WorldWideScience

Sample records for weld overlay coatings

  1. Robotic weld overlay coatings for erosion control

    Science.gov (United States)

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB's.

  2. Iron aluminide weld overlay coatings for boiler tube protection in coal-fired low NOx boilers

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-12-01

    Iron aluminide weld overlay coatings are currently being considered for enhanced sulfidation resistance in coal-fired low NO{sub x} boilers. The use of these materials is currently limited due to hydrogen cracking susceptibility, which generally increases with an increase in aluminum concentration of the deposit. The overall objective of this program is to attain an optimum aluminum content with good weldability and improved sulfidation resistance with respect to conventional materials presently in use. Research has been initiated using Gas Tungsten Arc Welding (GTAW) in order to achieve this end. Under different sets of GTAW parameters (wire feed speed, current), both single and multiple pass overlays were produced. Characterization of all weldments was conducted using light optical microscopy, scanning electron microscopy, and electron probe microanalysis. Resultant deposits exhibited a wide range of aluminum contents (5--43 wt%). It was found that the GTAW overlays with aluminum contents above {approximately}10 wt% resulted in cracked coatings. Preliminary corrosion experiments of 5 to 10 wt% Al cast alloys in relatively simple H{sub 2}/H{sub 2}S gas mixtures exhibited corrosion rates lower than 304 stainless steel.

  3. Residual stress reduction in the penetration nozzle weld joint by overlay welding

    International Nuclear Information System (INIS)

    Jiang, Wenchun; Luo, Yun; Wang, B.Y.; Tu, S.T.; Gong, J.M.

    2014-01-01

    Highlights: • Residual stress reduction in penetration weld nozzle by overlay welding was studied. • The overlay weld can decrease the residual stress in the weld root. • Long overlay welding is proposed in the actual welding. • Overlay weld to decrease residual stress is more suitable for thin nozzle. - Abstract: Stress corrosion cracking (SCC) in the penetration nozzle weld joint endangers the structural reliability of pressure vessels in nuclear and chemical industries. How to decrease the residual stress is very critical to ensure the structure integrity. In this paper, a new method, which uses overlay welding on the inner surface of nozzle, is proposed to decrease the residual stresses in the penetration joint. Finite element simulation is used to study the change of weld residual stresses before and after overlay welding. It reveals that this method can mainly decrease the residual stress in the weld root. Before overlay welding, large tensile residual stresses are generated in the weld root. After overlay weld, the tensile hoop stress in weld root has been decreased about 45%, and the radial stress has been decreased to compressive stress, which is helpful to decrease the susceptibility to SCC. With the increase of overlay welding length, the residual stress in weld root has been greatly decreased, and thus the long overlay welding is proposed in the actual welding. It also finds that this method is more suitable for thin nozzle rather than thick nozzle

  4. Investigation of Iron Aluminide Weld Overlays

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.B.; Levin, B.F.; Marder, A.R.

    1999-08-02

    Conventional fossil fired boilers have been retrofitted with low NO(sub)x burners in order for the power plants to comply with new clean air regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion typically has been enhanced resulting in premature tube failure. To protect the existing panels from accelerated attack, weld overlay coatings are typically being applied. By depositing an alloy that offers better corrosion resistance than the underlying tube material, the wastage rates can be reduced. While Ni-based and stainless steel compositions are presently providing protection, they are expensive and susceptible to failure via corrosion-fatigue due to microsegregation upon solidification. Another material system presently under consideration for use as a coating in the oxidation/sulfidation environments is iron-aluminum. These alloys are relatively inexpensive, exhibit little microsegregation, and show excellent corrosion resistance. However, their use is limited due to weldability issues and their lack of corrosion characterization in simulated low NO(sub)x gas compositions. Therefore a program was initiated in 1996 to evaluate the use of iron-aluminum weld overlay coatings for erosion/corrosion protection of boiler tubes in fossil fired boilers with low NO(sub)x burners. Investigated properties included weldability, corrosion behavior, erosion resistance, and erosion-corrosion performance.

  5. Overlay welding of FeCrAl alloys

    OpenAIRE

    Rashid, Lezan

    2016-01-01

    In this master thesis different overlay welding methods suitable for boiler application has been investigated. The purpose of this project is to define advantages and disadvantages for each overlay welding methods and suggest some evaluation criteria on some commercial and experimental alloys aimed for overlay welding material. Many components in a boiler are made of low alloy steel and the atmosphere in the furnace region can be very complex; therefore many different types of corrosion can o...

  6. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G; Hulsizer, P [Welding Services Inc., Norcross, GA (United States); Brooks, R [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1999-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  7. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G.; Hulsizer, P. [Welding Services Inc., Norcross, GA (United States); Brooks, R. [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1998-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  8. Welding overlay analysis of dissimilar metal weld cracking of feedwater nozzle

    International Nuclear Information System (INIS)

    Tsai, Y.L.; Wang, Li. H.; Fan, T.W.; Ranganath, Sam; Wang, C.K.; Chou, C.P.

    2010-01-01

    Inspection of the weld between the feedwater nozzle and the safe end at one Taiwan BWR showed axial indications in the Alloy 182 weld. The indication was sufficiently deep that continued operation could not be justified considering the crack growth for one cycle. A weld overlay was decided to implement for restoring the structural margin. This study reviews the cracking cases of feedwater nozzle welds in other nuclear plants, and reports the lesson learned in the engineering project of this weld overlay repair. The overlay design, the FCG calculation and the stress analysis by FEM are presented to confirm that the Code Case structural margins are met. The evaluations of the effect of weld shrinkage on the attached feedwater piping are also included. A number of challenges encountered in the engineering and analysis period are proposed for future study.

  9. Microsegregation and Precipitates in Inconel 625 Arc Weld Overlay Coatings on Boiler Pipes / Mikrosegregacja I Wydzielenia W Powłokach Ze Stopu Inconel 625 Napawanych Łukowo Na Rury Kotłowe

    Directory of Open Access Journals (Sweden)

    Rozmus-Górnikowska M.

    2015-12-01

    Full Text Available The aim of this work was to investigate the microsegregation and precipitates formed due to segregation in Inconel 625 arc weld overlay coatings on boiler pipes. Examination of microsegregation and precipitates were carried out by means of a scanning electron microscope (SEM equipped with an EDS detector as well as a transmission electron microscope (TEM equipped with a HAADF (STEM and an EDS detectors. The presence of precipitations in the weld overlay was also confirmed with X-ray diffraction analysis (XRD of residue in the form of powder that remained after the electrolytic dissolution of weld overlay matrix.

  10. Weld overlay cladding with iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, G.M. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    The author has established a range of compositions for these alloys within which hot cracking resistance is very good, and within which cold cracking can be avoided in many instances by careful control of welding conditions, particularly preheat and postweld heat treatment. For example, crack-free butt welds have been produced for the first time in 12-mm thick wrought Fe{sub 3}Al plate. Cold cracking, however, still remains an issue in many cases. The author has developed a commercial source for composite weld filler metals spanning a wide range of achievable aluminum levels, and are pursuing the application of these filler metals in a variety of industrial environments. Welding techniques have been developed for both the gas tungsten arc and gas metal arc processes, and preliminary work has been done to utilize the wire arc process for coating of boiler tubes. Clad specimens have been prepared for environmental testing in-house, and a number of components have been modified and placed in service in operating kraft recovery boilers. In collaboration with a commercial producer of spiral weld overlay tubing, the author is attempting to utilize the new filler metals for this novel application.

  11. TEM Microstructure and Chemical Composition of Transition Zone Between Steel Tube and An Inconel 625 Weld Overlay Coating Produced by CMT Method

    Directory of Open Access Journals (Sweden)

    Rozmus-Górnikowska M.

    2017-06-01

    Full Text Available The aim of this work was to investigate the microstructure and chemical composition of the transition zone between 16Mo3 steel and Inconel 625 weld overlay coating produced by the Cold Metal Transfer (CMT method. Investigations were primarily carried out through transmission electron microscopy (TEM on thin foils prepared by FIB (Focus Ion Beam.

  12. Plastic collapse moment for pipe repaired with weld overlay

    International Nuclear Information System (INIS)

    Li, Yinsheng; Hasegawa, Kunio; Shibuya, Akira; Deardorff, Arthur

    2009-01-01

    The Weld Overlay has been used in several countries as an effective method to repair the stress corrosion cracks in nuclear power plant piping. However, the method to evaluate the plastic collapse stress for the pipe repaired with Weld Overlay has not been proposed and the limit load criterion for single uniform material has been used to design its structure by now. In this paper, the equations to evaluate the plastic collapse moment for the pipe repaired with Weld Overlay have been derived considering two layer materials. Moreover, several numerical examples are given to show the validity of Weld Overlay. The equations given in this paper are simple to use like the limit load criterion showed in present standards such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI, and they can not only be used to evaluate the fracture of the pipe, but also be applied to design the weld structure. (author)

  13. Effect of constraint condition and internal medium on residual stress under overlay welding for dissimilar metal welding

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong; Kim, Jong Sung; Kim, Jin Weon

    2007-01-01

    In nuclear power plants, residual stress of dissimilar metal weld propagates cracks in the weld metal which is susceptible to stress corrosion cracking. Overlay welding is a process widely used to mitigate residual stress replacing inside tensile stress by compression stress. However, according to the result of this study the effect of overlay welding on residual stress depends on both internal medium and constraint condition. The purpose of this study is to maximize the positive effect of overlay welding by finite element analyses

  14. Evaluation of iron aluminide weld overlays for erosion - corrosion resistant boiler tube coatings in low NO{sub x} boilers

    Energy Technology Data Exchange (ETDEWEB)

    DuPont, J.N.; Banovic, S.W.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States)

    1996-08-01

    Low NOx burners are being installed in many fossil fired power plants in order to comply with new Clean Air Regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion is often enhanced and premature tube failures can occur. Failures due to oxidation and solid particle erosion are also a concern. A program was initiated in early 1996 to evaluate the use of iron aluminide weld overlays for erosion/corrosion protection of boiler tubes in Low NOx boilers. Composite iron/aluminum wires will be used with the Gas Metal Arc Welding (GMAW) process to prepare overlays on boiler tubes steels with aluminum contents from 8 to 16wt%. The weldability of the composite wires will be evaluated as a function of chemical composition and welding parameters. The effect of overlay composition on corrosion (oxidation and sulfidation) and solid particle erosion will also be evaluated. The laboratory studies will be complemented by field exposures of both iron aluminide weld overlays and co-extruded tubing under actual boiler conditions.

  15. Modern methods of overlay welding for corrosion protection of power generating equipment

    International Nuclear Information System (INIS)

    Ershov, A.V.; Shul'man, I.E.; Potapov, N.N.

    1989-01-01

    Methods for overlay welding of inner surfaces of power equipment for corrosion protection are analysed. Various methods of electroslag overlay welding by a band electrode (overlay welding by two-electrode bands by a wide band with magnetic control, by an electrode band with high melting velocity) are marked to be the most perspective for cladding of NPP vessel equipment

  16. Nickel-base alloy overlay weld with improved ultrasonic flaw detection by magnetic stirring welding

    International Nuclear Information System (INIS)

    Takashi, Hirano; Kenji, Hirano; Masayuki, Watando; Takahiro, Arakawa; Minoru, Maeda

    2001-01-01

    Ultrasonic flaw detection is more difficult in Nickel-base alloy welds containing dendrites owing to the decrease ultrasonic transmissibility they cause. The present paper discusses application of magnetic stirring welding as a means for reducing dendrite growth with consequent improvement in ultrasonic transmissibility. Single pass and multi-pass welding tests were conducted to determine optimal welding conditions. By PT and macro observation subsequent to welding was carried out, optimal operation conditions were clarified. Overlay welding tests and UT clearly indicated ultrasonic beam transmissibility in overlay welds to be improved and detection capacity to be greater through application of magnetic stirring welding. Optimal operation conditions were determined based on examination of temper bead effects in the heat affected zone of low alloy steel by application of magnetic stirring welding to the butt welded joints between low alloy and stainless steel. Hardness in this zone of low alloy steel after the fourth layer was less than 350 HV. (author)

  17. Effect of preemptive weld overlay on residual stress mitigation for dissimilar metal weld of nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a Preemptive Weld OverLay(PWOL). In Pressurized Water Reactor(PWR) dissimilar metal weld is susceptible region for Primary Water Stress Corrosion Cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment

  18. Effect of preemptive weld overlay on residual stress mitigation for dissimilar metal weld of nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a Preemptive Weld OverLay(PWOL). In Pressurized Water Reactor(PWR) dissimilar metal weld is susceptible region for Primary Water Stress Corrosion Cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment.

  19. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-07-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR.

  20. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR

  1. Residual stress measurement in 304 stainless steel weld overlay pipes

    International Nuclear Information System (INIS)

    Yen, H.J.; Lin, M.C.C.; Chen, L.J.

    1996-01-01

    Welding overlay repair (WOR) is commonly employed to rebuild piping systems suffering from intergranular stress corrosion cracking (IGSCC). To understand the effects of this repair, it is necessary to investigate the distribution of residual stresses in the welding pipe. The overlay welding technique must induce compressive residual stress at the inner surface of the welded pipe to prevent IGSCC. To understand the bulk residual stress distribution, the stress profile as a function of location within wall is examined. In this study the full destructive residual stress measurement technique -- a cutting and sectioning method -- is used to determine the residual stress distribution. The sample is type 304 stainless steel weld overlay pipe with an outside diameter of 267 mm. A pipe segment is cut from the circular pipe; then a thin layer is removed axially from the inner to the outer surfaces until further sectioning is impractical. The total residual stress is calculated by adding the stress relieved by cutting the section away to the stress relieved by axially sectioning. The axial and hoop residual stresses are compressive at the inner surface of the weld overlay pipe. Compressive stress exists not only at the surface but is also distributed over most of the pipe's cross section. On the one hand, the maximum compressive hoop residual stress appears at the pipe's inner surface. The thermal-mechanical induced crack closure from significant compressive residual stress is discussed. This crack closure can thus prevent IGSCC very effectively

  2. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    International Nuclear Information System (INIS)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G.

    2017-01-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  3. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G., E-mail: wrcc@cdtn.br, E-mail: camilarezende.cr@gmail.com, E-mail: egr@cdtn.br, E-mail: vladimirsoler@hotmail.com, E-mail: ahfv02@outlook.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  4. Solidification paths in modified Inconel 625 weld overlay material

    DEFF Research Database (Denmark)

    Chandrasekaran, Karthik; Tiedje, Niels Skat; Hald, John

    2009-01-01

    Inconel 625 is commonly used for overlay welding to protect the base metal against high temperature corrosion. The efficiency of corrosion protection depends on effective mixing of the overlay weld with the base metal and the subsequent segregation of alloy elements during solidification....... Metallographic analysis of solidified samples of Inconel 625 with addition of selected elements is compared with thermodynamic modelling of segregation during solidification. The influence of changes in the melt chemistry on the formation of intermetallic phases during solidification is shown. In particular...

  5. Determination of welding parameters for execution of weld overlayer on PWR nuclear reactor nozzles

    International Nuclear Information System (INIS)

    Ribeiro, Gabriela M.; Lima, Luciana I.; Quinan, Marco A.; Schvartzman, Monica M.

    2009-01-01

    In the PWR reactors, nickel based dissimilar welds have been presented susceptibilities the stress corrosion (S C). For the mitigation the problem a deposition of weld layers on the external surface of the nozzle is an alternative, viewing to provoke the compression of the region subjected to S C. This paper presents a preliminary study on the determination of welding parameters to obtain these welding overlayers. Welding depositions were performed on a test piece welded with nickel 182 alloy, simulating the conditions of a nozzle used in a PWR nuclear power plant. The welding process was the GTAW (Gas Tungsten Arc Welding), and a nickel 52 alloy as addition material. The overlayers were performed on the base metals, carbon steel an stainless steel, changing the welding parameters and verifying the the time of each weld filet. After that, the samples were micro structurally characterized. The macro structures and the microstructures obtained through optical microscopy and Vickers microhardness are presented. The preliminary results make evident the good weld quality. However, a small weld parameters influence used in the base material microstructure (carbon steel and stainless steel). The obtained results in this study will be used as reference in the construction of a mock up which will simulate all the conditions of a pressurizer nozzle of PWR reactor

  6. Numerical evaluation of weld overlay applied to a pressurized water reactor nozzle mock-up

    Energy Technology Data Exchange (ETDEWEB)

    Rabello, Emerson G.; Silva, Luiz L.; Gomes, Paulo T.V., E-mail: egr@cdtn.b, E-mail: silvall@cdtn.b, E-mail: gomespt@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Integridade Estrutural

    2011-07-01

    The primary water stress corrosion cracking (PWSCC) is a major mechanism of failure in the primary circuit of PWR type nuclear power plants. The PWSCC is associated with the presence of corrosive environment, the susceptibility to corrosion cracking of the materials involved and the tensile stresses presence. Residual stresses generated during dissimilar materials welding can contribute to PWSCC. An alternative to the PWSCC mitigation is the application of external weld layers in the regions of greatest susceptibility to corrosion cracking. This process, called Weld Overlay (WOL), has been widely used in regions of dissimilar weld (low alloy steel and stainless steel with nickel alloy addition) of nozzles and pipes on the primary circuit in order to promote internal compressive stresses on the wall of these components. This paper presents the steps required to the numerical stress evaluation (by finite element method) during the dissimilar materials welding as well as application of Weld Overlay process in a nozzle mock-up. Thus, one can evaluate the effectiveness of the application of weld overlay process to internal compressive stress generation on the wall nozzle. (author)

  7. Numerical evaluation of weld overlay applied to a pressurized water reactor nozzle mock-up

    International Nuclear Information System (INIS)

    Rabello, Emerson G.; Silva, Luiz L.; Gomes, Paulo T.V.

    2011-01-01

    The primary water stress corrosion cracking (PWSCC) is a major mechanism of failure in the primary circuit of PWR type nuclear power plants. The PWSCC is associated with the presence of corrosive environment, the susceptibility to corrosion cracking of the materials involved and the tensile stresses presence. Residual stresses generated during dissimilar materials welding can contribute to PWSCC. An alternative to the PWSCC mitigation is the application of external weld layers in the regions of greatest susceptibility to corrosion cracking. This process, called Weld Overlay (WOL), has been widely used in regions of dissimilar weld (low alloy steel and stainless steel with nickel alloy addition) of nozzles and pipes on the primary circuit in order to promote internal compressive stresses on the wall of these components. This paper presents the steps required to the numerical stress evaluation (by finite element method) during the dissimilar materials welding as well as application of Weld Overlay process in a nozzle mock-up. Thus, one can evaluate the effectiveness of the application of weld overlay process to internal compressive stress generation on the wall nozzle. (author)

  8. Analysis of mechanical tensile properties of irradiated and annealed RPV weld overlay cladding

    Energy Technology Data Exchange (ETDEWEB)

    Novak, J [Czech Nuclear Society, Prague (Czech Republic)

    1994-12-31

    Mechanical tensile properties of irradiated and annealed outer layer of reactor pressure vessel weld overlay cladding, composed of Cr19Ni10Nb alloy, have been experimentally determined by conventional tensile testing and indentation testing. The constitutive properties of weld overlay cladding are then modelled with two homogenization models of the constitutive properties of elastic-plastic matrix-inclusion composites; numerical and experimental results are then compared. 10 refs., 4 figs., 4 tabs.

  9. Analysis of mechanical tensile properties of irradiated and annealed RPV weld overlay cladding

    International Nuclear Information System (INIS)

    Novak, J.

    1993-01-01

    Mechanical tensile properties of irradiated and annealed outer layer of reactor pressure vessel weld overlay cladding, composed of Cr19Ni10Nb alloy, have been experimentally determined by conventional tensile testing and indentation testing. The constitutive properties of weld overlay cladding are then modelled with two homogenization models of the constitutive properties of elastic-plastic matrix-inclusion composites; numerical and experimental results are then compared. 10 refs., 4 figs., 4 tabs

  10. FEM Analysis and Measurement of Residual Stress by Neutron Diffraction on the Dissimilar Overlay Weld Pipe

    International Nuclear Information System (INIS)

    Kim, Kang Soo; Lee, Ho Jin; Woo, Wan Chuck; Seong, Baek Seok; Byeon, Jin Gwi; Park, Kwang Soo; Jung, In Chul

    2010-01-01

    Much research has been done to estimate the residual stress on a dissimilar metal weld. There are many methods to estimate the weld residual stress and FEM (Finite Element Method) is generally used due to the advantage of the parametric study. And the X-ray method and a Hole Drilling technique for an experimental method are also usually used. The aim of this paper is to develop the appropriate FEM model to estimate the residual stresses of the dissimilar overlay weld pipe. For this, firstly, the specimen of the dissimilar overlay weld pipe was manufactured. The SA 508 Gr3 nozzle, the SA 182 safe end and SA376 pipe were welded by the Alloy 182. And the overlay weld by the Alloy 52M was performed. The residual stress of this specimen was measured by using the Neutron Diffraction device in the HANARO (High-flux Advanced Neutron Application ReactOr) research reactor, KAERI (Korea Atomic Energy Research Institute). Secondly, FEM Model on the dissimilar overlay weld pipe was made and analyzed by the ABAQUS Code (ABAQUS, 2004). Thermal analysis and stress analysis were performed, and the residual stress was calculated. Thirdly, the results of the FEM analysis were compared with those of the experimental methods

  11. Evaluation of the AISI 904L Alloy Weld Overlays Obtained by GMAW and Electro-Slag Welding Processes

    Science.gov (United States)

    Jorge, Jorge C. F.; Meira, O. G.; Madalena, F. C. A.; de Souza, L. F. G.; Araujo, L. S.; Mendes, M. C.

    2017-05-01

    The use of superaustenitic stainless steels (SASS) as an overlay replacement for nickel-based alloys can be an interesting alternative for the oil and gas industries, due to its lower cost, when compared to superalloys. Usually, the deposition is made with several welding passes by using conventional arc welding processes, such as gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW) processes. In this respect, electro-slag welding (ESW), which promotes high heat inputs and low dilution of the welds, can also be attractive for this application, as it provides a higher productivity, once only one layer is needed for the deposition of the minimum thickness required. The present work evaluates the behavior of an AISI 904L SASS weld overlay deposited on a carbon steel ASTM A516 Grade 70 by ESW and GMAW processes. Both as-welded and heat-treated conditions were evaluated and compared. A multipass welding by GMAW process with three layers and 48 passes was performed on 12.5 × 200 × 250 mm steel plates with average welding energy of 1.0 kJ/mm. For ESW process, only one layer was deposited on 50 × 400 × 400 mm steel plates with average welding energy of 11.7 kJ/mm. After welding, a post-weld heat treatment (PWHT) at 620 °C for 10 h was performed in half of the steel plate, in order to allow the comparison between this condition and the as-welded one. For both processes, the austenitic microstructure of the weld deposits was characterized by optical microscopy and scanning electron microscopy with electron backscatter diffraction. A low proportion of secondary phases were observed in all conditions, and the PWHT did not promote significant changes on the hardness profile. Martensite for GMAW process and bainite for ESW process were the microstructural constituents observed at the coarse grain heat-affected zone, due to the different cooling rates. For ESW process, no evidences of partially diluted zones were found. As a consequence of the microstructural

  12. Microstructure and Mechanical Properties of Inconel 625 Alloy on Low Carbon Steel by Heat Treatment after Overlay Welding

    International Nuclear Information System (INIS)

    Kim, Seungpil; Jang, Jaeho; Kim, Jungsoo; Kim, Byung Jun; Sohn, Keun Yong; Nam, Dae-Geun

    2016-01-01

    Overlay welding technique is one of methods used to improve metal mechanical properties such as strength, toughness and corrosion resistance. Generally, Inconel 625 alloy is used for overlay welding layer on low carbon steels for economic consideration. However, the method produces some problems in the microstructure of the cast structure and some defects, caused by the elevated temperatures of the overlay process. To resolve these problems, heat treatments are required. In this study, Inconel 625 alloy was welded on a low carbon steel by the overlay welding process to investigate the resulting microstructure and mechanical properties. A double heat treatment was performed to improve the mechanical properties of the welding and substrate layers. It was found that Inconel 625 alloy had an austenite microstructure after the first heat treatment, but the low carbon steel had a ferrite-pearlite microstructure after the second heat treatment. After the double heat treatment, the sample showed the optimum hardness because of grain refinement and homogenization of the microstructure.

  13. Microstructure and Mechanical Properties of Inconel 625 Alloy on Low Carbon Steel by Heat Treatment after Overlay Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungpil; Jang, Jaeho; Kim, Jungsoo; Kim, Byung Jun; Sohn, Keun Yong; Nam, Dae-Geun [Korea Institute of Industrial Technology, Busan (Korea, Republic of)

    2016-08-15

    Overlay welding technique is one of methods used to improve metal mechanical properties such as strength, toughness and corrosion resistance. Generally, Inconel 625 alloy is used for overlay welding layer on low carbon steels for economic consideration. However, the method produces some problems in the microstructure of the cast structure and some defects, caused by the elevated temperatures of the overlay process. To resolve these problems, heat treatments are required. In this study, Inconel 625 alloy was welded on a low carbon steel by the overlay welding process to investigate the resulting microstructure and mechanical properties. A double heat treatment was performed to improve the mechanical properties of the welding and substrate layers. It was found that Inconel 625 alloy had an austenite microstructure after the first heat treatment, but the low carbon steel had a ferrite-pearlite microstructure after the second heat treatment. After the double heat treatment, the sample showed the optimum hardness because of grain refinement and homogenization of the microstructure.

  14. Dissimilar steel welding and overlay covering with nickel based alloys using SWAM (Shielded Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) processes in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Arce Chilque, Angel Rafael [Centro Tecnico de Engenharia e Inovacao Empresarial Ltda., Belo Horizonte, MG (Brazil); Bracarense, Alexander Queiroz; Lima, Luciana Iglesias Lourenco [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Quinan, Marco Antonio Dutra; Schvartzman, Monica Maria de Abreu Mendonca [Nuclear Technology Development Centre (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Marconi, Guilherme [Federal Center of Technological Education (CEFET-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    This work presents the welding of dissimilar ferritic steel type A508 class 3 and austenitic stainless steel type AISI 316 L using Inconel{sup R} 600 (A182 and A82) and overlay covering with Inconel{sup R} 690 (A52) as filler metal. Dissimilar welds with these materials without defects and weldability problems such as hot, cold, reheat cracking and Ductility Dip Crack were obtained. Comparables mechanical properties to those of the base metal were found and signalized the efficiency of the welding procedure and thermal treatment selected and used. This study evidences the importance of meeting compromised properties between heat affected zone of the ferritic steel and the others regions presents in the dissimilar joint, to elaborate the dissimilar metal welding procedure specification and weld overlay. Metallographic studies with optical microscopy and Vickers microhardness were carried out to justified and support the results, showing the efficiency of the technique of elaboration of dissimilar metal welding procedure and overlay. The results are comparables and coherent with the results found by others. Some alternatives of welding procedures are proposed to attain the efficacy. Further studies are proposed like as metallographic studies of the fine microstructure, making use, for example, of scanning electron microscope (SEM adapted with an EDS) to explain looking to increase the resistance to primary water stress corrosion (PWSCC) in nuclear equipment. (author)

  15. Hot Corrosion of Inconel 625 Overlay Weld Cladding in Smelting Off-Gas Environment

    Science.gov (United States)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2013-10-01

    Degradation mechanisms and hot corrosion behavior of weld overlay alloy 625 were studied. Phase structure, morphology, thermal behavior, and chemical composition of deposited salt mixture on the weld overlay were characterized utilizing XRD, SEM/EDX, DTA, and ICP/OES, respectively. Dilution level of Fe in the weldment, dendritic structure, and degradation mechanisms of the weld were investigated. A molten phase formed on the weld layer at the operating temperature range of the boiler, which led to the hot corrosion attack in the water wall and the ultimate failure. Open circuit potential and weight-loss measurements and potentiodynamic polarization were carried out to study the hot corrosion behavior of the weld in the simulated molten salt medium at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Internal oxidation and sulfidation plus pitting corrosion were identified as the main hot corrosion mechanisms in the weld and boiler tubes. The presence of a significant amount of Fe made the dendritic structure of the weld susceptible to preferential corrosion. Preferentially corroded (Mo, Nb)-depleted dendrite cores acted as potential sites for crack initiation from the surface layer. The penetration of the molten phase into the cracks accelerated the cracks' propagation mainly through the dendrite cores and further crack branching/widening.

  16. Corrosion resistance and microstructure of alloy 625 weld overlay on ASTM A516 grade 70

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Mohammad J. [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Petroleum Engineering Dept.; Ketabchi, Mostafa [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Mining and Metallurgical Engineering Dept.

    2016-02-01

    Nickel-based alloys are a crucial class of materials because of their excellent corrosion resistance. In the present study, single layer and two layers alloy 625 weld overlays were deposited by GTAW process on A516 grade 70 carbon steel. The dilution in terms of Fe, Ni, Mo and Nb content was calculated in 30 points of weld overlay. Microstructure observations showed that alloy 625 had austenitic structure with two types of Laves and NbC secondary phases. The uniform and pitting corrosion resistance of alloy 625 weld overlay as casted and as forged were evaluated in accordance with ASTM G48-2011 standard at different temperatures to determine the weight loss and critical pitting temperature. For achieving a better comparison, samples from alloy 625 as casted and as forged were tested under the same conditions. The results point out that single layer alloy 625 weld overlay is not suitable for chloride containing environments, two layers alloy 625 weld overlay and alloy 625 as casted have acceptable corrosion resistance and almost the same critical pitting temperature. Alloy 625 as forged has the best corrosion resistance and the highest critical pitting temperature among all test specimens. Also, the corrosion behavior was evaluated in accordance with ASTM G28 standard. The corrosion rate of single layer weld overlay was unacceptable. The average corrosion rate of two layers weld overlay and in casted condition were 35.82 and 33.01 mpy, respectively. [German] Nickellegierungen sind aufgrund ihres exzellenten Korrosionswiderstandes eine bedeutende Werkstoffklasse. In der diesem Beitrag zugrunde liegenden Studie wurden mittels WIG-Schweissens ein- und zweilagige Schweissplattierungen auf den Kohlenstoffstahl A516 (Grade 70) aufgebracht. Die Vermischung in Form des Fe-, Ni-, Mo- und Nb-Gehaltes wurde an 30 Punkten der Schweissplattierungen berechnet. Die mikrostrukturellen Untersuchungen ergaben, dass die Legierung 625 eine austenitische Struktur mit zwei Arten von

  17. Tack coat optimization for HMA overlays : accelerated pavement test report.

    Science.gov (United States)

    2009-02-01

    Interface bonding between hot-mix asphalt (HMA) overlays and Portland cement concrete (PCC) pavements is one : of the most significant factors affecting overlay service life. This study was performed to quantify the effects of HMA type, : tack coat t...

  18. Effect of Fe content on the friction and abrasion properties of copper base overlay on steel substrate by TIG welding

    Institute of Scientific and Technical Information of China (English)

    Lü Shixiong; Song Jianling; Liu Lei; Yang Shiqin

    2009-01-01

    Copper base alloy was overlaid onto 35CrMnSiA steel plate by tungsten inert gas (TIG) welding method. The heat transfer process was simulated, the microstructures of the copper base overlay were analyzed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), and the friction and abrasion properties of the overlay were measured. The results show that the Fe content increases in the overlay with increasing the welding current. And with the increase of Fe content in the overlay, the friction coefficient increases and the wear mechanism changes from oxidation wear to abrasive wear and plough wear, which is related to the size and quantity of Fe grains in the overlay. While with the increase of Fe content in the overlay, the protection of oxidation layer against the oxidation wear on the melted metal decreases.

  19. NDT with the structural weld overlay program. Recent field experience and lessons learned

    International Nuclear Information System (INIS)

    Rishel, R.; Lenz, H.; Turley, G.; Newton, B.

    2007-01-01

    Structural weld overlay (SWOL) has become a predominant mitigation technique within the Alloy 600 program. For the pressurizer nozzles, MRP-139 requires volumetric examination by year end 2007. Many nozzles are un-inspectable due to geometry and material limitations that preclude interrogation of the required examination volume. SWOL therefore is the mitigation technique which overcomes these limitations. SWOL of the pressurizer nozzles has been a challenge for all the vendors. Alloy 52 has proven to be difficult to weld under field conditions. The NDT technique chosen to demonstrate the integrity of the overlay needs to be adapted to the specific repair process and nozzle geometry. The purpose of this paper will be to present Westinghouse's integrated approach for SWOL with the focus on the NDT aspects. Topics will include main repair process steps, NDT qualification, recent field experience and lessons learned. (author)

  20. Field Investigation of Various Weld Overlays in a Waste Incineration Plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, O. H.

    2005-01-01

    A test waterwall was fabricated so that alternatives to alloy 625 could be exposed in the first pass of the waste incineration plant Haderslev. The difference between application method was also a parameter, such that manual welding, machine welding and arc spraycoating of alloy 625 were compared...... which was present in every test panel. It was observed that all the weld overlay test sections behaved similar to machined alloy 625 in that there was general corrosion and pitting corrosion. In addition, alloy 622 also exhibited preferential corrosion with respect to its dendrite structure........ In addition to the test waterwall exposure, the chemical environment from the waste incineration was also monitored by analyzing deposits and corrosion products from various locations in the boiler. These were analyzed with respect to morphology and composition using electron microscopy with EDS analysis...

  1. Automated ultrasonic testing of nuclear reactor welds and overlays in pre-service and in-service inspections

    International Nuclear Information System (INIS)

    Sladky, J.

    1988-01-01

    Since 1982, automatic pre-service and in-service checks are being made of welded joints and overlays on pressure vessels of WWER-440 nuclear reactors in Czechoslovakia. This is being done using the SKODA REACTORTEST TRC facility which is used for checking peripheral welded joints on the pressure vessel, neck joints, overlays in other selected areas of the cylindrical section of the pressure vessel, on radius transitions of the pressure vessel and of necks, and on the cylindrical part of necks, and also for checking the base material in selected parts of the pressure vessel and the base material of the neck extension piece. The tests are of two types, namely tests of peripheral welds and overlays of the cylindrical parts of the pressure vessel, and tests of the necks. Different ultrasonic probe holders are used for the tests, with totally different design. Ultrasonic probes which were initially used were of foreign make while at present, those of Czechoslovak make are used. For each pressure vessel a set of ultrasonic probes is used which should suffice for the life of the vessel. Experience gained so far is being used in work on the project of a new device for testing nuclear reactor presure vessels from the inside. (Z.M.)

  2. Effects of irradiation on the fracture properties of stainless steel weld overlay cladding

    International Nuclear Information System (INIS)

    Haggag, F.M.; Corwin, W.R.; Nanstad, R.K.

    1989-01-01

    Stainless steel weld overlay cladding was fabricated using the submerged arc, single-wire, oscillating-electrode, and the three-wire, series-arc methods. Three layers of cladding were applied to a pressure vessel plate to provide adequate thickness for fabrication of test specimens, and irradiations were conducted at temperatures and to fluences relevant to power reactor operation. For the first single-wire method, the first layer was type 309, and the upper two layers were type 308 stainless steel. The type 309 was diluted considerably by excessive melting of the base plate. The three-wire method used various combinations of types 308, 309, and 304 stainless steel weld wires, and produced a highly controlled weld chemistry, microstructure, and fracture properties in all three layers of the weld. 14 refs., 15 figs., 4 tabs

  3. In-field Welding and Coating Protocols

    Science.gov (United States)

    2009-05-12

    Gas Technology Institute (GTI) and Edison Welding Institute (EWI) created both laboratory and infield girth weld samples to evaluate the effects of weld geometry and hydrogen off-gassing on the performance of protective coatings. Laboratory made plat...

  4. Repair welding of cast iron coated electrodes

    Science.gov (United States)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  5. Axial compression behavior of concrete masonry wallettes strengthened with cement mortar overlays

    Directory of Open Access Journals (Sweden)

    F. L. De Oliveira

    Full Text Available This paper presents the results of a series of axial compression tests on concrete block wallettes coated with cement mortar overlays. Different types of mortars and combinations with steel welded meshes and fibers were tested. The experimental results were discussed based on different theoretical approaches: analytical and Finite Element Method models. The main conclusions are: a the application of mortar overlays increases the wall strength, but not in a uniform manner; b the strengthening efficiency of wallettes loaded in axial compression is not proportional to the overlay mortar strength because it can be affected by the failure mechanisms of the wall; c steel mesh reinforced overlays in combination with high strength mortar show better efficiency, because the steel mesh mitigates the damage effects in the block wall and in the overlays themselves; d simplified theoretical methods of analysis as described in this paper can give satisfactory predictions of masonry wall behavior up to a certain level.

  6. Thin-Sheet zinc-coated and carbon steels laser welding

    International Nuclear Information System (INIS)

    Pecas, P.; Gouveia, H.; Quintino, L.

    1998-01-01

    This paper describes the results of a research on CO 2 laser welding of thin-sheet carbon steels (Zinc-coated and uncoated), at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignment, and zinc-coated laser welding defects like porous and zinc ventilation. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion test. (Author) 8 refs

  7. Friction and wear of stainless steel, titanium and aluminium with various surface treatments, ion implantation and overlay hard coatings

    International Nuclear Information System (INIS)

    Bunshah, R.F.

    1979-01-01

    This paper deals with the evaluation of the wear properties of 304 stainless steel, commercial grade titanium and commercial grade aluminium without and with different surface treatments, i.e., ion implantation of boron and nitrogen, and overlay coating of superhard materials, titanium carbide and nitride by the Biased Activated Reactive Evaporation (BARE) process. Wear properties were evaluated in adhesive, erosive and abrasive modes of wear. In the case of adhesive wear, ion implantation resulted in an improved wear behaviour in lubricated conditions but had no beneficial effect in dry wear conditions. Overlay coatings on the other hand resulted in improved wear behaviour for both the dry and lubricating conditions. In the case of erosive wear with SiC particles at high velocities, overlay coatings showed higher erosion rates (typical of brittle materials in normal impingement) whereas ion implanted materials behaved similarly as untreated materials; i.e., a lower wear rate than the specimens with overlay coatings. In the case of abrasive wear, it was again observed that the wear rates of overlay coatings is far lower than the wear rates of untreated or ion implanted materials. (author)

  8. Flexural testing of weld site and HVOF coating characteristics

    CERN Document Server

    Yilbas, Bekir Sami; Sahin, Ahmet

    2014-01-01

    This book provides fundamental understanding and practical application of characteristics of flexural motion in the assessment of the weld size and coating thickness. Some formulations of heat transfer and flexural motion are introduced while displacement and load correlation are used to estimate elastic modules and the size of the heat affected zone as well as the coating thickness. The case studies presented give a practical understanding of weld size and coating thickness characterizations.

  9. Welding zinc coated steel with a CO/sub 2/ laser

    International Nuclear Information System (INIS)

    Akhter, R.; Steen, W.M.

    1993-01-01

    Welding of zinc coated steel has been studied using a high power CO/sub 2/ laser. This process is of great interest to the manufactures of car, washing machines and other components made from sheet steel and subject to corrosion. The problem associated with the welding of zinc coated steel is the low boiling point of zinc (906C) relative to the high melting point of steel (1500C). The problem is particularly important in lap welding where the zinc layer is between the lapped sheets. Under these conditions the laser 'keyhole' will generate very high vapour pressure in the zinc layer with a consequent severe risk of vapour eruption destroying the continuity of the weld bead. Several techniques are presented for the removal of zinc vapours from the interface between the two sheets. It is shown that this problem solved by suitable gap between the sheets during lap welding. Hence full penetration welds without deterioration of the weld bead can be obtained. A theory has been presented which predicted an exact gap size needed to exhaust the zinc vapour. The gap depends upon the welding speed, zinc coating thickness and thickness of the sheet. The theory predicts the weld quality satisfactorily. (author)

  10. Weld repair of helium degraded reactor vessel material

    International Nuclear Information System (INIS)

    Kanne, W.R. Jr.; Lohmeier, D.A.; Louthan, M.R. Jr.; Rankin, D.T.; Franco-Ferreira, E.A.; Bruck, G.J.; Madeyski, A.; Shogan, R.P.; Lessmann, G.G.

    1990-01-01

    Welding methods for modification or repair of irradiated nuclear reactor vessels are being evaluated at the Savannah River Site. A low-penetration weld overlay technique has been developed to minimize the adverse effects of irradiation induced helium on the weldability of metals and alloys. This technique was successfully applied to Type 304 stainless steel test plates that contained 3 to 220 appm helium from tritium decay. Conventional welding practices caused significant cracking and degradation in the test plates. Optical microscopy of weld surfaces and cross sections showed that large surface toe cracks formed around conventional welds in the test plates but did not form around overlay welds. Scattered incipient underbead cracks (grain boundary separations) were associated with both conventional and overlay test welds. Tensile and bend tests were used to assess the effect of base metal helium content on the mechanical integrity of the low-penetration overlay welds. The axis of tensile specimens was perpendicular to the weld-base metal interface. Tensile specimens were machined after studs were resistance welded to overlay surfaces

  11. 29 CFR 1926.354 - Welding, cutting, and heating in way of preservative coatings.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Welding, cutting, and heating in way of preservative... Welding and Cutting § 1926.354 Welding, cutting, and heating in way of preservative coatings. (a) Before welding, cutting, or heating is commenced on any surface covered by a preservative coating whose...

  12. Study on microstructural changes in thermally-aged stainless steel weld-overlay cladding of nuclear reactor pressure vessels by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kameda, J. [National Institute for Materials Science, Sengen, Tsukuba 305-0047 (Japan); Nagai, Y.; Toyama, T. [Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Onizawa, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2011-08-15

    Highlights: > Microstructural changes in stainless steel electroslag weld-overlay cladding. > Thermal aging caused progress of spinodal decomposition and precipitation of G phases in the {delta}-ferrite phase. > The degree of the spinodal decomposition had a linear relationship to the hardness. - Abstract: The effect of thermal aging on microstructural changes was investigated in stainless steel weld-overlay cladding composed of 90% austenite and 10% {delta}-ferrite phases using atom probe tomography (APT). In as-received materials subjected to cooling process after post-welding heat treatments (PWHT), a slight fluctuation of the Cr concentration was already observed due to spinodal decomposition in the ferrite phase but not in the austenitic phase. Thermal aging at 400 deg. C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the ferrite phase. The chemical compositions of M{sub 23}C{sub 6} type carbides seemed to be formed at the austenite/ferrite interface were analyzed. The analyses of the magnitude of the spinodal decomposition and the hardness implied that the spinodal decomposition was the main cause of the hardening.

  13. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Science.gov (United States)

    Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Matsukawa, Y.; Nishiyama, Y.; Onizawa, K.

    2012-06-01

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the δ-ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the δ-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the γ-austenite and δ-ferrite interface. There were no Cr depleted zones around the carbide.

  14. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kameda, J. [National Institute for Materials Science, Sengen, Tsukuba 305-0047 (Japan); Nagai, Y.; Toyama, T.; Matsukawa, Y. [Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Onizawa, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2012-06-15

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the {delta}-ferrite phase but not in the austenitic phase. Thermal aging at 400 Degree-Sign C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the {delta}-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the {gamma}-austenite and {delta}-ferrite interface. There were no Cr depleted zones around the carbide.

  15. Keyhole behaviour during laser welding of zinc-coated steel

    International Nuclear Information System (INIS)

    Pan, Y; Richardson, I M

    2011-01-01

    The production of consistent, high-quality laser welds on zinc-coated steels for the automotive industry remains a challenge. A simple overlap joint geometry is desirable in these applications but has been shown to be extremely detrimental to laser welding because the zinc vapour formed at the interface between the two sheets expands into the keyhole and disrupts fluid flow in the melt pool, which often leads to metal ejection. In this work, laser welding on sheets with various coating thicknesses has been performed and it is observed that the sheets with thick coatings (∼20 μm) show surprisingly good weldability. High speed video camera visualizations of the keyhole provide insight into the keyhole dynamics during the process. It appears that the dynamic pressure of zinc vapour can effectively elongate the keyhole and the process can reach a stable state when an elongated keyhole is continuously present. A simple analytical model has been developed to describe the influence of zinc vapour on keyhole elongation.

  16. Keyhole behaviour during laser welding of zinc-coated steel

    NARCIS (Netherlands)

    Pan, Y.; Richardson, I.M.

    2011-01-01

    The production of consistent, high-quality laser welds on zinc-coated steels for the automotive industry remains a challenge. A simple overlap joint geometry is desirable in these applications but has been shown to be extremely detrimental to laser welding because the zinc vapour formed at the

  17. Metallic glass coating on metals plate by adjusted explosive welding technique

    International Nuclear Information System (INIS)

    Liu, W.D.; Liu, K.X.; Chen, Q.Y.; Wang, J.T.; Yan, H.H.; Li, X.J.

    2009-01-01

    Using an adjusted explosive welding technique, an aluminum plate has been coated by a Fe-based metallic glass foil in this work. Scanning electronic micrographs reveal a defect-free metallurgical bonding between the Fe-based metallic glass foil and the aluminum plate. Experimental evidence indicates that the Fe-based metallic glass foil almost retains its amorphous state and mechanical properties after the explosive welding process. Additionally, the detailed explosive welding process has been simulated by a self-developed hydro-code and the bonding mechanism has been investigated by numerical analysis. The successful welding between the Fe-based metallic glass foil and the aluminum plate provides a new way to obtain amorphous coating on general metal substrates.

  18. Material development for waste to energy plants. Overlay welding and refractory linings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard Hansson, A.

    2011-02-15

    Waste is an extremely corrosive fuel. In order to recover a higher percentage of the energy in waste, waste incineration plants have developed from purely heat producing units to heat and power producing units. The change in concept results in higher material temperatures and thereby faster material degradation. As a result material failures have been observed in many waste incineration plants. The purpose of this project was to develop materials with higher resistance to the corrosive elements, in order to reduce the cost of maintenance, increase the availability, and increase the efficiency. The focus is on overlay welding and refractory linings. Inconel 625, alloy 50, alloy 686, and Super 625 offer equivalent corrosion protection at panel walls. 100% overlay performs better than 50% overlay. The corrosion morphology changes with increasing temperature from pitting and general corrosion to pitting and selective corrosion (dendritic core or grain boundaries). The previously observed detrimental effect of Fe on the corrosion resistance was not confirmed. It probably depends on factors such as microstructure of the alloy and local metal temperature. Ni-overlay also reduces the corrosion rates on superheater tubes. However, the superheater environment is less aggressive than the water wall environment. Failure of refractory linings is linked to excess porosity, detrimental reactions between raw materials and other mix constituents, volume growth reactions between base material and salt depositions, and thermal stress induced crack formation. Free water and not decomposition of hydrates causes spalling and cracking during the initial heating of refractory linings. Finite Element analysis confirms the stress levels between steel and refractory with the higher stress level at the top of the panel wall tube. A number of LCC mixes were formulated, adjusted and tested. Mixes with low open porosities ({approx} 10%) and state of the art resistance to KCl were achieved. (LN)

  19. Evaluation of Hydrogen Cracking in Weld Metal Deposited using Cellulosic-Coated Electrodes

    Science.gov (United States)

    2009-06-16

    Cellulosic-coated electrodes (primarily AWS EXX10-type) are traditionally used for "stovepipe" welding of pipelines because they are well suited for deposition of pipeline girth welds and are capable of high deposition rates when welding downhill. De...

  20. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Science.gov (United States)

    Kilinc, B.; Durmaz, M.; Abakay, E.; Sen, U.; Sen, S.

    2015-03-01

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe12Nb5B3 and Fe2NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe2B, NbB2, NbFeB and Fe0,2 Nb0,8 phases. The hardness of the presence phases are changing between 1689±85 HV0.01, and 181±7 HV0.1. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe12Nb5B3 and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  1. Effect of welding process on microstructure, microhardness and composition chemistry of stainless steel coatings applied by welding; Efeito do processo de soldagem na microestrutura, microdureza e composicao quimica de revestimentos de aco inoxidavel aplicados por soldagem

    Energy Technology Data Exchange (ETDEWEB)

    Melo, R.H.F. de; Maciel, T.M., E-mail: raphael.engmec@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-Graduacao em Mecanica; Costa, J.; Santa, R.A.C. [Universidade Federal de Campina Grande (UFCG), Cuite, PB (Brazil). Unidade Academica de Quimica

    2012-07-01

    This study evaluates the influence of welding parameters on the chemical composition of weld overlays of the AWS E 308-L T1 applied by the FCAW and SAW process, as well as their influence on the microstructure and microhardness of the weld overlays. The characterization of chemical composition was performed by EDX (Energy Dispersive X-ray Analysis), the microstructure was investigated by optical microscopy and Vickers microhardness. The contents of Cr, Ni, Mn, Mo, Nb and Si varied as a function of welding parameters, the microstructure and microhardness varied as a function of heat input and chemical composition. The resulting microstructure showed an austenitic matrix with lacy ferrite and ferrite FA, with an average hardness of 191.6 HV for the FCAW process and 210 HV for the SAW process. (author)

  2. Spallation of oxide scales from NiCrAlY overlay coatings

    International Nuclear Information System (INIS)

    Strawbridge, A.; Evans, H.E.; Ponton, C.B.

    1997-01-01

    A common method of protecting superalloys from aggressive environments at high temperatures is by plasma spraying MCrAlY (M = Fe, Ni and/or Co) to form an overlay coating. Oxidation resistance is then conferred through the development of an alumina layer. However, the use of such coatings is limited at temperatures above about 1100 C due to rapid failure of the protective oxide scales. In this study, the oxidation behaviour of air-plasma-sprayed NiCrAlY coatings has been investigated at 1200 C in 1 atm air. A protective alumina layer develops during the early stages, but breakaway oxidation occurs after prolonged exposure. The results suggest that the critical temperature drop to initiate failure is inversely proportional to the scale thickness, and an analytical model is put forward to explain this behaviour. Local surface curvature of the coating can lead to delamination within the oxide during cooling and it is shown that the largest individual pore in a spall region is the critical flaw for oxide fracture. (orig.)

  3. The Effectiveness of Surface Coatings on Preventing Interfacial Reaction During Ultrasonic Welding of Aluminum to Magnesium

    Science.gov (United States)

    Panteli, Alexandria; Robson, Joseph D.; Chen, Ying-Chun; Prangnell, Philip B.

    2013-12-01

    High power ultrasonic spot welding (USW) is a solid-state joining process that is advantageous for welding difficult dissimilar material couples, like magnesium to aluminum. USW is also a useful technique for testing methods of controlling interfacial reaction in welding as the interface is not greatly displaced by the process. However, the high strain rate deformation in USW has been found to accelerate intermetallic compound (IMC) formation and a thick Al12Mg17 and Al3Mg2 reaction layer forms after relatively short welding times. In this work, we have investigated the potential of two approaches for reducing the IMC reaction rate in dissimilar Al-Mg ultrasonic welds, both involving coatings on the Mg sheet surface to (i) separate the join line from the weld interface, using a 100- μm-thick Al cold spray coating, and (ii) provide a diffusion barrier layer, using a thin manganese physical vapor deposition (PVD) coating. Both methods were found to reduce the level of reaction and increase the failure energy of the welds, but their effectiveness was limited due to issues with coating attachment and survivability during the welding cycle. The effect of the coatings on the joint's interface microstructure, and the fracture behavior have been investigated in detail. Kinetic modeling has been used to show that the benefit of the cold spray coating can be attributed to the reaction rate reverting to that expected under static conditions. This reduces the IMC growth rate by over 50 pct because at the weld line, the high strain rate dynamic deformation in USW normally enhances diffusion through the IMC layer. In comparison, the thin PVD barrier coating was found to rapidly break up early in USW and become dispersed throughout the deformation layer reducing its effectiveness.

  4. Coating application procedure qualification for internal girth weld using a robot device

    Energy Technology Data Exchange (ETDEWEB)

    Koebsch, Andre; Cunha, Bruno Rocha Marques da; Barreto, Eduardo Chave; Nunes, Erik Barbosa; Solymossy, Victor [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    This year PETROBRAS complete 55 years old filling up our country of energy necessary to support our development. Some oil fields, especially from the northeast region, has being had their production decrease by their ageing. In order to have their live protracted some retrieval technical has being used. For example we can mention gas lift, production water injection, CO{sub 2} injection and so on. The produced water even treated has an elevated tenor of chloride, acid ph, presence of organics acids, H{sub 2}S and no O{sub 2}. The water became too corrosive by those characteristics. Due to it an anti corrosive coating application is demanded on the pipe internal surface and on the girth weld. The pipes are coated in a coating plant and it has a qualified coating procedure. Therefore an application of anti corrosive coating is demanded on the girth weld after the pipe welding. To accomplish this job an application procedure was developed using a robot. The PETROBRAS' Engineer witnesses the PQT of this procedure aiming to guarantee the applied coating quality. This paper will show the PQT results and a basic description of the robot operation. (author)

  5. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Energy Technology Data Exchange (ETDEWEB)

    Kilinc, B., E-mail: bkilinc@sakarya.edu.tr; Durmaz, M.; Abakay, E. [Department of Metallurgical and Materials Engineering, Institute of Arts and Sciences, SakaryaUniversity, Esentepe Campus, 54187Sakarya (Turkey); Sen, U.; Sen, S. [Department of Metallurgical and Materials Engineering, Engineering Faculty, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey)

    2015-03-30

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe{sub 12}Nb{sub 5}B{sub 3} and Fe{sub 2}NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe{sub 2}B, NbB{sub 2}, NbFeB and Fe0,2 Nb{sub 0,8} phases. The hardness of the presence phases are changing between 1689±85 HV{sub 0.01}, and 181±7 HV{sub 0.1}. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe{sub 12}Nb{sub 5}B{sub 3} and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  6. Drag resistance measurements for newly applied antifouling coatings and welding seams on ship hull surface

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, S. M.; Andres, E.

    Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared in their......Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared...

  7. Residual Stress Evaluation of Weld Inlay Process on Reactor Vessel Nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kihyun; Cho, Hong Seok [KEPCO KPS, Naju (Korea, Republic of)

    2015-10-15

    Weld overlay, weld inlay and stress improvement are mitigation technologies for butt joints. Weld overlay is done on pressurizer nozzles which are the highest potential locations occurring PWSCC due to high temperature in Korea. Reactor vessel nozzles are other big safety concerns for butt joints. Weld overlay and stress improvement should be so difficult to apply to those locations because space is too limited. Weld inlay should be one of the solutions. KEPCO KPS has developed laser welding system and process for reactor nozzles. Welding residual stress analysis is necessary for flaw evaluation. United States nuclear regulatory commission has calculated GTAW(Gas Tungsten Arc Welding) residual stress using ABAQUS. To confirm effectiveness of weld inlay process, welding residual stress analysis was performed. and difference between GTAW and LASER welding process was compared. Evaluation of weld inlay process using ANSYS and ABAQUS is performed. All of the both results are similar. The residual stress generated after weld inlay was on range of 450-500 MPa. Welding residual stresses are differently generated by GTAW and LASER welding. But regardless of welding process type, residual tensile stress is generated on inside surface.

  8. Effect of Al-Si Coating on Weld Microstructure and Properties of 22MnB5 Steel Joints for Hot Stamping

    Science.gov (United States)

    Lin, Wenhu; Li, Fang; Wu, Dongsheng; Chen, Xiaoguan; Hua, Xueming; Pan, Hua

    2018-03-01

    22MnB5 hot stamping steels are gradually being used in tailor-welded blank applications. In this experiment, 1-mm-thick Al-Si coated and de-coated 22MnB5 steels were laser-welded and then hot-stamped. The chemical compositions, solidification process, microstructure and mechanical properties were investigated to reveal the effect of Al-Si coating and heat treatment. In the welded condition, the coated joints had an Al content of approximately 2.5 wt.% in the fusion zone and the de-coated joints had 0.5 wt.% Al. The aluminum promoted the δ-ferrite formation as the skeletal structure during solidification. In the high-aluminum weld, the microstructure consisted of martensite and long and band-like δ-ferrite. Meanwhile, the low-aluminum weld was full of lath martensite. After the hot stamping process, the δ-ferrite fraction increased from 10 to 24% in the coated joints and the lath martensite became finer in the de-coated joints. The tensile strengths of the coated joints or de-coated joints were similar to that before hot stamping, but the strength of the coated joints was reduced heavily after hot stamping compared to the de-coated joints and base material. The effect of δ-ferrite on the tensile properties became stronger when the fusion zone was soft and deformed first in the hot-stamped specimens. The coated weld showed a brittle fracture surface with many cleavage planes, and the de-coated weld showed a ductile fracture surface with many dimples in hot-stamped conditions.

  9. Progress in Effect of Nano-modified Coatings and Welding Process Parameters on Wear of Contact Tube for Non-copper Coated Solid Wires

    Directory of Open Access Journals (Sweden)

    LI Zhuo-xin

    2017-12-01

    Full Text Available Environment-friendly non-copper coated solid wire is the main developing trend for gas shielded solid wires, whereas wear of contact tube limits their wide application. The effect of nano-modified coatings and welding process parameters on wear of contact tube for non-copper coated solid wires was reviewed. It was found that the wear of contact tube can be reduced due to the formation of tribo-films on the rubbing surfaces of welding wires against contact tube; it is feasible to decrease contact tube wear when non-copper coated solid wires are coated with nano-modified lubricants, thereby displaying excellent lubricating and thermal or electrical conduction characteristics. The wear of contact tube increases with the increase of welding current. The wear of contact tube is worse in direct-current electrode positive (DCEP than in direct-current electrode negative (DCEN. Arc ablation and electrical erosion are the dominant wear mechanisms of contact tube.

  10. Tack coat optimization for HMA overlays laboratory testing.

    Science.gov (United States)

    2008-09-01

    Interface bonding between hot-mix asphalt (HMA) overlays and Portland cement concrete (PCC) pavements can be one of the most : significant factors affecting overlay service life. Various factors may affect the bonding condition at the interface, incl...

  11. The Effectiveness of Al-Si Coatings for Preventing Interfacial Reaction in Al-Mg Dissimilar Metal Welding

    Science.gov (United States)

    Wang, Yin; Al-Zubaidy, Basem; Prangnell, Philip B.

    2018-01-01

    The dissimilar welding of aluminum to magnesium is challenging because of the rapid formation of brittle intermetallic compounds (IMC) at the weld interface. An Al-Si coating interlayer was selected to address this problem, based on thermodynamic calculations which predicted that silicon would change the reaction path to avoid formation of the normally observed binary Al-Mg IMC phases ( β-Al3Mg2 and γ-Al12Mg17). Long-term static heat treatments confirmed that a Si-rich coating will preferentially produce the Mg2Si phase in competition with the less stable, β-Al3Mg2 and γ-Al12Mg17 binary IMC phases, and this reduced the overall reaction layer thickness. However, when an Al-Si clad sheet was tested in a real welding scenario, using the Refill™ friction stir spot welding (FSSW) technique, Mg2Si was only produced in very small amounts owing to the much shorter reaction time. Surprisingly, the coating still led to a significant reduction in the IMC reaction layer thickness and the welds exhibited enhanced mechanical performance, with improved strength and fracture energy. This beneficial behavior has been attributed to the softer coating material both reducing the welding temperature and giving rise to the incorporation of Si particles into the reaction layer, which toughened the brittle interfacial IMC phases during crack propagation.

  12. Through the optical combiner monitoring in remote fiber laser welding of zinc coated steels

    Science.gov (United States)

    Colombo, Daniele; Colosimo, Bianca M.; Previtali, Barbara; Bassan, Daniele; Lai, Manuel; Masotti, Giovanni

    2012-03-01

    Thanks to the recent affirmation of the active fiber lasers, remote laser welding of zinc coated steels is under investigation with a particular emphasis on the overlap joint geometry. Due to the high power and high beam quality offered by these lasers, the remote laser welding process has become more practicable. However laser welding of lap zinc coated steels is still problematic because of the violent vaporisation of zinc. The presence of a gap between the plates allowing vapour degassing has been proven to avoid defects due to zinc vaporization. On the other hand variation in the gap value can lead to the welding defect formation. Therefore constant gap values should be ensured and deviation from the reference gap value has to be monitored during the execution of the welding process. Furthermore, the on-line monitoring of the gap values between the plates can be helpful for the on-line quality control of the welding process. The paper proposes a new monitoring solution for the measurement of the gap in remote fiber laser welding of overlapped zinc coated steels. In this solution, referred as Through the Optical Combiner Monitoring (TOCM) , the optical emissions from the welding process are directly observed through the optical combiner of the fiber laser source with spectroscopic equipment. The TOCM solution presented in the paper is integrated in an IPG YLS 3000 fiber laser source whose beam is deflected and focused by means of an El.En. ScanFiber scanning system with an equivalent focal length of 300 mm. After the definition of the right welding process conditions, spectroscopic tests are exploited to evaluate the optical emission from the welding plasma/plume. Acquired spectra are then analysed with multivariate data analysis approach in order to ensure gap monitoring. Results showed that with the proposed method it is possible to evaluate not only the gap between the plates but also the location inside the weld at which the variation occurs. Furthermore

  13. Laser Welding of Coated Press-hardened Steel 22MnB5

    Science.gov (United States)

    Siltanen, Jukka; Minkkinen, Ari; Järn, Sanna

    The press-hardening process is widely used for steels that are used in the automotive industry. Using ultra-high-strength steels enables car manufacturers to build lighter, stronger, and safer vehicles at a reduced cost and generating lower CO2 emissions. In the study, laser welding properties of the coated hot stamped steel 22BMn5 were studied. A constant 900 °C temperature was used to heat the steel plates, and two different furnace times were used in the press-hardening, being 300 and 740 seconds. Some of the plates were shot blasted to see the influence of the partly removed oxide layer on the laser welding and quality. The welding set-up, welding, and testing of the weld specimens complied with the automotive testing code SEP 1220.

  14. The improvement of ultrasonic characteristics in weld metal of austenitic stainless steel using magnetic stirring method

    International Nuclear Information System (INIS)

    Arakawa, T.; Tomisawa, Y.

    1988-01-01

    The magnetic stirring welding process was tested to save the difficulty of ultrasonic testing of austenitic stainless steel overlayed welds, due to grain refinement of weld solidification structure. The testing involved stirring the molten pool with Lorenz force induced by the interaction of welding current and alternative magnetic field applied from the outside magnetic coil. This report summarizes improvement of ultrasonic characteristic in austenitic stainless steel overlayed welds caused by magnetic stirring welding process

  15. Laser beam welding of titanium nitride coated titanium using pulse-shaping

    Directory of Open Access Journals (Sweden)

    Milton Sergio Fernandes de Lima

    2005-09-01

    Full Text Available A new welding method which allows the assembly of two titanium nitride coated titanium parts is proposed. The welding procedure utilizes the possibility for pulse-shaping in order to change the energy distribution profile during the laser pulse. The pulse-shaping is composed of three elements: a a short high power pulse for partial ablation at the surface; b a long pulse for thermal penetration; and c a quenching slope for enhanced weldability. The combination of these three elements produces crack-free welds. The weld microstructure is changed in comparison to normal welding, i.e. with a rectangular pulse, as the nitrogen and the microhardness are more homogenously distributed in the weld under pulse-shaping conditions. This laser pulse dissolves the TiN layer and allows nitrogen to diffuse into the melt pool, also contributing to an enhanced weldability by providing suitable thermal conditions.

  16. New weld coating process for directional horizontal drilling operations; Neues Schweissnaht-Beschichtungsverfahren fuer Horizontalbohrungen

    Energy Technology Data Exchange (ETDEWEB)

    Quast, M. [Denso GmbH, Leverkusen (Germany)

    2005-07-01

    Corrosion protective coatings of steel pipes laid by horizontal directional drilling are particularly stressed. Thermosetting compounds based on polyurethane or expoxides have proven their performance for the protection of welded joints of such pipes. The application of thermosetting joint coatings can currently be carried out in a lamination process, resulting in glass reinforced plastics coatings, or by spatula in case of polyurethane based materials. Both application procedures require a certain period of time and come along with drawbacks, which are typical for the application of reactive resins. This report describes a new procedure for the coating of welded joint areas of steel pipes with polyurethane reactive resins. By use of a special casing system the complications of applying the coating material by spatula are avoided. Consequently one can take complete advantage of using polyurethane coatings for HDD laid pipes without suffering from typical handling drawbacks. (orig.)

  17. Examination of overlay pipe weldments removed from the Hatch-2 reactor

    International Nuclear Information System (INIS)

    Park, J.Y.; Kupperman, D.S.; Shack, W.J.

    1985-02-01

    Laboratory ultrasonic examination (UT), dye penetrant examination (PT), metallography, and sensitization measurements were performed on Type 304 stainless steel overlay pipe weldments from the Hatch-2 BWR to determine the effectiveness of UT through overlays and the effects of the overlays on crack propagation in the weldments. Little correlation was observed between the results of earlier in-service ultrasonic inspection and the results of PT and destructive examination. Considerable difficulty was encountered in correctly detecting the presence of cracks by UT in the laboratory. Blunting of the crack tip by the weld overlay was observed, but there was no evidence of tearing or throughwall extension of the crack beyond the blunted region

  18. Effects of TiO2 coating on the microstructures and mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joints

    International Nuclear Information System (INIS)

    Wang Linzhi; Shen Jun; Xu Nan

    2011-01-01

    Highlights: → The weld penetration and the D/W ratio could be improved dramatically by increasing of the amount of the TiO 2 coating. → The average grain size of the α-Mg grains increased and the β-Mg 17 Al 12 IMC transformed from granular structure to continuous structure with an increase of the amount of the TiO 2 coating. → With an increase of the amount of the TiO 2 coating, the microhardness of the FZ of the AZ31 magnesium alloy welded joints decreased slightly at first and then decreased sharply. → The UTS value of the welded joints increased with an increase of the amount of the TiO 2 coating. → However, too much TiO 2 coating caused a significant decrease of the UTS value of the welded joints. - Abstract: The effects of TiO 2 coating on the macro-morphologies, microstructures and mechanical properties of tungsten inert gas (TIG) welded AZ31 magnesium alloy joints were investigated by microstructural observations, microhardness tests and tensile tests. The results showed that an increase in the amount of the TiO 2 coating resulted in an increase in the weld penetration and the depth/width (D/W) ratio of the TIG welded AZ31 magnesium alloy seams. Moreover, the average grain size of the α-Mg grains increased and the β-Mg 17 Al 12 intermetallic compound (IMC) was coarser in the case of higher amount of the TiO 2 coating. With an increase in the amount of the TiO 2 coating, the microhardness of the fusion zone (FZ) of the AZ31 magnesium alloy welded joints decreased slightly initially and then decreased sharply. In addition, with an increase in the amount of the TiO 2 coating, the ultimate tensile strength (UTS) value and elongation of the welded joints increased at first and then decreased sharply.

  19. Effects of surface coating on weld growth of resistance spot-welded hot-stamped boron steels

    International Nuclear Information System (INIS)

    Ji, Chang Wook; Lee, Hyun Ju; Kim, Yang Do; Jo, Il Guk; Choi, Il Dong; Park, Yeong Do

    2014-01-01

    Aluminum-silicon-based and zinc-based metallic coatings have been widely used for hot-stamped boron steel in automotive applications. In this study, resistance spot weldability was explored by investigating the effects of the properties of metallic coating layers on heat development and nugget growth during resistance spot welding. In the case of the aluminum-silicon-coated hot-stamped boron steel, the intermetallic coating transformed into a liquid film that covered the faying interface. A wide, weldable current range was obtained with slow heat development because of low contact resistance and large current passage. In the case of the zinc-coated hot-stamped boron steel, a buildup of liquid and vapor formation under large vapor pressure was observed at the faying interface because of the high contact resistance and low vaporization temperature of the intermetallic layers. With rapid heat development, the current passage was narrow because of the limited continuous layer at the faying interface. A more significant change in nugget growth was observed in the zinc coated hot-stamped boron steel than in the aluminum-silicon-coated hot-stamped boron steel.

  20. Control over Coating Structure during Electromagnetic Welding and Application of HighSpeed Steel Powder

    Directory of Open Access Journals (Sweden)

    L. M. Kozhuro

    2004-01-01

    Full Text Available The paper considers peculiar features concerning coating formation in the process of electromagnetic welding of high-speed steel powder. The paper reveals how to control coating structure that ensures the required operational properties of working surfaces of machine parts. 

  1. Study on microstructural changes in thermally-aged stainless steel weld-overlay cladding of nuclear reactor pressure vessels by atom probe tomography

    Science.gov (United States)

    Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Nishiyama, Y.; Onizawa, K.

    2011-08-01

    The effect of thermal aging on microstructural changes was investigated in stainless steel weld-overlay cladding composed of 90% austenite and 10% δ-ferrite phases using atom probe tomography (APT). In as-received materials subjected to cooling process after post-welding heat treatments (PWHT), a slight fluctuation of the Cr concentration was already observed due to spinodal decomposition in the ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the ferrite phase. The chemical compositions of M 23C 6 type carbides seemed to be formed at the austenite/ferrite interface were analyzed. The analyses of the magnitude of the spinodal decomposition and the hardness implied that the spinodal decomposition was the main cause of the hardening.

  2. The Effectiveness of Al-Si Coatings for Preventing Interfacial Reaction in Al - Mg Dissimilar Metal Welding

    OpenAIRE

    Wang, Yin; Al-Zubaidy, Basem; Prangnell, Philip

    2017-01-01

    The dissimilar welding of aluminum to magnesium is challenging because of the rapid formation of brittle intermetallic compounds (IMC) at the weld interface. An Al-Si coating interlayer was selected to address this problem, based on thermodynamic calculations that predicted silicon would change the reaction path to avoid formation of the normally observed binary Al-Mg IMC phases (-Al3Mg2 and -Al12Mg17). Long-term static heat treatments confirmed that a Si-rich coating will preferentially pr...

  3. Effects of heat input on the pitting resistance of Inconel 625 welds by overlay welding

    Science.gov (United States)

    Kim, Jun Seok; Park, Young IL; Lee, Hae Woo

    2015-03-01

    The objective of this study was to establish the relationship between the dilution ratio of the weld zone and pitting resistance depending on the heat input to welding of the Inconel alloy. Each specimen was produced by electroslag welding using Inconel 625 as the filler metal. In the weld zone of each specimen, dendrite grains were observed near the fusion line and equiaxed grains were observed on the surface. It was also observed that a melted zone with a high Fe content was formed around the fusion line, which became wider as the welding heat input increased. In order to evaluate the pitting resistance, potentiodynamic polarization tests and CPT tests were conducted. The results of these tests confirmed that there is no difference between the pitting resistances of each specimen, as the structures of the surfaces were identical despite the effect of the differences in the welding heat input for each specimen and the minor dilution effect on the surface.

  4. Phase analysis of fume during arc weld brazing of steel sheets with protective coatings

    Directory of Open Access Journals (Sweden)

    J. Matusiak

    2016-04-01

    Full Text Available The article presents the results of research of the phase identification and of the quantitative phase analysis of fume generated during Cold Metal Transfer (CMT, ColdArc and Metal Inert Gas / Metal Active Gas (MIG / MAG weld brazing. Investigations were conducted for hot - dip coated steel sheets with zinc (Zn and zinc-iron (Zn - Fe alloy coatings. Arc shielding gases applied during the research-related tests were Ar + O2, Ar + CO2, Ar + H2 and Ar + CO2 + H2 gas mixtures. The analysis of the results covers the influence of the chemical composition of shielding gas on the chemical composition of welding fume.

  5. Weld Bead Geometry of Ni-Based Alloy Deposited by PTA Process for Pipe Conduction of Shale Gas

    Science.gov (United States)

    Echavarria-Figueroa, C.; García-Vázquez, F.; Ruiz-Mondragón, J.; Hernández-García, H. M.; González-González, D.; Vargas, A.

    The transportation of shale gas has the problem that the piping used for the extraction does not resist the erosion generated by the amount of solids causing cracks over the surface and it is necessary to extend the life of the pipelines. Plasma transferred arc (PTA) welded coatings are used to improve the surface properties of mechanical parts. Therefore, in this paper is studied the use of Ni-based filler metal as weld bead deposits on A36 steel substrates by PTA. In order to determine the suitable conditions to ensure coating quality on the substrate a design of experiments (DOE) was determined. Welding current, feed rate, and travel speed were used as input parameters and the dilution percentage as the response variable. The composition and properties of hardfacing or overlay deposited are strongly influenced by the dilution obtained. Control of dilution is important, where typically low dilution is desirable. When the dilution is low, the final deposit composition will be closer to that of the filler metal, and the wear and corrosion resistance of the hardfacing will also be maintained. To evaluate the features on the weld beads/substrate interface a microstructural characterization was performed by using scanning electron microscopy and to evaluate the mechanical properties was carried out hardness test.

  6. The use of neutron diffraction for the determination of the in-depth residual stresses profile in weld coatings

    International Nuclear Information System (INIS)

    Marques, Maria Jose; Batista, A.C.; Nobre, J.P.; Loureiro, Altino; Kornmeier, Joana R.

    2013-01-01

    The neutron diffraction is a non-destructive technique, particularly suitable for the analysis of residual stress fields in welds. The technique is used in this article to study ferritic samples, coated by submerged arc welding using stainless steel filler metals. This procedure is often used for manufacturing process equipment for chemical and nuclear industries, for ease of implementation and economic reasons. The main disadvantage of that processes is the cracking phenomenon that often occurs at the interface between the base material and coatings, which can be minimized by performing post-weld stress relief heat treatments. The samples analyzed in this study were made of carbon steel plates, coated by submerged arc welding two types of stainless steel filler metals. For the first layer was used one EN 12 072 - S 2 U 23 12 electrode, while for the second and third layers were used an EN 12 072 - 19 12 3 S L electrode. After cladding, the samples were submitted to a post-weld heat treatment for 1 hour at 620 deg C. The residual stress profiles obtained by neutron diffraction evidence the relaxation of residual stress given by the heat treatment. (author)

  7. Actual problems of ultrasonic control of welded anticorrosion coatings (ch. 1)

    International Nuclear Information System (INIS)

    Zubchenko, A.S.; Razygraev, N.P.; Runov, A.E.; Sobolev, Yu.A.; Kretov, E.F.; Tabakma, R.L.

    1988-01-01

    Results of investigations into heat treatment effect on the size of discontinuities revealed under ultrasonic control (USC) of welded anticorrosion coatings are presented. Comparison of dimensions of equivalent area of allowable and non-allowable reflector-discantinuities (defectiveness standards) in the alloying zone of melted anticorrosion coatings and bimetal sheet, applied in NPP equipment, is given. It is shown that USC on the side of basic metal monifest almost by an order more defects than USC on the side of melting surface

  8. Thin-sheet zinc-coated and carbon steels laser welding

    Directory of Open Access Journals (Sweden)

    Peças, P.

    1998-04-01

    Full Text Available This paper describes the results of a research on CO2 laser welding of thin-sheet carbon steels (zinccoated and uncoated, at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignement, and zinc-coated laser welding defects like porous and zinc volatilization. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion tests.

    Este artigo descreve os resultados da investigação da soldadura laser de CO2 de chapa fina de acó carbono (simples e galvanizado, em diferentes combinações de espessura. A soldadura laser é um processo de elevado potencial no fabrico de tailored-blanks (sub-conjuntos para posterior enformação, constituidos por varias partes de diferentes materiais e espessuras para a indústria automóvel. São analisados os aspectos de optimização paramétrica, de qualidade metalúrgica da junta soldada e das deformações resultantes da soldadura. São descritos os mecanismos desenvolvidos de fixação das chapas e protecção gasosa, por forma a minimizar os defeitos típicos na soldadura laser de chapa fina como o desalinhamento e da soldadura laser de chapa galvanizada como os poros e a volatilização do zinco. Por fim apresentam-se resultados da avaliação da qualidade da soldadura do ponto de vista qualitativo através da norma DIN 8563, e do pontos de vista quantitativo através de ensaios de tracção, dureza e corrosão.

  9. Measured residual stresses in overlay pipe weldments removed from service

    International Nuclear Information System (INIS)

    Shack, W.J.

    1985-02-01

    Surface and throughwall residual stresses were measured on an elbow-to-pipe weldment that had been removed from the Hatch-2 reactor about a year after the application of a weld overlay. The results were compared with experimental measurements on three mock-up weldments and with finite-element calculations. The comparison shows that there are significant differences in the form and magnitude of the residual stress distributions. However, even after more than a year of service, the residual stresses over most of the inner surface of the actual plant weldment with an overlay were strongly compressive. 3 refs., 7 figs

  10. Influence of thickness of zinc coating on CMT welding-brazing with AlSi5 alloy wire

    Science.gov (United States)

    Jin, Pengli; Wang, Zhiping; Yang, Sinan; Jia, Peng

    2018-03-01

    Effect of thickness of zinc coating on Cold Mattel Transfer (CMT) brazing of aluminum and galvanized steel is investigated. The thickness of zinc coating is 10 μm, 30 μm, and 60 μm, respectively. A high-speed camera was used to capture images of welding process of different specimens; the microstructure and composition analyses of the welding seam were examined by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS); the mechanical properties were measured in the form of Nano-indentation experiments. The results showed that arc characteristics and metal transfer behavior were unsteady at the beginning of welding process and that became stable after two cycles of CMT. With the thickness of zinc coating thickening, arc characteristics and metal transfer behaviors were more deteriorated. Compared with 10 μm and 30 μm, clad appearance of 60 μm was straight seam edges and a smooth surface which wetting angle was 60°. Zinc-rich zone at the seam edges was formed by zinc dissolution and motel pool oscillating, and zinc content of 10 μm and 30 μm were 5.8% and 7.75%. Zinc content of 60 μm was 14.61%, and it was a belt between galvanized steel and welding seam. The thickness of intermetallic compounds layer was in the range of 1-8 μm, and it changed with the thickness of zinc coating. The average hardness of the reaction layer of 60 μm is 9.197 GPa.

  11. Method for welding beryllium

    Science.gov (United States)

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  12. Method for welding beryllium

    International Nuclear Information System (INIS)

    Dixon, R.D.; Smith, F.M.; O'Leary, R.F.

    1997-01-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs

  13. MICROSTRUCTURE FEATURES OF CHROME-NICKEL COATING WELDED WITH FILLER WIRE PL AN-111 WITH A 50% OVERLAP

    Directory of Open Access Journals (Sweden)

    A. G. Belik

    2017-04-01

    Full Text Available Purpose. The paper involves investigation of microstructure features of the coating welded with filler wire PL AN-111 with a 50% beads overlap. Methodology. Wear-resistant layer was formed by means of electric arc deposit welding using filler wire PL AN-111 on the plate from steel 09G2S. Deposit welding was conducted under the following parameters: welding current is of 650-750 A; arc voltage is of 30-34 V; welding speed is of 32 m/h. Microstructure was researched with application of optical microscopies “Neophot-21”, “Nikon Eclipse M200” and electron scanning microscopy JEOL JSM-6510 LV. Microhardness of structural constituentswas measuredwithtesterFM-300 (Future-Tech under loading of 10-50 g. Findings. It is shown that the overlap of the beads leads to the formation of inhomogeneous microstructure in the cross section that varies by zones from free-carbide austenite to hypereutectic microstructure with primary chromium carbides. The analysis of the microhardness of the structural constituents in various coating areas was carried out. It was found that hardness of austenite, carbide eutectic and carbides M7C3 varies in coatings in the range of 3 100-3 850 МPа, 4 100-6 800 МPа and 12 100-15 100 МPа, accordingly. Originality. Authors determined that Cr-Ni coating comprises substantially austenitic-carbide eutectic with different density and thickness of carbide fibers within eutectic colonies. Along the border “base/coating” a single-phase austenitic layer lies which turns into a layer with a hypoeutectic structure. In the heat affected zone from beads fusion austenite disintegration with the granular carbides formation was recorded. This leads to decreasing of matrix corrosion resistance due to chromium depletion. Above the zone of beads fusion, the coating has a hypereutectic structure with the presence of large primary chromium carbides. Practical value. It is shown that deposit welding with filler wire PL AN-111 with a 50

  14. Processing and structure of in situ Fe-Al alloys produced by gas tungsten arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-02-14

    Iron aluminide weld overlays are being investigated for corrosion and erosion protection of boiler tubes in low NOx burners. The primary objective of the research is to identify overlay compositions which can be deposited in a crack-free condition and provide corrosion protection in moderately reducing environments. In the current phase of work, Fe-Al alloy weld overlays were produced by depositing commercially pure aluminum wire on to low carbon steel substrates using Gas Tungsten Arc Welding. A systematic variation of the wire feed speed and current, two major factors affecting dilution, resulted in a variation in aluminum contents of the welds ranging from 3--42 wt% aluminum. The aluminum content was observed to increase with wire feed speed and a decrease in the current. The aluminum content was also found to affect the cracking susceptibility of the overlays. At 10wt% aluminum, few to no cracks were observed in the deposits. Above this value, cracking was prevalent throughout the weld. In addition, two types of microstructures were found correlating to different concentrations of aluminum. A homogeneous matrix with second phase particles consisting of coarse columnar grains was found for low aluminum concentrations. With higher aluminum contents, a two-phase constituent was observed to surround primary dendrites growing from the substrate. The transition of the microstructures occurred between 24 and 32 wt% Al.

  15. Further contribution to the study of buffer layer on austenitic stainless stell overlays obtained by means of automatic submerged arc welding with electrode-wire

    International Nuclear Information System (INIS)

    Colla, G.

    1988-01-01

    The influence of several buffer layer types on a 308 type austenitic stainless steel surface overlay having a 19-21% chromium and 10-12% nikel content have been analysed. Cladding passes have been deposited on carbon steel test samples by using automatic submerged arc welding process with electrode-wire. The experimental tests have involved buffer layers having seven different chemical compositions and the obtained results are reported and discussed in the paper. The achieved experimetal results allow selecting the most suitable buffer layer to be deposited in order to reach the required cladding performance in service

  16. Performance of mesh seam welds in tailor welded blanks; Terado blank yo mash seam yosetsubu no tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Uchihara, M; Takahashi, M; Kurita, M; Hirose, Y; Fukui, K [Sumitomo Metal Industries, Ltd., Osaka (Japan)

    1997-10-01

    Formability, fatigue properties and corrosion behavior of mash seam welded steel sheets were investigated and the results were compared with laser weld. The stretch formability of mash seam weld and laser weld were same level. Mash seam weld however, showed slightly smaller formability in hole expansion test. The fatigue strength of mash seam welds was lower than that of laser welds in case of differential thickness joints. Corrosion was apt to initiate at weld in both mash seam and laser weld with E-coat. The corrosion resistance of welds was improved by using zinc coated steel. 3 refs., 14 figs., 2 tabs.

  17. Drag resistance of ship hulls: Effects of surface roughness of newly applied fouling control coatings, coating water absorption, and welding seams

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, Stefan Møller; Andrés, Eduardo

    2018-01-01

    selected, that a so-called fouling release (FR) coating caused approximately 5.6 % less skin friction (torque) over time than traditional biocide-based antifouling (AF) coatings at a tangential speed of 12 knots. Furthermore, results of immersion experiments and supporting “standard” water absorption......Fouling control coatings (FCCs) and irregularities (e.g. welding seams) on ship hull surfaces have significant effects on the overall drag performance of ships. In this work, skin frictions of four newly applied FCCs were compared using a pilot-scale rotary setup. Particular attention was given...

  18. Overlay metallic-cermet alloy coating systems

    International Nuclear Information System (INIS)

    Gedwill, M.A.; Glasgow, T.K.; Levine, S.R.

    1982-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures

  19. Overlay metallic-cermet alloy coating systems

    Science.gov (United States)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  20. Characterization of laser welds in Al-10 wt.%Si coated ferritic stainless steel

    International Nuclear Information System (INIS)

    Kong, Jong Pan; Park, Tae Jun; Kim, Jeong Kil; Uhm, Sang Ho; Woo, In Su; Lee, Jong Sub; Park, Bong Gyu; Kang, Chung Yun

    2011-01-01

    409L stainless steel hot-dipped with Al-10 wt.%Si was welded using CO 2 laser and the microstructure and hardness of the weld were investigated. When the specimen was welded with laser power of 5 kW and welding speed of 5 m/min, full-penetrated sound weld was obtained. With that specimen, the relationship between the microstructure and hardness of the weld was examined. The hardness of the weld was the highest in the fusion zone (FZ) and decreased to the base metal (BM) via heat affected zone (HAZ). The hardness of the HAZ near bond line was also higher than that near the base metal. The maximum hardness in the fusion zone could be explained by the existence of the precipitates, that is, TiN, Ti(C,N), Al 2 O 3 and Al 2 O 3 + TiN mixed compounds with the size of 500 nm, and solution strengthening due to the elements Al and Si dissolved from the coating layer to the fusion zone. There were subgrains within the HAZ and more in the area near the bond line. In addition, fine TiC particles with the size under 50 nm was precipitated in the sub-grain boundaries. The formation of sub-grain boundaries and the particles precipitated in the boundaries might contributed to the high hardness in the HAZ.

  1. Mitigating Localized Corrosion Using Thermally Sprayed Aluminum (TSA) Coatings on Welded 25% Cr Superduplex Stainless Steel

    Science.gov (United States)

    Paul, S.; Lu, Q.; Harvey, M. D. F.

    2015-04-01

    Thermally sprayed aluminum (TSA) coating has been increasingly used for the protection of carbon steel offshore structures, topside equipment, and flowlines/pipelines exposed to both marine atmospheres and seawater immersion conditions. In this paper, the effectiveness of TSA coatings in preventing localized corrosion, such as pitting and crevice corrosion of 25% Cr superduplex stainless steel (SDSS) in subsea applications, has been investigated. Welded 25% Cr SDSS (coated and uncoated) with and without defects, and surfaces coated with epoxy paint were also examined. Pitting and crevice corrosion tests, on welded 25% Cr SDSS specimens with and without TSA/epoxy coatings, were conducted in recirculated, aerated, and synthetic seawater at 90 °C for 90 days. The tests were carried out at both the free corrosion potentials and an applied cathodic potential of -1100 mV saturated calomel electrode. The acidity (pH) of the test solution was monitored daily and adjusted to between pH 7.5 and 8.1, using dilute HCl solution or dilute NaOH, depending on the pH of the solution measured during the test. The test results demonstrated that TSA prevented pitting and crevice corrosion of 25% Cr SDSS in artificial seawater at 90 °C, even when 10-mm-diameter coating defect exposing the underlying steel was present.

  2. Irradiation effects on low-friction coatings for LMFBR applications

    International Nuclear Information System (INIS)

    Ward, A.L.; Johnson, R.N.; Guthrie, G.L.; Aungst, R.C.

    1975-11-01

    A variety of wear-resistant low-friction materials has been irradiated in the EBR-II in order to assess their reponse to LMFBR environments. Pre- and postirradiation testing and examination efforts have concentrated on candidate materials for application to the wear pads on FTR ducts (fuel, control, and reflector assemblies), and a significant result has been qualification of a proprietary detonation-gun-applied chromium carbide coating which employs a Ni Cr binder. Additional materials such as Inconel-718, Haynes-273, aluminides, and various chromium carbide/binder combinations, and other application processes such as plasma-spray, weld-overlays, diffusion bonding and explosive bonding, have also been studied. The most detailed examinations were conducted on selected chromium carbide coatings and included visual inspection, weight and dimensional measurements, metallography, electron microprobe, epoxy-lift-off, and x-ray diffraction analysis. Chromium carbide coatings applied by the detonation-gun process have demonstrated a marked superiority to those applied by plasma-spray techniques

  3. An Analysis of the Weldability of Ductile Cast Iron Using Inconel 625 for the Root Weld and Electrodes Coated in 97.6% Nickel for the Filler Welds

    Directory of Open Access Journals (Sweden)

    Francisco-Javier Cárcel-Carrasco

    2016-11-01

    Full Text Available This article examines the weldability of ductile cast iron when the root weld is applied with a tungsten inert gas (TIG welding process employing an Inconel 625 source rod, and when the filler welds are applied with electrodes coated with 97.6% Ni. The welds were performed on ductile cast iron specimen test plates sized 300 mm × 90 mm × 10 mm with edges tapered at angles of 60°. The plates were subjected to two heat treatments. This article analyzes the influence on weldability of the various types of electrodes and the effect of preheat treatments. Finally, a microstructure analysis is made of the material next to the weld in the metal-weld interface and in the weld itself. The microstructure produced is correlated with the strength of the welds. We treat an alloy with 97.6% Ni, which prevents the formation of carbides. With a heat treatment at 900 °C and 97.6% Ni, there is a dissolution of all carbides, forming nodules in ferritic matrix graphite.

  4. Two new NDT techniques for inspection of containment welds beneath coatings

    International Nuclear Information System (INIS)

    Fitzpatrick, G.L.; Thome, D.K.

    1991-06-01

    Two new nondestructive testing methods were evaluated for inspection of containment welds beneath coatings, including magneto-optic imaging and Hall effect measurements. Traditional inspection methods, including magnetic particle inspection, are unsatisfactory in the nuclear containment environment coatings must be removed to provide reliable results. This creates radioactive waste, potential airborne contamination, and prolonged radiation exposure to inspection personnel. The new methods offer great improvement because of increased sensitivity and rapid scanning capability. Results obtained during Phase 1 demonstrated that magneto-optic imaging methods offered good detection of cracking in welded carbon steel samples, even through paint. Direct, real-time images were obtained with this technique in a video format ideal for complete documentation of the full inspection. A new method for rapidly inducing the required magnetic fields for inspection was also demonstrated and offers the potential for eliminating bulky, high current power supplies or magnetic yokes. Results obtained with the Hall effect were not as promising as they were on aluminum, due to electrical interference problems and variables biasing caused by residual magnetic fields in the parts. The technique may still be useful for inspecting tight spaces not accessible with magneto-optic imaging devices, but will require significant development. 13 refs., 18 figs

  5. Structure and properties of Hardox 450 steel with arc welded coatings

    Science.gov (United States)

    Ivanov, Yu. F.; Konovalov, S. V.; Kormyshev, V. E.; Gromov, V. E.; Teresov, A. D.; Semina, O. A.

    2017-12-01

    The paper reports on a study of the surface structure, phase composition, and microhardness of Hardox 450 steel with coatings deposited by arc welding of powder wires differing in chemical composition. The study shows that to a depth of 6-8 mm, the microhardness of the thus formed coatings is more than two times the microhardness of the base metal and that their higher mechanical properties are provided by martensite structure containing Nb2C and NbC carbides and Fe2B borides as eutectic lamellae with a transverse size of 30-70 nm; their volume reveals a net-like dislocation substructure with a scalar dislocation density of 1011 cm-2. The highest surface hardness is found for the steel coated with boron-containing wire material. Some ideas are suggested on possible mechanisms and temperature for the formation of Nb and B carbides during the process.

  6. Disk Laser Welding of Car Body Zinc Coated Steel Sheets / Spawanie Laserem Dyskowym Blach Ze Stali Karoseryjnej Ocynkowanej

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2015-12-01

    Full Text Available Autogenous laser welding of 0.8 mm thick butt joints of car body electro-galvanized steel sheet DC04 was investigated. The Yb:YAG disk laser TruDisk 3302 with the beam spot diameter of 200 μm was used. The effect of laser welding parameters and technological conditions on weld shape, penetration depth, process stability, microstructure and mechanical performance was determined. It was found that the laser beam spot focused on the top surface of a butt joint tends to pass through the gap, especially in the low range of heat input and high welding speed. All test welds were welded at a keyhole mode, and the weld metal was free of porosity. Thus, the keyhole laser welding of zinc coated steel sheets in butt configuration provides excellent conditions to escape for zinc vapours, with no risk of porosity. Microstructure, microhardness and mechanical performance of the butt joints depend on laser welding conditions thus cooling rate and cooling times. The shortest cooling time t8/5 was calculated for 0.29 s.

  7. Study of CW Nd-Yag laser welding of Zn-coated steel sheets

    International Nuclear Information System (INIS)

    Fabbro, Remy; Coste, Frederic; Goebels, Dominique; Kielwasser, Mathieu

    2006-01-01

    The welding of Zn-coated steel thin sheets is a great challenge for the automotive industry. Previous studies have defined the main physical processes involved. For non-controlled conditions, the zinc vapour expelled from the interface of the two sheets violently expands inside the keyhole and expels the melt pool. When using CO 2 lasers, we have previously shown that an elongated laser spot produces an elongated keyhole, which is efficient for suppressing this effect. We have adopted a similar approach for CW Nd : Yag laser welding and we observe that an elongated spot is not necessary for achieving good weld seams. Several diagnostics were used in order to understand these interesting results. High-speed video camera visualizations of the top and the bottom of the keyhole during the process show the dynamics of the keyhole hydrodynamic behaviour. It appears that the role of the reflected beam on the front keyhole wall for generating a characteristic rear wall deformation is crucial for an efficient stabilization of the process. Our dynamic keyhole modelling, which includes ray tracing, totally confirms this interpretation and explains the results for very different experimental conditions (effect of welding speed, laser intensity, variable sheet thickness, laser beam intensity distribution) that will be presented

  8. Universal gas metal arc welding - a cost-effective and low dilution surfacing process

    International Nuclear Information System (INIS)

    Shahi, AS.; Pandey, Sunil

    2006-01-01

    This paper describes the use of a new variant of the gas metal arc welding (GMAW) process, termed u niversal gas metal arc welding (UGMAW), for the weld cladding of low carbon steels with stainless steel. The experimental work included single layer cladding of 12 mm thick low carbon steel with austenitic stainless steel 316L solid filler wire of 1.14 mm diameter. Low dilution conditions were employed using both mechanised GMAW and UGMAW processes. Metallurgical aspects of the as welded overlays were studied to evaluate the suitability of these processes for service conditions. It was found that UGMAW claddings contained higher ferrite content; higher concentrations of chromium, nickel and molybdenum; and lower carbon content compared to GMAW claddings. As a result, the UGMAW overlays exhibited superior mechanical and corrosion resistance properties. The findings of this study establish that the new process is technically superior and results in higher productivity, justifying its use for low cost surfacing applications

  9. Analysis of Welding Zinc Coated Steel Sheets in Zero Gap Configuration by 3D Simulations and High Speed Imaging

    Science.gov (United States)

    Koch, Holger; Kägeler, Christian; Otto, Andreas; Schmidt, Michael

    Welding of zinc coated sheets in zero gap configuration is of eminent interest for the automotive industry. This Laser welding process would enable the automotive industry to build auto bodies with a high durability in a plain manufacturing process. Today good welding results can only be achieved by expensive constructive procedures such as clamping devices to ensure a defined gad. The welding in zero gap configuration is a big challenge because of the vaporised zinc expelled from the interface between the two sheets. To find appropriate welding parameters for influencing the keyhole and melt pool dynamics, a three dimensional simulation and a high speed imaging system for laser keyhole welding have been developed. The obtained results help to understand the process of the melt pool perturbation caused by vaporised zinc.

  10. Study on the Relationship Between Emission Signals and Weld Defect for In-Process Monitoring in CO{sub 2} Laser Welding of Zn-Coated Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Lee, Chang Je [Korea Maritime University, Busan (Korea, Republic of)

    2010-10-15

    In this study, the plasma induced by CO{sub 2} laser lap welding of 6t Zn coated steel used for ship building was measured using photodiodes and a microphone. Then, the welding phenomenon with gap clearance of lap joint was compared with RMS-treated signal. Thus, we found that intensity of the RMS-treated signal increased with Zn vaporization; further, the presence of defects results in rapid variations with the RMS value as a function of lap-joint parameters. Besides, the FFT value of the raw signal with variations of changing welding parameters was calculated, and then the calculated FFT frequency value was set as the bandwidth of digital filter for a more accurate in-process monitoring. The RMS values were acquired by filtering the raw signal. By matching the weld beads and the calculated RMS values, we confirmed that there is a strong relationship between the signals and the defects.

  11. Microstructure evolution of a dissimilar junction interface between an Al sheet and a Ni-coated Cu sheet joined by magnetic pulse welding

    Energy Technology Data Exchange (ETDEWEB)

    Itoi, Takaomi, E-mail: itoi@faculty.chiba-u.jp [Department of Mechanical Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Mohamad, Azizan Bin; Suzuki, Ryo [Department of Mechanical Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Okagawa, Keigo [Department of Electrical and Electronics Engineering, Tokyo Metropolitan College of Industrial Technology, 1-10-40 Higashi ohi, Shinagawa-ku, Tokyo 140-0011 (Japan)

    2016-08-15

    An Al sheet and a Ni-coated Cu sheet were lap joined by using magnetic pulse welding (MPW). Tensile tests were performed on the joined sheets, and a good lap joint was achieved at a discharge energy of > 0.9 kJ. The weld interface exhibited a wavy morphology and an intermediate layer along the weld interface. Microstructure observations of the intermediate layer revealed that the Ni coating region consisted of a Ni–Al binary amorphous alloy and that the Al sheet region contained very fine Al nanograins. Ni fragments indicative of unmelted residual Ni from the coating were also observed in parts of the intermediate layer. Formation of these features can be attributed to localize melting and a subsequent high rate cooling of molten Al and Ni confined to the interface during the MPW process. In the absence of an oxide film, atomic-scale bonding was also achieved between the intermediate layer and the sheet surfaces after the collision. MPW utilises impact energy, which affects the sheet surfaces. From the obtained results, good lap joint is attributed to an increased contact area, the anchor effect, work hardening, the absence of an oxide film, and suppressed formation of intermetallic compounds at the interface. - Highlights: •Good lap joint of an Al sheet and a Ni-coated Cu sheet was achieved by using magnetic pulse welding. •A Ni–Al binary amorphous alloy was formed as an intermediate layer at weld interface. •Atomic-scale bonding was achieved between the intermediate layer and the sheet surfaces.

  12. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    Science.gov (United States)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  13. Short Communication on “Self-welding susceptibility of NiCr-B hardfaced coating with and without NiCr-B coating on 316LN stainless steel in flowing sodium at elevated temperature”

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Hemant, E-mail: hemant@igcar.gov.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302 (India); Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Ramakrishnan, V.; Albert, S.K.; Bhaduri, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Ray, K.K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302 (India)

    2017-02-15

    The self-welding susceptibility between NiCr-B coated 316LN stainless steel and the base metal, and that between NiCr-B hardfaced coatings has been evaluated in flowing sodium at 823 K for 90 and 135 days under contact stress of 8.0 and 11.0 MPa using a fabricated set-up. Neither any self-welding could be observed nor could any damage be detected on the specimen surfaces of the selected materials under the imposed experimental conditions, which indicate their satisfactory potential for applications in Fast Breeder Reactors.

  14. Leakage detection device for weld portion

    International Nuclear Information System (INIS)

    Shinkawa, Toshio; Setokuchi, Sadayuki.

    1994-01-01

    The present invention concerns leakage detection device for weld portions, for example, in a nuclear reactor cavity, which can rapidly detect by remote control. That is, a detection device capable of self running and stopping on a guide rail along a weld line is disposed. The detection device comprises a coating mechanism for automatically coating soap water to the weld portion, a vacuum box capable of evacuating the coated surface and a camera for detecting the presence or absence of the soap bubbles generated under the evacuation. Such a device can conduct, by remote control, self running/stopping along with the weld line, coating of the soap water, settling of the vacuum box and confirmation and recording of foaming by using a television monitor. Accordingly, leakage in the weld portion in the reactor cavity or the like can be inspected. As a result, it greatly contributes to improvement of danger upon worker's operation at high place, detection accuracy and reliability of detection and shortening of operation period. (I.S.)

  15. Microstructure and abrasive wear properties of M(Cr,Fe7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW process

    Directory of Open Access Journals (Sweden)

    Soner BUYTOZ

    2010-01-01

    Full Text Available In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD, field-emission scanning electron microscopy (FE-SEM, X-ray energy-dispersive spectroscopy (EDS. Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were carried out on a pin-on-disc apparatus as function of contact load. Wear rates of the all coating layers were decreased as a function of the loading. The improvement of abrasive wear resistance of the coating layer could be attributed to the high hardness of the hypereutectic M7C3 carbides in the microstruc-ture. As a result, the microstructure of surface layers, hardness and abrasive wear behaviours showed different characteristics due to the gas tungsten arc welding parameters.

  16. Overlay accuracy fundamentals

    Science.gov (United States)

    Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina

    2012-03-01

    Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.

  17. Effect of SiO2 Overlayer on WO3 Sensitivity to Ammonia

    Directory of Open Access Journals (Sweden)

    Vibha Srivastava

    2010-06-01

    Full Text Available Ammonia gas sensing properties of tungsten trioxide thick film sensor was investigated. The doping of noble catalysts such as Pt, Pd, Au enhanced the gas sensitivity. Platinum doping was found to result in highest sensitivity. Remarkable sensitivity enhancement was realized by coating WO3 thick film sensors with SiO2 overlayer. Sol gel process derived silica overlayer increased ammonia gas sensitivity for doped as well as undoped sensor.

  18. Determination of the sensitization of two coatings by steel welding 308l by the EPR-Dl and Astm A-262 practice A techniques

    International Nuclear Information System (INIS)

    Arganis J, C. R.; Zenteno S, J. C.; Robles F, J. L.; Rodriguez M, E.; Vazquez P, A.

    2014-10-01

    A stainless steel 308l coating was deposited by the shielded metal arc welding (SMAW) on steel A36 with a thickness of 4.726 mm in three layers. The sensitization was measured with the technique of Electrochemical Potentiodynamic Reactivation of Double-loop (EPR-Dl), using a portable cell and other of conventional window. The standard Astm A-262, practice A was used to verify the sensitization values. Two samples were used, a welding on a plate of 323 x 172 x 76.2 mm and the second welding on the end of a plate of 12.7 mm of thickness and 280 mm of longitude, with a post-welding process with gas tungsten arc welding (GTAW) with electrode ERNiCr 3 and a process SMAW with electrode ENICRFe 3 . The coating on the plate showed low values of sensitization grade (DOS) in all the points, indicating a very quick heat extraction and an inter dendritic structure type step. The second sample presented DOS values that are related with a structure of low sensitization and the influence of the heat of the post-welding process and a structure of recrystallized grains. (Author)

  19. Aspectos metalúrgicos de revestimentos dissimilares com a superliga à base de níquel inconel 625 Metallurgical aspects of dissimilar weld overlays of inconel 625 nickel based superalloys

    Directory of Open Access Journals (Sweden)

    Cleiton Carvalho Silva

    2012-09-01

    Full Text Available Prolongar a vida útil e aumentar a confiabilidade de equipamentos e tubulações de plantas de produção e processamento de petróleo é uma busca constante no setor de petróleo e gás. Tais aspectos dependem essencialmente do uso de ligas resistentes à corrosão. Neste contexto, a soldagem de revestimento com superligas à base de níquel tem sido uma alternativa interessante, pois confere aos equipamentos uma alta resistência à corrosão com um custo inferior, se comparado à fabricação de componentes ou tubulações maciças com superligas. Assim, o objetivo do presente trabalho foi investigar o comportamento metalúrgico de revestimento de superliga à base de níquel do tipo Inconel 625 depositados pelo processo TIG com alimentação de arame frio. As soldagens foram realizadas em uma bancada robotizada, empregando uma fonte eletrônica de soldagem com sistema de aquisição de dados para o monitoramento dos sinais de corrente e tensão. A caracterização microestrutural foi realizada através das técnicas de microscopia eletrônica de varredura (MEV e transmissão (MET, espectroscopia de energia dispersiva de raios-X (EDS. Os resultados mostraram que a microestrutura do metal de solda foi constituída por uma matriz γ com fases secundárias ricas em Nb. Foi encontrada a formação de precipitados complexos de carbonetos/nitretos de Ti e Nb.To extend the life and reliability of pipes and equipment in oil & gas production and processing settings is a continuous demand. These aspects are essentially dependent on corrosion resistant alloys used. In this context, the weld overlay with Ni-based superalloys is a great interesting alternative, since improve the corrosion resistance without increase the cost of manufacture when compared to massive equipment. Thus, the objective of this study was to evaluate the metallurgical aspects of Inconel 625 weld overlays deposited by GTAW cold wire feed process. The welds were performed using a

  20. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  1. Stress corrosion cracking of austenitic weld deposits in a salt spray environment

    Energy Technology Data Exchange (ETDEWEB)

    Cai, J.B. [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China); Yu, C.; Shiue, R.K. [Department of Materials Engineering, National Taiwan University, Taipei 106, Taiwan (China); Tsay, L.W., E-mail: b0186@mail.ntou.edu.tw [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2015-10-15

    ER 308L and 309LMo were utilized as the filler metals for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. U-bend and weight-loss tests were conducted by testing the welds in a salt spray containing 10 wt% NaCl at 120 °C. The dissolution of the skeletal structure in the fusion zone (FZ) caused the stress corrosion cracking (SCC) of the weld. The FZ in the cold-rolled condition showed the longest single crack length in the U-bend tests. Moreover, sensitization treatment at 650 °C for 10 h promoted the formation of numerous fine cracks, which resulted in a high SCC susceptibility. The weight loss of the deposits was consistent with the SCC susceptibility of the welds in a salt spray. The 309LMo deposit was superior to the 308L deposit in the salt spray. - Highlights: • ER 308L and 309LMo were utilized as fillers for the groove and overlay welds of a 304L SS. • U-bend and weight-loss tests in a salt spray containing 10 wt% NaCl at 120 °C were performed. • The dissolution of solidified structure caused the SCC of the welds in a salt spray. • Sensitization treatment increased the weight loss and SCC susceptibility of the deposits. • The weight loss of the weld deposits was related to their SCC susceptibility in a salt spray.

  2. Stress corrosion cracking of austenitic weld deposits in a salt spray environment

    International Nuclear Information System (INIS)

    Cai, J.B.; Yu, C.; Shiue, R.K.; Tsay, L.W.

    2015-01-01

    ER 308L and 309LMo were utilized as the filler metals for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. U-bend and weight-loss tests were conducted by testing the welds in a salt spray containing 10 wt% NaCl at 120 °C. The dissolution of the skeletal structure in the fusion zone (FZ) caused the stress corrosion cracking (SCC) of the weld. The FZ in the cold-rolled condition showed the longest single crack length in the U-bend tests. Moreover, sensitization treatment at 650 °C for 10 h promoted the formation of numerous fine cracks, which resulted in a high SCC susceptibility. The weight loss of the deposits was consistent with the SCC susceptibility of the welds in a salt spray. The 309LMo deposit was superior to the 308L deposit in the salt spray. - Highlights: • ER 308L and 309LMo were utilized as fillers for the groove and overlay welds of a 304L SS. • U-bend and weight-loss tests in a salt spray containing 10 wt% NaCl at 120 °C were performed. • The dissolution of solidified structure caused the SCC of the welds in a salt spray. • Sensitization treatment increased the weight loss and SCC susceptibility of the deposits. • The weight loss of the weld deposits was related to their SCC susceptibility in a salt spray.

  3. Analysis of the Corrosion Behavior of an A-TIG Welded SS 409 Weld Fusion Zone

    Science.gov (United States)

    Vidyarthy, R. S.; Dwivedi, D. K.

    2017-11-01

    AISI 409 (SS 409) ferritic stainless steel is generally used as the thick gauge section in freight train wagons, in ocean containers, and in sugar refinery equipment. Activating the flux tungsten inert gas (A-TIG) welding process can reduce the welding cost during fabrication of thick sections. However, corrosion behavior of the A-TIG weld fusion zone is a prime concern for this type of steel. In the present work, the effect of the A-TIG welding process parameters on the corrosion behavior of a weld fusion zone made of 8-mm-thick AISI 409 ferritic stainless-steel plate has been analyzed. Potentiodynamic polarization tests were performed to evaluate the corrosion behavior. The maximum corrosion potential ( E corr) was shown by the weld made using a welding current of 215 A, a welding speed of 95 mm/min, and a flux coating density of 0.81 mg/cm2. The minimum E corr was observed in the weld made using a welding current of 190 A, a welding speed of 120 mm/min, and a flux coating density of 1.40 mg/cm2. The current study also presents the inclusive microstructure-corrosion property relationships using the collective techniques of scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction.

  4. Resistance of Coatings for Boiler Components of Waste-to-Energy Plants to Salt Melts Containing Copper Compounds

    Science.gov (United States)

    Galetz, Mathias Christian; Bauer, Johannes Thomas; Schütze, Michael; Noguchi, Manabu; Cho, Hiromitsu

    2013-06-01

    The accelerating effect of heavy metal compounds on the corrosive attack of boiler components like superheaters poses a severe problem in modern waste-to-energy plants (WTPs). Coatings are a possible solution to protect cheap, low alloyed steel substrates from heavy metal chloride and sulfate salts, which have a relatively low melting point. These salts dissolve many alloys, and therefore often are the limiting factor as far as the lifetime of superheater tubes is concerned. In this work the corrosion performance under artificial salt deposits of different coatings, manufactured by overlay welding, thermal spraying of self-fluxing as well as conventional systems was investigated. The results of our studies clearly demonstrate the importance of alloying elements such as molybdenum or silicon. Additionally, the coatings have to be dense and of a certain thickness in order to resist the corrosive attack under these severe conditions.

  5. Seleção de parâmetros através do método Taguchi para soldagem de revestimento com ligas de níquel pelo processo MIG/MAG Using the Taguchi method to select welding parameters for weld overlay with nickel alloy through the GMAW process

    Directory of Open Access Journals (Sweden)

    Antonio Rodolfo Paulino Pessoa

    2010-12-01

    Full Text Available Neste trabalho utilizou-se o método Taguchi (planejamento Robusto de experimentos, para cumprir com um reduzido número de ensaios, dois objetivos: obter a influência dos fatores de controle sobre as variáveis respostas e determinar as condições ideais para aplicação das ligas de níquel nas soldagens de revestimentos através do processo MIG/MAG com transferência metálica por curto-circuito. Foram escolhidos seis fatores de controle com três níveis cada: Tensão de referência, Velocidade de soldagem, Tipo de tecimento, Técnica da tocha, Gás de proteção e o Material de adição. Por sua vez as variáveis respostas escolhidas foram: Diluição (D e Razão entre o reforço e a largura (R/L. As soldagens foram realizadas na posição plana por simples deposição sobre chapas de aço ASTM 516 Gr60 com dimensões de 200 x 50 x 12,7 mm. O uso do tecimento proporcionou cordões com baixos valores da razão R/L e obteve valores bastante baixos de diluição chegando à ordem de 5%. A combinação dos níveis dos fatores de controle apontados como ótimos pelo método Taguchi resultaram em valores para as variáveis repostas consideradas adequadas para a soldagem de revestimento.In this work aim the Taguchi method (Robust design of experiments was chosen to achieve with a limited number of tests two objectives: the first was to the influence of the control factors (welding parameters on quality characteristics (weld bead geometry and the second was to determine optimal conditions for weld overlay with nickel alloy through the GMAW process in a short circuiting transfer mode. Six control factors were employed with three levels each: Reference voltage, Welding speed, Arc oscillation, welding gun orientation (Perpendicular, forehand and backhand, Shielding gas and filler metal. Already the employed quality characteristics were: Percent dilution (D and the ration between reinforcement and bead width (R/L. The weldings were accomplished using

  6. Welding processes and ocular hazards and protection.

    Science.gov (United States)

    Pabley, A S; Keeney, A H

    1981-07-01

    There are approximately 60 different forms of welding, but only six of these are commonly used. Shielded metal-arc or stick welding, gas metal-arc welding, and oxyacetylene welding are the most frequently used. All produce ultraviolet, visible, and infrared radiation at damaging levels. Conventional glass welding shields contain ultraviolet, visible, and infrared absorbers. Infrared absorbers, however, cause heating and secondary re-radiation. New polycarbonate lenses offer greater impact resistance, and have less tendency to welding spatter. Early abrasion-resistant and reflective coatings on plastics were ineffective. Thin layers of gold with proprietary coatings provide cool reflection and surface resistance. Thermal monitoring of welding indicated that these new shields reduce temperature rises above the ambient by 150% to 175% compared to green glass filter plates without interfering with the welder's vision.

  7. Effect of preemptive weld overlay on residual stress of repaired weldment in surge nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Chang Young; Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-07-01

    In the welding process, weldments usually include repair weld during the manufacturing process. Repair welds is supposed to cause strong tensile residual stress. Moreover weldments, usually made by Alloy 82/182, is susceptible to PWSCC. Therefore, mitigation of welding residual stress in weldments is important for reliable operating. PWOL is one of the methods for mitigation and verified for over twenty years. In this paper, residual stress distribution of repaired weldments and the effect of PWOL on mitigation is examined for surge nozzle.

  8. Seleção dos parâmetros através dos custos de soldagem para aplicação de revestimento com ligas de níquel depositadas pelo processo MIG/MAG Using the welding costs to select welding parameters for Weld Overlay with nickel alloy through the GMAW process

    Directory of Open Access Journals (Sweden)

    Antonio Rodolfo Paulino Pessoa

    2011-03-01

    Full Text Available Neste trabalho foram calculados e comparados os custos de soldagem associados a cada um dos ensaios realizados, como forma de determinar parâmetros operacionais adequados e economicamente viáveis para soldagem com o processo MIG/MAG com transferência metálica por curto-circuito, visando uma correta deposição de revestimentos com ligas de níquel sobre um substrato de aço C-Mn. O número de ensaios a serem realizados, foi determinado pelo uso do método Taguchi que dividiu os ensaios em duas matrizes L9, resultando num total de 18 ensaios. Na comparação dos gastos despendidos em cada um dos ensaios foi utilizado o custo direto total da soldagem de um revestimento com 55 mm de largura e 190 mm de comprimento, utilizando uma sobreposição de 50%. Com base nos resultados dos ensaios foram pré-selecionados quatro ensaios (R7, R11, R12 e RC4, dentre os quais o ensaio R11 apresentou o menor custo. Mas vale ressaltar que nos quatro ensaios pré-selecionados o material de adição utilizado foi a liga 625, pois esta liga apresentar um custo do arame-eletrodo muito inferior as demais ligas (C-276 e 686. Assim a escolha do material de adição para aplicação do revestimento ficou restrita somente a liga 625.In this work were calculated and compared the welding costs for each of the tests performed to determine operational parameters and economically feasible for welding with GMAW process in a short circuiting transfer mode, aiming at a correct weld overlay with nickel alloy on a substrate of C-Mn steel. The number of tests to be performed was determined by using the Taguchi method that divided the tests into two L9 orthogonal arrays resulting in a total of 18 experiments. To compare the costs incurred in each of the tests we used the total direct cost of welding a layer with dimensions of 55 x 190 mm, using an overlap of 50%. Based on the results of the tests were pre-selected four tests (R7, R11, R12 and RC4, among which the test R11 has the

  9. Fracture toughness curve shift in low upper-shelf welds (series 8)

    International Nuclear Information System (INIS)

    Iskander, S.K.; Nanstad, R.K.; Manneschmidt, E.T.

    1995-01-01

    This task examines the fracture toughness curve shifts and changes in shape for irradiated welds with low CVN upper-shelf energy (USE). The information developed under this task will augment information obtained from other HSSI tasks performed on two high-USE weldments under the Fifth and Sixth Irradiation Series and on a commercial, low USE under the Tenth Irradiation Series. The results will provide an expanded basis for accounting for irradiation-induced embrittlement in RPV materials. Three low-USE welds have been ordered from ABB-Combustion Engineering (ABB-CE), Chattanooga, Tennessee, and two of them have been delivered to ORNL. ABB-CE fabricated the welds for the Fifth and Sixth Series. Preliminary results of mechanical and chemical tests from these two welds are presented below. The Linde 80 flux was used for all three welds. One weld, Weld 1, was made with the 73W weld wire. Weld wire 73W had copper added to the melt to reduce the variations that are associated with copper-coated weld wire. The other two welds were fabricated with a commercially available copper-coated weld wire, L-TEC 44 heat 44112. One of these two welds, Weld 2, has a target copper level of 0.31 %. This copper level could not be attained using the copper-coated wire, and the coating will be stripped from the wire, which contains 0.07 % Cu. To attain the target copper level, supplemental copper will be added to the weld puddle using an ABB-CE proprietary process. This will slightly delay the delivery of weld 2, the expected delivery date is now the end of April 1995. Weld 3 was fabricated with the same heat of the L-TEC 44 copper-coated weld wire as weld 2, but with supplemental copper added to the weld puddle, which resulted in a weldment containing an average of 0.424 % Cu. The semiannual report for October 1993 through March 1994 discusses the reasons for the above choices of copper content and welding wire

  10. Overlay improvement methods with diffraction based overlay and integrated metrology

    Science.gov (United States)

    Nam, Young-Sun; Kim, Sunny; Shin, Ju Hee; Choi, Young Sin; Yun, Sang Ho; Kim, Young Hoon; Shin, Si Woo; Kong, Jeong Heung; Kang, Young Seog; Ha, Hun Hwan

    2015-03-01

    To accord with new requirement of securing more overlay margin, not only the optical overlay measurement is faced with the technical limitations to represent cell pattern's behavior, but also the larger measurement samples are inevitable for minimizing statistical errors and better estimation of circumstance in a lot. From these reasons, diffraction based overlay (DBO) and integrated metrology (IM) were mainly proposed as new approaches for overlay enhancement in this paper.

  11. Cryogenic testing of fluoropolymer-coated stainless steel tubing

    International Nuclear Information System (INIS)

    Dooley, J.B.

    1989-11-01

    Stainless steel tubing coated internally with two different types of fluorinated polymers were subjected to microscopic examination after a welding operation had been performed on the tubing. The welded assemblies were photographed and subjected to repeated cycles between liquid helium and room temperature. The green tetrafluoroethylene (TFE) coating peeled back in the area subjected to welding heat and displayed cracking all over its surface without regard to proximity to the weld area. The dark fluorinated ethylene propylene (FEP) coating showed a tendency to char or burn away progressively in the weld area. The dark (FEP) coating did not crack as extensively as the green TFE coating, but did show a few areas of ''crazing'' or cracking of the topmost surface after cryogenic exposure. 12 figs

  12. Efeito do tipo de revestimento na soldagem a ponto de aços galvanizados Effect of coating type on spot welding of galvanized steel

    Directory of Open Access Journals (Sweden)

    Tarcélio Anício da Silva

    2010-09-01

    Full Text Available Os aços galvanizados são cada vez mais utilizados pela indústria automobilística devido à sua excelente resistência à corrosão e boa trabalhabilidade. A soldagem a pontos por resistência de aços galvanizados apresenta o inconveniente de um maior desgaste dos eletrodos quando comparada com a soldagem de aços não revestidos. Este é causado pela reação do zinco com o cobre do eletrodo, formando uma liga Zn-Cu (latão que diminui a vida útil do eletrodo. No presente trabalho, foram feitos testes de soldagem a ponto utilizando aços livres de intersticiais (IF, revestidos por imersão a quente com zinco puro (GI e liga Zn-Fe (GA. Foram determinados os campos de soldabilidade dinâmicos e a vida útil dos eletrodos para juntas formadas pelas combinações GA/GA, GI/GI e GA/GI. O estudo do campo de soldabilidade dinâmica mostrou que os valores de corrente necessários para a obtenção de uma solda adequada aumentam mais rapidamente para a junta de materiais GI/GI e este efeito foi associado com a maior contaminação do eletrodo pelo Zn do revestimento. Por sua vez, a soldagem da junta GA/GI apresenta taxas de variação desta corrente um pouco maiores do que a da junta GA/GA, mas menores que a da junta GI/GI. Em geral, a junta GA/GI apresentou resultados nos testes de soldagem mais próximos dos da junta GA/GA em comparação com os testes com a junta GI/GI. Isto mostra a influência positiva, do revestimento GA, no aumento do número de pontos de solda, mesmo quando a junta é constituída de aços com dois tipos de revestimentos diferentes (GA e GI.Steels coated with zinc and zinc-iron alloys are being increasingly used by the car industry due to their excellent corrosion resistance and good workability. Spot welding of coated steels has the disadvantage of increasing electrodes wear when compared to uncoated steels. Such wear is caused by the reaction of the zinc coating with the copper of the electrode forming an alloy Zn

  13. Low activation steels welding with PWHT and coating for ITER Test Blanket Modules and DEMO

    International Nuclear Information System (INIS)

    Aubert, P.; Tavassoli, F.; Rieth, M.; Diegele, E.; Poitevin, Y.

    2009-01-01

    Eurofer weldability is established for data base assessment and TBM manufacturing support. Electron Beam, Hybrid (Laser combined with MIG/MAG), Laser and Narrow Gap TIG processes have been carried out on Eurofer Low activation steel. Electron Beam produces very narrow fusion zone width, in the range of 3 to 4 mm, and too strong enhanced weld shape with brittle joints with δ-ferrite and pores. This process is considered only for low penetration depth (cooling plates). The other processes produce 2 families of similar results: one for Hybrid (MIG + Laser) and Laser processes, and a second one for TIG and Narrow Gap TIG processes. The first one procures less distortion and coarsened fusion zone, due to higher cooling rate. For all the welding processes, high hardness values, increasing brittleness and softening effects in the Heat Affected Zone are observed for each welding configuration that could signal creep problems. The Fusion Zones are typically composed of martensite laths, with small grain sizes. In the Heat Affected Zones, martensite grains are observed with carbide precipitation. Eurofer filler wire with optimized chemical composition is developed for producing welds with good properties and high joint coefficient value. To restore mechanical properties after welding, PWHT have been developed: single step for the first family and 2 steps for the second one. Distortions of different mock-ups with and without PWHT have been managed to assess manufacturing rules and clamping devices. Welding data base has thus been established. W coating on the TBM structure has shown no strong effect on the TBM structure. (author)

  14. Protection of welded joints against corrosion degradation

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2013-01-01

    Full Text Available Welded joints form an integral part of steel constructions. Welded joints are undetachable joints, which are however subjects of corrosion processes. The internal energy increases during the fusion welding especially in the heat affected places around the welded joint, which become initiating spot of corrosion degradation.The aim of the experiment is to put a welded joint produced by the MAG method to a test of corrosion degradation under the conditions of the norm ČSN ISO 9227 (salt-spray test. Organic and inorganic anticorrosion protections were applied on welded beads. First of all, there were prepared welded beads using the method MAG; secondly, metallographical analyses of welded metal, heat affected places and base material were processed. Further, microhardness as well as analysis of chemical composition using the EDS microscope were analysed. Based on a current trend in anticorrosion protections, there were chosen three types of protective coatings. First protective system was a double-layer synthetic system, where the base layer is formed by paint Pragroprimer S2000 and the upper layer by finishing paint Industrol S 2013. Second protective system is a duplex system formed by a combination of a base zinc coating with Zinorex paint. The last protective system was formed by zinc dipping only. Corrosion resistance of the individual tested samples was evaluated based on degradation of protective coating. The corrosion origin as well as the corrosion process were observed, the main criteria was the observation of welded bead.

  15. The effect of individually-induced processes on image-based overlay and diffraction-based overlay

    Science.gov (United States)

    Oh, SeungHwa; Lee, Jeongjin; Lee, Seungyoon; Hwang, Chan; Choi, Gilheyun; Kang, Ho-Kyu; Jung, EunSeung

    2014-04-01

    In this paper, set of wafers with separated processes was prepared and overlay measurement result was compared in two methods; IBO and DBO. Based on the experimental result, theoretical approach of relationship between overlay mark deformation and overlay variation is presented. Moreover, overlay reading simulation was used in verification and prediction of overlay variation due to deformation of overlay mark caused by induced processes. Through this study, understanding of individual process effects on overlay measurement error is given. Additionally, guideline of selecting proper overlay measurement scheme for specific layer is presented.

  16. Fatigue properties of dissimilar metal laser welded lap joints

    Science.gov (United States)

    Dinsley, Christopher Paul

    This work involves laser welding austenitic and duplex stainless steel to zinc-coated mild steel, more specifically 1.2mm V1437, which is a Volvo Truck Coiporation rephosphorised mild steel. The work investigates both tensile and lap shear properties of similar and dissimilar metal laser welded butt and lap joints, with the majority of the investigation concentrating on the fatigue properties of dissimilar metal laser welded lap joints. The problems encountered when laser welding zinc-coated steel are addressed and overcome with regard to dissimilar metal lap joints with stainless steel. The result being the production of a set of guidelines for laser welding stainless steel to zinc-coated mild steel. The stages of laser welded lap joint fatigue life are defined and the factors affecting dissimilar metal laser welded lap joint fatigue properties are analysed and determined; the findings suggesting that dissimilar metal lap joint fatigue properties are primarily controlled by the local stress at the internal lap face and the early crack growth rate of the material at the internal lap face. The lap joint rotation, in turn, is controlled by sheet thickness, weld width and interfacial gap. Laser welded lap joint fatigue properties are found to be independent of base material properties, allowing dissimilar metal lap joints to be produced without fatigue failure occurring preferentially in the weaker parent material, irrespective of large base material property differences. The effects of Marangoni flow on the compositions of the laser weld beads are experimentally characterised. The results providing definite proof of the stirring mechanism within the weld pool through the use of speeds maps for chromium and nickel. Keywords: Laser welding, dissimilar metal, Zinc-coated mild steel, Austenitic stainless steel, Duplex stainless steel, Fatigue, Lap joint rotation, Automotive.

  17. Low activation steels welding with PWHT and coating for ITER test blanket modules and DEMO

    Science.gov (United States)

    Aubert, P.; Tavassoli, F.; Rieth, M.; Diegele, E.; Poitevin, Y.

    2011-02-01

    EUROFER weldability is investigated in support of the European material properties database and TBM manufacturing. Electron Beam, Hybrid, laser and narrow gap TIG processes have been carried out on the EUROFER-97 steel (thickness up to 40 mm), a reduced activation ferritic-martensitic steel developed in Europe. These welding processes produce similar welding results with high joint coefficients and are well adapted for minimizing residual distortions. The fusion zones are typically composed of martensite laths, with small grain sizes. In the heat-affected zones, martensite grains contain carbide precipitates. High hardness values are measured in all these zones that if not tempered would degrade toughness and creep resistance. PWHT developments have driven to a one-step PWHT (750 °C/3 h), successfully applied to joints restoring good material performances. It will produce less distortion levels than a full austenitization PWHT process, not really applicable to a complex welded structure such as the TBM. Different tungsten coatings have been successfully processed on EUROFER material. It has shown no really effect on the EUROFER base material microstructure.

  18. Low activation steels welding with PWHT and coating for ITER test blanket modules and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, P., E-mail: Philippe.aubert@cea.fr [CEA Saclay, DEN/DM2S, F-91191 Gif sur Yvette (France); Tavassoli, F. [CEA Saclay, DEN/DMN, F-91191 Gif sur Yvette (France); Rieth, M. [KIT, IMF I, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Diegele, E.; Poitevin, Y. [Fusion for Energy (F4E), C/Josep Pla 2 - Ed. B3, 08019 Barcelona (Spain)

    2011-02-15

    EUROFER weldability is investigated in support of the European material properties database and TBM manufacturing. Electron Beam, Hybrid, laser and narrow gap TIG processes have been carried out on the EUROFER-97 steel (thickness up to 40 mm), a reduced activation ferritic-martensitic steel developed in Europe. These welding processes produce similar welding results with high joint coefficients and are well adapted for minimizing residual distortions. The fusion zones are typically composed of martensite laths, with small grain sizes. In the heat-affected zones, martensite grains contain carbide precipitates. High hardness values are measured in all these zones that if not tempered would degrade toughness and creep resistance. PWHT developments have driven to a one-step PWHT (750 {sup o}C/3 h), successfully applied to joints restoring good material performances. It will produce less distortion levels than a full austenitization PWHT process, not really applicable to a complex welded structure such as the TBM. Different tungsten coatings have been successfully processed on EUROFER material. It has shown no really effect on the EUROFER base material microstructure.

  19. Low activation steels welding with PWHT and coating for ITER test blanket modules and DEMO

    International Nuclear Information System (INIS)

    Aubert, P.; Tavassoli, F.; Rieth, M.; Diegele, E.; Poitevin, Y.

    2011-01-01

    EUROFER weldability is investigated in support of the European material properties database and TBM manufacturing. Electron Beam, Hybrid, laser and narrow gap TIG processes have been carried out on the EUROFER-97 steel (thickness up to 40 mm), a reduced activation ferritic-martensitic steel developed in Europe. These welding processes produce similar welding results with high joint coefficients and are well adapted for minimizing residual distortions. The fusion zones are typically composed of martensite laths, with small grain sizes. In the heat-affected zones, martensite grains contain carbide precipitates. High hardness values are measured in all these zones that if not tempered would degrade toughness and creep resistance. PWHT developments have driven to a one-step PWHT (750 o C/3 h), successfully applied to joints restoring good material performances. It will produce less distortion levels than a full austenitization PWHT process, not really applicable to a complex welded structure such as the TBM. Different tungsten coatings have been successfully processed on EUROFER material. It has shown no really effect on the EUROFER base material microstructure.

  20. Laser welding study for further development in essential power plant part repairs

    Directory of Open Access Journals (Sweden)

    Isarawit Chaopanich

    2015-06-01

    Full Text Available The objective of this research work was to study the effects of laser welding when compared with shield metal arc welding (SMAW process on the heat input, welded deposit rate, residual stress, distortion, microstructure and micro hardness. The martensitic stainless steel grade 431 specimens were overlay welded with the stainless steel filler metals. From the results, the heat input of 0.26 kJ/mm in laser welding calculated was significantly lower than that of 1.66 kJ/mm in SMAW, and contributed to low level residual stress, minimal distortion, very small penetration depth and heat affected zone (HAZ of less than 100 µm. The micro hardness results indicated that the maximum value from laser welding in the HAZ was 370.2 HV lower than the value from SMAW of 525.5 HV. The welded deposit rate for laser welding was with 26.5 mm3 /min remarkably lower than the rate for SMAW of 1,800 mm3 /min.

  1. The interface microstructure, mechanical properties and corrosion resistance of dissimilar joints during multipass laser welding for nuclear power plants

    Science.gov (United States)

    Li, Gang; Lu, Xiaofeng; Zhu, Xiaolei; Huang, Jian; Liu, Luwei; Wu, Yixiong

    2018-05-01

    This study presents the interface microstructure, mechanical properties and corrosion resistance of dissimilar joints between Inconel 52M overlays and 316L stainless steel during multipass laser welding for nuclear power plants. The results indicate that the microstructure at the interface beside 316L stainless steel consists of cellular with the width of 30-40 μm, which also exhibits numerous Cr and Mo-rich precipitates like flocculent structure and in chains along grain boundaries as a mixed chemical solution for etching. Many dendritic structure with local melting characteristics and Nb-rich precipitates are exhibited at the interface beside Inconel 52M overlays. Such Nb-rich precipitates at the interface beside Inconel 52M overlays deteriorate the tensile strength and toughness of dissimilar joints at room temperature. The tensile strength of 316L stainless steel at 350 °C significantly decreases with the result that dissimilar joints are fractured in 316L stainless steel. The correlation between corrosion behavior and microstructure of weld metals is also discussed. The difference in high corrosion potential between Nb-rich precipitates and the matrix could result in establishing effective galvanic couples, and thus accelerating the corrosion of weld metals.

  2. Development of weldable, corrosion-resistant iron-aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    Corrosion-resistant, weldable FeAl alloys have been developed with improved high-temperature strength industrial applications. Previous processing difficulties with these alloys led to their evaluation as weld-overlay claddings on conventional structural steels to take advantage of their good properties now. Simplified and better processing methods for monolithic FeAl components are also currently being developed so that components for industrial testing can be made. Other avenues for producing FeAl coatings are currently being explored. Neutron scattering experiments residual stress distributions in the FeAl weld-overlay cladding began in FY 1993 and continued this year.

  3. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  4. Thermally joining and/or coating or thermally separating the workpieces having heat-sensitive coating, comprises restoring coating by thermally coating the coating material after thermally joining and/or coating or thermally separating

    OpenAIRE

    Riedel, Frank; Winkelmann, Ralf; Puschmann, Markus

    2011-01-01

    The method for thermally joining and/or coating or thermally separating the workpieces (1), which have a heat-sensitive coating (2), comprises restoring the coating by thermally coating a coating material (3) after thermally joining and/or coating or thermally separating the workpieces. A part of the thermal energy introduced in the workpiece for joining and/or coating or separating or in the workpieces is used for thermally coating the coating material. Two workpieces are welded or soldered ...

  5. Microstructural transformations and mechanical properties of cast NiAl bronze: Effects of fusion welding and friction stir processing

    International Nuclear Information System (INIS)

    Fuller, M.D.; Swaminathan, S.; Zhilyaev, A.P.; McNelley, T.R.

    2007-01-01

    A plate of as-cast NiAl bronze (NAB) material was sectioned from a large casting. A six-pass fusion weld overlay was placed in a machined groove; a portion of the weld reinforcement was removed by milling and a single friction stir processing (FSP) pass was conducted in a direction transverse to the axis of and over the weld overlay. A procedure was developed for machining of miniature tensile samples and the distributions of strength and ductility were evaluated for the fusion weld metal; for the stir zone (SZ) produced by the friction stir processing; and for a region wherein friction stir processing had taken place over the fusion weld. A region of low ductility in the heat affected zone (HAZ) of the fusion weld and in the thermomechanically affected zone (TMAZ) of friction stir processed material was attributed to partial reversion of an equilibrium lamellar eutectoid constituent upon local heating above ∼800 deg. C and formation of non-equilibrium transformation products upon subsequent cooling. The adverse effect on ductility is worse in the heat affected zone of the fusion weld than in the thermomechanically affected zone of friction stir processing due to the lower heat input of the latter process. The implications of this work to engineering applications of friction stir processing are discussed

  6. Effects of Welding Parameters on Strength and Corrosion Behavior of Dissimilar Galvanized Q&P and TRIP Spot Welds

    Directory of Open Access Journals (Sweden)

    Pasquale Russo Spena

    2017-12-01

    Full Text Available This study investigates the effects of the main welding parameters on mechanical strength and corrosion behavior of galvanized quenching and partitioning and transformation induced plasticity spot welds, which are proposed to assemble advanced structural car elements for the automotive industry. Steel sheets have been welded with different current, clamping force, and welding time settings. The quality of the spot welds has been assessed through lap-shear and salt spray corrosion tests, also evaluating the effects of metal expulsion on strength and corrosion resistance of the joints. An energy dispersive spectrometry elemental mapping has been used to assess the damage of the galvanized zinc coating and the nature of the corrosive products. Welding current and time have the strongest influence on the shear strength of the spot welds, whereas clamping force is of minor importance. However, clamping force has the primary effect on avoiding expulsion of molten metal from the nugget during the joining process. Furthermore, clamping force has a beneficial influence on the corrosion resistance because it mainly hinders the permeation of the corrosive environment towards the spot welds. Although the welded samples can exhibit high shear strength also when a metal expulsion occurs, this phenomenon should be avoided because it enhances the damage and vaporization of the protective zinc coating.

  7. An investigation on microstructure and mechanical property of thermally aged stainless steel weld overlay cladding

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X.Y. [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Zhu, P. [Suzhou Nuclear Power Research Institute Co. Ltd., 1788 Xihuan Road, 215004 Suzhou (China); Ding, X.F. [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Lu, Y.H., E-mail: lu_yonghao@mater.ustb.edu.cn [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Shoji, T. [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Fracture and Reliability Research Institute, Tohoku University, 6-6-01 Aoba AramakiAobaku, 980-8579 Sendai (Japan)

    2017-04-01

    Microstructural evolution and mechanical property change of E308L stainless steel weld overlay cladding aged at 400 °C for 400, 1000 and 5000 h were investigated by transmission electron microscope (TEM) and small punch test (SPT). The results indicated that thermal aging had no obvious effect on the volume fraction of ferrite, but can cause microstructural evolution by spinodal decomposotion and G-phase precipitation in the ferrite phase. Spinodal decomposition took place after aging up to 1000 h, while G-phase formed along dislocations, and growed up to 2–11 nm after aging for 5000 h. The total energy for inducing deformation and fracture by the small punch tests decreased with the increase of thermal aging time, and this decline was associated with spinodal decomposition and G-phase precipitation. Plastic deformation of the aged ferrite proceeded via formation of curvilinear slip bands. Nucleation of microcracks occurred at the δ/γ interface along the slip bands. The hardening of the ferrite and high stress concentration on δ/γ phase interface resulted in brittle fracture and phase boundary separation after thermal aging. - Highlights: •Spinodal decomposition took place after long-term therml aging at 400 °C. •Dislocations were the preferable sites for G-phase formation aged at 400 °C for 5000 h. •Spinodal decomposition and G-phase precipitation induced reduction of small punch energy. •Thermal aging led to brittle fracture and phase boundary separation. •Nucleation of microcracks occurred at the δ/γ interface along the slip bands in the aged ferrite phase.

  8. An investigation on microstructure and mechanical property of thermally aged stainless steel weld overlay cladding

    International Nuclear Information System (INIS)

    Cao, X.Y.; Zhu, P.; Ding, X.F.; Lu, Y.H.; Shoji, T.

    2017-01-01

    Microstructural evolution and mechanical property change of E308L stainless steel weld overlay cladding aged at 400 °C for 400, 1000 and 5000 h were investigated by transmission electron microscope (TEM) and small punch test (SPT). The results indicated that thermal aging had no obvious effect on the volume fraction of ferrite, but can cause microstructural evolution by spinodal decomposotion and G-phase precipitation in the ferrite phase. Spinodal decomposition took place after aging up to 1000 h, while G-phase formed along dislocations, and growed up to 2–11 nm after aging for 5000 h. The total energy for inducing deformation and fracture by the small punch tests decreased with the increase of thermal aging time, and this decline was associated with spinodal decomposition and G-phase precipitation. Plastic deformation of the aged ferrite proceeded via formation of curvilinear slip bands. Nucleation of microcracks occurred at the δ/γ interface along the slip bands. The hardening of the ferrite and high stress concentration on δ/γ phase interface resulted in brittle fracture and phase boundary separation after thermal aging. - Highlights: •Spinodal decomposition took place after long-term therml aging at 400 °C. •Dislocations were the preferable sites for G-phase formation aged at 400 °C for 5000 h. •Spinodal decomposition and G-phase precipitation induced reduction of small punch energy. •Thermal aging led to brittle fracture and phase boundary separation. •Nucleation of microcracks occurred at the δ/γ interface along the slip bands in the aged ferrite phase.

  9. Study on Laser Welding Process Monitoring Method

    OpenAIRE

    Heeshin Knag

    2016-01-01

    In this paper, a study of quality monitoring technology for the laser welding was conducted. The laser welding and the industrial robotic systems were used with robot-based laser welding systems. The laser system used in this study was 1.6 kW fiber laser, while the robot system was Industrial robot (pay-load : 130 kg). The robot-based laser welding system was equipped with a laser scanner system for remote laser welding. The welding joints of steel plate and steel plate coated with zinc were ...

  10. Diffraction based overlay and image based overlay on production flow for advanced technology node

    Science.gov (United States)

    Blancquaert, Yoann; Dezauzier, Christophe

    2013-04-01

    One of the main challenges for lithography step is the overlay control. For the advanced technology node like 28nm and 14nm, the overlay budget becomes very tight. Two overlay techniques compete in our advanced semiconductor manufacturing: the Diffraction based Overlay (DBO) with the YieldStar S200 (ASML) and the Image Based Overlay (IBO) with ARCHER (KLA). In this paper we will compare these two methods through 3 critical production layers: Poly Gate, Contact and first metal layer. We will show the overlay results of the 2 techniques, explore the accuracy and compare the total measurement uncertainty (TMU) for the standard overlay targets of both techniques. We will see also the response and impact for the Image Based Overlay and Diffraction Based Overlay techniques through a process change like an additional Hardmask TEOS layer on the front-end stack. The importance of the target design is approached; we will propose more adapted design for image based targets. Finally we will present embedded targets in the 14 FDSOI with first results.

  11. The properties and microstructure of padding welds built up on the surface of forging dies

    Directory of Open Access Journals (Sweden)

    S. Pytel

    2010-07-01

    Full Text Available The study presents selected results of the examinations of the properties and microstructure of weld overlays built up with the UTOP38,F-812 and F-818 welding wires on a substrate of the 42CrMo4 structural steel. Among others, the following investigations were carriedout: bend tests, hardness measurements and determination of ferrite content in a bainitic-martensitic microstructure of UTOP38 and F-812layers.

  12. VT Data - Overlay District 20170407, Burlington

    Data.gov (United States)

    Vermont Center for Geographic Information — The following Overlay District Data is included:Design Review OverlayInstitutional Core Campus OverlayRH Density Bonus OverlayNatural Resource Protection OverlayRL...

  13. An investigation on mechanical properties of steel fibre reinforced for underwater welded joint

    Science.gov (United States)

    Navin, K.; Zakaria, M. S.; Zairi, S.

    2017-09-01

    Underwater pipelines are always exposed to water and have a high tendency to have corrosion especially on the welded joint. This research is about using fiber glass as steel fiber to coat the welded joint to determine the effectiveness in corrosion prevention of the welded joint. Number of coating is varied to determine the better number coating to coat the pipeline. Few samples were left without immersion in salt water and few samples are immersed into salt water with same salinity as sea water. The material sample is prepared in dog bone shape to enable to be used in Universal Tensile Machine (UTM). The material prepared is left immersed for recommended time and tested in Universal Tensile Machine. Upon analyzing the result, the result is used to determine the breakage point whether broken on the welded joint or different place and also the suitable number of coating to be used.

  14. Production of Manual Metal Arc Welding Electrodes with Local Raw ...

    African Journals Online (AJOL)

    Manual arc welding using flux coated electrodes is carried out by producing an electric arc between the base metal and a flux covered metal electrode with electric current that depends on the type of electrode, material, welding position and the desired strength. The composition of flux coated electrodes is complex and a ...

  15. Effectiveness of amorphous silica encapsulation technology on welding fume particles and its impact on mechanical properties of welds

    International Nuclear Information System (INIS)

    Wang, Jun; Wu, Chang-Yu; Franke, Gene

    2014-01-01

    Highlights: • A novel welding shielding gas containing a silica precursor. • Up to 76% of the welding fume particles encapsulated in an amorphous silica layer. • No statistical difference between different types of welds in mechanical tests. • Can potentially reduce the toxicity of welding fume particles. - Abstract: Stainless steel welding generates nano-sized fume particles containing toxic metals which may cause serious health effects upon inhalation. The objective of this study was to investigate the effectiveness of an amorphous silica encapsulation (ASE) technology by evaluating its silica coating efficiency (SCE), particle morphology, and its impact on the weld’s mechanical properties. Tetramethylsilane (TMS) added to the welding shielding gas decomposed at the high-temperature arc zone to enable the silica coating. Collected welding fume particles were digested by two acid mixtures with different degrees of silica solubility, and the measured mass differences in the digests were used to determine the SCE. The SCEs were around 48–64% at the low and medium primary shielding gas flow rates. The highest SCE of 76% occurred at the high shielding gas flow rate (30 Lpm) with a TMS carrier gas flow of 0.64 Lpm. Transmission electron microscopy (TEM) images confirmed the amorphous silica layer on the welding fume particles at most gas flow rates, as well as abundant stand-alone silica particles formed at the high gas flow rate. Metallography showed that welds from the baseline and from the ASE technology were similar except for a tiny crack found in one particular weld made with the ASE technology. Tensile tests showed no statistical difference between the baseline and the ASE welds. All the above test results confirm that welding equipment retrofitted with the ASE technology has the potential to effectively address the toxicity problem of welding fume particles without affecting the mechanical properties of the welds

  16. Effect of the Die Temperature and Blank Thickness on the Formability of a Laser-Welded Blank of a Boron Steel Sheet with Removing Al-Si Coating Layer

    Directory of Open Access Journals (Sweden)

    M. S. Lee

    2014-05-01

    Full Text Available Reducing carbon emissions has been a major focus in the automobile industry to address various environmental issues. In particular, studies on parts comprised of high strength sheets and light car bodies are ongoing. Accordingly, this study examined the use of boron steel, which is commonly used in high strength sheets. Boron steel is a type of sheet used for hot stamping parts. Although it has high strength, the elongation is inferior, which reduces its crash energy absorption capacity. To solve this problem, two sheets of different thickness were welded so the thin sheet would absorb crash energy and the thick sheet would work as a support. Boron steel, however, may show weakening at the welding spot due to the Al-Si coating layer used to prevent oxidation from occurring during the welding process. Therefore, a certain part of the coating layer of a double-thickness boron steel sheet that is welded in the hot stamping process is removed through laser ablation, and the formability of the hot-work was examined.

  17. Preliminary Study for Development of Welds Integrity Verification Equipment for the Small Bore Piping

    International Nuclear Information System (INIS)

    Choi, Geun Suk; Lee, Jong Eun; Ryu, Jung Hoon; Cho, Kyoung Youn; Sohn, Myoung Sung; Lee, Sanghoon; Sung, Gi Ho; Cho, Hong Seok

    2016-01-01

    It has been reported leakage accident of small-bore piping in Korea. Leakage accident of small-bore pipes are those that will increase due to the aging of the nuclear power plant. And if leakage of the pipe is repaired by using the clamping device when it occur accident, it is economically benefits. The clamping device is a fastening device used to hold or secure objects tightly together to prevent movement or separation through the application of inward pressure. However, when the accident occurs, it can't immediately respond because maintenance and repairing technology are not institutionalized in KEPIC. Thus it appears an economic loss. The technology for corresponding thereto is necessary for the safety of the operation of nuclear power plants. The purpose of this research is to develop an online repairing technology of socket welded pipe and vibration monitoring system of small-bore pipe in the nuclear power plant. Specifically, detailed studies are as follows : • Development of weld overlay method of safety class socket welded connections • Development of Mechanical Clamping Devices for Safety Class 2, 3 small-bore pipe. The purpose of this study is to develop an online repairing technology of socket welded pipe and vibration monitoring system of small-bore pipe, resulting in degraded plant systems. And it is necessary to institutionalize the technology. The fatigue crack testing of socket welded overlay will be performed and fatigue life evaluation method will be developed in second year. Also prototype fabrication of mechanical clamping device will be completed. Base on final goal, the intent is to propose practical evaluation tools, design and fabrication methods for socket welded connection integrity. And result of this study is to development of KEPIC code case approved technology for on-line repairing system of socket welded connection and fabrication of mechanical clamping device

  18. Photoelectron emission from thin overlayers

    International Nuclear Information System (INIS)

    Jablonski, A.

    2012-01-01

    Highlights: ► Weak influence of the support on photoemission from an overlayer. ► Accurate description of photoelectron intensity from overlayer by analytical theory. ► Method for overlayer thickness measurements based on analytical formalism. ► Influence of photoelectron elastic scattering on calculated thickness. -- Abstract: Photoelectron signal intensities calculated for a thin overlayer from theoretical models taking elastic photoelectron collisions into account are shown to be very weakly dependent on the substrate material. This result has been obtained for photoelectrons analyzed in XPS spectrometers equipped with typical X-ray sources, i.e. sources of Mg Kα and Al Kα radiation. Low sensitivity to the substrate material is due to the fact that trajectories of photoelectrons emitted in the overlayer and entering the substrate have a low probability to reach the analyzer without energy loss. On the other hand, the signal intensity of photoelectrons emitted in the overlayer is found to be distinctly affected by elastic photoelectron scattering. Consequently, a theoretical model that can accurately describe the photoelectron intensity from an overlayer deposited on any material (e.g. on a substrate of the same material as the overlayer) can be a useful basis for a universal and convenient method for determination of the overlayer thickness. It is shown that the formalism derived from the kinetic Boltzmann equation within the so-called transport approximation satisfies these requirements. This formalism is postulated for use in overlayer-thickness measurements to avoid time-consuming Monte Carlo simulations of photoelectron transport, and also to circumvent problems with determining the effective attenuation lengths for overlayer/substrate systems.

  19. Mechanical degradation of coating systems in high-temperature cyclic oxidation

    CSIR Research Space (South Africa)

    Pennefather, RC

    1995-01-01

    Full Text Available Cyclic oxidation tests were performed on a large variety of commercially available overlay coatings. The results confirmed that the composition of the coating as well as the processing method of the coating can affect the life of the system. Coating...

  20. Mechanical degradation of coating systems in high-temperature cyclic oxidation

    CSIR Research Space (South Africa)

    Pennefather, RC

    1996-01-01

    Full Text Available Cyclic oxidation tests were performed on a large variety of commercially available overlay coatings. The results confirmed that the composition of the coating as well as the processing method of the coating can affect the life of the system. Coating...

  1. Effects of Flux Precoating and Process Parameter on Welding Performance of Inconel 718 Alloy TIG Welds

    Science.gov (United States)

    Lin, Hsuan-Liang; Wu, Tong-Min; Cheng, Ching-Min

    2014-01-01

    The purpose of this study is to investigate the effect of activating flux on the depth-to-width ratio (DWR) and hot cracking susceptibility of Inconel 718 alloy tungsten inert gas (TIG) welds. The Taguchi method is employed to investigate the welding parameters that affect the DWR of weld bead and to achieve optimal conditions in the TIG welds that are coated with activating flux in TIG (A-TIG) process. There are eight single-component fluxes used in the initial experiment to evaluate the penetration capability of A-TIG welds. The experimental results show that the Inconel 718 alloy welds precoated with 50% SiO2 and 50% MoO3 flux were provided with better welding performance such as DWR and hot cracking susceptibility. The experimental procedure of TIG welding process using mixed-component flux and optimal conditions not only produces a significant increase in DWR of weld bead, but also decreases the hot cracking susceptibility of Inconel 718 alloy welds.

  2. VT Data - Overlay District 20170802, Shelburne

    Data.gov (United States)

    Vermont Center for Geographic Information — The following Overlay Districts are included in the data:Lakeshore Conservation OverlyNeighborhood OverlayVillage Design Review OverlayVillage Core OverlayWater...

  3. High temperature glass thermal control structure and coating. [for application to spacecraft reusable heat shielding

    Science.gov (United States)

    Stewart, D. A.; Goldstein, H. E.; Leiser, D. B. (Inventor)

    1983-01-01

    A high temperature stable and solar radiation stable thermal control coating is described which is useful either as such, applied directly to a member to be protected, or applied as a coating on a re-usable surface insulation (RSI). It has a base coat layer and an overlay glass layer. The base coat layer has a high emittance, and the overlay layer is formed from discrete, but sintered together glass particles to give the overlay layer a high scattering coefficient. The resulting two-layer space and thermal control coating has an absorptivity-to-emissivity ratio of less than or equal to 0.4 at room temperature, with an emittance of 0.8 at 1200 F. It is capable of exposure to either solar radiation or temperatures as high as 2000 F without significant degradation. When used as a coating on a silica substrate to give an RSI structure, the coatings of this invention show significantly less reduction in emittance after long term convective heating and less residual strain than prior art coatings for RSI structures.

  4. Visualization of the Coated Electrode Welding

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2016-01-01

    Full Text Available This work is dedicated to the evaluation of the welding process in terms of assessing the impact of weldability based on the recording of the non-destructive testing of the acoustic emission (AE. Measurements are performed utilising both materials with guaranteed weldability and materials with reduced weldability. In addition to welding, the thesis also discusses the material (metallographic and fractographic and mechanical verification of joint formation and the variations in behaviour of metals of differing chemical composition. It also includes an analysis of AE records in relation to the condition of the material during the developing of fusion and resistance joints.

  5. VT Data - Overlay District 20170228, Richmond

    Data.gov (United States)

    Vermont Center for Geographic Information — The following overlay districts are included in the data:Shoreline Protection OverlayFlood Hazard OverlayDetails about these overlay districts, as well as zoning...

  6. Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration

    Science.gov (United States)

    Kong, Fanrong; Ma, Junjie; Carlson, Blair; Kovacevic, Radovan

    2012-10-01

    Two different cases regarding the zinc coating at the lap joint faying surface are selected for studying the influence of zinc vapor on the keyhole dynamics of the weld pool and the final welding quality. One case has the zinc coating fully removed at the faying surface; while the other case retains the zinc coating on the faying surface. It is found that removal of the zinc coating at the faying surface produces a significantly better weld quality as exemplified by a lack of spatters whereas intense spatters are present when the zinc coating is present at the faying surface. Spectroscopy is used to detect the optical spectra emitted from a laser generated plasma plume during the laser welding of galvanized high strength DP980 steel in a lap-joint configuration. A correlation between the electron temperature and defects within the weld bead is identified by using the Boltzmann plot method. The laser weld pool keyhole dynamic behavior affected by a high-pressure zinc vapor generated at the faying surface of galvanized steel lap-joint is monitored in real-time by a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source.

  7. Critical issues in overlay metrology

    International Nuclear Information System (INIS)

    Sullivan, Neal T.

    2001-01-01

    In this paper, following an overview of overlay metrology, the difficult relationship of overlay with device performance and yield is discussed and supported with several examples. This is followed by a discussion of the impending collision of metrology equipment performance and 'real' process tolerances for sub 0.18 um technologies. This convergence of tolerance and performance is demonstrated to lead to the current emergence of real-time overlay modeling in a feed-forward/feedback process environment and the associated metrology/sampling implications. This modeling takes advantage of the wealth of understanding concerning the systematic behavior of overlay registration errors. Finally, the impact of new process technologies (RET, OAI, CPSM, CMP, and etc.) on the measurement target is discussed and shown to de-stabilize overlay performance on standard overlay measurement target designs

  8. The use of neutron diffraction for the determination of the in-depth residual stresses profile in weld coatings; A utilizacao da difracao de neutroes na determinacao do perfil de tensoes residuais em revestimentos por soldadura

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Maria Jose; Batista, A.C.; Nobre, J.P. [Universidade de Coimbra (Portugal). Dept. de Fisica. Centro de Estudos de Materiais por Difraccao de Raios X (CEMDRX); Loureiro, Altino [Universidade de Coimbra (Portugal). Dept. de Engenharia Mecanica. Centro de Engenharia Mecanica (CEMUC); Kornmeier, Joana R., E-mail: mjvaz@fe.up.pt [Technische Universitaet Muenchen, Garching (Germany). FRM II

    2013-04-15

    The neutron diffraction is a non-destructive technique, particularly suitable for the analysis of residual stress fields in welds. The technique is used in this article to study ferritic samples, coated by submerged arc welding using stainless steel filler metals. This procedure is often used for manufacturing process equipment for chemical and nuclear industries, for ease of implementation and economic reasons. The main disadvantage of that processes is the cracking phenomenon that often occurs at the interface between the base material and coatings, which can be minimized by performing post-weld stress relief heat treatments. The samples analyzed in this study were made of carbon steel plates, coated by submerged arc welding two types of stainless steel filler metals. For the first layer was used one EN 12 072 - S 2 U 23 12 electrode, while for the second and third layers were used an EN 12 072 - 19 12 3 S L electrode. After cladding, the samples were submitted to a post-weld heat treatment for 1 hour at 620 deg C. The residual stress profiles obtained by neutron diffraction evidence the relaxation of residual stress given by the heat treatment. (author)

  9. Laser based spot weld characterization

    Science.gov (United States)

    Jonietz, Florian; Myrach, Philipp; Rethmeier, Michael; Suwala, Hubert; Ziegler, Mathias

    2016-02-01

    Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto, the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called "weld nugget" provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contact-free, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established.

  10. Decreasing biotoxicity of fume particles produced in welding process.

    Science.gov (United States)

    Yu, Kuei-Min; Topham, Nathan; Wang, Jun; Kalivoda, Mark; Tseng, Yiider; Wu, Chang-Yu; Lee, Wen-Jhy; Cho, Kuk

    2011-01-30

    Welding fumes contain heavy metals, such as chromium, manganese, and nickel, which cause respiratory diseases and cancer. In this study, a SiO(2) precursor was evaluated as an additive to the shielding gas in an arc welding process to reduce the biotoxicity caused by welding fume particles. Transmission electron micrographic images show that SiO(2) coats on the surface of welding fume particles and promotes particle agglomeration. Energy dispersive X-ray spectroscopy further shows that the relative amount of silicon in these SiO(2)-coated agglomerates is higher than in baseline agglomerates. In addition, Escherichia coli (E. coli) exposed to different concentrations of pure SiO(2) particles generated from the arc welding process exhibits similar responses, suggesting that SiO(2) does not contribute to welding fume particle toxicity. The trend of E. coli growth in different concentrations of baseline welding fume particle shows the most significant inhibition occurs in higher exposure concentrations. The 50% lethal logarithmic concentrations for E. coli in arc welding particles of baseline, 2%, and 4.2% SiO(2) precursor additives were 823, 1605, and 1800 mg/L, respectively. Taken together, these results suggest that using SiO(2) precursors as an additive to arc welding shielding gas can effectively reduce the biotoxicity of welding fume. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Overlay metrology for double patterning processes

    Science.gov (United States)

    Leray, Philippe; Cheng, Shaunee; Laidler, David; Kandel, Daniel; Adel, Mike; Dinu, Berta; Polli, Marco; Vasconi, Mauro; Salski, Bartlomiej

    2009-03-01

    The double patterning (DPT) process is foreseen by the industry to be the main solution for the 32 nm technology node and even beyond. Meanwhile process compatibility has to be maintained and the performance of overlay metrology has to improve. To achieve this for Image Based Overlay (IBO), usually the optics of overlay tools are improved. It was also demonstrated that these requirements are achievable with a Diffraction Based Overlay (DBO) technique named SCOLTM [1]. In addition, we believe that overlay measurements with respect to a reference grid are required to achieve the required overlay control [2]. This induces at least a three-fold increase in the number of measurements (2 for double patterned layers to the reference grid and 1 between the double patterned layers). The requirements of process compatibility, enhanced performance and large number of measurements make the choice of overlay metrology for DPT very challenging. In this work we use different flavors of the standard overlay metrology technique (IBO) as well as the new technique (SCOL) to address these three requirements. The compatibility of the corresponding overlay targets with double patterning processes (Litho-Etch-Litho-Etch (LELE); Litho-Freeze-Litho-Etch (LFLE), Spacer defined) is tested. The process impact on different target types is discussed (CD bias LELE, Contrast for LFLE). We compare the standard imaging overlay metrology with non-standard imaging techniques dedicated to double patterning processes (multilayer imaging targets allowing one overlay target instead of three, very small imaging targets). In addition to standard designs already discussed [1], we investigate SCOL target designs specific to double patterning processes. The feedback to the scanner is determined using the different techniques. The final overlay results obtained are compared accordingly. We conclude with the pros and cons of each technique and suggest the optimal metrology strategy for overlay control in double

  12. Diffraction based overlay re-assessed

    Science.gov (United States)

    Leray, Philippe; Laidler, David; D'havé, Koen; Cheng, Shaunee

    2011-03-01

    In recent years, numerous authors have reported the advantages of Diffraction Based Overlay (DBO) over Image Based Overlay (IBO), mainly by comparison of metrology figures of merit such as TIS and TMU. Some have even gone as far as to say that DBO is the only viable overlay metrology technique for advanced technology nodes; 22nm and beyond. Typically the only reported drawback of DBO is the size of the required targets. This severely limits its effective use, when all critical layers of a product, including double patterned layers need to be measured, and in-die overlay measurements are required. In this paper we ask whether target size is the only limitation to the adoption of DBO for overlay characterization and control, or are there other metrics, which need to be considered. For example, overlay accuracy with respect to scanner baseline or on-product process overlay control? In this work, we critically re-assess the strengths and weaknesses of DBO for the applications of scanner baseline and on-product process layer overlay control. A comprehensive comparison is made to IBO. For on product process layer control we compare the performance on critical process layers; Gate, Contact and Metal. In particularly we focus on the response of the scanner to the corrections determined by each metrology technique for each process layer, as a measure of the accuracy. Our results show that to characterize an overlay metrology technique that is suitable for use in advanced technology nodes requires much more than just evaluating the conventional metrology metrics of TIS and TMU.

  13. Effects of thermal aging and neutron irradiation on the mechanical properties of three-wire stainless steel weld overlay cladding

    International Nuclear Information System (INIS)

    Haggag, F.M.; Nanstad, R.K.

    1997-05-01

    Thermal aging of three-wire series-arc stainless steel weld overlay cladding at 288 degrees C for 1605 h resulted in an appreciable decrease (16%) in the Charpy V-notch (CVN) upper-shelf energy (USE), but the effect on the 41-J transition temperature shift was very small (3 degrees C). The combined effect of aging and neutron irradiation at 288 degrees C to a fluence of 5 x 10 19 neutrons/cm 2 (> 1 MeV) was a 22% reduction in the USE and a 29 degrees C shift in the 41-J transition temperature. The effect of thermal aging on tensile properties was very small. However, the combined effect of irradiation and aging was an increase in the yield strength (6 to 34% at test temperatures from 288 to -125 degrees C) but no apparent change in ultimate tensile strength or total elongation. Neutron irradiation reduced the initiation fracture toughness (J Ic ) much more than did thermal aging alone. Irradiation slightly decreased the tearing modulus, but no reduction was caused by thermal aging alone. Other results from tensile, CVN, and fracture toughness specimens showed that the effects of thermal aging at 288 or 343 degrees C for 20,000 h each were very small and similar to those at 288 degrees C for 1605 h. The effects of long-term thermal exposure time (50,000 h and greater) at 288 degrees C will be investigated as the specimens become available in 1996 and beyond

  14. Development of Preemptive Repair Technology for Alloy 600 J-Groove Welds of Reactor Vessel Upper Head CEDM Nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kwang Woon; Lee, Jang Wook; Cho, Ki Hyun; Choi, Kwang Min; Choi, Dong Chul; Cho, Sang Beum; Cho, Hong Seok [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    After 2000, PWSCC in numerous NPPs around the world has been generated, and recently, PWSCC in several CEDM nozzles of domestic NPP Hanbit Unit 3 and 4 was founded and repaired with embedded flaw repair(EFR) welding method by Westinghouse. In this study, development status of EFR equipment and basic experimental results for preventive PWSCC of RVUH CEDM nozzles will be introduced. The development of EFR seal welding equipment and welding process for the preemptive repair with original Alloy 600 J-Groove welds of RVUHP was conducted. The EFR welding equipment was tested to be possible seal welding to track J-Groove welds with three dimensional curved surfaces and OD penetration with vertical welding position. Through several BOP and overlay welding experiments, it was verified that good weld beads with no defects, such as cracks, spatter, undercut at the stable welding conditions with heat input of 27.4-32.5 KJ/in were well produced. Consequently, it is expected that the EFR seal welding technique will be applicable on the site.

  15. Influência da energia de soldagem na microestrutura e na microdureza de revestimentos de aço inoxidável duplex Influence of the heat input on the microstructure and microhardness of weld overlay of duplex stainless steel

    Directory of Open Access Journals (Sweden)

    Everton Barbosa Nunes

    2012-06-01

    influence of the heat input on the microstructure and the microhardness of the weld metal of the DSS. The weld overlay were performed with deposition of two layers on the structural steel ASTM A516 Gr.60, using as filler metal the AWS E2209-17 coated electrode. Three energy levels (15, 20 and 24 kJ/ cm were used, varying the welding current and speed. It was verified that for energy levels used didn't have significant difference on the ferrite content, but the first bead deposited had a higher austenite content in relation to other beads. All conditions got microhardness below the critical value.

  16. Overlay networks toward information networking

    CERN Document Server

    Tarkoma, Sasu

    2010-01-01

    With their ability to solve problems in massive information distribution and processing, while keeping scaling costs low, overlay systems represent a rapidly growing area of R&D with important implications for the evolution of Internet architecture. Inspired by the author's articles on content based routing, Overlay Networks: Toward Information Networking provides a complete introduction to overlay networks. Examining what they are and what kind of structures they require, the text covers the key structures, protocols, and algorithms used in overlay networks. It reviews the current state of th

  17. VT Data - Overlay District 20170710, South Burlington

    Data.gov (United States)

    Vermont Center for Geographic Information — Overlay data for the City of South Burlington included in this data:Flood Plain Overlay DistrictTraffic Overlay DistrictInterstate Highway Overlay DistrictScenic...

  18. Analysis of the Covered Electrode Welding Process Stability on the Basis of Linear Regression Equation

    Directory of Open Access Journals (Sweden)

    Słania J.

    2014-10-01

    Full Text Available The article presents the process of production of coated electrodes and their welding properties. The factors concerning the welding properties and the currently applied method of assessing are given. The methodology of the testing based on the measuring and recording of instantaneous values of welding current and welding arc voltage is discussed. Algorithm for creation of reference data base of the expert system is shown, aiding the assessment of covered electrodes welding properties. The stability of voltage–current characteristics was discussed. Statistical factors of instantaneous values of welding current and welding arc voltage waveforms used for determining of welding process stability are presented. The results of coated electrodes welding properties are compared. The article presents the results of linear regression as well as the impact of the independent variables on the welding process performance. Finally the conclusions drawn from the research are given.

  19. Friction stir scribe welding technique for dissimilar joining of aluminium and galvanised steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianhao [Center for Friction Stir Processing, Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA; Sidhar, Harpreet [Center for Friction Stir Processing, Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA; Mishra, Rajiv S. [Center for Friction Stir Processing, Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA; Hovanski, Yuri [Pacific Northwest National Laboratory, Energy Materials and Manufacturing, Richland, WA, USA; Upadhyay, Piyush [Pacific Northwest National Laboratory, Energy Materials and Manufacturing, Richland, WA, USA; Carlson, Blair [General Motors Technical Center, Warren, MI, USA

    2017-10-04

    Friction stir scribe technology, a derivative of friction stir welding, was applied for the dissimilar lap welding of an aluminum alloy and galvanized mild steel sheets. During the process, the rotating tool with a cobalt steel scribe first penetrated the top material — aluminum — and then the scribe cut the bottom material — steel. The steel was displaced into the upper material to produce a characteristic hook feature. Lap welds were shear tested, and their fracture paths were studied. Welding parameters affected the welding features including hook height, which turned out to be highly related to fracture position. Therefore, in this paper, the relationships among welding parameters, hook height, joint strength and fracture position are presented. In addition, influence of zinc coating on joint strength was also studied. Keywords: friction stir scribe technology; dissimilar material welding; zinc coating; hook height; joint strength; fracture position

  20. Advanced overlay analysis through design based metrology

    Science.gov (United States)

    Ji, Sunkeun; Yoo, Gyun; Jo, Gyoyeon; Kang, Hyunwoo; Park, Minwoo; Kim, Jungchan; Park, Chanha; Yang, Hyunjo; Yim, Donggyu; Maruyama, Kotaro; Park, Byungjun; Yamamoto, Masahiro

    2015-03-01

    As design rule shrink, overlay has been critical factor for semiconductor manufacturing. However, the overlay error which is determined by a conventional measurement with an overlay mark based on IBO and DBO often does not represent the physical placement error in the cell area. The mismatch may arise from the size or pitch difference between the overlay mark and the cell pattern. Pattern distortion caused by etching or CMP also can be a source of the mismatch. In 2014, we have demonstrated that method of overlay measurement in the cell area by using DBM (Design Based Metrology) tool has more accurate overlay value than conventional method by using an overlay mark. We have verified the reproducibility by measuring repeatable patterns in the cell area, and also demonstrated the reliability by comparing with CD-SEM data. We have focused overlay mismatching between overlay mark and cell area until now, further more we have concerned with the cell area having different pattern density and etch loading. There appears a phenomenon which has different overlay values on the cells with diverse patterning environment. In this paper, the overlay error was investigated from cell edge to center. For this experiment, we have verified several critical layers in DRAM by using improved(Better resolution and speed) DBM tool, NGR3520.

  1. Passivating surface states on water splitting hematite photoanodes with alumina overlayers

    KAUST Repository

    Le Formal, Florian; Té treault, Nicolas; Cornuz, Maurin; Moehl, Thomas; Grä tzel, Michael; Sivula, Kevin

    2011-01-01

    Hematite is a promising material for inexpensive solar energy conversion via water splitting but has been limited by the large overpotential (0.5-0.6 V) that must be applied to afford high water oxidation photocurrent. This has conventionally been addressed by coating it with a catalyst to increase the kinetics of the oxygen evolution reaction. However, surface recombination at trapping states is also thought to be an important factor for the overpotential, and herein we investigate a strategy to passivate trapping states using conformal overlayers applied by atomic layer deposition. While TiO2 overlayers show no beneficial effect, we find that an ultra-thin coating of Al2O3 reduces the overpotential required with state-of-the-art nano-structured photo-anodes by as much as 100 mV and increases the photocurrent by a factor of 3.5 (from 0.24 mA cm-2 to 0.85 mA cm-2) at +1.0 V vs. the reversible hydrogen electrode (RHE) under standard illumination conditions. The subsequent addition of Co2+ ions as a catalyst further decreases the overpotential and leads to a record photocurrent density at 0.9 V vs. RHE (0.42 mA cm-2). A detailed investigation into the effect of the Al2O3 overlayer by electrochemical impedance and photoluminescence spectroscopy reveals a significant change in the surface capacitance and radiative recombination, respectively, which distinguishes the observed overpotential reduction from a catalytic effect and confirms the passivation of surface states. Importantly, this work clearly demonstrates that two distinct loss processes are occurring on the surface of high-performance hematite and suggests a viable route to individually address them. © The Royal Society of Chemistry 2011.

  2. Passivating surface states on water splitting hematite photoanodes with alumina overlayers

    KAUST Repository

    Le Formal, Florian

    2011-01-24

    Hematite is a promising material for inexpensive solar energy conversion via water splitting but has been limited by the large overpotential (0.5-0.6 V) that must be applied to afford high water oxidation photocurrent. This has conventionally been addressed by coating it with a catalyst to increase the kinetics of the oxygen evolution reaction. However, surface recombination at trapping states is also thought to be an important factor for the overpotential, and herein we investigate a strategy to passivate trapping states using conformal overlayers applied by atomic layer deposition. While TiO2 overlayers show no beneficial effect, we find that an ultra-thin coating of Al2O3 reduces the overpotential required with state-of-the-art nano-structured photo-anodes by as much as 100 mV and increases the photocurrent by a factor of 3.5 (from 0.24 mA cm-2 to 0.85 mA cm-2) at +1.0 V vs. the reversible hydrogen electrode (RHE) under standard illumination conditions. The subsequent addition of Co2+ ions as a catalyst further decreases the overpotential and leads to a record photocurrent density at 0.9 V vs. RHE (0.42 mA cm-2). A detailed investigation into the effect of the Al2O3 overlayer by electrochemical impedance and photoluminescence spectroscopy reveals a significant change in the surface capacitance and radiative recombination, respectively, which distinguishes the observed overpotential reduction from a catalytic effect and confirms the passivation of surface states. Importantly, this work clearly demonstrates that two distinct loss processes are occurring on the surface of high-performance hematite and suggests a viable route to individually address them. © The Royal Society of Chemistry 2011.

  3. Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process

    Science.gov (United States)

    Ahmadi, E.; Ebrahimi, A. R.

    2015-02-01

    The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.

  4. Nd-YAG laser welding of bare and galvanised steels

    International Nuclear Information System (INIS)

    Kennedy, S.C.; Norris, I.M.

    1989-01-01

    Until recently, one of the problems that has held back the introduction of lasers into car body fabrication has been the difficulty of integrating the lasers with robots. Nd-YAG laser beams can be transmitted through fibre optics which, as well as being considerably easier to manipulate than a mirror system, can be mounted on more lightweight accurate robots. Although previously only available at low powers, recent developments in Nd-YAG laser technology mean that lasers of up to 1kW average power will soon be available, coupled to a fibre optic beam delivery system. The increasing usage of zinc coated steels in vehicle bodies has led to welding problems using conventional resistance welding as well as CO 2 laser welding. The use of Nd-YAG lasers may be able to overcome these problems. This paper outlines work carried out at The Welding Institute on a prototype Lumonics 800W pulsed Nd-YAG laser to investigate its welding characteristics on bare and zinc coated car body steels

  5. Characterisation of fume from hyperbaric welding operations

    Energy Technology Data Exchange (ETDEWEB)

    Ross, John A S; Semple, Sean [Environmental and Occupational Medicine, University of Aberdeen (United Kingdom); Duffin, Rodger [ELEGI Colt Laboratory, University of Edinburgh (United Kingdom); Kelly, Frank [Lung Biology Group, Kings College, University of London (United Kingdom); Seldmann, Joerg; Raab, Andrea, E-mail: j.a.ross@abdn.ac.u [Trace Element Speciation Laboratory, University of Aberdeen (United Kingdom)

    2009-02-01

    We report preliminary work characterising dust from hyperbaric welding trials carried out at increased pressure in a helium and oxygen atmosphere. Particle size and concentration were measured during welding. Samples for quartz and metal analysis and toxicity assessment were taken from a filter in the local fume extraction system. The residue of dust after metal extraction by nitric acid in hydrogen peroxide predominantly a non-metallic white powder assumed to be dust from welding rod coatings and thermal insulation material. Metallic analysis showed predominantly calcium, from the welding rod coating, and period 4 transition metals such as iron, manganese, magnesium and titanium (inductively coupled mass spectrometry, Agilent 7500c). The presence of zirconium indicated a contribution from grinding. The fume was nanoparticulate in nature with a mean particle diameter of 20-30 nm (MSI Inc WPS 1000XP). It showed an intermediate level of oxidative potential regarding the low-molecular weight respiratory tract lining fluid antioxidants ascorbate and glutathione and caused release of the inflammatory marker IL-8 in a human lung A 549 epithelial cell culture with no indication of cytotoxicity. The study findings have strong implications for the measurement techniques needed to assess fume exposure in hyperbaric welding and the provision of respiratory protection.

  6. Critical Gap distance in Laser Butt-welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1999-01-01

    In a number of systematic laboratory experiments the critical gap distance that results in sound beads in laser butt welding is sought identified. By grinding the edges of the sheets, a number of "reference" welds are made and compared to the sheets with shear cut edges. In the tests the gap...... was set at 0.00, 0.02, 0.05, 0.08 and 0.10 mm. Mild steel (St 1203) with a thickness of 0.75 and 1.25 mm with and without zinc coating were analysed. A total of 120 welds were made at different welding speeds.As quality norm DIN 8563 was used to divide the welds into quality classes. A number of welds...... were also x-ray photographed.Of the weld combinations analysed 80 % were of high quality and 17 % of a non-acceptable quality. 90 % of the bad welds had a gap distance larger than 0.05 mm. The results showed that 85 % of the bad welds were shear cut and only 15 % grinded. Two third of the bad welds...

  7. production of manual arc welding electrodes with local raw materials

    African Journals Online (AJOL)

    CHUKSSUCCESS 4 LOVE

    Manual arc welding using flux coated electrodes is carried out by producing an electric arc between ... major objectives: to form fusible slags, to stabilize the arc and to produce an inert gas shielding ... Current fusion welding techniques rely.

  8. Tailor-welded blanks and their production

    Science.gov (United States)

    Yan, Qi

    2005-01-01

    Tailor welded blanks had been widely used in the automobile industry. A tailor welded blank consists of several flat sheets that were laser welded together before stamping. A combination of different materials, thickness, and coatings could be welded together to form a blank for stamping car body panels. As for the material for automobile industry, this technology was one of the development trend for automobile industry because of its weight reduction, safety improvement and economical use of materials. In this paper, the characters and production of tailor welded blanks in the market were discussed in detail. There had two major methods to produce tailor welded blanks. Laser welding would replace mesh seam welding for the production of tailor welded blanks in the future. The requirements on the edge preparation of unwelded blanks for tailor welded blanks were higher than the other steel processing technology. In order to produce the laser welded blank, there had the other process before the laser welding in the factory. In the world, there had three kinds of patterns for the large volume production of tailor welded blanks. In China, steel factory played the important role in the promotion of the application of tailor welded blanks. The competition for the supply of tailor welded blanks to the automobile industry would become fierce in the near future. As a result, the demand for the quality control on the production of tailor welded blanks would be the first priority concern for the factory.

  9. Production and testing of flexible welding flux rods, used for protecting briquetting press molds from wear

    Energy Technology Data Exchange (ETDEWEB)

    Loescher, B.; Czerwinski, M.; Dittrich, V.

    1985-11-01

    Production, properties and trial application are discussed for the Feroplast ZIS 218 welding powder rod, developed for automated surface armouring of brown coal briquetting press moulds by arc welding. The welding rod has a diameter of 8 mm and can be bent to a radius of less than 150 mm for reeling. The welding rod is produced by mixing 9% plasticizer (Miravithen and polyisobutylene according to GDR patent 203 269) to the steel welding powder. Weldability of the rod proved to be favourable; there was no emission of toxic fumes during welding. Microscopic studies of the welded surface coating showed that welding with 650A achieved the best coat pore structure. At the Schwarze Pumpe Gasworks the trial service life of various briquet press moulds, reinforced with Ferroplast ZIS 218, proved to be not shorter than that of moulds reinforced with the conventional ZIS powder welding method. 1 reference.

  10. Effects of stop–start features on residual stresses in a multipass austenitic stainless steel weld

    International Nuclear Information System (INIS)

    Turski, M.; Francis, J.A.; Hurrell, P.R.; Bate, S.K.; Hiller, S.; Withers, P.J.

    2012-01-01

    In this article we describe experiments that characterise and quantify the localised perturbations in residual stress associated with both ramped and abrupt stop–start features in a multipass weld. Residual stress distributions in AISI Grade 304L/308L stainless steel groove-welded specimens, containing weld interruptions that were introduced in a controlled manner, have been characterised using both neutron diffraction and the incremental deep hole drilling method. The extent to which the localised stresses associated with the interruptions were annealed by overlayed passes was also assessed. The results suggest that, regardless of the type of interruption, there can be significant localised increases in residual stress if the stop–start feature is left exposed. If further weld passes are deposited, then the localised increases in stress are likely to persist if the interruption was abrupt, whereas for a ramped interruption they may be dissipated. - Highlights: ► In this study the residual stress-field surrounding weld interruptions was measured. ► Localised stresses were found to increase at weld interruptions. ► Both ramped and abrupt weld interruptions were investigated. ► After subsequent weld passes, localised stresses persisted for abrupt interruptions. ► After subsequent weld passes, localised stresses dissipated for ramped interruptions.

  11. Overlay accuracy with respect to device scaling

    Science.gov (United States)

    Leray, Philippe; Laidler, David; Cheng, Shaunee

    2012-03-01

    Overlay metrology performance is usually reported as repeatability, matching between tools or optics aberrations distorting the measurement (Tool induced shift or TIS). Over the last few years, improvement of these metrics by the tool suppliers has been impressive. But, what about accuracy? Using different target types, we have already reported small differences in the mean value as well as fingerprint [1]. These differences make the correctables questionable. Which target is correct and therefore which translation, scaling etc. values should be fed back to the scanner? In this paper we investigate the sources of these differences, using several approaches. First, we measure the response of different targets to offsets programmed in a test vehicle. Second, we check the response of the same overlay targets to overlay errors programmed into the scanner. We compare overlay target designs; what is the contribution of the size of the features that make up the target? We use different overlay measurement techniques; is DBO (Diffraction Based Overlay) more accurate than IBO (Image Based Overlay)? We measure overlay on several stacks; what is the stack contribution to inaccuracy? In conclusion, we offer an explanation for the observed differences and propose a solution to reduce them.

  12. Testing of the shopprimer’s influence on the quality of welded joint

    Directory of Open Access Journals (Sweden)

    T. Šolić

    2017-01-01

    Full Text Available This paper presents the process of preparing the surface of construction material and applying the temporary protection that refers to the two-component epoxy workshop primer (shopprimer in order to perform testing of its influence on mechanical properties of the weld. Testing of mechanical properties of welds after welding proved that there were no negative influences of the protective coating on the quality of welded joint.

  13. Apparatus for spot welding sheathed thermocouples to the inside of small-diameter tubes at precise locations

    International Nuclear Information System (INIS)

    Baucum, W.E.; Dial, R.E.

    1976-01-01

    Equipment and procedures used to spot weld tantalum- or stainless-steel-sheathed thermocouples to the inside diameter of Zircaloy tubing to meet the requirements of the Multirod Burst Test (MRBT) Program at ORNL are described. Spot welding and oxide cleaning tools were fabricated to remove the oxide coating on the Zircaloy tubing at local areas and spot weld four thermocouples separated circumferentially by 90 0 at any axial distribution desired. It was found necessary to apply a nickel coating to stainless-steel-sheathed thermocouples to obtain acceptable welds. The material and shape of the inner electrode and resistance between inner and outer electrodes were found to be critical parameters in obtaining acceptable welds

  14. Tool material effect on the friction stir butt welding of AA2124-T4 Alloy Matrix MMC

    Directory of Open Access Journals (Sweden)

    Yahya Bozkurt

    2018-01-01

    Full Text Available The purpose of the present work is to study on the effect of material properties tool on friction stir butt welding of AA2124-T4 alloy matrix MMC. Uncoated tool, coated tool with a CrN, and coated tool with AlTiN were used to weld aluminum MMC plates. Macrostructure and microstructure observations, ultimate tensile strength, wear resistance, and chemical analysis were carried out to determine the appropriate tool for joining these composite plates. Results showed that the good welded joints could be obtained when a tool is coated with AlTiN.

  15. Evaluating the mechanical performance of Very Thin Asphalt Overlay (VTAO as a sustainable rehabilitation strategy in urban pavements

    Directory of Open Access Journals (Sweden)

    M. Sol-Sánchez

    2017-07-01

    Full Text Available Very Thin Asphalt Overlay (VTAO has been introduced as an alternative to traditional thick overlays, seal coats, and micro-surfacings. Nonetheless, there are some challenges that still remain regarding the application of VTAOs (such as mixture type, cohesiveness, wear resistance, cracking and durability, particularly in heavy traffic urban areas. Therefore, this paper presents an extensive comparative evaluation of the mechanical performance, durability and safety issues (cohesiveness, adhesiveness, ageing, cracking, plastic deformation, permeability, macrotexture, skid and wear resistance, and fuel resistance of a VTAO (20 mm thick and a high performance BBTM 11B (35 mm thick, commonly used as an open-graded mixture for pavement overlays. The results demonstrated that VTAO is an appropriate material for urban pavements as it provides good durability and resistance to the propagation of defects. Nonetheless, further studies are required to improve its behavior under distresses related to plastic deformations and safety properties.

  16. Evaluating the mechanical performance of Very Thin Asphalt Overlay (VTAO) as a sustainable rehabilitation strategy in urban pavements

    International Nuclear Information System (INIS)

    Sol-Sánchez, M.; García-Travé, G.; Ayar, P.; Moreno-Navarro, F.; Rubio-Gámez, M.C.

    2017-01-01

    Very Thin Asphalt Overlay (VTAO) has been introduced as an alternative to traditional thick overlays, seal coats, and micro-surfacings. Nonetheless, there are some challenges that still remain regarding the application of VTAOs (such as mixture type, cohesiveness, wear resistance, cracking and durability), particularly in heavy traffic urban areas. Therefore, this paper presents an extensive comparative evaluation of the mechanical performance, durability and safety issues (cohesiveness, adhesiveness, ageing, cracking, plastic deformation, permeability, macrotexture, skid and wear resistance, and fuel resistance) of a VTAO (20 mm thick) and a high performance BBTM 11B (35 mm thick), commonly used as an open-graded mixture for pavement overlays. The results demonstrated that VTAO is an appropriate material for urban pavements as it provides good durability and resistance to the propagation of defects. Nonetheless, further studies are required to improve its behavior under distresses related to plastic deformations and safety properties. [es

  17. Tack Coat Performance and Materials Study

    Science.gov (United States)

    2017-06-01

    A good bond provided by a tack coat can improve performance of asphalt overlays. The objectives of this research were: (1) develop a method for testing the bond between pavement layers; (2) evaluate the bond performance and predict long-term performa...

  18. 29 CFR 1915.53 - Welding, cutting and heating in way of preservative coatings.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Welding, cutting and heating in way of preservative... SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.53 Welding, cutting and heating in way of... and shipbulding and shall not apply to shipbreaking. (b) Before welding, cutting or heating is...

  19. Reaching for the true overlay in advanced nodes

    Science.gov (United States)

    Koay, Chiew-seng; Hamieh, Bassem; Felix, Nelson; Gaudiello, John

    2017-03-01

    Traditionally, the total measurement uncertainty (TMU) of overlay metrology focuses on dynamic precision, toolinduced-shift, and matching, while rarely examining inaccuracy. However, some researchers have recently shown that measurement inaccuracy can still be large despite optimized small TMU. Moreover, this inaccuracy can consume a significant portion of the overlay budget in the advanced nodes. In addition to qualifying the overlay error of inline wafers, overlay metrology is also used for improving on-product overlay as it provides corrective feedback to the lithography scanner. The accuracy of the correction terms as a result depends directly upon the measurement accuracy. As such, enhanced overlay accuracy will improve the overlay performance of reworked wafers, or subsequently exposed wafers. We have previously shown that a segmented Blossom target is more prone to asymmetry-induced inaccuracy than a nonsegmented target is [1]. Since target segmentation is inevitable for SADP and SAQP patterning processes, their resulting overlay performance leaves a lot to be desired. In our quest to reach for the true overlay, this paper reports our investigations on accuracy enhancement techniques for image-based targets, such as redundancy and self-calibration, and on the use of simulation-optimized scatterometry-based targets.

  20. Critical Gap distance in Laser Butt-welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    of "reference" welds are made and compared to sheets with the edges shear cut. The gap distance is precisely controlled by inserting spacers between the sheets. In the tests the gap is set at 0.00, 0.02, 0.05, 0.08 and 0.10 mm. Mild steel (St 1203) with thickness? of 0.75 and 1.25 mm with and without zinc......When butt-welding metal sheets with high power lasers the gap distance between the sheets determine the final quality of the seam. In a number of systematic laboratory experiments the critical gap distance that results in sound beads is identified. By grinding the edges of the sheets, a number...... coating were analysed. A total of 120 welds are made at different welding speeds.As quality norm DIN 8563 is used to divide the welds into quality classes. Since this norm only deals with surface defects a number of welds are also x-ray photographed.According to DIN 8563 the welds have classes of either B...

  1. Performance of ASML YieldStar μDBO overlay targets for advanced lithography nodes C028 and C014 overlay process control

    Science.gov (United States)

    Blancquaert, Yoann; Dezauzier, Christophe; Depre, Jerome; Miqyass, Mohamed; Beltman, Jan

    2013-04-01

    Continued tightening of overlay control budget in semiconductor lithography drives the need for improved metrology capabilities. Aggressive improvements are needed for overlay metrology speed, accuracy and precision. This paper is dealing with the on product metrology results of a scatterometry based platform showing excellent production results on resolution, precision, and tool matching for overlay. We will demonstrate point to point matching between tool generations as well as between target sizes and types. Nowadays, for the advanced process nodes a lot of information is needed (Higher order process correction, Reticle fingerprint, wafer edge effects) to quantify process overlay. For that purpose various overlay sampling schemes are evaluated: ultra- dense, dense and production type. We will show DBO results from multiple target type and shape for on product overlay control for current and future node down to at least 14 nm node. As overlay requirements drive metrology needs, we will evaluate if the new metrology platform meets the overlay requirements.

  2. Enhacement of intrafield overlay using a design based metrology system

    Science.gov (United States)

    Jo, Gyoyeon; Ji, Sunkeun; Kim, Shinyoung; Kang, Hyunwoo; Park, Minwoo; Kim, Sangwoo; Kim, Jungchan; Park, Chanha; Yang, Hyunjo; Maruyama, Kotaro; Park, Byungjun

    2016-03-01

    As the scales of the semiconductor devices continue to shrink, accurate measurement and control of the overlay have been emphasized for securing more overlay margin. Conventional overlay analysis methods are based on the optical measurement of the overlay mark. However, the overlay data obtained from these optical methods cannot represent the exact misregistration between two layers at the circuit level. The overlay mismatch may arise from the size or pitch difference between the overlay mark and the real pattern. Pattern distortion, caused by CMP or etching, could be a source of the overlay mismatch as well. Another issue is the overlay variation in the real circuit pattern which varies depending on its location. The optical overlay measurement methods, such as IBO and DBO that use overlay mark on the scribeline, are not capable of defining the exact overlay values of the real circuit. Therefore, the overlay values of the real circuit need to be extracted to integrate the semiconductor device properly. The circuit level overlay measurement using CDSEM is time-consuming in extracting enough data to indicate overall trend of the chip. However DBM tool is able to derive sufficient data to display overlay tendency of the real circuit region with high repeatability. An E-beam based DBM(Design Based Metrology) tool can be an alternative overlay measurement method. In this paper, we are going to certify that the overlay values extracted from optical measurement cannot represent the circuit level overlay values. We will also demonstrate the possibility to correct misregistration between two layers using the overlay data obtained from the DBM system.

  3. Overlay leaves litho: impact of non-litho processes on overlay and compensation

    Science.gov (United States)

    Ruhm, Matthias; Schulz, Bernd; Cotte, Eric; Seltmann, Rolf; Hertzsch, Tino

    2014-10-01

    According to the ITRS roadmap [1], the overlay requirement for the 28nm node is 8nm. If we compare this number with the performance given by tool vendors for their most advanced immersion systems (which is emerging. Mask contributions and so-called non-linear wafer distortions are known effects that can impact overlay quite significantly. Furthermore, it is often forgotten that downstream (post-litho) processes can impact the overlay as well. Thus, it can be required to compensate for the effects of subsequent processes already at the lithography operation. Within our paper, we will briefly touch on the wafer distortion topic and discuss the limitations of lithography compensation techniques such as higher order corrections versus solving the root cause of the distortions. The primary focus will be on the impact of the etch processes on the pattern placement error. We will show how individual layers can get affected differently by showing typical wafer signatures. However, in contrast to the above-mentioned wafer distortion topic, lithographic compensation techniques can be highly effective to reduce the placement error significantly towards acceptable levels (see Figure 1). Finally we will discuss the overall overlay budget for a 28nm contact to gate case by taking the impact of the individual process contributors into account.

  4. Advanced diffraction-based overlay for double patterning

    Science.gov (United States)

    Li, Jie; Liu, Yongdong; Dasari, Prasad; Hu, Jiangtao; Smith, Nigel; Kritsun, Oleg; Volkman, Catherine

    2010-03-01

    Diffraction based overlay (DBO) technologies have been developed to address the tighter overlay control challenges as the dimensions of integrated circuit continue to shrink. Several studies published recently have demonstrated that the performance of DBO technologies has the potential to meet the overlay metrology budget for 22nm technology node. However, several hurdles must be cleared before DBO can be used in production. One of the major hurdles is that most DBO technologies require specially designed targets that consist of multiple measurement pads, which consume too much space and increase measurement time. A more advanced spectroscopic ellipsometry (SE) technology-Mueller Matrix SE (MM-SE) is developed to address the challenge. We use a double patterning sample to demonstrate the potential of MM-SE as a DBO candidate. Sample matrix (the matrix that describes the effects of the sample on the incident optical beam) obtained from MM-SE contains up to 16 elements. We show that the Mueller elements from the off-diagonal 2x2 blocks respond to overlay linearly and are zero when overlay errors are absent. This superior property enables empirical DBO (eDBO) using two pads per direction. Furthermore, the rich information in Mueller matrix and its direct response to overlay make it feasible to extract overlay errors from only one pad per direction using modeling approach (mDBO). We here present the Mueller overlay results using both eDBO and mDBO and compare the results with image-based overlay (IBO) and CD-SEM results. We also report the tool induced shifts (TIS) and dynamic repeatability.

  5. Diffraction-based overlay metrology for double patterning technologies

    Science.gov (United States)

    Dasari, Prasad; Korlahalli, Rahul; Li, Jie; Smith, Nigel; Kritsun, Oleg; Volkman, Cathy

    2009-03-01

    The extension of optical lithography to 32nm and beyond is made possible by Double Patterning Techniques (DPT) at critical levels of the process flow. The ease of DPT implementation is hindered by increased significance of critical dimension uniformity and overlay errors. Diffraction-based overlay (DBO) has shown to be an effective metrology solution for accurate determination of the overlay errors associated with double patterning [1, 2] processes. In this paper we will report its use in litho-freeze-litho-etch (LFLE) and spacer double patterning technology (SDPT), which are pitch splitting solutions that reduce the significance of overlay errors. Since the control of overlay between various mask/level combinations is critical for fabrication, precise and accurate assessment of errors by advanced metrology techniques such as spectroscopic diffraction based overlay (DBO) and traditional image-based overlay (IBO) using advanced target designs will be reported. A comparison between DBO, IBO and CD-SEM measurements will be reported. . A discussion of TMU requirements for 32nm technology and TMU performance data of LFLE and SDPT targets by different overlay approaches will be presented.

  6. Real cell overlay measurement through design based metrology

    Science.gov (United States)

    Yoo, Gyun; Kim, Jungchan; Park, Chanha; Lee, Taehyeong; Ji, Sunkeun; Jo, Gyoyeon; Yang, Hyunjo; Yim, Donggyu; Yamamoto, Masahiro; Maruyama, Kotaro; Park, Byungjun

    2014-04-01

    Until recent device nodes, lithography has been struggling to improve its resolution limit. Even though next generation lithography technology is now facing various difficulties, several innovative resolution enhancement technologies, based on 193nm wavelength, were introduced and implemented to keep the trend of device scaling. Scanner makers keep developing state-of-the-art exposure system which guarantees higher productivity and meets a more aggressive overlay specification. "The scaling reduction of the overlay error has been a simple matter of the capability of exposure tools. However, it is clear that the scanner contributions may no longer be the majority component in total overlay performance. The ability to control correctable overlay components is paramount to achieve the desired performance.(2)" In a manufacturing fab, the overlay error, determined by a conventional overlay measurement: by using an overlay mark based on IBO and DBO, often does not represent the physical placement error in the cell area of a memory device. The mismatch may arise from the size or pitch difference between the overlay mark and the cell pattern. Pattern distortion, caused by etching or CMP, also can be a source of the mismatch. Therefore, the requirement of a direct overlay measurement in the cell pattern gradually increases in the manufacturing field, and also in the development level. In order to overcome the mismatch between conventional overlay measurement and the real placement error of layer to layer in the cell area of a memory device, we suggest an alternative overlay measurement method utilizing by design, based metrology tool. A basic concept of this method is shown in figure1. A CD-SEM measurement of the overlay error between layer 1 and 2 could be the ideal method but it takes too long time to extract a lot of data from wafer level. An E-beam based DBM tool provides high speed to cover the whole wafer with high repeatability. It is enabled by using the design as a

  7. Apparatus and process for ultrasonic seam welding stainless steel foils

    Science.gov (United States)

    Leigh, Richard W.

    1992-01-01

    An ultrasonic seam welding apparatus having a head which is rotated to form contact, preferably rolling contact, between a metallurgically inert coated surface of the head and an outside foil of a plurality of layered foils or work materials. The head is vibrated at an ultrasonic frequency, preferably along a longitudinal axis of the head. The head is constructed to transmit vibration through a contacting surface of the head into each of the layered foils. The contacting surface of the head is preferably coated with aluminum oxide to prevent the head from becoming welded to layered stainless steel foils.

  8. Evaluation of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    International Nuclear Information System (INIS)

    Anderson, Michael T.; Diaz, Aaron A.; Doctor, Steven R.

    2012-01-01

    During a recent inservice inspection (ISI) of a dissimilar metal weld (DMW) in an inlet (hot leg) steam generator nozzle at North Anna Power Station Unit 1, several axially oriented flaws went undetected by the licensee's manual ultrasonic testing (UT) technique. The flaws were subsequently detected as a result of outside diameter (OD) surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the DMW. Further ultrasonic tests were then performed, and a total of five axially oriented flaws, classified as primary water stress corrosion cracking (PWSCC), were detected in varied locations around the weld circumference.

  9. A comparison of advanced overlay technologies

    Science.gov (United States)

    Dasari, Prasad; Smith, Nigel; Goelzer, Gary; Liu, Zhuan; Li, Jie; Tan, Asher; Koh, Chin Hwee

    2010-03-01

    The extension of optical lithography to 22nm and beyond by Double Patterning Technology is often challenged by CDU and overlay control. With reduced overlay measurement error budgets in the sub-nm range, relying on traditional Total Measurement Uncertainty (TMU) estimates alone is no longer sufficient. In this paper we will report scatterometry overlay measurements data from a set of twelve test wafers, using four different target designs. The TMU of these measurements is under 0.4nm, within the process control requirements for the 22nm node. Comparing the measurement differences between DBO targets (using empirical and model based analysis) and with image-based overlay data indicates the presence of systematic and random measurement errors that exceeds the TMU estimate.

  10. Micro Structure and Hardness Analysis of Brass Metal Welded

    Science.gov (United States)

    Lukman Faris, N.; Muljadi; Djuhana

    2018-01-01

    Brass metals are widely used for plumbing fittings. High tensile brasses are more highly alloyed and find uses in marine engineering. The welding of brass metal has been done by using electrical weld machine (SMAW). The microstructure of brass metal welded was observed by optical microscope. The result can see that the microstructure has been changed due to heat from welding. The microstructure of original brass metal is seen a fine laminar stucture, but the microstructure at HAZ appears bigger grains and some area at HAZ is seen coarser microstructure. The microstructure at weld zone can be seen that it was found some of agglomeration of materials from reaction between brass metal and electrode coating wire. According the hardness measurement, it is found highest hardness value about 301.92 HV at weld zone, and hardness value at base metal is 177.84 HV

  11. Physics of zinc vaporization and plasma absorption during CO2 laser welding

    International Nuclear Information System (INIS)

    Dasgupta, A. K.; Mazumder, J.; Li, P.

    2007-01-01

    A number of mathematical models have been developed earlier for single-material laser welding processes considering one-, two-, and three-dimensional heat and mass transfers. However, modeling of laser welding of materials with multiple compositions has been a difficult problem. This paper addresses a specific case of this problem where CO 2 laser welding of zinc-coated steel, commonly used in automobile body manufacturing, is mathematically modeled. The physics of a low boiling point material, zinc, is combined with a single-material (steel) welding model, considering multiple physical phenomena such as keyhole formation, capillary and thermocapillary forces, recoil and vapor pressures, etc. The physics of laser beam-plasma interaction is modeled to understand the effect on the quality of laser processing. Also, an adaptive meshing scheme is incorporated in the model for improving the overall computational efficiency. The model, whose results are found to be in close agreement with the experimental observations, can be easily extended for studying zinc-coated steel welding using other high power, continuous wave lasers such as Nd:YAG and Yb:YAG

  12. Diffusional aspects of the high-temperature oxidation of protective coatings

    Science.gov (United States)

    Nesbitt, J. A.

    1989-01-01

    The role of diffusional transport associated with the high-temperature oxidation of coatings is examined, with special attention given to the low-pressure plasma spraying MCrAl-type overlay coatings and similar Ni-base alloys which form protective AlO3 scales. The use of diffusional analysis to predict the minimum solute concentration necessary to form and grow a solute oxide scale is illustrated. Modeling procedures designed to simulate the diffusional transport in coatings and substrates are presented to show their use in understanding coating degradation, predicting the protective life of a coating, and evaluating various coating parameters to guide coating development.

  13. Hybrid overlay metrology for high order correction by using CDSEM

    Science.gov (United States)

    Leray, Philippe; Halder, Sandip; Lorusso, Gian; Baudemprez, Bart; Inoue, Osamu; Okagawa, Yutaka

    2016-03-01

    Overlay control has become one of the most critical issues for semiconductor manufacturing. Advanced lithographic scanners use high-order corrections or correction per exposure to reduce the residual overlay. It is not enough in traditional feedback of overlay measurement by using ADI wafer because overlay error depends on other process (etching process and film stress, etc.). It needs high accuracy overlay measurement by using AEI wafer. WIS (Wafer Induced Shift) is the main issue for optical overlay, IBO (Image Based Overlay) and DBO (Diffraction Based Overlay). We design dedicated SEM overlay targets for dual damascene process of N10 by i-ArF multi-patterning. The pattern is same as device-pattern locally. Optical overlay tools select segmented pattern to reduce the WIS. However segmentation has limit, especially the via-pattern, for keeping the sensitivity and accuracy. We evaluate difference between the viapattern and relaxed pitch gratings which are similar to optical overlay target at AEI. CDSEM can estimate asymmetry property of target from image of pattern edge. CDSEM can estimate asymmetry property of target from image of pattern edge. We will compare full map of SEM overlay to full map of optical overlay for high order correction ( correctables and residual fingerprints).

  14. Radiological impact assessment of arc welding supplies rutile

    International Nuclear Information System (INIS)

    Rozas Guinea, S.; Herranz Soler, M.; Perez Marin, C.; Idoeta Hermandorena, R.; Alegria gutierrez, N.; Nunez-Lagos Rogla, R.; Legarda Ibanez, F.

    2013-01-01

    Consumables for welding containing rutile, the coating of the electrode or the filling of tubular thread, are the most widely used and also the most radioactive since the rutile is a mineral containing traces of natural radionuclides, and is therefore considered Normal Occurring Radioactive Material (NORM). As these electrodes and wire are consumed, small particles, aerosols and gases are emitted to the atmosphere of work, and may be inhaled by the welder. Therefore, and also according to the current regulatory framework and work carried out previously by the author on the radiological impact of the process of manufacture and storage of coated rutile electrodes, the objectives are: 1Calcular the internal dose for inhalation during two types of welding, one with electrodes coated and the other with thread. 2 calculate the external dose due to the deposition of particles in the work environment, slag and the immersion of the soldering iron in the cloud of smoke. 3 to assess the radiological impact. (Author)

  15. Assessment of the Biological Effects of Welding Fumes Emitted From Metal Active Gas and Manual Metal Arc Welding in Humans.

    Science.gov (United States)

    Dewald, Eva; Gube, Monika; Baumann, Ralf; Bertram, Jens; Kossack, Veronika; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas; Brand, Peter

    2015-08-01

    Emissions from a particular welding process, metal inert gas brazing of zinc-coated steel, induce an increase in C-reactive protein. In this study, it was investigated whether inflammatory effects could also be observed for other welding procedures. Twelve male subjects were separately exposed to (1) manual metal arc welding fumes, (2) filtered air, and (3) metal active gas welding fumes for 6 hours. Inflammatory markers were measured in serum before, and directly, 1 and 7 days after exposure. Although C-reactive protein concentrations remained unchanged, neutrophil concentrations increased directly after exposure to manual metal arc welding fumes, and endothelin-1 concentrations increased directly and 24 hours after exposure. After exposure to metal active gas and filtered air, endothelin-1 concentrations decreased. The increase in the concentrations of neutrophils and endothelin-1 may characterize a subclinical inflammatory reaction, whereas the decrease of endothelin-1 may indicate stress reduction.

  16. Demonstration of pharmaceutical tablet coating process by injection molding technology.

    Science.gov (United States)

    Puri, Vibha; Brancazio, David; Harinath, Eranda; Martinez, Alexander R; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Braatz, Richard D; Myerson, Allan S; Trout, Bernhardt L

    2018-01-15

    We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300 μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Diffraction-based overlay for spacer patterning and double patterning technology

    Science.gov (United States)

    Lee, Byoung Hoon; Park, JeongSu; Lee, Jongsu; Park, Sarohan; Lim, ChangMoon; Yim, Dong-Gyu; Park, Sungki; Ryu, Chan-Ho; Morgan, Stephen; van de Schaar, Maurits; Fuchs, Andreas; Bhattacharyya, Kaustuve

    2011-03-01

    Overlay performance will be increasingly important for Spacer Patterning Technology (SPT) and Double Patterning Technology (DPT) as various Resolution Enhancement Techniques are employed to extend the resolution limits of lithography. Continuous shrinkage of devices makes overlay accuracy one of the most critical issues while overlay performance is completely dependent on exposure tool. Image Based Overlay (IBO) has been used as the mainstream metrology for overlay by the main memory IC companies, but IBO is not suitable for some critical layers due to the poor Tool Induced Shift (TIS) values. Hence new overlay metrology is required to improve the overlay measurement accuracy. Diffraction Based Overlay (DBO) is regarded to be an alternative metrology to IBO for more accurate measurements and reduction of reading errors. Good overlay performances of DBO have been reported in many articles. However applying DBO for SPT and DPT layers poses extra challenges for target design. New vernier designs are considered for different DPT and SPT schemes to meet overlay target in DBO system. In this paper, we optimize the design of the DBO target and the performance of DBO to meet the overlay specification of sub-3x nm devices which are using SPT and DPT processes. We show that the appropriate vernier design yields excellent overlay performance in residual and TIS. The paper also demonstrated the effects of vernier structure on overlay accuracy from SEM analysis.

  18. High-throughput electrical characterization for robust overlay lithography control

    Science.gov (United States)

    Devender, Devender; Shen, Xumin; Duggan, Mark; Singh, Sunil; Rullan, Jonathan; Choo, Jae; Mehta, Sohan; Tang, Teck Jung; Reidy, Sean; Holt, Jonathan; Kim, Hyung Woo; Fox, Robert; Sohn, D. K.

    2017-03-01

    Realizing sensitive, high throughput and robust overlay measurement is a challenge in current 14nm and advanced upcoming nodes with transition to 300mm and upcoming 450mm semiconductor manufacturing, where slight deviation in overlay has significant impact on reliability and yield1). Exponentially increasing number of critical masks in multi-patterning lithoetch, litho-etch (LELE) and subsequent LELELE semiconductor processes require even tighter overlay specification2). Here, we discuss limitations of current image- and diffraction- based overlay measurement techniques to meet these stringent processing requirements due to sensitivity, throughput and low contrast3). We demonstrate a new electrical measurement based technique where resistance is measured for a macro with intentional misalignment between two layers. Overlay is quantified by a parabolic fitting model to resistance where minima and inflection points are extracted to characterize overlay control and process window, respectively. Analyses using transmission electron microscopy show good correlation between actual overlay performance and overlay obtained from fitting. Additionally, excellent correlation of overlay from electrical measurements to existing image- and diffraction- based techniques is found. We also discuss challenges of integrating electrical measurement based approach in semiconductor manufacturing from Back End of Line (BEOL) perspective. Our findings open up a new pathway for accessing simultaneous overlay as well as process window and margins from a robust, high throughput and electrical measurement approach.

  19. New low-viscosity overlay medium for viral plaque assays

    Directory of Open Access Journals (Sweden)

    Garten Wolfgang

    2006-08-01

    Full Text Available Abstract Background Plaque assays in cell culture monolayers under solid or semisolid overlay media are commonly used for quantification of viruses and antiviral substances. To overcome the pitfalls of known overlays, we tested suspensions of microcrystalline cellulose Avicel RC/CL™ as overlay media in the plaque and plaque-inhibition assay of influenza viruses. Results Significantly larger plaques were formed under Avicel-containing media, as compared to agar and methylcellulose (MC overlay media. The plaque size increased with decreasing Avicel concentration, but even very diluted Avicel overlays (0.3% ensured formation of localized plaques. Due to their low viscosity, Avicel overlays were easier to use than methylcellulose overlays, especially in the 96-well culture plates. Furthermore, Avicel overlay could be applied without prior removal of the virus inoculum thus facilitating the assay and reducing chances of cross-contamination. Using neuraminidase inhibitor oseltamivir carboxylate, we demonstrated applicability of the Avicel-based plaque reduction assay for testing of antiviral substances. Conclusion Plaque assay under Avicel-containing overlay media is easier, faster and more sensitive than assays under agar- and methylcellulose overlays. The assay can be readily performed in a 96-well plate format and seems particularly suitable for high-throughput virus titrations, serological studies and experiments on viral drug sensitivity. It may also facilitate work with highly pathogenic agents performed under hampered conditions of bio-safety labs.

  20. Comparative study of TIG and SMAW root welding passes on ductile iron cast weldability

    Directory of Open Access Journals (Sweden)

    J. Cárcel-Carrasco

    2017-01-01

    Full Text Available This work compares the weldability of ductile iron when: (I a root weld is applied with a tungsten inert gas (TIG process using an Inconel 625 source rod and filler welds are subsequently applied using coated electrodes with 97,6%Ni; and (II welds on ductile iron exclusively made using the manual shielded metal arc welding technique (SMAW. Both types of welds are performed on ductile iron specimen test plates that are subjected to preheat and post-weld annealing treatments. Samples with TIG root-welding pass shown higher hardness but slightly lower ductility and strength. Both types of welding achieved better ductile and strength properties than ones found in literature.

  1. SEM based overlay measurement between resist and buried patterns

    Science.gov (United States)

    Inoue, Osamu; Okagawa, Yutaka; Hasumi, Kazuhisa; Shao, Chuanyu; Leray, Philippe; Lorusso, Gian; Baudemprez, Bart

    2016-03-01

    With the continuous shrink in pattern size and increased density, overlay control has become one of the most critical issues in semiconductor manufacturing. Recently, SEM based overlay of AEI (After Etch Inspection) wafer has been used for reference and optimization of optical overlay (both Image Based Overlay (IBO) and Diffraction Based Overlay (DBO)). Overlay measurement at AEI stage contributes monitor and forecast the yield after formation by etch and calibrate optical measurement tools. however those overlay value seems difficult directly for feedback to a scanner. Therefore, there is a clear need to have SEM based overlay measurements of ADI (After Develop Inspection) wafers in order to serve as reference for optical overlay and make necessary corrections before wafers go to etch. Furthermore, to make the corrections as accurate as possible, actual device like feature dimensions need to be measured post ADI. This device size measurement is very unique feature of CDSEM , which can be measured with smaller area. This is currently possible only with the CD-SEM. This device size measurement is very unique feature of CD-SEM , which can be measured with smaller area. In this study, we assess SEM based overlay measurement of ADI and AEI wafer by using a sample from an N10 process flow. First, we demonstrate SEM based overlay performance at AEI by using dual damascene process for Via 0 (V0) and metal 1 (M1) layer. We also discuss the overlay measurements between litho-etch-litho stages of a triple patterned M1 layer and double pattern V0. Second, to illustrate the complexities in image acquisition and measurement we will measure overlay between M1B resist and buried M1A-Hard mask trench. Finally, we will show how high accelerating voltage can detect buried pattern information by BSE (Back Scattering Electron). In this paper we discuss the merits of this method versus standard optical metrology based corrections.

  2. Analysis of microstructure and mechanical properties of aluminium-copper joints welded by FSW process

    Science.gov (United States)

    Iordache, M.; Sicoe, G.; Iacomi, D.; Niţu, E.; Ducu, C.

    2017-08-01

    The research conducted in this article aimed to check the quality of joining some dissimilar materials Al-Cu by determining the mechanical properties and microstructure analysis. For the experimental measurements there were used tin alloy Al - EN-AW-1050A with a thickness of 2 mm and Cu99 sheet with a thickness of 2 mm, joined by FSW weld overlay. The main welding parameters were: rotating speed of the rotating element 1400 rev/min, speed of the rotating element 50 mm/min. The experimental results were determined on samples specially prepared for metallographic analysis. In order to prepare samples for their characterization, there was designed and built a device that allowed simultaneous positioning and fixing for grinding. The characteristics analyzed in the joint welded samples were mictrostructure, microhardness and residual stresses. The techniques used to determine these characteristics were optical microscopy, electron microscopy with fluorescence radioactive elemental analysis (EDS), Vickers microhardness line - HV0.3 and X-ray diffractometry.

  3. Image-based overlay measurement using subsurface ultrasonic resonance force microscopy

    Science.gov (United States)

    Tamer, M. S.; van der Lans, M. J.; Sadeghian, H.

    2018-03-01

    Image Based Overlay (IBO) measurement is one of the most common techniques used in Integrated Circuit (IC) manufacturing to extract the overlay error values. The overlay error is measured using dedicated overlay targets which are optimized to increase the accuracy and the resolution, but these features are much larger than the IC feature size. IBO measurements are realized on the dedicated targets instead of product features, because the current overlay metrology solutions, mainly based on optics, cannot provide sufficient resolution on product features. However, considering the fact that the overlay error tolerance is approaching 2 nm, the overlay error measurement on product features becomes a need for the industry. For sub-nanometer resolution metrology, Scanning Probe Microscopy (SPM) is widely used, though at the cost of very low throughput. The semiconductor industry is interested in non-destructive imaging of buried structures under one or more layers for the application of overlay and wafer alignment, specifically through optically opaque media. Recently an SPM technique has been developed for imaging subsurface features which can be potentially considered as a solution for overlay metrology. In this paper we present the use of Subsurface Ultrasonic Resonance Force Microscopy (SSURFM) used for IBO measurement. We used SSURFM for imaging the most commonly used overlay targets on a silicon substrate and photoresist. As a proof of concept we have imaged surface and subsurface structures simultaneously. The surface and subsurface features of the overlay targets are fabricated with programmed overlay errors of +/-40 nm, +/-20 nm, and 0 nm. The top layer thickness changes between 30 nm and 80 nm. Using SSURFM the surface and subsurface features were successfully imaged and the overlay errors were extracted, via a rudimentary image processing algorithm. The measurement results are in agreement with the nominal values of the programmed overlay errors.

  4. Characterization of the electrochemical behavior of coating by steel welding 308l and in presence of noble metals deposits

    International Nuclear Information System (INIS)

    Piedras, P.; Arganis J, C. R.

    2014-10-01

    In this work the oxide deposits and noble metals deposit were characterized (Ag and Pt) on a coating of stainless steel 308l that were deposited by the shield metal arc welding (SMAW) on steel A36 by means of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. The extrapolation of Tafel technique was also used to obtain the corrosion potential (Ec) for the pre-rusty steel and for the samples with deposits of Pt and Ag under conditions of hydrogen water chemistry (HWC), demonstrating that this parameter diminishes with the presence of this deposits. (Author)

  5. Scatterometry or imaging overlay: a comparative study

    Science.gov (United States)

    Hsu, Simon C. C.; Pai, Yuan Chi; Chen, Charlie; Yu, Chun Chi; Hsing, Henry; Wu, Hsing-Chien; Kuo, Kelly T. L.; Amir, Nuriel

    2015-03-01

    Most fabrication facilities today use imaging overlay measurement methods, as it has been the industry's reliable workhorse for decades. In the last few years, third-generation Scatterometry Overlay (SCOL™) or Diffraction Based Overlay (DBO-1) technology was developed, along another DBO technology (DBO-2). This development led to the question of where the DBO technology should be implemented for overlay measurements. Scatterometry has been adopted for high volume production in only few cases, always with imaging as a backup, but scatterometry overlay is considered by many as the technology of the future. In this paper we compare imaging overlay and DBO technologies by means of measurements and simulations. We outline issues and sensitivities for both technologies, providing guidelines for the best implementation of each. For several of the presented cases, data from two different DBO technologies are compared as well, the first with Pupil data access (DBO-1) and the other without pupil data access (DBO-2). Key indicators of overlay measurement quality include: layer coverage, accuracy, TMU, process robustness and robustness to process changes. Measurement data from real cases across the industry are compared and the conclusions are also backed by simulations. Accuracy is benchmarked with reference OVL, and self-consistency, showing good results for Imaging and DBO-1 technology. Process sensitivity and metrology robustness are mostly simulated with MTD (Metrology Target Designer) comparing the same process variations for both technologies. The experimental data presented in this study was done on ten advanced node layers and three production node layers, for all phases of the IC fabrication process (FEOL, MEOL and BEOL). The metrology tool used for most of the study is KLA-Tencor's Archer 500LCM system (scatterometry-based and imaging-based measurement technologies on the same tool) another type of tool is used for DBO-2 measurements. Finally, we conclude that

  6. Novel coating technology for non-oriented electrical steels

    Energy Technology Data Exchange (ETDEWEB)

    Snell, David; Coombs, Alan

    2000-06-02

    An exciting combination of environmentally friendly UV curable coatings and print-on coating technology has been developed for application to semi-processed and fully processed non-oriented electrical steels. Properties exhibited by the coated steels, particularly punching, welding, insulation resistance and chemical resistance satisfy customer requirements. Coating and curing can be achieved in an energy efficient manner in a very short line space.

  7. Development of an Overlay Design Procedure for Composite Pavements

    Science.gov (United States)

    2017-09-01

    The composite overlay design procedure currently used by ODOT sometimes produces very large overlay thicknesses that are deemed structurally unnecessary, especially for composite pavements already with thick asphalt overlays. This study was initiated...

  8. BASIC overlay for CAMAC data and command handling

    Energy Technology Data Exchange (ETDEWEB)

    Ciftcioglu, O [Istanbul Technical Univ. (Turkey). Inst. for Nuclear Energy

    1979-11-15

    A BASIC overlay has been developed for the BASIC language run in the PDP-11 series of computers. The overlay has particularly been wirtten for a dedicated Camac Crate Controller DC-011 from Ortec. By means of the overlay, any command comprising C, N, A, F information can easily be issued by the host system to communicate with the peripherals connected to the CAMAC system, through the CAMAC interface. The overlay is particularly useful for rather slow control systems and data handling between two different operating systems with incompatible formats for the data files having the CAMAC system as a mutual system component controllable by each of the operating systems individually. The overlay can easily be modified to be used for a Standard controller (type A-1) or any other type of dedicated controller.

  9. Assessment of the biological effects of welding fumes emitted from metal inert gas welding processes of aluminium and zinc-plated materials in humans.

    Science.gov (United States)

    Hartmann, L; Bauer, M; Bertram, J; Gube, M; Lenz, K; Reisgen, U; Schettgen, T; Kraus, T; Brand, P

    2014-03-01

    The aim of this study was to investigate biological effects and potential health risks due to two different metal-inert-gas (MIG) welding fumes (MIG welding of aluminium and MIG soldering of zinc coated steel) in healthy humans. In a threefold cross-over design study 12 male subjects were exposed to three different exposure scenarios. Exposures were performed under controlled conditions in the Aachener Workplace Simulation Laboratory (AWSL). On three different days the subjects were either exposed to filtered ambient air, to welding fumes from MIG welding of aluminium, or to fumes from MIG soldering of zinc coated materials. Exposure was performed for 6 h and the average fume concentration was 2.5 mg m(-3). Before, directly after, 1 day after, and 7 days after exposure spirometric and impulse oscillometric measurements were performed, exhaled breath condensate (EBC) was collected and blood samples were taken and analyzed for inflammatory markers. During MIG welding of aluminium high ozone concentrations (up to 250 μg m(-3)) were observed, whereas ozone was negligible for MIG soldering. For MIG soldering, concentrations of high-sensitivity CRP (hsCRP) and factor VIII were significantly increased but remained mostly within the normal range. The concentration of neutrophils increased in tendency. For MIG welding of aluminium, the lung function showed significant decreases in Peak Expiratory Flow (PEF) and Mean Expiratory Flow at 75% vital capacity (MEF 75) 7 days after exposure. The concentration of ristocetin cofactor was increased. The observed increase of hsCRP during MIG-soldering can be understood as an indicator for asymptomatic systemic inflammation probably due to zinc (zinc concentration 1.5 mg m(-3)). The change in lung function observed after MIG welding of aluminium may be attributed to ozone inhalation, although the late response (7 days after exposure) is surprising. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Characterization of the Interface of an Alloy 625 Overlay on Steels Using Nanoindentation

    Science.gov (United States)

    Dai, Tao; Lippold, John

    2018-06-01

    Industry standards require postweld heat treatment (PWHT) to reduce the heat-affected zone hardness of steels such as F22 (2.25Cr-1Mo) and AISI 8630 overlaid (clad) with Alloy 625 weld metal. PWHT results in carbon diffusion and accumulation at the interface between the steel and overlay. The accumulation of carbon in a planar solidification growth zone adjacent to the fusion boundary results in high hardness and the potential for hydrogen-assisted cracking. The planar growth zone (PGZ) is so narrow that normal Vickers hardness testing cannot fully reveal the hardness distribution in this zone. This study focused on the application of nanoindentation to characterize the hardness in the narrow microstructural regions adjacent to the fusion boundary. The development of nanohardness maps revealed that the PGZ is not necessarily the region that exhibits peak hardness after PWHT. The highest hardness values were associated with clusters of M7C3 carbides in specific subregions in the PGZ and also in the partially-mixed zone adjacent to the fusion boundary or in steel "swirl" structures. It was also confirmed in this study that nanohardness has a linear correlation with Vickers hardness values. The results presented here provide new insight into the role of carbon diffusion during PWHT and its effect on interface embrittlement associated with Alloy 625 overlays on steel.

  11. Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples

    International Nuclear Information System (INIS)

    Rubio-Gonzalez, C.; Gomez-Rosas, G.; Ocana, J.L.; Molpeceres, C.; Banderas, A.; Porro, J.; Morales, M.

    2006-01-01

    Laser shock processing (LSP) or laser shock peening is a new technique for strengthening metals. This process induces a compressive residual stress field, which increases fatigue crack initiation life and reduces fatigue crack growth rate. Specimens of 6061-T6 aluminum alloy are used in this investigation. A convergent lens is used to deliver 2.5 J, 8 ns laser pulses by a Q-switch Nd:YAG laser, operating at 10 Hz. The pulses are focused to a diameter of 1.5 mm onto aluminum samples. Density of 2500 pulses/cm 2 with infrared (1064 nm) radiation was used. The effect of an absorbent overlay on the residual stress field using this LSP setup and this energy level is evaluated. Residual stress distribution as a function of depth is assessed by the hole drilling method. It is observed that the overlay makes the compressive residual stress profile move to the surface. This effect is explained on the basis of the vaporization of the coat layer suppressing thermal effects on the metallic substrate. The effect of coating the specimen surface before LSP treatment may have advantages on improving wear and contact fatigue properties of this aluminum alloy

  12. In situ corrosion testing of various nickel alloys at Måbjerg waste incineration plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Hansson, A. N.; Jensen, S. A.

    2013-01-01

    overlay material currently being used to give improved corrosion resistance. In order to assess the use of alternative nickel alloys, test panels have been manufactured and inserted into Måbjerg waste incineration plant. Inconel 625 as a 50% weld overlay, two layered weld overlay and as a spiral weld......The majority of waste in Denmark is disposed via waste to energy (WTE) incineration plants which are fabricated from carbon steel. However, due to the increasing corrosiveness of waste over the years, more corrosion resistant alloys are required. In Denmark, Inconel 625 (UNSN06625) is the weld...... overlay was exposed. Other nickel materials exposed were weld overlay Alloy 686, Alloy 50 and Sumitomo Super 625 coextruded tube. Exposure has been undertaken from 2003 to 2009 in the first pass and 2005–2009 in the second pass, and sections have been removed and investigated during this period...

  13. The Role of Mechanical Connection during Friction Stir Keyholeless Spot Welding Joints of Dissimilar Materials

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    2017-06-01

    Full Text Available Contrast experiments of lap joints among dissimilar AZ31B Mg alloy, Mg99.50, zinc-coated DP600 sheet, and non-zinc-coated DP600 sheet were made by friction stir keyholeless spot welding (FSKSW and vacuum diffusion welding (VDW, respectively. Scanning electron microscopy (SEM and energy disperse spectroscopy (EDS were used to investigate the microstructures and components of the joints welded. The experimental results show that the FSKSW bonding method is a kind of compound mode that contains a mechanical connection and element diffusion fusion connection, in which mechanical connection has the main decisive function on joints of Mg/steel. Elements diffusion exists in the interfacial region of the joints and the elements diffusion extent is basically the same to that of VDW. The elements’ diffusion in Mg/steel using FSKSW is defined in the reaction between small amounts elements of the base metal and zinc-coated metals. The intermetallic compounds and composite oxide perform some reinforcement on the mechanical connection strength.

  14. Colors, colored overlays, and reading skills

    Directory of Open Access Journals (Sweden)

    Arcangelo eUccula

    2014-07-01

    Full Text Available In this article, we are concerned with the role of colors in reading written texts. It has been argued that colored overlays applied above written texts positively influence both reading fluency and reading speed. These effects would be particularly evident for those individuals affected by the so called Meares-Irlen syndrome, i.e. who experience eyestrain and/or visual distortions – e.g. color, shape or movement illusions – while reading. This condition would interest the 12-14% of the general population and up to the 46% of the dyslexic population. Thus, colored overlays have been largely employed as a remedy for some aspects of the difficulties in reading experienced by dyslexic individuals, as fluency and speed. Despite the wide use of colored overlays, how they exert their effects has not been made clear yet. Also, according to some researchers, the results supporting the efficacy of colored overlays as a tool for helping readers are at least controversial. Furthermore, the very nature of the Meares-Irlen syndrome has been questioned. Here we provide a concise, critical review of the literature.

  15. Surface state of the wire electrode and its influence on the application characteristics in MAG welding

    International Nuclear Information System (INIS)

    Piffer, W.; Marques, P.V.; Modenesi, P.J.

    1997-01-01

    This work presents an evaluation of the effect of the surface condition of the wire on GMA welding performance. Three wires samples were produced from the same steel heat with different surface conditions. Short circuit transfer welding trials were performed for two wire feed rates and different voltage levels. These tests indicated that stability tended to be worse and spatter level higher for the lowest and the highest welding voltage operation and the wire with no copper coating. No major difference was observed for intermediate voltage operation. Scanning electron microscopy of contact tips suggested that cooper coated wires produced less erosion on the tips. Electrical resistance of wires and friction forces between wires and contact tip were also evaluated and used to analyze differences in influence of wire surface condition on welding results. (Author) 14 refs

  16. Some aspects on the role of hydrogen in the cold crack develoment process on welding

    International Nuclear Information System (INIS)

    Bourges, P.; Faure, F.

    1983-03-01

    Examination of the hydrogen input during welding (humidity of the electrode coatings, humidity of the wires, ribbon, and weld fluxing) and the means to minimize these hydrogen inputs. Description of various examples of cold crack development in welded joints caused by hydrogen, influence of the chemical composition, of the thermal processing on the two metals joints, influence of sulfur on cold crack on low alloy steels [fr

  17. In-cell overlay metrology by using optical metrology tool

    Science.gov (United States)

    Lee, Honggoo; Han, Sangjun; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, DongYoung; Oh, Eungryong; Choi, Ahlin; Park, Hyowon; Liang, Waley; Choi, DongSub; Kim, Nakyoon; Lee, Jeongpyo; Pandev, Stilian; Jeon, Sanghuck; Robinson, John C.

    2018-03-01

    Overlay is one of the most critical process control steps of semiconductor manufacturing technology. A typical advanced scheme includes an overlay feedback loop based on after litho optical imaging overlay metrology on scribeline targets. The after litho control loop typically involves high frequency sampling: every lot or nearly every lot. An after etch overlay metrology step is often included, at a lower sampling frequency, in order to characterize and compensate for bias. The after etch metrology step often involves CD-SEM metrology, in this case in-cell and ondevice. This work explores an alternative approach using spectroscopic ellipsometry (SE) metrology and a machine learning analysis technique. Advanced 1x nm DRAM wafers were prepared, including both nominal (POR) wafers with mean overlay offsets, as well as DOE wafers with intentional across wafer overlay modulation. After litho metrology was measured using optical imaging metrology, as well as after etch metrology using both SE and CD-SEM for comparison. We investigate 2 types of machine learning techniques with SE data: model-less and model-based, showing excellent performance for after etch in-cell on-device overlay metrology.

  18. Determination of the sensitization of two coatings by steel welding 308l by the EPR-Dl and Astm A-262 practice A techniques; Determinacion de la sensibilizacion de dos revestimientos por soldadura de acero 308L por las tecnicas EPR-DL y ASTM A-262 practica A

    Energy Technology Data Exchange (ETDEWEB)

    Arganis J, C. R.; Zenteno S, J. C.; Robles F, J. L.; Rodriguez M, E.; Vazquez P, A., E-mail: carlos.arganis@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    A stainless steel 308l coating was deposited by the shielded metal arc welding (SMAW) on steel A36 with a thickness of 4.726 mm in three layers. The sensitization was measured with the technique of Electrochemical Potentiodynamic Reactivation of Double-loop (EPR-Dl), using a portable cell and other of conventional window. The standard Astm A-262, practice A was used to verify the sensitization values. Two samples were used, a welding on a plate of 323 x 172 x 76.2 mm and the second welding on the end of a plate of 12.7 mm of thickness and 280 mm of longitude, with a post-welding process with gas tungsten arc welding (GTAW) with electrode ERNiCr{sub 3} and a process SMAW with electrode ENICRFe{sub 3}. The coating on the plate showed low values of sensitization grade (DOS) in all the points, indicating a very quick heat extraction and an inter dendritic structure type step. The second sample presented DOS values that are related with a structure of low sensitization and the influence of the heat of the post-welding process and a structure of recrystallized grains. (Author)

  19. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho [Chungbuk National University, Cheongju (Korea, Republic of); Kim, Dong-Yoon; Kang, Moon-Jin [Korea Institute of Industrial Technology, Incheon (Korea, Republic of)

    2017-06-15

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  20. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    International Nuclear Information System (INIS)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho; Kim, Dong-Yoon; Kang, Moon-Jin

    2017-01-01

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  1. Hybrid overlay metrology with CDSEM in a BEOL patterning scheme

    Science.gov (United States)

    Leray, Philippe; Jehoul, Christiane; Inoue, Osamu; Okagawa, Yutaka

    2015-03-01

    Overlay metrology accuracy is a major concern for our industry. Advanced logic process require more tighter overlay control for multipatterning schemes. TIS (Tool Induced Shift) and WIS (Wafer Induced Shift) are the main issues for IBO (Image Based Overlay) and DBO (Diffraction Based Overlay). Methods of compensation have been introduced, some are even very efficient to reduce these measured offsets. Another related question is about the overlay target designs. These targets are never fully representative of the design rules, strong efforts have been achieved, but the device cannot be completely duplicated. Ideally, we would like to measure in the device itself to verify the real overlay value. Top down CDSEM can measure critical dimensions of any structure, it is not dependent of specific target design. It can also measure the overlay errors but only in specific cases like LELE (Litho Etch Litho Etch) after final patterning. In this paper, we will revisit the capability of the CDSEM at final patterning by measuring overlay in dedicated targets as well as inside a logic and an SRAM design. In the dedicated overlay targets, we study the measurement differences between design rules gratings and relaxed pitch gratings. These relaxed pitch which are usually used in IBO or DBO targets. Beyond this "simple" LELE case, we will explore the capability of the CDSEM to measure overlay even if not at final patterning, at litho level. We will assess the hybridization of DBO and CDSEM for reference to optical tools after final patterning. We will show that these reference data can be used to validate the DBO overlay results (correctables and residual fingerprints).

  2. Lubricating Properties of Ceramic-Bonded Calcium Fluoride Coatings on Nickel-Base Alloys from 75 to 1900 deg F

    Science.gov (United States)

    Sliney, Harold E.

    1962-01-01

    The endurance life and the friction coefficient of ceramic-bonded calcium fluoride (CaF2) coatings on nickel-base alloys were determined at temperatures from 75 F to 1900 F. The specimen configuration consisted of a hemispherical rider (3/16-in. rad.) sliding against the flat surface of a rotating disk. Increasing the ambient temperature (up to 1500 F) or the sliding velocity generally reduced the friction coefficient and improved coating life. Base-metal selection was critical above 1500 F. For instance, cast Inconel sliding against coated Inconel X was lubricated effectively to 1500 F, but at 1600 F severe blistering of the coatings occurred. However, good lubrication and adherence were obtained for Rene 41 sliding against coated Rene 41 at temperatures up to 1900 F; no blisters developed, coating wear life was fairly good, and the rider wear rate was significantly lower than for the unlubricated metals. Friction coefficients were 0.12 at 1500 F, 0.15 at 1700 F, and 0.17 at 1800 F and 1900 F. Because of its ready availability, Inconel X appears to be the preferred substrate alloy for applications in which the temperature does not exceed 1500 F. Rene 41 would have to be used in applications involving higher temperatures. Improved coating life was derived by either preoxidizing the substrate metals prior to the coating application or by applying a very thin (less than 0.0002 in.) burnished and sintered overlay to the surface of the coating. Preoxidation did not affect the friction coefficient. The overlay generally resulted in a higher friction coefficient than that obtained without the overlay. The combination of both modifications resulted in longer coating life and in friction coefficients intermediate between those obtained with either modification alone.

  3. Evaluating diffraction-based overlay

    Science.gov (United States)

    Li, Jie; Tan, Asher; Jung, JinWoo; Goelzer, Gary; Smith, Nigel; Hu, Jiangtao; Ham, Boo-Hyun; Kwak, Min-Cheol; Kim, Cheol-Hong; Nam, Suk-Woo

    2012-03-01

    We evaluate diffraction-based overlay (DBO) metrology using two test wafers. The test wafers have different film stacks designed to test the quality of DBO data under a range of film conditions. We present DBO results using traditional empirical approach (eDBO). eDBO relies on linear response of the reflectance with respect to the overlay displacement within a small range. It requires specially designed targets that consist of multiple pads with programmed shifts. It offers convenience of quick recipe setup since there is no need to establish a model. We measure five DBO targets designed with different pitches and programmed shifts. The correlations of five eDBO targets and the correlation of eDBO to image-based overlay are excellent. The targets of 800nm and 600nm pitches have better dynamic precision than targets of 400nm pitch, which agrees with simulated results on signal/noise ratio. 3σ of less than 0.1nm is achieved for both wafers using the best configured targets. We further investigate the linearity assumption of eDBO algorithm. Simulation results indicate that as the pitch of DBO targets gets smaller, the nonlinearity error, i.e., the error in the overlay measurement results caused by deviation from ideal linear response, becomes bigger. We propose a nonlinearity correction (NLC) by including higher order terms in the optical response. The new algorithm with NLC improves measurement consistency for DBO targets of same pitch but different programmed shift, due to improved accuracy. The results from targets with different pitches, however, are improved marginally, indicating the presence of other error sources.

  4. Friction stir weld assisted diffusion bonding of 5754 aluminum alloy to coated high strength steels

    International Nuclear Information System (INIS)

    Haghshenas, M.; Abdel-Gwad, A.; Omran, A.M.; Gökçe, B.; Sahraeinejad, S.; Gerlich, A.P.

    2014-01-01

    Highlights: • Successful lap joints of Al 5754 sheet to coated DP600 and 22MnB5 steels. • Negligible effect of welding speed on mechanical properties of Al 5754/22MnB5 joints. • Lower strength of Al 5754/22MnB5 joints compared with Al 5754/DP600 joints. - Abstract: In the present paper friction stir-induced diffusion bonding is used for joining sheets of 5754 aluminum alloy to coated high strength steels (DP600 and 22MnB5) by promoting diffusion bonding in an overlap configuration. Mechanical performance and microstructures of joints were analyzed by overlap shear testing, metallography, and X-ray diffraction. Our results show that the strength of joint is dependent upon tool travel speed and the depth of the tool pin relative to the steel surface. The thickness and types of intermetallic compounds formed at the interface play a significant role in achieving a joint with optimum performance. That is, the formation of high aluminum composition intermetallic compounds (i.e. Al 5 Fe 2 ) at the interface of the friction stir lap joint appeared to have a more negative effect on joint strength compared to the presence of high iron composition intermetallic phases (i.e. FeAl). This is in agreement with previously reported findings that FeAl intermetallic can improve the fracture toughness and interface strength in Al/St joints

  5. Ranking protective coatings: Laboratory vs. field experience

    Science.gov (United States)

    Conner, Jeffrey A.; Connor, William B.

    1994-12-01

    Environmentally protective coatings are used on a wide range of gas turbine components for survival in the harsh operating conditions of engines. A host of coatings are commercially available to protect hot-section components, ranging from simple aluminides to designer metallic overlays and ceramic thermal barrier coatings. A variety of coating-application processes are available, and they range from simple pack cementation processing to complex physical vapor deposition, which requires multimillion dollar facilities. Detailed databases are available for most coatings and coating/process combinations for a range of laboratory tests. Still, the analysis of components actually used in engines often yields surprises when compared against predicted coating behavior from laboratory testing. This paper highlights recent work to develop new laboratory tests that better simulate engine environments. Comparison of in-flight coating performance as well as industrial and factory engine testing on a range of hardware is presented along with laboratory predictions from standard testing and from recently developed cyclic burner-rig testing.

  6. Ultrasound influence on materials structure in parts reconditioned by welding with ultrasonic field

    Directory of Open Access Journals (Sweden)

    D. Dobrotă

    2013-01-01

    Full Text Available Research presented in the paper refers to the structural analysis of materials that are thermally influenced for loading by welding of pieces in the classical variant of manual coated electric arc welding and the version that in which the welding bath is activated by ultrasounds. The structural analysis made refer to: the size of the grains of the structure obtained under certain loading conditions through welding, grain size variation on the submission of a single layer in the ultrasonic field, the mode of solidification and fragmentation of grains when loaded in welding in a ultrasonic field, acceleration of the diffusion process for ultrasonic activation, the appearance of hard carbides between grains.

  7. Abrasive wear response of TIG-melted TiC composite coating: Taguchi approach

    Science.gov (United States)

    Maleque, M. A.; Bello, K. A.; Adebisi, A. A.; Dube, A.

    2017-03-01

    In this study, Taguchi design of experiment approach has been applied to assess wear behaviour of TiC composite coatings deposited on AISI 4340 steel substrates by novel powder preplacement and TIG torch melting processes. To study the abrasive wear behaviour of these coatings against alumina ball at 600° C, a Taguchi’s orthogonal array is used to acquire the wear test data for determining optimal parameters that lead to the minimization of wear rate. Composite coatings are developed based on Taguchi’s L-16 orthogonal array experiment with three process parameters (welding current, welding speed, welding voltage and shielding gas flow rate) at four levels. In this technique, mean response and signal-to-noise ratio are used to evaluate the influence of the TIG process parameters on the wear rate performance of the composite coated surfaces. The results reveal that welding voltage is the most significant control parameter for minimizing wear rate while the current presents the least contribution to the wear rate reduction. The study also shows the best optimal condition has been arrived at A3 (90 A), B4 (2.5 mm/s), C3 (30 V) and D3 (20 L/min), which gives minimum wear rate in TiC embedded coatings. Finally, a confirmatory experiment has been conducted to verify the optimized result and shows that the error between the predicted values and the experimental observation at the optimal condition lies within the limit of 4.7 %. Thus, the validity of the optimum condition for the coatings is established.

  8. Friction surfaced Stellite6 coatings

    International Nuclear Information System (INIS)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid; Ram, G.D. Janaki; Reddy, G. Madhusudhan; Nagalakshmi, R.

    2012-01-01

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: ► Stellite6 used as coating material for friction surfacing. ► Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. ► Finer and uniformly distributed carbides in friction surfaced coatings. ► Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  9. Perceived effects of coloured overlays on reading material in persons with albinism

    Directory of Open Access Journals (Sweden)

    N. T. Makgaba

    2008-12-01

    Full Text Available Persons with albinism often complain of glare when reading. They may therefore benefit from coloured filter overlays just as they benefit from tinted lenses. The purpose of this study was to assess the effectof coloured overlays on print perception in persons with oculocutaneous albinism (OCA.   Fifty subjects were included in this study, their ages ranged from 12 to 31 years with a mean of 16.12 years (SD = ± 4.56 years.  Following refraction and subsequent compensation for refractive errors, subjective perception of print was examined with the subject looking at the Wilkins® reading rate test chart with and without colored filter overlay/s.  The subjects were asked to respond to questions previously used in a questionnaire by Wilkins (2001. The percentage frequencies of positive (beneficial responses were used to decide whether or not a particular overlay would enhance reading performance.  McNemar’s test was used to establish significant differences between responses to questions without and with overlays. All single overlays gave greater percentages of positive responses (92.0-97.2% than without overlay (85.2%.  The single overlay that provided the highest positive responses was blue (97.2% and the least was purple (92.0%. All double overlays, except grey/grey (82.0% gave greater positive responses than without overlay (85.2%. Aqua/blue gave the greatest positive responses (possible benefits (97.2%, followed by rose/rose (96.8%.  Comparing the responses without overlay with single and double overlays, the difference in responses to the five questions was only significant (p < 0.05 with regard to brightness of the surface. The results suggest that overlays provided a more glare-free reading surface than without an overlay. It was, therefore concluded that the best advantage of the coloured overlays was in glare reduction.  Although this study showed that there were more subjects who preferred single blue and aqua/blue double

  10. Coatings for directional eutectics

    Science.gov (United States)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Coatings developed to provide oxidation protection for the directionally-solidified eutectic alloy NiTaC-B (4.4 weight percent Cr) were evaluated. Of seven Co-, Fe- and Ni-base coatings that were initially investigated, best resistance to cyclic oxidation was demonstrated by duplex coatings fabricated by depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam source followed by deposition of an Al overlayer using the pack cementation process. It was found that addition of carbon to the coating alloy substantially eliminated the problem of fiber denudation in TaC-type eutectic alloys. Burner rig cycled NiTaC-B samples coated with Ni-20Cr-5Al-0.1C-0.1Y+Al and rupture-tested at 1100 deg C performed as well as or better than uncoated, vacuum cycled and air-tested NiTaC-13; however, a slight degradation with respect to uncoated material was noted in air-stress rupture tests at 870 deg C for both cycled and uncycled samples.

  11. Progress in Protective Coatings for Aircraft Gas Turbines: A Review of NASA Sponsored Research

    Science.gov (United States)

    Merutka, J. P.

    1981-01-01

    Problems associated with protective coatings for advanced aircraft gas turbines are reviewed. Metallic coatings for preventing titanium fires in compressors are identified. Coatings for turbine section are also considered, Ductile aluminide coatings for protecting internal turbine-blade cooling passage surface are also identified. Composite modified external overlay MCrAlY coatings deposited by low-pressure plasma spraying are found to be better in surface protection capability than vapor deposited MCrAlY coatings. Thermal barrier coating (TBC), studies are presented. The design of a turbine airfoil is integrated with a TBC, and computer-aided manufacturing technology is applied.

  12. The radiological risk in arc welding; El riesgo radiologico en la soldadura por arco

    Energy Technology Data Exchange (ETDEWEB)

    Alegria, N.; Campos, M.; Carrion, A.; Herranz, M.; Idoeta, R.; Legarda, F.; Nunez-Lagos, R.; Perez, C.; Rodriguez, S.; Rozas, S.; Sanchez, P.

    2011-07-01

    We present the current status of a project funded by the Nuclear Safety Council, for the study of the potential radiological risk in arc welding. In the coating of filler material of the electrodes and the soul of the continuous tubular wire welding material are located NORM who present a radioactive activity.

  13. Friction Welding For Cladding Applications: Processing, Microstructure and Mechanical Properties of Inertia Friction Welds of Stainless Steel to Low Carbon Steel and Evaluation of Wrought and Welded Austenitic Stainless Steels for Cladding Applications in Acidchloride Service

    Science.gov (United States)

    Switzner, Nathan

    Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid

  14. Study of weld quality real-time monitoring system for auto-body assembly

    Science.gov (United States)

    Xu, Jun; Li, Yong-Bing; Chen, Guan-Long

    2005-12-01

    Resistance spot welding (RSW) is widely used for the auto-body assembly in automotive industry. But RSW suffers from a major problem of inconsistent quality from weld to weld. The major problem is the complexity of the basic process that may involve material coatings, electrode force, electrode wear, fit up, etc. Therefore weld quality assurance is still a big challenge and goal. Electrode displacement has proved to be a particularly useful signal which correlates well with weld quality. This paper introduces a novel auto-body spot weld quality monitoring system which uses electrode displacement as the quality parameter. This system chooses the latest laser displacement sensor with high resolution to measure the real-time electrode displacement. It solves the interference problem of sensor mounting by designing special fixture, and can be successfully applied on the portable welding machine. It is capable of evaluating weld quality and making diagnosis of process variations such as surface asperities, shunting, worn electrode and weld expansion with real-time electrode displacement. As proved by application in the workshop, the monitoring system has good stability and reliability, and is qualified for monitoring weld quality in process.

  15. Damage and Performance Assessment of Protective Coatings on Turbine Blades

    OpenAIRE

    Pokluda, Jaroslav; Kianicová, Marta

    2010-01-01

    Protective coatings on blades serve as physical barriers between the underlying substrate and the outer environment. This article presents an overview of damage mechanisms leading to failure of all basic types of coatings (diffusion, overlay and thermal barrier) on turbine blades of aircraft engines during service. Although a special emphasize is devoted to destructive effects of thermo-mechanical fatigue and overheating, the severe effects of hot corrosion, oxidation and erosion effects are ...

  16. Ablative overlays for Space Shuttle leading edge ascent heat protection

    Science.gov (United States)

    Strauss, E. L.

    1975-01-01

    Ablative overlays were evaluated via a plasma-arc simulation of the ascent pulse on the leading edge of the Space Shuttle Orbiter. Overlay concepts included corkboard, polyisocyanurate foam, low-density Teflon, epoxy, and subliming salts. Their densities ranged from 4.9 to 81 lb per cu ft, and the thicknesses varied from 0.107 to 0.330 in. Swept-leading-edge models were fabricated from 30-lb per cu ft silicone-based ablators. The overlays were bonded to maintain the surface temperature of the base ablator below 500 F during ascent. Foams provided minimum-weight overlays, and subliming salts provided minimum-thickness overlays. Teflon left the most uniform surface after ascent heating.

  17. Microstructures of friction surfaced coatings. A TEM study

    International Nuclear Information System (INIS)

    Akram, Javed; Kalvala, Prasad Rao; Misra, Mano

    2016-01-01

    The microstructures of dissimilar metal welds between 9Cr-1Mo (Modified) (P91) and austenitic stainless steel (AISI 304) with Ni-based alloy interlayers (Inconel 625, Inconel 600 and Inconel 800H) are reported. These interlayers were deposited by the friction surfacing method one over the other on P91 alloy, which was finally friction welded to AISI 304. In this paper, the results of microstructural evolution in the friction surfaced coated interlayers (Inconel 625, 600, 800H) are reported. For comparative purposes, the microstructures of consumable rods (Inconel 625, 600, 800H) and dissimilar metal base metals (P91 and AISI 304) were also reported. Friction surfaced coatings exhibited dynamic recrystallization. In friction surfaced coatings, the carbide particles were found to be finer and distributed uniformly throughout the matrix, compared to their rod counterparts.

  18. Cold pressure welding of aluminium-steel blanks: Manufacturing process and electrochemical surface preparation

    Science.gov (United States)

    Schmidt, Hans Christian; Homberg, Werner; Orive, Alejandro Gonzalez; Grundmeier, Guido; Hordych, Illia; Maier, Hans Jürgen

    2018-05-01

    In this study the manufacture of aluminium-steel blanks by cold pressure welding and their preparation for a welding process through electrochemical surface treatment are investigated and discussed. The cold pressure welding process was done with an incremental rolling tool that allows for the partial pressure welding of two blanks along a prepared path. The influence of the surface preparation by electrochemical deposition of bond promoting organosilane-based agents and roughening on a nano-scale is investigated and compared to conventional surface treatments. Coating the surfaces with a thin organosilane-based film incorporating specific functional groups should promote additional bonding between the mating oxide layers; its influence on the total weld strength is studied. Pressure welding requires suitable process strategies, and the current advances in the proposed incremental rolling process for the combination of mild steel and aluminium are presented.

  19. Dependence of fracture toughness of molybdenum laser welds on processing parameters and in-situ oxygen gettering

    International Nuclear Information System (INIS)

    Pope, L.E.; Jellison, J.L.

    1980-01-01

    Fracture toughness properties have been determined for laser welds in different grades of molybdenum. The fracture toughness of welds in sintered molybdenum was consistently less than the fracture toughness of welds in vacuum arc remelted molybdenum. These differences cannot be attributed to oxygen content, since the oxygen level was nominally the same for all grades of molybdenum examined in this program. Alloy additions of titanium by means of physically deposited coatings significantly improved the fracture toughness of welds in sintered molybdenum, whereas titanium additions to welds in vacuum arc remelted molybdenum decreased the fracture toughness slightly. Pulsed laser welds exhibited fine columnar structures and, in the case of sintered molybdenum, superior fracture toughness when compared with continuous wave laser welds. 6 figures, 3 tables

  20. THE USE OF COATINGS FOR HOT CORROSION AND EROSION PROTECTION IN TURBINE HOT SECTION COMPONENTS

    Directory of Open Access Journals (Sweden)

    Hayrettin AHLATCI

    1999-01-01

    Full Text Available High pressure turbine components are subjected to a wide variety of thermal and mechanical loading during service. In addition, the components are exposed to a highly oxidizing atmosphere which may contain contaminants such as sulphates, chlorides and sulphuorous gases along with erosive media. So the variety of surface coatings and deposition processes available for the protection of blade and vane components in gas turbines are summarised in this study. Coating types range from simple diffusion aluminides to modified aluminides and a CoCrAlY overlayer. The recommendations for corrosion-resistant coatings (for low temperature and high temperature hot corrosion environments are as follows: silicon aluminide and platinumchromium aluminide for different gas turbine section superalloys substrates. Platinum metal additions are used to improve the properties of coatings on turbine components. Inorganic coatings based on ceramic films which contain aluminium or aluminium and silicon are very effective in engines and gas turbines. Diffusion, overlayer and thermal barrier coatings which are deposited on superalloys gas turbine components by pack cementation, plasma spraying processes and a number of chemical vapour deposition, physical vapour deposition processes (such as electron beam, sputtering, ion plating are described. The principles underlying the development of protective coatings serve as a useful guide in the choice of coatings for other high temperature applications.

  1. Method for laser spot welding monitoring

    Science.gov (United States)

    Manassero, Giorgio

    1994-09-01

    As more powerful solid state laser sources appear on the market, new applications become technically possible and important from the economical point of view. For every process a preliminary optimization phase is necessary. The main parameters, used for a welding application by a high power Nd-YAG laser, are: pulse energy, pulse width, repetition rate and process duration or speed. In this paper an experimental methodology, for the development of an electrooptical laser spot welding monitoring system, is presented. The electromagnetic emission from the molten pool was observed and measured with appropriate sensors. The statistical method `Parameter Design' was used to obtain an accurate analysis of the process parameter that influence process results. A laser station with a solid state laser coupled to an optical fiber (1 mm in diameter) was utilized for the welding tests. The main material used for the experimental plan was zinc coated steel sheet 0.8 mm thick. This material and the related spot welding technique are extensively used in the automotive industry, therefore, the introduction of laser technology in production line will improve the quality of the final product. A correlation, between sensor signals and `through or not through' welds, was assessed. The investigation has furthermore shown the necessity, for the modern laser production systems, to use multisensor heads for process monitoring or control with more advanced signal elaboration procedures.

  2. Weldability of Advanced High Strength Steels using Ytterbium:Yttrium Aluminium Garnet high power laser for Tailor-Welded Blank applications

    Science.gov (United States)

    Sharma, Rajashekhar Shivaram

    Use of a high power Yb:YAG laser is investigated for joining advanced high strength steel materials for use in tailor-welded blank (TWB) applications. TWB's are materials of different chemistry, coating or thicknesses that are joined before metal forming and other operations such as trimming, assembly and painting are carried out. TWB is becoming an important design tool in the automotive industry for reducing weight, improving fuel economy and passenger safety, while reducing the overall costs for the customer. Three advanced high strength steels, TRIP780, DP980 and USIBOR, which have many unique properties that are conducive to achieving these objectives, along with mild steel, are used in this work. The objective of this work is to ensure that high quality welds can be obtained using Yb:YAG lasers which are also becoming popular for metal joining operations, since they produce high quality laser beams that suffer minimal distortion when transported via fiber optic cables. Various power levels and speeds for the laser beam were used during the investigation. Argon gas was consistently used for shielding purposes during the welding process. After the samples were welded, metallographic examination of the fusion and heat-affected zones using optical and scanning electron microscopes were carried out to determine the microstructures as well as weld defects. Optical and scanning electron microscopes were also used to examine the top of welds as well as fracture surfaces. Additionally, cross-weld microhardness evaluations, tensile tests using Instron tester, limited fatigue tests as well as formability evaluations using OSU plane strain evaluation were carried out. The examinations included a 2-factor full factorial design of experiments to determine the impact of coatings on the surface roughness on the top of the welds. Tensile strengths of DP980, TRIP780 and mild steel materials as well as DP980 welded to TRIP780 and mild steel in the rolling direction as well as

  3. Welding of heterogeneous 12Kh2MFSR steels with the Mn-Cr-Si-Ni system

    International Nuclear Information System (INIS)

    Smirnov, A.N.; Belogolov, E.I.

    1978-01-01

    The process of welding pipes of the 12Kh2MFSR pearlitic steels and austenitic steels of the Mn-Cr-Si-Ni system was studied. The filler materials were selected, and the working capacity of welded joints was examined in ageing and cyclic heatings. The microhardness of steels was measured, and the ultimate strength of welded joints was determined. The following has been established: the composite joints of steels of the Mn-Cr-Si-Ni system and 12Kh2MFSR steel are advisable to be welded on a coating layer welded by the EhA395/9 electrodes on the surface of a pipe of the 12Kh2MFSR pearlitic steel; this guarantees the sufficient working capacity of welded joints

  4. An online real time ultrasonic NDT system for the quality control of spot welding in the automotive industry

    International Nuclear Information System (INIS)

    Athi, N; Wylie, S R; Cullen, J D; Al-Jader, M; Al-Shamma'a, A I; Shaw, A

    2009-01-01

    Resistance spot welding is the main joining technique used for the fabrication of body-in-white structures in the automotive industry. The quality of the welds depends on the profile of the spot welding electrode cap. The increased use of zinc coated steel in the industry increases wear rate of the caps, making quality control more difficult. This paper presents a novel online real time ultrasonic NDE system for resistance spot welding which evaluates every weld as it is formed. SEM results are presented to show the alloying of the electrode caps.

  5. An online real time ultrasonic NDT system for the quality control of spot welding in the automotive industry

    Science.gov (United States)

    Athi, N.; Wylie, S. R.; Cullen, J. D.; Al-Jader, M.; Al-Shamma'a, A. I.; Shaw, A.

    2009-07-01

    Resistance spot welding is the main joining technique used for the fabrication of body-in-white structures in the automotive industry. The quality of the welds depends on the profile of the spot welding electrode cap. The increased use of zinc coated steel in the industry increases wear rate of the caps, making quality control more difficult. This paper presents a novel online real time ultrasonic NDE system for resistance spot welding which evaluates every weld as it is formed. SEM results are presented to show the alloying of the electrode caps.

  6. Accuracy optimization with wavelength tunability in overlay imaging technology

    Science.gov (United States)

    Lee, Honggoo; Kang, Yoonshik; Han, Sangjoon; Shim, Kyuchan; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, Dongyoung; Oh, Eungryong; Choi, Ahlin; Kim, Youngsik; Marciano, Tal; Klein, Dana; Hajaj, Eitan M.; Aharon, Sharon; Ben-Dov, Guy; Lilach, Saltoun; Serero, Dan; Golotsvan, Anna

    2018-03-01

    As semiconductor manufacturing technology progresses and the dimensions of integrated circuit elements shrink, overlay budget is accordingly being reduced. Overlay budget closely approaches the scale of measurement inaccuracies due to both optical imperfections of the measurement system and the interaction of light with geometrical asymmetries of the measured targets. Measurement inaccuracies can no longer be ignored due to their significant effect on the resulting device yield. In this paper we investigate a new approach for imaging based overlay (IBO) measurements by optimizing accuracy rather than contrast precision, including its effect over the total target performance, using wavelength tunable overlay imaging metrology. We present new accuracy metrics based on theoretical development and present their quality in identifying the measurement accuracy when compared to CD-SEM overlay measurements. The paper presents the theoretical considerations and simulation work, as well as measurement data, for which tunability combined with the new accuracy metrics is shown to improve accuracy performance.

  7. Multi-level Reconfigurable Self-organization in Overlay Services

    NARCIS (Netherlands)

    Pournaras, E.

    2013-01-01

    Large-scale decentralized systems organized in overlay networks are complex to manage. Such systems integrate organizational complexity in the application-level resulting in low abstraction and modularity in their services. This thesis introduces a multi-level conceptual architecture for overlay

  8. Strategic intelligence on emerging technologies: Scientometric overlay mapping

    NARCIS (Netherlands)

    Rotolo, D.; Rafols, I.; Hopkins, M.M.; Leydesdorff, L.

    This paper examines the use of scientometric overlay mapping as a tool of “strategic intelligence” to aid the governing of emerging technologies. We develop an integrative synthesis of different overlay mapping techniques and associated perspectives on technological emergence across geographical,

  9. Characterization of the mechanical properties and structural integrity of T-welded connections repaired by grinding and wet welding

    Energy Technology Data Exchange (ETDEWEB)

    Terán, G., E-mail: gteran@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Cuamatzi-Meléndez, R., E-mail: rcuamatzi@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Albiter, A., E-mail: aalbiter@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Maldonado, C., E-mail: cmzepeda@umich.mx [Instituto de Investigaciones Metalúrgicas, UMSNH, PO Box 52-B, 58000, México (Mexico); Bracarense, A.Q., E-mail: bracarense@ufmg.br [UFMG Departamento de Engeharia Mecánica Belo Horizonte, MG (Brazil)

    2014-04-01

    This paper presents an experimental methodology to characterize the structural integrity and mechanical properties of repaired T-welded connections using in fixed offshore structures. Grinding is employed to remove localized damage like cracking and corrosion and subsequent wet welding can be used to fill the grinded material. But it is important to define the grinding depth and profile in order to maintain structural integrity during the repair. Therefore, in this work different grinding depths were performed, for damage material removal, at the weld toe of the T-welded connections. The grinding was filled by wet welding in a hyperbaric chamber, simulating three different water depths: 50 m, 70 m and 100 m. The electrodes were coated with vinilic varnish, which is cheap and easy to apply. The characterization of the mechanical properties of the T-welded connections was done with standard tensile, hardness and Charpy tests; microstructure and porosity analysis were also performed. The samples were obtained from the welded connections in regions of the wet weld beads. The test results were compared with the mechanical properties of the T-welded connections welded in air conditions performed by other authors. The results showed that the wet welding technique performed in this work produced good mechanical properties of the repaired T-welded connection. The mechanical properties, measured in wet conditions, for 6 mm grinding depth, were similar for the 3 different water depths measured in air conditions. But for 10 mm grinding depth, the values of the mechanical properties measured in wet conditions were quite lower than that for air conditions for the 3 water depths. However a porosity analysis, performed with a Scanning Electronic Microscopy (SEM), showed that the level of porosity in the resulted wet weld beads is in the range of that published in the literature and some samples revealed lower level of porosity. The main resulting microstructure was polygonal

  10. A Plan to Optimize the Management of Weld ID SSN Numbering System for Nuclear Power Plants in Korea

    International Nuclear Information System (INIS)

    Yoo, Hyun Ju; Cho, Chan Hee; Kim, Jin Hoi; Park, Dong Min

    2016-01-01

    Summary Sheet Number(SSN) in the current LTP is an ID which means a weldment in a nuclear power plant. However, the SSN ID, which is unique on in a nuclear power plant, is not unique one if the weldments of entire nuclear power plant in Korea are treated in one system. Therefore, it is hard to manage the data during life time using the existing SSN ID system. It is also hard to configure the characteristics of weldment in mind because IDs implying Alloy600 and overlay weld do not exist in the existing SSN ID System. An optimized SSN numbering system managing weldments for the life time is introduced in this paper. Moreover, it is explained how to manage the SSN numbering system in the computer program system, too. The problem, which the weld is not harmoniously managed, would be solved provided adapting the new SSN ID introduced in this paper. A weld is managed during its life time from creation to extinction. The inquiry of inspection history of a concerned weld and the reference of statistics would be performed easily and rightly because the concerned weld can be accessed from anywhere connected to KHNP network such as KHNP headquater, plants and CRI

  11. STUDY OF COATINGS OBTAINED FROM ALLOY Fe-Mn-C-B-Si-Ni-Cr

    Directory of Open Access Journals (Sweden)

    Mychajło Paszeczko

    2016-09-01

    Full Text Available Tribological behaviour of coatings obtained from eutectic alloy Fe-Mn-C-B-Si-Ni-Cr was studied. The coatings were obtained by the method of gas metal arc welding (GMA with use of powder wire. GMA welding method is widely used for the regeneration of machine parts. Eutectic Fe-Mn-C-B-Si-Ni-Cr alloys can be used to obtain high quality coatings resistant to wear and corrosion. Pin-on-disk dry sliding wear tests at sliding speeds 0.4 m/s and under load 10 MPa were conducted for pin specimens. During friction a typical tribological behavior was observed. The mechanism of wear was mechanical-chemical.

  12. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  13. RADAR PPI Scope Overlay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — RADAR PPI Scope Overlays are used to position a RADAR image over a station at the correct resolution. The archive maintains several different RADAR resolution types,...

  14. Titanium-iridium oxide layer coating to suppress photocorrosion during photocatalytic water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yongwoo; Lee, Hyunjoo [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kwon, Yongwoo; Lee, Hyunjoo [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-12-15

    Photocatalysts with a small band gap energy have received a great deal of interest due their high solar conversion efficiencies. Cuprous oxide (Cu{sub 2}O) has attracted attention because of its small bandgap energy, a direct bandgap structure, its suitable band structure for water splitting, high absorption coefficient, non-toxicity, and its large abundance. However, it has poor stability due to the fickle oxidation states of copper. To enhance the stability and the production rate of hydrogen and oxygen, a TiIrOX overlayer was successfully formed on the Cu{sub 2}O under various synthesis conditions. The composition and oxidation state of the Ir species in the overlayer were optimized through the control of the Ir precursor and the amount of water. The Ir/Ti precursor molar ratio was linearly related to the surface Ir/Ti molar ratio. The addition of water converted the Ir precursor to IrO{sub 2}. The thickness of the overlayer was controlled by differing the synthesis times of the coating. Then, the largest amounts of hydrogen and oxygen were produced through the optimization of the TiIrOX overlayer with a higher IrO{sub 2} fraction and a thicker overlayer.

  15. Exploring overlay journals: the RIOJA project

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Researchers in cosmology and astrophysics depend on the arXiv repository for the registration and dissemination of their work, as well as for current awareness, yet they continue to submit papers to journals for review. Could rapid quality certification be overlaid directly onto the arXiv repository? This presentation introduces the RIOJA (Repository Interface to Overlaid Journal Archives) project, on which a group of cosmology researchers from the UK is working with UCL Library Services and Cornell University. The project is creating a tool to support the overlay of journals onto repositories, and will demonstrate a cosmology journal overlaid on top of arXiv. RIOJA will also work with the cosmology community to explore the social and economic aspects of journal overlay in this discipline: what other value, besides the quality stamp, does journal publication typically add? What are the costs of the ideal overlay journal for this community, and how could those costs be recovered? Would researchers real...

  16. Cladding of Advanced Al Alloys Employing Friction Stir Welding

    NARCIS (Netherlands)

    van der Stelt, A.A.; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Akkerman, Remko; van den Boogaard, Antonius H.

    2013-01-01

    In this paper an advanced solid state cladding process, based on Friction Stir Welding, is presented. The Friction Surface Cladding (FSC) technology enables the deposition of a solid-state coating using filler material on a substrate with good metallurgical bonding. A relatively soft AA1050 filler

  17. Overlay improvements using a real time machine learning algorithm

    Science.gov (United States)

    Schmitt-Weaver, Emil; Kubis, Michael; Henke, Wolfgang; Slotboom, Daan; Hoogenboom, Tom; Mulkens, Jan; Coogans, Martyn; ten Berge, Peter; Verkleij, Dick; van de Mast, Frank

    2014-04-01

    While semiconductor manufacturing is moving towards the 14nm node using immersion lithography, the overlay requirements are tightened to below 5nm. Next to improvements in the immersion scanner platform, enhancements in the overlay optimization and process control are needed to enable these low overlay numbers. Whereas conventional overlay control methods address wafer and lot variation autonomously with wafer pre exposure alignment metrology and post exposure overlay metrology, we see a need to reduce these variations by correlating more of the TWINSCAN system's sensor data directly to the post exposure YieldStar metrology in time. In this paper we will present the results of a study on applying a real time control algorithm based on machine learning technology. Machine learning methods use context and TWINSCAN system sensor data paired with post exposure YieldStar metrology to recognize generic behavior and train the control system to anticipate on this generic behavior. Specific for this study, the data concerns immersion scanner context, sensor data and on-wafer measured overlay data. By making the link between the scanner data and the wafer data we are able to establish a real time relationship. The result is an inline controller that accounts for small changes in scanner hardware performance in time while picking up subtle lot to lot and wafer to wafer deviations introduced by wafer processing.

  18. Advantages, properties and types of coatings on non-oriented electrical steels

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmo, M.; Coombs, A.; Snell, D

    2000-06-02

    Electrical steels used for motor, transformer and generator applications are usually coated with an insulation coating in order to improve the performance of the material in terms of reduced power loss, punching and welding characteristics and corrosion resistance. The advantages, properties and types of insulation coatings available at European Electrical Steels are discussed in this paper.

  19. Effect of Bainitic Microstructure on Ballistic Performance of Armour Steel Weld Metal Using Developed High Ni-Coated Electrode

    Science.gov (United States)

    Pramanick, A. K.; Das, H.; Reddy, G. M.; Ghosh, M.; Nandy, S.; Pal, T. K.

    2018-05-01

    Welding of armour steel has gained significant importance during the past few years as recent civilian and military requirements demand weld metal properties matching with base metal having good ballistic performance along with high strength and toughness at - 40 °C as per specification. The challenge of armour steel welding therefore lies in controlling the weld metal composition which is strongly dependent on welding electrode/consumables, resulting in desired weld microstructure consisting of lower bainite along with retained austenite. The performance of butt-welded armour steel joints produced by the developed electrodes was evaluated using tensile testing, ballistic testing, impact toughness at room temperature and subzero temperature. Microstructures of weld metals are exclusively characterized by x-ray diffraction technique, scanning electron microscope and transmission electron microscopy with selected area diffraction pattern. Experimental results show that weld metal with relatively lower carbon, higher manganese and lower nickel content was attributed to lower bainite with film type of retained austenite may be considered as a most covetable microstructure for armour steel weld metal.

  20. Effect of Bainitic Microstructure on Ballistic Performance of Armour Steel Weld Metal Using Developed High Ni-Coated Electrode

    Science.gov (United States)

    Pramanick, A. K.; Das, H.; Reddy, G. M.; Ghosh, M.; Nandy, S.; Pal, T. K.

    2018-04-01

    Welding of armour steel has gained significant importance during the past few years as recent civilian and military requirements demand weld metal properties matching with base metal having good ballistic performance along with high strength and toughness at - 40 °C as per specification. The challenge of armour steel welding therefore lies in controlling the weld metal composition which is strongly dependent on welding electrode/consumables, resulting in desired weld microstructure consisting of lower bainite along with retained austenite. The performance of butt-welded armour steel joints produced by the developed electrodes was evaluated using tensile testing, ballistic testing, impact toughness at room temperature and subzero temperature. Microstructures of weld metals are exclusively characterized by x-ray diffraction technique, scanning electron microscope and transmission electron microscopy with selected area diffraction pattern. Experimental results show that weld metal with relatively lower carbon, higher manganese and lower nickel content was attributed to lower bainite with film type of retained austenite may be considered as a most covetable microstructure for armour steel weld metal.

  1. Improving concrete overlay construction.

    Science.gov (United States)

    2010-03-01

    Several road construction projects involving concrete overlays at the state and county levels in Iowa in 2009 were studied for : construction techniques and methods. The projects that were evaluated consisted of sites in four Iowa counties: Osceola, ...

  2. Electrode for welding steel for WWER-1000 reactor pressure vessel

    International Nuclear Information System (INIS)

    Lakatos, L.

    Of two types of electrodes, ie., with an alloyed core and with an unalloyed core, an electrode was chosen consisting of a basic coat and an unalloyed core. Fluctuations are shown of shear strength, tensile strenght and contraction with the welding mode and annealing temperature. It was found that pre-heating to 250 and 350 degC, respectively, was most suitable for welding a pressure vessel manufactured from material designated SKODA A3/II. Annealing aimed at removing stress was chosen at 650 to 700 degC. (H.S.)

  3. Wafer edge overlay control solution for N7 and beyond

    Science.gov (United States)

    van Haren, Richard; Calado, Victor; van Dijk, Leon; Hermans, Jan; Kumar, Kaushik; Yamashita, Fumiko

    2018-03-01

    Historically, the on-product overlay performance close to the wafer edge is lagging with respect to the inner part of the wafer. The reason for this is that wafer processing is less controlled close to the wafer edge as opposed to the rest of the wafer. It is generally accepted that Chemical Vapor Deposition (CVD) of stressed layers that cause wafer warp, wafer table contamination, Chemical Mechanical Polishing (CMP), and Reactive Ion Etch (RIE) may deteriorate the overlay performance and/or registration close to the wafer edge. For the N7 technology node and beyond, it is anticipated that the tight on-product overlay specification is required across the full wafer which includes the edge region. In this work, we highlight one contributor that may negatively impact the on-product overlay performance, namely the etch step. The focus will be mainly on the wafer edge region but the remaining part of the wafer is considered as well. Three use-cases are examined: multiple Litho-Etch steps (LEn), contact hole layer etch, and the copper dual damascene etch. We characterize the etch contribution by considering the overlay measurement after resist development inspect (ADI) and after etch inspect (AEI). We show that the Yieldstar diffraction based overlay (μDBO) measurements can be utilized to characterize the etch contribution to the overlay budget. The effects of target asymmetry as well as overlay shifts are considered and compared with SEM measurements. Based on the results above, we propose a control solution aiming to reduce or even eliminate the delta between ADI and AEI. By doing so, target/mark to device offsets due to etch might be avoided.

  4. Advances in stainless steel welding for elevated temperature service

    International Nuclear Information System (INIS)

    Goodwin, G.M.; Cole, N.C.; King, R.T.; Slaughter, G.M.

    1975-10-01

    An extensive program to characterize the microstructures and determine the mechanical properties of stainless steel welds is described. The amount, size, shape, and general distribution of ferrite in the weld metal was studied. The effects of electrode coatings on creep-rupture properties were determined as were the influences of slight differences in analyzed contents of carbon, silicon, phosphorus, sulfur, and boron. Using the above information, a superior commercially produced electrode was formulated which took advantage of chemical control over boron, titanium, and phosphorus. This electrode produced deposits exhibiting superior mechanical properties and it was successfully utilized to fabricate a large nuclear reactor vessel

  5. Fundamentals of overlay measurement and inspection using scanning electron-microscope

    Science.gov (United States)

    Kato, T.; Okagawa, Y.; Inoue, O.; Arai, K.; Yamaguchi, S.

    2013-04-01

    Scanning electron-microscope (SEM) has been successfully applied to CD measurement as promising tools for qualifying and controlling quality of semiconductor devices in in-line manufacturing process since 1985. Furthermore SEM is proposed to be applied to in-die overlay monitor in the local area which is too small to be measured by optical overlay measurement tools any more, when the overlay control limit is going to be stringent and have un-ignorable dependence on device pattern layout, in-die location, and singular locations in wafer edge, etc. In this paper, we proposed new overlay measurement and inspection system to make an effective use of in-line SEM image, in consideration of trade-off between measurement uncertainty and measurement pattern density in each SEM conditions. In parallel, we make it clear that the best hybrid overlay metrology is in considering each tool's technology portfolio.

  6. 64nm pitch metal1 double patterning metrology: CD and OVL control by SEMCD, image based overlay and diffraction based overlay

    Science.gov (United States)

    Ducoté, Julien; Dettoni, Florent; Bouyssou, Régis; Le-Gratiet, Bertrand; Carau, Damien; Dezauzier, Christophe

    2015-03-01

    Patterning process control of advanced nodes has required major changes over the last few years. Process control needs of critical patterning levels since 28nm technology node is extremely aggressive showing that metrology accuracy/sensitivity must be finely tuned. The introduction of pitch splitting (Litho-Etch-Litho-Etch) at 14FDSOInm node requires the development of specific metrologies to adopt advanced process control (for CD, overlay and focus corrections). The pitch splitting process leads to final line CD uniformities that are a combination of the CD uniformities of the two exposures, while the space CD uniformities are depending on both CD and OVL variability. In this paper, investigations of CD and OVL process control of 64nm minimum pitch at Metal1 level of 14FDSOI technology, within the double patterning process flow (Litho, hard mask etch, line etch) are presented. Various measurements with SEMCD tools (Hitachi), and overlay tools (KT for Image Based Overlay - IBO, and ASML for Diffraction Based Overlay - DBO) are compared. Metrology targets are embedded within a block instanced several times within the field to perform intra-field process variations characterizations. Specific SEMCD targets were designed for independent measurement of both line CD (A and B) and space CD (A to B and B to A) for each exposure within a single measurement during the DP flow. Based on those measurements correlation between overlay determined with SEMCD and with standard overlay tools can be evaluated. Such correlation at different steps through the DP flow is investigated regarding the metrology type. Process correction models are evaluated with respect to the measurement type and the intra-field sampling.

  7. An Evaluation on the Residual Stresses Induced by EFR Welding of CEDM Nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Ho; Park, Gi Yeol; Kim, Tae Ryong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    In this paper, carried out the welding analysis to use the SYSWELD as welding interpretation code based on the reactor upper head nozzle. In this paper, evaluated the residual stress in CEDM nozzle by EFR through the SYSWELD which is the welding interpretation code. The conclusion are same as below. 1) When comparing with Hoop Stress and Axial Stress by J-Groove and EFR, after welding residual stress by EFR is lower than after J-Groove. 2) After EFR, it was confirmed that the tensile stress is reduced after increasing over the point3. The PWSCC of Dissimilar Metal Zone of reactor can degrade the integrity of the main device in nuclear power plant, and according to the power plant stopped for inspection, it can cause an enormous amount of lost sales when the crack is occurred. Various methods have been developed to reduce residual stress to prevent the PWSCC like Weld Overlay (WOL), Mechanical Stress Improvement Process (Msp), Laser Peening, Inlay Weld, etc. Among them, Wol is the most commonly used welding method in nuclear power plant. When performing a Wol, structure rigidity will be increase, and residual stress of welding zone will be changed into compressive stress from the tensile stress. This has the advantage that improved resistance to PWSCC. The most commonly used material in nuclear power plant is Inconel 600. Inconel 600 consist of a Ni-Cr-Fe and it has 14-17% of Cr content, 10% of Fe content and susceptible to PWSCC. The more Cr content is more stronger against PWSCC. Inconel 690 which has 2 times more Cr content than Inconel 600 has very strong resistance to PWSCC than Inconel 600. Embedded Flaw Repair (EFR) has been developed in Westinghouse by 1994. The welding metal with high corrosion resistance is embedded on the surface of component, and could protect cracking part from the PWSCC. It is permanent repair method that isolates the flaw from the environment, eliminating further crack propagation due to PWSCC. EFR method is that at least three layers

  8. Electronic structure of uranium overlayers on magnesium and aluminium

    Science.gov (United States)

    Gouder, T.

    1997-06-01

    We studied U overlayers on polycrystalline Mg and Al by X-ray and ultra-violet photoelectron spectroscopies (XPS and UPS, respectively), and compared the mode of growth and the evolution of the electronic structure as a function of coverage. The goal of this work was to detect localization, or at least correlation effects, in U overlayers and U substrate near surface alloys, which were expected to occur because of the reduced U 5f bandwidth in these systems. On Mg, U deposits as a pure overlayer without any interdiffusion, while on Al spontaneous interdiffusion takes place. The U 4f spectra of {U}/{Mg} show only weak correlation satellites. Nevertheless, the asymmetrical shape of the U 4f peak indicates 5f band narrowing. On Al, strong correlation satellites are observed in addition to plasmon loss features. It seems that U-substrate interactions promote correlation effects, while the reduced coordination in overlayers plays a less important role. UPS valence-band (VB) spectra of the two systems look remarkably similar. They do not show any correlation satellites. With decreasing overlayer thickness the 5f peak narrows, which is attributed to 5f band narrowing at the surface.

  9. High-volume manufacturing device overlay process control

    Science.gov (United States)

    Lee, Honggoo; Han, Sangjun; Woo, Jaeson; Lee, DongYoung; Song, ChangRock; Heo, Hoyoung; Brinster, Irina; Choi, DongSub; Robinson, John C.

    2017-03-01

    Overlay control based on DI metrology of optical targets has been the primary basis for run-to-run process control for many years. In previous work we described a scenario where optical overlay metrology is performed on metrology targets on a high frequency basis including every lot (or most lots) at DI. SEM based FI metrology is performed ondevice in-die as-etched on an infrequent basis. Hybrid control schemes of this type have been in use for many process nodes. What is new is the relative size of the NZO as compared to the overlay spec, and the need to find more comprehensive solutions to characterize and control the size and variability of NZO at the 1x nm node: sampling, modeling, temporal frequency and control aspects, as well as trade-offs between SEM throughput and accuracy.

  10. Nanophase hardfaced coatings

    Energy Technology Data Exchange (ETDEWEB)

    Reisgen, U.; Stein, L.; Balashov, B.; Geffers, C. [RWTH Aachen University (Germany). ISF - Welding and Joining Institute

    2009-08-15

    This paper demonstrates the possibility of producing iron or chromium-based nanophase hardfaced coatings by means of common arc welding methods (TIG, PTA). The appropriate composition of the alloys to be deposited allows to control the structural properties and thus also the coating properties of the weld metal. Specific variations of the alloying elements allow also the realisation of a nanostructured solidification of the carbides and borides with cooling rates that are common for arc surfacing processes. The hardfaced coatings, which had been thus produced, showed phase dimensions of approximately 100-300 nm. Based on the results it is established that the influence of the surfacing parameters and of the coating thickness and thus the influence of the heat control on the nanostructuring process is, compared with the influence of the alloy composition, of secondary importance. The generation of nanoscale structures in hardfaced coatings allows the improvement of mechanical properties, wear resistance and corrosion resistance. Potential applications for these types of hardfaced coatings lie, in particular, in the field of cutting tools that are exposed to corrosion and wear. (Abstract Copyright [2009], Wiley Periodicals, Inc.) [German] Diese Arbeit demonstriert die Moeglichkeit zur Herstellung Eisen- und Chrom-basierter nanophasiger Hartauftragschweissschichten mithilfe ueblicher Lichtbogenschweissverfahren (WIG-, Plasma-Pulver-Auftragschweissen - PPA). Eine geeignete Zusammensetzung der aufzutragenden Legierungen ermoeglicht es, die Gefuegeeigenschaften und damit die Schichteigenschaften des Schweissgutes zu kontrollieren. Gezielte Variationen der Legierungselemente erlauben die Realisierung einer nanostrukturierten Erstarrung der Karbide und Boride bei fuer Lichtbogen-Auftragschweissprozessen ueblichen Abkuehlgeschwindigkeiten. In den so erzeugten Hartschichten werden Phasengroessen von ca. 100-300 nm erreicht. Auf Basis der gewonnenen Ergebnisse kann

  11. Research on 16Mo3 (16M Steel Pipes Overlaid with Haynes Nicro625 Alloy Using MIG (131 Method / Badania Rur Ze Stali 16Mo3 (16M Napawanych Metodą MIG (131 Stopem Haynes Nicro625

    Directory of Open Access Journals (Sweden)

    Golański G.

    2015-12-01

    Full Text Available The paper presents the research on the microstructure and mechanical properties of a pipe made of 16Mo3 steel, overlaid with superalloy based on Haynes NiCro625 nickel. The overlay weld was overlaid using the MIG (131 method. The performed macro - and microscopic tests have shown the correct structure of the overlay weld without any welding unconformities. The examined overlay weld was characterized by a dendritic structure of the primary crystals accumulating towards the heat removal. It has been proved that the content of iron in the surface zone does not exceed 7%, and the steel-superalloy joint shows the highest properties in comparison with the materials joined.

  12. An investigation into the mechanism for enhanced mechanical properties in friction stir welded AA2024-T3 joints coated with cold spraying

    Science.gov (United States)

    Li, N.; Li, W. Y.; Yang, X. W.; Feng, Y.; Vairis, A.

    2018-05-01

    Using cold spraying (CS), a surface layer with a modified microstructure and enhanced mechanical properties was formed on a 3.2 mm thick friction stir welded (FSWed) AA2024-T3 joint. The combined effect of "shot peening effect (SPE)" and "heat flow effect (HFE)" during CS were used to enhance joint mechanical properties. The microstructure evolution of the FSWed AA2024-T3 joints in the surface layer following CS coatings and their effect on mechanical properties were systematically characterized with electron back-scattered diffraction, transmission electron microscopy, differential scanning calorimetry and mechanical tests. Based on these experiments, a grain refinement, finer and more S phases, and improved amount of Guinier-Preston-Bagaryatsky (GPB) zones produced by CS treatments are proposed. The deposition of aluminum coating on the joint, lead to hardness recovery in the stir zone and the development of two low hardness zones as the density of GPB increased. The tensile properties of FSWed AA2024-T3 joints improved with the application of the aluminum coatings. Experiments and analysis of the enhanced mechanical properties mechanism indicate that SPE with a high plastic deformation and HFE with an intensive heat flow are necessary for the production of refined grains and increased numbers of GPB zones.

  13. Plasma assisted surface coating/modification processes: An emerging technology

    Science.gov (United States)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  14. Plasma assisted surface coating/modification processes - An emerging technology

    Science.gov (United States)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  15. Microstructure and fatigue properties of Mg-to-steel dissimilar resistance spot welds

    International Nuclear Information System (INIS)

    Liu, L.; Xiao, L.; Chen, D.L.; Feng, J.C.; Kim, S.; Zhou, Y.

    2013-01-01

    Highlights: ► Mg/steel dissimilar spot weld had the same fatigue strength as Mg/Mg similar weld. ► Crack propagation path of Mg/Mg and Mg/steel welds was the same. ► Penetration of Zn into the Mg base metal led to crack initiation of Mg/steel weld. ► HAZ weakening and stress concentration led to crack initiation of Mg/Mg weld. -- Abstract: The structural application of lightweight magnesium alloys in the automotive industry inevitably involves dissimilar welding with steels and the related durability issues. This study was aimed at evaluating the microstructural change and fatigue resistance of Mg/steel resistance spot welds, in comparison with Mg/Mg welds. The microstructure of Mg/Mg spot welds can be divided into: base metal, heat affected zone and fusion zone (nugget). However, the microstructure of Mg/steel dissimilar spot welds had three different regions along the joined interface: weld brazing, solid-state joining and soldering. The horizontal and vertical Mg hardness profiles of Mg/steel and Mg/Mg welds were similar. Both Mg/steel and Mg/Mg welds were observed to have an equivalent fatigue resistance due to similar crack propagation characteristics and failure mode. Both Mg/steel and Mg/Mg welds failed through thickness in the magnesium sheet under stress-controlled cyclic loading, but fatigue crack initiation of the two types of welds was different. The crack initiation of Mg/Mg welds was occurred due to a combined effect of stress concentration, grain growth in the heat affected zone (HAZ), and the presence of Al-rich phases at HAZ grain boundaries, while the penetration of small amounts of Zn coating into the Mg base metal stemming from the liquid metal induced embrittlement led to crack initiation in the Mg/steel welds.

  16. Location-Aware Cross-Layer Design Using Overlay Watermarks

    Directory of Open Access Journals (Sweden)

    Paul Ho

    2007-04-01

    Full Text Available A new orthogonal frequency division multiplexing (OFDM system embedded with overlay watermarks for location-aware cross-layer design is proposed in this paper. One major advantage of the proposed system is the multiple functionalities the overlay watermark provides, which includes a cross-layer signaling interface, a transceiver identification for position-aware routing, as well as its basic role as a training sequence for channel estimation. Wireless terminals are typically battery powered and have limited wireless communication bandwidth. Therefore, efficient collaborative signal processing algorithms that consume less energy for computation and less bandwidth for communication are needed. Transceiver aware of its location can also improve the routing efficiency by selective flooding or selective forwarding data only in the desired direction, since in most cases the location of a wireless host is unknown. In the proposed OFDM system, location information of a mobile for efficient routing can be easily derived when a unique watermark is associated with each individual transceiver. In addition, cross-layer signaling and other interlayer interactive information can be exchanged with a new data pipe created by modulating the overlay watermarks. We also study the channel estimation and watermark removal techniques at the physical layer for the proposed overlay OFDM. Our channel estimator iteratively estimates the channel impulse response and the combined signal vector from the overlay OFDM signal. Cross-layer design that leads to low-power consumption and more efficient routing is investigated.

  17. Microstructural investigation of hardfacing weld deposit obtained from CrB paste

    International Nuclear Information System (INIS)

    Ray, S.; Sarker, B.; Bhattacharya, S.

    1989-01-01

    Hardfacing weld deposits are used as a protective layer on engineering components and tools subjected to different modes of wear. Cheaper iron-based alloys with chromium and carbon or relatively expensive alloys with some niobium or titanium have long been used as standard hardfacing materials. In recent years boron has substituted the costlier alloying elements and the newly developed Fe-B-C alloys have shown encouraging results. The microstructure of the welded hardfacing deposit is one of the most important factors that determine its performance. The amount, size, distribution and hardness of the individual constituents play important roles in imparting the desired properties. Recently Colomonoy sweat on paste containing fine CrB particles (of about 12 μm average size) suspended in an organic binder has been marketed as the new generation hardfacing material. A thin coating of the paste is applied on the component surface, allowed to dry and welded. The welded deposit has been found to offer good wear resistance in many industrial applications. This paper reports the microstructural investigation of the welded deposit obtained from this paste

  18. Transport ac loss studies of YBCO coated conductors with nickel alloy substrates

    International Nuclear Information System (INIS)

    Duckworth, R C; Thompson, J R; Gouge, M J; Lue, J W; Ijaduola, A O; Yu, D; Verebelyi, D T

    2003-01-01

    Transport alternating current (ac) loss measurements were performed on a series of rolling-assisted biaxially textured substrate (RABiTS) processed YBa 2 Cu 3 O x (YBCO) coated conductors at 77 K. While each sample possessed a 1 μm layer of YBCO and a 3 μm silver cap layer, two different nickel alloy substrates were used and their impact on the ac loss was examined. Both substrates possessed a 75 μm Ni-5 at%W base, but one substrate also had a 2 μm nickel overlayer as part of the buffer layer architecture. The ac losses, which were determined by thermal and electrical measurements, contained two dominant contributions: superconductive hysteresis in the YBCO and ferromagnetic hysteresis in the substrates. The superconductive component followed the Norris elliptic model for the substrate with the nickel overlayer and the Norris thin strip model for the substrate without the nickel overlayer. The substrates' ferromagnetic loss was determined separately through magnetization measurements, which showed that this loss contribution was independent of the presence of the nickel overlayer for effective ac currents less than 50 A. While the overall loss was lower for the thin-strip-like conductor with no nickel overlayer, further research is necessary to strengthen this connection

  19. Analysis of an Orthotropic Deck Stiffened with a Cement-Based Overlay

    DEFF Research Database (Denmark)

    Walter, Rasmus; Olesen, John Forbes; Stang, Henrik

    2007-01-01

    decks. A solution might be to enhance the stiffness of the traditional orthotropic bridge deck by using a cement-based overlay. In this paper, an orthotropic steel bridge deck stiffened with a cement-based overlay is analyzed. The analysis is based on nonlinear fracture mechanics, and utilizes......Over the past years, with increasing traffic volumes and higher wheel loads, fatigue damage in steel parts of typical orthotropic steel bridge decks has been experienced on heavily trafficked routes. A demand exists to find a durable system to increase the fatigue safety of orthotropic steel bridge...... the finite-element method. The stiffness of the steel deck reinforced with an overlay depends highly on the composite action. The composite action is closely related to cracking of the overlay and interfacial cracking between the overlay and underlying steel plate (debonding). As an example, a real size...

  20. Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800

    International Nuclear Information System (INIS)

    Sireesha, M.; Sundaresan, S.

    2000-01-01

    For joining type 316LN austenitic stainless steel to modified 9Cr-1Mo steel for power plant application, a trimetallic configuration using an insert piece (such as alloy 800) of intermediate thermal coefficient of expansion (CTE) has been sometimes suggested for bridging the wide gap in CTE between the two steels. Two joints are thus involved and this paper is concerned with the weld between 316LN and alloy 800. These welds were produced using three types of filler materials: austenitic stainless steels corresponding to 316,16Cr-8Ni-2Mo, and the nickel-base Inconel 182 1 . The weld fusion zones and the interfaces with the base materials were characterised in detail using light and transmission electron microscopy. The 316 and Inconel 182 weld metals solidified dendritically, while the 16-8-2(16%Cr-8%Ni-2%Mo) weld metal showed a predominantly cellular substructure. The Inconel weld metal contained a large number of inclusions when deposited from flux-coated electrodes, but was relatively inclusion-free under inert gas-shielded welding. Long-term elevated-temperature aging of the weld metals resulted in embrittling sigma phase precipitation in the austenitic stainless steel weld metals, but the nickel-base welds showed no visible precipitation, demonstrating their superior metallurgical stability for high-temperature service. (orig.)

  1. Cold spray copper coatings for used fuel containers

    Energy Technology Data Exchange (ETDEWEB)

    Keech, P. [Nuclear Waste Management Organization, Toronto, ON (Canada); Vo, P.; Poirier, D.; Legoux, J-G [National Research Council, Boucherville QC, (Canada)

    2015-07-01

    Recently, the Nuclear Waste Management Organization has been developing copper coatings as a method of protecting steel used fuel containers (UFCs) from corrosion within a deep geological repository. The corrosion barrier design is based on the application of a copper coating bonded directly to the exterior surface of the UFC structural core. Copper coating technologies amendable to supply of pre-coated UFC vessel components and application to the weld zone following UFC closure within the radiological environment have been investigated. Copper cold spray has been assessed for both operations; this paper outlines the research and development to date of this technique. (author)

  2. A Study of Deposition Coatings Formed by Electroformed Metallic Materials.

    Directory of Open Access Journals (Sweden)

    Shoji Hayashi

    Full Text Available Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface treatment is clinically evaluated by peeling and flex tests. However, these testing methods are not ideal for deposition coating strength measurement of electroformed metals. There have been no studies on the deposition coating strength and methods to test electroformed metals. We developed a new deposition coating strength test for electroformed metals. The influence of the negative electrolytic method, which is one of the electrochemical surface treatments, on the strength of the deposition coating of electroformed metals was investigated, and the following conclusions were drawn: 1. This process makes it possible to remove residual deposits on the electrodeposited metal surface layer. 2. Cathode electrolysis is a simple and safe method that is capable of improving the surface treatment by adjustments to the current supply method and current intensity. 3. Electrochemical treatment can improve the deposition coating strength compared to the physical or chemical treatment methods. 4. Electro-deposition coating is an innovative technique for the deposition coating of electroformed metal.

  3. Virtual overlay metrology for fault detection supported with integrated metrology and machine learning

    Science.gov (United States)

    Lee, Hong-Goo; Schmitt-Weaver, Emil; Kim, Min-Suk; Han, Sang-Jun; Kim, Myoung-Soo; Kwon, Won-Taik; Park, Sung-Ki; Ryan, Kevin; Theeuwes, Thomas; Sun, Kyu-Tae; Lim, Young-Wan; Slotboom, Daan; Kubis, Michael; Staecker, Jens

    2015-03-01

    While semiconductor manufacturing moves toward the 7nm node for logic and 15nm node for memory, an increased emphasis has been placed on reducing the influence known contributors have toward the on product overlay budget. With a machine learning technique known as function approximation, we use a neural network to gain insight to how known contributors, such as those collected with scanner metrology, influence the on product overlay budget. The result is a sufficiently trained function that can approximate overlay for all wafers exposed with the lithography system. As a real world application, inline metrology can be used to measure overlay for a few wafers while using the trained function to approximate overlay vector maps for the entire lot of wafers. With the approximated overlay vector maps for all wafers coming off the track, a process engineer can redirect wafers or lots with overlay signatures outside the standard population to offline metrology for excursion validation. With this added flexibility, engineers will be given more opportunities to catch wafers that need to be reworked, resulting in improved yield. The quality of the derived corrections from measured overlay metrology feedback can be improved using the approximated overlay to trigger, which wafers should or shouldn't be, measured inline. As a development or integration engineer the approximated overlay can be used to gain insight into lots and wafers used for design of experiments (DOE) troubleshooting. In this paper we will present the results of a case study that follows the machine learning function approximation approach to data analysis, with production overlay measured on an inline metrology system at SK hynix.

  4. Ferrous alloy metallurgy - liquid lithium corrosion and welding. Progress report, January 1-December 31, 1980

    International Nuclear Information System (INIS)

    Olson, D.L.; Matlock, D.K.

    1980-01-01

    Fatigue crack growth has been used to evaluate the interaction between liquid lithium and an imposed stress. Fatigue crack growth data on type 304L stainless steel at 700C and 2 1/4Cr-1Mo steel between 500 and 700C show that for all imposed test conditions (i.e. frequency, temperature, and nitrogen content in the lithium) the interaction of lithium with the strain at the crack tip results in enhanced crack growth rates. The enhanced growth rates result from the effects of either enhanced grain boundary penetration or a change in crack propagation mechanism due to liquid metal embrittlement. Auger spectroscopy of grain boundary penetrated specimen shows that a lithium-oxygen compound forms at the grain boundary. Moessbauer evaluations of the ferrite layer of corroded type 304 stainless steel are being used to develop a model for weight loss in liquid lithium. The welding research in progress is directed to characterize the influence of variations of the austenitic weld metal composition on the microstructural and mechanical properties of dissimilar metal weldments. Weldments of 2 1/4Cr-1Mo steel to 316 stainless steel have been investigated for fusion microstructure, thermal expansion impact strength and characterization of specific long time in-service failures. Modification of weld metal microstructures by microalloy additions is being investigated as a concept to improve weld metal properties. The behavior of a strip electrode in a gas metal arc is being investigated to determine the feasibility of gas metal arc weld strip overlay cladding

  5. Application of Interfacial Propagation and Kinking Crack Concept to ECC/Concrete Overlay Repair System

    Directory of Open Access Journals (Sweden)

    Yaw ChiaHwan

    2014-01-01

    Full Text Available Research on the application of ultraductile engineered cementitious composite (ECC as overlay in the repair of deteriorated concrete structures is performed in this paper. Also, interfacial crack kinking and trapping mechanism experimentally observed in ECC/concrete overlay repair system are described by comparison of toughness and energy release rate. The mechanism involves cycles of extension, kinking, and arrest of interfacial crack into the overlay. Experimental testing of overlay repair system reveals significant improvements in load carrying capacity and ductility over conventional concrete overlay. The commonly observed overlay system failure mode of delamination or spalling is eliminated when ECC is applied. These failure modes are suppressed when ECC is used as an ideal and durable candidate overlay repair material.

  6. Assessment and prediction of drying shrinkage cracking in bonded mortar overlays

    Energy Technology Data Exchange (ETDEWEB)

    Beushausen, Hans, E-mail: hans.beushausen@uct.ac.za; Chilwesa, Masuzyo

    2013-11-15

    Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing was found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking.

  7. Assessment and prediction of drying shrinkage cracking in bonded mortar overlays

    International Nuclear Information System (INIS)

    Beushausen, Hans; Chilwesa, Masuzyo

    2013-01-01

    Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing was found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking

  8. On Adding Structure to Unstructured Overlay Networks

    Science.gov (United States)

    Leitão, João; Carvalho, Nuno A.; Pereira, José; Oliveira, Rui; Rodrigues, Luís

    Unstructured peer-to-peer overlay networks are very resilient to churn and topology changes, while requiring little maintenance cost. Therefore, they are an infrastructure to build highly scalable large-scale services in dynamic networks. Typically, the overlay topology is defined by a peer sampling service that aims at maintaining, in each process, a random partial view of peers in the system. The resulting random unstructured topology is suboptimal when a specific performance metric is considered. On the other hand, structured approaches (for instance, a spanning tree) may optimize a given target performance metric but are highly fragile. In fact, the cost for maintaining structures with strong constraints may easily become prohibitive in highly dynamic networks. This chapter discusses different techniques that aim at combining the advantages of unstructured and structured networks. Namely we focus on two distinct approaches, one based on optimizing the overlay and another based on optimizing the gossip mechanism itself.

  9. Optimizing the Hot-Corrosion Resistance-of-Novel gamma-Ni+gamma-prime-Ni3A1-Based Alloys and Coatings

    National Research Council Canada - National Science Library

    Gleeson, Brian

    2006-01-01

    .... The protection of high-temperature components against hot corrosion or oxidation is typically conferred by the application of either a diffusion or overlay metallic coating that is able to form...

  10. Development of new engine bearings with overlay consisting of solid lubricants; Kotai junkatsu overlay tsuki engine yo suberi jikuuke zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, H; Kawakami, S; Gohara, C [Taiho Kogyo Co. Ltd., Aichi (Japan); Fuwa, Y; Michioka, H [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    Recently, modern engines have a tendency for higher output and longer periods. As a result , higher bearing performance is required. For this reason, we have developed the new conceptual overlay consisting of solid lubricants and thermosetting plastics. This paper describes the performance of engine bearings with the new overlay. 5 refs., 13 figs., 5 tabs.

  11. Computer vision and soft computing for automatic skull-face overlay in craniofacial superimposition.

    Science.gov (United States)

    Campomanes-Álvarez, B Rosario; Ibáñez, O; Navarro, F; Alemán, I; Botella, M; Damas, S; Cordón, O

    2014-12-01

    Craniofacial superimposition can provide evidence to support that some human skeletal remains belong or not to a missing person. It involves the process of overlaying a skull with a number of ante mortem images of an individual and the analysis of their morphological correspondence. Within the craniofacial superimposition process, the skull-face overlay stage just focuses on achieving the best possible overlay of the skull and a single ante mortem image of the suspect. Although craniofacial superimposition has been in use for over a century, skull-face overlay is still applied by means of a trial-and-error approach without an automatic method. Practitioners finish the process once they consider that a good enough overlay has been attained. Hence, skull-face overlay is a very challenging, subjective, error prone, and time consuming part of the whole process. Though the numerical assessment of the method quality has not been achieved yet, computer vision and soft computing arise as powerful tools to automate it, dramatically reducing the time taken by the expert and obtaining an unbiased overlay result. In this manuscript, we justify and analyze the use of these techniques to properly model the skull-face overlay problem. We also present the automatic technical procedure we have developed using these computational methods and show the four overlays obtained in two craniofacial superimposition cases. This automatic procedure can be thus considered as a tool to aid forensic anthropologists to develop the skull-face overlay, automating and avoiding subjectivity of the most tedious task within craniofacial superimposition. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Inline-process and quality control of spotwelds of car bodies - ultrasonic sensors integrated in resistance welding electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, G.; Rieger, D.; Koehler, C. [Vogt Werkstoffpruefsysteme, Burgwedel (Germany)

    2006-07-01

    The self-developed inline ultrasonic testing system SPOTline is used for inspection and process control of resistant spot weldings. SPOTline provides with directly into the welding tong integrated ultrasonic sensors a 100% inspection during the welding process. The through transmission and pulse echo signals will be collected, stored and evaluated by means of fuzzy-logic and neuronal network technic. The results will be transmitted online from the spotline-client in the sql-data-base of the server for processing. World-wide SPOTline is the only ultrasonic inspection system, which is working under real production conditions in a network of welding robots. Test with 2 and 3 plates, high strength steels and all coatings demonstrate the accurately identification of discrepant welds. (orig.)

  13. Achieving optimum diffraction based overlay performance

    Science.gov (United States)

    Leray, Philippe; Laidler, David; Cheng, Shaunee; Coogans, Martyn; Fuchs, Andreas; Ponomarenko, Mariya; van der Schaar, Maurits; Vanoppen, Peter

    2010-03-01

    Diffraction Based Overlay (DBO) metrology has been shown to have significantly reduced Total Measurement Uncertainty (TMU) compared to Image Based Overlay (IBO), primarily due to having no measurable Tool Induced Shift (TIS). However, the advantages of having no measurable TIS can be outweighed by increased susceptibility to WIS (Wafer Induced Shift) caused by target damage, process non-uniformities and variations. The path to optimum DBO performance lies in having well characterized metrology targets, which are insensitive to process non-uniformities and variations, in combination with optimized recipes which take advantage of advanced DBO designs. In this work we examine the impact of different degrees of process non-uniformity and target damage on DBO measurement gratings and study their impact on overlay measurement accuracy and precision. Multiple wavelength and dual polarization scatterometry are used to characterize the DBO design performance over the range of process variation. In conclusion, we describe the robustness of DBO metrology to target damage and show how to exploit the measurement capability of a multiple wavelength, dual polarization scatterometry tool to ensure the required measurement accuracy for current and future technology nodes.

  14. KML Super Overlay to WMS Translator

    Science.gov (United States)

    Plesea, Lucian

    2007-01-01

    This translator is a server-based application that automatically generates KML super overlay configuration files required by Google Earth for map data access via the Open Geospatial Consortium WMS (Web Map Service) standard. The translator uses a set of URL parameters that mirror the WMS parameters as much as possible, and it also can generate a super overlay subdivision of any given area that is only loaded when needed, enabling very large areas of coverage at very high resolutions. It can make almost any dataset available as a WMS service visible and usable in any KML application, without the need to reformat the data.

  15. Longer Lasting Bridge Deck Overlays

    Science.gov (United States)

    2018-04-01

    The objective of this report is to determine the most effective method for bridge deck overlay construction and repair by assessing current practices; examining new products and technologies; and reviewing NCHRP (National Cooperative Highway Research...

  16. Diffraction-based overlay measurement on dedicated mark using rigorous modeling method

    Science.gov (United States)

    Lu, Hailiang; Wang, Fan; Zhang, Qingyun; Chen, Yonghui; Zhou, Chang

    2012-03-01

    Diffraction Based Overlay (DBO) is widely evaluated by numerous authors, results show DBO can provide better performance than Imaging Based Overlay (IBO). However, DBO has its own problems. As well known, Modeling based DBO (mDBO) faces challenges of low measurement sensitivity and crosstalk between various structure parameters, which may result in poor accuracy and precision. Meanwhile, main obstacle encountered by empirical DBO (eDBO) is that a few pads must be employed to gain sufficient information on overlay-induced diffraction signature variations, which consumes more wafer space and costs more measuring time. Also, eDBO may suffer from mark profile asymmetry caused by processes. In this paper, we propose an alternative DBO technology that employs a dedicated overlay mark and takes a rigorous modeling approach. This technology needs only two or three pads for each direction, which is economic and time saving. While overlay measurement error induced by mark profile asymmetry being reduced, this technology is expected to be as accurate and precise as scatterometry technologies.

  17. Prediction of Weld Residual Stress of Narrow Gap Welds

    International Nuclear Information System (INIS)

    Yang, Jun Seog; Huh, Nam Su

    2010-01-01

    The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW

  18. Wear and corrosion performance of metallurgical coatings in sodium

    International Nuclear Information System (INIS)

    Johnson, R.N.; Farwick, D.G.

    1980-01-01

    The friction, wear, and corrosion performance of several metallurgical coatings in 200 to 650 0 C sodium are reviewed. Emphasis is placed on those coatings which have successfully passed the qualification tests necessary for acceptance in breeder reactor environments. Tests include friction, wear, corrosion, thermal cycling, self-welding, and irradiation exposure under as-prototypic-as-possible service conditions. Materials tested were coatings of various refractory metal carbides in metallic binders, nickel-base and cobalt-base alloys and intermetallic compounds such as the aluminides and borides. Coating processes evaluated included plasma spray, detonation gun, sputtering, spark-deposition, and solid-state diffusion

  19. VT Data - Overlay District 20170419, Colchester

    Data.gov (United States)

    Vermont Center for Geographic Information — The following Overlay Districts are included in the data:General Development Four Commercial DistrictGeneral Development Four Openspace DistrictShoreland...

  20. Investigation on mechanical properties of welded material under different types of welding filler (shielded metal arc welding)

    Science.gov (United States)

    Tahir, Abdullah Mohd; Lair, Noor Ajian Mohd; Wei, Foo Jun

    2018-05-01

    The Shielded Metal Arc Welding (SMAW) is (or the Stick welding) defined as a welding process, which melts and joins metals with an arc between a welding filler (electrode rod) and the workpieces. The main objective was to study the mechanical properties of welded metal under different types of welding fillers and current for SMAW. This project utilized the Design of Experiment (DOE) by adopting the Full Factorial Design. The independent variables were the types of welding filler and welding current, whereas the other welding parameters were fixed at the optimum value. The levels for types of welding filler were by the models of welding filler (E6013, E7016 and E7018) used and the levels for welding current were 80A and 90A. The responses were the mechanical properties of welded material, which include tensile strength and hardness. The experiment was analyzed using the two way ANOVA. The results prove that there are significant effects of welding filler types and current levels on the tensile strength and hardness of the welded metal. At the same time, the ANOVA results and interaction plot indicate that there are significant interactions between the welding filler types and the welding current on both the hardness and tensile strength of the welded metals, which has never been reported before. This project found that when the amount of heat input with increase, the mechanical properties such as tensile strength and hardness decrease. The optimum tensile strength for welded metal is produced by the welding filler E7016 and the optimum of hardness of welded metal is produced by the welding filler E7018 at welding current of 80A.

  1. Overlay Spectrum Sharing using Improper Gaussian Signaling

    KAUST Repository

    Amin, Osama

    2016-11-30

    Improper Gaussian signaling (IGS) scheme has been recently shown to provide performance improvements in interference limited networks as opposed to the conventional proper Gaussian signaling (PGS) scheme. In this paper, we implement the IGS scheme in overlay cognitive radio system, where the secondary transmitter broadcasts a mixture of two different signals. The first signal is selected from the PGS scheme to match the primary message transmission. On the other hand, the second signal is chosen to be from the IGS scheme in order to reduce the interference effect on the primary receiver. We then optimally design the overlay cognitive radio to maximize the secondary link achievable rate while satisfying the primary network quality of service requirements. In particular, we consider full and partial channel knowledge scenarios and derive the feasibility conditions of operating the overlay cognitive radio systems. Moreover, we derive the superiority conditions of the IGS schemes over the PGS schemes supported with closed form expressions for the corresponding power distribution and the circularity coefficient and parameters. Simulation results are provided to support our theoretical derivations.

  2. Application of advanced diffraction based optical metrology overlay capabilities for high-volume manufacturing

    Science.gov (United States)

    Chen, Kai-Hsiung; Huang, Guo-Tsai; Hsieh, Hung-Chih; Ni, Wei-Feng; Chuang, S. M.; Chuang, T. K.; Ke, Chih-Ming; Huang, Jacky; Rao, Shiuan-An; Cumurcu Gysen, Aysegul; d'Alfonso, Maxime; Yueh, Jenny; Izikson, Pavel; Soco, Aileen; Wu, Jon; Nooitgedagt, Tjitte; Ottens, Jeroen; Kim, Yong Ho; Ebert, Martin

    2017-03-01

    On-product overlay requirements are becoming more challenging with every next technology node due to the continued decrease of the device dimensions and process tolerances. Therefore, current and future technology nodes require demanding metrology capabilities such as target designs that are robust towards process variations and high overlay measurement density (e.g. for higher order process corrections) to enable advanced process control solutions. The impact of advanced control solutions based on YieldStar overlay data is being presented in this paper. Multi patterning techniques are applied for critical layers and leading to additional overlay measurement demands. The use of 1D process steps results in the need of overlay measurements relative to more than one layer. Dealing with the increased number of overlay measurements while keeping the high measurement density and metrology accuracy at the same time presents a challenge for high volume manufacturing (HVM). These challenges are addressed by the capability to measure multi-layer targets with the recently introduced YieldStar metrology tool, YS350. On-product overlay results of such multi-layers and standard targets are presented including measurement stability performance.

  3. VT Data - Overlay District 20070306, Marlboro

    Data.gov (United States)

    Vermont Center for Geographic Information — Cartographic version of overlay district (surface water buffer), Marlboro, Vermont. Base zoning districts are in a separate shapefile. Data were originally created...

  4. Effects of Surface Alloying and Laser Beam Treatment on the Microstructure and Wear Behaviour of Surfaces Modified Using Submerged Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Regita BENDIKIENE

    2016-05-01

    Full Text Available In this study, the effects of surface alloying of cheap plain carbon steel using submerged metal arc technique and subsequent laser beam treatment on the microstructure and wear behaviour of surfaced layers were studied. This method is the cheapest one to obtain high alloyed coatings, because there is no need to apply complex technologies of powder making (metal powder is spread on the surface of base metal or inserted into the flux, it is enough to grind, granulate and blend additional materials. On the other hand, strengthening of superficial layers of alloys by thermal laser radiation is one of the applications of laser. Surface is strengthened by concentrated laser beam focused into teeny area (from section of mm till some mm. Teeny area of metal heat up rapidly and when heat is drain to the inner metal layers giving strengthening effect. Steel surface during this treatment exceeds critical temperatures, if there is a need to strengthen deeper portions of the base metal it is possible even to fuse superficial layer. The results presented in this paper are based on micro-structural and micro-chemical analyses of the surfaced and laser beam treated surfaces and are supported by analyses of the hardness, the wear resistance and resultant microstructures. Due to the usage of waste raw materials a significant improvement (~ 30 % in wear resistance was achieved. The maximum achieved hardness of surfaced layer was 62 HRC, it can be compared with high alloyed conventional steel grade. Wear properties of overlays with additional laser beam treatment showed that weight loss of these layers was ~10 % lower compared with overlays after welding; consequently it is possible to replace high alloyed conventional steel grades forming new surfaces or restoring worn machine elements and tools.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7621

  5. Optimization of tribological performance of SiC embedded composite coating via Taguchi analysis approach

    Science.gov (United States)

    Maleque, M. A.; Bello, K. A.; Adebisi, A. A.; Akma, N.

    2017-03-01

    Tungsten inert gas (TIG) torch is one of the most recently used heat source for surface modification of engineering parts, giving similar results to the more expensive high power laser technique. In this study, ceramic-based embedded composite coating has been produced by precoated silicon carbide (SiC) powders on the AISI 4340 low alloy steel substrate using TIG welding torch process. A design of experiment based on Taguchi approach has been adopted to optimize the TIG cladding process parameters. The L9 orthogonal array and the signal-to-noise was used to study the effect of TIG welding parameters such as arc current, travelling speed, welding voltage and argon flow rate on tribological response behaviour (wear rate, surface roughness and wear track width). The objective of the study was to identify optimal design parameter that significantly minimizes each of the surface quality characteristics. The analysis of the experimental results revealed that the argon flow rate was found to be the most influential factor contributing to the minimum wear and surface roughness of the modified coating surface. On the other hand, the key factor in reducing wear scar is the welding voltage. Finally, a convenient and economical Taguchi approach used in this study was efficient to find out optimal factor settings for obtaining minimum wear rate, wear scar and surface roughness responses in TIG-coated surfaces.

  6. Energía de ionización simple en la soldadura con electrodo revestido Simple ionization energy in coated electrode welding

    Directory of Open Access Journals (Sweden)

    Alejandro García Rodríguez

    2013-03-01

    percentage of the disassociated elements component of the heterogeneous gas (resulting of the decomposition of the coating mass, in the time unit, in function of the temperature. The effectiveness of the coating electric function make possible the development of the metallurgic and operatives functions of the electrode, depending on the physical and chemical properties of the coating materials and their relative concentrations. The determination of the exact proportions of the components of the mixtures integrating the covered electrode coatings constitutes an important technologic challenge for manufacturers, because of the chemical composition differences of the raw material and the necessity of minimization of the product cost benefit relation. An appropriate electric stability of the process is essential for obtaining an optimal quality of the welded union.

  7. Caracterization of the crystalline phases by X-Ray diffraction in electrode coatings

    International Nuclear Information System (INIS)

    Neves, M.C.G.P.; Souza Caillaux, Z. de

    1981-01-01

    Some electrodes and their respective coatings were studied in order to verify their compatibility with their utilization in the welding of base metals appropriate for the equipment of sugar and alcohol plants. The carried out studies include the characterization, by X-ray diffraction, of crystaline phases, existent in electrodes coatings. (Author) [pt

  8. Visualization of Disciplinary Profiles: Enhanced Science Overlay Maps

    Directory of Open Access Journals (Sweden)

    Stephen Carley

    2017-08-01

    Full Text Available Purpose: The purpose of this study is to modernize previous work on science overlay maps by updating the underlying citation matrix, generating new clusters of scientific disciplines, enhancing visualizations, and providing more accessible means for analysts to generate their own maps. Design/methodology/approach: We use the combined set of 2015 Journal Citation Reports for the Science Citation Index (n of journals = 8,778 and the Social Sciences Citation Index (n = 3,212 for a total of 11,365 journals. The set of Web of Science Categories in the Science Citation Index and the Social Sciences Citation Index increased from 224 in 2010 to 227 in 2015. Using dedicated software, a matrix of 227 × 227 cells is generated on the basis of whole-number citation counting. We normalize this matrix using the cosine function. We first develop the citing-side, cosine-normalized map using 2015 data and VOSviewer visualization with default parameter values. A routine for making overlays on the basis of the map (“wc15.exe” is available at http://www.leydesdorff.net/wc15/index.htm. Findings: Findings appear in the form of visuals throughout the manuscript. In Figures 1–9 we provide basemaps of science and science overlay maps for a number of companies, universities, and technologies. Research limitations: As Web of Science Categories change and/or are updated so is the need to update the routine we provide. Also, to apply the routine we provide users need access to the Web of Science. Practical implications: Visualization of science overlay maps is now more accurate and true to the 2015 Journal Citation Reports than was the case with the previous version of the routine advanced in our paper. Originality/value: The routine we advance allows users to visualize science overlay maps in VOSviewer using data from more recent Journal Citation Reports.

  9. Copper-coated laser-fusion targets using molecular-beam levitation

    International Nuclear Information System (INIS)

    Rocke, M.J.

    1981-01-01

    A series of diagnostic experiments at the Shiva laser fusion facility required targets of glass microspheres coated with 1.5 to 3.0 μm of copper. Previous batch coating efforts using vibration techniques gave poor results due to microsphere sticking and vacuum welding. Molecular Beam Levitation (MBL) represented a noncontact method to produce a sputtered copper coating on a single glassmicrosphere. The coating specifications that were achieved resulted in a copper layer up to 3 μm thick with the allowance of a maximum variation of 10 nm in surface finish and thickness. These techniques developed with the MBL may be applied to sputter coat many soft metals for fusion target applications

  10. Attachment of lead wires to thin film thermocouples mounted on high temperature materials using the parallel gap welding process

    Science.gov (United States)

    Holanda, Raymond; Kim, Walter S.; Pencil, Eric; Groth, Mary; Danzey, Gerald A.

    1990-01-01

    Parallel gap resistance welding was used to attach lead wires to sputtered thin film sensors. Ranges of optimum welding parameters to produce an acceptable weld were determined. The thin film sensors were Pt13Rh/Pt thermocouples; they were mounted on substrates of MCrAlY-coated superalloys, aluminum oxide, silicon carbide and silicon nitride. The entire sensor system is designed to be used on aircraft engine parts. These sensor systems, including the thin-film-to-lead-wire connectors, were tested to 1000 C.

  11. Influence of M-TIG and A-TIG Welding Process on Microstructure and Mechanical Behavior of 409 Ferritic Stainless Steel

    Science.gov (United States)

    Vidyarthy, R. S.; Dwivedi, D. K.; Vasudevan, M.

    2017-03-01

    The current study investigates the effects of activating flux tungsten inert gas welding (A-TIG) and multipass tungsten inert gas welding (M-TIG) on the weld morphology, angular distortion, microstructures and mechanical properties when welding 8-mm-thick 409 ferritic stainless steel (FSS). SiO2 was used as activating flux for A-TIG welding, while SUPERTIG ER309L was used as filler for M-TIG welding. Bead-on-plate weld trials were carried out to obtain the full penetration by using different combinations of flux coating density, welding speed and welding current. An optical microscope, field emission scanning microscope (FESEM), and x-ray diffractometer were used for the metallurgical characterizations. Vickers hardness, tensile test, Charpy toughness test, and creep behavior test were carried out to evaluate the mechanical properties of the base and weld metals. Experimental results indicate that the A-TIG process can increase the joint penetration and tends to reduce the angular distortion of the 409 FSS weldment. The A-TIG welded joint also exhibited greater mechanical strength. However, a critically low Charpy toughness was measured for the A-TIG weld fusion zone, which was later sufficiently improved after post weld heat treatment (PWHT). It was concluded that PWHT is mandatory for A-TIG welded 409 FSS.

  12. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  13. Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques

    Science.gov (United States)

    Todorov, E. I.; Mohr, W. C.; Lozev, M. G.

    2008-02-01

    Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.

  14. Latex-modified fiber-reinforced concrete bridge deck overlay : construction/interim report.

    Science.gov (United States)

    1993-06-01

    Latex-modified concrete (LMC) is Portland cement concrete (PCC) with an admixture of latex. LMC is considered to be nearly impermeable to chlorides and is extensively used to construct bridge deck overlays. Unfortunately, some of these overlays have ...

  15. Transition welds in welding of two-ply steels

    International Nuclear Information System (INIS)

    Fartushnyj, V.G.; Evsyukov, Yu.G.

    1977-01-01

    Studied were physico-mechanical properties of welds made by various welding wires of chromium-nickel and nickel-chromium steels in submerged arc welding of double-layer steels with main layer of the VSt.3sp. carbon steel. It is shown that service-reliable structures welded of two-layer steels are obtained by providing the content from 11 to 20 % Ni in the automatically welded transition layer

  16. A Persistent Structured Hierarchical Overlay Network to Counter Intentional Churn Attack

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2016-01-01

    Full Text Available The increased use of structured overlay network for a variety of applications has attracted a lot of attention from both research community and attackers. However, the structural constraints, open nature (anybody can join and anybody may leave, and unreliability of its participant nodes significantly affect the performance of these applications and make it vulnerable to a variety of attacks such as eclipse, Sybil, and churn. One attack to compromise the service availability in overlay network is intentional churn (join/leave attack, where a large number of malicious users will join and leave the overlay network so frequently that the entire structure collapses and becomes unavailable. The focus of this paper is to provide a new robust, efficient, and scalable hierarchical overlay architecture that will counter these attacks by providing a structure that can accommodate the fleeting behaviour of nodes without causing much structural inconsistencies. The performance evaluation showed that the proposed architecture has more failure resilience and self-organization as compared to chord based architecture. Experimental results have demonstrated that the effect of failures on an overlay is proportional to the size of failure.

  17. Characterisation of hydrocarbonaceous overlayers important in metal-catalysed selective hydrogenation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lennon, David; Warringham, Robbie [School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Guidi, Tatiana [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Parker, Stewart F., E-mail: stewart.parker@stfc.ac.uk [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2013-12-12

    Highlights: • Inelastic neutron scattering spectroscopy of a commercial dehydrogenation catalyst. • The overlayer present on the catalyst is predominantly aliphatic. • A population of strongly hydrogen bonded hydroxyls is also present. - Abstract: The hydrogenation of alkynes to alkenes over supported metal catalysts is an important industrial process and it has been shown that hydrocarbonaceous overlayers are important in controlling selectivity profiles of metal-catalysed hydrogenation reactions. As a model system, we have selected propyne hydrogenation over a commercial Pd(5%)/Al{sub 2}O{sub 3} catalyst. Inelastic neutron scattering studies show that the C–H stretching mode ranges from 2850 to 3063 cm{sup −1}, indicating the mostly aliphatic nature of the overlayer and this is supported by the quantification of the carbon and hydrogen on the surface. There is also a population of strongly hydrogen-bonded hydroxyls, their presence would indicate that the overlayer probably contains some oxygen functionality. There is little evidence for any olefinic or aromatic species. This is distinctly different from the hydrogen-poor overlayers that are deposited on Ni/Al{sub 2}O{sub 3} catalysts during methane reforming.

  18. Weld controller for automated nuclear service welding

    International Nuclear Information System (INIS)

    Barfield, K.L.; Strubhar, P.M.; Green, D.I.

    1995-01-01

    B and W Nuclear Technologies (BWNT) uses many different types of weld heads for automated welding in the commercial nuclear service industry. Some weld heads are purchased as standard items, while others are custom designed and fabricated by BWNT requiring synchronized multiaxis motion control. BWNT recently completed a development program to build a common weld controller that interfaces to all types of weld heads used by BWNT. Their goal was to construct a system that had the flexibility to add different modules to increase the capability of the controller as different application needs become necessary. The benefits from having a common controller are listed. This presentation explains the weld controller system and the types of applications to which it has been applied

  19. Use of servo controlled weld head for end closure welding

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, S.K.; Setty, D.S.; Rameswara Rao, A.; Hemantha Rao, G.V.S.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2010-07-01

    In the PHWR fuel fabrication line resistance welding processes are used for joining various zirconium based alloy components to fuel tube of similar material. The quality requirement of these welding processes is very stringent and has to meet all the product requirements. At present these welding processes are being carried out by using standard resistance welding machines. In the resistance welding process in addition to current and time, force is one of the critical and important parameter, which influences the weld quality. At present advanced feed back type fast response medium frequency weld controllers are being used. This has upslope/down slope, constant and repetitive weld pattern selection features makes this critical welding process more reliable. Compared to weld controllers, squeeze force application devices are limited and normally standard high response pneumatic cylinders are used in the welding process. With this type of devices the force is constant during welding process and cannot be varied during welding process as per the material deformation characteristics. Similarly due to non-availability of feed back systems in the squeeze force application systems restricts the accuracy and quality of the welding process. In the present paper the influence of squeeze force pattern on the weld quality using advanced feed back type servo based force control system was studied. Different squeeze forces were used during pre and post weld heat periods along with constant force and compared with the weld quality. (author)

  20. Welding hazards

    International Nuclear Information System (INIS)

    Khan, M.A.

    1992-01-01

    Welding technology is advancing rapidly in the developed countries and has converted into a science. Welding involving the use of electricity include resistance welding. Welding shops are opened in residential area, which was causing safety hazards, particularly the teenagers and children who eagerly see the welding arc with their naked eyes. There are radiation hazards from ultra violet rays which irritate the skin, eye irritation. Welding arc light of such intensity could damage the eyes. (Orig./A.B.)

  1. PTA Overlaying Process Design

    Energy Technology Data Exchange (ETDEWEB)

    Choi, C.; Chang, J.C.; Kim, J.C. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    This study is concerned with the development of reuse technology for 1100 deg.C class major component of gas turbine. To get the fundamental understanding for the repair techniques by PTAW, the physical properties and microstructures of welding metal and the effect of individual welding parameters are reviewed. Moreover, by extensive analysis on the various problems following the PTAW and try to figure out the solutions, the study will help us to apply the PTAW technology on the repair works of used turbine blades. (author). 11 refs., 2 tabs.

  2. Effect of heat input on microstructure, wear and friction behavior of (wt.-%) 50FeCrC-20FeW-30FeB coating on AISI 1020 produced by using PTA welding.

    Science.gov (United States)

    Özel, Cihan; Gürgenç, Turan

    2018-01-01

    In this study, AISI 1020 steel surface was coated in different heat inputs with (wt.-%) 50FeCrC-20FeW-30FeB powder mixture by using plasma transferred arc (PTA) welding method. The microstructure of the coated samples were investigated by using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDS). The hardness was measured with micro hardness test device. The dry sliding wear and friction coefficient properties were determined using a block-on-disk type wear test device. Wear tests were performed at 19.62 N, 39.24 N, 58.86 N load and the sliding distance of 900 m. The results were shown that different microstructures formed due to the heat input change. The highest average micro hardness value was measured at 1217 HV on sample coated with low heat input. It was determined that the wear resistance decreased with increasing heat input.

  3. Improving the corrosion properties of magnesium AZ31 alloy GTA weld metal using microarc oxidation process

    Institute of Scientific and Technical Information of China (English)

    M.Siva Prasad; M.Ashfaq; N.Kishore Babu; A.Sreekanth; K.Sivaprasad; V.Muthupandi

    2017-01-01

    In this work,the morphology,phase composition,and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated.Autogenous gas tungsten arc welds were made as full penetration bead-on-plate welding under the alternating-current mode.A uniform oxide layer was developed on the surface of the specimens with MAO treatment in silicate-based alkaline electrolytes for different oxidation times.The corrosion behavior of the samples was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy.The oxide film improved the corrosion resistance substantially compared to the uncoated specimens.The sample coated for 10 min exhibited better corrosion properties.The corrosion resistance of the coatings was concluded to strongly depend on the morphology,whereas the phase composition and thickness were concluded to only slightly affect the corrosion resistance.

  4. Evaluation of the Low Heat Input Process for Weld Repair of Nickel-Base Superalloys

    Science.gov (United States)

    Durocher, J.; Richards, N. L.

    2011-10-01

    The repair of turbine blades and vanes commonly involves gas tungsten arc welding or an equivalent process, but unfortunately these components are often susceptible to heat-affected zone (HAZ) cracking during the weld repair process. This is a major problem especially in cast alloys due to their coarse-grain size and where the (Al + Ti) contents is in excess of 3-4%; vacuum brazing is also used but mainly on low stress non-rotating components such as vanes. Micro-welding has the potential to deposit small amounts of filler at low heat input levels with minimum HAZ and thus is an attractive process for depositing a quality weld. As with conventional fusion processes, the filler alloy is deposited by the generation of a low power arc between a consumable electrode and the substrate. The low heat input of this process offers unique advantages over more common welding processes such as gas tungsten arc, plasma arc, laser, and electron beam welding. In this study, the low heat input characteristic of micro-welding has been used to simulate weld repair using Inconel (IN) (Inconel and IN are trademarks of INCO Alloys International) 625, Rene (Rene is a trademark of General Electric Company) 41, Nimonic (Nimonic is a trademark of INCO Alloys International) 105 and Inconel 738LC filler alloys, to a cast Inconel 738LC substrate. The effect of micro-welding process parameters on the deposition rate, coating quality, and substrate has been investigated.

  5. Effect of inclusion content on the creep rupture properties of type 17Cr-8Ni-2Mo weld metals

    International Nuclear Information System (INIS)

    Senior, B.A.

    1988-01-01

    It has been known for some time that austenitic weldments exhibit low and variable creep rupture properties, but many of the factors controlling these properties are not well understood. In this investigation, two welds (Type 316) with similar compositions and fabricated using the same welding parameters, but with different electrode coatings, have been examined after creep testing. The results indicate that the inclusion and silicon content of type 316 welds can strongly influence their creep rupture properties, a high inclusion density being associated with poor creep rupture properties, and a low silicon content with a higher creep rate. This has been explained with reference to the micromechanism of creep failure operating in these welds. (author)

  6. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  7. Resistance seam welding

    International Nuclear Information System (INIS)

    Schueler, A.W.

    1977-01-01

    The advantages and disadvantages of the resistance seam welding process are presented. Types of seam welds, types of seam welding machines, seam welding power supplies, resistance seam welding parameters and seam welding characteristics of various metals

  8. Cyclic oxidation of coated Oxide Dispersion Strengthened (ODS) alloys in high velocity gas streams at 1100 deg C

    Science.gov (United States)

    Gedwill, M. A.

    1978-01-01

    Several overlay coatings on ODS NiCrAl's were tested in Mach 1 and Mach 0.3 burner rigs to examine oxidation and thermal fatigue performance. The coatings were applied by various methods. Based on weight change, macroscopic, and metallographic observations in Mach 1 tests Nascoat 70 on TD-NiCrAl exhibited the best oxidation resistance. In Mach 0.3 tests PWA 267 and ATD-1, about equally, were the best coatings on YD-NiCrAl (Nascoat 70 was not tested in Mach 0.3 rigs).

  9. Electrochemical behaviour of a stainless steel coating after thermal fatigue and thermal shocks

    International Nuclear Information System (INIS)

    Boudebane, A.; Darsouni, A.; Chadli, H.; Boudebane, S.

    2012-01-01

    This work aims to study of the influence of thermal fatigue and thermal shock on the corrosion behaviour of coated steel AISI 304L. The coating was welded by TIG welding on specimens in ferritic-pearlitic steel grade AISI 4140. The study concerns three different states of deposit: sensitized, sensitized and strain hardened in surface and no sensitized. We realized electrochemical corrosion in an aqueous solution of NaCl 34 g/l. The corrosion of the specimens were evaluated by comparing the potentiodynamic curves for different states of the coating. Firstly, electrochemical characterization of deposits has shown a localized intergranular corrosion. Furthermore, the increase in the number of cycles of thermal fatigue accelerates the dissolution of deposit. Thermal shocks tend to improve resistance to corrosion. Against, the mechanical treatment of surfaces by burnishing decreases the dissolution rate of deposit cycles in thermal fatigue. (authors)

  10. On cooperative and efficient overlay network evolution based on a group selection pattern.

    Science.gov (United States)

    Nakao, Akihiro; Wang, Yufeng

    2010-04-01

    In overlay networks, the interplay between network structure and dynamics remains largely unexplored. In this paper, we study dynamic coevolution between individual rational strategies (cooperative or defect) and the overlay network structure, that is, the interaction between peer's local rational behaviors and the emergence of the whole network structure. We propose an evolutionary game theory (EGT)-based overlay topology evolution scheme to drive a given overlay into the small-world structure (high global network efficiency and average clustering coefficient). Our contributions are the following threefold: From the viewpoint of peers' local interactions, we explicitly consider the peer's rational behavior and introduce a link-formation game to characterize the social dilemma of forming links in an overlay network. Furthermore, in the evolutionary link-formation phase, we adopt a simple economic process: Each peer keeps one link to a cooperative neighbor in its neighborhood, which can slightly speed up the convergence of cooperation and increase network efficiency; from the viewpoint of the whole network structure, our simulation results show that the EGT-based scheme can drive an arbitrary overlay network into a fully cooperative and efficient small-world structure. Moreover, we compare our scheme with a search-based economic model of network formation and illustrate that our scheme can achieve the experimental and analytical results in the latter model. In addition, we also graphically illustrate the final overlay network structure; finally, based on the group selection model and evolutionary set theory, we theoretically obtain the approximate threshold of cost and draw the conclusion that the small value of the average degree and the large number of the total peers in an overlay network facilitate the evolution of cooperation.

  11. Structure and Construction Assessment of the Surface Layer of Hardfaced Coating after Friction

    Directory of Open Access Journals (Sweden)

    Krzysztof Dziedzic

    2017-09-01

    Full Text Available The paper presents an analysis of the surface layer of Fe-Mn-C-B-Si-Ni-Cr alloy coating after friction with C45 steel. The coatings were obtained by arc welding (GMA. Flux-cored wires were used as a welding material. The flux-cored wires had a diameter of 2,4 mm. The tribological assessment was performed with the Amsler tribotester under dry friction conditions at unit pressures 10 MPa. The use of XPS spectroscopy allowed deep profile analysis of the surface layer. Based on the obtained results developed model of the surface layer for friction couple, hardfaced coating obtained from Fe-Mn-C-B-Si-Ni-Cr alloy – C45 steel. It was observed that the operational surface layer (OSL of hardfaced coatings contained oxides (B2O3, SiO2, NiO, Cr2O3, FeO, Fe3O4, Fe2O3, carbides (Fe3C, Cr7C3 and borides (FeB, Fe2B.

  12. Welding method, and welding device for use therein, and method of analysis for evaluating welds

    NARCIS (Netherlands)

    Aendenroomer, A.J.; Den Ouden, G.; Xiao, Y.H.; Brabander, W.A.J.

    1995-01-01

    Described is a method of automatically welding pipes, comprising welding with a pulsation welding current and monitoring, by means of a sensor, the variations occurring in the arc voltage caused by weld pool oscillations. The occurrence of voltage variations with only frequency components below 100

  13. Overlay control methodology comparison: field-by-field and high-order methods

    Science.gov (United States)

    Huang, Chun-Yen; Chiu, Chui-Fu; Wu, Wen-Bin; Shih, Chiang-Lin; Huang, Chin-Chou Kevin; Huang, Healthy; Choi, DongSub; Pierson, Bill; Robinson, John C.

    2012-03-01

    Overlay control in advanced integrated circuit (IC) manufacturing is becoming one of the leading lithographic challenges in the 3x and 2x nm process nodes. Production overlay control can no longer meet the stringent emerging requirements based on linear composite wafer and field models with sampling of 10 to 20 fields and 4 to 5 sites per field, which was the industry standard for many years. Methods that have emerged include overlay metrology in many or all fields, including the high order field model method called high order control (HOC), and field by field control (FxFc) methods also called correction per exposure. The HOC and FxFc methods were initially introduced as relatively infrequent scanner qualification activities meant to supplement linear production schemes. More recently, however, it is clear that production control is also requiring intense sampling, similar high order and FxFc methods. The added control benefits of high order and FxFc overlay methods need to be balanced with the increased metrology requirements, however, without putting material at risk. Of critical importance is the proper control of edge fields, which requires intensive sampling in order to minimize signatures. In this study we compare various methods of overlay control including the performance levels that can be achieved.

  14. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2016-01-01

    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced...... residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature failure in the weld components. This paper deals with the influence and impact of welding method on the welding...... induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...

  15. Faster diffraction-based overlay measurements with smaller targets using 3D gratings

    Science.gov (United States)

    Li, Jie; Kritsun, Oleg; Liu, Yongdong; Dasari, Prasad; Volkman, Catherine; Hu, Jiangtao

    2012-03-01

    Diffraction-based overlay (DBO) technologies have been developed to address the overlay metrology challenges for 22nm technology node and beyond. Most DBO technologies require specially designed targets that consist of multiple measurement pads, which consume too much space and increase measurement time. The traditional empirical approach (eDBO) using normal incidence spectroscopic reflectometry (NISR) relies on linear response of the reflectance with respect to overlay displacement within a small range. It offers convenience of quick recipe setup since there is no need to establish a model. However it requires three or four pads per direction (x or y) which adds burden to throughput and target size. Recent advances in modeling capability and computation power enabled mDBO, which allows overlay measurement with reduced number of pads, thus reducing measurement time and DBO target space. In this paper we evaluate the performance of single pad mDBO measurements using two 3D targets that have different grating shapes: squares in boxes and L-shapes in boxes. Good overlay sensitivities are observed for both targets. The correlation to programmed shifts and image-based overlay (IBO) is excellent. Despite the difference in shapes, the mDBO results are comparable for square and L-shape targets. The impact of process variations on overlay measurements is studied using a focus and exposure matrix (FEM) wafer. Although the FEM wafer has larger process variations, the correlation of mDBO results with IBO measurements is as good as the normal process wafer. We demonstrate the feasibility of single pad DBO measurements with faster throughput and smaller target size, which is particularly important in high volume manufacturing environment.

  16. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    Science.gov (United States)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  17. Local strain energy density for the fatigue assessment of hot dip galvanized welded joints: some recent outcomes

    Directory of Open Access Journals (Sweden)

    M. Peron

    2017-10-01

    Full Text Available Since in literature only data about the effect of the hot-dip galvanizing coating on fatigue behavior of unnotched specimens are available, whereas very few for notched components and none for welded joints, the aim of this paper is to partially fill this lack of knowledge comparing fatigue strength of uncoated and hot-dip galvanized fillet welded cruciform joints made of structural steel S355 welded joints, subjected to a load cycle R = 0. 34. The results are shown in terms of stress range ?s and of the averaged strain energy density range DW in a control volume of radius R0 = 0.28 mm

  18. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  19. Driving imaging and overlay performance to the limits with advanced lithography optimization

    Science.gov (United States)

    Mulkens, Jan; Finders, Jo; van der Laan, Hans; Hinnen, Paul; Kubis, Michael; Beems, Marcel

    2012-03-01

    Immersion lithography is being extended to 22-nm and even below. Next to generic scanner system improvements, application specific solutions are needed to follow the requirements for CD control and overlay. Starting from the performance budgets, this paper discusses how to improve (in volume manufacturing environment) CDU towards 1-nm and overlay towards 3-nm. The improvements are based on deploying the actuator capabilities of the immersion scanner. The latest generation immersion scanners have extended the correction capabilities for overlay and imaging, offering freeform adjustments of lens, illuminator and wafer grid. In order to determine the needed adjustments the recipe generation per user application is based on a combination wafer metrology data and computational lithography methods. For overlay, focus and CD metrology we use an angle resolved optical scatterometer.

  20. Numerical analysis of weld pool oscillation in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of); Farson, Dave F [The Ohio State University, Columbus (United States); Hollis, Kendall; Milewski, John O. [Los Alamos National Laboratory, Los Alamos (United States)

    2015-04-15

    Volume of fluid (VOF) numerical simulation was used to investigate melt flow and volumetric oscillation of conduction-mode pulsed laser weld pools. The result is compared to high speed video stream of titanium laser spot welding experiment. The total simulation time is 10ms with the first 5 ms being heating and melting under constant laser irradiation and the remaining 5 ms corresponding to resolidification of the weld pool. During the melting process, the liquid pool did not exhibit periodic oscillation but was continually depressed by the evaporation recoil pressure. After the laser pulse, the weld pool was excited into volumetric oscillation by the release of pressure on its surface and oscillation of the weld pool surface was analyzed. The simulation model suggested adjusting thermal diffusivity to match cooling rate and puddle diameter during solidification which is distinguishable from previous weld pool simulation. The frequency continuously increased from several thousand cycles per second to tens of thousands of cycles per second as the weld pool solidified and its diameter decreased. The result is the first trial of investigation of small weld pool oscillation in laser welding although there have been several reports about arc welding.

  1. Alternate Welding Processes for In-Service Welding

    Science.gov (United States)

    2009-04-24

    Conducting weld repairs and attaching hot tap tees onto pressurized pipes has the advantage of avoiding loss of service and revenue. However, the risks involved with in-service welding need to be managed by ensuring that welding is performed in a rep...

  2. A study of swing-curve physics in diffraction-based overlay

    Science.gov (United States)

    Bhattacharyya, Kaustuve; den Boef, Arie; Storms, Greet; van Heijst, Joost; Noot, Marc; An, Kevin; Park, Noh-Kyoung; Jeon, Se-Ra; Oh, Nang-Lyeom; McNamara, Elliott; van de Mast, Frank; Oh, SeungHwa; Lee, Seung Yoon; Hwang, Chan; Lee, Kuntack

    2016-03-01

    With the increase of process complexity in advanced nodes, the requirements of process robustness in overlay metrology continues to tighten. Especially with the introduction of newer materials in the film-stack along with typical stack variations (thickness, optical properties, profile asymmetry etc.), the signal formation physics in diffraction-based overlay (DBO) becomes an important aspect to apply in overlay metrology target and recipe selection. In order to address the signal formation physics, an effort is made towards studying the swing-curve phenomena through wavelength and polarizations on production stacks using simulations as well as experimental technique using DBO. The results provide a wealth of information on target and recipe selection for robustness. Details from simulation and measurements will be reported in this technical publication.

  3. Hybrid laser-TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Liu Liming; Wang Jifeng; Song Gang

    2004-01-01

    Welding of AZ31B magnesium alloy was carried out using hybrid laser-TIG (LATIG) welding, laser beam welding (LBW) and gas tungsten arc (TIG) welding. The weldability and microstructure of magnesium AZ31B alloy welded using LATIG, LBW and TIG were investigated by OM and EMPA. The experimental results showed that the welding speed of LATIG was higher than that of TIG, which was caught up with LBW. Besides, the penetration of LATIG doubles that of TIG, and was four times that of LBW. In addition, arc stability was improved in hybrid of laser-TIG welding compared with using the TIG welding alone, especially at high welding speed and under low TIG current. It was found that the heat affect zone of joint was only observed in TIG welding, and the size of grains in it was evidently coarse. In fusion zone, the equiaxed grains exist, whose size was the smallest welded by LBW, and was the largest by TIG welding. It was also found that Mg concentration of the fusion zone was lower than that of the base one by EPMA in three welding processes

  4. Closing the weld gap with laser/mig hybrid welding process

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Wiwe, Bjarne David

    2003-01-01

    In this article, laboratory tests are demonstrated that systematically accesses the critical gap distance when welding CMn 2.13 mm steel with a 2.6 kW CO2 laser, combined with a MIG energy source. In the work, the welding speed is varied at gap distances from 0 to 0.8 mm such that the limits...... for obtaining sound welds are identified. The welds are quality assessed according to ISO 13.919-1 and EN25817, transversal hardness measurements are made and the heat input to the workpiece is calculated. The results show that the critical gap is 0.1 mm for a laser weld alone. With hybrid welding, this can...... be increased to 0.6 mm, even at a welding speed of 3.5 m/min. The maximum welding speed with the hybrid process is comparable to laser welding alone, 4.5 m/min. The measured hardness is comparable to MIG welding, and this corresponds to a 33 percent reduction compared to laser welding alone. The heat input...

