WorldWideScience

Sample records for weld hardfacing alloys

  1. