1992-01-01

    A quality assurance (QA) model has been developed. This model systematically considers the relevant activities before, during and after the welding operations with respect to quality. Efficient quality assurance requires that the functionality of the present robotic welding systems needs to be increased and that the knowledge of the personnel involved in the design and production needs to be improved. The collaboration between different departments and personnel needs also to be improved. The procedure specification aspects have been studied and a method for the determination of optimal welding parameters is presented with regards to process stability, quality requirements and productivity. A main productivity problem of robotic welding systems for small series production is due to the time spent on the specification of welding procedures. In order to improve the efficiency, expert systems technology has been studied and applied to automatically generate optimal welding procedures. An objective method for the assessment of process stability has been developed, based upon the analysis of the electrical signals of welding arcs. Furthermore, a method has been developed to monitor the process stability. It is found that it is possible to identify the causes of the disturbance of process stability and to predict the weld quality characteristics based on the analysis of the electrical signals. Though quality is formed during the welding operation, the diagnosis of the causes of quality disturbances is important for the prevention of quality problems of subsequent welds and has been discussed. To assist the operators, expert systems technology is also applied. Further work should be directed to the integration of various QA functions in the robotic arc welding system so that both quality and productivity aspects of the system ban be further improved. (au)

  12. Welding Over Paint Primer

    National Research Council Canada - National Science Library

    Johnson, Kevin S; Liu, Stephen; Olson, David L

    1998-01-01

    .... According to the hydrogen-oxygen and }hydrogen-fluorine equilibrium considerations, an increase in the partial pressure of oxygen or fluorine could decrease the partial pressure of hydrogen within the welding arc. Consequently, a welding consumable that contains chemical ingredients of high oxygen and fluorine potential would be capable of minimizing hydrogen pick-up in the weld pool.

  13. Control of welding residual stress for ensuring integrity against fatigue and stress-corrosion cracking

    International Nuclear Information System (INIS)

    Mochizuki, Masahito

    2007-01-01

    The availability of several techniques for residual stress control is discussed in this paper. The effectiveness of these techniques in protecting from fatigue and stress-corrosion cracking is verified by numerical analysis and actual experiment. In-process control during welding for residual stress reduction is easier to apply than using post-weld treatment. As an example, control of the welding pass sequence for multi-pass welding is applied to cruciform joints and butt-joints with an X-shaped groove. However, residual stress improvement is confirmed for post-weld processes. Water jet peening is useful for obtaining a compressive residual stress on the surface, and the tolerance against both fatigue and stress-corrosion cracking is verified. Because cladding with a corrosion-resistant material is also effective for preventing stress-corrosion cracking from a metallurgical perspective, the residual stress at the interface of the base metal is carefully considered. The residual stress of the base metal near the clad edge is confirmed to be within the tolerance of crack generation. Controlling methods both during and after welding processes are found to be effective for ensuring the integrity of welded components

  14. Friction Stir Welding of Copper Canisters Using Power and Temperature Control

    International Nuclear Information System (INIS)

    Cederqvist, Lars

    2011-01-01

    This thesis presents the development to reliably seal 50 mm thick copper canisters containing the Swedish nuclear waste using friction stir welding. To avoid defects and welding tool fractures, it is important to control the tool temperature within a process window of approximately 790 to 910 deg C. The welding procedure requires variable power input throughout the 45 minute long weld cycle to keep the tool temperature within its process window. This is due to variable thermal boundary conditions throughout the weld cycle. The tool rotation rate is the input parameter used to control the power input and tool temperature, since studies have shown that it is the most influential parameter, which makes sense since the product of tool rotation rate and spindle torque is power input. In addition to the derived control method, the reliability of the welding procedure was optimized by other improvements. The weld cycle starts in the lid above the joint line between the lid and the canister to be able to abort a weld during the initial phase without rejecting the canister. The tool shoulder geometry was modified to a convex scroll design that has shown a self-stabilizing effect on the power input. The use of argon shielding gas reduced power input fluctuations i.e. process disturbances, and the tool probe was strengthened against fracture by adding surface treatment and reducing stress concentrations through geometry adjustments. In the study, a clear relationship was shown between power input and tool temperature. This relationship can be used to more accurately control the process within the process window, not only for this application but for other applications where a slow responding tool temperature needs to be kept within a specified range. Similarly, the potential of the convex scroll shoulder geometry in force-controlled welding mode for use in applications with other metals and thicknesses is evident. The variable thermal boundary conditions throughout the weld

  15. Weld distortion prediction and control of the ITER vacuum vessel manufacturing mock-ups

    International Nuclear Information System (INIS)

    Ottolini, Marco; Barbensi, Andrea

    2014-01-01

    The fabrication of the ITER Vacuum Vessel Sectors is an unprecedented challenge, due to their dimensions, the close tolerances, the complex 'D' shape. The technological issues were faced by the production of full scale mock ups to confirm the manufacturing feasibility to achieve very tight tolerances and qualify the main manufacturing processes, by a step by step welding distortion control, by the qualification of not conventional NDT inspection techniques and by innovative 3D dimensional inspections. The Supplier is required to fabricate at least two mock ups, inboard and outboard, related to the manufacturing method of the VV Sectors, to demonstrate the control of the welding distortions to achieve tolerances, optimizing welding sequences and calibrating of welding distortions computer simulations. The stages of this preparatory activity are: prediction of welding distortion for fabrication mock ups representative of selected segments; demonstration that distortion predictions are consistent with experimental results from 3D dimensional inspection; understanding of reasons of possible deviations between numerical and experimental results and definition of action to solve these issues; demonstration that possible calculation simplifications, adopted to speed up the analysis process, do not affect significantly the welding distortion prediction. This paper describes the weld distortion prediction and control on the manufacturing mock-ups of ITER Vacuum Vessel Sectors, with particular emphasis to the lessons learned. (authors)

  16. Control of the electrode metal transfer by means of the welding current pulse generator

    Science.gov (United States)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Knyaz'kov, S.; Tyasto, A.

    2016-04-01

    The paper presents a generator of welding current pulses to transfer an electrode metal into the molten pool. A homogeneous artificial line is used to produce near rectangular pulses. The homogeneous artificial line provides the minimum heat input with in the pulse to transfer the electrode metal, and it significantly decreases the impact of disturbances affecting this transfer. The pulse frequency does not exceed 300 Hz, and the duration is 0.6 ÷ 0.9 ms.

  17. Electron beam welding fundamentals and applications

    International Nuclear Information System (INIS)

    Mara, G.L.; Armstrong, R.E.

    1975-01-01

    The electron beam welding process is described and the unique mode of operation and penetration explained by a description of the forces operating within the weld pool. This penetration model is demonstrated by high speed cinematography of the weld pool on several materials. The conditions under which weld defects are formed are discussed and examples are presented. (auth)

  18. Welding method, and welding device for use therein, and method of analysis for evaluating welds

    NARCIS (Netherlands)

    Aendenroomer, A.J.; Den Ouden, G.; Xiao, Y.H.; Brabander, W.A.J.

    1995-01-01

    Described is a method of automatically welding pipes, comprising welding with a pulsation welding current and monitoring, by means of a sensor, the variations occurring in the arc voltage caused by weld pool oscillations. The occurrence of voltage variations with only frequency components below 100

  19. Computational simulation of weld microstructure and distortion by considering process mechanics

    Science.gov (United States)

    Mochizuki, M.; Mikami, Y.; Okano, S.; Itoh, S.

    2009-05-01

    Highly precise fabrication of welded materials is in great demand, and so microstructure and distortion controls are essential. Furthermore, consideration of process mechanics is important for intelligent fabrication. In this study, the microstructure and hardness distribution in multi-pass weld metal are evaluated by computational simulations under the conditions of multiple heat cycles and phase transformation. Because conventional CCT diagrams of weld metal are not available even for single-pass weld metal, new diagrams for multi-pass weld metals are created. The weld microstructure and hardness distribution are precisely predicted when using the created CCT diagram for multi-pass weld metal and calculating the weld thermal cycle. Weld distortion is also investigated by using numerical simulation with a thermal elastic-plastic analysis. In conventional evaluations of weld distortion, the average heat input has been used as the dominant parameter; however, it is difficult to consider the effect of molten pool configurations on weld distortion based only on the heat input. Thus, the effect of welding process conditions on weld distortion is studied by considering molten pool configurations, determined by temperature distribution and history.

  20. Design of Boiler Welding for Improvement of Lifetime and Cost Control.

    Science.gov (United States)

    Thong-On, Atcharawadi; Boonruang, Chatdanai

    2016-11-03

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone.

  1. Design of Boiler Welding for Improvement of Lifetime and Cost Control

    Directory of Open Access Journals (Sweden)

    Atcharawadi Thong-On

    2016-11-01

    Full Text Available Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone.

  2. Distributed Nd-YAG laser welding and process control in inert glove boxes

    International Nuclear Information System (INIS)

    Milewski, J.O.; Lewis, G.K.; Barbe, M.R.; Cremers, D.A.

    1993-01-01

    We have fabricated and assembled a fiber optic delivered ND-YAG laser welding work station that consists of three glove boxes served by a single 1kw laser. Processing considerations related to the welding of special nuclear materials, toxic materials and complex part geometry are addressed within each work cell. We are proceeding with a development effort to integrate the equipment capabilities with remote sensing, process monitoring and control systems. These systems will provide real time data acquisition during welding, monitoring and verification of weld parameters, and CAD/CAM to CNC generated positioning paths. Computerized information storage, retrieval and network methods are used for weld process documentation and data analysis. A virtual control panel is being configured to integrate the monitoring and control operation of individual subsystems, such as laser and motion control into a single graphical interface. Development work on sensors to monitor laser beam characteristics and weld depth in real time with potential for adaptive control is in progress. System capabilities and results of these development efforts are presented

  3. Development of welding technique by remote control at the JMTR Hot Laboratory

    International Nuclear Information System (INIS)

    Shimizu, Michio; Iwamatu, Sigemi; Takada, Humiki

    2000-03-01

    Several kinds of welding techniques have been systematically developed using the remote controlled procedures in the JMTR Hot Laboratory. These are as follows, (1) re-instrumentation's of FP gas pressure gauge and thermocouple to an irradiated fuel rod for the centerline temperature measurement, (2) welding of the un-irradiated/irradiated specimen and machining process to produce tensile test specimens, (3) fabrication of Co-60 radiation source from materials for reactivity adjustment in JMTR core, (4) re-capsuling of irradiated materials in the different types of irradiation facilities. These research and development of circumferential and sealed welding for capsuling and welding of irradiated specimen for re-irradiation were implemented under the remote-controlled conditions in the Hot Cell. These techniques will be very indispensable for supporting the irradiation experiments to be conducted in the JMTR. (author)

  4. An online real time ultrasonic NDT system for the quality control of spot welding in the automotive industry

    International Nuclear Information System (INIS)

    Athi, N; Wylie, S R; Cullen, J D; Al-Jader, M; Al-Shamma'a, A I; Shaw, A

    2009-01-01

    Resistance spot welding is the main joining technique used for the fabrication of body-in-white structures in the automotive industry. The quality of the welds depends on the profile of the spot welding electrode cap. The increased use of zinc coated steel in the industry increases wear rate of the caps, making quality control more difficult. This paper presents a novel online real time ultrasonic NDE system for resistance spot welding which evaluates every weld as it is formed. SEM results are presented to show the alloying of the electrode caps.

  5. An online real time ultrasonic NDT system for the quality control of spot welding in the automotive industry

    Science.gov (United States)

    Athi, N.; Wylie, S. R.; Cullen, J. D.; Al-Jader, M.; Al-Shamma'a, A. I.; Shaw, A.

    2009-07-01

    Resistance spot welding is the main joining technique used for the fabrication of body-in-white structures in the automotive industry. The quality of the welds depends on the profile of the spot welding electrode cap. The increased use of zinc coated steel in the industry increases wear rate of the caps, making quality control more difficult. This paper presents a novel online real time ultrasonic NDE system for resistance spot welding which evaluates every weld as it is formed. SEM results are presented to show the alloying of the electrode caps.

  6. Research on the Effects of Technical Parameters on the Molding of the Weld by A-TIG Welding

    OpenAIRE

    Shi, Kai; Pan, Wu

    2012-01-01

    The effects of welding parameters on the molding of weld by A-TIG welding of a 4mm thickness mild steel plate is studied in the present paper. The results obtained show that: as welding current increases A-TIG welding penetration gets deeper than TIG welding; size and shape of HAZ has remarkable change; A-TIG welding has the narrower weld pool width than TIG welding.

  7. Increase in oxidative stress levels following welding fume inhalation: a controlled human exposure study.

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Sauvain, Jean-Jacques; Suarez, Guillaume; Wild, Pascal; Danuser, Brigitta; Riediker, Michael

    2016-06-10

    Tungsten inert gas (TIG) welding represents one of the most widely used metal joining processes in industry. It has been shown to generate a large majority of particles at the nanoscale and to have low mass emission rates when compared to other types of welding. Despite evidence that TIG fume particles may produce reactive oxygen species (ROS), limited data is available for the time course changes of particle-associated oxidative stress in exposed TIG welders. Twenty non-smoking male welding apprentices were exposed to TIG welding fumes for 60 min under controlled, well-ventilated settings. Exhaled breathe condensate (EBC), blood and urine were collected before exposure, immediately after exposure, 1 h and 3 h post exposure. Volunteers participated in a control day to account for oxidative stress fluctuations due to circadian rhythm. Biological liquids were assessed for total reducing capacity, hydrogen peroxide (H2O2), malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations at each time point. A linear mixed model was used to assess within day and between day differences. Significant increases in the measured biomarkers were found at 3 h post exposure. At 3 h post exposure, we found a 24 % increase in plasma-H2O2 concentrations ([95%CI: 4 % to 46 %], p = 0.01); a 91 % increase in urinary-H2O2 ([2 % to 258 %], p = 0.04); a 14 % increase in plasma-8-OHdG ([0 % to 31 %], p = 0.049); and a 45 % increase in urinary-8-OHdG ([3 % to 105 %], p = 0.03). Doubling particle number concentration (PNC) exposure was associated with a 22 % increase of plasma-8-OHdG at 3 h post exposure (p = 0.01). A 60-min exposure to TIG welding fume in a controlled, well-ventilated setting induced acute oxidative stress at 3 h post exposure in healthy, non-smoking apprentice welders not chronically exposed to welding fumes. As mass concentration of TIG welding fume particles is very low when compared to other types of welding, it is

  8. Circumferential welding applied for inox steel super duplex UNS S32750 using the process MIG using CMT® control

    International Nuclear Information System (INIS)

    Invernizzi, Bruno Pizol

    2017-01-01

    This study carried out circumferential welding experiments in UNS S32750 Super Duplex Stainless Steel tubes using diameters of 19,05 mm and 48,20 mm. Welds were performed using various welding parameters on a MIG machine with Cold Metal Transfer® CMT control. The weld joints were evaluated by visual and dimensional inspection in addition to the Vickers microhardness and traction tests, as well as the microstructural analysis in conjunction with phase precipitation analysis, which was performed according to practice A of ASTM A923, and corrosion test in accordance with practice A of ASTM G48 in conjunction with ASTM A923. The results indicated that welds performed in pipes with a diameter of 19.05 mm showed a weld joint with unacceptable dimensions according to the standard, this condition being attributed the use of a high wire diameter for the welding conditions used. Welding performed for pipes with a diameter of 48.20 mm showed a lack of penetration under the conditions employed when welded by the conventional CMT® process. In the case of the use of CMT® combined with pulsed arc, under conditions that generated greater heat input during welding, this resulted in total penetration of the joint and adequate surface finish. The results indicated that welding using the CMT® process combined with pulsed arc, under the conditions (parameters) employed generated good surface finish, combined mechanical properties, meeting standards requirements, as well as a balanced microstructure and high resistance to corrosion. (author)

  9. Real-time remote-controlled welding of the inspection nozzle on the Phenix double-wall tank

    International Nuclear Information System (INIS)

    Chagnot, C.; Dineghin, G. de; Baude, D.; Delmas, A.; Gauthier, A.; Gros, J.; Sommeillier, M.

    2001-01-01

    For the ultrasonic non destructive inspection of the vessel shell ring welds in the Phenix reactor, the insert of the NDT instrument needs to drill the double-wall tank, to install and weld nozzles. This last operation is realized by the way of an orbital welding installation. Considering severe environment restraints (irradiation, temperature, space,...), the welding control is made at distance (50 m). To supervise this operation, the welder requires an high quality image of the welding scene. Five nozzles of about 400 mm diameter are distributed on a 12 m-diameter tank. The junction between the nozzle and the tank present a shape of horse saddle and the passes trajectories against the tank wall show a lateral deviation of several millimeters. To take care of this deviation and of eventual geometrical defects, the welder adjust the torch position during welding. For that he needs an adapted information. The ''Laboratoire Moderne de Soudage'' inside CEA/CEREM has designed, validated and provided a new Computer-Assisted Welding for real-time remote-controlled orbital welding. Video cameras and a laser diode module were installed on the orbital installation for the watching of the welding scene. An image processing unit of new generation gives the real-time measurement of the distance between the torch and the wall tank. The control of the torch position is particularly significant to guarantee the good welding pass sequence. With this system, the position precision can reach 0,1 mm. (author)

  10. Remote-controlled welding during replacement of components and piping

    International Nuclear Information System (INIS)

    Faeser, K.; Huemmeler, A.; Pellkofer, D.

    1986-01-01

    Only on the basis of a thorough fundamental knowledge of nuclear power stations in general and the relevant codes and regulations in particular can extended repair measures, such as the replacement of components or pipelines, be planned and prepared. The application of effective decontamination procedures and shielding measures and a high degree of mechanization of the machining and welding operations will lead to a drastic reduction of the radiation load to which the personnel is exposed. By using highly sophisticated pipe assembling and welding systems the exposure period can be minimized. At the same time a very high level of quality is being reached. The close adherence to the schedule of individual detail operations confirms and justifies the necessity of thorough planning and training of personnel. It may be assumed that in the field of nuclear engineering some pioneer work has been done that will have a stimulating effect on other areas with similar or transferable applications. (orig.) [de

  11. Introduction of experience of television information-control systems in welding

    International Nuclear Information System (INIS)

    Lifshits, M.L.; Lobanova, N.G.

    1988-01-01

    Consideration is given to peculiarities of using television measuring system for operative control of electron-beam welding of articles with minimum joint gap. It is shown that improvement of control accuracy requires mounting and tuning of television sensors and providing for process procedure

  12. Computerised weld strength testing machine for PHWR fuel elements with a versatile control system

    International Nuclear Information System (INIS)

    Gupta, U.C.; Sastry, V.S.; Rasheed, Jawad; Bibawe, S.R.

    1994-01-01

    Spacer pads and bearing pads are resistance spot welded on PHWR fuel elements to ensure inter-element gap for coolant flow. These welds are subjected to destructive tests as per SQC specifications while qualifying a machine and during production. The testing machine used earlier over the years was tedious involving manual operations of clamping, tool actuation, increasing and decreasing the pressure, referring to charts and statistical calculations. To carry out the destructive testing of the welds conveniently and reliably, an automatic machine is developed in-house in which are incorporated a quartz force transducer and a computerized data-acquisition and processing system together with a very versatile electronic control system based on a single-chip microcomputer. This paper describes the salient features of the machine and the control system. (author). 4 figs

  13. Effect of flux powder SiO2 for the welding of 304-austenitic stainless ...

    African Journals Online (AJOL)

    optimal weld pool geometry in the tungsten inert gas (TIG) welding of ..... Flux assisted gas tungsten arc and laser welding of titanium with cryolite containing fluxes: arc spectroscopy and corrosion resistance studies, Welding Journal, Vol.

  14. Automated Water Chemistry Control at University of Virginia Pools.

    Science.gov (United States)

    Krone, Dan

    1997-01-01

    Describes the technologically advanced aquatic and fitness center at the University of Virginia. Discusses the imprecise water chemistry control at the former facility and its intensive monitoring requirements. Details the new chemistry control standards initiated in the new center, which ensure constant chlorine and pH levels. (RJM)

  15. Investigation of Processes Controlling Elution of Solutes from Nonaqueous Phase Liquid (NAPL) Pools into Groundwater

    Science.gov (United States)

    Seyedabbasi, M.; Pirestani, K.; Holland, S. B.; Imhoff, P. T.

    2005-12-01

    Two major processes influencing the elution of solutes from porous media contaminated with nonaqueous phase liquids (NAPLs) are external mass transfer between the NAPL and groundwater and internal diffusion through NAPL ganglia and pools. There is a relatively large body of literature on the dissolution of single-species NAPLs. Less is known about the rates of elution of compounds dissolving from multicomponent NAPLs. We examined the mass transfer of one solute, 2,3-dimethyl-2-butanol (DMB) - a partitioning tracer, between groundwater and a dense NAPL - trichloroethylene (TCE). Diffusion cell experiments were used to measure the molecular diffusion coefficient of DMB in pure TCE and in porous media contaminated with a TCE pool. Measured diffusion coefficients were compared with empirical correlations (pure TCE) and a parallel resistance model (TCE pool). Based on the results from these analyses, a dimensionless Biot number was derived to express the ratio of the external rate of mass transfer from a NAPL pool to the internal rate of diffusion within the pool, which varies with NAPL saturation and NAPL-water partition coefficient. Biot numbers were then estimated for several laboratory scale experiments involving DMB transport between NAPL pools and groundwater. The estimated Biot numbers were in good agreement with experimental results. The expression for the Biot number developed here may be used to assess the processes controlling the elution of solutes from NAPL pools, which has implications on long-term predictions of solute dissolution from NAPLs in the field.

  16. Welding in hostile environment for nuclear and offshore industry

    International Nuclear Information System (INIS)

    Delauze, H.G.

    1990-01-01

    The paper reviews recent developments of duplex stainless steel and clad pipe welding and under water welding for offshore structures and for reactor fuel storage pool and remote automatic dry welding [fr

  17. Gamma-radiography techniques applied to quality control of welds in water pipe lines

    International Nuclear Information System (INIS)

    Sanchez, W.; Oki, H.

    1974-01-01

    Non-destructive testing of welds may be done by the gamma-radiography technique, in order to detect the presence or absence of discontinuities and defects in the bulk of deposited metal and near the base metal. Gamma-radiography allows the documentation of the test with a complete inspection record, which is a fact not common in other non-destructive testing methods. In the quality control of longitudinal or transversal welds in water pipe lines, two exposition techniques are used: double wall and panoramic exposition. Three different water pipe lines systems have analysed for weld defects, giving a total of 16,000 gamma-radiographies. The tests were made according to the criteria established by the ASME standard. The principal metallic discontinuites found in the weld were: porosity (32%), lack of penetration (29%), lack of fusion (20%), and slag inclusion (19%). The percentage of gamma-radiographies showing welds without defects was 39% (6168 gamma-radiographies). On the other hand, 53% (8502 gamma-radiographies) showed the presence of acceptable discontinuities and 8% (1330 gamma-radiographies) were rejected according to the ASME standards [pt

  18. Feedback control of laser welding based on frequency analysis of light emissions and adaptive beam shaping

    Czech Academy of Sciences Publication Activity Database

    Mrňa, Libor; Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr

    2012-01-01

    Roč. 39, NOV (2012), s. 784-791 ISSN 1875-3892. [LANE 2012. Laser Assisted Net Shape Engineering /7./ International Conference on Photonic Technologies. Fürth, 12.11.2012-15.12.2012] Institutional support: RVO:68081731 Keywords : laser welding * feedback control * frequency analysis * adaptive beam shaping Subject RIV: BH - Optics, Masers, Lasers

  19. TIG source control system when welding point-by-point the elements of the collector

    International Nuclear Information System (INIS)

    Bica, I.

    1997-01-01

    The paper presents a control system designed to equip the mechanized welding installations of the collector winding. The logical function of the technological process is determined the synthesis of the electric current is made, too. The logical circuit is made in the TTL technique. It presents reliability and safety in service. (Author) 3 refs

  20. Control over Coating Structure during Electromagnetic Welding and Application of HighSpeed Steel Powder

    Directory of Open Access Journals (Sweden)

    L. M. Kozhuro

    2004-01-01

    Full Text Available The paper considers peculiar features concerning coating formation in the process of electromagnetic welding of high-speed steel powder. The paper reveals how to control coating structure that ensures the required operational properties of working surfaces of machine parts. 

  1. Process control of stainless steel laser welding using an optical spectroscopie sensor

    NARCIS (Netherlands)

    Konuk, A.R.; Aarts, Ronald G.K.M.; Huis in 't Veld, Bert; Sibillano, T.; Rizzi, D.; Ancona, A.

    2011-01-01

    The in-process monitoring and real-time control of the penetration depth during laser welding is evaluated. An optical collimator collects the optical emission for measurement with a fast spectrometer. The sensor data are used to calculate the electron temperature and subsequently to determine the

  2. Comparison of Exposure Controls, Item Pool Characteristics, and Population Distributions for CAT Using the Partial Credit Model

    Science.gov (United States)

    Lee, HwaYoung; Dodd, Barbara G.

    2012-01-01

    This study investigated item exposure control procedures under various combinations of item pool characteristics and ability distributions in computerized adaptive testing based on the partial credit model. Three variables were manipulated: item pool characteristics (120 items for each of easy, medium, and hard item pools), two ability…

  3. Investigations on penetration control for automated pipe welding system

    International Nuclear Information System (INIS)

    Fujiki, Daisuke; Sato, Akihiro; Funamoto, Takao; Matsumoto, Toshimi; Kobayashi, Masahiro

    1995-01-01

    We have been investigating process conditions forming sound root bead by orbital welding technique for nuclear power stations. Specimens used were stainless steel (SUS304) pipes (318.5 mm outside diameter and 15.4 mm thickness), and pulsed gas tungsten-arc (GTA) welder was adopted. We have found process conditions to form sound root bead by changing both heat input conditions and joint designs. It is found that reducing volume of molten metal is necessary to form sound root bead. And it is also found that changing joint designs is effective to reduce volume of molten metal. By selecting proper joint designs, we could form sound root bead in constant heat input conditions in every position of pipe. (author)

  4. Automatic Optimization of Focal Point Position in CO2 Laser Welding with Neural Network in A Focus Control System

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    CO2 lasers are increasingly being utilized for quality welding in production. Considering the high cost of equipment, the start-up time and the set-up time should be minimized. Ideally the parameters should be set up and optimized more or less automatically. In this paper a control system...... is designed and built to automatically optimize the focal point position, one of the most important parameters in CO2 laser welding, in order to perform a desired deep/full penetration welding. The control system mainly consists of a multi-axis motion controller - PMAC, a light sensor - Photo Diode, a data...

  5. Estimation and control of droplet size and frequency in projected spray mode of a gas metal arc welding (GMAW) process.

    Science.gov (United States)

    Anzehaee, Mohammad Mousavi; Haeri, Mohammad

    2011-07-01

    New estimators are designed based on the modified force balance model to estimate the detaching droplet size, detached droplet size, and mean value of droplet detachment frequency in a gas metal arc welding process. The proper droplet size for the process to be in the projected spray transfer mode is determined based on the modified force balance model and the designed estimators. Finally, the droplet size and the melting rate are controlled using two proportional-integral (PI) controllers to achieve high weld quality by retaining the transfer mode and generating appropriate signals as inputs of the weld geometry control loop. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Controlling liquid pool depth in VAR of a 21.6 cm diameter ingot of Alloy 718

    Science.gov (United States)

    Lopez, Felipe; Beaman, Joseph; Williamson, Rodney; Taleff, Eric; Watt, Trevor

    It is believed that the final microstructure in vacuum arc remelted (VAR) ingots is strongly influenced by the molten metal pool profile. Thus, if the pool profile was properly controlled during the melt then defect-free microstructures would be obtained. The recent development of a reduced-order model of VAR solidification allowed the design of a pool depth controller to accomplish this task. The controller used a linear quadratic regulator and a Kalman filter to stabilize the melt pool solidification front under the effect of uncertain process dynamics and noisy measurements. Basic Axisymmetric Remelting (BAR), a high-fidelity VAR ingot model, was used in real time to provide pool depth measurements that were incorporated in the control loop. The controller was tested at Los Alamos National Laboratory in a 21.6 diameter Alloy 718 ingot. Details of the controller design will be presented, along with comparisons to experimentally-measured pool depths.

  7. Recent developments in pipeline welding practice

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Fourteen chapters are included: overview of pipeline welding systems and quality assurance, CRC automatic welding system, H.C. Price Co. automatic welding system, semi-automatic MIG-welding process, partial penetration welding of steel pipes for gas distribution, construction procedures and quality control in offshore pipeline construction, welding in repair and maintenance of gas transmission pipelines, British Gas studies of welding on pressurized gas transmission pipelines, hot tapping pipelines, underwater welding for offshore pipelines and associated equipment, radial friction welding, material composition vs weld properties, review of NDT of pipeline welds, and safety assurance in pipeline construction. A bibliography of approximately 150 references is included, arranged according to subject and year.

  8. Real-time remote-controlled welding of the inspection nozzle on the Phenix double-wall tank

    Energy Technology Data Exchange (ETDEWEB)

    Chagnot, C.; Dineghin, G. de; Baude, D.; Delmas, A.; Gauthier, A. [CEA Saclay, Lab. Moderne de Soudage, 91 - Gif sur Yvette (France); Gros, J. [Centrale Phenix, 30 - Bagnols sur Ceze (France); Sommeillier, M. [Comex Nucleaire, 13 - Marseille (France)

    2001-07-01

    For the ultrasonic non destructive inspection of the vessel shell ring welds in the Phenix reactor, the insert of the NDT instrument needs to drill the double-wall tank, to install and weld nozzles. This last operation is realized by the way of an orbital welding installation. Considering severe environment restraints (irradiation, temperature, space,...), the welding control is made at distance (50 m). To supervise this operation, the welder requires an high quality image of the welding scene. Five nozzles of about 400 mm diameter are distributed on a 12 m-diameter tank. The junction between the nozzle and the tank present a shape of horse saddle and the passes trajectories against the tank wall show a lateral deviation of several millimeters. To take care of this deviation and of eventual geometrical defects, the welder adjust the torch position during welding. For that he needs an adapted information. The ''Laboratoire Moderne de Soudage'' inside CEA/CEREM has designed, validated and provided a new Computer-Assisted Welding for real-time remote-controlled orbital welding. Video cameras and a laser diode module were installed on the orbital installation for the watching of the welding scene. An image processing unit of new generation gives the real-time measurement of the distance between the torch and the wall tank. The control of the torch position is particularly significant to guarantee the good welding pass sequence. With this system, the position precision can reach 0,1 mm. (author)

  9. The effect of cast-to-cast variations on the quality of thin section nickel alloy welded joints

    International Nuclear Information System (INIS)

    Lambert, J.A.

    1989-02-01

    The welding behaviour of 26 commercial casts of Alloy 800 has been quantified for mechanised, autogenous, full penetration, bead-on-strip tungsten inert gas welding tests. Weld front and back widths have been measured and correlated with minor element variations. Casts with similar welding responses have been sorted into groups. The behaviour of the weld pool, surface slags and arc have been compared and a convection controlled model has been used to account for differences between the groups of casts. The main factors governing laboratory process control variability have been identified and a statistical method has been used to identify all the components of weld variance. An optimum size of welding test matrix has been proposed to determine typical cast-to-cast variations at high significance levels. (author)

  10. A Positive Control for Detection of Functional CD4 T Cells in PBMC: The CPI Pool.

    Science.gov (United States)

    Schiller, Annemarie; Zhang, Ting; Li, Ruliang; Duechting, Andrea; Sundararaman, Srividya; Przybyla, Anna; Kuerten, Stefanie; Lehmann, Paul V

    2017-12-07

    Testing of peripheral blood mononuclear cells (PBMC) for immune monitoring purposes requires verification of their functionality. This is of particular concern when the PBMC have been shipped or stored for prolonged periods of time. While the CEF (Cytomegalo-, Epstein-Barr and Flu-virus) peptide pool has become the gold standard for testing CD8 cell functionality, a positive control for CD4 cells is so far lacking. The latter ideally consists of proteins so as to control for the functionality of the antigen processing and presentation compartments, as well. Aiming to generate a positive control for CD4 cells, we first selected 12 protein antigens from infectious/environmental organisms that are ubiquitous: Varicella, Influenza, Parainfluenza, Mumps, Cytomegalovirus, Streptococcus , Mycoplasma , Lactobacillus , Neisseria , Candida , Rubella, and Measles. Of these antigens, three were found to elicited interferon (IFN)-γ-producing CD4 cells in the majority of human test subjects: inactivated cytomegalo-, parainfluenza-, and influenza virions (CPI). While individually none of these three antigens triggered a recall response in all donors, the pool of the three (the 'CPI pool'), did. One hundred percent of 245 human donors tested were found to be CPI positive, including Caucasians, Asians, and African-Americans. Therefore, the CPI pool appears to be suitable to serve as universal positive control for verifying the functionality of CD4 and of antigen presenting cells.

  11. Inline-process and quality control of spotwelds of car bodies - ultrasonic sensors integrated in resistance welding electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, G.; Rieger, D.; Koehler, C. [Vogt Werkstoffpruefsysteme, Burgwedel (Germany)

    2006-07-01

    The self-developed inline ultrasonic testing system SPOTline is used for inspection and process control of resistant spot weldings. SPOTline provides with directly into the welding tong integrated ultrasonic sensors a 100% inspection during the welding process. The through transmission and pulse echo signals will be collected, stored and evaluated by means of fuzzy-logic and neuronal network technic. The results will be transmitted online from the spotline-client in the sql-data-base of the server for processing. World-wide SPOTline is the only ultrasonic inspection system, which is working under real production conditions in a network of welding robots. Test with 2 and 3 plates, high strength steels and all coatings demonstrate the accurately identification of discrepant welds. (orig.)

  12. Hybrid laser arc welding: State-of-art review

    Science.gov (United States)

    Acherjee, Bappa

    2018-02-01

    Hybrid laser arc welding simultaneously utilizes the arc welding and the laser welding, in a common interaction zone. The synergic effects of laser beam and eclectic arc in the same weld pool results in an increase of welding speed and penetration depth along with the enhancement of gap bridging capability and process stability. This paper presents the current status of this hybrid technique in terms of research, developments and applications. Effort is made to present a comprehensive technical know-how about this process through a systematic review of research articles, industrial catalogues, technical notes, etc. In the introductory part of the review, an overview of the hybrid laser arc welding is presented, including operation principle, process requirements, historical developments, benefits and drawbacks of the process. This is followed by a detailed discussion on control parameters those govern the performance of hybrid laser arc welding process. Thereafter, a report of improvements of performance and weld qualities achieved by using hybrid welding process is presented based on review of several research papers. The succeeding sections furnish the examples of industrial applications and the concluding remarks.

  13. Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes

    Science.gov (United States)

    Agapakis, John E.; Bolstad, Jon

    1993-01-01

    Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.

  14. Fatigue properties of dissimilar metal laser welded lap joints

    Science.gov (United States)

    Dinsley, Christopher Paul

    This work involves laser welding austenitic and duplex stainless steel to zinc-coated mild steel, more specifically 1.2mm V1437, which is a Volvo Truck Coiporation rephosphorised mild steel. The work investigates both tensile and lap shear properties of similar and dissimilar metal laser welded butt and lap joints, with the majority of the investigation concentrating on the fatigue properties of dissimilar metal laser welded lap joints. The problems encountered when laser welding zinc-coated steel are addressed and overcome with regard to dissimilar metal lap joints with stainless steel. The result being the production of a set of guidelines for laser welding stainless steel to zinc-coated mild steel. The stages of laser welded lap joint fatigue life are defined and the factors affecting dissimilar metal laser welded lap joint fatigue properties are analysed and determined; the findings suggesting that dissimilar metal lap joint fatigue properties are primarily controlled by the local stress at the internal lap face and the early crack growth rate of the material at the internal lap face. The lap joint rotation, in turn, is controlled by sheet thickness, weld width and interfacial gap. Laser welded lap joint fatigue properties are found to be independent of base material properties, allowing dissimilar metal lap joints to be produced without fatigue failure occurring preferentially in the weaker parent material, irrespective of large base material property differences. The effects of Marangoni flow on the compositions of the laser weld beads are experimentally characterised. The results providing definite proof of the stirring mechanism within the weld pool through the use of speeds maps for chromium and nickel. Keywords: Laser welding, dissimilar metal, Zinc-coated mild steel, Austenitic stainless steel, Duplex stainless steel, Fatigue, Lap joint rotation, Automotive.

  15. Heat source model for welding process

    International Nuclear Information System (INIS)

    Doan, D.D.

    2006-10-01

    One of the major industrial stakes of the welding simulation relates to the control of mechanical effects of the process (residual stress, distortions, fatigue strength... ). These effects are directly dependent on the temperature evolutions imposed during the welding process. To model this thermal loading, an original method is proposed instead of the usual methods like equivalent heat source approach or multi-physical approach. This method is based on the estimation of the weld pool shape together with the heat flux crossing the liquid/solid interface, from experimental data measured in the solid part. Its originality consists in solving an inverse Stefan problem specific to the welding process, and it is shown how to estimate the parameters of the weld pool shape. To solve the heat transfer problem, the interface liquid/solid is modeled by a Bezier curve ( 2-D) or a Bezier surface (3-D). This approach is well adapted to a wide diversity of weld pool shapes met for the majority of the current welding processes (TIG, MlG-MAG, Laser, FE, Hybrid). The number of parameters to be estimated is weak enough, according to the cases considered from 2 to 5 in 20 and 7 to 16 in 3D. A sensitivity study leads to specify the location of the sensors, their number and the set of measurements required to a good estimate. The application of the method on test results of welding TIG on thin stainless steel sheets in emerging and not emerging configurations, shows that only one measurement point is enough to estimate the various weld pool shapes in 20, and two points in 3D, whatever the penetration is full or not. In the last part of the work, a methodology is developed for the transient analysis. It is based on the Duvaut's transformation which overpasses the discontinuity of the liquid metal interface and therefore gives a continuous variable for the all spatial domain. Moreover, it allows to work on a fixed mesh grid and the new inverse problem is equivalent to identify a source

  16. Analysis of dose rates received around the storage pool for irradiated control rods in a BWR nuclear power plant

    International Nuclear Information System (INIS)

    Rodenas, J.; Abarca, A.; Gallardo, S.

    2011-01-01

    BWR control rods are activated by neutron reactions in the reactor. The dose produced by this activity can affect workers in the area surrounding the storage pool, where activated rods are stored. Monte Carlo (MC) models for neutron activation and dose assessment around the storage pool have been developed and validated. In this work, the MC models are applied to verify the expected reduction of dose when the irradiated control rod is hanged in an inverted position into the pool.

  17. An approach for optimizing arc welding applications

    International Nuclear Information System (INIS)

    Chapuis, Julien

    2011-01-01

    The dynamic and transport mechanisms involved in the arc plasma and the weld pool of arc welding operations are numerous and strongly coupled. They produce a medium the magnitudes of which exhibit rapid time variations and very marked gradients which make any experimental analysis complex in this disrupted environment. In this work, we study the TIG and MIG processes. An experimental platform was developed to allow synchronized measurement of various physical quantities associated with welding (process parameters, temperatures, clamping forces, metal transfer, etc.). Numerical libraries dedicated to applied studies in arc welding are developed. They enable the treatment of a large flow of data (signals, images) with a systematic and global method. The advantages of this approach for the enrichment of numerical simulation and arc process control are shown in different situations. Finally, this experimental approach is used in the context of the chosen application to obtain rich measurements to describe the dynamic behavior of the weld pool in P-GMAW. Dimensional analysis of these experimental measurements allows to identify the predominant mechanisms involved and to determine experimentally the characteristic times associated. This type of approach includes better description of the behavior of a macro-drop of molten metal or the phenomena occurring in the humping instabilities. (author)

  18. Actual problems of ultrasonic control of welded anticorrosion coatings (ch. 1)

    International Nuclear Information System (INIS)

    Zubchenko, A.S.; Razygraev, N.P.; Runov, A.E.; Sobolev, Yu.A.; Kretov, E.F.; Tabakma, R.L.

    1988-01-01

    Results of investigations into heat treatment effect on the size of discontinuities revealed under ultrasonic control (USC) of welded anticorrosion coatings are presented. Comparison of dimensions of equivalent area of allowable and non-allowable reflector-discantinuities (defectiveness standards) in the alloying zone of melted anticorrosion coatings and bimetal sheet, applied in NPP equipment, is given. It is shown that USC on the side of basic metal monifest almost by an order more defects than USC on the side of melting surface

  19. Controlled short-circuiting MIG-MAG welding process and procedures applied to the root pass in pipeline construction; Processo de soldagem MIG/MAG em curto-circuito controlado e procedimentos aplicados ao passe de raiz na construcao de linhas dutoviarias

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Regis H.G. e; Gohr Junior, Raul; Weck, Leonardo W.A. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Soldagem e Mecatronica (LABSOLDA)

    2005-07-01

    The work deals with the study and development of the Controlled Short-Circuiting MIG/MAG Welding Process (CCC) and procedures for the root pass on pipes, in pipelines construction. The developed process (CCC) consists in an semi-automatic slag free operation, yielding higher productivity than the Coated Electrode and TIG processes, with satisfactory properties on the root weld. The significant influence of the welding over the time schedule and construction cost makes the development of this technology attractive, in order to become available at low cost, enhancing the companies' competitiveness in the globalized oil sector. The developed system, a MIG/MAG variant, features the advantages of short-circuiting metal transfer and avoids its inconveniences (mainly with high CO{sub 2} content gases), enabling its use on pipes root welding. This is possible through current waveform control, providing process and weld pool stability. Procedures for the root pass were determined for each of the welding positions reached in thick walled pipes welding, with the CCC. Also, the low welder training time was notable. (author)

  20. Weld metal microstructures of hardfacing deposits produced by self-shielded flux-cored arc welding

    International Nuclear Information System (INIS)

    Dumovic, M.; Monaghan, B.J.; Li, H.; Norrish, J.; Dunne, D.P.

    2015-01-01

    The molten pool weld produced during self-shielded flux-cored arc welding (SSFCAW) is protected from gas porosity arising from oxygen and nitrogen by reaction ('killing') of these gases by aluminium. However, residual Al can result in mixed micro-structures of δ-ferrite, martensite and bainite in hardfacing weld metals produced by SSFCAW and therefore, microstructural control can be an issue for hardfacing weld repair. The effect of the residual Al content on weld metal micro-structure has been examined using thermodynamic modeling and dilatometric analysis. It is concluded that the typical Al content of about 1 wt% promotes δ-ferrite formation at the expense of austenite and its martensitic/bainitic product phase(s), thereby compromising the wear resistance of the hardfacing deposit. This paper also demonstrates how the development of a Schaeffler-type diagram for predicting the weld metal micro-structure can provide guidance on weld filler metal design to produce the optimum microstructure for industrial hardfacing applications.

  1. Underwater welding using remote controlled robots. Development of remote underwater welding technology with a high power YAG laser

    International Nuclear Information System (INIS)

    Miwa, Yasuhiro; Sato, Syuuichi; Kojima, Toshio; Owaki, Katsura; Hirose, Naoya

    2002-01-01

    As components in nuclear power plant have been periodically carried out their inspection and repair to keep their integrity, on radioactive liquid wastes storage facility, because of difficulty on their inspection by human beings, some are remained without inspection, and even when capable of inspection, conversion from human works to remote operations is desired from a viewpoint of their operation efficiency upgrading. For response to these needs, some developments on a technology capable of carrying out inspection of their inside at underwater environment and repairing welding with YAG laser by means of remote operation, have been performed. Remote underwater inspection and repair technology is a combination technology of already applied underwater mobile technique (underwater inspection robot) with underwater YAG laser welding technique which is recently at actual using level. Therefore, this technology is composed of an inspection robot and a repair welding robot. And, testing results using the underwater inspection robot and welding test results using the underwater repair welding robot, were enough preferable to obtain forecasting applicable to actual apparatuses. This technology is especially effective for inspection and repair of inside of nuclear fuel cycle apparatuses and relatively high dose apparatuses, and can be thought to be applicable also to large capacity tanks, tanks dealing with harmful matters, underwater structures, and so on, in general industries. (G.K.)

  2. Influence of titanium–boron additions on grain refinement of AA6082 gas tungsten arc welds

    International Nuclear Information System (INIS)

    Kishore Babu, N.; Talari, Mahesh Kumar; Dayou, Pan; Zheng, Sun; Jun, Wei; SivaPrasad, K.

    2012-01-01

    Highlights: ► Ti in the weld metal resulted in grain refinement due to growth restriction effect. ► Weld metal strength improved due to grain refinement caused by Tibor™ addition. ► Weld metal responded to post-weld ageing treatment due to dilution from base metal. ► Weld metal with AA5356 filler are stronger then AA4043 for all Tibor™ additions. -- Abstract: Grain refinement of weld metal plays a vital role in improving mechanical properties (ductility and toughness) as well as weldability. The present study has investigated the influence of Tibor™ additions on the structure and mechanical properties of AA6082 gas tungsten arc (GTA) weldments. Controlled amounts of Tibor™ grain refiner (containing Ti and B in a ratio of 5:1) were introduced into the molten pool of AA6082 by pre-deposited cast inserts (AA4043 and AA5356) under different welding conditions by GTA welding. Full penetration GTA welds were prepared using alternating current (AC). It was observed that grain size was decreased with increasing amounts of Tibor™. The grain refinement is mainly caused grain nucleation associated with constitutional undercooling during solidification. It has been shown that welds prepared with 5356 cast insert exhibited high strength and ductility when compared with other welds. The observed grain refinement was shown to result in an appreciable increase in fusion zone hardness, strength and ductility.

  3. Optimization of arc-start performance by wire-feeding control for GMA welding

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jong Gu; Ryu, Gyeong Su; Rhee, Se Hun [Hanyang University, Seoul (Korea, Republic of); Kim, Dong Cheol; Kang, Mun Jin [Korea Institute of Industrial Technology, Incheon (Korea, Republic of); Park, Young Whan [Pukyong National University, Busan (Korea, Republic of)

    2013-02-15

    The wire feeding system for gas metal arc welding usually consists of a wire feeder and a torch. In many industries, the distance between the wire feeder and the torch is generally 3 m to 5 m. In a conventional wire feeder, a direct current (DC) motor is used for wire feeding. However, a significant problem with this system is the impossibility of feedback control because of inner or outer impedance. In this paper, a digital wire feeder was developed by using a DC encoder motor and a push-pull torch. An optimized wire-feeding system was also developed by experiment. The welding process was observed using a high-speed camera. The resulting wire-feeding system exhibits low spatter generation and arc stability.

  4. The problem of cracking during welding of monel to stainless steel

    International Nuclear Information System (INIS)

    Ahmed, J.; Hussain, S.W.

    1995-01-01

    The problems of severe cracking was encountered while welding monel 400 to 316L stainless steel in the structure of a reaction vessel. It was found that the liquation cracking occurred in the grain boundary regions resulting in the visible cracks in the welds. Different types of filler materials were used without much success. Various factors were controlled such as careful cleaning, heat input, distance of electrode from the weld, feeding rate, etc. It was noted that all these factors influenced the cracking behavior but the most critical was found to be the heat input. Cracking was eliminated when the heat input was decreased to the lowest current to maintain the weld pool. After the successful welding it was found that the strength of the weld was close to that of the individual metals. (author)

  5. Proposta do uso de pool de sangue total como controle interno de qualidade em hematologia

    OpenAIRE

    Schons,Carina Daniele; Tavares,Rejane Giacomelli

    2010-01-01

    INTRODUÇÃO: A confiabilidade dos resultados do laboratório é garantida pela realização do controle de qualidade, que tem como funções básicas análise, pesquisa e prevenção da ocorrência de erros laboratoriais por meio de programas que abrangem tanto o controle interno quanto o externo. OBJETIVO: Propor a padronização de utilização de pool de sangue total como controle interno de qualidade no setor de hematologia. MÉTODO: Foram selecionadas amostras de sangue total, colhidas com ácido etilenod...

  6. An approach to optimised control of HVAC systems in indoor swimming pools

    Science.gov (United States)

    Ribeiro, Eliseu M. A.; Jorge, Humberto M. M.; Quintela, Divo A. A.

    2016-04-01

    Indoor swimming pools are recognised as having a high level of energy consumption and present a great potential for energy saving. The energy is spent in several ways such as evaporation heat loss from the pool, high rates of ventilation required to guarantee the indoor air quality, and ambient temperatures with expressive values (typically 28-30°C) required to maintain conditions of comfort. This paper presents an approach to optimising control of heat ventilation and air conditioning systems that could be implemented in a building energy management system. It is easily adapted to any kind of pool and results in significant energy consumption reduction. The development and validation of the control model were carried out with a building thermal simulation software. The use of this control model in the case study building could reduce the energy efficiency index by 7.14 points (7.4% of total) which adds up to an energy cost saving of 15,609€ (7.5% of total).

  7. Tests of selection in pooled case-control data: an empirical study.

    Science.gov (United States)

    Udpa, Nitin; Zhou, Dan; Haddad, Gabriel G; Bafna, Vineet

    2011-01-01

    For smaller organisms with faster breeding cycles, artificial selection can be used to create sub-populations with different phenotypic traits. Genetic tests can be employed to identify the causal markers for the phenotypes, as a precursor to engineering strains with a combination of traits. Traditional approaches involve analyzing crosses of inbred strains to test for co-segregation with genetic markers. Here we take advantage of cheaper next generation sequencing techniques to identify genetic signatures of adaptation to the selection constraints. Obtaining individual sequencing data is often unrealistic due to cost and sample issues, so we focus on pooled genomic data. We explore a series of statistical tests for selection using pooled case (under selection) and control populations. The tests generally capture skews in the scaled frequency spectrum of alleles in a region, which are indicative of a selective sweep. Extensive simulations are used to show that these approaches work well for a wide range of population divergence times and strong selective pressures. Control vs control simulations are used to determine an empirical False Positive Rate, and regions under selection are determined using a 1% FPR level. We show that pooling does not have a significant impact on statistical power. The tests are also robust to reasonable variations in several different parameters, including window size, base-calling error rate, and sequencing coverage. We then demonstrate the viability (and the challenges) of one of these methods in two independent Drosophila populations (Drosophila melanogaster) bred under selection for hypoxia and accelerated development, respectively. Testing for extreme hypoxia tolerance showed clear signals of selection, pointing to loci that are important for hypoxia adaptation. Overall, we outline a strategy for finding regions under selection using pooled sequences, then devise optimal tests for that strategy. The approaches show promise for

  8. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    Science.gov (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  9. Automated control of the laser welding process of heart valve scaffolds

    Directory of Open Access Journals (Sweden)

    Weber Moritz

    2016-09-01

    Full Text Available Using the electrospinning process the geometry of a heart valve is not replicable by just one manufacturing process. To produce heart valve scaffolds the heart valve leaflets and the vessel have to be produced in separated spinning processes. For the final product of a heart valve they have to be mated afterwards. In this work an already existing three-axes laser was enhanced to laser weld those scaffolds. The automation control software is based on the robot operating system (ROS. The mechatronically control is done by an Arduino Mega. A graphical user interface (GUI is written with Python and Kivy.

  10. Remote controlled in-pipe manipulators for milling, welding and EC-testing, for application in BWRS

    International Nuclear Information System (INIS)

    Seeberger, E.K.

    2000-01-01

    Many pipes in power plants and industrial facilities have piping sections, which are not accessible from the outside or which are difficult to access. Accordingly, remote controlled pipe machining manipulators have been built which enable in-pipe inspection and repair. Since the 1980s, defects have been found at the Inconel welds of the RPV nozzles of boiling water reactors throughout the world. These defects comprise cracks caused by stress corrosion cracking in areas of manual welds made using the weld filler metal Inconel 182. The cracks were found in Inconel-182 buttering at the ferritic nozzles as well as in the welded joints connecting to the fully-austenitic safe ends (Inconel 600 and stainless steel). These welds are not accessible from outside. The ferritic nozzle is cladded with austenitic material on the inside. The adjacent buttering was applied manually using the weld filler metal Inconel 182. The safe end made of Inconel 600 was welded to the nozzle also using Inconel 182 as the filler metal. The repair problems for inside were solved with remote-controlled in-pipe manipulators which enable in-pipe inspection and repair. A complete systems of manipulators has been developed and qualified for application in nuclear power plants. The tasks that must be performed with this set of in-pipe manipulator are as follows: 1st step - Insertion of the milling/ET manipulator into piping to the work location; 2nd step Detection of the transition line with the ferritic measurement probe; 3rd step - Performance of a surface crack examination by eddy current (ET) method; 4th step - Milling of the groove and preparation for weld backlay and, in case of ET indications, elimination of such flaws also by milling. 5th step - Welding of backlay and/or repair weld using the GTA pulsed arc technique; 6th step - After welding it is necessary to prepare the surface for eddy current testing. A final milling inside the pipe is done with the milling manipulator to adjust the

  11. Local exhaust ventilation for the control of welding fumes in the construction industry--a literature review.

    Science.gov (United States)

    Flynn, Michael R; Susi, Pam

    2012-08-01

    Arc welding is a common unit operation in the construction industry, where frequent changes in location and welding position make it more difficult to control fume exposures than in industries where fixed locations are the norm. Welders may be exposed to a variety of toxic airborne contaminants including manganese (Mn) and hexavalent chromium (CrVI). Local exhaust ventilation (LEV) is a well-known engineering control for welding fumes but has not been adopted widely in the construction industry. This literature review presents data on the performance of a variety of LEV systems for welding fume control from the construction (five references), shipyard (five references), and other industries. The studies indicate that LEV can reduce fume exposures to total particulate, Mn, and CrVI to levels below currently relevant standards. Field studies suggest that 40-50% or more reduction in exposure is possible with portable or fixed LEV systems relative to natural ventilation but that correct positioning of the hood and adequate exhaust flow rates are essential. Successful implementation of extraction guns for gas metal arc welding (GMAW) and flux core arc welding has been demonstrated, indicating that a successful balance between extraction airflow and shielding gas requirements is possible. Work practices are an important part of achieving successful control of fume exposures; in particular, positioning the hood close to the arc, checking exhaust flow rates, and avoiding the plume. Further research is needed on hood size effects for controlling welding fume with portable LEV systems and identifying and overcoming barriers to LEV use in construction.

  12. Using active contour models for feature extraction in camera-based seam tracking of arc welding

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Søren

    2009-01-01

    of the processes requires the extraction of characteristic parameters of the welding groove close to the molten pool, i.e. in an environment dominated by the very intense light emission from the welding arc. The typical industrial solution today is a laser-scanner containing a camera as well as a laser source......In the recent decades much research has been performed in order to allow better control of arc welding processes, but the success has been limited, and the vast majority of the industrial structural welding work is therefore still being made manually. Closed-loop and nearly-closed-loop control...... illuminating the groove by a light curtain and thus allowing details of the groove geometry to be extracted by triangulation. This solution is relatively expensive and must act several centimetres ahead of the molten pool. In addition laser-scanners often show problems when dealing with shiny surfaces...

  13. Monitoring and Control of the Hybrid Laser-Gas Metal-Arc Welding Process

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D. C.; McJunkin, T. R.; Nichol, C. I.; Clark, D.; Todorov, E.; Couch, R. D.; Yu, F.

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  14. The Dynamics and Sliding Mode Control of Multiple Cooperative Welding Robot Manipulators

    Directory of Open Access Journals (Sweden)

    Bin Zi

    2012-08-01

    Full Text Available This paper deals with the design, dynamic modelling and sliding mode control of multiple cooperative welding robot manipulators (MWRMs. The MWRMs can handle complex tasks that are difficult or even impossible for a single manipulator. The kinematics and dynamics of the MWRMs are studied on the basis of the Denavit-Hartenberg and Lagrange method. Following that, considering the MWRM system with nonlinear and unknown disturbances, a non-singular terminal sliding mode control strategy is designed. By means of the Lyapunov function, the stability of the controller is proved. Simulation results indicate that the good control performance of the MWRMs is achieved by the non-singular terminal sliding mode controller, which also illustrates the correctness of the dynamic modelling and effectiveness of the proposed control strategy.

  15. Welding technologies for nuclear machinery and equipment

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro; Yokono, Tomomi.

    1991-01-01

    The main welding methods applied to nuclear machinery and equipment are shielded metal arc welding, submerged arc welding, MAG welding and TIG welding. But in the last 10 years, in order to improve the reliability required for the welding of nuclear machinery and equipment, the welding technologies aiming at the reduction of heat input, the decrease of the number of welding pass and the automatic control of welding factors have been applied for the main purpose of bettering the quality and excluding human errors. The merits and the technology of narrow gap, pulsed MAG welding and melt-through welding are explained. As the automation of TIG welding, image processing type narrow gap, hot wire TIG welding and remote control type automatic TIG welding are described. For the longitudinal welding of active metal sheet products, plasma key-hole welding is applied. Since the concentration of its arc is good, high speed welding with low heat input can be done. For the stainless steel cladding by welding, electroslag welding has become to be employed in place of conventional submerged arc welding. Arc is not generated in the electroslag welding, and the penetration into base metal is small. (K.I.)

  16. Sensor integration for robotic laser welding processes

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Ostendorf, A; Hoult, A.; Lu, Y.

    2005-01-01

    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process,

  17. Tests of Selection in Pooled Case-Control Data: An Empirical Study

    Directory of Open Access Journals (Sweden)

    Nitin eUdpa

    2011-11-01

    Full Text Available For smaller organisms with faster breeding cycles, artificial selection can be used to create sub-populations with different phenotypic traits. Genetic tests can be employed to identify the causal markers for the phenotypes, as a precursor to engineering strains with a combination of traits. Traditional approaches involve analyzing crosses of inbred strains to test for co-segregation with genetic markers. Here we take advantage of cheaper next generation sequencing techniques to identifygenetic signatures of adaptation to the selection constraints. Obtaining individual sequencing data is often unrealistic due to cost and sample issues, so we focus on pooled genomic data.In this paper, we explore a series of statistical tests for selection using pooled case (under selection and control populations. Extensive simulations are used to show that these approaches work well for a wide range of population divergence times and strong selective pressures. We show that pooling does not have a significant impact on statistical power. The tests are also robust to reasonable variations in several different parameters, including window size, base-calling error rate, and sequencing coverage. We then demonstrate the viability (and the challenges of one of these methods in two independent Drosophila populations (Drosophila melanogaster bred under selectionfor hypoxia and accelerated development, respectively. Testing for extreme hypoxia tolerance showed clear signals of selection, pointing to loci that are important for hypoxia adaptation.Overall, we outline a strategy for finding regions under selection using pooled sequences, then devise optimal tests for that strategy. The approaches show promise for detecting selection, even several generations after fixation of the beneficial allele has occurred.

  18. Control of microstructure in soldered, brazed, welded, plated, cast or vapor deposited manufactured components

    Science.gov (United States)

    Ripley, Edward B.; Hallman, Russell L.

    2015-11-10

    Disclosed are methods and systems for controlling of the microstructures of a soldered, brazed, welded, plated, cast, or vapor deposited manufactured component. The systems typically use relatively weak magnetic fields of either constant or varying flux to affect material properties within a manufactured component, typically without modifying the alloy, or changing the chemical composition of materials or altering the time, temperature, or transformation parameters of a manufacturing process. Such systems and processes may be used with components consisting of only materials that are conventionally characterized as be uninfluenced by magnetic forces.

  19. Ultrasonic Control of welded joints by using specific PC generated AVG diagrams

    International Nuclear Information System (INIS)

    Rondon Torriente, S.; Galeano Alvarez, N.J.; Frometas Castillo, T.; Gonzalez Mastrapa, J.J. Unidad Presupuestada Inversionista Para la Construccion de la Central Electronuclear de Juragua, Juragua . Laboratorio de Metales.

    1996-01-01

    This paper describes an algoritm easy to be implemented in a modern personnel computer (PC), which can be used to obtain the specific AVG diagrams required during the ultrasonic control of welded joints by the AVG method. The algoritm is illustrated by means of the derivation of some specific diagrams corresponding to given inspection testing. Also some results and standard practices given in recent issues of several international codes are outlined, which can be used in recent issues of several international codes are outlined, which can be used to overcome common problems founded during the practical use of the AVG method with conventional shear wave ultrasonic transducers

  20. Novel welding image processing method based on fractal theory

    Institute of Scientific and Technical Information of China (English)

    陈强; 孙振国; 肖勇; 路井荣

    2002-01-01

    Computer vision has come into used in the fields of welding process control and automation. In order to improve precision and rapidity of welding image processing, a novel method based on fractal theory has been put forward in this paper. Compared with traditional methods, the image is preliminarily processed in the macroscopic regions then thoroughly analyzed in the microscopic regions in the new method. With which, an image is divided up to some regions according to the different fractal characters of image edge, and the fuzzy regions including image edges are detected out, then image edges are identified with Sobel operator and curved by LSM (Lease Square Method). Since the data to be processed have been decreased and the noise of image has been reduced, it has been testified through experiments that edges of weld seam or weld pool could be recognized correctly and quickly.

  1. Indirect control of the intracellular nitrate pool of intertidal sediment by the polychaete Hediste diversicolor

    DEFF Research Database (Denmark)

    Heisterkamp, Ines Maria; Kamp, Anja; Schramm, Angela T.

    2012-01-01

    for anaerobic respiration processes. The origin and some of the ecological controls of this intracellular nitrate pool were investigated in a laboratory experiment. Sediment microcosms were set up with and without the abundant polychaete Hediste diversicolor that is known to stim- ulate nitrate production...... that of the photopigments chlorophyll a and fucoxanthin, strongly suggesting that diatoms were the main nitrate-storing organisms. Intra- cellular nitrate formation is thus stimulated by the interaction of phylogenetically distant groups of organisms: worms enhance nitrification by feeding on particulate organic matter...

  2. Thermal damage control of dye-assisted laser tissue welding: effect of dye concentration

    Science.gov (United States)

    Xie, Hua; Buckley, Lisa A.; Prahl, Scott A.; Shaffer, Brian S.; Gregory, Kenton W.

    2001-05-01

    Successful laser-assisted tissue welding was implemented to provide proper weld strength with minimized tissue thermal injury. We investigated and compared the weld strengths and morphologic changes in porcine small intestinal submucose (SIS) and porcine ureteral tissues with various concentration of indocyanine green (ICG) and with a solid albumin sheet. The study showed that the tissues were welded at lower ICG concentration (0.05 mM) with minimized tissue thermal damage using an 800-nm wavelength diode laser.

  3. Hybrid 2D-3D modelling of GTA welding with filler wire addition

    KAUST Repository

    Traidia, Abderrazak; Roger, Frederic; Guyot, Evelyne; Schroeder, Jeanne; Lubineau, Gilles

    2012-01-01

    , with relatively good accuracy and reasonable computational cost. Also, an original approach to simulate the effect of immersing a cold filler wire in the weld pool is presented. The simulation results reveal two important observations. First, the weld pool depth

  4. Investigation on Active Thermal Control Method with Pool Boiling Heat Transfer at Low Pressure

    Science.gov (United States)

    Sun, Chuang; Guo, Dong; Wang, Zhengyu; Sun, Fengxian

    2018-06-01

    In order to maintain a desirable temperature level of electronic equipment at low pressure, the thermal control performance with pool boiling heat transfer of water was examined based on experimental measurement. The total setup was designed and performed to accomplish the experiment with the pressure range from 4.5 kPa to 20 kPa and the heat flux between 6 kW/m2 and 20 kW/m2. The chosen material of the heat surface was aluminium alloy and the test cavity had the capability of varying the direction for the heat surface from vertical to horizontal directions. Through this study, the steady and transient temperature of the heat surface at different pressures and directions were obtained. Although the temperature non-uniformity of the heat surface from the centre to the edge could reach 10°C for the aluminium alloy due to the varying pressures, the whole temperature results successfully satisfied with the thermal control requirements for electronic equipment, and the temperature control effect of the vertically oriented direction was better than that of the horizontally oriented direction. Moreover, the behaviour of bubbles generating and detaching from the heat surface was recorded by a high-resolution camera, so as to understand the pool boiling heat transfer mechanism at low-load heat flux. These pictures showed that the bubbles departure diameter becomes larger, and departure frequency was slower at low pressure, in contrast to 1.0 atm.

  5. Microstructural examination of Zr-2.5%Nb alloy welds made by pulsed Nd:YAG laser and TIG welding technique

    International Nuclear Information System (INIS)

    Bhatt, R.B.; Varma, P.V.S.; Panakkal, J.P.; Srivastava, D.; Dey, G.K.

    2009-01-01

    The paper describes the weld microstructure of Zr-2.5%Nb alloy material. Bead on plate welds were made using pulsed Nd:YAG laser and TIG welding technique at different parameters. These welds were characterized at macro and microstructural level. Weld pools of Pulsed Laser and TIG welds were not resolved by optical microscopy. SEM too did not reveal much. Orientation imaging microscopy could reveal the presence of fine martensite. It was observed that microstructure is very sensitive to welding parameters. Microhardness studies suggested formation of martensite in the weld pool. It was also observed that laser welds had very sharp weld pool boundary as compared to TIG welds. Variation in microhardness of the weldment is seen and is influenced by overlapping of weld spots causing thermal treatment of previously deposited spots. (author)

  6. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  7. Feedback Linearization Based Arc Length Control for Gas Metal Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg

    2005-01-01

    a linear system to be controlled by linear state feedback control. The advantage of using a nonlinear approach as feedback linearization is the ability of this method to cope with nonlinearities and different operating points. However, the model describing the GMAW process is not exact, and therefore......In this paper a feedback linearization based arc length controller for gas metal arc welding (GMAW) is described. A nonlinear model describing the dynamic arc length is transformed into a system where nonlinearities can be cancelled by a nonlinear state feedback control part, and thus, leaving only......, the cancellation of nonlinear terms might give rise to problems with respect to robustness. Robustness of the closed loop system is therefore nvestigated by simulation....

  8. In-line process control for laser welding of titanium by high dynamic range ratio pyrometry and plasma spectroscopy

    Science.gov (United States)

    Lempe, B.; Taudt, C.; Baselt, T.; Rudek, F.; Maschke, R.; Basan, F.; Hartmann, P.

    2014-02-01

    The production of complex titanium components for various industries using laser welding processes has received growing attention in recent years. It is important to know whether the result of the cohesive joint meets the quality requirements of standardization and ultimately the customer requirements. Erroneous weld seams can have fatal consequences especially in the field of car manufacturing and medicine technology. To meet these requirements, a real-time process control system has been developed which determines the welding quality through a locally resolved temperature profile. By analyzing the resulting weld plasma received data is used to verify the stability of the laser welding process. The determination of the temperature profile is done by the detection of the emitted electromagnetic radiation from the material in a range of 500 nm to 1100 nm. As detectors, special high dynamic range CMOS cameras are used. As the emissivity of titanium depends on the wavelength, the surface and the angle of radiation, measuring the temperature is a problem. To solve these a special pyrometer setting with two cameras is used. That enables the compensation of these effects by calculating the difference between the respective pixels on simultaneously recorded images. Two spectral regions with the same emissivity are detected. Therefore the degree of emission and surface effects are compensated and canceled out of the calculation. Using the spatially resolved temperature distribution the weld geometry can be determined and the laser process can be controlled. The active readjustment of parameters such as laser power, feed rate and inert gas injection increases the quality of the welding process and decreases the number of defective goods.

  9. Welding for the CRBRP steam generators

    International Nuclear Information System (INIS)

    Spalaris, C.N.; Ring, P.J.; Durand, R.E.; Wright, E.A.

    1979-01-01

    The rationale for selecting weld design, welding procedures and inspection methods was based upon the desire to obtain the highest reliability welds for the CRBRP steam generators. To assure the highest weld reliability, heavy emphasis was placed on the control of material cleanliness and composition substantially exceeding the requirements of the ASME Code for 2-1/4Cr--1Mo. The high tube/tubesheet weld quality was achieved through close material control, an extensive weld development program and the selection of high reliability welding equipment. Shell and nozzle weld fabrication using TIG, MIG, and submerged arc procedures are also being controlled through precise specifications, including preheat and postheat programs, together with radiography and ultrasonic inspection to ascertain the weld quality desired. Details of the tube/tubesheet welding and shell welding are described and results from the weld testing program are discussed

  10. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    Science.gov (United States)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  11. Pseudomonas aeruginosa in Swimming Pool Water: Evidences and Perspectives for a New Control Strategy

    Directory of Open Access Journals (Sweden)

    Marco Guida

    2016-09-01

    Full Text Available Pseudomonas aeruginosa is frequently isolated in swimming pool settings. Nine recreational and rehabilitative swimming pools were monitored according to the local legislation. The presence of P. aeruginosa was correlated to chlorine concentration. The ability of the isolates to form a biofilm on plastic materials was also investigated. In 59.5% of the samples, microbial contamination exceeded the threshold values. P. aeruginosa was isolated in 50.8% of these samples. The presence of P. aeruginosa was not correlated with free or total chlorine amount (R2 < 0.1. All the isolates were moderate- to strong-forming biofilm (Optical Density O.D.570 range 0.7–1.2. To control biofilm formation and P. aeruginosa colonization, Quantum FreeBioEnergy© (QFBE, FreeBioEnergy, Brisighella, Italy, has been applied with encouraging preliminary results. It is a new, promising control strategy based on the change of an electromagnetic field which is responsible for the proliferation of some microorganisms involved in biofilm formation, such as P. aeruginosa.

  12. Validating the Use of Rectus Muscle Fragment Welding to Control Presacral Bleeding During Rectal Mobilization

    Directory of Open Access Journals (Sweden)

    Eduardo Ayuste, Jr.

    2004-01-01

    Full Text Available The incidence of presacral bleeding during rectal mobilization is low, but such bleeding may be massive and even fatal. Haemostasis can be difficult to achieve using conventional methods because of the complex interlacing of the venous network at the sacral periosteum. Historically, pelvic packing and metallic thumbtacks have been the more commonly used methods in our institution. However, the need for repeat surgery to remove the packs and the difficulties encountered in tack application have forced us to explore other methods. In 1994, the procedure termed muscle fragment welding, which uses electrocautery through a rectus muscle fragment, was introduced to control presacral bleeding. From January 1999 to February 2002, six of 416 patients undergoing pelvic surgery in our institution developed massive presacral haemorrhage and, therefore, this technique was used. Haemostasis was immediate and permanent. No major untoward postoperative events such as re-bleeding or infection were noted. One case developed a second-degree burn in the right elbow due to a misplaced ground conduction plate. Rectus muscle fragment welding is, in our experience, an effective and practical method of controlling presacral haemorrhage.

  13. Investigation of heat transfer and fluid flow in activating TIG welding by numerical modeling

    International Nuclear Information System (INIS)

    Wang, Xinxin; Huang, Jiankang; Huang, Yong; Fan, Ding; Guo, Yanning

    2017-01-01

    Highlights: • The heat input to the anode and subsequent thermal efficiency is almost equal for TIG and A-TIG welding. • Dominant effect heat convection and reversion of molten metal flow in weld pool causes significant increase in weld penetration. - Abstract: Heat transfer and fluid flow of arc plasma and weld pool in tungsten inert gas (TIG) welding and activated flux tungsten inert gas (A-TIG) welding of SUS 304 stainless steel are investigated comparatively though a 3D unified model. The model differs from the previous ones in that it considers the arc length more realistic for welding production. Tungsten electrode, anode (work piece) and arc plasma are all included. The effects of buoyance, plasma drag force, Lorentz force and Marangoni force on the weld pool flow are taken into account. By solving the conservation equations of mass, momentum, energy as well as Maxwell equations, the distributions of temperature and velocity of arc plasma and weld pool are obtained for TIG and A-TIG welding. The heat flux, current density and shear stress at the weld pool are presented. Dimensionless numbers are employed to compare the relative importance of the driven forces and that of convection and conduction in heat transfer of the weld pool. It is demonstrated that there is no significant difference in the heat flux at the weld pool, and total heat input to the anode and thermal efficiency is almost equal for TIG and A-TIG welding. The current density and the heat flux at the weld pool are more concentrated in more realistic welding condition. As a result, both of the temperature of the weld pool for TIG welding and A-TIG welding increases, while the latter is more significant. Marangoni force ranges from zero to 100 Pa and dominant the weld pool flow. Compared with the conventional TIG welding, the reversion of the Marangoni force results in inward flow and thus causes inward heat convection in weld pool of A-TIG welding. Heat convection was the main mechanism of

  14. Closed Loop Control of Penetration Depth during CO2 Laser Lap Welding Processes

    Directory of Open Access Journals (Sweden)

    Antonio Ancona

    2012-08-01

    Full Text Available In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth.

  15. Design and Construction of Pool Door for Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kwangsub; Lee, Sangjin; Choi, Jinbok; Oh, Jinho; Lee, Jongmin [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The pool door is a structure to isolate the reactor pool from the service pool for maintenance. The pool door is installed before the reactor pool is drained. The pool door consists of structural component and sealing component. The main structures of the pool door are stainless steel plates and side frames. The plates and frames are assembled by welded joints. Lug is welded at the top of the plate. The pool door is submerged in the pool water when it is used. Materials of the pool door should be resistive to corrosion and radiation. Stainless steel is used in structural components and air nozzle assemblies. Features of design and construction of the pool door for the research reactor are introduced. The pool door is designed to isolate the reactor pool for maintenance. Structural analysis is performed to evaluate the structural integrity during earthquake. Tests and inspections are also carried out during construction to identify the safety and function of the pool door.

  16. Design and Construction of Pool Door for Research Reactor

    International Nuclear Information System (INIS)

    Jung, Kwangsub; Lee, Sangjin; Choi, Jinbok; Oh, Jinho; Lee, Jongmin

    2016-01-01

    The pool door is a structure to isolate the reactor pool from the service pool for maintenance. The pool door is installed before the reactor pool is drained. The pool door consists of structural component and sealing component. The main structures of the pool door are stainless steel plates and side frames. The plates and frames are assembled by welded joints. Lug is welded at the top of the plate. The pool door is submerged in the pool water when it is used. Materials of the pool door should be resistive to corrosion and radiation. Stainless steel is used in structural components and air nozzle assemblies. Features of design and construction of the pool door for the research reactor are introduced. The pool door is designed to isolate the reactor pool for maintenance. Structural analysis is performed to evaluate the structural integrity during earthquake. Tests and inspections are also carried out during construction to identify the safety and function of the pool door

  17. Method for laser spot welding monitoring

    Science.gov (United States)

    Manassero, Giorgio

    1994-09-01

    As more powerful solid state laser sources appear on the market, new applications become technically possible and important from the economical point of view. For every process a preliminary optimization phase is necessary. The main parameters, used for a welding application by a high power Nd-YAG laser, are: pulse energy, pulse width, repetition rate and process duration or speed. In this paper an experimental methodology, for the development of an electrooptical laser spot welding monitoring system, is presented. The electromagnetic emission from the molten pool was observed and measured with appropriate sensors. The statistical method `Parameter Design' was used to obtain an accurate analysis of the process parameter that influence process results. A laser station with a solid state laser coupled to an optical fiber (1 mm in diameter) was utilized for the welding tests. The main material used for the experimental plan was zinc coated steel sheet 0.8 mm thick. This material and the related spot welding technique are extensively used in the automotive industry, therefore, the introduction of laser technology in production line will improve the quality of the final product. A correlation, between sensor signals and `through or not through' welds, was assessed. The investigation has furthermore shown the necessity, for the modern laser production systems, to use multisensor heads for process monitoring or control with more advanced signal elaboration procedures.

  18. Impacts of exotic mangroves and mangrove control on tide pool fish assemblages

    Science.gov (United States)

    Richard A. MacKenzie; Cailtin L. Kryss

    2013-01-01

    Fish were sampled from tide pools in Hawaii to determine how exotic mangroves Rhizophora mangle and the use of herbicides to chemically eradicate them are impacting tide pool fish assemblages. Ecological parameters were compared among mangrove-invaded, native vegetated, and non-vegetated tide pools before and after mangroves had been chemically...

  19. Welding method by remote handling

    International Nuclear Information System (INIS)

    Hashinokuchi, Minoru.

    1994-01-01

    Water is charged into a pit (or a water reservoir) and an article to be welded is placed on a support in the pit by remote handling. A steel plate is disposed so as to cover the article to be welded by remote handling. The welding device is positioned to the portion to be welded and fixed in a state where the article to be welded is shielded from radiation by water and the steel plate. Water in the pit is drained till the portion to be welded is exposed to the atmosphere. Then, welding is conducted. After completion of the welding, water is charged again to the pit and the welding device and fixing jigs are decomposed in a state where the article to be welded is shielded again from radiation by water and the steel plate. Subsequently, the steel plate is removed by remote handling. Then, the article to be welded is returned from the pit to a temporary placing pool by remote handling. This can reduce operator's exposure. Further, since the amount of the shielding materials can be minimized, the amount of radioactive wastes can be decreased. (I.N.)

  20. Toughness of submerged arc weld metals of controlled rolled NB bearing steel

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Shiga, A.; Kamada, A.; Tsuboi, J.

    1982-01-01

    The toughness and the hardness of reheated weld metals depend on the maximum reheating temperature. When the maximum reheating temperature is 500 to 700 0 C, the hardness of single pass weld metal increases and the toughness decreases because of fine Nb- and V-carbonitride precipitation. When the maximum reheating temperature is over 800 0 C, the hardness and the toughness remain almost unchanged. The stress relieving treatment of single pass weld metal at 600 0 C for 1 up to about 100 hours causes the increase in hardness and then decreases the hardness gradually. It needs over 500 hours to obtain the same hardness value as that of as-welded metal. The addition of Ti to weld metal is very effective to improve the toughness, however excess Ti increases the hardness of stress relieved weld metal by precipitating as fine Ti-carbonitride. Therefore Ti addition should be restricted within the lowest limit required to improve as-welded metal toughness. The optimum Ti content is about 0.020% in the case of weld metal of which oxygen content is 350 ppM or so. In multipass welding, the hardness of weld metal affected by subsequent weld heat cycle varies from pass to pass, because Nb and V content change with the passes as the result of the change in dilution from base metal. The most hardened zone is observed in the reheated first pass weld metal, in which Nb and V content are the highest. Good weld metal toughness would be obtained by lowering dilution from base metal and taking advantage of grain refinement by subsequent passes

  1. Consigned regulatory control and effect of the owner's welding quality under the EPC mode in Fangjiashan nuclear power project

    International Nuclear Information System (INIS)

    Wang Qun; Gu Tao; Wei Lianfeng; Li Hongjun

    2012-01-01

    Under EPC management mode, how to optimize resources allocation and realize effective management and control over key control points is a big difficulty facing the owner. From the owner's point of view, and through summary of practices, the paper introduces and analyses the mode and effect of consigned regulatory control over the weld quality of Fangjiashan nuclear power project. And some recognitions and point of views on popularization of specialized and consigned regulatory control are put forward. (authors)

  2. Welding hazards

    International Nuclear Information System (INIS)

    Khan, M.A.

    1992-01-01

    Welding technology is advancing rapidly in the developed countries and has converted into a science. Welding involving the use of electricity include resistance welding. Welding shops are opened in residential area, which was causing safety hazards, particularly the teenagers and children who eagerly see the welding arc with their naked eyes. There are radiation hazards from ultra violet rays which irritate the skin, eye irritation. Welding arc light of such intensity could damage the eyes. (Orig./A.B.)

  3. Automatization of welding

    International Nuclear Information System (INIS)

    Iwabuchi, Masashi; Tomita, Jinji; Nishihara, Katsunori.

    1978-01-01

    Automatization of welding is one of the effective measures for securing high degree of quality of nuclear power equipment, as well as for correspondence to the environment at the site of plant. As the latest ones of the automatic welders practically used for welding of nuclear power apparatuses in factories of Toshiba and IHI, those for pipes and lining tanks are described here. The pipe welder performs the battering welding on the inside of pipe end as the so-called IGSCC countermeasure and the succeeding butt welding through the same controller. The lining tank welder is able to perform simultaneous welding of two parallel weld lines on a large thin plate lining tank. Both types of the welders are demonstrating excellent performance at the shops as well as at the plant site. (author)

  4. Effect of welding current and speed on occurrence of humping bead in high-speed GMAW

    Institute of Scientific and Technical Information of China (English)

    Chen Ji; Wu Chuansong

    2009-01-01

    The developed mathematical model of humping formation mechanism in high-speed gas metal arc welding (GMAW) is used to analyze the effects of welding current and welding speed on the occurrence of humping bead. It considers both the momentum and heat content of backward flowing molten jet inside weld pool. Three-dimensional geometry of weld pool, the spacing between two adjacent humps and hump height along humping weld bead are calculated under different levels of welding current and welding speed. It shows that wire feeding rate, power intensity and the moment of backward flowing molten jet are the major factors on humping bead formation.

  5. Circumferential welding applied for inox steel super duplex UNS S32750 using the process MIG using CMT® control; Soldagem circunferencial do aço inoxidável super duplex UNS S32750 pelo processo MIG com controle CMT®

    Energy Technology Data Exchange (ETDEWEB)

    Invernizzi, Bruno Pizol

    2017-07-01

    This study carried out circumferential welding experiments in UNS S32750 Super Duplex Stainless Steel tubes using diameters of 19,05 mm and 48,20 mm. Welds were performed using various welding parameters on a MIG machine with Cold Metal Transfer® CMT control. The weld joints were evaluated by visual and dimensional inspection in addition to the Vickers microhardness and traction tests, as well as the microstructural analysis in conjunction with phase precipitation analysis, which was performed according to practice A of ASTM A923, and corrosion test in accordance with practice A of ASTM G48 in conjunction with ASTM A923. The results indicated that welds performed in pipes with a diameter of 19.05 mm showed a weld joint with unacceptable dimensions according to the standard, this condition being attributed the use of a high wire diameter for the welding conditions used. Welding performed for pipes with a diameter of 48.20 mm showed a lack of penetration under the conditions employed when welded by the conventional CMT® process. In the case of the use of CMT® combined with pulsed arc, under conditions that generated greater heat input during welding, this resulted in total penetration of the joint and adequate surface finish. The results indicated that welding using the CMT® process combined with pulsed arc, under the conditions (parameters) employed generated good surface finish, combined mechanical properties, meeting standards requirements, as well as a balanced microstructure and high resistance to corrosion. (author)

  6. Failure mode transition in AHSS resistance spot welds. Part I. Controlling factors

    International Nuclear Information System (INIS)

    Pouranvari, M.; Marashi, S.P.H.

    2011-01-01

    Highlights: → Interfacial to pullout failure mode transition for AHSS RSWs is studied. → An analytical mode is proposed to predict failure mode of AHSS RSWs. → Hardness characteristics of RSWs plays key role in the failure mode transition. - Abstract: Failure mode of resistance spot welds is a qualitative indicator of weld performance. Two major types of spot weld failure are pull-out and interfacial fracture. Interfacial failure, which typically results in reduced energy absorption capability, is considered unsatisfactory and industry standards are often designed to avoid this occurrence. Advanced High Strength Steel (AHSS) spot welds exhibit high tendency to fail in interfacial failure mode. Sizing of spot welds based on the conventional recommendation of 4t 0.5 (t is sheet thickness) does not guarantee the pullout failure mode in many cases of AHSS spot welds. Therefore, a new weld quality criterion should be found for AHSS resistance spot welds to guarantee pull-out failure. The aim of this paper is to investigate and analyze the transition between interfacial and pull-out failure modes in AHSS resistance spot welds during the tensile-shear test by the use of analytical approach. In this work, in the light of failure mechanism, a simple analytical model is presented for estimating the critical fusion zone size to prevent interfacial fracture. According to this model, the hardness ratio of fusion zone to pull-out failure location and the volume fraction of voids in fusion zone are the key metallurgical factors governing type of failure mode of AHSS spot welds during the tensile-shear test. Low hardness ratio and high susceptibility to form shrinkage voids in the case of AHSS spot welds appear to be the two primary causes for their high tendency to fail in interfacial mode.

  7. A Vision Controlled Robot to Detect and Collect Fallen Hot Cobalt60 Capsules inside Wet Storage Pool of Cobalt60 Irradiators

    International Nuclear Information System (INIS)

    Solyman, A.E.M.

    2015-01-01

    In a typical irradiator that use radioactive cobalt-60 capsules source is one of the peaceful uses of atomic energy, it originated strategy in terms of its importance in the sterilization of medical products and food processing from bacteria and fungi before being exported. However, there are several well-known problems related to the fall of the cobalt-60 capsules inside the wet storage pool as a result of manufacturing defects, defects welds or a problem occurs in the vertical movement of the radioactive source rack. Therefore it is necessary to study this problem and solve it in a scientific way so as to keep the human as much as possible from radiation exposure, according to the principles of radiation protection and safety issued by the International Atomic Energy Agency. The present work considers the possibility to use a vision based control arm robot to collect fallen hot cobalt-60 capsules inside wet storage pool. A 5-DOF arm robot is designed and vision algorithms are established to pick the fallen capsule on the bottom surface of the storage pool, read the information printed on its edge (cap) and move it to a safe storage place. Two object detection approaches are studied; RGB-based filter and background subtraction technique. Vision algorithms and camera calibration are done using MATLAB/SIMULINK program. Robot arm forward and inverse kinematics are developed and programmed using an embedded micro controller system. Experiments show the validity of the proposed system and prove its success. The collecting process will be done without interference of operators, so radiation safety will be increased. The results showed camera calibration equations accuracy. And also the presence of vibrations in the hands of the movement of the robot and thus were seized motor rotation speed to 10 degrees per second to avoid these vibrations.This scientific application keeps the operators as much as possible from radiation exposure so it leads to increase radiation

  8. TIG welding method and TIG welding device

    International Nuclear Information System (INIS)

    Yoneda, Eishi

    1998-01-01

    The present invention provides a method of TIG welding for members having different heat capacities including a cladding tube and an end plug of a fuel rod to be used, for example, in a reactor, and a device therefor. Namely, in the TIG welding method, the flow rate of a sealed gas to the side of a member having smaller heat capacity is made greater than that on the side of the member having greater heat capacity bordered on the top end of a welding electrode. Since the sealed gas is jetted being localized relative to the welding electrode, arc is restricted in a region of the member having smaller heat capacity and is increased at a region having a larger heat capacity. As a result, the arc is localized, so that the heat input amount to the region having a large heat capacity is increased, and then a plurality of members at the abutting portion are melted uniformly thereby capable of obtaining a uniform molten pool. A bead is formed at the abutting portion thereby capable of obtaining a welded portion with less unevenness and having large strength. (I.S.)

  9. Computerized ultrasonic quality control system in the production of helical welded tubes

    International Nuclear Information System (INIS)

    Tar, J.

    1976-01-01

    The inspection of helical welded steel tubes by means of an ultrasonic automatic equipment is described. This equipment is able to recognize the defects of the weld, to identify them and to continuously report back the informations necessary for their elimination

  10. Nuclear Technology. Course 28: Welding Inspection. Module 28-6, Process Controls.

    Science.gov (United States)

    Espy, John

    This sixth in a series of ten modules for a course titled Welding Inspection describes procedures review, process monitoring, and weld defect analysis. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject matter, (6)…

  11. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  12. Controlled, all-position, butterbead-temperbead welding technique for nuclear repairs

    International Nuclear Information System (INIS)

    Clark, J.N.; Lambert, J.A.

    1986-01-01

    Sections III and XI of the ASME boiler and pressure vessel code describe a half-bead temper repair welding technique specifically designed for in-service BWR and PWR repair applications without postweld heat treatment. The method relies on deposition of two layers of weld beads. Prior to deposition of the second layer, half the first layer is ground away. As a result, the first layer HAZ is tempered or retransformed by the second layer heat input. It is on the basis of this tempering that a concession is granted to omit postweld heat treatment. The grinding stage is difficult to control, time consuming, and can involve long exposure of personnel to a radioactive environment. Consequently, there has been pressure to find a viable alternative to the half-bead technique. Much interest has been shown in the butterbead-temperbead technique, which is essentially the CEGB two-layer HAZ refinement technique. This does not require grinding of the first layer and achieves HAZ retransformation by increasing the heat input of the second layer. The elimination of the grinding stage considerably reduces repair time and, consequently, radiation exposure. The method has now been included as an acceptable alternative to the half-bead technique in section XI of the ASME code. The CEGB method has been used successfully in the U.K. power industry, mainly for prevention of stress relief cracking, but also to improve HAZ toughness for low temperature service. Two-layer HAZ refinement is achieved by retransformation of the first layer HAZ by the thermal field of the second layer

  13. First industrial application of MAG STT welding with auto adaptative joint control

    International Nuclear Information System (INIS)

    Tran Tien, Thong

    2006-01-01

    The Welding Institute has participated to an extraordinary plan: the manufacture of the new LHC (Large Hadron Collider) particles accelerator in a circular tunnel of 27 km of circumference, at the European laboratory for particles physics (CERN) located at the Franco-Swiss frontier. The LHC dipolar magnets wires constituted in semi-cylinders of 15 m length in 316 LN, thickness 10 mm, are assembled in horizontal-vertical position. The Welding Institute has developed a software allowing to implement the auto-adaptative welding with follow of laser joint, using the MAG STT (Surface Tension Transfer) process. The modeling of welding laws connected with the strategy of joints filling runs (in multi-passes), absorb the physical tolerances of the preparation (clearance, poor alignment, root of joint...) and this in welding dynamical condition. (O.M.)

  14. Electron beam deflection control system of a welding and surface modification installation

    Science.gov (United States)

    Koleva, E.; Dzharov, V.; Gerasimov, V.; Tsvetkov, K.; Mladenov, G.

    2018-03-01

    In the present work, we examined the patterns of the electron beam motion when controlling the transverse with respect to the axis of the beam homogeneous magnetic field created by the coils of the deflection system the electron gun. During electron beam processes, the beam motion is determined the process type (welding, surface modification, etc.), the technological mode, the design dimensions of the electron gun and the shape of the processed samples. The electron beam motion is defined by the cumulative action of two cosine-like control signals generated by a functional generator. The signal control is related to changing the amplitudes, frequencies and phases (phase differences) of the generated voltages. We realized the motion control by applying a graphical user interface developed by us and an Arduino Uno programmable microcontroller. The signals generated were calibrated using experimental data from the available functional generator. The free and precise motion on arbitrary trajectories determines the possible applications of an electron beam process to carrying out various scientific research tasks in material processing.

  15. Cash pooling

    OpenAIRE

    Lozovaya, Karina

    2009-01-01

    This work makes a mention of cash management. At next chapter describes two most known theoretical models of cash management -- Baumol Model and Miller-Orr Model. Principal part of work is about cash pooling, types of cash pooling, cash pooling at Czech Republic and influence of cash pooling over accounting and taxes.

  16. Gamma flaw detectors for radiographic control of welded joint quality under mounting conditions

    International Nuclear Information System (INIS)

    Khoroshev, V.N.; Galash, T.F.; Andreev, V.L.; Grigor'ev, V.M.; Medvedev, N.E.

    1978-01-01

    Main characteristics are presented of gamma flaw detector models used for radiographic control of the quality of welded steel and pipeline joints during assembly. Specially developed experimental models, operating with 75 Se, 90 Sr, 170 Tm, 137 Cs and 192 Ir sources are considered. The new instruments have been made on a single structural base, which creates a foundation for standardizing individual units of radiation heads, manual control panels, containers, exterior packings, devices and accessories, maintenance techniques, and repair techniques. They are distinguished by small sizes and weight, possibility of using a set of radiation sources ensuring control of 3-40 mm thick joints, and reliable protection. Special devices permit to reduce 2-3-folds the time needed for installing and orienting the flaw detectors. The expected economic effect from implementation of the new gamma flaw detectors into industry will amount to 1.5-10.0 thousand roubles per annum for one detector at approximate cost of each detector equal to 3.5-6.0 thousand roubles

  17. Recent advances in the TIG welding process and the application of the welding of nuclear components

    International Nuclear Information System (INIS)

    Lucas, W.; Males, B.O.

    1982-01-01

    Recent advances in the field of precision arc welding techniques and infacilities for production of nuclear power plant components arc presented. Of the precision welding techniques, pulsed TIG welding, pulsed plasma arc welding, hot-wire TIG welding, and pulsed inert-gas metal-arc welding. In the field of weld cladding, GMA plasma welding is cited as an alternative to submerged-arc welding with a strip electrode. Transistors and computer-controlled welding systems get a special mention. Applications of TIG welding in the UK are cited, e.g. welding of components for the AGR nuclear power plant and construction of equipment for repair work in feedwater pipes of the MAGNOX reactor. (orig.) [de

  18. Stud arc welding in a magnetic field – Investigation of the influences on the arc motion

    International Nuclear Information System (INIS)

    Hartz-Behrend, K; Forster, G; Schein, J; Marqués, J L; Jenicek, A; Müller, M; Cramer, H; Jilg, A; Soyer, H

    2014-01-01

    Stud arc welding is widely used in the construction industry. For welding of studs with a diameter larger than 14 mm a ceramic ferrule is usually necessary in order to protect the weld pool. Disadvantages of using such a ferrule are that more metal is molten than necessary for a high quality welded joint and that the ferrule is a consumable generally thrown away after the welding operation. Investigations show that the ferrule can be omitted when the welding is carried out in a radially symmetric magnetic field within a shielding gas atmosphere. Due to the Lorentz force the arc is laterally shifted so that a very uniform and controlled melting of the stud contact surface as well as of the work piece can be achieved. In this paper a simplified physical model is presented describing how the parameters welding current, flux density of the magnetic field, radius of the arc and mass density of the shielding gas influence the velocity of the arc motion. The resulting equation is subsequently verified by comparing it to optical measurements of the arc motion. The proposed model can be used to optimize the required field distribution for the magnetic field stud welding process

  19. Optimization of the Process Parameters for Controlling Residual Stress and Distortion in Friction Stir Welding

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Schmidt, Henrik Nikolaj Blicher; Hattel, Jesper Henri

    2008-01-01

    In the present paper, numerical optimization of the process parameters, i.e. tool rotation speed and traverse speed, aiming minimization of the two conflicting objectives, i.e. the residual stresses and welding time, subjected to process-specific thermal constraints in friction stir welding......, is investigated. The welding process is simulated in 2-dimensions with a sequentially coupled transient thermo-mechanical model using ANSYS. The numerical optimization problem is implemented in modeFRONTIER and solved using the Multi-Objective Genetic Algorithm (MOGA-II). An engineering-wise evaluation or ranking...

  20. Pseudomonas aeruginosa in Swimming Pool Water: Evidences and Perspectives for a New Control Strategy

    OpenAIRE

    Guida, Marco; Di Onofrio, Valeria; Gall?, Francesca; Gesuele, Renato; Valeriani, Federica; Liguori, Renato; Romano Spica, Vincenzo; Liguori, Giorgio

    2016-01-01

    Pseudomonas aeruginosa is frequently isolated in swimming pool settings. Nine recreational and rehabilitative swimming pools were monitored according to the local legislation. The presence of P. aeruginosa was correlated to chlorine concentration. The ability of the isolates to form a biofilm on plastic materials was also investigated. In 59.5% of the samples, microbial contamination exceeded the threshold values. P. aeruginosa was isolated in 50.8% of these samples. The presence of P. aerugi...

  1. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    Science.gov (United States)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  2. Analysis of Smut Formation Phenomena on MIG and Plasma-MIG Hybrid Weld of Cryogenic Al-Mg Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee-keun [Daewoo Shipbuilding and Marine Engineering, Geoje (Korea, Republic of); Yoon, Tae-jin; Kang, Chung-yun [Pusan National University, Busan (Korea, Republic of)

    2016-02-15

    Black deposits (smut) are created on MIG welds in cryogenic Al alloys. The smut should be removed because it ruins the appearance of the end product and affects surface treatments such as painting. It was recently reported that plasma–MIG hybrid (PMH) welding controls the formation of smut during welding. In order to determine the reason for this, smut formation using both MIG and PMH welding was investigated through metallurgy and arc phenomena analysis. Smut on MIG welds is a Mg–Al–O amorphous layer that includes nano-sized MgO particles less than 100 nm in diameter and MgO particles 1–2 µm in diameter. Smut on MIG welds is created by large amounts of metal vapor from the arc explosion generated between the welding wire and the weld pool after a short circuit transfer. However, smut on PMH welds is not created owing to the small amount of metal vapor produced from a stable globular transfer rather than a short circuit transfer and arc explosion.

  3. Analysis of Smut Formation Phenomena on MIG and Plasma-MIG Hybrid Weld of Cryogenic Al-Mg Alloy

    International Nuclear Information System (INIS)

    Lee, Hee-keun; Yoon, Tae-jin; Kang, Chung-yun

    2016-01-01

    Black deposits (smut) are created on MIG welds in cryogenic Al alloys. The smut should be removed because it ruins the appearance of the end product and affects surface treatments such as painting. It was recently reported that plasma–MIG hybrid (PMH) welding controls the formation of smut during welding. In order to determine the reason for this, smut formation using both MIG and PMH welding was investigated through metallurgy and arc phenomena analysis. Smut on MIG welds is a Mg–Al–O amorphous layer that includes nano-sized MgO particles less than 100 nm in diameter and MgO particles 1–2 µm in diameter. Smut on MIG welds is created by large amounts of metal vapor from the arc explosion generated between the welding wire and the weld pool after a short circuit transfer. However, smut on PMH welds is not created owing to the small amount of metal vapor produced from a stable globular transfer rather than a short circuit transfer and arc explosion.

  4. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    International Nuclear Information System (INIS)

    Al-Sarraf, Z; Lucas, M

    2012-01-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  5. Thermal Stir Welding: A New Solid State Welding Process

    Science.gov (United States)

    Ding, R. Jeffrey

    2003-01-01

    Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  6. The improvement of ultrasonic characteristics in weld metal of austenitic stainless steel using magnetic stirring method

    International Nuclear Information System (INIS)

    Arakawa, T.; Tomisawa, Y.

    1988-01-01

    The magnetic stirring welding process was tested to save the difficulty of ultrasonic testing of austenitic stainless steel overlayed welds, due to grain refinement of weld solidification structure. The testing involved stirring the molten pool with Lorenz force induced by the interaction of welding current and alternative magnetic field applied from the outside magnetic coil. This report summarizes improvement of ultrasonic characteristic in austenitic stainless steel overlayed welds caused by magnetic stirring welding process

  7. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  8. Resistance seam welding

    International Nuclear Information System (INIS)

    Schueler, A.W.

    1977-01-01

    The advantages and disadvantages of the resistance seam welding process are presented. Types of seam welds, types of seam welding machines, seam welding power supplies, resistance seam welding parameters and seam welding characteristics of various metals

  9. Reduction in Repair rate of Welding Processes by Determination & Controlling of Critical KPIVs

    Directory of Open Access Journals (Sweden)

    Faheem Yousaf

    2014-01-01

    Full Text Available Six Sigma is being Implemented all over the World as a successful Quality Improvement Methodology. Many Companies are now days are using Six Sigma as an Approach towards zero defects. This article provides a practical case study regarding the implementation of Six Sigma Project in a Welding Facility and discusses the Statistical Analysis performed for bringing the welding processes in the desired sigma Limits.DMAIC was chosen as potential Six Sigma methodology with the help of findings of this Methodology, Six Sigma Team First Identified the critical Factors affecting the Process Yield and then certain Improvement Measures were taken to improve the Capability of Individual welding Processes and also of Overall Welding Facility.   Cost of Quality was also measured to Validate the Improvement results achieved after Conducting the Six Sigma Project.

  10. Multipass autogenous electron beam welding

    International Nuclear Information System (INIS)

    Murphy, J.L.; Mustaleski, T.M. Jr.; Watson, L.C.

    1986-01-01

    A multipass, autogenous welding procedure was developed for 7.6 mm (0.3 in.) wall thickness Type 304L stainless steel cylinders. The joint geometry has a 1.5 mm (0.06 in.) root-face width and a rectangular stepped groove that is 0.762 mm (0.03 in.) wide at the top of the root face and extends 1.5 mm in height, terminating into a groove width of 1.27 mm which extends to the outside of the 1.27 mm high weld-boss. One weld pass is made on the root, three passes on the 0.762 mm wide groove and three passes to complete the weld. Multipass, autogenous, electron beam welds maintain the characteristic high depth-to-width ratios and low heat input of single-pass, electron beam welds. The increased part distortion (which is still much less than from arc processes) in multipass weldments is corrected by a preweld machined compensation. Mechanical properties of multipass welds compare well with single-pass welds. The yield strength of welds in aluminum alloy 5083 is approximately the same for single-pass or multipass electron beam and gas, metal-arc welds. The incidence and size of porosity is less in multipass electron beam welding of aluminum as compared to gas, metal-arc welds. The multipass, autogenous, electron beam welding method has proven to be a reliable way to make some difficult welds in multilayer parts or in an instance where inside part temperature or weld underbead must be controlled and weld discontinuities must be minimized

  11. Welding thermal cycle-triggered precipitation processes in steel S700MC subjected to the thermo-mechanical control processing

    OpenAIRE

    Górka J.

    2017-01-01

    This study presents tests concerned with welding thermal process-induced precipitation processes taking place in 10 mm thick steel S700MC subjected to the Thermo-Mechanical Control Process (TMCP) with accelerated cooling. The thermomechanical processing of steel S700MC leads to its refinement, structural defects and solutioning with hardening constituents. Tests of thin foils performed using a transmission electron microscope revealed that the hardening of steel S700MC was primarily caused by...

  12. Numerical simulation of welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær; Thorborg, Jesper

    Aim of project:To analyse and model the transient thermal field from arc welding (SMAW, V-shaped buttweld in 15mm plate) and to some extend the mechanical response due to the thermal field. - To implement this model in a general purpose finite element program such as ABAQUS.The simulation...... stress is also taken into account.Work carried out:With few means it is possible to define a thermal model which describes the thermal field from the welding process in reasonable agreement with reality. Identical results are found with ABAQUS and Rosenthal’s analytical solution of the governing heat...... transfer equation under same conditions. It is relative easy tointroduce boundary conditions such as convection and radiation where not surprisingly the radiation has the greatest influence especially from the high temperature regions in the weld pool and the heat affected zone.Due to the large temperature...

  13. Review of laser hybrid welding

    DEFF Research Database (Denmark)

    Bagger, Claus

    2004-01-01

    In this artucle an overview og the hybrid welding process is given. After a short historic overview, a review of the fundamental phenomenon taking place when a laser (CO2 or Nd:YAG) interacts in the same molten pool as a more conventional source of energy, e.g. tungsten in-active gas, plasma......, or metal inactive gas/metal active gas.This is followed by reports of how the many process parameters governing the hybrid welding process can be set and how the choice of secondary energy source, shielding gas, etc. can affect the overall welding process....

  14. Collection of arc welding process data

    OpenAIRE

    K. Luksa; Z. Rymarski

    2006-01-01

    Purpose: The aim of the research was to examine the possibility of detecting welding imperfections by recording the instant values of welding parameters. The microprocessor controlled system for real-time collection and display of welding parameters was designed, implemented and tested.Design/methodology/approach: The system records up to 4 digital or analog signals collected from welding process and displays their run on the LCD display. To disturb the welding process artificial disturbances...

  15. Exciting Pools

    Science.gov (United States)

    Wright, Bradford L.

    1975-01-01

    Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)

  16. The Control of Welding Deformation of the Three-Section Arm of Placing Boom of HB48B Pump Truck

    Science.gov (United States)

    Wang, Zhi-ling

    2018-02-01

    The concrete pump truck is the construction equipment of conveying concrete with self contained base plate and distributing boom. It integrates the pump transport mechanism of the concrete pump, and the hydraulic roll-folding type distributing boom used to distribute materials, and the supporting mechanism into the automobile chassis, and it is the concrete conveying equipment with high efficient and the functions of driving, pumping, and distributing materials. The placing boom of the concrete pump truck is the main force member in the pump parts with bearing great pressure, and its stress condition is complex. Taking the HB48B placing boom as an example, this paper analyzes and studies the deformation produced by placing boom of pump truck, and then obtains some main factors affecting the welding deformation. Through the riveter “joint” size, we controlled the process parameters, post-welding processing, and other aspects. These measures had some practical significance to prevent, control, and reduce the deformation of welding.

  17. Control of Porosity and Spatter in Laser Welding of Thick AlMg5 Parts Using High-Speed Imaging and Optical Microscopy

    Directory of Open Access Journals (Sweden)

    Andrei C. Popescu

    2017-10-01

    Full Text Available We report on a feedback mechanism for rapid identification of optimal laser parameters during welding of AlMg5 coupons using real-time monitoring by high-speed imaging. The purpose was to constrain the liquid movement in the groove in order to obtain pore-free welds in this otherwise difficult-to-weld alloy. High-speed imaging of the welding process via an optical microscope allowed for recording at millimeter level, providing new information on liquid-metal dynamics during laser irradiation as well as plausible explanations for spatter occurrence and pores formation. The pore formation and especially the position of these pores had to be controlled in order to weld 3 mm thick samples. By tuning both laser power and pulse duration, pores were aligned on a single line, at the bottom of the weld. A laser pass of reduced power on that side was then sufficient for removing all pores and providing a suitable weld.

  18. Tailor-welded blanks and their production

    Science.gov (United States)

    Yan, Qi

    2005-01-01

    Tailor welded blanks had been widely used in the automobile industry. A tailor welded blank consists of several flat sheets that were laser welded together before stamping. A combination of different materials, thickness, and coatings could be welded together to form a blank for stamping car body panels. As for the material for automobile industry, this technology was one of the development trend for automobile industry because of its weight reduction, safety improvement and economical use of materials. In this paper, the characters and production of tailor welded blanks in the market were discussed in detail. There had two major methods to produce tailor welded blanks. Laser welding would replace mesh seam welding for the production of tailor welded blanks in the future. The requirements on the edge preparation of unwelded blanks for tailor welded blanks were higher than the other steel processing technology. In order to produce the laser welded blank, there had the other process before the laser welding in the factory. In the world, there had three kinds of patterns for the large volume production of tailor welded blanks. In China, steel factory played the important role in the promotion of the application of tailor welded blanks. The competition for the supply of tailor welded blanks to the automobile industry would become fierce in the near future. As a result, the demand for the quality control on the production of tailor welded blanks would be the first priority concern for the factory.

  19. Electron beam welding of aluminium components

    International Nuclear Information System (INIS)

    Maajid, Ali; Vadali, S.K.; Maury, D.K.

    2015-01-01

    Aluminium is one of the most widely used materials in industries like transportation, shipbuilding, manufacturing, aerospace, nuclear, etc. The challenges in joining of aluminium are distortion, cleanliness and quality. Main difficulties faced during fusion welding of aluminium components are removal of surface oxide layer, weld porosity, high heat input requirement, distortion, hot cracking, etc. Physical properties of aluminium such as its high thermal conductivity, high coefficient of thermal expansion, no change in colour at high temperature, large difference in the melting points of the metal and its oxide (∼ 1400 °C) compound the difficulties faced during welding. Gas Tungsten Arc Welding (GTAW), Gas Metal Arc Welding (GMAW), Plasma Arc Welding (PAW), etc are generally used in industries for fusion welding of aluminium alloys. However in case of thicker jobs the above processes are not suitable due to requirements of elaborate edge preparation, preheating of jobs, fixturing to prevent distortion, etc. Moreover, precise control over the heat input during welding and weld bead penetration is not possible with above processes. Further, if heat sensitive parts are located near the weld joint then high energy density beam welding process like Electron Beam Welding (EBW) is the best possible choice for aluminium welding.This paper discusses EB welding of aluminium components, typical geometry of components, selection/optimization of welding parameters, problems faced during standardization of welding and process parameters and their remedies etc.

  20. Welding Technician

    Science.gov (United States)

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  1. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    Science.gov (United States)

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding.

  2. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...... this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling...

  3. Programmable Automated Welding System (PAWS)

    Science.gov (United States)

    Kline, Martin D.

    1994-01-01

    An ambitious project to develop an advanced, automated welding system is being funded as part of the Navy Joining Center with Babcock & Wilcox as the prime integrator. This program, the Programmable Automated Welding System (PAWS), involves the integration of both planning and real-time control activities. Planning functions include the development of a graphical decision support system within a standard, portable environment. Real-time control functions include the development of a modular, intelligent, real-time control system and the integration of a number of welding process sensors. This paper presents each of these components of the PAWS and discusses how they can be utilized to automate the welding operation.

  4. Distribution of Argon Arc Contaminated with Nitrogen as Function of Frequency in Pulsed TIG Welding

    Science.gov (United States)

    Takahashi, Hiroki; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru

    2016-09-01

    TIG arc welding is the high-quality and much applicable material joining technology. However, the current has to be small because the cathode melting should be prevented. In this case, the heat input to the welding pool becomes low, then, the welding defect sometimes occurs. The pulsed TIG arc welding is used to improve this disadvantage This welding can be controlled by some current parameters such as frequency However, few report has reported the distribution of argon arc contaminated with nitrogen It is important to prevent the contamination of nitrogen because the melting depth increases in order to prevent the welding defects. In this paper, the distribution of argon arc contaminated as function of frequency with nitrogen in pulsed TIG welding is elucidated. The nitrogen concentration, the radial flow velocity, the arc temperature were calculated using the EMTF simulation when the time reached at the base current. As a result, the nitrogen concentration into the arc became low with increasing the frequency The diffusion coefficient decreased because of the decrement of temperature over 4000 K. In this case, the nitrogen concentration became low near the anode. Therefore, the nitrogen concentration became low because the frequency is high.

  5. Quality status display for a vibration welding process

    Science.gov (United States)

    Spicer, John Patrick; Abell, Jeffrey A.; Wincek, Michael Anthony; Chakraborty, Debejyo; Bracey, Jennifer; Wang, Hui; Tavora, Peter W.; Davis, Jeffrey S.; Hutchinson, Daniel C.; Reardon, Ronald L.; Utz, Shawn

    2017-03-28

    A system includes a host machine and a status projector. The host machine is in electrical communication with a collection of sensors and with a welding controller that generates control signals for controlling the welding horn. The host machine is configured to execute a method to thereby process the sensory and control signals, as well as predict a quality status of a weld that is formed using the welding horn, including identifying any suspect welds. The host machine then activates the status projector to illuminate the suspect welds. This may occur directly on the welds using a laser projector, or on a surface of the work piece in proximity to the welds. The system and method may be used in the ultrasonic welding of battery tabs of a multi-cell battery pack in a particular embodiment. The welding horn and welding controller may also be part of the system.

  6. Predicting of bead undercut defects in high-speed gas metal arc welding (GMAW)

    Institute of Scientific and Technical Information of China (English)

    Wen-jing XU; Chuan-song WU; De-gang ZOU

    2008-01-01

    In the gas metal arc welding (GMAW) process, when the welding speed reaches a certain threshold, there will be an onset of weld bead undercut defects which limit the further increase of the welding speed. Establishing a mathematical model for high-speed GMAW to predict the tendency of bead undercuts is of great significance to pre-vent such defects. Under the action of various forces, the transferred metal from filler wire to the weld pool, and the geometry and dimension of the pool itself decide if the bead undercut occurs or not. The previous model simpli-fied the pool shape too much. In this paper, based on the actual weld pool geometry and dimension calculated from a numerical model, a hydrostatic model for liquid metal surface is used to study the onset of bead undercut defects in the high-speed welding process and the effects of dif-ferent welding parameters on the bead undercut tendency.

  7. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  8. Laser-TIG Welding of Titanium Alloys

    Science.gov (United States)

    Turichin, G.; Tsibulsky, I.; Somonov, V.; Kuznetsov, M.; Akhmetov, A.

    2016-08-01

    The article presents the results of investigation the technological opportunity of laser-TIG welding of titanium alloys. The experimental stand for implementation of process with the capability to feed a filler wire was made. The research of the nature of transfer the filler wire into the welding pool has been demonstrated. The influence of distance between the electrode and the surface of the welded plates on the stability of the arc was shown. The relationship between welding velocity, the position of focal plane of the laser beam and the stability of penetration of plates was determined.

  9. Solar swimming pool

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This report examines the feasibility of using solar collectors to heat the water in a previously unheated outdoor swimming pool. The solar system is used in conjunction with a pool blanket, to conserve heat when the pool is not in use. Energy losses through evaporation can be reduced by as much as 70% by a pool blanket. A total of 130 m{sup 2} of highly durable black synthetic collectors were installed on a support structure at a 30{degree} angle from the horizontal, oriented to the south. Circulation of pool water though the collectors, which is controlled by a differential thermostat, was done with the existing pool pump. Before installation the pool temperature averaged 16{degree}C; after installation it ranged from 20{degree} to 26{degree}C. It was hard to distinguish how much pool heating was due to the solar system and how much heat was retained by the pool blanket. However, the pool season was extended by five weeks and attendance tripled. 2 figs.

  10. Efficacy and safety of intermittent preventive treatment with sulfadoxine-pyrimethamine for malaria in African infants: a pooled analysis of six randomised, placebo-controlled trials

    NARCIS (Netherlands)

    Aponte, John J.; Schellenberg, David; Egan, Andrea; Breckenridge, Alasdair; Carneiro, Ilona; Critchley, Julia; Danquah, Ina; Dodoo, Alexander; Kobbe, Robin; Lell, Bertrand; May, Jürgen; Premji, Zul; Sanz, Sergi; Sevene, Esperanza; Soulaymani-Becheikh, Rachida; Winstanley, Peter; Adjei, Samuel; Anemana, Sylvester; Chandramohan, Daniel; Issifou, Saadou; Mockenhaupt, Frank; Owusu-Agyei, Seth; Greenwood, Brian; Grobusch, Martin P.; Kremsner, Peter G.; Macete, Eusebio; Mshinda, Hassan; Newman, Robert D.; Slutsker, Laurence; Tanner, Marcel; Alonso, Pedro; Menendez, Clara

    2009-01-01

    BACKGROUND: Intermittent preventive treatment (IPT) is a promising strategy for malaria control in infants. We undertook a pooled analysis of the safety and efficacy of IPT in infants (IPTi) with sulfadoxine-pyrimethamine in Africa. METHODS: We pooled data from six double-blind, randomised,

  11. Influence of heat transfer modes on the scale-up of solvent pool burning in controlled-air incinerators

    International Nuclear Information System (INIS)

    Gandhi, P.D.; Orloff, D.I.

    1982-01-01

    An analytical modes of pool burning in a controlled-air incinerator was developed. Incinerator performance predicted by the model compared favorably with laboratory-scale incineration experiments. The model was extended to a full-scale incinerator, using results from an intermediate pilot-scale incinerator. The full-scale results showed the influence of various modes of heat transfer, and the importance of flame emissivity and incinerator wall temperature in controlling the burning rate. The influence of pan geometry on consumption rate was also evaluated for the full-scale incinerator

  12. Automatic welding and cladding in heavy fabrication

    International Nuclear Information System (INIS)

    Altamer, A. de

    1980-01-01

    A description is given of the automatic welding processes used by an Italian fabricator of pressure vessels for petrochemical and nuclear plant. The automatic submerged arc welding, submerged arc strip cladding, pulsed TIG, hot wire TIG and MIG welding processes have proved satisfactory in terms of process reliability, metal deposition rate, and cost effectiveness for low alloy and carbon steels. An example shows sequences required during automatic butt welding, including heat treatments. Factors which govern satisfactory automatic welding include automatic anti-drift rotator device, electrode guidance and bead programming system, the capability of single and dual head operation, flux recovery and slag removal systems, operator environment and controls, maintaining continuity of welding and automatic reverse side grinding. Automatic welding is used for: joining vessel sections; joining tubes to tubeplate; cladding of vessel rings and tubes, dished ends and extruded nozzles; nozzle to shell and butt welds, including narrow gap welding. (author)

  13. Tailoring weld geometry during keyhole mode laser welding using a genetic algorithm and a heat transfer model

    International Nuclear Information System (INIS)

    Rai, R; DebRoy, T

    2006-01-01

    Tailoring of weld attributes based on scientific principles remains an important goal in welding research. The current generation of unidirectional laser keyhole models cannot determine sets of welding variables that can lead to a particular weld attribute such as specific weld geometry. Here we show how a computational heat transfer model of keyhole mode laser welding can be restructured for systematic tailoring of weld attributes based on scientific principles. Furthermore, the model presented here can calculate multiple sets of laser welding variables, i.e. laser power, welding speed and beam defocus, with each set leading to the same weld pool geometry. Many sets of welding variables were obtained via a global search using a real number-based genetic algorithm, which was combined with a numerical heat transfer model of keyhole laser welding. The reliability of the numerical heat transfer calculations was significantly improved by optimizing values of the uncertain input parameters from a limited volume of experimental data. The computational procedure was applied to the keyhole mode laser welding of the 5182 Al-Mg alloy to calculate various sets of welding variables to achieve a specified weld geometry. The calculated welding parameter sets showed wide variations of the values of welding parameters, but each set resulted in a similar fusion zone geometry. The effectiveness of the computational procedure was examined by comparing the computed weld geometry for each set of welding parameters with the corresponding experimental geometry. The results provide hope that systematic tailoring of weld attributes via multiple pathways, each representing alternative welding parameter sets, is attainable based on scientific principles

  14. Development and control towards a parallel water hydraulic weld/cut robot for machining processes in ITER vacuum vessel

    International Nuclear Information System (INIS)

    Wu Huapeng; Handroos, Heikki; Pessi, Pekka; Kilkki, Juha; Jones, Lawrence

    2005-01-01

    This paper presents a special robot, able to carry out welding and machining processes from inside the ITER vacuum vessel (VV), consisting of a five degree-of-freedom parallel mechanism, mounted on a carriage driven by two electric motors on a rack. The kinematic design of the robot has been optimised for ITER access and a hydraulically actuated pre-prototype built. A hybrid controller is designed for the robot, including position, speed and pressure feedback loops to achieve high accuracy and high dynamic performances. Finally, the experimental tests are given and discussed

  15. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  16. Colosed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Ppart Qualification, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes variables...

  17. Closed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Part Qualification, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes variables...

  18. WELDING TORCH

    Science.gov (United States)

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  19. Welding of refractory alloys

    International Nuclear Information System (INIS)

    Lessmann, G.G.

    1984-01-01

    This review primarily summarizes welding evaluations supported by NASA-Lewis Research Center in the 1960s. A literature search run in preparation for this review indicates that more recent work is modest by comparison. Hence, this review restates these accomplishments briefly and addresses opportunities which have evolved in welding technology (such as lasers) in the intervening decade. Emphasis in this review is given to tantalum- and niobium-base alloys. Considerable work was also done to assure that a consistent comparison was made with tungsten. A wide variety of candidate alloys derived primarily from developments directed at aircraft propulsion applications were available. Early efforts by NASA were directed at screening studies to select promising structural alloys for the space power application. This objective required fine tuning of welding procedures, e.g., the demonstration of stringent standards for control of welding atmosphere to assure good corrosion resistance in liquid alkali metals. 16 figures, 6 tables

  20. Nuclear fuel rod end plug weld inspection

    International Nuclear Information System (INIS)

    Parker, M. A.; Patrick, S. S.; Rice, G. F.

    1985-01-01

    Apparatus and method for testing TIG (tungsten inert gas) welds of end plugs on a sealed nuclear reactor fuel rod. An X-ray fluorescent spectrograph testing unit detects tungsten inclusion weld defects in the top end plug's seal weld. Separate ultrasonic weld inspection system testing units test the top end plug's seal and girth welds and test the bottom end plug's girth weld for penetration, porosity and wall thinning defects. The nuclear fuel rod is automatically moved into and out from each testing unit and is automatically transported between the testing units by rod handling devices. A controller supervises the operation of the testing units and the rod handling devices

  1. Effect of controlled atmosphere on the mig-mag arc weldment properties

    International Nuclear Information System (INIS)

    Kacar, Ramazan; Koekemli, Koray

    2005-01-01

    Due to their higher welding speed, automation and weld pool protection against to the atmosphere gases, gas metal arc welding (GMAW) process is widely used in industry. Due to the less stable arc associated with the use of consumable electrodes, GMAW process is not clean as good as gas tungsten arc welding process. Furthermore, the greater arc length in GMAW process also reduces the protective effect of the shielding gas. Due to electrochemical and thermochemical reactions between weld pool and arc atmosphere, it is quite important, especially weld metal toughness and joining of reactive materials to entirely create inert atmosphere for GMAW process. Therefore, a controlled atmosphere cabinet was developed for GMAW process. Low carbon steel combinations were welded with classical GMAW process in argon atmosphere as well as controlled atmosphere cabinet by using similar welding parameters. The mechanical and metallurgical properties of both weldments were evaluated. Result shows that toughness of the weld metal that was obtained in the controlled atmosphere cabinet much higher than that of classical GMAW process. The metallographic examination also clarified that there was not any gas porosity and inclusion in the weld metal compared with classical process

  2. Welding stresses

    International Nuclear Information System (INIS)

    Poirier, J.; Barbe, B.; Jolly, N.

    1976-01-01

    The aim is to show how internal stresses are generated and to fix the orders of magnitude. A realistic case, the vertical welding of thick plates free to move one against the other, is described and the deformations and stresses are analyzed. The mathematical model UEDA, which accounts for the elastic modulus, the yield strength and the expansion coefficient of the metal with temperature, is presented. The hypotheses and results given apply only to the instantaneous welding of a welded plate and to a plate welded by a moving electrode [fr

  3. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    Science.gov (United States)

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  4. Infrared sensing techniques for adaptive robotic welding

    International Nuclear Information System (INIS)

    Lin, T.T.; Groom, K.; Madsen, N.H.; Chin, B.A.

    1986-01-01

    The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process

  5. The post-transcriptional regulatory system CSR controls the balance of metabolic pools in upper glycolysis of Escherichia coli.

    Science.gov (United States)

    Morin, Manon; Ropers, Delphine; Letisse, Fabien; Laguerre, Sandrine; Portais, Jean-Charles; Cocaign-Bousquet, Muriel; Enjalbert, Brice

    2016-05-01

    Metabolic control in Escherichia coli is a complex process involving multilevel regulatory systems but the involvement of post-transcriptional regulation is uncertain. The post-transcriptional factor CsrA is stated as being the only regulator essential for the use of glycolytic substrates. A dozen enzymes in the central carbon metabolism (CCM) have been reported as potentially controlled by CsrA, but its impact on the CCM functioning has not been demonstrated. Here, a multiscale analysis was performed in a wild-type strain and its isogenic mutant attenuated for CsrA (including growth parameters, gene expression levels, metabolite pools, abundance of enzymes and fluxes). Data integration and regulation analysis showed a coordinated control of the expression of glycolytic enzymes. This also revealed the imbalance of metabolite pools in the csrA mutant upper glycolysis, before the phosphofructokinase PfkA step. This imbalance is associated with a glucose-phosphate stress. Restoring PfkA activity in the csrA mutant strain suppressed this stress and increased the mutant growth rate on glucose. Thus, the carbon storage regulator system is essential for the effective functioning of the upper glycolysis mainly through its control of PfkA. This work demonstrates the pivotal role of post-transcriptional regulation to shape the carbon metabolism. © 2016 John Wiley & Sons Ltd.

  6. Optimization of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds

    Directory of Open Access Journals (Sweden)

    G. Magudeeswaran

    2014-09-01

    Full Text Available The activated TIG (ATIG welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention. The shape of a weld in terms of its width-to-depth ratio known as aspect ratio has a marked influence on its solidification cracking tendency. The major influencing ATIG welding parameters, such as electrode gap, travel speed, current and voltage, that aid in controlling the aspect ratio of DSS joints, must be optimized to obtain desirable aspect ratio for DSS joints. Hence in this study, the above parameters of ATIG welding for aspect ratio of ASTM/UNS S32205 DSS welds are optimized by using Taguchi orthogonal array (OA experimental design and other statistical tools such as Analysis of Variance (ANOVA and Pooled ANOVA techniques. The optimum process parameters are found to be 1 mm electrode gap, 130 mm/min travel speed, 140 A current and 12 V voltage. The aspect ratio and the ferrite content for the DSS joints fabricated using the optimized ATIG parameters are found to be well within the acceptable range and there is no macroscopically evident solidification cracking.

  7. Field Testing Pulsed Power Inverters in Welding Operations to Control Heavy Metal Emissions

    Science.gov (United States)

    2009-12-01

    Aluminum, zinc , and barium were also present, but they are believed to be an artifact of the CI substrate filter material.) Other metals that appear in the...OPERATIONS As noted earlier, PPI technology is promoted as producing less metal-bearing particulates because less slag and spatter take place. This is...2) Also, less slag and spatter should result in reduced welding time. In addition, PPI reportedly will generate less ozone, carbon monoxide, and

  8. Human biomonitoring of aluminium after a single, controlled manual metal arc inert gas welding process of an aluminium-containing worksheet in nonwelders.

    Science.gov (United States)

    Bertram, Jens; Brand, Peter; Hartmann, Laura; Schettgen, Thomas; Kossack, Veronika; Lenz, Klaus; Purrio, Ellwyn; Reisgen, Uwe; Kraus, Thomas

    2015-10-01

    Several existing field studies evaluate aluminium welding works but no thoroughly controlled exposure scenario for welding fume has been described yet. This study provides information about the uptake and elimination of aluminium from welding fumes under controlled conditions. In the Aachen Workplace Simulation Laboratory, we are able to generate welding fumes of a defined particle mass concentration. We exposed 12, until then occupationally unexposed participants with aluminium-containing welding fumes of a metal inert gas (MIG) welding process of a total dust mass concentration of 2.5 mg/m(3) for 6 h. Room air filter samples were collected, and the aluminium concentration in air derived. Urine and plasma samples were collected directly before and after the 6-h lasting exposure, as well as after 1 and 7 days. Human biomonitoring methods were used to determine the aluminium content of the samples with high-resolution continuum source atomic absorption spectrometry. Urinary aluminium concentrations showed significant changes after exposure compared to preexposure levels (mean t(1) (0 h) 13.5 µg/L; mean t(2) (6 h) 23.5 µg/L). Plasma results showed the same pattern but pre-post comparison did not reach significance. We were able to detect a significant increase of the internal aluminium burden of a single MIG aluminium welding process in urine, while plasma failed significance. Biphasic elimination kinetic can be observed. The German BAT of 60 µg/g creatinine was not exceeded, and urinary aluminium returned nearly to baseline concentrations after 7 days.

  9. Pulsed ultrasonic stir welding method

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  10. Design and manufacture of an ultrasonic inspection device for the friction welds in reactor vessel control rod drive mechanism housings

    International Nuclear Information System (INIS)

    Cieslav, C.; Peteuil, M.

    1985-01-01

    The control rod drive mechanism housings of a PWR reactor vessel consist of a stainless steel flange and a Ni-Cr-Fe alloy tube, assembled by friction welding. The properties of the interface and the nature of the adjacent materials require the development of a specific ultrasonic inspection technique which could be easily automated, considering the number of parts involved (77 parts per 1300 MWe reactor vessel). The part has the general shape of a tube (inside diameter: 70 mm, outside diameter: 103 mm). The transition between both forged parent materials (stainless steel/Ni-Cr-Fe alloy) is obtained by a very thin interface, whose general orientation is normal to the tube centerline. The heat affected zone has generally a coarser and more irregular structure than that observed in the parent materials. The design and development were carried out using a prototype machine on test-pieces representative of a control rod drive mechanism housing, and containing the following artificial reflectors: notches obtained by electro-discharge machining on the inside and outside surfaces, on each side of the interface; planar artificial defects, parallel to the interface. These defects, obtained from 2 flat bottomed holes, drilled into the mock-up constituent parts, were conveyed to the interface during friction welding

  11. Advances in welding science and technology

    International Nuclear Information System (INIS)

    David, S.A.; Babu, S.S.; Vitek, J.M.

    1995-01-01

    Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based design of composition, structure, and properties of welds with intelligent control and automation of the welding processes. In the last several decades, welding has evolved as an interdisciplinary activity requiring synthesis of knowledge from various disciplines and incorporating the most advanced tools of various basic applied sciences. A series of international conferences and other publications have covered the issues, current trends and directions in welding science and technology. In the last few decades, major progress has been made in (i) understanding physical processes in welding, (ii) characterization of microstructure and properties, and (iii) intelligent control and automation of welding. This paper describes some of these developments

  12. Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum.

    Science.gov (United States)

    Chen, Qihao; Lin, Sanbao; Yang, Chunli; Fan, Chenglei; Ge, Hongliang

    2017-11-01

    Under the action of acoustic waves during an ultrasonic-assisted tungsten inert gas (TIG) welding process, a grain of a TIG weld of aluminum alloy is refined by nucleation and grain fragmentation. Herein, effects of ultrasound on grain fragmentation in the TIG weld of aluminum alloy are investigated via systematic welding experiments of pure aluminum. First, experiments involving continuous and fixed-position welding are performed, which demonstrate that ultrasound can break the grain of the TIG weld of pure aluminum. The microstructural characteristics of an ultrasonic-assisted TIG weld fabricated by fixed-position welding are analyzed. The microstructure is found to transform from plane crystal, columnar crystal, and uniform equiaxed crystal into plane crystal, deformed columnar crystal, and nonuniform equiaxed crystal after application of ultrasound. Second, factors influencing ultrasonic grain fragmentation are investigated. The ultrasonic amplitude and welding current are found to have a considerable effect on grain fragmentation. The degree of fragmentation first increases and then decreases with an increase in ultrasonic amplitude, and it increases with an increase in welding current. Measurement results of the vibration of the weld pool show that the degree of grain fragmentation is related to the intensity of acoustic nonlinearity in the weld pool. The greater the intensity of acoustic nonlinearity, the greater is the degree of grain fragmentation. Finally, the mechanism of ultrasonic grain fragmentation in the TIG weld of pure aluminum is discussed. A finite element simulation is used to simulate the acoustic pressure and flow in the weld pool. The acoustic pressure in the weld pool exceeds the cavitation threshold, and cavitation bubbles are generated. The flow velocity in the weld pool does not change noticeably after application of ultrasound. It is concluded that the high-pressure conditions induced during the occurrence of cavitation, lead to grain

  13. Macrostructural and microstructural features of 1 000 MPa grade TRIP steel joint by CO2 laser welding

    Institute of Scientific and Technical Information of China (English)

    Wang Wenquan; Sun Daqian; Kang Chungyun

    2008-01-01

    Bead-on-plate CO2 laser welding of 1 000 MPa grade transformation induced plasticity (TRIP) steel was conducted under different welding powers, welding speeds and shield gases. The macrostructural and microstructural features of the welded joint were investigated. The increase of welding speed reduced the width of the weld bead and the porosities in the weld bead resulting from the different flow mode of melted metal in weld pool. The decrease of welding power or use of shield gas of helium also contributed to the reduction of porosity in the weld bead due to the alleviation of induced plasma formation, thus stabilizing the keyhole. The porosity formation intimately correlated with the evaporation of alloy element Mn in the base metal. The laser welded metal had same martensite microstructure as that of water-quenched base metal. The welding parameters which increased cooling rate all led to fine microstructures of the weld bead.

  14. TIG welding power supply with improved efficiency

    Directory of Open Access Journals (Sweden)

    Сергій Володимирович Гулаков

    2015-03-01

    Full Text Available In the article, the influence of the DC component of the welding current during TIG (Tungsten Inert Gas welding is discussed. Known methods of DC current cancellation are reviewed, such as capacitor bank or diode/thyristor network insertion in the secondary circuit of the welding transformer. A new method of controlling the magnitude and shape of the TIG welding current is proposed. The idea is to insert a controlled voltage source in the secondary circuit of the welding transformer. This controlled voltage source is realized using a full-bridge voltage source inverter (VSI. VSI control system design issues are discussed. VSI is controlled by a three-level hysteretic current controller, while current reference is generated using lookup table driven by PLL (Phase Locked Loop locked to the mains frequency. Simulation results are shown. The proposed topology of TIG power supply allows to provide magnitude and shape control of the welding current, with the limitation that its DC component must be zero. Thus, some capabilities of professional AC-TIG welders are obtained using substantially lower cost components: VSI built using high-current low voltage MOSFETs with control system based on 32-bit ARM microcontroller. The use of proposed TIG welding power supply will eliminate the DC component of the welding current, improve welding transformer’s power factor and improve welding technology by increasing the welding arc stability

  15. WELDING METHOD

    Science.gov (United States)

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  16. Optimization of vibratory welding process parameters using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pravin Kumar; Kumar, S. Deepak; Patel, D.; Prasad, S. B. [National Institute of Technology Jamshedpur, Jharkhand (India)

    2017-05-15

    The current investigation was carried out to study the effect of vibratory welding technique on mechanical properties of 6 mm thick butt welded mild steel plates. A new concept of vibratory welding technique has been designed and developed which is capable to transfer vibrations, having resonance frequency of 300 Hz, into the molten weld pool before it solidifies during the Shielded metal arc welding (SMAW) process. The important process parameters of vibratory welding technique namely welding current, welding speed and frequency of the vibrations induced in molten weld pool were optimized using Taguchi’s analysis and Response surface methodology (RSM). The effect of process parameters on tensile strength and hardness were evaluated using optimization techniques. Applying RSM, the effect of vibratory welding parameters on tensile strength and hardness were obtained through two separate regression equations. Results showed that, the most influencing factor for the desired tensile strength and hardness is frequency at its resonance value, i.e. 300 Hz. The micro-hardness and microstructures of the vibratory welded joints were studied in detail and compared with those of conventional SMAW joints. Comparatively, uniform and fine grain structure has been found in vibratory welded joints.

  17. Proposta do uso de pool de sangue total como controle interno de qualidade em hematologia Proposal for the use of a pool of whole blood as internal quality control in hematology

    Directory of Open Access Journals (Sweden)

    Carina Daniele Schons

    2010-06-01

    Full Text Available INTRODUÇÃO: A confiabilidade dos resultados do laboratório é garantida pela realização do controle de qualidade, que tem como funções básicas análise, pesquisa e prevenção da ocorrência de erros laboratoriais por meio de programas que abrangem tanto o controle interno quanto o externo. OBJETIVO: Propor a padronização de utilização de pool de sangue total como controle interno de qualidade no setor de hematologia. MÉTODO: Foram selecionadas amostras de sangue total, colhidas com ácido etilenodiaminotetracético (EDTA, de mesmos grupo sanguíneo e fator Rh, livres de interferentes, como hemólise, lipemia e icterícia. De um total de 30 ml de sangue total, obtiveram-se três alíquotas de 10 ml cada, às quais foram adicionados, respectivamente, 0 ml (sem adição, 1 ml e 5 ml de glicerol (conservante. As amostras foram avaliadas em contador automático ADVIA® 60. Após determinação dos valores de média e DP, todas as amostras foram avaliadas por um período de 45 dias úteis para confecção do gráfico de Levey-Jennings e verificação da estabilidade da amostra. RESULTADO E CONCLUSÃO: Podemos verificar que o pool de sangue total, preparado de acordo com a metodologia proposta, não apresenta estabilidade necessária para sua utilização, como controle interno alternativo no setor de hematologia.INTRODUCTION: The reliability of laboratory results is ensured by the implementation of quality control, which has basic functions, such as analysis, research and prevention of laboratory errors through programs that encompass both internal and external control. OBJECTIVE: To propose a standard method to use pooled whole blood as internal quality control in the Hematology division. METHOD: The selected whole blood samples were collected with EDTA, belonged to the same blood group and Rh factor and did not present interfering factors, such as hemolysis, lipemia and icterus. From a total of 30 ml of whole blood it was obtained 3

  18. Effect of Dynamic Reheating Controlled by the Weaving Width on the Microstructure of GTA Bead-On-Pipe Weld Metal of 25% Cr Super Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Hee-Joon Sung

    2018-05-01

    Full Text Available Gas tungsten arc welding (GTAW with three different heat inputs controlled by the weaving width was performed to understand their effects on the microstructural changes during bead-on-pipe welding of super duplex stainless steel. The microstructure of the weld metals was categorized into three different types of zones: non-reheated, reheated type, and reheating-free zone. Even though single-pass welding with different weaving widths was employed, a reheated microstructure was detected, which has been previously observed with multiple pass welding. This phenomenon was called “dynamic reheating”, because it was produced by the weaving operation during welding regardless of the weaving width. The categorized area fraction varied with the weaving width change. Electron backscatter diffraction (EBSD results at the edge (the area near the fusion line of the low-heat-input condition indicated a higher austenite volume fraction and a lower Cr2N fraction than that of the medium heat input condition. Thus, it described an inverse relationship, because higher heat input provided a lower austenite fraction. In addition, it was observed clearly that the austenite fraction at the medium heat input condition was dramatically increased by reheating, while the Cr2N fraction was reduced. Regardless of the weaving width, reheating contributed to the increase of the austenite fraction, further reducing the Cr2N quantity. The edge areas in the map showed an inverse relationship in the reheated area fraction between low heat input and medium heat input. For this reason, the austenite fraction on the weld metal was determined not only by the heat input, but also by the amount of reheating.

  19. Allergies and risk of pancreatic cancer: a pooled analysis from the Pancreatic Cancer Case-Control Consortium.

    Science.gov (United States)

    Olson, Sara H; Hsu, Meier; Satagopan, Jaya M; Maisonneuve, Patrick; Silverman, Debra T; Lucenteforte, Ersilia; Anderson, Kristin E; Borgida, Ayelet; Bracci, Paige M; Bueno-de-Mesquita, H Bas; Cotterchio, Michelle; Dai, Qi; Duell, Eric J; Fontham, Elizabeth H; Gallinger, Steven; Holly, Elizabeth A; Ji, Bu-Tian; Kurtz, Robert C; La Vecchia, Carlo; Lowenfels, Albert B; Luckett, Brian; Ludwig, Emmy; Petersen, Gloria M; Polesel, Jerry; Seminara, Daniela; Strayer, Lori; Talamini, Renato

    2013-09-01

    In order to quantify the risk of pancreatic cancer associated with history of any allergy and specific allergies, to investigate differences in the association with risk according to age, gender, smoking status, or body mass index, and to study the influence of age at onset, we pooled data from 10 case-control studies. In total, there were 3,567 cases and 9,145 controls. Study-specific odds ratios and 95% confidence intervals were calculated by using unconditional logistic regression adjusted for age, gender, smoking status, and body mass index. Between-study heterogeneity was assessed by using the Cochran Q statistic. Study-specific odds ratios were pooled by using a random-effects model. The odds ratio for any allergy was 0.79 (95% confidence interval (CI): 0.62, 1.00) with heterogeneity among studies (P allergies or asthma. There were no major differences among subgroups defined by age, gender, smoking status, or body mass index. Older age at onset of allergies was slightly more protective than earlier age.

  20. Recreational Physical Activity and Differentiated Thyroid Cancer Risk: A Pooled Analysis of Two Case-Control Studies

    Science.gov (United States)

    Xhaard, Constance; Lence-Anta, Juan J.; Ren, Yan; Borson-Chazot, Françoise; Sassolas, Geneviève; Schvartz, Claire; Colonna, Marc; Lacour, Brigitte; Danzon, Arlette; Velten, Michel; Clero, Enora; Maillard, Stéphane; Marrer, Emilie; Bailly, Laurent; Mariné Barjoan, Eugènia; Schlumberger, Martin; Orgiazzi, Jacques; Adjadj, Elisabeth; Pereda, Celia M.; Turcios, Silvia; Velasco, Milagros; Chappe, Mae; Infante, Idalmis; Bustillo, Marlene; García, Anabel; Salazar, Sirced; Rodriguez, Regla; Benadjaoud, Mohamed Amine; Ortiz, Rosa M.; Rubino, Carole; de Vathaire, Florent

    2016-01-01

    Purpose Physical activity has been hypothesized to influence cancer occurrence through several mechanisms. To date, its relation with thyroid cancer risk has been examined in relatively few studies. We pooled 2 case-control studies conducted in Cuba and Eastern France to assess the relationship between self-reported practice of recreational physical activity since childhood and thyroid cancer risk. Methods This pooled study included 1,008 cases of differentiated thyroid cancer (DTC) matched with 1,088 controls (age range 9-35 and 17-60 years in the French and Cuban studies, respectively). Risk factors associated with the practice of recreational physical activity were estimated using OR and 95% CI. Logistic regressions were stratified by age class, country, and gender and were adjusted for ethnic group, level of education, number of pregnancies for women, height, BMI, and smoking status. Results Overall, the risk of thyroid cancer was slightly reduced among subjects who reported recreational physical activity (OR = 0.8; 95% CI 0.5-1.0). The weekly frequency (i.e. h/week) seems to be more relevant than the duration (years). Conclusion Long-term recreational physical activity, practiced since childhood, may reduce the DTC risk. However, the mechanisms whereby the DTC risk decreases are not yet entirely clear. PMID:27493888

  1. Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    High temperature oxidation resistant iron-chromium-aluminum (FeCrAl) alloys are candidate alloys for nuclear applications due to their exceptional performance during off-normal conditions such as a loss-of-coolant accident (LOCA) compared to currently deployed zirconium-based claddings [1]. A series of studies have been completed to determine the weldability of the FeCrAl alloy class and investigate the weldment performance in the as-received (non-irradiated) state [2,3]. These initial studies have shown the general effects of composition and microstructure on the weldability of FeCrAl alloys. Given this, limited details on the radiation tolerance of FeCrAl alloys and their weldments exist. Here, the highest priority candidate FeCrAl alloys and their weldments have been investigated after irradiation to enable a better understanding of FeCrAl alloy weldment performance within a high-intensity neutron field. The alloys examined include C35M (Fe-13%Cr-5% Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions. Two different sub-sized tensile geometries, SS-J type and SS-2E (or SS-mini), were neutron irradiated in the High Flux Isotope Reactor to 1.8-1.9 displacements per atom (dpa) in the temperature range of 195°C to 559°C. Post irradiation examination of the candidate alloys was completed and included uniaxial tensile tests coupled with digital image correlation (DIC), scanning electron microscopy-electron back scattered diffraction analysis (SEM-EBSD), and SEM-based fractography. In addition to weldment testing, non-welded parent material was examined as a direct comparison between welded and non-welded specimen performance. Both welded and non-welded specimens showed a high degree of radiation-induced hardening near irradiation temperatures of 200°C, moderate radiation-induced hardening near temperatures of 360°C, and almost no radiation-induced hardening at elevated temperatures near 550°C. Additionally, low-temperature irradiations showed

  2. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    Science.gov (United States)

    Vasudevan, M.

    2017-03-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  3. In-process weld sampling during hot end welds of type W overpacks

    International Nuclear Information System (INIS)

    Barnes, G.A.

    1998-01-01

    Establish the criteria and process controls to be used in obtaining, testing, and evaluating in-process weld sample during the hot end welding of Type W Overpack capsules used to overpack CsCl capsules for storage at WESF

  4. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    International Nuclear Information System (INIS)

    Filacchioni, G.; Montanari, R.; Tata, M.E.; Pilloni, L.

    2002-01-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program

  5. Analysis and application of GEWI sleeve weld-ability (Material: C45)

    International Nuclear Information System (INIS)

    Zhang Weiming; Zhang Hongliu

    2010-01-01

    Welding may use two kinds of welding process of shielded metal arc welding and CO 2 shielded arc welding between inner ring in nuclear island steel lining (material: P265GH) and GEWI sleeve (material:C45).CO 2 shielded arc welding is often used because of higher welding efficiency, in particular, in condition of plan press, but quality can come into being some problems if we lack strict measures, for example welding procedure. Shielded metal arc welding control easier quality, but welding efficiency is lower. Comparing and analyzing Weld-ability of C45(Medium carbon Quenched and Tempered Steel.) between of shielded metal arc welding and CO 2 shielded arc welding, suggest to use shielded metal arc welding in project practice, and control strict welding procedure measure of pre-heating treatment and Post-heating. (authors)

  6. ITER lip seal welding and cutting developments

    International Nuclear Information System (INIS)

    Levesy, B.; Cordier, J.J.; Jokinen, T.; Kujanpää, V.; Karhu, M.; Le Barbier, R.; Määttä, T.; Martins, J.P.; Utin, Y.

    2015-01-01

    Highlights: • Different TIG and Laser welding techniques are tested. • Twin spot laser welding techniques is the best. • Limited heat input gives a stable weld pool in all positions. • Penetrations is achieved. • Lip seal welding and cutting with a robotic arm is successfully performed on a representative mock-up. - Abstract: The welded lip seals form part of the torus primary vacuum boundary in between the port plugs and the vacuum vessel, and are classified as Protection Important Component. In order to refurbish the port plugs or the in-vessel components, port plugs have to be removed from the machine. The lip seal design must enable up to ten opening of the vacuum vessel during the life time operation of the ITER machine. Therefore proven, remote reliable cutting and re-welding are essential, as these operations need to be performed in the port cells in a nuclear environment, where human presence will be restricted. Moreover, the combination of size of the components to be welded (∼10 m long vacuum compatible thin welds) and the congested environment close to the core of the machine constraint the type and size of tools to be used. This paper describes the lip seal cutting and welding development programme performed at the VTT Technical Research Centre, Finland. Potential cutting and welding techniques are analyzed and compared. The development of the cutting, TIG and laser welding techniques on samples are presented. Effects of lip seal misalignments and optimization of the 2 welding processes are discussed. Finally, the manufacturing and test of the two 1.2 m × 1 m representative mock-ups are presented. The set-up and use of a robotic arm for the mock-up cutting and welding operations are also described.

  7. ITER lip seal welding and cutting developments

    Energy Technology Data Exchange (ETDEWEB)

    Levesy, B.; Cordier, J.J.; Jokinen, T. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kujanpää, V.; Karhu, M. [VTT Technical Research Centre of Finland (Finland); Le Barbier, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Määttä, T. [VTT Technical Research Centre of Finland (Finland); Martins, J.P.; Utin, Y. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-10-15

    Highlights: • Different TIG and Laser welding techniques are tested. • Twin spot laser welding techniques is the best. • Limited heat input gives a stable weld pool in all positions. • Penetrations is achieved. • Lip seal welding and cutting with a robotic arm is successfully performed on a representative mock-up. - Abstract: The welded lip seals form part of the torus primary vacuum boundary in between the port plugs and the vacuum vessel, and are classified as Protection Important Component. In order to refurbish the port plugs or the in-vessel components, port plugs have to be removed from the machine. The lip seal design must enable up to ten opening of the vacuum vessel during the life time operation of the ITER machine. Therefore proven, remote reliable cutting and re-welding are essential, as these operations need to be performed in the port cells in a nuclear environment, where human presence will be restricted. Moreover, the combination of size of the components to be welded (∼10 m long vacuum compatible thin welds) and the congested environment close to the core of the machine constraint the type and size of tools to be used. This paper describes the lip seal cutting and welding development programme performed at the VTT Technical Research Centre, Finland. Potential cutting and welding techniques are analyzed and compared. The development of the cutting, TIG and laser welding techniques on samples are presented. Effects of lip seal misalignments and optimization of the 2 welding processes are discussed. Finally, the manufacturing and test of the two 1.2 m × 1 m representative mock-ups are presented. The set-up and use of a robotic arm for the mock-up cutting and welding operations are also described.

  8. Technical specifications on the welding in fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Karino, Motonobu; Uryu, Mitsuru; Matsui, N.; Nakazawa, Fumio; Imanishi, Makoto; Koizumi; Kazuhiko; Sugawara, Junichi; Tanaka, Hideo

    1999-04-01

    The past specifications SGN of the welding in JNC was reexamined for the reprocessing plants in order to further promote the quality control. The specification first concerns the quality of raw materials, items of the quality tests, material management, and qualification standards of the welders. It extends over details of the welding techniques, welding design, welding testings, inspection and the judgment standards. (H. Baba)

  9. Welding by using doubly-deflected rotating electron beam

    International Nuclear Information System (INIS)

    Dabek, J.W.; Friedel, K.

    1997-01-01

    The paper presents the welding process by using double-deflected rotating electron beam, as a method to obtain good quality welds. It is shown possible variants of work of modified beam, principles of creation, process control and results of welding. Comparison of quality welds obtained by using traditional and modified electron beams is made too. (author). 11 refs, 8 figs

  10. Water Exchange Produces Significantly Higher Adenoma Detection Rate Than Water Immersion: Pooled Data From 2 Multisite Randomized Controlled Trials.

    Science.gov (United States)

    Leung, Felix W; Koo, Malcolm; Cadoni, Sergio; Falt, Premysl; Hsieh, Yu-Hsi; Amato, Arnaldo; Erriu, Matteo; Fojtik, Petr; Gallittu, Paolo; Hu, Chi-Tan; Leung, Joseph W; Liggi, Mauro; Paggi, Silvia; Radaelli, Franco; Rondonotti, Emanuele; Smajstrla, Vit; Tseng, Chih-Wei; Urban, Ondrej

    2018-03-02

    To test the hypothesis that water exchange (WE) significantly increases adenoma detection rates (ADR) compared with water immersion (WI). Low ADR was linked to increased risk for interval colorectal cancers and related deaths. Two recent randomized controlled trials of head-to-head comparison of WE, WI, and traditional air insufflation (AI) each showed that WE achieved significantly higher ADR than AI, but not WI. The data were pooled from these 2 studies to test the above hypothesis. Two trials (5 sites, 14 colonoscopists) that randomized 1875 patients 1:1:1 to AI, WI, or WE were pooled and analyzed with ADR as the primary outcome. The ADR of AI (39.5%) and WI (42.4%) were comparable, significantly lower than that of WE (49.6%) (vs. AI P=0.001; vs. WI P=0.033). WE insertion time was 3 minutes longer than that of AI (Prate (vs. AI) of the >10 mm advanced adenomas. Right colon combined advanced and sessile serrated ADR of AI (3.4%) and WI (5%) were comparable and were significantly lower than that of WE (8.5%) (vs. AI P<0.001; vs. WI P=0.039). Compared with AI and WI, the superior ADR of WE offsets the drawback of a significantly longer insertion time. For quality improvement focused on increasing adenoma detection, WE is preferred over WI. The hypothesis that WE could lower the risk of interval colorectal cancers and related deaths should be tested.

  11. Optimized design on condensing tubes high-speed TIG welding technology magnetic control based on genetic algorithm

    Science.gov (United States)

    Lu, Lin; Chang, Yunlong; Li, Yingmin; Lu, Ming

    2013-05-01

    An orthogonal experiment was conducted by the means of multivariate nonlinear regression equation to adjust the influence of external transverse magnetic field and Ar flow rate on welding quality in the process of welding condenser pipe by high-speed argon tungsten-arc welding (TIG for short). The magnetic induction and flow rate of Ar gas were used as optimum variables, and tensile strength of weld was set to objective function on the base of genetic algorithm theory, and then an optimal design was conducted. According to the request of physical production, the optimum variables were restrained. The genetic algorithm in the MATLAB was used for computing. A comparison between optimum results and experiment parameters was made. The results showed that the optimum technologic parameters could be chosen by the means of genetic algorithm with the conditions of excessive optimum variables in the process of high-speed welding. And optimum technologic parameters of welding coincided with experiment results.

  12. EFFECTS OF ELECTRODE DEFORMATION OF RESISTANCE SPOT WELDING ON 304 AUSTENITIC STAINLESS STEEL WELD GEOMETRY

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2012-12-01

    Full Text Available The resistance spot welding process is accomplished by forcing huge amounts of current flow from the upper electrode tip through the base metals to the lower electrode tip, or vice versa or in both directions. A weld joint is established between the metal sheets through fusion, resulting in a strong bond between the sheets without occupying additional space. The growth of the weld nugget (bond between sheets is therefore determined from the welding current density; sufficient time for current delivery; reasonable electrode pressing force; and the area provided for current delivery (electrode tip. The welding current and weld time control the root penetration, while the electrode pressing force and electrode tips successfully accomplish the connection during the welding process. Although the welding current and weld time cause the heat generation at the areas concerned (electrode tip area, the electrode tips’ diameter and electrode pressing forces also directly influence the welding process. In this research truncated-electrode deformation and mushrooming effects are observed, which result in the welded areas being inconsistent due to the expulsion. The copper to chromium ratio is varied from the tip to the end of the electrode whilst the welding process is repeated. The welding heat affects the electrode and the electrode itself influences the shape of the weld geometry.

  13. Welding process

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    For the final chapter of this book, there is basic introduction on welding process. The good radiography must know somehow on welding process so that they can know what kind of welding that must rejected or not. All of the exposure technique that mention in earlier chapter almost applicable in this field because welding process is critical problem if there is no inspection will be done. So, for this chapter, all the discontinuity that usually appeared will be discussed and there is another discontinuity maybe not to important and do not give big impact if found it, do not described here. On top of that, the decision to accept or reject based on code, standard and specification that agreed by both to make sure that decision that agreed is corrected and more meaningful.

  14. [New welding processes and health effects of welding].

    Science.gov (United States)

    La Vecchia, G Marina; Maestrelli, Piero

    2011-01-01

    This paper describes some of the recent developments in the control technology to enhance capability of Pulse Gas Metal Arc Welding. Friction Stir Welding (FSW) processing has been also considered. FSW is a new solid-state joining technique. Heat generated by friction at the rotating tool softens the material being welded. FSW can be considered a green and energy-efficient technique without deleterious fumes, gas, radiation, and noise. Application of new welding processes is limited and studies on health effects in exposed workers are lacking. Acute and chronic health effects of conventional welding have been described. Metal fume fever and cross-shift decline of lung function are the main acute respiratory effects. Skin and eyes may be affected by heat, electricity and UV radiations. Chronic effects on respiratory system include chronic bronchitis, a benign pneumoconiosis (siderosis), asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders.

  15. MAG narrow gap welding - an economic way to minimize welding expenses

    International Nuclear Information System (INIS)

    Kast, W.; Scholz, E.; Weyland, F.

    1982-01-01

    The thicker structural components are, the more important it is to take measures to reduce the volume of the weld. The welding process requiring the smallest possible weld section is the so-called narrow gap process. In submerged arc narrow gap welding as well as in MAG narrow gap welding different variants are imaginable, some of them already in practical use. With regard to efficiency and weld quality an optimum variant of the MAG narrow gap welding process is described. It constitutes a two wire system in which two wire electrodes of 1.2 mm diameter are arranged one behind the other. In order to avoid lack of fusion, the wire guides are slightly pointed towards each groove face. Thus, by inclining the two arcs burning one behind the other in the direction of weld progress, it is achieved that two separately solidifying weld pools and two beads per layer are simultaneously formed. Welding parameters are selected in such a way that a heat input of 16-20 kJ/cm and a deposition rate of 11-16 kgs/h are obtained. In spite of this comparatively high deposition rate, good impact values are found both in the weld and HAZ (largely reduced coarse-grain zone) which is due to an optimum weld build-up. With the available welding equipment the process can be applied to structural members having a thickness of 40-400 mm. The width of gap is 13 mm (root section) with a bevel angle of 1 0 . As filler metal, basic flux-cored wires are used which, depending on the base metal to be welded and the required tensile properties, can be of the Mn-, MnMo-, MnCrMo-, MnNi-, or MnNiMo-alloyed types. (orig.)

  16. Syllabus in Trade Welding.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  17. Hot ductility testing and weld simulation tests

    International Nuclear Information System (INIS)

    Weber, G.; Schick, M.

    1999-01-01

    The objective of the project was to enhance the insight into the causes of intergranular cracks detected in austenitic circumferential welds at BWR pipes. The susceptibility of a variety of austenitic pipe materials to hot cracking during welding and in-service intergranular crack corrosion was examined. The assumption was cracking in the root area of the HAZ of a multiple-layer weld. Hot-ductility tests and weld simulation tests specifically designed for the project were performed with the austenitic LWR pipe materials 1.4553 (X6 CrNiNb 18 10 S), 1.4550 (X10 CrNiNb 18 9), 1.4533 (X6 CrNiTi 18 9, two weld pools), and a non-stabilized TP 304 (X5 CrNi 18 10). (orig./CB) [de

  18. Real weld geometry determining mechanical properties of high power laser welded medium plates

    Science.gov (United States)

    Liu, Sang; Mi, Gaoyang; Yan, Fei; Wang, Chunming; Li, Peigen

    2018-06-01

    Weld width is commonly used as one of main factors to assess joint performances in laser welding. However, it changes significantly through the thickness direction in conditions of medium or thick plates. In this study, high-power autogenous laser welding was conducted on 7 mm thickness 201 stainless steel to elucidate the factor of whole weld transverse shape critically affecting the mechanical properties with the aim of predicting the performance visually through the weld appearance. The results show that single variation of welding parameters could result in great changes of weld pool figures and subsequently weld transverse shapes. All the obtained welds are composed of austenite containing small amount of cellular dendritic δ-Ferrite. The 0.2% proof stresses of Nail- and Peanut-shaped joint reach 458 MPa and 454 MPa, 88.2% and 87.5% of the base material respectively, while that of Wedge-shaped joint only comes to 371 MPa, 71.5% of the base material. The deterioration effect is believed to be caused by the axial grain zone in the weld center. The fatigue strength of joint P is a bit lower than N, but much better than W. Significant deformation incompatibility through the whole thickness and microstructure resistance to crack initiation should be responsible for the poor performance of W-shaped joints.

  19. Welding superalloy sheet for superconducting cable jackets

    International Nuclear Information System (INIS)

    Summers, L.T.; Strum, M.J.; Morris, J.W. Jr.

    1983-08-01

    Autogenous gas tungsten arc welds produced in A-286 exhibit significantly lower yield and ultimate tensile strengths than comparably heat-treated base metal. Deformation in the aged weld metal is highly localized and delineates the dendritic microstructure. The observed mechanical properties are caused by the formation of precipitate-free regions located at the dendrite cores. These regions form as the result of titanium segregation during weld pool solidification which yields dendrite cores sufficiently lean in titanium as to prevent nucleation of the hardening phase

  20. Advances in solar cell welding technology

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, L.G.; Lott, D.R.

    1982-09-01

    In addition to developing the rigid substrate welded conventional cell panels for an earlier U.S. flight program, LMSC recently demonstrated a welded lightweight array system using both 2 x 4 and 5.9 x 5.9 cm wraparound solar cells. This weld system uses infrared sensing of weld joint temperature at the cell contact metalization interface to precisely control weld energy on each joint. Modules fabricated using this weld control system survived lowearth-orbit simulated 5-year tests (over 30,000 cycles) without joint failure. The data from these specifically configured modules, printed circuit substrate with copper interconnect and dielectric wraparound solar cells, can be used as a basis for developing weld schedules for additional cell array panel types.

  1. Seam gap bridging of laser based processes for the welding of aluminium sheets for industrial applications

    NARCIS (Netherlands)

    Aalderink, B.J.; Aalderink, Benno; Pathiraj, B.; Aarts, Ronald G.K.M.

    2010-01-01

    Laser welding has a large potential for the production of tailor welded blanks in the automotive industry, due to the low heat input and deep penetration. However, due to the small laser spot and melt pool, laser-based welding processes in general have a low tolerance for seam gaps. In this paper,

  2. Advances in welding science - a perspective

    International Nuclear Information System (INIS)

    David, S.A.; Vitek, J.M.; Babu, S.S.; DebRoy, T.

    1995-01-01

    The ultimate goal of welding technology is to improve the joint integrity and increase productivity. Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based tailoring of composition, structure, and properties of welds with intelligent control and automation of the welding processes

  3. Welding abilities of UFG metals

    Science.gov (United States)

    Morawiński, Łukasz; Chmielewski, Tomasz; Olejnik, Lech; Buffa, Gianluca; Campanella, Davide; Fratini, Livan

    2018-05-01

    Ultrafine Grained (UFG) metals are characterized by an average grain size of welded joints with similar properties to the base of UFG material are crucial for the production of finished engineering components. Conventional welding methods based on local melting of the joined edges cannot be used due to the UFG microstructure degradation caused by the heat occurrence in the heat affected zone. Therefore, the possibility of obtaining UFG materials joints with different shearing plane (SP) positions by means of friction welded processes, which do not exceed the melting temperature during the process, should be investigated. The article focuses on the Linear Friction Welding (LFW) method, which belongs to innovative welding processes based on mixing of the friction-heated material in the solid state. LFW is a welding process used to joint bulk components. In the process, the friction forces work due to the high frequency oscillation and the pressure between the specimens is converted in thermal energy. Character and range of recrystallization can be controlled by changing LFW parameters. Experimental study on the welded UFG 1070 aluminum alloy by means of FLW method, indicates the possibility of reducing the UFG structure degradation in the obtained joint. A laboratory designed LFW machine has been used to weld the specimens with different contact pressure and oscillation frequency.

  4. A Monte Carlo model for 3D grain evolution during welding

    Science.gov (United States)

    Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena

    2017-09-01

    Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bézier curves, which allow for the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. The model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.

  5. Laser welding engineering

    International Nuclear Information System (INIS)

    Bhieh, N. M.; El Eesawi, M. E.; Hashkel, A. E.

    2007-01-01

    Laser welding was in its early life used mainly for unusual applications where no other welding process would be suitable that was twenty five years ago. Today, laser welding is a fully developed part of the metal working industry, routinely producing welds for common items such as cigarette lighters, which springs, motor/transformer lamination, hermetic seals, battery and pacemaker cans and hybrid circuit packages. Yet very few manufacturing engineering have seriously considers employing lasers in their own operations. Why? There are many reasons, but a main one must be not acquainted with the operation and capabilities of a laser system. Other reasons, such as a relatively high initial cost and a concern about using lasers in the manufacturing environment, also are frequently cited, and the complexity of the component and flexibility of the light delivery system. Laser welding could be used in place of many different standard processes, such as resistance (spot or seam), submerged arc, RF induction, high-frequency resistance, ultrasonic and electronic and electron-beam. while each of these techniques has established an independent function in the manufacturing world, the flexible laser welding approach will operate efficiently and economically in many different applications. Its flexibility will even permit the welding system to be used for other machining function, such as drilling, scribing, sealing and serializing. In this article, we will look at how laser welding works and what benefits it can offer to manufacturing engineers. Some industry observers state that there are already 2,000 laser machine tools being used for cutting, welding and drilling and that the number could reach 30,000 over the next 15 years as manufacturing engineers become more aware of the capabilities of lasers [1). While most laser applications are dedicated to one product or process that involves high-volume, long-run manufacturing, the flexibility of a laser to supply energy to hard

  6. Liquid Metal Oscillation and Arc Behaviour during Welding

    NARCIS (Netherlands)

    Yudodibroto, B.Y.B.

    2010-01-01

    The purpose of this research is to obtain insight into the oscillation behaviour of the liquid metal and the arc behaviour during GMA welding. Observations of the weld pool and the arc were undertaken by visual means using a high-speed video and by analysis of the voltage. To deal with the complex

  7. Numerical Simulation Of The Laser Welding

    Directory of Open Access Journals (Sweden)

    Aleksander Siwek

    2008-01-01

    Full Text Available The model takes into consideration thermophysical and metallurgical properties of theremelting steel, laser beam parameters and boundary conditions of the process. As a resultof heating the material, in the area of laser beam operation a weld pool is being created,whose shape and size depends on convection caused by the Marangoni force. The directionof the liquid stream depends on the temperature gradient on the surface and on the chemicalcomposition as well. The model created allows to predict the weld pool shape depending onmaterial properties, beam parameters, and boundary conditions of the sample.

  8. Baseline participant characteristics and risk for dropout from ten obesity randomized controlled trials: a pooled analysis of individual level data.

    Science.gov (United States)

    Kaiser, Kathryn A; Affuso, Olivia; Desmond, Renee; Allison, David B

    Understanding participant demographic characteristics that inform the optimal design of obesity RCTs have been examined in few studies. The objective of this study was to investigate the association of individual participant characteristics and dropout rates (DORs) in obesity randomized controlled trials (RCT) by pooling data from several publicly available datasets for analyses. We comprehensively characterize DORs and patterns in obesity RCTs at the individual study level, and describe how such rates and patterns vary as a function of individual-level characteristics. We obtained and analyzed nine publicly-available, obesity RCT datasets that examined weight loss or weight gain prevention as a primary or secondary endpoint. Four risk factors for dropout were examined by Cox proportional hazards including sex, age, baseline BMI, and race/ethnicity. The individual study data were pooled in the final analyses with a random effect for study, and HR and 95% CIs were computed. Results of the multivariate analysis indicated that the risk of dropout was significantly higher for females compared to males (HR= 1.24, 95% CI = 1.05, 1.46). Hispanics and Non-Hispanic blacks had a significantly higher dropout rate compared to non-Hispanic whites (HR= 1.62, 95% CI = 1.37, 1.91; HR= 1.22, 95% CI = 1.11, 1.35, respectively). There was a significantly increased risk of dropout associated with advancing age (HR= 1.02, 95% CI = 1.01, 1.02) and increasing BMI (HR= 1.03, 95% CI = 1.03, 1.04). As more studies may focus on special populations, researchers designing obesity RCTs may wish to oversample in certain demographic groups if attempting to match comparison groups based on generalized estimates of expected dropout rates, or otherwise adjust a priori power estimates. Understanding true reasons for dropout may require additional methods of data gathering not generally employed in obesity RCTs, e.g. time on treatment.

  9. ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC CONTROLLER FOR GTAW MODELING AND CONTROL

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An artificial neural network(ANN) and a self-adjusting fuzzy logic controller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented. The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and the intelligent control for weld seam tracking with FLC. The proposed neural network can produce highly complex nonlinear multi-variable model of the GTAW process that offers the accurate prediction of welding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts the control parameters on-line automatically according to the tracking errors so that the torch position can be controlled accurately.

  10. The influence of high heat input and inclusions control for rare earth on welding in low alloy high strength steel

    Science.gov (United States)

    Chu, Rensheng; Mu, Shukun; Liu, Jingang; Li, Zhanjun

    2017-09-01

    In the current paper, it is analyzed for the influence of high heat input and inclusions control for rare earth on welding in low alloy high strength steel. It is observed for the structure for different heat input of the coarse-grained area. It is finest for the coarse grain with the high heat input of 200 kJ / cm and the coarse grain area with 400 kJ / cm is the largest. The performance with the heat input of 200 kJ / cm for -20 °C V-shaped notch oscillatory power is better than the heat input of 400 kJ / cm. The grain structure is the ferrite and bainite for different holding time. The grain structure for 5s holding time has a grain size of 82.9 μm with heat input of 200 kJ/cm and grain size of 97.9 μm for 10s holding time. For the inclusions for HSLA steel with adding rare earth, they are Al2O3-CaS inclusions in the Al2O3-CaS-CaO ternary phase diagram. At the same time, it can not be found for low melting calcium aluminate inclusions compared to the inclusions for the HSLA steel without rare earth. Most of the size for the inclusions is between 1 ~ 10μm. The overall grain structure is smaller and the welding performance is more excellent for adding rare earth.

  11. AREVA Adhesive Technology. A method to mitigate and/or prevent leaks in pools with stainless steel liners Georg Kramer AREVA GmbH IBOC-G

    International Nuclear Information System (INIS)

    Kraemer, G.

    2013-01-01

    Repair methods with conventional welding technique are not promising as a preventative measure mostly due to cost and time issues. With the provided repair method, the AREVA adhesive technology, it is possible to stop existing leaks and work as a prophylactic measure against future penetration from the concrete side of the pool. This technique can cover the failure mechanisms from weld failures over corrosion to mechanical stresses. Another advantage of the adhesive technology is the possibility of using remote-controlled underwater repair methods which are particularly beneficial in the repair of leaks in spent fuel pools. Extensive laboratory testing and longstanding successful experience in nuclear power plants have proved the suitability of the adhesive technology as active and proactive methods to minimize leakages in pools.

  12. Comparison between sensitivities of quality control methods using ultrasonic waves, radiography and acoustic emission for the thick welded joint testing

    International Nuclear Information System (INIS)

    Asty, Michel; Birac, Claude

    1981-09-01

    The testing of the thick welded joints of the nuclear industry is carried out by radiography and ultrasonics on completion of welding. When a fault is found, its repair requires a sometimes deep cut down to the position of the fault, then filling in of the cut by hand welding with a coated electrode. This very costly operation also involves the risk of causing new defects when building up by hand. Listening to the acoustic emission during the welding has been considered in order to seek the possibility of detecting defects when they appear, or soon after. The industrial use of this method would make an instant repair of the defective areas possible at less cost and with greater reliability. The study presented concerns the comparison between the results of the various non-destructive testing methods: radiography, ultrasonics and acoustic emission, for a thick welded joint in which the defects have been brought about [fr

  13. Pool scrubbing

    International Nuclear Information System (INIS)

    Lopez-Jimenez, J.; Herranz, J.; Escudero, M.J.; Espigares, M.M.; Peyres, V.; Polo, J.; Kortz, Ch.; Koch, M.K.; Brockmeier, U.; Unger, H.; Dutton, L.M.C.; Smedley, Ch.; Trow, W.; Jones, A.V.; Bonanni, E.; Calvo, M.; Alonso, A.

    1996-12-01

    The Source Term Project in the Third Frame Work Programme of the European Union Was conducted under and important joined effort on pool scrubbing research. CIEMAT was the Task Manager of the project and several other organizations participated in it: JRC-Ispra, NNC Limited, RUB-NES and UPM. The project was divided into several tasks. A peer review of the models in the pool scrubbing codes SPARC90 and BUSCA-AUG92 was made, considering the different aspects in the hydrodynamic phenomenology, particle retention and fission product vapor abortions. Several dominant risk accident sequences were analyzed with MAAP, SPARC90 and BUSCA-AUG92 codes, and the predictions were compared. A churn-turbulent model was developed for the hydrodynamic behaviour of the pool. Finally, an experimental programme in the PECA facility of CIEMAT was conducted in order to study the decontamination factor under jet injection regime, and the experimental observations were compared with the SPARC and BUSCA codes. (Author)

  14. Automatic orbital GTAW welding: Highest quality welds for tomorrow's high-performance systems

    Science.gov (United States)

    Henon, B. K.

    1985-01-01

    Automatic orbital gas tungsten arc welding (GTAW) or TIG welding is certain to play an increasingly prominent role in tomorrow's technology. The welds are of the highest quality and the repeatability of automatic weldings is vastly superior to that of manual welding. Since less heat is applied to the weld during automatic welding than manual welding, there is less change in the metallurgical properties of the parent material. The possibility of accurate control and the cleanliness of the automatic GTAW welding process make it highly suitable to the welding of the more exotic and expensive materials which are now widely used in the aerospace and hydrospace industries. Titanium, stainless steel, Inconel, and Incoloy, as well as, aluminum can all be welded to the highest quality specifications automatically. Automatic orbital GTAW equipment is available for the fusion butt welding of tube-to-tube, as well as, tube to autobuttweld fittings. The same equipment can also be used for the fusion butt welding of up to 6 inch pipe with a wall thickness of up to 0.154 inches.

  15. Electron beam welding of iridium heat source capsules

    International Nuclear Information System (INIS)

    Mustaleski, T.M.; Yearwood, J.C.; Burgan, C.E.; Green, L.A.

    1991-01-01

    The development of the welding procedures for the production of DOP-26 iridium alloy cups for heat source encapsulation is described. All the final assembly welds were made using the electron beam welding process. The welding of the 0.13-mm weld shield required the use of computer controlled X-Y table and a run-off tab. Welding of the frit vent to the cup required that a laser weld be made to hold the frit assembly edges together for the final electron beam weld. Great care is required in tooling design and beam placement to achieve acceptable results. Unsuccessful attempts to use laser beam welding for heat shield butt weld are discussed

  16. Performance Improvement of Friction Stir Welds by Better Surface Finish

    Science.gov (United States)

    Russell, Sam; Nettles, Mindy

    2015-01-01

    The as-welded friction stir weld has a cross section that may act as a stress concentrator. The geometry associated with the stress concentration may reduce the weld strength and it makes the weld challenging to inspect with ultrasound. In some cases, the geometry leads to false positive nondestructive evaluation (NDE) indications and, in many cases, it requires manual blending to facilitate the inspection. This study will measure the stress concentration effect and develop an improved phased array ultrasound testing (PAUT) technique for friction stir welding. Post-welding, the friction stir weld (FSW) tool would be fitted with an end mill that would machine the weld smooth, trimmed shaved. This would eliminate the need for manual weld preparation for ultrasonic inspections. Manual surface preparation is a hand operation that varies widely depending on the person preparing the welds. Shaving is a process that can be automated and tightly controlled.

  17. Mathematical Modeling of Metal Active Gas (MAG) Arc Welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the present paper, a numerical model for MAG (metal active gas) arc welding of thin plate has been developed. In MAG arc welding, the electrode wire is melted and supplied into the molten pool intermittently. Accordingly, it is assumed on the modeling that the thermal energy enters the base-plates through two following mechanisms, i.e., direct heating from arc plasma and “indirect” heating from the deposited metal. In the second part of the paper, MAG arc welding process is numerically analyzed by using the model, and the calculated weld bead dimension and surface profile have been compared with the experimental MAG welds on steel plate. As the result, it is made clear that the model is capable of predicting the bead profile of thin-plate MAG arc welding , including weld bead with undercutting.

  18. Patient pools and the use of "patient means" are valuable tools in quality control illustrated by a bone-specific alkaline phosphatase assay

    DEFF Research Database (Denmark)

    Hinge, Maja; Lund, Erik D.; Brandslund, Ivan

    2016-01-01

    BACKGROUND: Quality control (QC) is an essential part of clinical biochemistry to ensure that laboratory test results are reliable and correct. Those tests without a defined reference method constitute a special challenge, as is the case with bone-specific alkaline phosphatase (BAP). METHODS...... AND RESULTS: The present study reports an example where a shift in a BAP assay was detected by use of a patient pool and supported by a retrospective calculation of "patient mean", while the external QC and specific assay control material were unaffected by the shift. CONCLUSIONS: Patient pools and the use...

  19. Thermal analysis of laser welding for ITER correction coil case

    Energy Technology Data Exchange (ETDEWEB)

    Fang, C., E-mail: fangchao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 200031 (China); Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); Song, Y.T.; Wu, W.Y.; Wei, J.; Xin, J.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 200031 (China); Wu, H.P.; Salminen, A. [Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland)

    2015-11-15

    Highlights: • Morphology of simulated heat source is found to be close to the welded joint sample. • The FEA temperature distribution shows good agreement with experimental measurements. • Laser welding process used on ITER correction coil case will not harm the winding pack. - Abstract: This paper presents the simulation results of 3D finite element analysis (FEA) of laser welding processes for the ITER correction coil case welding; predicts the temperature distribution and compares it with the experimental result to evaluate the impact to the properties of winding pack during the welding process. A specimen of coil case was modeled and simulated by using specialized welding simulation software SYSWELD, Modeling used austenitic stainless steel 316LN as the specimen material and a 3D Conical Gaussian was used as a heat source model. A plate sample was welded before the FE modeling in order to obtain the laser welding parameters and the Gaussian parameters of molten pool. To verify the simulation results, a coil case sample was welded using laser welding with welding parameters that matched the model, and the corresponding temperature values were measured using thermocouples. Compared with the FEA results, it was found that the FEA temperature distribution shows good agreement with the experimental measurements and the laser welding process will not harm the winding pack.

  20. Microstructure and Porosity of Laser-welded Dissimilar Material Joints of HR-2 and J75

    Science.gov (United States)

    Shen, Xianfeng; Teng, Wenhua; Zhao, Shuming; He, Wenpei

    Dissimilar laser welding of HR-2 and J75 has a wide range of applications in high-and low-temperature hydrogen storage. The porosity distributions of the welded joints were investigated at different line energies, penetration status, and welding positions (1G, 2G, and 3G). The effect of the welding position on the welding appearance was evident only at high line energies because of the essential effect of gravity of the larger and longer dwelling molten pool. The porosity of the welded joints between the solutionised and aged J75 and HR-2 at the 3G position and partial penetration was located at the weld centre line, while the porosity at the 2G position with full penetration was distributed at the weld edges, which is consistent with the distribution of floating slag. Full keyhole penetration resulted in minimum porosity, partial penetration resulted in moderate porosity, and periodic molten pool penetration resulted in maximum porosity.

  1. Linear discriminant analysis for welding fault detection

    International Nuclear Information System (INIS)

    Li, X.; Simpson, S.W.

    2010-01-01

    This work presents a new method for real time welding fault detection in industry based on Linear Discriminant Analysis (LDA). A set of parameters was calculated from one second blocks of electrical data recorded during welding and based on control data from reference welds under good conditions, as well as faulty welds. Optimised linear combinations of the parameters were determined with LDA and tested with independent data. Short arc welds in overlap joints were studied with various power sources, shielding gases, wire diameters, and process geometries. Out-of-position faults were investigated. Application of LDA fault detection to a broad range of welding procedures was investigated using a similarity measure based on Principal Component Analysis. The measure determines which reference data are most similar to a given industrial procedure and the appropriate LDA weights are then employed. Overall, results show that Linear Discriminant Analysis gives an effective and consistent performance in real-time welding fault detection.

  2. Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool

    Science.gov (United States)

    Adams, Glynn; Venable, Richard; Lawless, Kirby

    2003-01-01

    Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.

  3. Control of spiking in partial penetration of electron beam welds. Final report, 1 October 1969--1 October 1976

    International Nuclear Information System (INIS)

    1976-01-01

    An investigation of the penetration mechanism of high energy density electron beams and an evaluation of electron beam deflection as a method of penetration control are presented. A discussion of electron beam mechanics including several penetration theories is presented in the introduction and background. Slur radiographs made using a pinhole x-ray camera are evaluated to determine velocity and acceleration of the point of beam impingement. Methods of cavity closure are discussed with possible causes of surface sealing of the beam cavity. A method of penetration, after the cavity has closed, based on the curves relating velocity and acceleration to penetration distance is considered. An estimate of cavity pressure is made from the maximum acceleration of the beam-metal interface. A system using an x-ray detector coupled with a beam deflecting device is detailed and evaluated. As this is the first attempt at penetration control by beam deflection the investigation seeks only to determine the feasibility of the idea without attempting a thorough analysis of range of abilities or quality of welds made by such devices. Based on several specimens which are presented beam deflection appears capable of controlling penetration depth. It is hoped that the ideas presented here will inspire future research along these lines

  4. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  5. Welding template

    International Nuclear Information System (INIS)

    Ben Venue, R.J. of.

    1976-01-01

    A welding template is described which is used to weld strip material into a cellular grid structure for the accommodation of fuel elements in a nuclear reactor. On a base plate the template carries a multitude of cylindrical pins whose upper half is narrower than the bottom half and only one of which is attached to the base plate. The others are arrested in a hexagonal array by oblong webs clamped together by chuck jaws which can be secured by means of screws. The parts are ground very accurately. The template according to the invention is very easy to make. (UWI) [de

  6. Implementation of buffy-coat-derived pooled platelet concentrates for internal quality control of light transmission aggregometry: a proof of concept study.

    Science.gov (United States)

    Prüller, F; Rosskopf, K; Mangge, H; Mahla, E; von Lewinski, D; Weiss, E C; Riegler, A; Enko, D

    2017-12-01

    Essentials In platelet function testing, standardized internal controls (IQC) are not commercially provided. Platelet function testing was performed daily on aliquoted pooled platelet concentrates. Pooled platelet concentrates showed stability for control purposes from Monday to Friday. Pooled platelet concentrates provide the necessary steadiness to serve as IQC material. Background Standardized commercially available control material for internal quality control (IQC) of light transmission aggregometry (LTA) is still lacking. Moreover, the availability of normal blood donors to provide fresh platelets is difficult in small laboratories, where 'volunteers' may be in short supply. Objectives To evaluate the implementation of buffy-coat-derived pooled platelet concentrates (PCs) for IQC material for LTA. Methods We used buffy-coat-derived pooled PCs from the blood bank as IQC material for LTA. On each weekend one PC was prepared (> 200 mL) and aliquoted from the original storage bag on a daily basis in four baby bags (40-50 mL), which were delivered from Monday to Friday to our laboratory. The IQC measurements of at least 85 work-weeks (from Monday to Friday) were evaluated with this new IQC material. LTA was performed on a four-channel Chronolog 700 Aggregometer (Chronolog Corporation, Havertown, PA, USA) (agonists: collagen, adenosine diphosphate [ADP], arachidonic acid [AA] and thrombin receptor activator peptide-6 [TRAP-6]). Results The medians of platelet aggregation from IQC measurements with collagen, ADP and AA from Monday to Friday were 68.0-59.5, 3.0-2.0 and 51.0-50.0%, respectively, and the mean of platelet aggregation with TRAP-6 was 71.2-66.4%. Conclusions Buffy-coat-derived pooled PCs serve as a reliable and robust IQC material for LTA measurements and would be beneficial for the whole laboratory procedure and employees' safety. © 2017 International Society on Thrombosis and Haemostasis.

  7. Investigation of mixing and diffusion processes in hybrid spot laser-MIG keyhole welding

    International Nuclear Information System (INIS)

    Zhou, J; Tsai, H L

    2009-01-01

    In hybrid laser-MIG keyhole welding, anti-crack elements can be added into the weld pool through a filler metal in anticipation of compensating mass loss, preventing porosity formation and improving compositional and mechanical properties of the welds. Understanding the mixing and diffusion of the filler metal in the molten pool is vital to achieve these desired objectives. In this study, mathematical models and associated numerical techniques have been developed to investigate the mixing and diffusion processes in hybrid laser-MIG keyhole welding. The transient interactions between droplets and weld pool and dynamics of the melt flow are studied. The effects of key process parameters, such as droplet size (wire diameter), droplet generation frequency (wire feed speed) and droplet impinging speed, on mixing/diffusion are systematically investigated. It was found that compositional homogeneity of the weld pool is determined by the competition between the mixing rate and the solidification rate. A small-size filler droplet together with high generation frequency can increase the latitudinal diffusion of the filler metal into the weld pool, while the large-size droplet along with the low generation frequency helps to get more uniform longitudinal diffusion. Increasing the impinging velocity of the filler droplet can improve the latitudinal diffusion of the filler metal. However, a high impinging velocity can cause a lower diffusion zone in the upper part of the welds. This study provides a good foundation for optimizing the hybrid laser-MIG keyhole welding process to achieve quality welds with desired properties.

  8. A System for Complex Robotic Welding

    DEFF Research Database (Denmark)

    Madsen, Ole; Sørensen, Carsten Bro; Olsen, Birger

    2002-01-01

    This paper presents the architecture of a system for robotic welding of complex tasks. The system integrates off-line programming, control of redundant robots, collision-free motion planning and sensor-based control. An implementation for pipe structure welding made at Odense Steel Shipyard Ltd......., Denmark, demonstrates the system can be used for automatic welding of complex products in one-of-a-kind production....

  9. Numerical Modeling of Fluid Flow, Heat Transfer and Arc-Melt Interaction in Tungsten Inert Gas Welding

    Science.gov (United States)

    Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi

    2017-04-01

    The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.

  10. FSW of Aluminum Tailor Welded Blanks across Machine Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Upadhyay, Piyush; Carlson, Blair; Szymanski, Robert; Luzanski, Tom; Marshall, Dustin

    2015-02-16

    Development and characterization of friction stir welded aluminum tailor welded blanks was successfully carried out on three separate machine platforms. Each was a commercially available, gantry style, multi-axis machine designed specifically for friction stir welding. Weld parameters were developed to support high volume production of dissimilar thickness aluminum tailor welded blanks at speeds of 3 m/min and greater. Parameters originally developed on an ultra-high stiffness servo driven machine where first transferred to a high stiffness servo-hydraulic friction stir welding machine, and subsequently transferred to a purpose built machine designed to accommodate thin sheet aluminum welding. The inherent beam stiffness, bearing compliance, and control system for each machine were distinctly unique, which posed specific challenges in transferring welding parameters across machine platforms. This work documents the challenges imposed by successfully transferring weld parameters from machine to machine, produced from different manufacturers and with unique control systems and interfaces.

  11. Remote controlled in-pipe manipulators for dye-penetrant inspection and grinding of weld roots inside of pipes

    International Nuclear Information System (INIS)

    Seeberger, E.K.

    2000-01-01

    Technical plants which have to satisfy stringent safety criteria must be continuously kept in line with the state of art. This applies in particular to nuclear power plants. The quality of piping in nuclear power plants has been improved quite considerably in recent years. By virtue of the very high quality requirements fulfilled in the manufacture of medium-carrying and pressure-retaining piping, one of the focal aspects of in-service inspections is the medium wetted inside of the piping. A remote controlled pipe crawler has been developed to allow to perform dye penetrant testing of weld roots inside piping (ID ≥ 150 mm). The light crawler has been designed such that it can be inserted into the piping via valves (gate valves, check valves,...) with their internals removed. Once in the piping, all crawler movements are remotely controlled (horizontal and vertical pipes incl. the elbows). If indications are found these discontinuities are ground according to a qualified procedure using a special grinding head attached to the crawler with complete extraction of all grinding residues. The in-pipe grinding is a special qualified three (3) step performance that ensures no residual tensile stress (less than 50 N/mm 2 ) in the finish machined austenitic material surface. The in-pipe inspection system, qualified according to both the specifications of the German Nuclear Safety Standards Commission (KTA) and the American Society of Mechanical Engineers (ASME), has already been used successfully in nuclear power plants on many occasions. (author)

  12. Baseline participant characteristics and risk for dropout from ten obesity randomized controlled trials: a pooled analysis of individual level data

    Directory of Open Access Journals (Sweden)

    Kathryn Ann Kaiser

    2014-12-01

    Full Text Available Introduction: Understanding participant demographic characteristics that inform the optimal design of obesity RCTs have been examined in few studies. The objective of this study was to investigate the association of individual participant characteristics and dropout rates (DORs in obesity randomized controlled trials (RCT by pooling data from several publicly available datasets for analyses. We comprehensively characterize DORs and patterns in obesity RCTs at the individual study level, and describe how such rates and patterns vary as a function of individual-level characteristics. Methods: We obtained and analyzed nine publicly-available, obesity RCT datasets that examined weight loss or weight gain prevention as a primary or secondary endpoint. Four risk factors for dropout were examined by Cox proportional hazards including sex, age, baseline BMI, and race/ethnicity. The individual study data were pooled in the final analyses with a random effect for study, and HR and 95% CIs were computed. Results: Results of the multivariate analysis indicated that the risk of dropout was significantly higher for females compared to males (HR= 1.24, 95% CI = 1.05, 1.46. Hispanics and Non-Hispanic blacks had a significantly higher dropout rate compared to non-Hispanic whites (HR= 1.62, 95% CI = 1.37, 1.91; HR= 1.22, 95% CI = 1.11, 1.35, respectively. There was a significantly increased risk of dropout associated with advancing age (HR= 1.02, 95% CI = 1.01, 1.02 and increasing BMI (HR= 1.03, 95% CI = 1.03, 1.04. Conclusion/Significance: As more studies may focus on special populations, researchers designing obesity RCTs may wish to oversample in certain demographic groups if attempting to match comparison groups based on generalized estimates of expected dropout rates, or otherwise adjust a priori power estimates. Understanding true reasons for dropout may require additional methods of data gathering not generally employed in obesity RCTs, e.g. time on

  13. Status analysis of keyhole bottom in laser-MAG hybrid welding process.

    Science.gov (United States)

    Wang, Lin; Gao, Xiangdong; Chen, Ziqin

    2018-01-08

    The keyhole status is a determining factor of weld quality in laser-metal active gas arc (MAG) hybrid welding process. For a better evaluation of the hybrid welding process, three different penetration welding experiments: partial penetration, normal penetration (or full penetration), and excessive penetration were conducted in this work. The instantaneous visual phenomena including metallic vapor, spatters and keyhole of bottom surface were used to evaluate the keyhole status by a double high-speed camera system. The Fourier transform was applied on the bottom weld pool image for removing the image noise around the keyhole, and then the bottom weld pool image was reconstructed through the inverse Fourier transform. Lastly, the keyhole bottom was extracted from the de-noised bottom weld pool image. By analyzing the visual features of the laser-MAG hybrid welding process, mechanism of the closed and opened keyhole bottom were revealed. The results show that the stable opened or closed status of keyhole bottom is directly affected by the MAG droplet transition in the normal penetration welding process, and the unstable opened or closed status of keyhole bottom would appear in excessive penetration welding and partial penetration welding. The analysis method proposed in this paper could be used to monitor the keyhole stability in laser-MAG hybrid welding process.

  14. Braze welding of cobalt with a silver–copper filler

    Directory of Open Access Journals (Sweden)

    Everett M. Criss

    2015-01-01

    Full Text Available A new method of joining cobalt by braze-welding it with a silver–copper filler was developed in order to better understand the residual stresses in beryllium–aluminum/silicon weldments which are problematic to investigate because of the high toxicity of Be. The base and filler metals of this new welding system were selected to replicate the physical properties, crystal structures, and chemical behavior of the Be–AlSi welds. Welding parameters of this surrogate Co–AgCu system were determined by experimentation combining 4-point bending tests and microscopy. Final welds are 5 pass manual TIG (tungsten inert gas, with He top gas and Ar back gas. Control of the welding process produces welds with full penetration melting of the cobalt base. Microscopy indicates that cracking is minimal, and not through thickness, whereas 4-point bending shows failure is not by base-filler delamination. These welds improve upon the original Be–AlSi welds, which do not possess full penetration, and have considerable porosity. We propose that utilization of our welding methods will increase the strength of the Be–AlSi weldments. The specialized welding techniques developed for this study may be applicable not only for the parent Be–AlSi welds, but to braze welds and welds utilizing brittle materials in general. This concept of surrogacy may prove useful in the study of many different types of exotic welds.

  15. Temporal characterization of plasma cw high-power CO2 laser-matter interaction: contribution to the welding process control

    Science.gov (United States)

    Engel, Thierry; Kane, M.; Fontaine, Joel

    1997-08-01

    During high-power laser welding, gas ionization occurs above the sample. The resulting plasma ignition threshold is related to ionization potential of metallic vapors from the sample, and shielding gases used in the process. In this work, we have characterized the temporal behavior of the radiation emitted by the plasma during laser welding in order to relate the observed signals to the process parameters.

  16. Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (II) - The Effect of Control of Heat Input on Weldability -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Kim, Ji Sung [Korea Maritime and Ocean Univ., Busan (Korea, Republic of)

    2016-12-15

    Laser welding is a high-density energy welding method. Hence, deep penetration and high welding speed can be realized with lower heat input as compared with conventional welding. The heat input of a CW laser welding is determined by laser power and welding speed. In this study, bead and lap welding of 0.5 mmt pure titanium was performed using a fiber laser. Its weldability with laser power and welding speed was evaluated. Penetration, bead width, joining length, and bead shape were investigated, and the mechanical properties were examined through tensile-shear strength tests. Welds with sound joining length were obtained when the laser power and welding speed were respectively 0.5 kW and 2.5 m/min, and 1.5 kW and 6 m/min, and the weld obtained at low output presented better ductility than that obtained at high output.

  17. Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (II) - The Effect of Control of Heat Input on Weldability -

    International Nuclear Information System (INIS)

    Kim, Jong Do; Kim, Ji Sung

    2016-01-01

    Laser welding is a high-density energy welding method. Hence, deep penetration and high welding speed can be realized with lower heat input as compared with conventional welding. The heat input of a CW laser welding is determined by laser power and welding speed. In this study, bead and lap welding of 0.5 mmt pure titanium was performed using a fiber laser. Its weldability with laser power and welding speed was evaluated. Penetration, bead width, joining length, and bead shape were investigated, and the mechanical properties were examined through tensile-shear strength tests. Welds with sound joining length were obtained when the laser power and welding speed were respectively 0.5 kW and 2.5 m/min, and 1.5 kW and 6 m/min, and the weld obtained at low output presented better ductility than that obtained at high output

  18. Electron-beam welding of 21-6-9 (Cr--Ni--Mn) stainless steel: effect of machine parameters on weldability

    International Nuclear Information System (INIS)

    Casey, H.

    1975-04-01

    The high-manganese, nitrogen-strengthened 21-6-9 (Cr--Ni--Mn) austenitic stainless steel has a weldability rating similar to that of more common austenitic stainless steels in terms of cracking, porosity, etc. However, weld pool disruption problems may occur with this alloy that can be related to instability within the molten weld pool. Selection of machine parameters is critical to achieving weld pool quiescence as this report confirms from recent tests. Test samples came from heats of air-melted, vacuum-arc remelted, and electroslag remelted material. Low- and high-voltage machine parameters are discussed, and effects of parameter variation on weld pool behavior are given. Data relate weld pool behavior to weld fusion-zone geometry. Various weld parameters are recommended for the 21-6-9 alloy, regardless of its source or chemistry. (auth)

  19. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    Science.gov (United States)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  20. Liquid sodium pool fires

    Energy Technology Data Exchange (ETDEWEB)

    Casselman, C [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    Experimental sodium pool combustion results have led to a definition of the combustion kinetics, and have revealed the hazards of sodium-concrete contact reactions and the possible ignition of organic matter (paint) by hydration of sodium peroxide aerosols. Analysis of these test results shows that the controlling mechanism is sodium evaporation diffusion. (author)

  1. Liquid sodium pool fires

    International Nuclear Information System (INIS)

    Casselman, C.

    1979-01-01

    Experimental sodium pool combustion results have led to a definition of the combustion kinetics, and have revealed the hazards of sodium-concrete contact reactions and the possible ignition of organic matter (paint) by hydration of sodium peroxide aerosols. Analysis of these test results shows that the controlling mechanism is sodium evaporation diffusion. (author)

  2. Multifaceted empathy of healthy volunteers after single doses of MDMA: A pooled sample of placebo-controlled studies.

    Science.gov (United States)

    Kuypers, Kim Pc; Dolder, Patrick C; Ramaekers, Johannes G; Liechti, Matthias E

    2017-05-01

    Previous placebo-controlled experimental studies have shown that a single dose of MDMA can increase emotional empathy in the multifaceted empathy test (MET) without affecting cognitive empathy. Although sufficiently powered to detect main effects of MDMA, these studies were generally underpowered to also validly assess contributions of additional parameters, such as sex, drug use history, trait empathy and MDMA or oxytocin plasma concentrations. The present study examined the robustness of the MDMA effect on empathy and investigated the moderating role of these additional parameters. Participants ( n = 118) from six placebo-controlled within-subject studies and two laboratories were included in the present pooled analysis. Empathy (MET), MDMA and oxytocin plasma concentrations were assessed after oral administration of MDMA (single dose, 75 or 125 mg). Trait empathy was assessed using the interpersonal reactivity index. We confirmed that MDMA increased emotional empathy at both doses without affecting cognitive empathy. This MDMA-related increase in empathy was most pronounced during presentation of positive emotions as compared with negative emotions. MDMA-induced empathy enhancement was positively related to MDMA blood concentrations measured before the test, but independent of sex, drug use history and trait empathy. Oxytocin concentrations increased after MDMA administration but were not associated with behavioral effects. The MDMA effects on emotional empathy were stable across laboratories and doses. Sex did not play a moderating role in this effect, and oxytocin levels, trait empathy and drug use history were also unrelated. Acute drug exposure was of significant relevance in the MDMA-induced emotional empathy elevation.

  3. Structure/property relationships in multipass GMA welding of beryllium.

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, P. W. (Patrick W.); Hults, W. L. (William L.); Thoma, D. J. (Dan J.); Dave, V. R. (Vivek R.); Kelly, A. M. (Anna Marie); Pappin, P. A. (Pallas A.); Cola, M. J. (Mark J.); Burgardt, P. (Paul)

    2001-01-01

    Beryllium is an interesting metal that has a strength to weight ratio six times that of steel. Because of its unique mechanical properties, beryllium is used in aerospace applications such as satellites. In addition, beryllium is also used in x-ray windows because it is nearly transparent to x-rays. Joining of beryllium has been studied for decades (Ref.l). Typically joining processes include braze-welding (either with gas tungsten arc or gas metal arc), soldering, brazing, and electron beam welding. Cracking which resulted from electron beam welding was recently studied to provide structure/property relationships in autogenous welds (Ref. 2). Braze-welding utilizes a welding arc to melt filler, and only a small amount of base metal is melted and incorporated into the weld pool. Very little has been done to characterize the braze-weld in terms of the structure/property relationships, especially with reference to multipass welding. Thus, this investigation was undertaken to evaluate the effects of multiple passes on microstructure, weld metal composition, and resulting material properties for beryllium welded with aluminum-silicon filler metal.

  4. Pearson's Functions to Describe FSW Weld Geometry

    International Nuclear Information System (INIS)

    Lacombe, D.; Coupard, D.; Tcherniaeff, S.; Girot, F.; Gutierrez-Orrantia, M. E.

    2011-01-01

    Friction stir welding (FSW) is a relatively new joining technique particularly for aluminium alloys that are difficult to fusion weld. In this study, the geometry of the weld has been investigated and modelled using Pearson's functions. It has been demonstrated that the Pearson's parameters (mean, standard deviation, skewness, kurtosis and geometric constant) can be used to characterize the weld geometry and the tensile strength of the weld assembly. Pearson's parameters and process parameters are strongly correlated allowing to define a control process procedure for FSW assemblies which make radiographic or ultrasonic controls unnecessary. Finally, an optimisation using a Generalized Gradient Method allows to determine the geometry of the weld which maximises the assembly tensile strength.

  5. Spot-Welding Gun With Adjustable Pneumatic Spring

    Science.gov (United States)

    Burley, Richard K.

    1990-01-01

    Proposed spot-welding gun equipped with pneumatic spring, which could be bellows or piston and cylinder, exerts force independent of position along stroke. Applies accurate controlled force to joint welded, without precise positioning at critical position within stroke.

  6. WELDABILITY, WELDING METALLURGY, WELDING CHEMISTRY

    OpenAIRE

    Sarjito Jokosisworo

    2012-01-01

    Sambungan las merupakan bagian penting dari stuktur/bangunan yang dilas, dan kunci dari logam induk yang baik adalah kemampuan las (weld ability). Kemampuan las yang baik dan kemudahan dalam fabrikasi dari suatu logam merupakan pertimbangan dalam memilih suatu logam untuk konstruksi.

  7. Simulation of Welding Distortions in Theory and Practice

    DEFF Research Database (Denmark)

    Birk-Sørensen, Martin; Kierkegaard, Henning

    1997-01-01

    by an optimised welding order. Welding test samples prove that the constraint of the sample and the time between each pass in a multipass weld affect the magnitude of distortion. Experiments with welding specimens in the form of butt-and fillet welds have been carried out. They show angular deflections as well......In the last few years the use of robot welding processes has increased significatnly. The programming of the robots has until now mainly focused on high efficiency, i.e.high torch rate time, and hence, minimising the inefficient "travelling" time. Together with developing high-performance welding...... due to cutting and welding and parlty in the form of dimensional variation due to human factors. Measurements have been made of the production line for assemblies. The measurements show that distortions related to the multirobot welding are a factor which can rather easily be controlled...

  8. Recent progress on gas tungsten arc welding of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; King, J.F.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)] [and others

    1997-08-01

    Emphasis has been placed on welding 6.4 mm plate, primarily by gas tungsten arc (GTA) welding. The weld properties were tested using blunt notch Charpy testing to determine the ductile to brittle transition temperature (DBTT). Erratic results were attributed to hydrogen and oxygen contamination of the welds. An improved gas clean-up system was installed on the welding glove box and the resulting high purity welds had Charpy impact properties similar to those of electron beam welds with similar grain size. A post-weld heat treatment (PWHT) of 950{degrees}C for two hours did not improve the properties of the weld in cases where low concentrations of impurities were attained. Further improvements in the gas clean-up system are needed to control hydrogen contamination.

  9. Al/Cu Dissimilar Friction Stir Welding with Ni, Ti, and Zn Foil as the Interlayer for Flow Control, Enhancing Mechanical and Metallurgical Properties

    Science.gov (United States)

    Sahu, Prakash Kumar; Pal, Sukhomay; Pal, Surjya K.

    2017-07-01

    This research investigates the effects of Ni, Ti, and Zn foil as interlayer, inserted between the faying edges of Al and Cu plates, for controlled intermetallic compound (IMC) formation. The weld tensile strength with Ti and Zn as interlayer is superior to Al base metal strength. This is due to controlled flow of IMCs by diffused Ti interlayer and thin, continuous, and uniform IMC formation in the case of Zn interlayer. Improved flexural stress was observed with interlayer. Weld microhardness varied with different interlayers and purely depends on IMCs present at the indentation point, flow of IMCs, and interlayer hardness. Specimens with interlayer failed at the interface of the nugget and thermomechanical-affected zone (TMAZ) with complete and broken three-dimensional (3-D) grains, indicating transgranular fracture. Phase analysis revealed that Al/Cu IMCs are impeded by Ni and Ti interlayer. The minor binary and ternary IMC phases form adjacent to the interlayer due to diffusion of the material with Al/Cu. Line scan and elemental mapping indicate thin, continuous, and uniform IMCs with enhanced weld metallurgical and mechanical properties for the joints with Zn interlayer. Macrostructural analysis revealed IMC flow variations with and without interlayer. Variation in grain size at different zones is also observed for different interlayers.

  10. A 1993 review of welding in Japan

    Science.gov (United States)

    1994-07-01

    This paper describes a prospect on Japanese welding technologies available in 1993. Amid the increasing research publications on non-ferrous metals as structural materials, publications are also increasing on steel materials as to their fracture and welding mechanics, and structural control. Studies are being made on ceramics with respect to its bonding, interface reaction mechanisms, and mechanical characteristics. The paper describes the progress and improvement in conventional technologies in welding and cutting processes. Especially active is the study on solid face welding such as pressure welding and diffusion. A considerable decrease is seen in reports on thermal spraying. The paper also introduces surface processing and hydrostatic pressure processing as new processing techniques. In the area of welding devices, practical use of arc welding robots has come to near a completion stage. Technological development and cost reduction are indispensable to transfer to visual sensing with a higher intelligence level. With respect to the performance of joints, a large number of research has been reported on welding deformation and residual stress. The paper also dwells on corrosion resistance and welding cracks. Quality assurance, inspection, and related standards are described. Details are given on application of welding to different industrial fields.

  11. Heat transfer and fluid flow during laser spot welding of 304 stainless steel

    CERN Document Server

    He, X; Debroy, T

    2003-01-01

    The evolution of temperature and velocity fields during laser spot welding of 304 stainless steel was studied using a transient, heat transfer and fluid flow model based on the solution of the equations of conservation of mass, momentum and energy in the weld pool. The weld pool geometry, weld thermal cycles and various solidification parameters were calculated. The fusion zone geometry, calculated from the transient heat transfer and fluid flow model, was in good agreement with the corresponding experimentally measured values for various welding conditions. Dimensional analysis was used to understand the importance of heat transfer by conduction and convection and the roles of various driving forces for convection in the weld pool. During solidification, the mushy zone grew at a rapid rate and the maximum size of the mushy zone was reached when the pure liquid region vanished. The solidification rate of the mushy zone/liquid interface was shown to increase while the temperature gradient in the liquid zone at...

  12. A Neural Network Approach for GMA Butt Joint Welding

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2003-01-01

    This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...... penetration, when the gap width is varying during the welding process. The process modeling to facilitate the mapping from joint geometry and reference weld quality to significant welding parameters has been based on a multi-layer feed-forward network. The Levenberg-Marquardt algorithm for non-linear least...

  13. A Neural Network Approach for GMA Butt Joint Welding

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2003-01-01

    penetration, when the gap width is varying during the welding process. The process modeling to facilitate the mapping from joint geometry and reference weld quality to significant welding parameters has been based on a multi-layer feed-forward network. The Levenberg-Marquardt algorithm for non-linear least......This paper describes the application of the neural network technology for gas metal arc welding (GMAW) control. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a certain degree of quality in the field of butt joint welding with full...

  14. Process for quality assurance of welded joints for electrical resistance point welding

    International Nuclear Information System (INIS)

    Schaefer, R.; Singh, S.

    1977-01-01

    In order to guarantee the reproducibility of welded joints of even quality (above all in the metal working industry), it is proposed that before starting resistance point welding, a preheating current should be allowed to flow at the site of the weld. A given reduction of the total resistance at the site of the weld should effect the time when the preheating current is switched over to welding current. This value is always predetermined empirically. Further possibilities of controlling the welding process are described, where the measurement of thermal expansion of the parts is used. A standard welding time is given. The rated course of electrode movement during the process can be predicted and a running comparison of nominal and actual values can be carried out. (RW) [de

  15. Electron beam welding of flanges with tubular shafts of steel 40KhNMA

    International Nuclear Information System (INIS)

    Leskov, G.I.; Zhivaga, L.I.; Shipitsyn, B.N.; Savichev, R.V.

    1975-01-01

    The results are presented of elaborating the technological process for the electron beam welding of flanges with a tube of the 40KhNMA steel and of investigation into the quality of the welded joints. A welded piece has been fabricated conforming to the technology suggested observing the parameters worked-out in the following sequence: assembling the piece; pre-welding of the edges in some points; welding; high tempering; welds quality control; removal of the seam reinforcement inside of the tube and the weld root to the depth of 2 mm; quenching; tempering; welds quality control; finishing. The welds quality control consists in visual inspection, ultrasonic testing, magnetic flaw detection, as well as X-ray and metallographic analyses. The mechanical properties are studied on notched samples cut out of the welded joints. The test results have shown that the mechanical properties of the welded joints meet the requirements on the same level with the base metal

  16. WELDING PROCESS

    Science.gov (United States)

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  17. Field efficacy of expanded polystyrene and shredded waste polystyrene beads for mosquito control in artificial pools and field trials, Islamic Republic of Iran.

    Science.gov (United States)

    Soltani, A; Vatandoost, H; Jabbari, H; Mesdaghinia, A R; Mahvi, A H; Younesian, M; Hanafi-Bojd, A A; Bozorgzadeh, S

    2012-10-01

    Concerns about traditional chemical pesticides has led to increasing research into novel mosquito control methods. This study compared the effectiveness of 2 different types of polystyrene beads for control of mosquito larvae in south-east Islamic Republic of Iran. Simulated field trials were done in artificial pools and field trials were carried out in 2 villages in an indigenous malaria area using WHO-recommended methods. Application of expanded polystyrene beads or shredded, waste polystyrene chips to pool surfaces produced a significant difference between pre-treatment and post-treatment density of mosquitoes (86% and 78% reduction respectively 2 weeks after treatment). There was no significant difference between the efficacy of the 2 types of material. The use of polystyrene beads as a component of integrated vector management with other supportive measures could assist in the control of mosquito-borne diseases in the Islamic Republic of Iran and neighbouring countries.

  18. The application of TIG-welding to the manufacture of modern boiler units. Chapter 3

    International Nuclear Information System (INIS)

    Dick, N.T.

    1978-01-01

    Stringent weld acceptance standards are necessary in nuclear installations. Mechanised TIG-welding is being used exclusively in the manufacture of the boiler pods for the Hartlepool and Heysham nuclear generating stations. The choice of a TIG welding process is discussed. Reliability, access, welding position, tube dimensions and weld profile were important as was the desirability of having ferrite control because in the austenitic stainless steel used, the acceptance standard does not permit microfissuring. Development of the technique and production equipment and conditions are given for tube butt welding, tube-to-tubeplate bore welding and tube-to-tubeplate face welding in AGR applications. (U.K.)

  19. Investigation on the hot melting temperature field simulation of HDPE water supply pipeline in gymnasium pool

    Science.gov (United States)

    Cai, Zhiqiang; Dai, Hongbin; Fu, Xibin

    2018-06-01

    In view of the special needs of the water supply and drainage system of swimming pool in gymnasium, the correlation of high density polyethylene (HDPE) pipe and the temperature field distribution during welding was investigated. It showed that the temperature field distribution has significant influence on the quality of welding. Moreover, the mechanical properties of the welded joint were analyzed by the bending test of the weld joint, and the micro-structure of the welded joint was evaluated by scanning electron microscope (SEM). The one-dimensional unsteady heat transfer model of polyethylene pipe welding joints was established by MARC. The temperature field distribution during welding process was simulated, and the temperature field changes during welding were also detected and compared by the thermo-couple temperature automatic acquisition system. Results indicated that the temperature of the end surface of the pipe does not reach the maximum value, when it is at the end of welding heating. Instead, it reaches the maximum value at 300 sand latent heat occurs during the welding process. It concludes that the weld quality is the highest when the welding pressure is 0.2 MPa, and the heating temperature of HDPE heat fusion welding is in the range of 210 °C-230 °C.

  20. Automated Fuel Element Closure Welding System

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1993-01-01

    The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout

  1. Orbital friction stir welding of aluminium pipes

    International Nuclear Information System (INIS)

    Engelhard, G.; Hillers, T.

    2002-01-01

    Friction stir welding (FSW) was originally developed for flat plates. This contribution shows how it can be applied to the welding of aluminium pipes. Pipes made of AlMG 3 (EN5754), AlMg 4.5Mn (EN5083) and AlMgSi 0.5 (EN6106) with dimensions of Da 600 and 520 x 10-8 mm were welded. The FSW orbital system comprises an annular cage with integrated FSW head, a hydraulic system, and a control unit. The welds were tested successfully according to EN 288. The mechanical and technical properties of the welds were somewhat better than with the TIG orbital process, and welding times were about 40 percent shorter [de

  2. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  3. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  4. Welding process automation in power machine building

    International Nuclear Information System (INIS)

    Mel'bard, S.N.; Shakhnov, A.F.; Shergov, I.V.

    1977-01-01

    The level of welding automation operations in power engineering and ways of its enhancement are highlighted. Used as the examples of comlex automation are an apparatus for the horizontal welding of turbine rotors, remotely controlled automatic machine for welding ring joint of large-sized vessels, equipment for the electron-beam welding of steam turbine assemblies of alloyed steels. The prospects of industrial robots are noted. The importance of the complex automation of technological process, including stocking, assemblying, transportation and auxiliary operations, is emphasized

  5. Sensing the gas metal arc welding process

    Science.gov (United States)

    Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.

    1994-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  6. Larval control of Anopheles (Nyssorhinchus) darlingi using granular formulation of Bacillus sphaericus in abandoned gold-miners excavation pools in the Brazilian Amazon rainforest.

    Science.gov (United States)

    Galardo, Allan Kardec Ribeiro; Zimmerman, Robert; Galardo, Clícia Denis

    2013-01-01

    Use of a Bacillus sphaericus based mosquito larvicide was evaluated as an intervention for malaria vector control at a mining site in Amapá, Brazil. Impacts on larval and adult densities of the primary vector Anopheles darlingi were measured over the course of a 52 week study period. In Calçoene, State of Amapá, gold mining activity occurs in 19 mining sites in gold-miners of Lourenço. Large pools are formed in mining sites and naturally colonized by Anopheles darlingi. During one year, the impact of applications of VectoLex® CG to these larval sources was evaluated. Applications of 20kg/ha were made as needed, based on 10 immature (3rd, 4th instars and pupae) surveillance of health and established thresholds. One hundred percent initial control was observed 48h after each treatment. The pools received from 2-10 (5.3±1.6) treatments during the year. The average re-treatment interval in productive pools was 9.4±4.3 weeks. During weeks 3-52 of the study, mean density of late stage larvae was 78% and pupae were 93% lower in the treated pools than in untreated pools (p< 0.0001, n=51) while reduction of adult mosquitoes was 53% in comparison to the untreated area during the last five months of the study, which were the rainy season (p<0.001). VectoLex® CG reduced immature Anopheles darlingi infestation levels during the entire study period, and reduced adult mosquito populations during the rainy season.

  7. Larval control of Anopheles (Nyssorhinchus darlingi using granular formulation of Bacillus sphaericus in abandoned gold-miners excavation pools in the Brazilian Amazon Rainforest

    Directory of Open Access Journals (Sweden)

    Allan Kardec Ribeiro Galardo

    2013-09-01

    Full Text Available INTRODUCTION: Use of a Bacillus sphaericus based mosquito larvicide was evaluated as an intervention for malaria vector control at a mining site in Amapá, Brazil. Impacts on larval and adult densities of the primary vector Anopheles darlingi were measured over the course of a 52 week study period. METHODS: In Calçoene, State of Amapá, gold mining activity occurs in 19 mining sites in gold-miners of Lourenço. Large pools are formed in mining sites and naturally colonized by Anopheles darlingi. During one year, the impact of applications of VectoLex(r CG to these larval sources was evaluated. Applications of 20kg/ha were made as needed, based on 10 immature (3rd, 4th instars and pupae surveillance of health and established thresholds. RESULTS: One hundred percent initial control was observed 48h after each treatment. The pools received from 2-10 (5.3±1.6 treatments during the year. The average re-treatment interval in productive pools was 9.4±4.3 weeks. During weeks 3-52 of the study, mean density of late stage larvae was 78% and pupae were 93% lower in the treated pools than in untreated pools (p< 0.0001, n=51 while reduction of adult mosquitoes was 53% in comparison to the untreated area during the last five months of the study, which were the rainy season (p<0.001. CONCLUSIONS: VectoLex(r CG reduced immature Anopheles darlingi infestation levels during the entire study period, and reduced adult mosquito populations during the rainy season.

  8. Osmotic Control of opuA Expression in Bacillus subtilis and Its Modulation in Response to Intracellular Glycine Betaine and Proline Pools

    Science.gov (United States)

    Hoffmann, Tamara; Wensing, Annette; Brosius, Margot; Steil, Leif; Völker, Uwe

    2013-01-01

    Glycine betaine is an effective osmoprotectant for Bacillus subtilis. Its import into osmotically stressed cells led to the buildup of large pools, whose size was sensitively determined by the degree of the osmotic stress imposed. The amassing of glycine betaine caused repression of the formation of an osmostress-adaptive pool of proline, the only osmoprotectant that B. subtilis can synthesize de novo. The ABC transporter OpuA is the main glycine betaine uptake system of B. subtilis. Expression of opuA was upregulated in response to both sudden and sustained increases in the external osmolarity. Nonionic osmolytes exerted a stronger inducing effect on transcription than ionic osmolytes, and this was reflected in the development of corresponding OpuA-mediated glycine betaine pools. Primer extension analysis and site-directed mutagenesis pinpointed the osmotically controlled opuA promoter. Deviations from the consensus sequence of SigA-type promoters serve to keep the transcriptional activity of the opuA promoter low in the absence of osmotic stress. opuA expression was downregulated in a finely tuned manner in response to increases in the intracellular glycine betaine pool, regardless of whether this osmoprotectant was imported or was newly synthesized from choline. Such an effect was also exerted by carnitine, an effective osmoprotectant for B. subtilis that is not a substrate for the OpuA transporter. opuA expression was upregulated in a B. subtilis mutant that was unable to synthesize proline in response to osmotic stress. Collectively, our data suggest that the intracellular solute pool is a key determinant for the osmotic control of opuA expression. PMID:23175650

  9. Larval control of Anopheles (Nyssorhinchus darlingi using granular formulation of Bacillus sphaericus in abandoned gold-miners excavation pools in the Brazilian Amazon Rainforest

    Directory of Open Access Journals (Sweden)

    Allan Kardec Ribeiro Galardo

    2013-04-01

    Full Text Available INTRODUCTION: Use of a Bacillus sphaericus based mosquito larvicide was evaluated as an intervention for malaria vector control at a mining site in Amapá, Brazil. Impacts on larval and adult densities of the primary vector Anopheles darlingi were measured over the course of a 52 week study period. METHODS: In Calçoene, State of Amapá, gold mining activity occurs in 19 mining sites in gold-miners of Lourenço. Large pools are formed in mining sites and naturally colonized by Anopheles darlingi. During one year, the impact of applications of VectoLex(r CG to these larval sources was evaluated. Applications of 20kg/ha were made as needed, based on 10 immature (3rd, 4th instars and pupae surveillance of health and established thresholds. RESULTS: One hundred percent initial control was observed 48h after each treatment. The pools received from 2-10 (5.3±1.6 treatments during the year. The average re-treatment interval in productive pools was 9.4±4.3 weeks. During weeks 3-52 of the study, mean density of late stage larvae was 78% and pupae were 93% lower in the treated pools than in untreated pools (p< 0.0001, n=51 while reduction of adult mosquitoes was 53% in comparison to the untreated area during the last five months of the study, which were the rainy season (p<0.001. CONCLUSIONS: VectoLex(r CG reduced immature Anopheles darlingi infestation levels during the entire study period, and reduced adult mosquito populations during the rainy season.

  10. Heat transfer modeling of double-side arc welding

    International Nuclear Information System (INIS)

    Sun Junsheng; Wu Chuansong

    2002-01-01

    If a plasma arc and a TIG arc are connected in serial and with the plasma arc placed on the obverse side and the TIG arc on the opposite side of the workpiece, a special double-side arc welding (DSAW) system will be formed, in which the PAW current is forced to flow through the keyhole along the thickness direction so as to compensate the energy consumed for melting the workpiece and improve the penetration capacity of the PAW arc. By considering the mechanics factors which influence the DSAW pool geometric shape, the control equations of the pool surface deformation are derived, and the mathematics mode for DSAW heat transfer is established by using boundary-fitted non-orthogonal coordinate systems. With this model, the difference between DSAW and PAW heat transfer is analyzed and the reason for the increase of DSAW penetration is explained from the point of heat transfer. The welding process experiments show that calculated results are in good agreement with measured ones

  11. Welding robot package; Arc yosetsu robot package

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, S. [Yaskawa Electric Corp., Kitakyushu (Japan)

    1998-09-01

    For the conventional high-speed welding robot, the welding current was controlled mainly for reducing the spatters during short circuits and for stabilizing the beads by the periodic short circuits. However, an increase of deposition amount in response to the speed is required for the high-speed welding. Large-current low-spatter welding current region control was added. Units were integrated into a package by which the arc length is kept in short without dispersion of arc length for welding without defects such as undercut and unequal beads. In automobile industry, use of aluminum parts is extended for the light weight. The welding is very difficult, and automation is not so progressing in spite of the poor environment. Buckling of welding wire is easy to occur, and supply of wire is obstructed by the deposition of chipped powders on the torch cable, which stay within the contact chip resulting in the deposition. Dislocation of locus is easy to occur at the corner of rectangular pipe during the welding. By improving these troubles, an aluminum MIG welding robot package has been developed. 13 figs.

  12. Fiscal 2000 achievement report on development of high-efficiency high-reliability welding technology through improvement on welding techniques; 2000 nendo yosetsu gijutsu no kodoka ni yoru kokoritsu koshinraisei yosetsu gijutsu no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    Efforts are made to develop a welding design support system capable of increasing reliability and enhancing welding efficiency. Activities are conducted in the six fields of (1) the development of welding process simulation models, (2) development of welded section structure simulation models, (3) development of simulation models for predicting welding caused deformation, (4) integration of the models, (5) analysis of the welding phenomenon, and (6) the elucidation of the defect generation mechanism. In field (1), efforts are made to develop an arc plasma model, a molten pool convective heat transportation model, and a welding process model. In the effort to develop an arc plasma model, studies are made about a stationary axisymmetric arc in its steady state and about a constitutive equation and computation algorithm for developing a model in which a tungsten electrode (cathode) and an arc plasma welding pool (anode) are integrated. Furthermore, the simulation outcomes are experimentally verified. Satisfactory models are obtained as far as qualitative properties are concerned. (NEDO)

  13. Analysis of the Mechanism of Longitudinal Bending Deformation Due to Welding in a Steel Plate by Using a Numerical Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Rae; Yan, Jieshen; Kim, Jae-Woong [Yeungnam Univ., Gyeongsan (Korea, Republic of); Song, Gyu Yeong [Gyeongbuk Hybrid Technology Institute, Yeongcheon (Korea, Republic of)

    2017-01-15

    Welding deformation is a permanent deformation that is caused in structures by welding heat. Welding distortion is the primary cause of reduced productivity, due to welded structural strength degradation, low dimensional accuracy, and appearance. As a result, research and numerous experiments are being carried out to control welding deformation. The aim of this study is to analyze the mechanism of longitudinal bending deformation due to welding. Welding experiments and numerical analyses were performed for this study. The welding experiments were performed on 4 mm and 8.5 mm thickness steel plates, and the numerical analysis was conducted on the welding deformation using the FE software MSC.marc.

  14. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  15. Episodic therapy for genital herpes in sub-saharan Africa: a pooled analysis from three randomized controlled trials.

    Directory of Open Access Journals (Sweden)

    Helen A Weiss

    Full Text Available BACKGROUND: A randomized controlled trial in South Africa found a beneficial effect of acyclovir on genital ulcer healing, but no effect was seen in trials in Ghana, Central African Republic and Malawi. The aim of this paper is to assess whether the variation in impact of acyclovir on ulcer healing in these trials can be explained by differences in the characteristics of the study populations. METHODOLOGY/PRINCIPAL FINDINGS: Pooled data were analysed to estimate the impact of acyclovir on the proportion of ulcers healed seven days after randomisation by HIV/CD4 status, ulcer aetiology, size and duration before presentation; and impact on lesional HIV-1. Risk ratios (RR were estimated using Poisson regression with robust standard errors. Of 1478 patients with genital ulcer, most (63% had herpetic ulcers (16% first episode HSV-2 ulcers, and a further 3% chancroid, 2% syphilis, 0.7% lymphogranuloma venereum and 31% undetermined aetiology. Over half (58% of patients were HIV-1 seropositive. The median duration of symptoms before presentation was 6 days. Patients on acyclovir were more likely to have a healed ulcer on day 7 (63% vs 57%, RR = 1.08, 95% CI 0.98-1.18, shorter time to healing (p = 0.04 and less lesional HIV-1 RNA (p = 0.03. Small ulcers (<50 mm(2, HSV-2 ulcers, first episode HSV-2 ulcers, and ulcers in HIV-1 seropositive individuals responded best but the better effectiveness in South Africa was not explained by differences in these factors. CONCLUSIONS/SIGNIFICANCE: There may be slight benefit in adding acyclovir to syndromic management in settings where most ulcers are genital herpes. The stronger effect among HIV-1 infected individuals suggests that acyclovir may be beneficial for GUD/HIV-1 co-infected patients. The high prevalence in this population highlights that genital ulceration in patients with unknown HIV status provides a potential entry point for provider-initiated HIV testing.

  16. Introduction to Welding.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  17. Welding and cutting

    International Nuclear Information System (INIS)

    Drews, P.; Schulze Frielinghaus, W.

    1978-01-01

    This is a survey, with 198 literature references, of the papers published in the fields of welding and cutting within the last three years. The subjects dealt with are: weldability of the materials - Welding methods - Thermal cutting - Shaping and calculation of welded joints - Environmental protection in welding and cutting. (orig.) [de

  18. Hawaii ESI: POOLS (Anchialine Pool Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for anchialine pools in Hawaii. Anchialine pools are small, relatively shallow coastal ponds that occur...

  19. 2002 activities report of the welding institute

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    Here is given the 2002 activities report of the welding institute. Are described into details: -the welding institute group -the risk management -the industrial research and development -the standardization -the certification -the inspection and control -the higher education -the professional training -the services -the documentation. (O.M.)

  20. Friction Pull Plug Welding in Aluminum Alloys

    Science.gov (United States)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  1. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  2. Kinetics of manganese in MAG/MIG welding with a 18/8/6 wire

    OpenAIRE

    Tušek, Janez

    2001-01-01

    The paper deals with a study of MAG/MIG welding of low-alloy ferritic steel and highalloy austenitic steel with a 18/8/6 wire. Manganese burn-off from the wire in welding a single-V butt weld was studied. It was found that manganese burns off in the arc during melting of a droplet at the wire end, and from the weld pool during weld formation. The range of manganese burn-off depends mainly on the type of shielding gas used and the arc length, i.e., from the arc voltage. The manganese burn-off ...

  3. On the hot cracking susceptibility of a semisolid aluminium 6061 weld: Application of a coupled solidification- thermomechanical model

    International Nuclear Information System (INIS)

    Rajani, H R Zareie; Phillion, A B

    2015-01-01

    A coupled solidification-thermomechanical model is presented that investigates the hot tearing susceptibility of an aluminium 6061 semisolid weld. Two key phenomena are considered: excessive deformation of the semisolid weld, initiating a hot tear, and the ability of the semisolid weld to heal the hot tear by circulation of the molten metal. The model consists of two major modules: weld solidification and thermomechanical analysis. 1) By means of a multi-scale model of solidification, the microstructural evolution of the semisolid weld is simulated in 3D. The semisolid structure, which varies as a function of welding parameters, is composed of solidifying grains and a network of micro liquid channels. The weld solidification module is utilized to obtain the solidification shrinkage. The size of the micro liquid channels is used as an indicator to assess the healing ability of the semisolid weld. 2) Using the finite element method, the mechanical interaction between the weld pool and the base metal is simulated to capture the transient force field deforming the semisolid weld. Thermomechanical stresses and shrinkage stresses are both considered in the analysis; the solidification contractions are extracted from the weld solidification module and applied to the deformation simulation as boundary conditions. Such an analysis enables characterization of the potential for excessive deformation of the weld. The outputs of the model are used to study the effect of welding parameters including welding current and speed, and also welding constraint on the hot cracking susceptibility of an aluminium alloy 6061 semisolid weld. (paper)

  4. Quality status display for a vibration welding process

    Science.gov (United States)

    Spicer, John Patrick; Abell, Jeffrey A.; Wincek, Michael Anthony; Chakraborty, Debejyo; Bracey, Jennifer; Wang, Hui; Tavora, Peter W.; Davis, Jeffrey S.; Hutchinson, Daniel C.; Reardon, Ronald L.; Utz, Shawn

    2017-11-28

    A method includes receiving, during a vibration welding process, a set of sensory signals from a collection of sensors positioned with respect to a work piece during formation of a weld on or within the work piece. The method also includes receiving control signals from a welding controller during the process, with the control signals causing the welding horn to vibrate at a calibrated frequency, and processing the received sensory and control signals using a host machine. Additionally, the method includes displaying a predicted weld quality status on a surface of the work piece using a status projector. The method may include identifying and display a quality status of a suspect weld. The laser projector may project a laser beam directly onto or immediately adjacent to the suspect welds, e.g., as a red, green, blue laser or a gas laser having a switched color filter.

  5. Assisting Gas Optimization in CO2 Laser Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    1996-01-01

    High quality laser welding is achieved under the condition of optimizing all process parameters. Assisting gas plays an important role for sound welds. In the conventional welding process assisting gas is used as a shielding gas to prevent that the weld seam oxidates. In the laser welding process...... assisting gas is also needed to control the laser induced plasma.Assisting gas is one of the most important parameters in the laser welding process. It is responsible for obtaining a quality weld which is characterized by deep penetration, no interior imperfections, i.e. porosity, no crack, homogeneous seam...... surface, etc. In this work a specially designed flexible off-axis nozzle capable of adjusting the angle of the nozzle, the diameter of the nozzle, and the distance between the nozzle end and the welding zone is tested. In addition to the nozzle parameters three gases, Nitrogen, Argon, and Helium...

  6. Lifetime occupational exposure to metals and welding fumes, and risk of glioma: a 7-country population-based case-control study.

    Science.gov (United States)

    Parent, Marie-Elise; Turner, Michelle C; Lavoué, Jérôme; Richard, Hugues; Figuerola, Jordi; Kincl, Laurel; Richardson, Lesley; Benke, Geza; Blettner, Maria; Fleming, Sarah; Hours, Martine; Krewski, Daniel; McLean, David; Sadetzki, Siegal; Schlaefer, Klaus; Schlehofer, Brigitte; Schüz, Joachim; Siemiatycki, Jack; van Tongeren, Martie; Cardis, Elisabeth

    2017-08-25

    Brain tumor etiology is poorly understood. Based on their ability to pass through the blood-brain barrier, it has been hypothesized that exposure to metals may increase the risk of brain cancer. Results from the few epidemiological studies on this issue are limited and inconsistent. We investigated the relationship between glioma risk and occupational exposure to five metals - lead, cadmium, nickel, chromium and iron- as well as to welding fumes, using data from the seven-country INTEROCC study. A total of 1800 incident glioma cases and 5160 controls aged 30-69 years were included in the analysis. Lifetime occupational exposure to the agents was assessed using the INTEROCC JEM, a modified version of the Finnish job exposure matrix FINJEM. In general, cases had a slightly higher prevalence of exposure to the various metals and welding fumes than did controls, with the prevalence among ever exposed ranging between 1.7 and 2.2% for cadmium to 10.2 and 13.6% for iron among controls and cases, respectively. However, in multivariable logistic regression analyses, there was no association between ever exposure to any of the agents and risk of glioma with odds ratios (95% confidence intervals) ranging from 0.8 (0.7-1.0) for lead to 1.1 (0.7-1.6) for cadmium. Results were consistent across models considering cumulative exposure or duration, as well as in all sensitivity analyses conducted. Findings from this large-scale international study provide no evidence for an association between occupational exposure to any of the metals under scrutiny or welding fumes, and risk of glioma.

  7. Sensor based robot laser welding - based on feed forward and gain sceduling algorithms

    DEFF Research Database (Denmark)

    Andersen, Henrik John

    2001-01-01

    A real-time control system forlaser welding of thick steel plates are developed and tested in a industrial environment. The robotic execution of the laser welding process is based on measure weld joint geometry and impirically established welding procedures. The influence of industrial production...

  8. Drag resistance of ship hulls: Effects of surface roughness of newly applied fouling control coatings, coating water absorption, and welding seams

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, Stefan Møller; Andrés, Eduardo

    2018-01-01

    selected, that a so-called fouling release (FR) coating caused approximately 5.6 % less skin friction (torque) over time than traditional biocide-based antifouling (AF) coatings at a tangential speed of 12 knots. Furthermore, results of immersion experiments and supporting “standard” water absorption......Fouling control coatings (FCCs) and irregularities (e.g. welding seams) on ship hull surfaces have significant effects on the overall drag performance of ships. In this work, skin frictions of four newly applied FCCs were compared using a pilot-scale rotary setup. Particular attention was given...

  9. Backfitting swimming pool reactors

    International Nuclear Information System (INIS)

    Roebert, G.A.

    1978-01-01

    Calculations based on measurements in a critical assembly, and experiments to disclose fuel element surface temperatures in case of accidents like stopping of primary coolant flow during full power operation, have shown that the power of the swimming pool type research reactor FRG-2 (15 MW, operating since 1967) might be raised to 21 MW within the present rules of science and technology, without major alterations of the pool buildings and the cooling systems. A backfitting program is carried through to adjust the reactor control systems of FRG-2 and FRG-1 (5 MW, housed in the same reactor hall) to the present safety rules and recommendations, to ensure FRG-2 operation at 21 MW for the next decade. (author)

  10. Selected Welding Techniques, Part 2

    National Research Council Canada - National Science Library

    1964-01-01

    Partial contents: CONVENTIONAL WELD JOINTS VERSUS BUTT JOINTS IN 1-INCH ALUMINUM PLATE, SPECIAL WELD JOINT PREPARATION, UPSET METAL EDGES FOR INCREASED WELD JOINT STRENGTH, OUT-OF-POSITION WELDING OF HEAVY GAGE...

  11. Study of CW Nd-Yag laser welding of Zn-coated steel sheets

    International Nuclear Information System (INIS)

    Fabbro, Remy; Coste, Frederic; Goebels, Dominique; Kielwasser, Mathieu

    2006-01-01

    The welding of Zn-coated steel thin sheets is a great challenge for the automotive industry. Previous studies have defined the main physical processes involved. For non-controlled conditions, the zinc vapour expelled from the interface of the two sheets violently expands inside the keyhole and expels the melt pool. When using CO 2 lasers, we have previously shown that an elongated laser spot produces an elongated keyhole, which is efficient for suppressing this effect. We have adopted a similar approach for CW Nd : Yag laser welding and we observe that an elongated spot is not necessary for achieving good weld seams. Several diagnostics were used in order to understand these interesting results. High-speed video camera visualizations of the top and the bottom of the keyhole during the process show the dynamics of the keyhole hydrodynamic behaviour. It appears that the role of the reflected beam on the front keyhole wall for generating a characteristic rear wall deformation is crucial for an efficient stabilization of the process. Our dynamic keyhole modelling, which includes ray tracing, totally confirms this interpretation and explains the results for very different experimental conditions (effect of welding speed, laser intensity, variable sheet thickness, laser beam intensity distribution) that will be presented

  12. Study on the welding process of the CTB outbox prototype of ITER

    International Nuclear Information System (INIS)

    Liu, Chen; Lu, Kun; Song, Yuntao; Zhu, Rui; Bao, Hongwei; Li, Shoukang; Zhang, Chunjie; Tuo, Fuxing

    2015-01-01

    Highlights: • Welding progress simulation of ITER CTB outbox by SYSWELD. • 2 m length box mockup welding for R&D. • Special welding tooling and groove design for welding deformation control and improvement of welding quality. • Double torch automatic MIG welding method application. - Abstract: The current study investigated the main welding process of the box. We first performed a simple simulation of the welding process for the four long weld lines on CTB (Coil Terminal Box) outbox by using the finite element analysis mode of SYSWELD. Then a 2 m length mock up box was welded for R&D to optimize the welding parameters and deformation distribution. Base on the R&D experiences, we designed a special tooling of the prototype box which can be used to control the deformation during the welding process. A 8 m length CTB outbox prototype was successfully welded by using double torch automatic MIG (Metal Inert-Gas) welding. The dimension inspection results confirmed that the welding deformation of the box can be controlled within 3 mm on each side. Based on the ultrasonic inspection, all the welding seams met quality level B by standard EN 5817.

  13. Electron beam welding of high-purity copper accelerator cells

    International Nuclear Information System (INIS)

    Delis, K.; Haas, H.; Schlebusch, P.; Sigismund, E.

    1986-01-01

    The operating conditions of accelerator cells require high thermal conductivity, low gas release in the ultrahigh vacuum, low content of low-melting metals and an extremely good surface quality. In order to meet these requirements, high-purity copper (OFHC, Grade 1, according to ASTM B 170-82 and extra specifications) is used as structural material. The prefabricated components of the accelerator cells (noses, jackets, flanges) are joined by electron beam welding, the weld seam being assessed on the basis of the same criteria as the base material. The welding procedures required depend, first, on the material and, secondly, on the geometries involved. Therefore experimental welds were made first on standardized specimens in order to study the behaviour of the material during electron beam welding and the influence of parameter variations. The welded joints of the cell design were planned on the basis of these results. Seam configuration, welding procedures and the parameters were optimized on components of original geometry. The experiments have shown that high-quality joints of this grade of copper can be produced by the electron beam welding process, if careful planning and preparation of the seams and adequate containment of the welding pool are assured. (orig.)

  14. Hybrid 2D-3D modelling of GTA welding with filler wire addition

    KAUST Repository

    Traidia, Abderrazak

    2012-07-01

    A hybrid 2D-3D model for the numerical simulation of Gas Tungsten Arc welding is proposed in this paper. It offers the possibility to predict the temperature field as well as the shape of the solidified weld joint for different operating parameters, with relatively good accuracy and reasonable computational cost. Also, an original approach to simulate the effect of immersing a cold filler wire in the weld pool is presented. The simulation results reveal two important observations. First, the weld pool depth is locally decreased in the presence of filler metal, which is due to the energy absorption by the cold feeding wire from the hot molten pool. In addition, the weld shape, maximum temperature and thermal cycles in the workpiece are relatively well predicted even when a 2D model for the arc plasma region is used. © 2012 Elsevier Ltd. All rights reserved.

  15. Effect of Shielding Gas on the Properties of AW 5083 Aluminum Alloy Laser Weld Joints

    Science.gov (United States)

    Vyskoč, Maroš; Sahul, Miroslav; Sahul, Martin

    2018-04-01

    The paper deals with the evaluation of the shielding gas influence on the properties of AW 5083 aluminum alloy weld joints produced with disk laser. Butt weld joints were produced under different shielding gas types, namely Ar, He, Ar + 5 vol.% He, Ar + 30 vol.% He and without shielding weld pool. Light and electron microscopy, computed tomography, microhardness measurements and tensile testing were used for evaluation of weld joint properties. He-shielded weld joints were the narrowest ones. On the other hand, Ar-shielded weld joints exhibited largest weld width. The choice of shielding gas had significant influence on the porosity level of welds. The lowest porosity was observed in weld joint produced in Ar with the addition of 5 vol.% He shielding atmosphere (only 0.03%), while the highest level of porosity was detected in weld joint produced in pure He (0.24%). Except unshielded aluminum alloy weld joint, the lowest tensile strength was recorded in He-shielded weld joints. On the contrary, the highest average microhardness was measured in He-shielded weld joints.

  16. The effects of laser welding parameters on the microstructure of ferritic and duplex stainless steels welds

    Science.gov (United States)

    Pekkarinen, J.; Kujanpää, V.

    This study is focused to determine empirically, which microstructural changes occur in ferritic and duplex stainless steels when heat input is controlled by welding parameters. Test welds were done autogenously bead-on-plate without shielding gas using 5 kW fiber laser. For comparison, some gas tungsten arc welds were made. Used test material were 1.4016 (AISI 430) and 1.4003 (low-carbon ferritic) type steels in ferritic steels group and 1.4162 (low-alloyed duplex, LDX2101) and 1.4462 (AISI 2205) type steels in duplex steels group. Microstructural changes in welds were identified and examined using optical metallographic methods.

  17. Does addition of `mud-pack and hot pool treatment' to patient education make a difference in fibromyalgia patients? A randomized controlled single blind study

    Science.gov (United States)

    Bağdatlı, Ali Osman; Donmez, Arif; Eröksüz, Rıza; Bahadır, Güler; Turan, Mustafa; Erdoğan, Nergis

    2015-12-01

    The aim of this randomized controlled single-blind study is to explore whether addition of mud-pack and hot pool treatments to patient education make a significant difference in short and mild term outcomes of the patients with fibromyalgia. Seventy women with fibromyalgia syndrome were randomly assigned to either balneotherapy with mud-pack and hot pool treatments (35) or control (35) groups. After randomization, five patients from balneotherapy group and five patients from control group were dropped out from the study with different excuses. All patients had 6-h patient education programme about fibromyalgia syndrome and were given a home exercise programme. The patients in balneotherapy group had heated pool treatment at 38 °C for 20 min a day, and mud-pack treatment afterwards on back region at 45 °C. Balneotherapy was applied on weekdays for 2 weeks. All patients continued to take their medical treatment. An investigator who was blinded to the intervention assessed all the patients before and after the treatment, at the first and the third months of follow-up. Outcome measures were FIQ, BDI and both patient's and physician's global assessments. Balneotherapy group was significantly better than control group at after the treatment and at the end of the first month follow-up assessments in terms of patient's and physician's global assessment, total FIQ score, and pain intensity, fatigue, non-refreshed awaking, stiffness, anxiety and depression subscales of FIQ. No significant difference was found between the groups in terms of BDI scores. It is concluded that patient education combined with 2 weeks balneotherapy application has more beneficial effects in patients with fibromyalgia syndrome as compared to patient education alone.

  18. Does addition of 'mud-pack and hot pool treatment' to patient education make a difference in fibromyalgia patients? A randomized controlled single blind study.

    Science.gov (United States)

    Bağdatlı, Ali Osman; Donmez, Arif; Eröksüz, Rıza; Bahadır, Güler; Turan, Mustafa; Erdoğan, Nergis

    2015-12-01

    The aim of this randomized controlled single-blind study is to explore whether addition of mud-pack and hot pool treatments to patient education make a significant difference in short and mild term outcomes of the patients with fibromyalgia. Seventy women with fibromyalgia syndrome were randomly assigned to either balneotherapy with mud-pack and hot pool treatments (35) or control (35) groups. After randomization, five patients from balneotherapy group and five patients from control group were dropped out from the study with different excuses. All patients had 6-h patient education programme about fibromyalgia syndrome and were given a home exercise programme. The patients in balneotherapy group had heated pool treatment at 38 °C for 20 min a day, and mud-pack treatment afterwards on back region at 45 °C. Balneotherapy was applied on weekdays for 2 weeks. All patients continued to take their medical treatment. An investigator who was blinded to the intervention assessed all the patients before and after the treatment, at the first and the third months of follow-up. Outcome measures were FIQ, BDI and both patient's and physician's global assessments. Balneotherapy group was significantly better than control group at after the treatment and at the end of the first month follow-up assessments in terms of patient's and physician's global assessment, total FIQ score, and pain intensity, fatigue, non-refreshed awaking, stiffness, anxiety and depression subscales of FIQ. No significant difference was found between the groups in terms of BDI scores. It is concluded that patient education combined with 2 weeks balneotherapy application has more beneficial effects in patients with fibromyalgia syndrome as compared to patient education alone.

  19. Progress in welding studies for Canadian nuclear fuel waste disposal containers

    International Nuclear Information System (INIS)

    Maak, P.Y.Y.

    1985-11-01

    This report describes the progress in the development of closure-welding technology for Canadian nuclear fuel waste disposal containers. Titanium, copper and Inconel 625 are being investigated as candidate materials for fabrication of these containers. Gas-tungsten-arc welding, gas metal-arc-welding, resistance-heated diffusion bonding and electron beam welding have been evaluated as candidate closure welding processes. Characteristic weldment properties, relative merits of welding techniques, suitable weld joint configurations and fit-up tolerances, and welding parameter control ranges have been identified for various container designs. Furthermore, the automation requirements for candidate welding processes have been assessed. Progress in the development of a computer-controlled remote gas-shielded arc welding system is described

  20. Effect of beam oscillation on borated stainless steel electron beam welds

    Energy Technology Data Exchange (ETDEWEB)

    RajaKumar, Guttikonda [Tagore Engineering College, Chennai (India). Dept. of Mechanical Engineering; Ram, G.D. Janaki [Indian Institute of Technology (IIT), Chennai (India). Dept. of Metallurgical and Materials Engineering; Rao, S.R. Koteswara [SSN College of Engineering, Chennai (India). Mechanical Engineering

    2015-07-01

    Borated stainless steels are used in nuclear power plants to control neutron criticality in reactors as control rods, shielding material, spent fuel storage racks and transportation casks. In this study, bead on plate welds were made using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Electron beam welds made using beam oscillation technique exhibited higher tensile strength values compared to that of GTA welds. Electron beam welds were found to show fine dendritic microstructure while GTA welds exhibited larger dendrites. While both processes produced defect free welds, GTA welds are marked by partially melted zone (PMZ) where the hardness is low. EBW obviate the PMZ failure due to low heat input and in case of high heat input GTA welding process failure occurs in the PMZ.

  1. Effect of beam oscillation on borated stainless steel electron beam welds

    International Nuclear Information System (INIS)

    RajaKumar, Guttikonda; Ram, G.D. Janaki; Rao, S.R. Koteswara

    2015-01-01

    Borated stainless steels are used in nuclear power plants to control neutron criticality in reactors as control rods, shielding material, spent fuel storage racks and transportation casks. In this study, bead on plate welds were made using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Electron beam welds made using beam oscillation technique exhibited higher tensile strength values compared to that of GTA welds. Electron beam welds were found to show fine dendritic microstructure while GTA welds exhibited larger dendrites. While both processes produced defect free welds, GTA welds are marked by partially melted zone (PMZ) where the hardness is low. EBW obviate the PMZ failure due to low heat input and in case of high heat input GTA welding process failure occurs in the PMZ.

  2. Friction weld ductility and toughness as influenced by inclusion morphology

    International Nuclear Information System (INIS)

    Eberhard, B.J.; Schaaf, B.W. Jr.; Wilson, A.D.

    1983-01-01

    Friction welding consistently provides high strength, freedom from fusion defects, and high productivity. However, friction welds in carbon steel exhibit impact toughness and bend ductility that are significantly lower than that of the base metal. The inclusion content and morphology were suspected to be major contributors to the reduction in weld ductility. For this reason, four electric furnace steels - three types of ASTM A516 Grade 70, and an ASTM A737 Grade B steel - were investigated. Friction welds were made by both the inertia and direct drive process variations and the welds evaluated. It was shown that friction welds of inclusion-controlled steels exhibited much improved toughness and bend ductility were demonstrated. Upper shelf impact energy was equivalent to or greater than that of the base metal in the short transverse direction. The transition temperature range for all four materials was shifted to higher temperatures for both types of friction welds. Under the conditions of this test, the direct drive friction welds showed a greater shift than the inertia friction welds. The ductility and toughness of welds in A737 Grade B steel were superior to welds in A516 Grade 70 steels, reflecting the superior properties of the base metal. Welds of the A737 material had usable Charpy V-notch impact toughness of 20 to 30 ft-lb (27 to 41 J) at temperatures as low as -40 0 F (-40 0 C). All the welds had an acicular structure. The differences in properties between the inertia and direct drive friction welds appear associated with microstructural variations. These variations resulted from the different heat inputs and cooling rates of the two process variations were demonstrated. The beneficial effects of inclusion control on toughness and ductility. In addition, it also indicates that additional improvements may be attainable through control of the as-welded microstructure by process manipulation

  3. Automatic welding of fuel elements

    International Nuclear Information System (INIS)

    Briola, J.

    1958-01-01

    The welding process depends on the type of fuel element, the can material and the number of cartridges to be welded: - inert-gas welding (used for G2 and the 1. set of EL3), - inert atmosphere arc welding (used for welding uranium and zirconium), - electronic welding (used for the 2. set of EL3 and the tank of Proserpine). (author) [fr

  4. Detecting flaws in welds

    International Nuclear Information System (INIS)

    Woodacre, A.; Lawton, H.

    1979-01-01

    An apparatus and a method for detecting flaws in welds in a workpiece, the portion of the workpiece containing the weld is maintained at a constant temperature and the weld is scanned by an infra red detector. The weld is then scanned again with the workpiece in contact with a cooling probe to produce a steeper temperature gradient across the weld. Comparison of the signals produced by each scan reveals the existence of defects in the welds. The signals may be displayed on an oscilloscope and the display may be observed by a TV camera and recorded on videotape. (UK)

  5. Fusion welding process

    Science.gov (United States)

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  6. Weld oxide formation on lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Westin, E.M. [Outokumpu Stainless, Avesta Research Centre, P.O. Box 74, SE-774 22 Avesta (Sweden)], E-mail: elin.westin@outokumpu.com; Olsson, C.-O.A. [Outokumpu Stainless, Avesta Research Centre, P.O. Box 74, SE-774 22 Avesta (Sweden); Hertzman, S. [Outokumpu Stainless Research Foundation, Brinellvaegen 23, SE-100 44 Stockholm (Sweden)

    2008-09-15

    Weld oxides have a strong influence on corrosion resistance, but have hitherto only been studied to a limited extent for duplex stainless steels. X-ray photoelectron spectroscopy (XPS) has here been used to study heat tint formed on gas tungsten arc (GTA) welds on the commercial duplex grades LDX 2101 (EN 1.4162/UNS S32101) and 2304 (EN 1.4362/UNS S32304) welded with and without nitrogen additions to the shielding gas. The process of heat tint formation is discussed in terms of transport phenomena to explain the effect of atmosphere, temperature and composition. The oxides formed were found to be enriched in manganese and corrosion testing shows that nitrogen has a strong influence on the weld oxide. A mechanism is proposed including evaporation from the weld pool and subsequent redeposition.

  7. Weld oxide formation on lean duplex stainless steel

    International Nuclear Information System (INIS)

    Westin, E.M.; Olsson, C.-O.A.; Hertzman, S.

    2008-01-01

    Weld oxides have a strong influence on corrosion resistance, but have hitherto only been studied to a limited extent for duplex stainless steels. X-ray photoelectron spectroscopy (XPS) has here been used to study heat tint formed on gas tungsten arc (GTA) welds on the commercial duplex grades LDX 2101 (EN 1.4162/UNS S32101) and 2304 (EN 1.4362/UNS S32304) welded with and without nitrogen additions to the shielding gas. The process of heat tint formation is discussed in terms of transport phenomena to explain the effect of atmosphere, temperature and composition. The oxides formed were found to be enriched in manganese and corrosion testing shows that nitrogen has a strong influence on the weld oxide. A mechanism is proposed including evaporation from the weld pool and subsequent redeposition

  8. Computer-aided orbital welding reaches a new level of performance

    International Nuclear Information System (INIS)

    Galloway, J.G.; Maak, P.Y.Y.; McNabb, S.C.

    1993-01-01

    This article documents the development of a custom-built microprocessor controller which overcomes the major shortcomings of existing commercially available pipe welding systems. This unique control design effectively extends the one-knob-control concept of the power source industry to the control of a complete mechanized welding system. Magnatech, East Granby, Conn., a manufacturer of orbital welding equipment, will be commercializing this technology into its Pipeliner welding system in the near future. Ontario Hydro Research Div. purchased a commercial pipe welding system for both laboratory welding development and field trials. Its applications were targeted for pressure piping in both nuclear power and fossil fuel fired electricity generating plants. They demonstrated the feasibility of using a mechanized continuous wire welding process to weld the fill passes of carbon steel piping to stringent inspection standards of nuclear pressure piping. They also concluded that significant improvements to commercial pipe welding systems can be achieved through the use of microprocessor controls

  9. New technology for production of granular adding material with nanomodifying additives for steel arc welding

    Directory of Open Access Journals (Sweden)

    BOLDYREV Alexander Mikhaylovich

    2016-12-01

    Full Text Available The chemical analysis of metal seam showed that introduction of titanium dioxide with MCA intensifies transition of Al2O3 from slag into metal pool and provides double concentration of titanium in the seam compared to the one which appears in the interaction of bathtub with melted flux AH-47 without TiO2 additives. The presence of oxides of titanium and aluminium of endogenous origin in the melt leads to formation of refractory particles with the center of TiO2 and Al2O3 in it. These particles are the centers of crystallization in the tail part of the molten pool and they remain in seam metal in the form of evenly distributed fine nonmetallic inclusions, which have crystallographic affinity with a matrix (α-iron. That provides the fine-grained seam structure with the raised and stable strength characteristics. This article compares the existing and developed technologies for production of MCA. The granulometric analysis of the powder TiO2 has demonstrated that when MCA is processed in the planetary mill, particles of titanium dioxide are crushed to a nanodimensional order. It is shown that the preparation of MCA in high-energy planetary mill (due to double increase of durability in coupling of the modifier with granulate provides its stable structure, increases the cold resistance (20–25% and stability of strength characteristics along the length of welded seam. Metalgraphic researches determined that the fine-grained structure which linear size of grain is twice smaller than the one obtained in the old technology welding is formed in a seam. However the direct introduction of nanomodifiers in a molten pool through the flux or an electrode wire is not efficient because of their deactivation and high temperature in welding zone. Therefore it was offered to use modifiers in the mix with the cooling macroparticles in case of automatic welding of a bridge metalware under flux using metalchemical additive (MCA. The MCA consists of a chopped

  10. Artificial defects detection and location during welding

    International Nuclear Information System (INIS)

    Asty, M.

    1978-01-01

    Welding control by acoustic emission allows defects detection as soon as they are created. Acoustic testing saves time and gives better quality assurance in the case of multiple pass welding of plates. A welded joint was performed on A533B steel plates 250 mm thick by submerged arc welding. Artificial defects were implanted to determine significative parameters of acoustic reception. In operating conditions a significant acoustic activity takes place only during welding as shown by preliminary tests. At the same time an important noise is created by the arc, scories cooling and metal solidification and cooling. These problems are solved by an original processing in time-space detecting and locating defects with a good approximation [fr

  11. Nuclear welding, application for an LMFBR

    International Nuclear Information System (INIS)

    Patriarca, P.; Goodwin, G.M.

    1975-01-01

    Fabrication of an LMFBR system is discussed, with emphasis on areas where joint welding innovations have been introduced. Each major component of the system, including reactor vessel, intermediate heat exchanger, steam generator, and sodium-containment piping, is treated separately. Developmet of special filler metals to avoid the low elevated-temperature creep ductility obtained with conventional austenitic stainless steel weldments is reported. Bore-side welding of steam generator tube-to-tubesheet joints with and without filler metal is desirable to improve inspectability and eliminate the crevice inherent with face-side weld design, thus minimizing corrosion problems. Automated welding methods for sodium-containment piping are summarized which iminimize and control distortion and ensure welds of high integrity. Selection of materials for the various components is discussed for plants presently under construction, and materials predictions are made for future concepts. (U.S.)

  12. Spectral analysis of the process emission during laser welding of AISI 304 stainless steel with disk and Nd:YAG laser

    NARCIS (Netherlands)

    Konuk, A.R.; Aarts, R.G.K.M.; Huis in 't Veld, A.J.

    2009-01-01

    Optical emissions from the laser welding process can be obtained relatively easy in real-time. Such emissions come from the melt pool, keyhole, or plume during welding. Therefore it is very beneficial to establish a clear relation between characteristics of these emissions and the resulting weld

  13. Numerical simulation on temperature field of TIG welding for 0Cr18Ni10Ti steel cladding and experimental verification

    International Nuclear Information System (INIS)

    Luo Hongyi; Tang Xian; Luo Zhifu

    2015-01-01

    Aiming at tungsten inert gas (TIG) for 0Cr18Ni10Ti stainless steel cladding for radioactive source, the numerical calculation of welding pool temperature field was carried out through adopting ANSYS software. The numerical model of non-steady TIG welding pool shape was established, the heat enthalpy and Gaussian electric arc heat source model of surface distribution were introduced, and the effects of welding current and welding speed to temperature field distribution were calculated. Comparing the experimental data and the calculation results under different welding currents and speeds, the reliability and correctness of the model were proved. The welding technological parameters of 0Cr18Ni10Ti stainless steel were optimized based on the calculation results and the welding procedure was established. (authors)

  14. An Approach to Maximize Weld Penetration During TIG Welding of P91 Steel Plates by Utilizing Image Processing and Taguchi Orthogonal Array

    Science.gov (United States)

    Singh, Akhilesh Kumar; Debnath, Tapas; Dey, Vidyut; Rai, Ram Naresh

    2017-10-01

    P-91 is modified 9Cr-1Mo steel. Fabricated structures and components of P-91 has a lot of application in power and chemical industry owing to its excellent properties like high temperature stress corrosion resistance, less susceptibility to thermal fatigue at high operating temperatures. The weld quality and surface finish of fabricated structure of P91 is very good when welded by Tungsten Inert Gas welding (TIG). However, the process has its limitation regarding weld penetration. The success of a welding process lies in fabricating with such a combination of parameters that gives maximum weld penetration and minimum weld width. To carry out an investigation on the effect of the autogenous TIG welding parameters on weld penetration and weld width, bead-on-plate welds were carried on P91 plates of thickness 6 mm in accordance to a Taguchi L9 design. Welding current, welding speed and gas flow rate were the three control variables in the investigation. After autogenous (TIG) welding, the dimension of the weld width, weld penetration and weld area were successfully measured by an image analysis technique developed for the study. The maximum error for the measured dimensions of the weld width, penetration and area with the developed image analysis technique was only 2 % compared to the measurements of Leica-Q-Win-V3 software installed in optical microscope. The measurements with the developed software, unlike the measurements under a microscope, required least human intervention. An Analysis of Variance (ANOVA) confirms the significance of the selected parameters. Thereafter, Taguchi's method was successfully used to trade-off between maximum penetration and minimum weld width while keeping the weld area at a minimum.

  15. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  16. Exposure to pesticides as risk factor for non-Hodgkin's lymphoma and hairy cell leukemia: pooled analysis of two Swedish case-control studies.

    Science.gov (United States)

    Hardell, Lennart; Eriksson, Mikael; Nordstrom, Marie

    2002-05-01

    Increased risk for non-Hodgkin's lymphoma (NHL) following exposure to certain pesticides has previously been reported. To further elucidate the importance of phenoxyacetic acids and other pesticides in the etiology of NHL a pooled analysis was performed on two case-control studies, one on NHL and another on hairy cell leukemia (HCL), a rare subtype of NHL. The studies were population based with cases identified from cancer registry and controls from population registry. Data assessment was ascertained by questionnaires supplemented over the telephone by specially trained interviewers. The pooled analysis of NHL and HCL was based on 515 cases and 1141 controls. Increased risks in univariate analysis were found for subjects exposed to herbicides (OR 1.75, CI 95% 1.26-2.42), insecticides (OR 1.43, CI 95% 1.08-1.87), fungicides (OR 3.11, CI 95% 1.56-6.27) and impregnating agents (OR 1.48, CI 95% 1.11-1.96). Among herbicides, significant associations were found for glyphosate (OR 3.04, CI 95% 1.08-8.52) and 4-chloro-2-methyl phenoxyacetic acid (MCPA) (OR 2.62, CI 95% 1.40-4.88). For several categories of pesticides the highest risk was found for exposure during the latest decades before diagnosis. However, in multivariate analyses the only significantly increased risk was for a heterogeneous category of other herbicides than above.

  17. Numerical Simulation on the Origin of Solidification Cracking in Laser Welded Thick-Walled Structures

    Directory of Open Access Journals (Sweden)

    Nasim Bakir

    2018-06-01

    Full Text Available One of the main factors affecting the use of lasers in the industry for welding thick structures is the process accompanying solidification cracks. These cracks mostly occurring along the welding direction in the welding center, and strongly affect the safety of the welded components. In the present study, to obtain a better understanding of the relation between the weld pool geometry, the stress distribution and the solidification cracking, a three-dimensional computational fluid dynamic (CFD model was combined with a thermo-mechanical model. The CFD model was employed to analyze the flow of the molten metal in the weld pool during the laser beam welding process. The weld pool geometry estimated from the CFD model was used as a heat source in the thermal model to calculate the temperature field and the stress development and distributions. The CFD results showed a bulging region in the middle depth of the weld and two narrowing areas separating the bulging region from the top and bottom surface. The thermo-mechanical simulations showed a concentration of tension stresses, transversally and vertically, directly after the solidification during cooling in the region of the solidification cracking.

  18. Nondestructive testing: welding industry

    International Nuclear Information System (INIS)

    Raj, Baldev; Subramanian, C.V.

    1992-01-01

    This chapter highlights various conventional and advanced nondestructive testing (NDT) techniques that have been used for weld evaluation. Welding Codes and Standards of International and National organisations that have been followed in India for various weld evaluation purposes are also included. The chapter also emphasises the importance of NDT by way of a few case studies that have been carried out on important critical welded components. (author). 12 refs., 17 figs., 1 appendix

  19. Pelvic Inflammatory Disease and the Risk of Ovarian Cancer and Borderline Ovarian Tumors: A Pooled Analysis of 13 Case-Control Studies

    Science.gov (United States)

    Rasmussen, Christina B.; Kjaer, Susanne K.; Albieri, Vanna; Bandera, Elisa V.; Doherty, Jennifer A.; Høgdall, Estrid; Webb, Penelope M.; Jordan, Susan J.; Rossing, Mary Anne; Wicklund, Kristine G.; Goodman, Marc T.; Modugno, Francesmary; Moysich, Kirsten B.; Ness, Roberta B.; Edwards, Robert P.; Schildkraut, Joellen M.; Berchuck, Andrew; Olson, Sara H.; Kiemeney, Lambertus A.; Massuger, Leon F. A. G.; Narod, Steven A.; Phelan, Catherine M.; Anton-Culver, Hoda; Ziogas, Argyrios; Wu, Anna H.; Pearce, Celeste L.; Risch, Harvey A.; Jensen, Allan

    2017-01-01

    Inflammation has been implicated in ovarian carcinogenesis. However, studies investigating the association between pelvic inflammatory disease (PID) and ovarian cancer risk are few and inconsistent. We investigated the association between PID and the risk of epithelial ovarian cancer according to tumor behavior and histotype. We pooled data from 13 case-control studies, conducted between 1989 and 2009, from the Ovarian Cancer Association Consortium (OCAC), including 9,162 women with ovarian cancers, 2,354 women with borderline tumors, and 14,736 control participants. Study-specific odds ratios were estimated and subsequently combined into a pooled odds ratio using a random-effects model. A history of PID was associated with an increased risk of borderline tumors (pooled odds ratio (pOR) = 1.32, 95% confidence interval (CI): 1.10, 1.58). Women with at least 2 episodes of PID had a 2-fold increased risk of borderline tumors (pOR = 2.14, 95% CI: 1.08, 4.24). No association was observed between PID and ovarian cancer risk overall (pOR = 0.99, 95% CI: 0.83, 1.19); however, a statistically nonsignificantly increased risk of low-grade serous tumors (pOR = 1.48, 95% CI: 0.92, 2.38) was noted. In conclusion, PID was associated with an increased risk of borderline ovarian tumors, particularly among women who had had multiple episodes of PID. Although our results indicated a histotype-specific association with PID, the association of PID with ovarian cancer risk is still somewhat uncertain and requires further investigation. PMID:27941069

  20. Corrosion rate of parent and weld materials of F82H and JPCA steels under LBE flow with active oxygen control at 450 and 500 deg. C

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Kamata, Kinya; Ono, Mikinori; Kitano, Teruaki; Hayashi, Kenichi; Oigawa, Hiroyuki

    2008-01-01

    Corrosion behavior of parent and weld materials of F82H and JPCA was studied in the circulating LBE loop under impinging flow. These are candidate materials for Japanese Accelerator Driven System (ADS) beam windows. Maximum temperatures were kept to 450 and 500 deg. C with 100 deg. C constant temperature difference. Main flow velocity was 0.4-0.6 m/s in every case. Oxygen concentration was controlled to 2-4 x 10 -5 mass% although there was one exception. Testing time durations were 500-3000 h. Round bar type specimens were put in the circular tube of the loop. An electron beam weld in the middle of specimens was also studied. Optical microscopy, electron microscopy, X-ray element analyses and X-ray diffraction were used to investigate corrosion in these materials. Consequently corrosion depth and stability of those oxide layers were characterized based on the analyses. For a long-term behavior a linear law is recommended to predict corrosion in the ADS target design

  1. Investigation on edge joints of Inconel 625 sheets processed with laser welding

    Science.gov (United States)

    Caiazzo, F.; Alfieri, V.; Cardaropoli, F.; Sergi, V.

    2017-08-01

    Laser welding of Inconel 625 edge joint beads in square groove configuration was investigated. The use of different weld geometries in new aerospace solutions explains research on edge joints. A structured plan was carried out in order to characterize the process defining the influence of laser power and welding speed and to study possible interactions among the governing factors. As weld pool protection is crucial in order to obtain sound joints when processing superalloys, a special glove box for gas supply was designed to upgrade the welding head. Welded joints were characterized referring to bead profile, microstructure and X-rays. It was found that heat input plays an important role as it affects welding stability, porosity content and bead shape. Results suggest operating with low values of heat input to reduce porosity and guarantee stable bead conformation. Furthermore, a decrease in the grain size has been observed as a consequence of decreasing heat input.

  2. Instructional Guidelines. Welding.

    Science.gov (United States)

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  3. Welding Course Curriculum.

    Science.gov (United States)

    Genits, Joseph C.

    This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part…

  4. Underwater welding of steel

    International Nuclear Information System (INIS)

    Ibarra, S.; Olson, D.L.

    1992-01-01

    A fundamental basis to understand the behavior of wet underwater welding of steel is introduced. Both the pyrometallurgical and physical metallurgy concepts are discussed. Modifications of welding consumables and practice are suggested. This chapter promotes further contributions of meatllurgical research to improve and promote wet underwater welding. (orig.)

  5. Welding Residual Stress Analysis and Fatigue Strength Assessment at Elevated Temperature for Multi-pass Dissimilar Material Weld Between Alloy 617 and P92 Steel

    Science.gov (United States)

    Lee, Juhwa; Hwang, Jeongho; Bae, Dongho

    2018-03-01

    In this paper, welding residual stress analysis and fatigue strength assessment were performed at elevated temperature for multi-pass dissimilar material weld between Alloy 617 and P92 steel, which are used in thermal power plant. Multi-pass welding between Alloy 617 and P92 steel was performed under optimized welding condition determined from repeated pre-test welding. In particular, for improving dissimilar material weld-ability, the buttering welding technique was applied on the P92 steel side before multi-pass welding. Welding residual stress distribution at the dissimilar material weld joint was numerically analyzed by using the finite element method, and compared with experimental results which were obtained by the hole-drilling method. Additionally, fatigue strength of dissimilar material weld joint was assessed at the room temperature (R.T), 300, 500, and 700 °C. In finite element analysis results, numerical peak values; longitudinal (410 MPa), transverse (345 MPa) were higher than those of experiments; longitudinal (298 MPa), transverse (245 MPa). There are quantitatively big differences between numerical and experimental results, due to some assumption about the thermal conductivity, specific heat, effects of enforced convection of the molten pool, dilution, and volume change during phase transformation caused by actual shield gas. The low fatigue limit at R.T, 300 °C, 500 °C and 700 °C was assessed to be 368, 276, 173 and 137 MPa respectively.

  6. Welding Residual Stress Analysis and Fatigue Strength Assessment at Elevated Temperature for Multi-pass Dissimilar Material Weld Between Alloy 617 and P92 Steel

    Science.gov (United States)

    Lee, Juhwa; Hwang, Jeongho; Bae, Dongho

    2018-07-01

    In this paper, welding residual stress analysis and fatigue strength assessment were performed at elevated temperature for multi-pass dissimilar material weld between Alloy 617 and P92 steel, which are used in thermal power plant. Multi-pass welding between Alloy 617 and P92 steel was performed under optimized welding condition determined from repeated pre-test welding. In particular, for improving dissimilar material weld-ability, the buttering welding technique was applied on the P92 steel side before multi-pass welding. Welding residual stress distribution at the dissimilar material weld joint was numerically analyzed by using the finite element method, and compared with experimental results which were obtained by the hole-drilling method. Additionally, fatigue strength of dissimilar material weld joint was assessed at the room temperature (R.T), 300, 500, and 700 °C. In finite element analysis results, numerical peak values; longitudinal (410 MPa), transverse (345 MPa) were higher than those of experiments; longitudinal (298 MPa), transverse (245 MPa). There are quantitatively big differences between numerical and experimental results, due to some assumption about the thermal conductivity, specific heat, effects of enforced convection of the molten pool, dilution, and volume change during phase transformation caused by actual shield gas. The low fatigue limit at R.T, 300 °C, 500 °C and 700 °C was assessed to be 368, 276, 173 and 137 MPa respectively.

  7. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    Science.gov (United States)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  8. Use of pulsed arc welding for butt joint fabrication

    International Nuclear Information System (INIS)

    Merkulov, B.A.

    1977-01-01

    A technology of pulsed-arc butt welding with periodic wire feed to the welding zone has been developed. The pulsed arc is suitable both for submerged and gas-shielded weldings. The technology proposed has some advantages over the stationary-arc welding. Control of the amplitude-frequency characteristics of the process enables one to affect melting and crystallization conditions of the welding crater, weld shape, relation between melting and deposited metal section areas, etc., as well as to reduce heat contribution to the base metal. The new process is shown to be applicable in power engineering. Automatic submerged welding conditions are given for low-carbon and pearlitic heat-resistant steels

  9. Modelling the Thermomechanical Conditions in Friction Stir Welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich

    Friction Stir Welding is a solid-state welding process invented by TWI in 1991. The FSW process is unique in the sense that joining of un-weldable alloys readily can be made. The thermomechanical conditions present in the workpiece during the welding process are of great interest since...... these control the properties of the weld. In the present work, a set of experimental, analytical and numerical analyses are carried out in order to evaluate the thermomechanical conditions descriptive for welding of aluminium, in this case AA2024-T3, under a specific set of welding parameters. Despite...... these specific data, the developed models can be applied for other alloys and welding parameters as well. A detailed experiment is carried out which constitutes the basis for the development and validation of the numerical and analytical models presented in this work. The contact condition at the tool...

  10. The variable polarity plasma arc welding process: Characteristics and performance

    Science.gov (United States)

    Hung, R. J.; Zhu, G. J.

    1991-01-01

    Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. The power distribution was analyzed for an argon plasma gas flow constituting the fluid in the VPPA Welding Process. The major heat loss at the torch nozzle is convective heat transfer; in the space between the outlet of the nozzle and the workpiece; radiative heat transfer; and in the keyhole in the workpiece, convective heat transfer. The power absorbed at the workpiece produces the molten puddle that solidifies into the weld bead. Crown and root widths, and crown and root heights of the weld bead are predicted. The basis is provided for an algorithm for automatic control of VPPA welding machine parameters to obtain desired weld bead dimensions.

  11. Low temperature friction stir welding of P91 steel

    Directory of Open Access Journals (Sweden)

    Prasad Rao Kalvala

    2016-08-01

    Full Text Available Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds (100 and 1000 RPM to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior (by impression creep tests. The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below Ac1 temperature of P91 steel while it was above Ac3 with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.

  12. Effect of different electrode tip angles with tilted torch in stationary gas tungsten arc welding: A 3D simulation

    International Nuclear Information System (INIS)

    Abid, M.; Parvez, S.; Nash, D.H.

    2013-01-01

    In this study, the effect of different tip angles (30°, 60°, 90° and 120°) on the arc and weld pool behavior is analyzed in 2 mm and 5 mm arc lengths with tilted (70°) torch. Arc temperature, velocity, current density, heat flux and gas shear are investigated in the arc region and pool convection and puddle shapes are studied in the weld pool region. The arc temperature at the tungsten electrode is found the maximum with sharp tip and decreases as the tip angle increases. The arc temperature on the anode (workpiece) surface becomes concentrated with increase in tip angle. The arc velocity and gas shear stress are observed large with sharp tip and decreasing as the tip angle increases. Current density on the anode surface does not change with tip angle and observed almost the same in all the tip angles in both 2 mm and 5 mm arc lengths. Heat flux due to conduction and convection is observed more sensitive to the tip angle and decreases as the tip angle increases. The electromagnetic force is slightly observed increasing and the buoyancy force is observed slightly decreasing with increase in tip angle. Analyzing each driving force in the weld pool individually shows that the gas drag and Marangoni forces are much stronger than the electromagnetic and buoyancy forces. The weld pool shape is observed wide and shallow in sharp and narrow and deep in large tip angle. Increasing the arc length does not change the weld pool width; however, the weld pool depth significantly changes with arc length and is observed deep in short arc length. The arc properties and weld pool shapes are observed wide ahead of the electrode tip in the weld direction due to 70° torch angle. Good agreement is observed between the numerical and experimental weld pool shapes

  13. Kinetics of manganese in MAG/MIG welding with a 18/8/6 wire

    International Nuclear Information System (INIS)

    Tusek, J.

    2001-01-01

    The paper deals with a study of MAG/MIG welding of low-alloy ferritic steel and high-alloy austenitic steel with a 18/8/6 wire. Manganese burn-off from the wire in welding a single-V butt weld was studied. It was found that manganese burns off in the arc during melting of a droplet at the wire end, and from the weld pool during weld formation. The range of manganese burn-of-depends mainly on the type of shielding gas used and the arc length,i. e., from the arc voltage. The manganese burn-off increases with an increase of the content of active gases, i.e., CO 2 and O 2 in the neutral gas i. e., argon. It also increases with an increase in arc voltage. The longer the welding arc, the longer exposition of the filler materials to the welding arc and the wider the penetration, Which allows manganese vapours to evaporate from the weld pool. The most important finding is that manganese burn-off from the 18/8/6 wire during welding of austenitic stainless steel with low-alloy ferritic steel is considerably strong, i.e., from 20% to 30%; nevertheless the wire concerned is perfectly suitable for welding of different types of steel. (Author) 23 refs

  14. Variations and controlling factors of the coccolith weight in the Western Pacific Warm Pool over the last 200 ka

    Science.gov (United States)

    Liang, Dan; Liu, Chuanlian

    2016-06-01

    Using a coccolith weight analytic software (Particle Analyser), we analyze most abundant coccolith species in a sediment core from the central Western Pacific Warm Pool (WPWP) and calculate coccolith size and weight variations over the last 200 ka. These variations are compared with the trends of sea surface temperature (SST), primary productivity (PP), sea surface salinity (SSS), and insolation. Our results demonstrate that the size and weight of the coccoliths varied in response to variations of these factors, and their average total weight is primarily related to the relative abundance of the dominant species GEO ( Gephyrocapsa oceanica). The variation in weight of EMI ( Emiliania huxleyi) and GEE ( Gephyrocapsa ericsonii) are mainly influenced by nutrients, and the variation of GEM ( G. muellerae conformis) and GEO ( G. oceanica) weight are mainly influenced by SST. For all of the taxa weight, PP and SST present apparent precession or semi-precession cycles, we consider that the mono-coccolith weight of the Equatorial Western Pacific is primarily affected by precession drived thermocline and nutricline variation.

  15. Development of end plug welding method in the fabrication of FBR fuel pins

    International Nuclear Information System (INIS)

    Ohtani, Seiji; Sawayama, Takeo; Tateishi, Yoshinori

    1977-01-01

    As a part of the development of the automatic and remote controlled fabrication of FBR fuel pins, welding of fuel pin end plugs has been examined. Cladding tubes and end plugs used for this experiment are made of SUS 316, and they are the components of fuel pins for the prototype fast breeder reactor (Monju) or the second core of Joyo (Joyo MK-II). The welding tests of cladding tubes and four kinds of end plugs were carried out by means of two techniques; tungsten inert gas welding and laser welding. It can be said that no considerable difference was observed in weld penetration, occurrence rate of weld defects and breaking strength between the tight fit and the loose fit plugs. The face-to-face fit welding requires the least welding heat input, but involves much difficulty in the control of weld penetration and bead zone diameter. The good concentrative property and high energy density of laser beam make the face of weld hollow due to the vaporization of weld metal. However, this problem can be easily solved by changing the shape of end plugs. Good results in the other characteristics of the weld also were obtained by this laser welding. Further experiment is needed in connection with the compatibility of weld metal with sodium and neutron irradiation before final judgement is made on the laser welding technique. (Nakai, Y.)

  16. Orbital welding technique

    International Nuclear Information System (INIS)

    Hoeschen, W.

    2003-01-01

    The TIG (Tungsten-inert gas) orbital welding technique is applied in all areas of pipe welding. The process is mainly used for austenitic and ferritic materials but also for materials like aluminium, nickel, and titanium alloys are commonly welded according to this technique. Thin-walled as well as thick-walled pipes are welded economically. The application of orbital welding is of particular interest in the area of maintenance of thick-walled pipes that is described in this article. (orig.) [de

  17. Development of underwater YAG laser repair welding robots for tanks

    International Nuclear Information System (INIS)

    Miwa, Yasuhiro; Satoh, Syuichi; Ito, Kosuke; Kochi, Tsutomu; Kojima, Toshio; Ohwaki, Katsura; Morita, Ichiro

    1999-01-01

    A remote-controlled repair welding robot which uses YAG laser welding technology in underwater environment was developed. This is an underwater robot technology combined with a laser welding technology. This report will describe the structure and performance of this robot, and the welding test results. The repair welding robot consists of two parts. The one is driving equipment, and the other is welding unit. It can swim in the tank, move around the tank wall, and stay on the welding area. After that it starts YAG laser repair welding. The target of this technology is inner surface repair of some tanks made of austenitic stainless steel, for example RW (Radioactive Waste) tanks. A degradation by General Corrosion and so on might be occurred at inner surface of these tanks in BWR type nuclear power plants. If the damaged area is wide, repair welding works are done. Some workers go into the tank and set up scaffolding after full drainage. In many cases it spends too much time for draining water and repair welding preparation. If the repair welding works can be done in underwater environment, the outage period will be reduced. This is a great advantage. (author)

  18. Swimming pool cleaner poisoning

    Science.gov (United States)

    Swimming pool cleaner poisoning occurs when someone swallows this type of cleaner, touches it, or breathes in ... The harmful substances in swimming pool cleaner are: Bromine ... copper Chlorine Soda ash Sodium bicarbonate Various mild acids

  19. Swimming pool granuloma

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001357.htm Swimming pool granuloma To use the sharing features on this page, please enable JavaScript. A swimming pool granuloma is a long-term (chronic) skin ...

  20. The Mechanism of Ultrasonic Vibration on Grain Refining and Degassing in GTA Spot Welding of Copper Joints.

    Science.gov (United States)

    Al-Ezzi, Salih; Quan, Gaofeng; Elrayah, Adil

    2018-05-07

    This paper examines the effect of ultrasonic vibration (USV) on grain size and interrupted porosity in Gas Tungsten Arc (GTA) spot-welded copper. Grain size was refined by perpendicularly attaching a transducer to the welded sheet and applying USV to the weld pool for a short time (0, 2, 4, and 6 s) in addition improvements to the degassing process. Results illustrate a significant reduction of grain size (57%). Notably, USV provided interaction between reformations (fragmentation) and provided nucleation points (detaching particles from the fusion line) for grains in the nugget zone and the elimination of porosity in the nugget zone. The GTA spot welding process, in conjunction with USV, demonstrated an improvement in the corrosion potential for a copper spot-welded joint in comparison to the joint welded without assistance of USV. Finally, welding of copper by GTA spot welding in conjunction with ultrasound for 2 s presented significant mechanical properties.

  1. Homogeneous weldings of copper

    International Nuclear Information System (INIS)

    Campurri, C.; Lopez, M.; Fernandez, R.; Osorio, V.

    1995-01-01

    This research explored the metallurgical and mechanical properties of arc welding of copper related with influence of Argon, Helium and mixtures of them. Copper plates of 6 mm thickness were welded with different mixtures of the mentioned gases. The radiography of welded specimens with 100% He and 100% Ar does not show show any porosity. On the other hand, the copper plates welded different gas mixtures presented uniform porosity in the welded zone. The metallographies show recrystallized grain in the heat affected zone, while the welding zone showed a dendritic structure. The results of the tensile strength vary between a maximum of 227 MPa for 100% He and a minimum of 174 MOa for the mixture of 60% He and 40% Ar. For the elongation after fracture the best values, about 36%, were obtained for pure gases. As a main conclusion, we can say that arc welding of copper is possible without loosing the mechanical and metallurgical properties of base metal. 6 refs

  2. Thermal Stir Welding Development at Marshall Space Flight Center

    Science.gov (United States)

    Ding, Robert J.

    2008-01-01

    Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.

  3. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    Science.gov (United States)

    Villegas, Irene F; Palardy, Genevieve

    2016-02-11

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.

  4. Pre-Industry-Optimisation of the Laser Welding Process

    DEFF Research Database (Denmark)

    Gong, Hui

    This dissertation documents the investigations into on-line monitoring the CO2 laser welding process and optimising the process parameters for achieving high quality welds. The requirements for realisation of an on-line control system are, first of all, a clear understanding of the dynamic...... phenomena of the laser welding process including the behaviour of the keyhole and plume, and the correlation between the adjustable process parameters: laser power, welding speed, focal point position, gas parameters etc. and the characteristics describing the quality of the weld: seam depth and width......, porosity etc. Secondly, a reliable monitoring system for sensing the laser-induced plasma and plume emission and detecting weld defects and process parameter deviations from the optimum conditions. Finally, an efficient control system with a fast signal processor and a precise feed-back controller...

  5. The characteristic investigation on narrow-gap TIG weld joint of heavy wall austenitic stainless steel pipe

    International Nuclear Information System (INIS)

    Shim, Deog Nam; Jung, In Cheol

    2003-01-01

    Although Gas Tungsten Arc Welding (GTAW or TIG welding) is considered as high quality and precision welding process, it also has demerit of low melting rate. Narrow-gap TIG welding which has narrow joint width reduces the groove volume remarkably, so it could be shorten the welding time and decrease the overall shrinkage in heavy wall pipe welding. Generally narrow-gap TIG welding is used as orbital welding process, it is important to select the optimum conditions for the automatic control welding. This paper looks at the application and metallurgical properties on narrow-gap TIG welding joint of heavy wall large austenitic stainless steel pipe to determine the deposition efficiency, the resultant shrinkage and fracture toughness. The fracture toughness depends slightly on the welding heat input

  6. The effect of welding methods on the microstructure and properties of welded tantalum sheets and a mathematical analysis of heat transfer in welding

    International Nuclear Information System (INIS)

    Sharir, Y.

    1977-12-01

    The effect of electromagnetic vibration of the arc and the influence of varying the pulses of the current on the nature of solidification in the molten zone of welded tantalum were investigated. Their influence on microstructure and some service properties were also studied. At optimum conditions equi-axed grains and refined microstructure were obtained in the fusion zone of the weld. Similar results were achieved by selecting proper conditions for the current pulses. The effect of varying welding speed and the combined effect of welding speed and optimal vibration conditions were also examined. The experiments were performed in an inert-gas-chamber designed for this purpose. Most of the tests to evaluate service performance were devoted to the investigation of some mechanical properties (yield stress, ultimate tensile strength, hardness and ductility) of the fusion-zone itself. Slight improvement in strength and significant increase in ductility were achieved by an advanced welding technique as compared with the results of a more conventional welding method. The optimum conditions for the advanced welding technique applied in this work were determined. A new mathematical model for calculating heat distribution in tantalum sheets was developed. A non-stationary calculation, independent of specific initial conditions or the shape of the molten pool, is the basis of this model. Consequently, it can be used for advanced welding techniques where the molten pool is dynamic in shape or nature. The model takes into account heat losses by an exponential function and the variation of some physical properties as a function of temperature. The differential equations are solved numerically by an explicit-finite-difference-method by a computer program written for this purpose. Calculated and experimental results are in good agreement. (author)

  7. The Effect of Welding Current and Composition of Stainless steel on the Panetration in GTAW

    Directory of Open Access Journals (Sweden)

    Ramazan Yılmaz

    2012-06-01

    Full Text Available In this study, welding was performed on the plates of two different types of AISI 316 and AISI 316Ti austenitic stainless steels by GTAW (Gas Tungsten Arc Welding without using welding consumable in flat position. Automatic GTAW welding machine was used to control and obtain the exact values. The effects of welding currents used in welding process and the compositions of the stainless steels materials on the penetration were investigated. Weld bead size and shape such as bead width and dept were important considerations for penetration. Welding process was performed using various welding current values. The study showed that both welding parameters and composition of the stainless steels has influence on the penetration and It is increased with increasing of welding current. Besides, P/W rate of the weldments were influenced by the current and hardness values of the weld metal decrease with increasing welding current. The microstructure of the weld metal was also changed by variation of welding current.

  8. Recent Developments and Research Progress on Friction Stir Welding of Titanium Alloys: An Overview

    Science.gov (United States)

    Karna, Sivaji; Cheepu, Muralimohan; Venkateswarulu, D.; Srikanth, V.

    2018-03-01

    Titanium and its alloys are joined by various welding processes. However, Fusion welding of titanium alloys resulted solidification problems like porosity, segregation and columnar grains. The problems occurred in conventional welding processes can be resolved using a solid state welding i.e. friction stir welding. Aluminium and Magnesium alloys were welded by friction stir welding. However alloys used for high temperature applications such as titanium alloys and steels are arduous to weld using friction stir welding process because of tool limitations. Present paper summarises the studies on joining of Titanium alloys using friction stir welding with different tool materials. Selection of tool material and effect of welding conditions on mechanical and microstructure properties of weldments were also reported. Major advantage with friction stir welding is, we can control the welding temperature above or below β-transus temperature by optimizing the process parameters. Stir zone in below beta transus condition consists of bi-modal microstructure and microstructure in above β-transus condition has large prior β- grains and α/β laths present in the grain. Welding experiments conducted below β- transus condition has better mechanical properties than welding at above β-transus condition. Hardness and tensile properties of weldments are correlated with the stir zone microstructure.

  9. Numerical Simulations on the Laser Spot Welding of Zirconium Alloy Endplate for Nuclear Fuel Bundle Assembly

    Science.gov (United States)

    Satyanarayana, G.; Narayana, K. L.; Boggarapu, Nageswara Rao

    2018-03-01

    In the nuclear industry, a critical welding process is joining of an end plate to a fuel rod to form a fuel bundle. Literature on zirconium welding in such a critical operation is limited. A CFD model is developed and performed for the three-dimensional non-linear thermo-fluid analysis incorporating buoyancy and Marnangoni stress and specifying temperature dependent properties to predict weld geometry and temperature field in and around the melt pool of laser spot during welding of a zirconium alloy E110 endplate with a fuel rod. Using this method, it is possible to estimate the weld pool dimensions for the specified laser power and laser-on-time. The temperature profiles will estimate the HAZ and microstructure. The adequacy of generic nature of the model is validated with existing experimental data.

  10. Thermal modelling of friction stir welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blicher; Hattel, Jesper Henri

    2008-01-01

    The objective of the present work is to present the basic elements of the thermal modelling of friction stir welding as well as to clarify some of the uncertainties in the literature regarding the different contributions to the heat generation. Some results from a new thermal pseudomechanical model...... in which the temperature-dependent yield stress of the weld material controls the heat generation are also presented....

  11. Neural network monitoring of resistive welding

    International Nuclear Information System (INIS)

    Quero, J.M.; Millan, R.L.; Franquelo, L.G.; Canas, J.

    1994-01-01

    Supervision of welding processes is one of the most important and complicated tasks in production lines. Artificial Neural Networks have been applied for modeling and control of ph physical processes. In our paper we propose the use of a neural network classifier for on-line non-destructive testing. This system has been developed and installed in a resistive welding station. Results confirm the validity of this novel approach. (Author) 6 refs

  12. Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process

    Science.gov (United States)

    Ahmadi, E.; Ebrahimi, A. R.

    2015-02-01

    The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.

  13. GMAW (Gas Metal Arc Welding) process development for girth welding of high strength pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, Vaidyanath; Daniel, Joe; Quintana, Marie [The Lincoln Electric Company, Cleveland, OH (United States); Chen, Yaoshan [Center for Reliable Energy Systems (CRES), Dublin, OH (United States); Souza, Antonio [Lincoln Electric do Brasil, Guarulhos, SP (Brazil)

    2009-07-01

    This paper highlights some of the results and findings from the first phase of a consolidated program co-funded by US Department of Transportation Pipeline and Hazardous Materials Safety Administration (PHMSA) and Pipeline Research Council Inc (PRCI) to develop pipe weld assessment and qualification methods and optimize X 100 pipe welding technologies. One objective of the program is to establish the range of viable welding options for X 100 line pipe, and define the essential variables to provide welding process control for reliable and consistent mechanical performance of the weldments. In this first phase, a series of narrow gap girth welds were made with pulsed gas metal arc welding (GMAW), instrumented with thermocouples in the heat affected zone (HAZ) and weld metal to obtain the associated thermal profiles, and instrumented to measure true energy input as opposed to conventional heat input. Results reveal that true heat input is 16%-22% higher than conventional heat input. The thermal profile measurements correlate very well with thermal model predictions using true energy input data, which indicates the viability of treating the latter as an essential variable. Ongoing microstructural and mechanical testing work will enable validation of an integrated thermal-microstructural model being developed for these applications. Outputs from this model will be used to correlate essential welding process variables with weld microstructure and hardness. This will ultimately enable development of a list of essential variables and the ranges needed to ensure mechanical properties are achieved in practice, recommendations for controlling and monitoring these essential variables and test methods suitable for classification of welding consumables. (author)

  14. Automatic welding technologies for long-distance pipelines by use of all-position self-shielded flux cored wires

    Directory of Open Access Journals (Sweden)

    Zeng Huilin

    2014-10-01

    Full Text Available In order to realize the automatic welding of pipes in a complex operation environment, an automatic welding system has been developed by use of all-position self-shielded flux cored wires due to their advantages, such as all-position weldability, good detachability, arc's stability, low incomplete fusion, no need for welding protective gas or protection against wind when the wind speed is < 8 m/s. This system consists of a welding carrier, a guide rail, an auto-control system, a welding source, a wire feeder, and so on. Welding experiments with this system were performed on the X-80 pipeline steel to determine proper welding parameters. The welding technique comprises root welding, filling welding and cover welding and their welding parameters were obtained from experimental analysis. On this basis, the mechanical properties tests were carried out on welded joints in this case. Results show that this system can help improve the continuity and stability of the whole welding process and the welded joints' inherent quality, appearance shape, and mechanical performance can all meet the welding criteria for X-80 pipeline steel; with no need for windbreak fences, the overall welding cost will be sharply reduced. Meanwhile, more positive proposals were presented herein for the further research and development of this self-shielded flux core wires.

  15. Evaluation of welding by MIG in martensitic stainless steel

    International Nuclear Information System (INIS)

    Fernandes, M.A.; Mariano, N.A.; Marinho, D.H.C. Marinho

    2010-01-01

    This work evaluated structure's characterization and mechanical properties after the welding process of the stainless steel CA6NM. The employed welding process was the metal active gas with tubular wire. The control of the thermal cycle in the welding process has fundamental importance regarding the properties of the welded joint, particularly in the thermally affected zone. The mechanical properties were appraised through impact resistance tests and the hardness and microstructure through metallographic characterization and Ray-X diffraction. The parameters and the process of welding used promoted the hardness and toughness appropriate to the applications of the steel. Welding energy's control becomes an essential factor that can affect the temperature of carbide precipitation and the nucleation of the retained austenite in the in the region of the in the thermally affected zone. (author)

  16. Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties

    Directory of Open Access Journals (Sweden)

    Raffi Mohammed

    2017-04-01

    Full Text Available High nitrogen stainless steel (HNS is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties. The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding (SMAW, gas tungsten arc welding (GTAW, electron beam welding (EBW and friction stir welding (FSW processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds. Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds. Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.

  17. Comparison of critical circumferential through-wall-crack-lengths in welds between pieces of straight pipes to welds between straigth pipes and bends with and without internal pressure at force- and displacement-controlled bending load; Vergleich kritischer Umfangsdurchrisslaengen in Schweissnaehten zwischen Geradrohrstuecken mit Schweissnaehten an Rohrbogen-Geradrohrverbindungen mit und ohne Innendruck bei kraft- und wegkontrollierter Biegebelastung

    Energy Technology Data Exchange (ETDEWEB)

    Steinbuch, R [Fachhochschule fuer Technik und Wirtschaft Reutlingen (Germany). Fachbereich Maschinenbau

    1998-11-01

    Methods for calculation of critical, circumferential through-wall crack lengths in pipes have been developed and verified by several research projects. In applications during the last few years it has been found that the force or displacement-controlled loads have to be considered separately, and this approach was integrated into the recent methods. Methods so far assumed cracks to be located in welds joining straight pipes. But this approach starts from an incomplete picture of reality, as with today`s technology, circumferential welds are less frequent in straight pipes and much more frequent in pipework of other geometry, as for instance in welds joining straight pipes and bends, or bends with longer legs, nozzles, or T-pieces. The non-linear FEM parameter study presented in the paper, covering cases with internal pressure of pipes and one-dimensional bending loads, is based on current geometries of pipework in the primary and secondary loops of industrial plants and compares the conditions induced by circumferential through-wall cracks in welds joining only straight pipes and in those joining bended and straight pipes. At the relevant, displacement-controlled bending loads due to hampered thermal expansion of the pipe system, the critical through-wall cracks lengths occurring in pipe-to-bend welds are of about the same size and importance as those in pipe-to-pipe welds. As for the case of force-controlled loads, the technical codes calculate more serious effects and require lower bending load limits. Within the range of admissible loads given in the codes, the critical through-wall crack lengths occurring in pipe-to-bend welds are similar in size to those in straight pipe welds. It is therefore a conservative or realistic approach to apply the values determined for critical through-wall crack lengths in pipe-to-pipe joints also to pipe-to-bend welds. (orig./CB) [Deutsch] Verfahren zur Berechnung kritischer Umfangdurchrisslaengen in Rohrleitungen wurden in

  18. Recommended welding criteria for use in the fabrication of shipping containers for radioactive materials

    International Nuclear Information System (INIS)

    Monroe, R.E.; Woo, H.H.; Sears, R.G.

    1984-03-01

    Welding and related operations are evaluated to assess the controls required to prevent weld-related failure of shipping containers used for transportation of radioactive materials. The report includes (1) recommended criteria for controlling welding as applied to shipping containers and (2) a discussion of modifications of the recommended industry Codes as applied to shipping containers. 13 references, 2 tables

  19. Development of an auto-welding system for CRD nozzle repair welds using a 3D laser vision sensor

    International Nuclear Information System (INIS)

    Park, K.; Kim, Y.; Byeon, J.; Sung, K.; Yeom, C.; Rhee, S.

    2007-01-01

    A control rod device (CRD) nozzle attaches to the hemispherical surface of a reactor head with J-groove welding. Primary water stress corrosion cracking (PWSCC) causes degradation in these welds, which requires that these defect areas be repaired. To perform this repair welding automatically on a complicated weld groove shape, an auto-welding system was developed incorporating a laser vision sensor that measures the 3-dimensional (3D) shape of the groove and a weld-path creation program that calculates the weld-path parameters. Welding trials with a J-groove workpiece were performed to establish a basis for developing this auto-welding system. Because the reactor head is placed on a lay down support, the outer-most region of the CRD nozzle has restricted access. Due to this tight space, several parameters of the design, such as size, weight and movement of the auto-welding system, had to be carefully considered. The cross section of the J-groove weld is basically an oval shape where the included angle of the J-groove ranges from 0 to 57 degrees. To measure the complex shape, we used double lasers coupled to a single charge coupled device (CCD) camera. We then developed a program to generate the weld-path parameters using the measured 3D shape as a basis. The program has the ability to determine the first and final welding positions and to calculate all weld-path parameters. An optimized image-processing algorithm was applied to resolve noise interference and diffused reflection of the joint surfaces. The auto-welding system is composed of a 4-axis manipulator, gas tungsten arc welding (GTAW) power supply, an optimized designed and manufactured GTAW torch and a 3D laser vision sensor. Through welding trials with 0 and 38-degree included-angle workpieces with both J-groove and U-groove weld, the performance of this auto-welding system was qualified for field application

  20. Analysis of Welding Zinc Coated Steel Sheets in Zero Gap Configuration by 3D Simulations and High Speed Imaging

    Science.gov (United States)

    Koch, Holger; Kägeler, Christian; Otto, Andreas; Schmidt, Michael

    Welding of zinc coated sheets in zero gap configuration is of eminent interest for the automotive industry. This Laser welding process would enable the automotive industry to build auto bodies with a high durability in a plain manufacturing process. Today good welding results can only be achieved by expensive constructive procedures such as clamping devices to ensure a defined gad. The welding in zero gap configuration is a big challenge because of the vaporised zinc expelled from the interface between the two sheets. To find appropriate welding parameters for influencing the keyhole and melt pool dynamics, a three dimensional simulation and a high speed imaging system for laser keyhole welding have been developed. The obtained results help to understand the process of the melt pool perturbation caused by vaporised zinc.