  5. Manufacturing and use of spiral welded pipes for high pressure service : state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Knoop, F.M.; Sommer, B. [Salzgitter GroBrohre GmbH, Salzgitter (Germany)

    2004-07-01

    This paper provided details of an improved helical seam 2-step (HTS) manufacturing process used to produce spiral welded large diameter pipes for high pressure transmission pipelines. During the process, pipe forming is combined with continuous tack welding and internal and external submerged arc welding at separate welding stations. The pipe forming unit consists of a 3 roll bending system with an outside roller cage used to guarantee the roundness of the pipe. The converging strip edges of the pipe are joined using a continuous shielded arc tack weld. Tack welding is done automatically with a laser-guided weld head. Run-out angles are adjusted by an automatic gap control system. The formed and tack-welded pipes are then fed to computer-controlled welding stations for final welding, where each pipe is rotated with a precise screw-like motion. The same welding materials used for the helical seam are used for the skelp end welding. The process offers more precise root gap control, as well as improved pipe geometry. Use of the process has also increased production rates and improved weld stability. The dimensions of the spiral-weld pipes are adjustable so that any diameter can be produced from a base material of the same width. The pipes can also be coated externally with fusion-bonded epoxy or 3-layer polyethylene/polypropylene. It was concluded that the process is being further refined to support the use of HTS pipes in high-pressure pipelines. New nondestructive testing techniques used to assess the performance of the line pipes were presented, as well as the results from hot and cold bending tests, field weldability trials, and tests related to the safety of spiral pipes. 16 refs., 2 tabs., 12 figs.

  6. Molybdenum depletion around P-phases Ni-Cr-Mo-W weld metals

    International Nuclear Information System (INIS)

    Silva, Cleiton Carvalho; Miranda, Helio Cordeiro de; Farias, Jesualdo Pereira

    2010-01-01

    This work evaluated the local chemical composition in matrix/precipitate interface in a Ni-Cr-Mo-W alloy weld metals deposited on substrate of C-Mn steel. The microstructural characterization was carried out through optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The results had shown that the presence of secondary phases precipitates in the interdendritic region. Through SEM analysis were observed indications of depletion of Mo around these phases. These precipitates were identified as P-phase by TEM analysis. The Mo depletion indications were confirmed through EDS. The Mo depletion was a result of a reheating due to several welding heat cycles deposited to promote the coating layer. (author)

  7. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2017-12-01

    Full Text Available The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding parameters and micro-jet cooling parameters is very important to achieve a proper steel structure. In this study, the metallographic structure, tensile results and impact toughness of welded joints have been analysed in terms of welding parameters.

  8. Forming Completely Penetrated Welded T-joints when Pulsed Arc Welding

    Science.gov (United States)

    Krampit, N. Yu; Krampit, M. A.; Sapozhkov, A. S.

    2016-04-01

    The paper is focused on revealing the influence of welding parameters on weld formation when pulsed arc welding. As an experimental sample a T-joint over 10 mm was selected. Welding was carried out in flat position, which required no edge preparation but provided mono-directional guaranteed root penetration. The following parameters of welding were subjected to investigation: gap in the joint, wire feed rate and incline angles of the torch along and across the weld axis. Technological recommendations have been made with respect to pulsed arc welding; the cost price of product manufacturing can be reduced on their basis due to reduction of labor input required by machining, lowering consumption of welding materials and electric power.

  9. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...... this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling...

  10. Reliability of magnetic particle inspection performed through coatings: Final report

    International Nuclear Information System (INIS)

    1988-07-01

    The magnetic particle examination (MT) technique can reliably examine containment welds without removing their protective coatings. This study has investigated a variety of MT methods used in the oil and gas industry for their suitability for nuclear plant applications. 102 figs

  11. Cu-Fe welding techniques by electromagnetic and electron beam welding processes

    International Nuclear Information System (INIS)

    Kumar, Satendra; Saroj, P.C.; Kulkarni, M.R.; Sharma, A.; Rajawat, R.K.; Saha, T.K.

    2015-01-01

    Electromagnetic welding being a solid state welding process has been found suitable for welding Copper and Iron which are conventionally very tricky. Owing to good electrical conductivity of both copper and iron, they are best suited combination for EM welding. For the experimental conditions presented above, 1.0 mm wall thickness of Cu tube was lap welded to Fe disc. A heavy duty four disc stainless steel coil was used for electromagnetic welding of samples. MSLD of the welded samples indicated leak proof joints. Metallographic examination of the welds also revealed defect free interfaces. Electron beam welding is also a non-conventional welding process used for joining dissimilar materials. Autogenous welding of the above specimen was carried out by EBW method for the sake of comparison. A characterization analysis of the above mentioned joining processes will be discussed in the paper. (author)

  12. Simultaneous overlay and CD measurement for double patterning: scatterometry and RCWA approach

    Science.gov (United States)

    Li, Jie; Liu, Zhuan; Rabello, Silvio; Dasari, Prasad; Kritsun, Oleg; Volkman, Catherine; Park, Jungchul; Singh, Lovejeet

    2009-03-01

    As optical lithography advances to 32 nm technology node and beyond, double patterning technology (DPT) has emerged as an attractive solution to circumvent the fundamental optical limitations. DPT poses unique demands on critical dimension (CD) uniformity and overlay control, making the tolerance decrease much faster than the rate at which critical dimension shrinks. This, in turn, makes metrology even more challenging. In the past, multi-pad diffractionbased overlay (DBO) using empirical approach has been shown to be an effective approach to measure overlay error associated with double patterning [1]. In this method, registration errors for double patterning were extracted from specially designed diffraction targets (three or four pads for each direction); CD variation is assumed negligible within each group of adjacent pads and not addressed in the measurement. In another paper, encouraging results were reported with a first attempt at simultaneously extracting overlay and CD parameters using scatterometry [2]. In this work, we apply scatterometry with a rigorous coupled wave analysis (RCWA) approach to characterize two double-patterning processes: litho-etch-litho-etch (LELE) and litho-freeze-litho-etch (LFLE). The advantage of performing rigorous modeling is to reduce the number of pads within each measurement target, thus reducing space requirement and improving throughput, and simultaneously extract CD and overlay information. This method measures overlay errors and CDs by fitting the optical signals with spectra calculated from a model of the targets. Good correlation is obtained between the results from this method and that of several reference techniques, including empirical multi-pad DBO, CD-SEM, and IBO. We also perform total measurement uncertainty (TMU) analysis to evaluate the overall performance. We demonstrate that scatterometry provides a promising solution to meet the challenging overlay metrology requirement in DPT.

  13. VMCast: A VM-Assisted Stability Enhancing Solution for Tree-Based Overlay Multicast.

    Directory of Open Access Journals (Sweden)

    Weidong Gu

    Full Text Available Tree-based overlay multicast is an effective group communication method for media streaming applications. However, a group member's departure causes all of its descendants to be disconnected from the multicast tree for some time, which results in poor performance. The above problem is difficult to be addressed because overlay multicast tree is intrinsically instable. In this paper, we proposed a novel stability enhancing solution, VMCast, for tree-based overlay multicast. This solution uses two types of on-demand cloud virtual machines (VMs, i.e., multicast VMs (MVMs and compensation VMs (CVMs. MVMs are used to disseminate the multicast data, whereas CVMs are used to offer streaming compensation. The used VMs in the same cloud datacenter constitute a VM cluster. Each VM cluster is responsible for a service domain (VMSD, and each group member belongs to a specific VMSD. The data source delivers the multicast data to MVMs through a reliable path, and MVMs further disseminate the data to group members along domain overlay multicast trees. The above approach structurally improves the stability of the overlay multicast tree. We further utilized CVM-based streaming compensation to enhance the stability of the data distribution in the VMSDs. VMCast can be used as an extension to existing tree-based overlay multicast solutions, to provide better services for media streaming applications. We applied VMCast to two application instances (i.e., HMTP and HCcast. The results show that it can obviously enhance the stability of the data distribution.

  14. Effects of Spectral Overlays on Reading Performance of Brazilian Elementary School Children.

    Science.gov (United States)

    Garcia, Ana Carla Oliveira; Momensohn-Santos, Teresa Maria; Vilhena, Douglas de Araújo

    2018-03-20

    To investigate the effects of spectral overlays on reading performance of Brazilian elementary school children. Sixty-eight children (aged 9-12 years) enrolled in the 5th and 6th grade were included in the study. The Rate of Reading Test (RRT - Brazilian Portuguese version) was used to evaluate reading speed and the Irlen Reading Perceptual Scale was used to allocate the sample according to reading difficulty/discomfort symptoms and to define the optimal spectral overlays. A total of 13% of the children presented an improvement of at least 15% in reading speed with the use of spectral overlays. Pupils with severe reading difficulties tended to have more improvement in RRT with spectral overlays. Children with severe reading discomfort obtained the highest gains in RRT, with an average of 9.6% improvement with intervention, compared to a decrease of -8.2% in the control group. Participants with severe discomfort had an odds ratio of 3.36 to improve reading speed with intervention compared to the control group. The use of spectral overlays can improve reading performance, particularly in those children with severe visual discomfort. © 2018 S. Karger AG, Basel.

  15. Stress Corrosion Cracking Susceptibility of 304L Substrate and 308L Weld Metal Exposed to a Salt Spray

    Directory of Open Access Journals (Sweden)

    Chia-Hao Hsu

    2017-02-01

    Full Text Available 304 stainless steels (SS were considered as the materials for a dry storage canister. In this study, ER (Electrode Rod 308L was utilized as the filler metal for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. The electron backscatter diffraction (EBSD map was used to identify the inherent microstructures in distinct specimens. U-bend and weight-loss tests were conducted by testing the 304L substrates and welds in a salt spray containing 5 wt % NaCl at 80 °C to evaluate their susceptibility to stress corrosion cracking (SCC. Generally, the weight loss of the ER 308L deposit was higher than that of the 304L substrate in a salt spray in the same sample-prepared condition. The dissolution of the skeletal structure in the fusion zone (FZ was responsible for a greater weight loss of the 308L deposit, especially for the cold-rolled and sensitized specimen. Cold rolling was detrimental and sensitization after cold rolling was very harmful to the SCC resistance of the 304L substrate and 308L deposit. Overall, the SCC susceptibility of each specimen was correlated with its weight loss in each group.

  16. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  17. PHYSICOCHEMICAL PROPERTIES OF THE SOLID COMPONENT OF WELDING AEROSOL. I. PHASE COMPOSITION

    Directory of Open Access Journals (Sweden)

    T. L. Rakitskaya

    2015-02-01

    Full Text Available The phase composition of the solid component of welding aerosol (SCWA obtained as a result of metal welding with electrodes of ANO-4 and TsL-11 types manufactured according to ISO 2560 E432R 21 and ISO E19.9NbB20 standards, respectively, and differing in com-position of their wires and coatings was determined with the help of a Siemens D500 diffrac- a Siemens D500 diffrac-tometer supplied with the manufacturer’s software. Four and thirteen phases were identified in SCWA-ANO-4 and SCWA-TsL-11, respectively. Evaluation of crystallite sizes by the use of the Scherer equation showed that the crystallites formed in the course of welding with a TsL-11 type electrode are larger than those in the case of an ANO-4 type one: 65-89 nm and 30-49 nm, respectively.

  18. Effects of Fusion Tack Welds on Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Nunes, A. C., Jr.; Pendleton, M. L.; Brooke, S. A.; Russell, C. K.

    2012-01-01

    In order to know whether fusion tack welds would affect the strength of self-reacting friction stir seam welds in 2195-T87 aluminum alloy, the fracture stresses of 144 tensile test coupons cut from 24 welded panels containing segments of friction stir welds were measured. Each of the panels was welded under unique processing conditions. A measure of the effect of the tack welds for each panel was devised. An analysis of the measures of the tack weld effect supported the hypothesis that fusion tack welds do not affect the strength of self-reacting friction stir welds to a 5% level of confidence.

  19. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  20. Modification of wool surface by liposomes for dyeing with weld.

    Science.gov (United States)

    Montazer, Majid; Zolfaghari, Alireza; Toliat, Taibeh; Moghadam, Mohammad Bameni

    2009-01-01

    In this research work, wool surface has been modified by liposome to investigate its effects on dyeing with weld, a yellow natural dye. To do this, samples were first treated with aluminium sulphate and afterward with different concentrations of liposomes at various temperatures for 30 minutes and, finally, dyed with weld at 75, 85, and 95 degrees C for 30, 45, and 60 minutes. K/S values of fabric samples were calculated and washing, light and rub fastness properties of the samples were indicated. The results proposed that the sample treated with 1% liposomes and dyed at 75 degrees C for 60 min has the highest K/S value. The central composite design (CCD) used for the experimental plan with three variables on the results of color strength and statistical analysis confirms the optimum conditions obtained by the experimental results. It was also found that washing, light, wet, and dry rub fastness properties of samples dyed with weld, including liposomes, have not significantly changed. The results of water drop absorption indicated that the hydrophobicity is higher for the samples pretreated with liposomes. The SEM picture of wool sample treated with mordant and liposomes and finally dyed with weld shows a coated layer on the fiber surface.

  1. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  2. Holistic metrology qualification extension and its application to characterize overlay targets with asymmetric effects

    Science.gov (United States)

    Dos Santos Ferreira, Olavio; Sadat Gousheh, Reza; Visser, Bart; Lie, Kenrick; Teuwen, Rachel; Izikson, Pavel; Grzela, Grzegorz; Mokaberi, Babak; Zhou, Steve; Smith, Justin; Husain, Danish; Mandoy, Ram S.; Olvera, Raul

    2018-03-01

    Ever increasing need for tighter on-product overlay (OPO), as well as enhanced accuracy in overlay metrology and methodology, is driving semiconductor industry's technologists to innovate new approaches to OPO measurements. In case of High Volume Manufacturing (HVM) fabs, it is often critical to strive for both accuracy and robustness. Robustness, in particular, can be challenging in metrology since overlay targets can be impacted by proximity of other structures next to the overlay target (asymmetric effects), as well as symmetric stack changes such as photoresist height variations. Both symmetric and asymmetric contributors have impact on robustness. Furthermore, tweaking or optimizing wafer processing parameters for maximum yield may have an adverse effect on physical target integrity. As a result, measuring and monitoring physical changes or process abnormalities/artefacts in terms of new Key Performance Indicators (KPIs) is crucial for the end goal of minimizing true in-die overlay of the integrated circuits (ICs). IC manufacturing fabs often relied on CD-SEM in the past to capture true in-die overlay. Due to destructive and intrusive nature of CD-SEMs on certain materials, it's desirable to characterize asymmetry effects for overlay targets via inline KPIs utilizing YieldStar (YS) metrology tools. These KPIs can also be integrated as part of (μDBO) target evaluation and selection for final recipe flow. In this publication, the Holistic Metrology Qualification (HMQ) flow was extended to account for process induced (asymmetric) effects such as Grating Imbalance (GI) and Bottom Grating Asymmetry (BGA). Local GI typically contributes to the intrafield OPO whereas BGA typically impacts the interfield OPO, predominantly at the wafer edge. Stack height variations highly impact overlay metrology accuracy, in particular in case of multi-layer LithoEtch Litho-Etch (LELE) overlay control scheme. Introducing a GI impact on overlay (in nm) KPI check quantifies the

  3. Effectiveness of polymer bridge deck overlays in highway noise reduction : technical paper.

    Science.gov (United States)

    2016-04-01

    The Kansas Department of Transportation (KDOT) began placing multi-layer polymer bridge deck overlays in 1999 and at the present time have over 200 in service. A few years after placing the overlays, individuals indicated that they noticed how quiet ...

  4. The Tribological Performance of Hardfaced/ Thermal Sprayed Coatings for Increasing the Wear Resistance of Ventilation Mill Working Parts

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2015-09-01

    Full Text Available During the coal pulverizing, the working parts of the ventilation mill are being worn by the sand particles. For this reason, the working parts are usually protected with materials resistant to wear (hardfaced/thermal sprayed coatings. The aim of this study was to evaluate the tribological performance of four different types of coatings as candidates for wear protection of the mill’s working parts. The coatings were produced by using the filler materials with the following nominal chemical composition: NiFeBSi-WC, NiCrBSiC, FeCrCTiSi, and FeCrNiCSiBMn, and by using the plasma arc welding and flame and electric arc spraying processes. The results showed that Ni-based coatings exhibited higher wear resistance than Fe-based coatings. The highest wear resistance showed coating produced by using the NiFeBSi-WC filler material and plasma transferred arc welding deposition process. The hardness was not the only characteristic that affected the wear resistance. In this context, the wear rate of NiFeBSi-WC coating was not in correlation with its hardness, in contrast to other coatings. The different wear performance of NiFeBSi-WC coating was attributed to the different type and morphological features of the reinforcing particles (WC.

  5. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    OpenAIRE

    Jan PIWNIK; Bożena SZCZUCKA-LASOTA; Tomasz WĘGRZYN; Wojciech MAJEWSKI

    2017-01-01

    The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding paramet...

  6. Intermittent-contact scanning capacitance microscopy imaging and modeling for overlay metrology

    International Nuclear Information System (INIS)

    Mayo, S.; Kopanski, J. J.; Guthrie, W. F.

    1998-01-01

    Overlay measurements of the relative alignment between sequential layers are one of the most critical issues for integrated circuit (IC) lithography. We have implemented on an AFM platform a new intermittent-contact scanning capacitance microscopy (IC-SCM) mode that is sensitive to the tip proximity to an IC interconnect, thus making it possible to image conductive structures buried under planarized dielectric layers. Such measurements can be used to measure IC metal-to-resist lithography overlay. The AFM conductive cantilever probe oscillating in a vertical plane was driven at frequency ω, below resonance. By measuring the tip-to-sample capacitance, the SCM signal is obtained as the difference in capacitance, ΔC(ω), at the amplitude extremes. Imaging of metallization structures was obtained with a bars-in-bars aluminum structure embedded in a planarized dielectric layer 1 μm thick. We have also modeled, with a two-dimensional (2D) electrostatic field simulator, IC-SCM overlay data of a metallization structure buried under a planarized dielectric having a patterned photoresist layer deposited on it. This structure, which simulates the metal-to-resist overlay between sequential IC levels, allows characterization of the technique sensitivity. The capacitance profile across identical size electrically isolated or grounded metal lines embedded in a dielectric was shown to be different. The floating line shows capacitance enhancement at the line edges, with a minimum at the line center. The grounded line shows a single capacitance maximum located at the line center, with no edge enhancement. For identical line dimensions, the capacitance is significantly larger for grounded lines making them easier to image. A nonlinear regression algorithm was developed to extract line center and overlay parameters with approximately 3 nm resolution at the 95% confidence level, showing the potential of this technique for sub-micrometer critical dimension metrology. Symmetric test

  7. Thermal Stir Welding: A New Solid State Welding Process

    Science.gov (United States)

    Ding, R. Jeffrey

    2003-01-01

    Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  8. Dynamics of a metal overlayer on metallic substrates: High temperature effects

    International Nuclear Information System (INIS)

    Rahman, T.S.; Black, J.E.; Tian, Zeng Ju

    1992-01-01

    We have explored the structure and the dynamics of a bimetallic system consisting of a hexagonal (almost) overlayer of Ag on a square lattice (Ni(100) and Cu(100)), as a function of the surface temperature. In each case the structure is ''nearly'' incommensurate giving rise to a low frequency Goldstone mode. Also, the overlayer atoms slosh back and forth over the substrate in a corrugated fashion. The calculated dispersion of the Ag/metal vertical mode, at room temperature, is in excellent agreement with experimental data. At higher temperatures floater atoms appear on top of the overlayer displaying a variety of cluster formations and also exchanges with the substrate atoms leading to surface disordering, interdiffusion and melting

  9. Sustainability of Welding Process through Bobbin Friction Stir Welding

    Science.gov (United States)

    Sued, M. K.; Samsuri, S. S. M.; Kassim, M. K. A. M.; Nasir, S. N. N. M.

    2018-03-01

    Welding process is in high demand, which required a competitive technology to be adopted. This is important for sustaining the needs of the joining industries without ignoring the impact of the process to the environment. Friction stir welding (FSW) is stated to be benefitting the environment through low energy consumption, which cannot be achieved through traditional arc welding. However, this is not well documented, especially for bobbin friction stir welding (BFSW). Therefore, an investigation is conducted by measuring current consumption of the machine during the BFSW process. From the measurement, different phases of BFSW welding process and its electrical demand are presented. It is found that in general total energy in BFSW is about 130kW inclusive of all identified process phases. The phase that utilise for joint formation is in weld phase that used the highest total energy of 120kWs. The recorded total energy is still far below the traditional welding technology and the conventional friction stir welding (CFSW) energy demand. This indicates that BFSW technology with its vast benefit able to sustain the joining technology in near future.

  10. Enabling high speed friction stir welding of aluminum tailor welded blanks

    Science.gov (United States)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  11. Microstructures of friction surfaced coatings. A TEM study; Gefuege durch Reibauftragschweissen aufgetragener Beschichtungen. Eine TEM-Untersuchung

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Javed; Kalvala, Prasad Rao; Misra, Mano [Utah Univ., Salt Lake City, UT (United States). Dept. of Metallurgical Engineering; Dilip, J. John Samuel [Louisville Univ., KY (United States). Dept. of Industrial Engineering; Pal, Deepankar; Stucker, Brent [Louisville Univ., KY (United States). Dept. of Industrial Engineering; 3D Sim, Park City, UT (United States)

    2016-05-15

    The microstructures of dissimilar metal welds between 9Cr-1Mo (Modified) (P91) and austenitic stainless steel (AISI 304) with Ni-based alloy interlayers (Inconel 625, Inconel 600 and Inconel 800H) are reported. These interlayers were deposited by the friction surfacing method one over the other on P91 alloy, which was finally friction welded to AISI 304. In this paper, the results of microstructural evolution in the friction surfaced coated interlayers (Inconel 625, 600, 800H) are reported. For comparative purposes, the microstructures of consumable rods (Inconel 625, 600, 800H) and dissimilar metal base metals (P91 and AISI 304) were also reported. Friction surfaced coatings exhibited dynamic recrystallization. In friction surfaced coatings, the carbide particles were found to be finer and distributed uniformly throughout the matrix, compared to their rod counterparts.

  12. Mitigation of stress corrosion cracking in pressurized water reactor (PWR) piping systems using the mechanical stress improvement process (MSIPR) or underwater laser beam welding

    International Nuclear Information System (INIS)

    Rick, Grendys; Marc, Piccolino; Cunthia, Pezze; Badlani, Manu

    2009-01-01

    A current issue facing pressurized water reactors (PWRs) is primary water stress corrosion cracking (PWSCC) of bi metallic welds. PWSCC in a PWR requires the presence of a susceptible material, an aggressive environment and a tensile stress of significant magnitude. Reducing the potential for SCC can be accomplished by eliminating any of these three elements. In the U.S., mitigation of susceptible material in the pressurizer nozzle locations has largely been completed via the structural weld overlay (SWOL) process or NuVision Engineering's Mechanical Stress Improvement Process (MSIP R) , depending on inspectability. The next most susceptible locations in Westinghouse designed power plants are the Reactor Vessel (RV) hot leg nozzle welds. However, a full SWOL Process for RV nozzles is time consuming and has a high likelihood of in process weld repairs. Therefore, Westinghouse provides two distinctive methods to mitigate susceptible material for the RV nozzle locations depending on nozzle access and utility preference. These methods are the MSIP and the Underwater Laser Beam Welding (ULBW) process. MSIP applies a load to the outside diameter of the pipe adjacent to the weld, imposing plastic strains during compression that are not reversed after unloading, thus eliminating the tensile stress component of SCC. Recently, Westinghouse and NuVision successfully applied MSIP on all eight RV nozzles at the Salem Unit 1 power plant. Another option to mitigate SCC in RV nozzles is to place a barrier between the susceptible material and the aggressive environment. The ULBW process applies a weld inlay onto the inside pipe diameter. The deposited weld metal (Alloy 52M) is resistant to PWSCC and acts as a barrier to prevent primary water from contacting the susceptible material. This paper provides information on the approval and acceptance bases for MSIP, its recent application on RV nozzles and an update on ULBW development

  13. Methods for protection of high-strength welded stainless steel from corrosion cracking

    International Nuclear Information System (INIS)

    Lashchevskij, V.B.; Gurvich, L.Ya.; Batrakov, V.P.; Kozheurova, N.S.; Molotova, V.A.; Shvarts, M.M.

    1978-01-01

    The efficiency of protection from corrosion cracking under a bending stress of 100 kgf/mm 2 in a salt mist and in a sulphur dioxide atmosphere, of welded joints of steel 08Kh15N5D2T with metallizing, galvanic and varnish coatings and lubricants, and of steel 1Kh15N4AM3 with sealing compounds has been investigated. Metallization of welded joints with aluminium and zinc efficiently increases corrosion resistance in a salt mist. Galvanic coatings of Cd, Zn, and Cr increase the time to cracking in a salt mist from 2-3 to 60-80 days. The protective properties of varnishes under the effect of a salt mist decrease in the following sequence: epoxy-polyamide enamel EP-140, acrylic enamel C-38, silicone enamels KO-834, KO-811, and KO-814. In an atmosphere containing SO 2 0.15 vol.% at 100% relative humidity, the varnishes investigated, with the exception of the inhibited coating XC-596, show lower protective properties than in a salt mist. The high efficiency of protection from corrosion cracking in a salt mist of slots of steel 1Kh15N4AM3 when using organic sealing compounds U4-21 and U5-21, and also slushing lubricants and oils PVK, TsIATIM-201, K17, and AMS3 was established

  14. Multi-wavelength approach towards on-product overlay accuracy and robustness

    Science.gov (United States)

    Bhattacharyya, Kaustuve; Noot, Marc; Chang, Hammer; Liao, Sax; Chang, Ken; Gosali, Benny; Su, Eason; Wang, Cathy; den Boef, Arie; Fouquet, Christophe; Huang, Guo-Tsai; Chen, Kai-Hsiung; Cheng, Kevin; Lin, John

    2018-03-01

    Success of diffraction-based overlay (DBO) technique1,4,5 in the industry is not just for its good precision and low toolinduced shift, but also for the measurement accuracy2 and robustness that DBO can provide. Significant efforts are put in to capitalize on the potential that DBO has to address measurement accuracy and robustness. Introduction of many measurement wavelength choices (continuous wavelength) in DBO is one of the key new capabilities in this area. Along with the continuous choice of wavelengths, the algorithms (fueled by swing-curve physics) on how to use these wavelengths are of high importance for a robust recipe setup that can avoid the impact from process stack variations (symmetric as well as asymmetric). All these are discussed. Moreover, another aspect of boosting measurement accuracy and robustness is discussed that deploys the capability to combine overlay measurement data from multiple wavelength measurements. The goal is to provide a method to make overlay measurements immune from process stack variations and also to report health KPIs for every measurement. By combining measurements from multiple wavelengths, a final overlay measurement is generated. The results show a significant benefit in accuracy and robustness against process stack variation. These results are supported by both measurement data as well as simulation from many product stacks.

  15. Metallurgical Characterization of a Weld Bead Coating Applied by the PTA Process on the D2 Tool Steel

    Directory of Open Access Journals (Sweden)

    Ali Tahaei

    Full Text Available Abstract In this investigation, a nickel-base powder mixed with tungsten carbide particles was applied by Plasma Transferred Arc welding (PTA on the surface of the D2 cold work tool steel to improve surface quality and to extend its lifetime during applications. The Design of Experiment (DoE method was applied to obtain the appropriate combination of hardfacing parameters and to run the minimum number of tests. Current, travel speed and preheat were considered as variable parameters. These parameters are important to reach a final layer with an appropriate bead geometry accompanied with good metallurgical properties. All samples were prepared for metallurgical investigations and the effect of process parameters on the weld bead geometry was considered. For each experiment run, weld bead geometry parameters were measured including dilution, penetration and reinforcement. Microstructures and the distribution of tungsten carbide particles after welding were analyzed by Optical Microscopy (OM and Scanning Electron Microscopy (SEM equipped with an EDS microprobe. In addition, hardness tests were performed to evaluate the mechanical properties of the weld bead layers. Finally, among all the experiments, the best sample with appropriate bead geometry and microstructure was selected.

  16. The Influence of Friction Stir Weld Tool Form and Welding Parameters on Weld Structure and Properties: Nugget Bulge in Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C., Jr.; Brendel, Michael S.

    2010-01-01

    Although friction stir welding (FSW) was patented in 1991, process development has been based upon trial and error and the literature still exhibits little understanding of the mechanisms determining weld structure and properties. New concepts emerging from a better understanding of these mechanisms enhance the ability of FSW engineers to think about the FSW process in new ways, inevitably leading to advances in the technology. A kinematic approach in which the FSW flow process is decomposed into several simple flow components has been found to explain the basic structural features of FSW welds and to relate them to tool geometry and process parameters. Using this modelling approach, this study reports on a correlation between the features of the weld nugget, process parameters, weld tool geometry, and weld strength. This correlation presents a way to select process parameters for a given tool geometry so as to optimize weld strength. It also provides clues that may ultimately explain why the weld strength varies within the sample population.

  17. Structure evolution of multilayer materials of heat-resistant intermetallic compounds under the influence of temperature in the process of diffusion welding under pressure and their mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Korzhov, Valeriy P.; Karpov, Michael I.; Prokhorov, Dmitriy V. [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation)

    2013-07-01

    Multilayer materials of high-resistant intermetallic compounds of some transition metals with aluminum and silicon were obtained by diffusion welding of packages, collected from a large number of the respective foils, such as niobium and aluminum. Materials of intermetallics with silicon were obtained by the welding of packages built from metal foils with Si-coating. The change in the structure according to the temperature of the welding was studied, and the high-temperature bending strength was determined. Key words: multilayer composite, high-resistant material, intermetallic compound, diffusion welding, package rolling, layered structure, bending strength.

  18. Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration

    Science.gov (United States)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-03-01

    Porosity within laser welds of magnesium alloys is one of the main roadblocks to achieving high quality joints. One of the causes of pore formation is the presence of pre-existing coatings on the surface of magnesium alloy such as oxide or chromate layers. In this study, single-beam and dual-beam laser heat sources are investigated in relation to mitigation of pores resulting from the presence of the as-received oxide layer on the surface of AZ31B-H24 magnesium alloy during the laser welding process. A fiber laser with a power of up to 4 kW is used to weld samples in a zero-gap lap joint configuration. The effect of dual-beam laser welding with different beam energy ratios is studied on the quality of the weld bead. The purpose of this paper is to identify the beam ratio that best mitigates pore formation in the weld bead. The laser molten pool and the keyhole condition, as well as laser-induced plasma plume are monitored in real-time by use of a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. Results showed that a dual-beam laser configuration can effectively mitigate pore formation in the weld bead by a preheating-welding mechanism.

  19. Automatic orbital GTAW welding: Highest quality welds for tomorrow's high-performance systems

    Science.gov (United States)

    Henon, B. K.

    1985-01-01

    Automatic orbital gas tungsten arc welding (GTAW) or TIG welding is certain to play an increasingly prominent role in tomorrow's technology. The welds are of the highest quality and the repeatability of automatic weldings is vastly superior to that of manual welding. Since less heat is applied to the weld during automatic welding than manual welding, there is less change in the metallurgical properties of the parent material. The possibility of accurate control and the cleanliness of the automatic GTAW welding process make it highly suitable to the welding of the more exotic and expensive materials which are now widely used in the aerospace and hydrospace industries. Titanium, stainless steel, Inconel, and Incoloy, as well as, aluminum can all be welded to the highest quality specifications automatically. Automatic orbital GTAW equipment is available for the fusion butt welding of tube-to-tube, as well as, tube to autobuttweld fittings. The same equipment can also be used for the fusion butt welding of up to 6 inch pipe with a wall thickness of up to 0.154 inches.

  20. Influence of Welding Process and Post Weld Heat Treatment on Microstructure and Pitting Corrosion Behavior of Dissimilar Aluminium Alloy Welds

    Science.gov (United States)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    Welding of dissimilar Aluminum alloy welds is becoming important in aerospace, shipbuilding and defence applications. In the present work, an attempt has been made to weld dissimilar aluminium alloys using conventional gas tungsten arc welding (GTAW) and friction stir welding (FSW) processes. An attempt was also made to study the effect of post weld heat treatment (T4 condition) on microstructure and pitting corrosion behaviour of these welds. Results of the present investigation established the differences in microstructures of the base metals in T4 condition and in annealed conditions. It is evident that the thickness of the PMZ is relatively more on AA2014 side than that of AA6061 side. In FS welds, lamellar like shear bands are well noticed on the top of the stir zone. The concentration profile of dissimilar friction stir weld in T4 condition revealed that no diffusion has taken place at the interface. Poor Hardness is observed in all regions of FS welds compared to that of GTA welds. Pitting corrosion resistance of the dissimilar FS welds in all regions was improved by post weld heat treatment.

  1. A control system for uniform bead in fillet arc welding on tack welds

    International Nuclear Information System (INIS)

    Kim, Jae Woong; Lee, Jun Young

    2008-01-01

    Positioning a workpiece accurately and preventing weld distortion, tack welding is often adopted before main welding in the construction of welded structures. However, this tack weld deteriorates the final weld bead profile, so that the grinding process is usually performed for a uniform weld bead profile. In this study, a control system for uniform weld bead is proposed for the fillet arc welding on tack welds. The system consists of GMA welding machine, torch manipulator, laser vision sensor for measuring the tack weld size and the database for optimal welding conditions. Experiments have been performed for constructing the database and for evaluating the control capability of the system. It has been shown that the system has the capability to smooth the bead at the high level of quality

  2. Torque Measurement of Welding of Endplug-Endplate using Multi-pin Remote Welding System

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae-Seo; Kim, Soo-Sung; Park, Geun-Il; Lee, Jung-Won; Song, Kee-Chan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    As fuel bundles in PHWR irradiates, inner pressure in claddings of fuel rods increases owing to outer pressure and fission products of nuclear fissions. Because of leak possibility of welding between cladding and end plug, this welding part connects with safety of nuclear fuel rods. Because of importance of this welding part, weldability of end plug-cladding of nuclear fuel rods is continually researched. Welding method for research and commercialization is classified as melting, solid type welding or resistance welding. End plug cladding welding of nuclear fuel rods in PHWR takes advantage of resistance upset butt welding using multicycle mode. This method makes weld flash and shapes re-entrant corner owing to welding heat due to resistivity, contact resistance of cladding-end plug, and inelasticity deformation due to pressure. Welding part between cladding and end plug receives stresses and makes small cracks. In this study, remote welding system for multi-pin assembly was designed, fabricated and welding specimens of end plug-endplate were made using electrical resistance method. The torques of welding between end plug and endplate were measured. These results on welding current, pressure of main electrode and pressure of branch electrode were analyzed. Weldability between end plug and endplate was confirmed through metallographic examinations. In the future, optimal welding examinations due to welding current, welding pressure and welding time will be performed to improve weldability of end plug-endplate.

  3. Advantages of new micro-jet welding technology on weld microstructure control

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2013-01-01

    Full Text Available An innovative apparatus to welding process with micro-jet cooling of the weld made it possible to carry out technological tests, which have proved theoretical considerations about this problem. This project gives real opportunities for professional development in the field of welding with controlling the parameters of weld structure. These tests have proved that the new micro-jet technology has the potential for growth. It may be great achievement of welding technology in order to increase weld metal strength. The new technology with micro-jet cooling may have many practical applications in many fields, for example such as in the transport industry or to repair damaged metal elements. The advantages of the new device over the traditional system are the ability to control the structure of the weld, the weld mechanical performance increases and improve the quality of welded joints.

  4. A hybrid solution using computational prediction and measured data to accurately determine process corrections with reduced overlay sampling

    Science.gov (United States)

    Noyes, Ben F.; Mokaberi, Babak; Mandoy, Ram; Pate, Alex; Huijgen, Ralph; McBurney, Mike; Chen, Owen

    2017-03-01

    Reducing overlay error via an accurate APC feedback system is one of the main challenges in high volume production of the current and future nodes in the semiconductor industry. The overlay feedback system directly affects the number of dies meeting overlay specification and the number of layers requiring dedicated exposure tools through the fabrication flow. Increasing the former number and reducing the latter number is beneficial for the overall efficiency and yield of the fabrication process. An overlay feedback system requires accurate determination of the overlay error, or fingerprint, on exposed wafers in order to determine corrections to be automatically and dynamically applied to the exposure of future wafers. Since current and future nodes require correction per exposure (CPE), the resolution of the overlay fingerprint must be high enough to accommodate CPE in the overlay feedback system, or overlay control module (OCM). Determining a high resolution fingerprint from measured data requires extremely dense overlay sampling that takes a significant amount of measurement time. For static corrections this is acceptable, but in an automated dynamic correction system this method creates extreme bottlenecks for the throughput of said system as new lots have to wait until the previous lot is measured. One solution is using a less dense overlay sampling scheme and employing computationally up-sampled data to a dense fingerprint. That method uses a global fingerprint model over the entire wafer; measured localized overlay errors are therefore not always represented in its up-sampled output. This paper will discuss a hybrid system shown in Fig. 1 that combines a computationally up-sampled fingerprint with the measured data to more accurately capture the actual fingerprint, including local overlay errors. Such a hybrid system is shown to result in reduced modelled residuals while determining the fingerprint, and better on-product overlay performance.

  5. Low-cycle fatigue and damage of an uncoated and coated single crystal nickel-base superalloy SCB

    International Nuclear Information System (INIS)

    Stekovic, S.; Ericsson, T.

    2007-01-01

    This paper presents low-cycle fatigue (LCF) behaviour and damage mechanisms of uncoated and coated specimens of a single crystal nickel-base superalloy SCB tested at 500 C and 900 C. Four coatings were deposited on the base material, an overlay coating AMDRY997, a platinum-modified aluminide diffusion coating RT22 and two innovative coatings called IC1 and IC3 with a NiW diffusion barrier in the interface. AMDRY997 and RT22 were used as reference coatings. The LCF tests were performed at three strain amplitudes, 1.0, 1.2 and 1.4%, with R = -1, in laboratory air and without any dwell time. The LCF life of the specimens is determined by crack initiation and propagation. Crack data are presented for different classes of crack size in the form of crack density, that is, the number of cracks normalised to the investigated interface length. Micrographs of damage of the coatings are also shown. The effect of the coatings on the LCF life of the superalloy was dependent on the test temperature and deposited coating. At 500 C all coatings had a detrimental effect on the LCF life of the superalloy. At 900 C both AMDRY997 and IC1 prolonged the fatigue life of the superalloy by factors ranging between 1.5 and 4 while RT22 and IC3 shortened the life of the coating-substrate system. Specimens coated with RT22 exhibited generally more damage than other tested coatings at 900 C. Most of the cracks observed initiated at the coating surface and a majority were arrested in the interdiffusion zone between the base material and the coating. No topologically close-packed phases were found. Delamination was only found in AMDRY997 at higher strains. Surface roughness or rumpling was found in the overlay coating AMDRY997 with some cracks initiating from the rumples. The failure morphology at 900 C reflected the role of oxidation in the fatigue life, the crack initiation and propagation of the coated specimens. The wake of the cracks grown into the substrate was severely oxidised leading to

  6. TECHNOLOGICAL ISSUES IN MECHANISED FEED WIG/TIG WELDING SURFACING OF WELDING

    Directory of Open Access Journals (Sweden)

    BURCA Mircea

    2016-09-01

    manual welding tests in the light of using the process for welding surfacing being known that in such applications mechanised operations are recommended whenever possible given the latter strengths i.e. increased productivity and quality deposits. The research also aims at achieving a comparative a study between wire mechanised feed based WIG manual welding and the manual rod entry based manual welding in terms of geometry deposits, deposits aesthetics, operating technique, productivity, etc . In this regard deposits were made by means of two welding procedures, and subsequently welding surfacing was made with the optimum values of the welding parameters in this case.

  7. Effect of Welding Heat Input on Microstructure and Texture of Inconel 625 Weld Overlay Studied Using the Electron Backscatter Diffraction Method

    Science.gov (United States)

    Kim, Joon-Suk; Lee, Hae-Woo

    2016-12-01

    The grain size and the texture of three specimens prepared at different heat inputs were determined using optical microscopy and the electron backscatter diffraction method of scanning electron microscopy. Each specimen was equally divided into fusion line zone (FLZ), columnar dendrite zone (CDZ), and surface zone (SZ), according to the location of the weld. Fine dendrites were observed in the FLZ, coarse dendrites in the CDZ, and dendrites grew perpendicular to the FLZ and CDZ. As the heat input increased, the melted zone in the vicinity of the FLZ widened due to the higher Fe content. A lower image quality value was observed for the FLZ compared to the other zones. The results of grain size measurement in each zone showed that the grain size of the SZ became larger as the heat input increased. From the inverse pole figure (IPF) map in the normal direction (ND) and the rolling direction (RD), as the heat input increased, a specific orientation was formed. However, a dominant [001] direction was observed in the RD IPF map.

  8. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    Science.gov (United States)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  9. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  10. Effect of Welding Parameters on Dilution and Weld Bead Geometry in Cladding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of pulsed gas metal arc welding (GMAW) variables on the dilution and weld bead geometry in cladding X65 pipeline steel with 316L stainless steel was studied. Using a full factorial method, a series of experiments were carried out to know the effect of wire feed rate, welding speed, distance between gas nozzle and plate, and the vertical angle of welding on dilution and weld bead geometry. The findings indicate that the dilution of weld metal and its dimension i.e. width, height and depth increase with the feed rate, but the contact angle of the bead decreases first and then increases. Meantime, welding speed has an opposite effect except for dilution. There is an interaction effect between welding parameters at the contact angle. The results also show forehand welding or decreasing electrode extension decrease the angle of contact. Finally,a mathematical model is contrived to highlight the relationship between welding variables with dilution and weld bead geometry.

  11. Approaches of multilayer overlay process control for 28nm FD-SOI derivative applications

    Science.gov (United States)

    Duclaux, Benjamin; De Caunes, Jean; Perrier, Robin; Gatefait, Maxime; Le Gratiet, Bertrand; Chapon, Jean-Damien; Monget, Cédric

    2018-03-01

    Derivative technology like embedded Non-Volatile Memories (eNVM) is raising new types of challenges on the "more than Moore" path. By its construction: overlay is critical across multiple layers, by its running mode: usage of high voltage are stressing leakages and breakdown, and finally with its targeted market: Automotive, Industry automation, secure transactions… which are all requesting high device reliability (typically below 1ppm level). As a consequence, overlay specifications are tights, not only between one layer and its reference, but also among the critical layers sharing the same reference. This work describes a broad picture of the key points for multilayer overlay process control in the case of a 28nm FD-SOI technology and its derivative flows. First, the alignment trees of the different flow options have been optimized using a realistic process assumptions calculation for indirect overlay. Then, in the case of a complex alignment tree involving heterogeneous scanner toolset, criticality of tool matching between reference layer and critical layers of the flow has been highlighted. Improving the APC control loops of these multilayer dependencies has been studied with simulations of feed-forward as well as implementing new rework algorithm based on multi-measures. Finally, the management of these measurement steps raises some issues for inline support and using calculations or "virtual overlay" could help to gain some tool capability. A first step towards multilayer overlay process control has been taken.

  12. Precise X-ray and video overlay for augmented reality fluoroscopy.

    Science.gov (United States)

    Chen, Xin; Wang, Lejing; Fallavollita, Pascal; Navab, Nassir

    2013-01-01

    The camera-augmented mobile C-arm (CamC) augments any mobile C-arm by a video camera and mirror construction and provides a co-registration of X-ray with video images. The accurate overlay between these images is crucial to high-quality surgical outcomes. In this work, we propose a practical solution that improves the overlay accuracy for any C-arm orientation by: (i) improving the existing CamC calibration, (ii) removing distortion effects, and (iii) accounting for the mechanical sagging of the C-arm gantry due to gravity. A planar phantom is constructed and placed at different distances to the image intensifier in order to obtain the optimal homography that co-registers X-ray and video with a minimum error. To alleviate distortion, both X-ray calibration based on equidistant grid model and Zhang's camera calibration method are implemented for distortion correction. Lastly, the virtual detector plane (VDP) method is adapted and integrated to reduce errors due to the mechanical sagging of the C-arm gantry. The overlay errors are 0.38±0.06 mm when not correcting for distortion, 0.27±0.06 mm when applying Zhang's camera calibration, and 0.27±0.05 mm when applying X-ray calibration. Lastly, when taking into account all angular and orbital rotations of the C-arm, as well as correcting for distortion, the overlay errors are 0.53±0.24 mm using VDP and 1.67±1.25 mm excluding VDP. The augmented reality fluoroscope achieves an accurate video and X-ray overlay when applying the optimal homography calculated from distortion correction using X-ray calibration together with the VDP.

  13. Two Dimensional Array Based Overlay Network for Balancing Load of Peer-to-Peer Live Video Streaming

    International Nuclear Information System (INIS)

    Ibrahimy, Abdullah Faruq Ibn; Rafiqul, Islam Md; Anwar, Farhat; Ibrahimy, Muhammad Ibn

    2013-01-01

    The live video data is streaming usually in a tree-based overlay network or in a mesh-based overlay network. In case of departure of a peer with additional upload bandwidth, the overlay network becomes very vulnerable to churn. In this paper, a two dimensional array-based overlay network is proposed for streaming the live video stream data. As there is always a peer or a live video streaming server to upload the live video stream data, so the overlay network is very stable and very robust to churn. Peers are placed according to their upload and download bandwidth, which enhances the balance of load and performance. The overlay network utilizes the additional upload bandwidth of peers to minimize chunk delivery delay and to maximize balance of load. The procedure, which is used for distributing the additional upload bandwidth of the peers, distributes the additional upload bandwidth to the heterogeneous strength peers in a fair treat distribution approach and to the homogeneous strength peers in a uniform distribution approach. The proposed overlay network has been simulated by Qualnet from Scalable Network Technologies and results are presented in this paper

  14. Two Dimensional Array Based Overlay Network for Balancing Load of Peer-to-Peer Live Video Streaming

    Science.gov (United States)

    Faruq Ibn Ibrahimy, Abdullah; Rafiqul, Islam Md; Anwar, Farhat; Ibn Ibrahimy, Muhammad

    2013-12-01

    The live video data is streaming usually in a tree-based overlay network or in a mesh-based overlay network. In case of departure of a peer with additional upload bandwidth, the overlay network becomes very vulnerable to churn. In this paper, a two dimensional array-based overlay network is proposed for streaming the live video stream data. As there is always a peer or a live video streaming server to upload the live video stream data, so the overlay network is very stable and very robust to churn. Peers are placed according to their upload and download bandwidth, which enhances the balance of load and performance. The overlay network utilizes the additional upload bandwidth of peers to minimize chunk delivery delay and to maximize balance of load. The procedure, which is used for distributing the additional upload bandwidth of the peers, distributes the additional upload bandwidth to the heterogeneous strength peers in a fair treat distribution approach and to the homogeneous strength peers in a uniform distribution approach. The proposed overlay network has been simulated by Qualnet from Scalable Network Technologies and results are presented in this paper.

  15. Modeling of welded bead profile for rapid prototyping by robotic MAG welding

    Institute of Scientific and Technical Information of China (English)

    CAO Yong; ZHU Sheng; WANG Tao; WANG Wanglong

    2009-01-01

    As a deposition technology, robotic metal active gas(MAG) welding has shown new promise for rapid prototyping (RP) of metallic parts. During the process of metal forming using robotic MAG welding, sectional profile of single-pass welded bead is critical to formed accuracy and quality of metal pans. In this paper, the experiments of single-pass welded bead for rapid prototyping using robotic MAG welding were carried out. The effect of some edge detectors on the cross-sectional edge of welded bead was discussed and curve fitting was applied using leat square fitting. Consequently, the mathematical model of welded bead profile was developed. The experimental results show that good shape could be obtained under suitable welding parameters. Canny operawr is suitable to edge detection of welded bead profile, and the mathematical model of welded bead profile developed is approximately parabola.

  16. Overlay field application program, Pennsylvania US-119.

    Science.gov (United States)

    2010-11-01

    The Concrete Overly Filed Application program is administered by FHWA and the National Concrete Pavement Technology Center (CP Tech Center). The overall objective of this program is to increase the awareness and knowledge of concrete overlay applicat...

  17. Fusion welding process

    Science.gov (United States)

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  18. Implementation and benefits of advanced process control for lithography CD and overlay

    Science.gov (United States)

    Zavyalova, Lena; Fu, Chong-Cheng; Seligman, Gary S.; Tapp, Perry A.; Pol, Victor

    2003-05-01

    Due to the rapidly reduced imaging process windows and increasingly stingent device overlay requirements, sub-130 nm lithography processes are more severely impacted than ever by systamic fault. Limits on critical dimensions (CD) and overlay capability further challenge the operational effectiveness of a mix-and-match environment using multiple lithography tools, as such mode additionally consumes the available error budgets. Therefore, a focus on advanced process control (APC) methodologies is key to gaining control in the lithographic modules for critical device levels, which in turn translates to accelerated yield learning, achieving time-to-market lead, and ultimately a higher return on investment. This paper describes the implementation and unique challenges of a closed-loop CD and overlay control solution in high voume manufacturing of leading edge devices. A particular emphasis has been placed on developing a flexible APC application capable of managing a wide range of control aspects such as process and tool drifts, single and multiple lot excursions, referential overlay control, 'special lot' handling, advanced model hierarchy, and automatic model seeding. Specific integration cases, including the multiple-reticle complementary phase shift lithography process, are discussed. A continuous improvement in the overlay and CD Cpk performance as well as the rework rate has been observed through the implementation of this system, and the results are studied.

  19. Reduction of image-based ADI-to-AEI overlay inconsistency with improved algorithm

    Science.gov (United States)

    Chen, Yen-Liang; Lin, Shu-Hong; Chen, Kai-Hsiung; Ke, Chih-Ming; Gau, Tsai-Sheng

    2013-04-01

    In image-based overlay (IBO) measurement, the measurement quality of various measurement spectra can be judged by quality indicators and also the ADI-to-AEI similarity to determine the optimum light spectrum. However we found some IBO measured results showing erroneous indication of wafer expansion from the difference between the ADI and the AEI maps, even after their measurement spectra were optimized. To reduce this inconsistency, an improved image calculation algorithm is proposed in this paper. Different gray levels composed of inner- and outer-box contours are extracted to calculate their ADI overlay errors. The symmetry of intensity distribution at the thresholds dictated by a range of gray levels is used to determine the particular gray level that can minimize the ADI-to-AEI overlay inconsistency. After this improvement, the ADI is more similar to AEI with less expansion difference. The same wafer was also checked by the diffraction-based overlay (DBO) tool to verify that there is no physical wafer expansion. When there is actual wafer expansion induced by large internal stress, both the IBO and the DBO measurements indicate similar expansion results. The scanning white-light interference microscope was used to check the variation of wafer warpage during the ADI and AEI stages. It predicts a similar trend with the overlay difference map, confirming the internal stress.

  20. VT Data - Cons/Rec Overlay District 20110301, Winhall

    Data.gov (United States)

    Vermont Center for Geographic Information — Conservation and Recreatioal Protection overaly districts for the Town of Winhall, Vermont. Other overlay districts (Transfer of Development Rights, and Scenic...

  1. Effects of concrete moisture on polymer overlay bond over new concrete : [technical summary].

    Science.gov (United States)

    2015-06-01

    Epoxy polymer overlays have been used for decades on existing bridge decks to protect : the deck and extend its service life. The polymer overlays ability to seal a bridge deck : is now being specified for new construction. Questions exist about t...

  2. Bandwidth and power allocation for two-way relaying in overlay cognitive radio systems

    KAUST Repository

    Alsharoa, Ahmad M.; Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim

    2014-01-01

    In this paper, the problem of both bandwidth and power allocation for two-way multiple relay systems in overlay cognitive radio (CR) setup is investigated. In the CR overlay mode, primary users (PUs) cooperate with cognitive users (CUs) for mutual

  3. Performance of thin bonded epoxy overlays on asphalt and concrete bridge deck surfaces.

    Science.gov (United States)

    2014-06-01

    This study is the evaluation of two thin bonded epoxy overlays: SafeLane (marketed by Cargill), and Flexogrid : (developed by PolyCarb). SafeLane is advertised as an anti-skid/anti-icing overlay that stores deicing chemicals for : release during wint...

  4. Radiological impact assessment of arc welding supplies rutile; Evaluacion del impacto radiologico de la soldadura por arco con consumibles de rutilo

    Energy Technology Data Exchange (ETDEWEB)

    Rozas Guinea, S.; Herranz Soler, M.; Perez Marin, C.; Idoeta Hermandorena, R.; Alegria gutierrez, N.; Nunez-Lagos Rogla, R.; Legarda Ibanez, F.

    2013-07-01

    Consumables for welding containing rutile, the coating of the electrode or the filling of tubular thread, are the most widely used and also the most radioactive since the rutile is a mineral containing traces of natural radionuclides, and is therefore considered Normal Occurring Radioactive Material (NORM). As these electrodes and wire are consumed, small particles, aerosols and gases are emitted to the atmosphere of work, and may be inhaled by the welder. Therefore, and also according to the current regulatory framework and work carried out previously by the author on the radiological impact of the process of manufacture and storage of coated rutile electrodes, the objectives are: 1Calcular the internal dose for inhalation during two types of welding, one with electrodes coated and the other with thread. 2 calculate the external dose due to the deposition of particles in the work environment, slag and the immersion of the soldering iron in the cloud of smoke. 3 to assess the radiological impact. (Author)

  5. Effects of nano-particles strengthening activating flux on the microstructures and mechanical properties of TIG welded AZ31 magnesium alloy joints

    International Nuclear Information System (INIS)

    Xie, Xiong; Shen, Jun; Cheng, Liang; Li, Yang; Pu, Yayun

    2015-01-01

    Highlights: • Increased nano-particles strengthening activating flux degraded TIGed seams. • The reaction between SiC particles and Mg alloy produced Al 4 C 3 and Mg 2 Si phases. • Al 4 C 3 and SiC particles promoted the nucleation and suppressed the growth of α-Mg. • Refined α-Mg grains, precipitated phase and SiC particles enhanced TIGed joints. - Abstract: In this paper, AZ31 magnesium alloy joints were processed by nano-particles strengthening activating flux tungsten inert gas (NSA-TIG) welding, which was achieved by the mixed TiO 2 and nano-SiC particles coated on the samples before welding tests. The macro/micro structural observation and mechanical properties evaluation of the welding joints were conducted by using optical microscope, scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction and tension and microhardness tests. The results showed that nano-particles strengthening activating flux effective improved the microstructure, microhardness in fusion zone, ultimate tensile strength of the TIG welding joints. In addition, the chemical reaction between part of SiC particles and AZ31 magnesium alloy produced Al 4 C 3 and Mg 2 Si in the joints. The Al 4 C 3 performed as nucleating agents for α-Mg and the dispersed Mg 2 Si and SiC particles enhanced the mechanical properties of the NSA-TIG welding joints. However, large heat input induced by the increase of the surface coating density of the nano-particles strengthening activating flux, increased the α-Mg grain sizes and weakened the mechanical properties of the welded joints. Therefore, the grain size of α-Mg, distribution of β-Mg 17 Al 12 , Mg 2 Si and SiC particles together influenced the evolution of the mechanical properties of the NSA-TIG welded AZ31 magnesium alloy joints

  6. MAG narrow gap welding - an economic way to minimize welding expenses

    International Nuclear Information System (INIS)

    Kast, W.; Scholz, E.; Weyland, F.

    1982-01-01

    The thicker structural components are, the more important it is to take measures to reduce the volume of the weld. The welding process requiring the smallest possible weld section is the so-called narrow gap process. In submerged arc narrow gap welding as well as in MAG narrow gap welding different variants are imaginable, some of them already in practical use. With regard to efficiency and weld quality an optimum variant of the MAG narrow gap welding process is described. It constitutes a two wire system in which two wire electrodes of 1.2 mm diameter are arranged one behind the other. In order to avoid lack of fusion, the wire guides are slightly pointed towards each groove face. Thus, by inclining the two arcs burning one behind the other in the direction of weld progress, it is achieved that two separately solidifying weld pools and two beads per layer are simultaneously formed. Welding parameters are selected in such a way that a heat input of 16-20 kJ/cm and a deposition rate of 11-16 kgs/h are obtained. In spite of this comparatively high deposition rate, good impact values are found both in the weld and HAZ (largely reduced coarse-grain zone) which is due to an optimum weld build-up. With the available welding equipment the process can be applied to structural members having a thickness of 40-400 mm. The width of gap is 13 mm (root section) with a bevel angle of 1 0 . As filler metal, basic flux-cored wires are used which, depending on the base metal to be welded and the required tensile properties, can be of the Mn-, MnMo-, MnCrMo-, MnNi-, or MnNiMo-alloyed types. (orig.)

  7. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  8. WELDING METHOD

    Science.gov (United States)

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  9. Combination of Bayesian Network and Overlay Model in User Modeling

    Directory of Open Access Journals (Sweden)

    Loc Nguyen

    2009-12-01

    Full Text Available The core of adaptive system is user model containing personal information such as knowledge, learning styles, goals… which is requisite for learning personalized process. There are many modeling approaches, for example: stereotype, overlay, plan recognition… but they don’t bring out the solid method for reasoning from user model. This paper introduces the statistical method that combines Bayesian network and overlay modeling so that it is able to infer user’s knowledge from evidences collected during user’s learning process.

  10. Friction stir welding tool and process for welding dissimilar materials

    Science.gov (United States)

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  11. Syllabus in Trade Welding.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  12. Effect of Activated Flux on the Microstructure, Mechanical Properties, and Residual Stresses of Modified 9Cr-1Mo Steel Weld Joints

    Science.gov (United States)

    Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A. K.; Jayakumar, T.

    2012-02-01

    A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.

  13. Design and Characterization of High-strength Bond Coats for Improved Thermal Barrier Coating Durability

    Science.gov (United States)

    Jorgensen, David John

    High pressure turbine blades in gas turbine engines rely on thermal barrier coating (TBC) systems for protection from the harsh combustion environment. These coating systems consist of a ceramic topcoat for thermal protection, a thermally grown oxide (TGO) for oxidation passivation, and an intermetallic bond coat to provide compatibility between the substrate and ceramic over-layers while supplying aluminum to sustain Al2O 3 scale growth. As turbine engines are pushed to higher operating temperatures in pursuit of better thermal efficiency, the strength of industry-standard bond coats limits the lifetime of these coating systems. Bond coat creep deformation during thermal cycling leads to a failure mechanism termed rumpling. The interlayer thermal expansion differences, combined with TGO-imposed growth stresses, lead to the development of periodic undulations in the bond coat. The ceramic topcoat has low out-of-plane compliance and thus detaches and spalls from the substrate, resulting in a loss of thermal protection and subsequent degradation of mechanical properties. New creep resistant Ni3Al bond coats were designed with improved high-temperature strength to inhibit this type of premature failure at elevated temperatures. These coatings resist rumpling deformation while maintaining compatibility with the other layers in the system. Characterization methods are developed to quantify rumpling and assess the TGO-bond coat interface toughness of experimental systems. Cyclic oxidation experiments at 1163 °C show that the Ni3Al bond coats do not experience rumpling but have faster oxide growth rates and are quicker to spall TGO than the (Pt,Ni)Al benchmark. However, the Ni 3Al coatings outperformed the benchmark by over threefold in TBC system life due to a higher resistance to rumpling (mechanical degradation) while maintaining adequate oxidation passivation. The Ni3Al coatings eventually grow spinel NiAl2O4 on top of the protective Al2O3 layer, which leads to the

  14. Handbook of welding engineering. Vol. 1 and Vol. 2. 2. rev. ed.

    International Nuclear Information System (INIS)

    Ruge, J.

    1980-01-01

    This second edition of the handbook still has been guided by the principle of presenting as comprehensive information as possible on the whole subject field of welding engineering as concisely as seems adequate. The task of completely revising the first edition has not been restricted to up-dating the standards, guidelines and instruction sheets. It rather also seemed appropriate to amend the text in many cases in order to incorporate the latest results of research in science and technology. This inevitably enlarged the material to an extent recommending a publication in two volumes. Volume I deals with materials problems, and the sections discussing technical aspects of fracture mechanics and the welding of high-alloy steels have been enlarged. The section on nonmetals has been supplemented by a more detailed treatment of plastics and by chapters on other nonmetals such as glass, ceramics, graphite, and biological substances. Volume II deals with welding techniques, fabrication and quality assurance. Apart from the methods of welding, cutting, soldering, bonding (adhesives), and thermal spray coating, methods of improving the efficiency of fabrication by means of numerically controlled welding and process control are discussed in detail. Taking into account the growing importance of quality assurance, new chapters on modern control methods have been incorporated, methods such as control by neutron radiation, xeroradiography and acoustic and optical holography, as well as a section on distortion and buckling. The chapters on welding and cutting under water in marine technology, on occupational safety and economic aspects have been considerably enlarged. (orig./IHOE) [de

  15. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    Science.gov (United States)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  16. Ultrasonic testing of austenitic welds and its dependency on the welding process

    International Nuclear Information System (INIS)

    Tabatabaeipour, S.M.; Honarvar, F.

    2009-01-01

    This paper describes the ultrasonic testing of austenitic welds prepared by two different welding processes. The tests were carried out by the ultrasonic Time-of-Flight Diffraction (ToFD) technique. Shielded Metal Arc Welding (SMAW) and Gas Tungsten Arc Welding (GTAW) are the welding processes used for preparing the specimens. Identical artificial defects were implanted in both welds during the welding process. Both specimens were examined by the ToFD technique under similar conditions. Metallographic images were also obtained from the cross sectional plane of both the SMA and GTA welds. These images show that the grain orientation in the two welded specimens are different. D-scan images obtained by the ToFD technique from these welds indicates that inspecting the specimens prepared by the SMAW process is easier than the one made by the GTAW process. The results also show that the D-scan images cannot reveal the small vertical drilled holes implanted in the specimens. (author)

  17. Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool

    Science.gov (United States)

    Adams, Glynn; Venable, Richard; Lawless, Kirby

    2003-01-01

    Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.

  18. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    Science.gov (United States)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  19. Overlay Spectrum Sharing using Improper Gaussian Signaling

    KAUST Repository

    Amin, Osama; Abediseid, Walid; Alouini, Mohamed-Slim

    2016-01-01

    in overlay cognitive radio system, where the secondary transmitter broadcasts a mixture of two different signals. The first signal is selected from the PGS scheme to match the primary message transmission. On the other hand, the second signal is chosen

  20. On use of weld zone temperatures for online monitoring of weld quality in friction stir welding of naturally aged aluminium alloys

    International Nuclear Information System (INIS)

    Imam, Murshid; Biswas, Kajal; Racherla, Vikranth

    2013-01-01

    Highlights: • FSWs for 6063-T4 AA are done at different process parameters and sheet thicknesses. • Weld nugget zone and heat affected zone temperatures are monitored for each case. • Microstructural and mechanical characterisation of welds is done in all cases. • Weld ductility is found to be particularly sensitive to weld zone temperatures. • Strong correlation is found between WNZ and HAZ temperatures and weld properties. - Abstract: 6063-T4 aluminium alloy sheets of 3 and 6 mm thicknesses were friction stir butt welded using a square tool pin at a wide range of tool rotational speeds. Properties of obtained welds were characterised using tensile tests, optical micrographs, X-ray diffraction, and transmission electron microscopy. Shape, size, and distribution of precipitates in weld zones, and strength and ductility of welds were seen to directly correlate with peak temperatures in weld nugget and heat affected zones, independent of sheet thickness. In addition, fluctuations in measured temperature profiles, for 3 mm sheets, were seen to correlate with an increase in scatter of weld nugget zone properties for 3 mm sheets. Optimal weld strength and ductility were obtained for peak weld nugget zone temperatures of around 450 °C and corresponding peak heat affected zone temperatures of around 360–380 °C. Results obtained suggest that, at least for naturally aged aluminium alloys, nature of temperature evolution and magnitudes of peak temperatures in weld nugget and heat affected zones provide information on uniformity of properties in weld zones, overaging of heat affected zones, and formation of tunnel defects from improper material mixing at low weld zone temperatures

  1. Measuring weld heat to evaluate weld integrity

    Energy Technology Data Exchange (ETDEWEB)

    Schauder, V., E-mail: schauder@hks-prozesstechnik.de [HKS-Prozesstechnik GmbH, Halle (Germany)

    2015-11-15

    Eddy current and ultrasonic testing are suitable for tube and pipe mills and have been used for weld seam flaw detection for decades, but a new process, thermography, is an alternative. By measuring the heat signature of the weld seam as it cools, it provides information about weld integrity at and below the surface. The thermal processes used to join metals, such as plasma, induction, laser, and gas tungsten arc welding (GTAW), have improved since they were developed, and they get better with each passing year. However, no industrial process is perfect, so companies that conduct research in flaw detection likewise continue to develop and improve the technologies used to verify weld integrity: ultrasonic testing (UT), eddy current testing (ET), hydrostatic, X-ray, magnetic particle, and liquid penetrant are among the most common. Two of these are used for verifying the integrity of the continuous welds such as those used on pipe and tube mills: UT and ET. Each uses a transmitter to send waves of ultrasonic energy or electrical current through the material and a receiver (probe) to detect disturbances in the flow. The two processes often are combined to capitalize on the strengths of each. While ET is good at detecting flaws at or near the surface, UT penetrates the material, detecting subsurface flaws. One drawback is that sound waves and electrical current waves have a specific direction of travel, or an alignment. A linear defect that runs parallel to the direction of travel of the ultrasonic sound wave or a flaw that is parallel to the coil winding direction of the ET probe can go undetected. A second drawback is that they don't detect cold welds. An alternative process, thermography, works in a different fashion: It monitors the heat of the material as the weld cools. Although it measures the heat at the surface, the heat signature provides clues about cooling activity deep in the material, resulting in a thorough assessment of the weld's integrity It

  2. The effect of post-welding conditions in friction stir welds: From weld simulation to Ductile Failure

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Nielsen, Kim Lau; Tutum, Cem Celal

    2012-01-01

    software ANSYS, a thermo-mechanical model is employed to predict the thermally induced stresses and strains during welding, while an in-house finite element code is used to study the plastic flow localization and failure in a subsequent structural analysis. The coupling between the two models is made......The post-welding stress state, strain history and material conditions of friction stir welded joints are often strongly idealized when used in subsequent modeling analyses, typically by neglecting one or more of the features above. But, it is obvious that the conditions after welding do influence......, showed the largest influence of the post-welding conditions, even though significant relaxation of the residual stress state was predicted....

  3. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-06-01

    Full Text Available Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of nitrogen and oxygen amount in WMD (weld metal deposit.

  4. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    International Nuclear Information System (INIS)

    Al-Sarraf, Z; Lucas, M

    2012-01-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  5. Studies on the welding of heavy-section ASTM A542 Cl. 1 steel for large-sized pressure vessels

    International Nuclear Information System (INIS)

    Shimizu, Shigeki; Aota, Toshiichi; Kasahara, Masayuki

    1977-01-01

    ASTM A 542, Cl. 1 steel was developed and standardized recently, and is excellent in the high temperature strength and toughness as compared with conventionally used A 387, Grade 22 steel, accordingly the application to large pressure vessels is planned. This steel is a low alloy steel, and in case of large thickness, the possibility of cracking in the welded part is large. Also many times of annealing are required for the prevention of welding cracking, the relieving of residual stress, and the softening of hardened portion, but the possibility of cracking during stress-relieving annealing is large. In this study, Tekken type cracking test was carried out by coated electrode welding, and restricted cracking test was carried out by submerged arc welding of the A 542, Cl. 1 steel and A 387, Grade 22 steel, thus the welding cracking property was investigated, and the optimal welding conditions were selected. Also the test of cracking during the stress-relieving annealing of both steels was carried out, and the method of preventing the cracking was studied. The optimal conditions of stress-relieving annealing were selected, and the mechanism of the cracking was clarified. The mechanical properties of the joints welded and stress-relieved under the selected conditions were confirmed. (Kako, I.)

  6. Welding and cutting

    International Nuclear Information System (INIS)

    Drews, P.; Schulze Frielinghaus, W.

    1978-01-01

    This is a survey, with 198 literature references, of the papers published in the fields of welding and cutting within the last three years. The subjects dealt with are: weldability of the materials - Welding methods - Thermal cutting - Shaping and calculation of welded joints - Environmental protection in welding and cutting. (orig.) [de

  7. Simplified welding distortion analysis for fillet welding using composite shell elements

    Directory of Open Access Journals (Sweden)

    Mingyu Kim

    2015-05-01

    Full Text Available This paper presents the simplified welding distortion analysis method to predict the welding deformation of both plate and stiffener in fillet welds. Currently, the methods based on equivalent thermal strain like Strain as Direct Boundary (SDB has been widely used due to effective prediction of welding deformation. Regarding the fillet welding, however, those methods cannot represent deformation of both members at once since the temperature degree of freedom is shared at the intersection nodes in both members. In this paper, we propose new approach to simulate deformation of both members. The method can simulate fillet weld deformations by employing composite shell element and using different thermal expansion coefficients according to thickness direction with fixed temperature at intersection nodes. For verification purpose, we compare of result from experiments, 3D thermo elastic plastic analysis, SDB method and proposed method. Compared of experiments results, the proposed method can effectively predict welding deformation for fillet welds.

  8. Welding Technician

    Science.gov (United States)

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  9. Welding with coated electrodes E 6010 and E 7018 in AISI 1025 steel

    Directory of Open Access Journals (Sweden)

    Dennis Reyes-Carcasés

    2018-01-01

    Full Text Available The welding of steel of low carbon content is a common practice in the nickel industry, where components with steels of these characteristics are manufactured. The objective of the paper was to establish the microstructural behavior of the AISI 1025 steel when it was welded with two types of electrodes (E 6010 and E 7018, the first one deposited as a mattress, and the second one to guarantee mechanical resistance; they were made in a 240 x 240 x 10 mm plate with simple bevel preparation. The microstructures obtained with the electrode E 6010 are of the ferrite type Widmanstátten, columnar ferrite and intergranular pearlite, with a hardness of 345 HV, while with the electrode E 7018 the microstructures are ferrite Widmanstátten, austenite and martensite, with hardness of 332 HV . The decrease in hardness in the latter case is associated with the thermal treatment of multipass annealing.

  10. Introduction to Welding.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  11. Comparison between sensitivities of quality control methods using ultrasonic waves, radiography and acoustic emission for the thick welded joint testing

    International Nuclear Information System (INIS)

    Asty, Michel; Birac, Claude

    1981-09-01

    The testing of the thick welded joints of the nuclear industry is carried out by radiography and ultrasonics on completion of welding. When a fault is found, its repair requires a sometimes deep cut down to the position of the fault, then filling in of the cut by hand welding with a coated electrode. This very costly operation also involves the risk of causing new defects when building up by hand. Listening to the acoustic emission during the welding has been considered in order to seek the possibility of detecting defects when they appear, or soon after. The industrial use of this method would make an instant repair of the defective areas possible at less cost and with greater reliability. The study presented concerns the comparison between the results of the various non-destructive testing methods: radiography, ultrasonics and acoustic emission, for a thick welded joint in which the defects have been brought about [fr

  12. Orbital welding technique

    International Nuclear Information System (INIS)

    Hoeschen, W.

    2003-01-01

    The TIG (Tungsten-inert gas) orbital welding technique is applied in all areas of pipe welding. The process is mainly used for austenitic and ferritic materials but also for materials like aluminium, nickel, and titanium alloys are commonly welded according to this technique. Thin-walled as well as thick-walled pipes are welded economically. The application of orbital welding is of particular interest in the area of maintenance of thick-walled pipes that is described in this article. (orig.) [de

  13. Welding stresses

    International Nuclear Information System (INIS)

    Poirier, J.; Barbe, B.; Jolly, N.

    1976-01-01

    The aim is to show how internal stresses are generated and to fix the orders of magnitude. A realistic case, the vertical welding of thick plates free to move one against the other, is described and the deformations and stresses are analyzed. The mathematical model UEDA, which accounts for the elastic modulus, the yield strength and the expansion coefficient of the metal with temperature, is presented. The hypotheses and results given apply only to the instantaneous welding of a welded plate and to a plate welded by a moving electrode [fr

  14. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.

    Science.gov (United States)

    Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A

    2016-04-01

    The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18 min) when using conventional methods were high (18.2 mg m(-3) for bare beam; 65.7 mg m(-3) for through deck), with estimated mass concentrations of iron (7.8 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), zinc (0.2 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), and manganese (0.9 mg m(-3) for bare beam; 1.5 mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17 nm) through deck conditions (34±34 nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure

  15. Electrospark deposition of Al2O3–TiB2/Ni composite-phase surface coatings on Cu–Cr–Zr alloy electrodes

    Directory of Open Access Journals (Sweden)

    Ping Luo

    2015-03-01

    Full Text Available To improve electrode life during the resistance spot welding of galvanized steel plates, an Al2O3–TiB2 composite coating was synthesized on the surfaces of spot-welding electrodes through an electrospark deposition process. The microstructure, elemental composition, phase structure, and mechanical properties of the coating were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and microhardness testing. It was found that extensive cracking occurred in the monolithic Al2O3–TiB2 coating and at the coating–electrode interface. When the Al2O3–TiB2 coating was deposited on electrodes precoated with Ni, the number of defects decreased significantly. Further, delamination did not occur, and fewer cracks were formed. The average hardness of the multilayered Al2O3–TiB2/Ni coating was approximately 2200 HV and higher than that of the monolithic Al2O3–TiB2 coating (1100 HV.

  16. High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks

    Science.gov (United States)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and they have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high volumes. While friction-stir welding (FSW) has been traditionally applied at linear velocities less than 1 m/min, high-volume production applications demand the process be extended to higher velocities more amenable to cost-sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low-to-moderate welding velocities do not directly translate to high-speed linear FSW. Therefore, to facilitate production of high-volume aluminum FSW components, parameters were developed with a minimum welding velocity of 3 m/min. With an emphasis on weld quality, welded blanks were evaluated for postweld formability using a combination of numerical and experimental methods. An evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum TWBs, which provided validation of the numerical and experimental analysis of laboratory-scale tests.

  17. Estimation of weld nugget temperature by thermography method in resistance projection welding process

    International Nuclear Information System (INIS)

    Setty, D.S.; Rameswara Roa, A.; Hemantha Rao, G.V.S.; Jaya Raj, R.N.

    2008-01-01

    In the Pressurized Heavy Water Reactor (PHWR) fuel manufacturing, zirconium alloy appendages like spacer and bearing pads are welded to the thin wall zirconium alloy fuel tubes by using resistance projection welding process. Out of many joining processes available, resistance-welding process is reliable, environment friendly and best suitable for mass production applications. In the fuel assembly, spacer pads are used to get the required inter-element spacing and Bearing pads are used to get the required load-bearing surface for the fuel assembly. Performance of the fuel assembly in the reactor is greatly influenced by these weld joint's quality. Phase transformation from α to β phase is not acceptable while welding these tiny appendages. At present only destructive metallography test is available for this purpose. This can also be achieved by measuring weld nugget temperature where in the phase transformation temperature for zirconium alloy material is 853 o C. The temperature distribution during resistance welding of tiny parts cannot be measured by conventional methods due to very small space and short weld times involved in the process. Shear strength, dimensional accuracy and weld microstructures are some of the key parameters used to measure the quality of appendage weld joints. Weld parameters were optimized with the help of industrial experimentation methodology. Individual projection welding by split electrode concept, and during welding on empty tube firm support is achieved on inner side of the tube by using expandable pneumatic mandrel. In the present paper, an attempt was made to measure the weld nugget temperature by thermography technique and is correlated with standard microstructures of zirconium alloy material. The temperature profiles in the welding process are presented for different welding conditions. This technique has helped in measuring the weld nugget temperature more accurately. It was observed that in the present appendage welding

  18. Influence of Loading Direction and Weld Reinforcement on Fatigue Performance of TIG Weld Seam

    Directory of Open Access Journals (Sweden)

    HUI Li

    2018-02-01

    Full Text Available The influence of loading direction and weld reinforcement on fatigue performance of TC2 titanium alloy TIG weld seam was investigated via fatigue experiments and SEM fracture observation. The results show that the fatigue life of retaining weld reinforcement specimens is lower than that of removing one in the same weld direction. The fatigue life of oblique weld specimens is higher than that of straight one with the same weld reinforcement treatment. The initiation of removing weld reinforcement specimens' fatigue crack sources is in the hole defect, but the weld reinforcement specimen initiate at the weld toes. During the early stage of fatigue crack propagation, the cracks all grow inside the weld seam metal with obvious fatigue striation. And the fatigue cracks of oblique weld specimens pass through the weld seam into the base with a typical toughness fatigue striation during the last stage of fatigue crack propagation. The dimple of straight weld specimens is little and shallow in the final fracture zone. The oblique weld specimens broke in the base metal area, and the dimple is dense.

  19. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.; Piwnik J.

    2015-01-01

    Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was pr...

  20. OVERLAY DENTURES: A REVIEW AND REPORT OF FOUR CASES

    Directory of Open Access Journals (Sweden)

    Deeksha SHARMA

    2013-12-01

    Full Text Available Patients with ectodermal dysplasia or having under‑ gone cleft surgery with anodontia or hypodontia, hypo‑ plastic conical teeth and patients with severely worn dentition are difficult to treat because of the poor remaining tooth structure. These patients often exhibit loss of vertical dimension of occlusion and aesthetic problems and usually need complex prosthetic treatments. Financial constraints or other priorities often restrict one from choosing the most desirable treatment. The overlay removable denture is a covering prosthesis partially supported by natural teeth, tooth roots, or dental implants, providing an efficient alter‑ native of treatment. Clinical reports describe the various applications of overlay dentures.

  1. Influence of weld structure on cross-weld creep behavior in P23 steel

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J.; Degnan, C.C. [E.ON Engineering (United Kingdom); Brett, S.J. [RWE npower (United Kingdom); Buchanan, L.W. [Doosan Babcock (United Kingdom)

    2010-07-01

    A thick section pipe weld in low alloy steel P23 has been characterised by cross-weld creep rupture testing at a range of stresses, together with all-weld-metal and parent material testing, under the auspices of the UK High Temperature Power Plant Forum. The results generally show that the weld metal can be weak when tested in the transverse (cross-weld) orientation, and can fail with limited overall ductility by cracking in the zone of refined weld metal beneath the fusion boundary of the superposed weld bead. However, one specimen showed a much superior performance, which could be understood in terms of its locally more creep resistant weld macrostructure. The implications for P23 performance and weld manufacture are discussed. (orig.)

  2. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    Science.gov (United States)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  3. A novel combinatorial approach for the realization of advanced cBN composite coating

    International Nuclear Information System (INIS)

    Russell, W.C.; Yedave, S.N.; Sundaram, N.; Brown, W.D.; Malshe, A.P.

    2001-01-01

    The paper reports a novel coating process for the synthesis of hard material composite coatings. It consists of electrostatic spray coating (ESC) of powder particles (of micron-nanometer size) followed by chemical vapor infiltration (CVI) of a suitable binder phase. This novel approach enables fabrication of unique compositions such as cubic boron nitride (cBN) and titanium nitride (TiN) in a coating form. Recently, we have demonstrated the success of this technology by first coating a uniform over-layer (in excess of ∼ 10 μm) of cBN particles an carbide cutting tool inserts using ESC, followed by infiltration of particulate cBN matrix with TiN from its vapor phase using CVI to synthesize cBN-TiN a composite coating. The composite has shown excellent cBN-to-TiN and composite coating-to-carbide substrate adhesion. One of the main emphases of the paper is to discuss optimization and scale up of the ESC technology to achieve the desired microstructure and tailor the thickness across the cutting tool for better performance. Further, the cutting tools have been successfully tested for advanced machining applications. (author)

  4. Laser Welding Test Results with Gas Atmospheres in Welding Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seo-Yun; Yang, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The weld beads of specimens welded under identical conditions in the helium and argon gas were cleaner, more regular, and steadier than those in a vacuum. The penetration depth of the FZ in the vacuum was much deeper than those in the helium and argon gas. To measure the irradiation properties of nuclear fuel in a test reactor, a nuclear fuel test rod instrumented with various sensors must be fabricated with assembly processes. A laser welding system to assemble the nuclear fuel test rod was designed and fabricated to develop various welding technologies of the fuel test rods to joint between a cladding tube and end-caps. It is an air-cooling optical fiber type and its emission modes are a continuous (CW) mode of which the laser generates continuous emission, and pulse (QCW) mode in which the laser internally generates sequences of pulses. We considered the system welding a sample in a chamber that can weld a specimen in a vacuum and inert gas atmosphere, and the chamber was installed on the working plate of the laser welding system. In the chamber, the laser welding process should be conducted to have no defects on the sealing area between a cladding tube and an end-cap.

  5. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    Science.gov (United States)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  6. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  7. [New welding processes and health effects of welding].

    Science.gov (United States)

    La Vecchia, G Marina; Maestrelli, Piero

    2011-01-01

    This paper describes some of the recent developments in the control technology to enhance capability of Pulse Gas Metal Arc Welding. Friction Stir Welding (FSW) processing has been also considered. FSW is a new solid-state joining technique. Heat generated by friction at the rotating tool softens the material being welded. FSW can be considered a green and energy-efficient technique without deleterious fumes, gas, radiation, and noise. Application of new welding processes is limited and studies on health effects in exposed workers are lacking. Acute and chronic health effects of conventional welding have been described. Metal fume fever and cross-shift decline of lung function are the main acute respiratory effects. Skin and eyes may be affected by heat, electricity and UV radiations. Chronic effects on respiratory system include chronic bronchitis, a benign pneumoconiosis (siderosis), asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders.

  8. Plug-welding of ODS cladding tube for BOR-60 irradiation. Welding condition setting. Device remodeling and welding

    International Nuclear Information System (INIS)

    Seki, Masayuki; Ishibashi, Fujio; Kono, Syusaku; Hirako, Kazuhito; Tsukada, Tatsuya

    2003-04-01

    Irradiation test in BOR-60 at RIAR to judge practical use prospect of ODS cladding tube at early stage is planned as Japan-Russia a joint research. RIAR does fuel design of fuel pin used for this joint research. JNC manufactures ODS cladding tube and bar materials (two steel kind of martensite and ferrite), upper endplug production. They are welded by pressurized resistance welding, and are inspected in JNC Tokai, transported to RIAR. And RIAR manufactures vibration packing fuel pin. On the upper endplug welding by pressurized resistance welding method, we worded on the problems such as decision of welding condition by changing the size and crystallization of cladding tube and the design of endplug, and the chucking device remodeling to correspond to the long scale cladding tube welding system (included handling) and of quality assurance method. Especially, use of long scale cladding tube caused problem that bending transformation occurred in cladding tube by welding pressure. However, we solved this problem by shortening the distance of cladding tube colette chuck and pressure receiving, and by putting the sleeve in an internal space of welding machine, losing the bending of cladding tube. Moreover, welding defects were occurred by the difference of an inside state, an inside defect and recrystallization of cladding tube. We solved the problem by inside grinding for the edge of tube, angle beam method by ultrasonic wave, and ultrasonic wave form confirmation. Manufacturing process with long scale cladding tube including heat-treatment to remove combustion return and remaining stress was established besides, Afterwards, welding of ODS cladding tube and upper endplug. As the quality assurance system, we constructed [Documented procedure (referred to JOYO)] based on [Document of the QA plan] by OEC. Welding and inspection were executed by the document procedure. It is thought that the quality assurance method become references for the irradiation test in JOYO in the

  9. Weld analysis and control system

    Science.gov (United States)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  10. Fine tuning of dwelling time in friction stir welding for preventing material overheating, weld tensile strength increase and weld nugget size decrease

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav M.

    2016-01-01

    Full Text Available After successful welding, destructive testing into test samples from Al 2024-T351 friction stir butt welds showed that tensile strength of the weld improve along the joint line, while dimensions of the weld nugget decrease. For those welds, both the base material and the welding tool constantly cool down during the welding phase. Obviously, the base material became overheated during the long dwelling phase what made conditions for creation of joints with the reduced mechanical properties. Preserving all process parameters but varying the dwelling time from 5-27 seconds a new set of welding is done to reach maximal achievable tensile strength. An analytical-numerical-experimental model is used for optimising the duration of the dwelling time while searching for the maximal tensile strength of the welds

  11. Control of the development of residual stresses and heat affected zone (HAZ) microstructure during welding of low alloy steels and influence on stress relieve cracking

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, J.; Rui Wu; Sandstroem, R.; von Walden, E. [Swedish Inst. for Metals Research, Stockholm (Sweden)

    1990-12-31

    Creep resistant 1 Cr 0.5 Mo steels are frequently used as steam pipes at operating temperature of 450 degree C to 500 degrees C. Welded joints have been post weld heat treated (PWHT). The results show: - In fully refined microstructures close to the fusion boundary of the weldments a reduction of the grain size by a factor of 3-4 was measured. The impact transition temperature was up to 27 degree C lower for test series notched in the refined HAZ (Heat Affected Zone) than in the coarse grained HAZ of the as welded condition. The overlay heat treatments were not observed to significantly influence the hardness and the room temperature tensile properties of the weldments. - The influence of refinement on impact transition temperature (ITT) and upper shelf energy was beneficial. In the coarse grained HAZ, for which the ITT was significantly higher than for weld metal and base metal, the refinement resulted in a 30 degrees C lower value of the ITT. The influence of PWHT on impact properties was also studied. The PWHT raised the upper shelf energy greatly. The effect on the ITT was smaller than that of refinement. - For cross welds in the as-welded (AW) condition refinement improved the creep properties. After PWHT the creep ductility was significantly increased at the same as a considerable reduction of life was observed. At lower stresses the effects of refinement and especially PWHT were less pronounced. Beneficial influence of refinement in inhibiting the formation of creep cavitation was apparent regardless stress level in both AW and PWHT conditions. (K.A.E).

  12. Opportunistic transmitter selection for selfless overlay cognitive radios

    KAUST Repository

    Shaqfeh, Mohammad; Zafar, Ammar; Alnuweiri, Hussein M.; Alouini, Mohamed-Slim

    2013-01-01

    We propose an opportunistic strategy to grant channel access to the primary and secondary transmitters in causal selfless overlay cognitive radios over block-fading channels. The secondary transmitter helps the primary transmitter by relaying

  13. Corrosion behavior of zinc-nickel alloy electrodeposited coatings

    Energy Technology Data Exchange (ETDEWEB)

    Fabri Miranda, F.J. [USIMINAS, Ipatinga, Minas Gerais (Brazil); Margarit, I.C.P.; Mattos, O.R.; Barcia, O.E. [UFRJ, Rio de Janeiro (Brazil); Wiart, R. [Univ. Pierre et M. Curie, Paris (France)

    1999-08-01

    Various types of zinc-electrocoated steel sheets are used to improve the durability of car bodies. Among these coatings, the Zn-Ni alloy has higher corrosion resistance than pure Zn, as well as better welding and painting properties. The corrosion mechanism of the Zn-Ni alloy has been investigated mainly on the basis of accelerated tests and electrochemical measurements. There are few data about long-term corrosion tests. In the present study, the behavior of unpainted Zn-Ni alloy coated steel was studied during 3 years of exposure in industrial and marine environments. Electrochemical impedance spectroscopy (EIS) and surface analysis (scanning electron microscopy [SEM] and Auger electron spectroscopy [AES]) were the experimental techniques used. Long-term atmospheric corrosion mechanism of Zn-Ni coatings was discussed and compared with that proposed based on short-term tests.

  14. Optimum welding condition of 2017 aluminum similar alloy friction welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Tsujino R.; Ochi, H. [Osaka Inst. of Tech., Osaka (Japan); Morikawa, K. [Osaka Sangyo Univ., Osaka (Japan); Yamaguchi, H.; Ogawa, K. [Osaka Prefecture Univ., Osaka (Japan); Fujishiro, Y.; Yoshida, M. [Sumitomo Metal Technology Ltd., Hyogo (Japan)

    2002-07-01

    Usefulness of the statistical analysis for judging optimization of the friction welding conditions was investigated by using 2017 aluminum similar alloy, where many samples under fixed welding conditions were friction welded and analyzed statistically. In general, selection of the optimum friction welding conditions for similar materials is easy. However, it was not always the case for 2017 aluminum alloy. For optimum friction welding conditions of this material, it is necessary to apply relatively larger upset pressure to obtain high friction heating. Joint efficiencies obtained under the optimum friction welding conditions showed large shape parameter (m value) of Weibull distribution as well as in the dissimilar materials previously reported. The m value calculated on the small number of data can be substituted for m value on the 30 data. Therefore, m value is useful for practical use in the factory for assuming the propriety of the friction welding conditions. (orig.)

  15. Wear resistance increase of the modified coatings, deposited in the beam of relativistic electrons

    International Nuclear Information System (INIS)

    Poletika, I.M.; Perovskaya, M.V.; Balushkina, M.A.

    2015-01-01

    The 1.5-3 mm thickness coatings have been obtained by vacuum - free electron beam cladding of tungsten carbide on low - carbon steel sub state. The coatings have an increased hardness but low wear resistance. Adding both nickel and titanium carbide to the tungsten carbide results in essentially improving the wear resistance of the coatings due to austenite-promoting effect of nickel and precipitation of fine Tic particles resulting in the formation of the final and nano grain structure. In the layer of weld one can find 30-100 nm grain - size structures. (authors)

  16. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  17. TIG welding method and TIG welding device

    International Nuclear Information System (INIS)

    Yoneda, Eishi

    1998-01-01

    The present invention provides a method of TIG welding for members having different heat capacities including a cladding tube and an end plug of a fuel rod to be used, for example, in a reactor, and a device therefor. Namely, in the TIG welding method, the flow rate of a sealed gas to the side of a member having smaller heat capacity is made greater than that on the side of the member having greater heat capacity bordered on the top end of a welding electrode. Since the sealed gas is jetted being localized relative to the welding electrode, arc is restricted in a region of the member having smaller heat capacity and is increased at a region having a larger heat capacity. As a result, the arc is localized, so that the heat input amount to the region having a large heat capacity is increased, and then a plurality of members at the abutting portion are melted uniformly thereby capable of obtaining a uniform molten pool. A bead is formed at the abutting portion thereby capable of obtaining a welded portion with less unevenness and having large strength. (I.S.)

  18. Collision Welding of Dissimilar Materials by Vaporizing Foil Actuator: A Breakthrough Technology for Dissimilar Metal Joining

    Energy Technology Data Exchange (ETDEWEB)

    Daehn, Glenn S. [The Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering; Vivek, Anupam [The Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering; Liu, Bert C. [The Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    2016-09-30

    This work demonstrated and further developed Vaporizing Foil Actuator Welding (VFAW) as a viable technique for dissimilar-metal joining for automotive lightweighting applications. VFAW is a novel impact welding technology, which uses the pressure developed from electrically-assisted rapid vaporization of a thin aluminum foil (the consumable) to launch and ultimately collide two of more pieces of metal to create a solid-state bond between them. 18 dissimilar combinations of automotive alloys from the steel, aluminum and magnesium alloy classes were screened for weldability and characterized by metallography of weld cross sections, corrosion testing, and mechanical testing. Most combinations, especially a good number of Al/Fe pairs, were welded successfully. VFAW was even able to weld combinations of very high strength materials such as 5000 and 6000 series aluminum alloys to boron and dual phase steels, which is difficult to impossible by other joining techniques such as resistance spot welding, friction stir welding, or riveting. When mechanically tested, the samples routinely failed in a base metal rather than along the weld interface, showing that the weld was stronger than either of the base metals. As for corrosion performance, a polymer-based protective coating was used to successfully combat galvanic corrosion of 5 Al/Fe pairs through a month-long exposure to warm salt fog. In addition to the technical capabilities, VFAW also consumes little energy compared to conventional welding techniques and requires relatively light, flexible tooling. Given the technical and economic advantages, VFAW can be a very competitive joining technology for automotive lightweighting. The success of this project and related activities has resulted in substantial interest not only within the research community but also various levels of automotive supply chain, which are collaborating to bring this technology to commercial use.

  19. Effects of irradiation on initiation and crack-arrest toughness of two high-copper welds and on stainless steel cladding

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Iskander, S.K.; Haggag, F.M.

    1990-01-01

    The objective of the study on the high-copper welds is to determine the effect of neutron irradiation on the shift and shape of the ASME K Ic and K Ia toughness curves. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Compact specimens fabricated from these welds were irradiated at a nominal temperature of 288 degree C to fluences from 1.5 to 1.9 x 10 19 neutrons/cm 2 (>1 MeV). The fracture toughness test results show that the irradiation-induced shifts at 100 MPa/m were greater than the Charpy 41-J shifts by about 11 and 18 degree C. Mean curve fits indicate mixed results regarding curve shape changes, but curves constructed as lower boundaries to the data do indicate curves of lower slopes. A preliminary evaluation of the crack-arrest results shows that the neutron-irradiation induced crack-arrest toughness temperature shift is about the same as the Charpy V-notch impact temperature shift at the 41-J energy level. The shape of the lower bound curves (for the range of test temperatures covered), compared to those of the ASME K Ia curve did not appear to have been altered by the irradiation. Three-wire stainless steel weld overlay cladding was irradiated at 288 degree C to fluences of 2 and 5 x 10 19 neutrons/cm 2 (>1 MeV). Charpy 41-J temperature shifts of 13 and 28 degree C were observed, respectively. For the lower fluence only, 12.7-mm thick compact specimens showed decreases in both J Ic and the tearing modulus. Comparison of the fracture toughness results with typical plate and a low upper-shelf weld reveals that the irradiated stainless steel cladding possesses low ductile initiation fracture toughness comparable to the low upper-shelf weld. 8 refs., 12 figs., 2 tabs

  20. Welding of 3D-printed carbon nanotube–polymer composites by locally induced microwave heating

    Science.gov (United States)

    Sweeney, Charles B.; Lackey, Blake A.; Pospisil, Martin J.; Achee, Thomas C.; Hicks, Victoria K.; Moran, Aaron G.; Teipel, Blake R.; Saed, Mohammad A.; Green, Micah J.

    2017-01-01

    Additive manufacturing through material extrusion, often termed three-dimensional (3D) printing, is a burgeoning method for manufacturing thermoplastic components. However, a key obstacle facing 3D-printed plastic parts in engineering applications is the weak weld between successive filament traces, which often leads to delamination and mechanical failure. This is the chief obstacle to the use of thermoplastic additive manufacturing. We report a novel concept for welding 3D-printed thermoplastic interfaces using intense localized heating of carbon nanotubes (CNTs) by microwave irradiation. The microwave heating of the CNT-polymer composites is a function of CNT percolation, as shown through in situ infrared imaging and simulation. We apply CNT-loaded coatings to a 3D printer filament; after printing, microwave irradiation is shown to improve the weld fracture strength by 275%. These remarkable results open up entirely new design spaces for additive manufacturing and also yield new insight into the coupling between dielectric properties and radio frequency field response for nanomaterial networks. PMID:28630927

  1. Welding of 3D-printed carbon nanotube-polymer composites by locally induced microwave heating.

    Science.gov (United States)

    Sweeney, Charles B; Lackey, Blake A; Pospisil, Martin J; Achee, Thomas C; Hicks, Victoria K; Moran, Aaron G; Teipel, Blake R; Saed, Mohammad A; Green, Micah J

    2017-06-01

    Additive manufacturing through material extrusion, often termed three-dimensional (3D) printing, is a burgeoning method for manufacturing thermoplastic components. However, a key obstacle facing 3D-printed plastic parts in engineering applications is the weak weld between successive filament traces, which often leads to delamination and mechanical failure. This is the chief obstacle to the use of thermoplastic additive manufacturing. We report a novel concept for welding 3D-printed thermoplastic interfaces using intense localized heating of carbon nanotubes (CNTs) by microwave irradiation. The microwave heating of the CNT-polymer composites is a function of CNT percolation, as shown through in situ infrared imaging and simulation. We apply CNT-loaded coatings to a 3D printer filament; after printing, microwave irradiation is shown to improve the weld fracture strength by 275%. These remarkable results open up entirely new design spaces for additive manufacturing and also yield new insight into the coupling between dielectric properties and radio frequency field response for nanomaterial networks.

  2. Experimental investigation on the weld pool formation process in plasma keyhole arc welding

    Science.gov (United States)

    Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu

    2018-01-01

    This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s-1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.

  3. Bond strength and stress measurements in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gell, M.; Jordan, E. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. To meet the aggressive Advanced Turbine Systems goals for efficiency, durability and the environment, it will be necessary to employ thermal barrier coatings on turbine airfoils and other hot section components. For The successful application of TBCs to ATS engines with 2600{degrees}F turbine inlet temperatures and required component lives 10 times greater than those for aircraft gas turbine engines, it is necessary to develop quantitative assessment techniques for TBC coating integrity with time and cycles in ATS engines. Thermal barrier coatings in production today consist of a metallic bond coat, such as an MCrAlY overlay coating or a platinum aluminide (Pt-Al) diffusion coating. During heat treatment, both these coatings form a thin, tightly adherent alumina (Al{sub 2}O{sub 3}) film. Failure of TBC coatings in engine service occurs by spallation of the ceramic coating at or near the bond coat to alumina or the alumina to zirconia bonds. Thus, it is the initial strength of these bonds and the stresses at the bond plane, and their changes with engine exposure, that determines coating durability. The purpose of this program is to provide, for the first time, a quantitative assessment of TBC bond strength and bond plane stresses as a function of engine time and cycles.

  4. Recent Trends of Coated Sheet Steels for Automotive use

    International Nuclear Information System (INIS)

    Moon, Manbeen

    2012-01-01

    Recent issues in the automotive industries are, improvement of fuel efficiency according to the worldwide CO 2 regulation, passenger safety through enhanced crash worthiness, superior design and cost reduction due to price fluctuation of raw material. To meet these demands, steelmaking companies are developing advanced high strength steel and new process technologies such as hydroforming, TWB(Tailor Welded Blank), hot stamping and so on. In addition, eco-friendly and high corrosion resistant coating technologies are getting more attention to comply with the environmental regulations. In this paper, reviews and prospects of recent coating technologies for automotive use are presented

  5. Advancements of diffraction-based overlay metrology for double patterning

    Science.gov (United States)

    Li, Jie; Kritsun, Oleg; Liu, Yongdong; Dasari, Prasad; Weher, Ulrich; Volkman, Catherine; Mazur, Martin; Hu, Jiangtao

    2011-03-01

    As the dimensions of integrated circuit continue to shrink, diffraction based overlay (DBO) technologies have been developed to address the tighter overlay control challenges. Previously data of high accuracy and high precision were reported for litho-etch-litho-etch double patterning (DP) process using normal incidence spectroscopic reflectometry on specially designed targets composed of 1D gratings in x and y directions. Two measurement methods, empirical algorithm (eDBO) using four pads per direction (2x4 target) and modeling based algorithm (mDBO) using two pads per direction (2x2 target) were performed. In this work, we apply DBO techniques to measure overlay errors for a different DP process, litho-freeze-litho-etch process. We explore the possibility of further reducing number of pads in a DBO target using mDBO. For standard targets composed of 1D gratings, we reported results for eDBO 2x4 targets, mDBO 2x2 targets, and mDBO 2x1 target. The results of all three types of targets are comparable in terms of accuracy, dynamic precision, and TIS. TMU (not including tool matching) is less than 0.1nm. In addition, we investigated the possibility of measuring overlay with one single pad that contains 2D gratings. We achieved good correlation to blossom measurements. TMU (not including tool matching) is ~ 0.2nm. To our best knowledge, this is the first time that DBO results are reported on a single pad. eDBO allows quick recipe setup but takes more space and measurement time. Although mDBO needs details of optical properties and modeling, it offers smaller total target size and much faster throughput, which is important in high volume manufacturing environment.

  6. A Measurement Study of the Structured Overlay Network in P2P File-Sharing Systems

    Directory of Open Access Journals (Sweden)

    Mo Zhou

    2007-01-01

    Full Text Available The architecture of P2P file-sharing applications has been developing to meet the needs of large scale demands. The structured overlay network, also known as DHT, has been used in these applications to improve the scalability, and robustness of the system, and to make it free from single-point failure. We believe that the measurement study of the overlay network used in the real file-sharing P2P systems can provide guidance for the designing of such systems, and improve the performance of the system. In this paper, we perform the measurement in two different aspects. First, a modified client is designed to provide view to the overlay network from a single-user vision. Second, the instances of crawler programs deployed in many nodes managed to crawl the user information of the overlay network as much as possible. We also find a vulnerability in the overlay network, combined with the character of the DNS service, a more serious DDoS attack can be launched.

  7. Automatization of welding

    International Nuclear Information System (INIS)

    Iwabuchi, Masashi; Tomita, Jinji; Nishihara, Katsunori.

    1978-01-01

    Automatization of welding is one of the effective measures for securing high degree of quality of nuclear power equipment, as well as for correspondence to the environment at the site of plant. As the latest ones of the automatic welders practically used for welding of nuclear power apparatuses in factories of Toshiba and IHI, those for pipes and lining tanks are described here. The pipe welder performs the battering welding on the inside of pipe end as the so-called IGSCC countermeasure and the succeeding butt welding through the same controller. The lining tank welder is able to perform simultaneous welding of two parallel weld lines on a large thin plate lining tank. Both types of the welders are demonstrating excellent performance at the shops as well as at the plant site. (author)

  8. Wear-resistant EBW coatings based on a TiB{sub 2}-Fe SHS composite with a high-alloy matrix

    Energy Technology Data Exchange (ETDEWEB)

    Galchenko, Nina K.; Kolesnikova, Ksenia A.; Belyuk, Sergei I. [Institute of Strength Physics and Materials Science SB RAS, Tomsk (Russian Federation); Semenov, Grigoriy V., E-mail: Kolesnikova_KsAl@mail.ru [Tomsky Instrument Manufacturing Company, Tomsk (Russian Federation)

    2011-07-01

    In the work, we studied the structure and properties of “titanium diboride – high-chromium cast iron binder” coatings obtained by electron beam welding. It is demonstrated that the phase and structure formation of the composite coatings depends on the content of high-chromium cast iron in the deposited mixture. Varying the volume fraction of the hardening compounds and the chemical composition of the metal binder makes possible wear-resistant coatings with specified operating characteristics. Key words: electron beam technology, composite coatings.

  9. Electric arc welding gun

    Science.gov (United States)

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  10. Image-based overlay and alignment metrology through optically opaque media with sub-surface probe microscopy

    Science.gov (United States)

    van Es, Maarten H.; Mohtashami, Abbas; Piras, Daniele; Sadeghian, Hamed

    2018-03-01

    Nondestructive subsurface nanoimaging through optically opaque media is considered to be extremely challenging and is essential for several semiconductor metrology applications including overlay and alignment and buried void and defect characterization. The current key challenge in overlay and alignment is the measurement of targets that are covered by optically opaque layers. Moreover, with the device dimensions moving to the smaller nodes and the issue of the so-called loading effect causing offsets between between targets and product features, it is increasingly desirable to perform alignment and overlay on product features or so-called on-cell overlay, which requires higher lateral resolution than optical methods can provide. Our recently developed technique known as SubSurface Ultrasonic Resonance Force Microscopy (SSURFM) has shown the capability for high-resolution imaging of structures below a surface based on (visco-)elasticity of the constituent materials and as such is a promising technique to perform overlay and alignment with high resolution in upcoming production nodes. In this paper, we describe the developed SSURFM technique and the experimental results on imaging buried features through various layers and the ability to detect objects with resolution below 10 nm. In summary, the experimental results show that the SSURFM is a potential solution for on-cell overlay and alignment as well as detecting buried defects or voids and generally metrology through optically opaque layers.

  11. Corrosion Resistant Cladding by YAG Laser Welding in Underwater Environment

    International Nuclear Information System (INIS)

    Tsutomi Kochi; Toshio Kojima; Suemi Hirata; Ichiro Morita; Katsura Ohwaki

    2002-01-01

    It is known that stress-corrosion cracking (SCC) will occur in nickel-base alloys used in Reactor Pressure Vessel (RPV) and Internals of nuclear power plants. A SCC sensitivity has been evaluated by IHI in each part of RPV and Internals. There are several water level instrumentation nozzles installed in domestic BWR RPV. In water level instrumentation nozzles, 182 type nickel-base alloys were used for the welding joint to RPV. It is estimated the SCC potential is high in this joint because of a higher residual stress than the yield strength (about 400 MPa). This report will describe a preventive maintenance method to these nozzles Heat Affected Zone (HAZ) and welds by a corrosion resistant cladding (CRC) by YAG Laser in underwater environment (without draining a reactor water). There are many kinds of countermeasures for SCC, for example, Induction Heating Stress Improvement (IHSI), Mechanical Stress Improvement Process (MSIP) and so on. A YAG laser CRC is one of them. In this technology a laser beam is used for heat source and irradiated through an optical fiber to a base metal and SCC resistant material is used for welding wires. After cladding the HAZ and welds are coated by the corrosion resistant materials so their surfaces are improved. A CRC by gas tungsten arc welding (GTAW) in an air environment had been developed and already applied to a couple of operating plants (16 Nozzles). This method was of course good but it spent much time to perform because of an installation of some water-proof working boxes to make a TIG-weldability environment. CRC by YAG laser welding in underwater environment has superior features comparing to this conventional TIG method as follows. At the viewpoint of underwater environment, (1) an outage term reduction (no drainage water). (2) a radioactive exposure dose reduction for personnel. At that of YAG laser welding, (1) A narrower HAZ. (2) A smaller distortion. (3) A few cladding layers. A YAG laser CRC test in underwater

  12. Influence of selected coatings on the welding result during Magnetic Pulse Welding (MPW): Presentation held at 9. Internationales Lasersymposium und Internationalen Fügetechnischen Symposium "Tailored Joining" 2016, Dresden, 22.-24.2.2016

    OpenAIRE

    Bellmann, Jörg; Lueg-Althoff, Jörn

    2016-01-01

    Magnetic Pulse Welding (MPW) has a great potential for large-scale industrial production. It is a clean and fast joining technique favorable for the generation of strong atomic bonded areas between similar and dissimilar metals. For example, aluminum and steel can be welded without formation of critical intermetallic phases due to the high-speed collision and the absence of external heat. Since the weld quality depends on the material’s behavior at the collision zone, surface layers in that r...

  13. A novel weld seam detection method for space weld seam of narrow butt joint in laser welding

    Science.gov (United States)

    Shao, Wen Jun; Huang, Yu; Zhang, Yong

    2018-02-01

    Structured light measurement is widely used for weld seam detection owing to its high measurement precision and robust. However, there is nearly no geometrical deformation of the stripe projected onto weld face, whose seam width is less than 0.1 mm and without misalignment. So, it's very difficult to ensure an exact retrieval of the seam feature. This issue is raised as laser welding for butt joint of thin metal plate is widely applied. Moreover, measurement for the seam width, seam center and the normal vector of the weld face at the same time during welding process is of great importance to the welding quality but rarely reported. Consequently, a seam measurement method based on vision sensor for space weld seam of narrow butt joint is proposed in this article. Three laser stripes with different wave length are project on the weldment, in which two red laser stripes are designed and used to measure the three dimensional profile of the weld face by the principle of optical triangulation, and the third green laser stripe is used as light source to measure the edge and the centerline of the seam by the principle of passive vision sensor. The corresponding image process algorithm is proposed to extract the centerline of the red laser stripes as well as the seam feature. All these three laser stripes are captured and processed in a single image so that the three dimensional position of the space weld seam can be obtained simultaneously. Finally, the result of experiment reveals that the proposed method can meet the precision demand of space narrow butt joint.

  14. RESEARCH OF PROCESS OF AN ALLOYING OF THE FUSED COATINGS RECEIVED FROM THE SUPERFICIAL ALLOYED WIRE BY BORON WITH IN ADDITIONALLY APPLIED ELECTROPLATED COATING OF CHROME AND COPPER

    Directory of Open Access Journals (Sweden)

    V. A. Stefanovich

    2015-01-01

    Full Text Available Researches on distribution of chrome and copper in the fused coating received from the superficial alloyed wire by boron with in additionally applied electroplated coating of chrome and copper were executed. The structure of the fused coating consists of dendrites on which borders the boride eutectic is located. It is established that the content of chrome in dendrites is 1,5– 1,6 times less than in the borid; distribution of copper on structure is uniformed. Coefficients of digestion of chrome and copper at an argon-arc welding from a wire electrode with electroplated coating are established. The assimilation coefficient for chrome is equal to 0,9–1,0; for copper – 0,6–0,75.

  15. Investigation into Variations of Welding Residual Stresses and Redistribution Behaviors for Different Repair Welding Widths

    International Nuclear Information System (INIS)

    Park, Chiyong; Lee, Hweesueng; Huh, Namsu

    2014-01-01

    In this study, we investigated the variations in welding residual stresses in dissimilar metal butt weld due to width of repair welding and re-distribution behaviors resulting from similar metal welding (SMW) and mechanical loading. To this end, detailed two-dimensional axi-symmetric finite element (FE) analyses were performed considering five different repair welding widths. Based on the FE results, we first evaluated the welding residual stress distributions in repair welding. We then investigated the re-distribution behaviors of the residual stresses due to SMW and mechanical loads. It is revealed that large tensile welding residual stresses take place in the inner surface and that its distribution is affected, provided repair welding width is larger than certain value. The welding residual stresses resulting from repair welding are remarkably reduced due to SMW and mechanical loading, regardless of the width of the repair welding

  16. Certification of a weld produced by friction stir welding

    Science.gov (United States)

    Obaditch, Chris; Grant, Glenn J

    2013-10-01

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  17. Laser beam welding and friction stir welding of 6013-T6 aluminium alloy sheet

    International Nuclear Information System (INIS)

    Braun, R.; Dalle Donne, C.; Staniek, G.

    2000-01-01

    Butt welds of 1.6 mm thick 6013-T6 sheet were produced using laser beam welding and friction stir welding processes. Employing the former joining technique, filler powders of the alloys Al-5%Mg and Al-12%Si were used. Microstructure, hardness profiles, tensile properties and the corrosion behaviour of the welds in the as-welded condition were investigated. The hardness in the weld zone was lower compared to that of the base material in the peak-aged temper. Hardness minima were measured in the fusion zone and in the thermomechanically affected zone for laser beam welded and friction stir welded joints, respectively. Metallographic and fractographic examinations revealed pores in the fusion zone of the laser beam welds. Porosity was higher in welds made using the filler alloy Al-5%Mg than using the filler metal Al-12%Si. Transmission electron microscopy indicated that the β '' (Mg 2 Si) hardening precipitates were dissolved in the weld zone due to the heat input of the joining processes. Joint efficiencies achieved for laser beam welds depended upon the filler powders, being about 60 and 80% using the alloys Al-5%Mg and Al-12%Si, respectively. Strength of the friction stir weld approached over 80% of the ultimate tensile strength of the 6013-T6 base material. Fracture occurred in the region of hardness minima unless defects in the weld zone led to premature failure. The heat input during welding did not cause a degradation of the corrosion behaviour of the welds, as found in continuous immersion tests in an aqueous chloride-peroxide solution. In contrast to the 6013-T6 parent material, the weld zone was not sensitive to intergranular corrosion. Alternate immersion tests in 3.5% NaCl solution indicated high stress corrosion cracking resistance of the joints. For laser beam welded sheet, the weld zone of alternately immersed specimens suffered severe degradation by pitting and intergranular corrosion, which may be associated with galvanic coupling of filler metal and

  18. Process for quality assurance of welded joints for electrical resistance point welding

    International Nuclear Information System (INIS)

    Schaefer, R.; Singh, S.

    1977-01-01

    In order to guarantee the reproducibility of welded joints of even quality (above all in the metal working industry), it is proposed that before starting resistance point welding, a preheating current should be allowed to flow at the site of the weld. A given reduction of the total resistance at the site of the weld should effect the time when the preheating current is switched over to welding current. This value is always predetermined empirically. Further possibilities of controlling the welding process are described, where the measurement of thermal expansion of the parts is used. A standard welding time is given. The rated course of electrode movement during the process can be predicted and a running comparison of nominal and actual values can be carried out. (RW) [de

  19. Weld nugget formation in resistance spot welding of new lightweight sandwich material

    DEFF Research Database (Denmark)

    Sagüés Tanco, J.; Nielsen, Chris Valentin; Chergui, Azeddine

    2015-01-01

    Weldability of a new lightweight sandwich material, LITECOR®, by resistance spot welding is analyzed by experiments and numerical simulations. The spot welding process is accommodated by a first pulse squeezing out the non-conductive polymer core of the sandwich material locally to allow metal......–metal contact. This is facilitated by the use of a shunt tool and is followed by a second pulse for the actual spot welding and nugget formation. A weldability lobe in the time-current space of the second pulse reveals a process window of acceptable size for automotive assembly lines. Weld growth curves...... with experimental results in the range of welding parameters leading to acceptable weld nugget sizes. The validated accuracy of the commercially available software proves the tool useful for assisting the choice of welding parameters....

  20. Residual stress by repair welds

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Toyoda, Masao

    2003-01-01

    Residual stress by repair welds is computed using the thermal elastic-plastic analysis with phase-transformation effect. Coupling phenomena of temperature, microstructure, and stress-strain fields are simulated in the finite-element analysis. Weld bond of a plate butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. Microstructure is considered by using CCT diagram and the transformation behavior in the repair weld is also simulated. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress. (author)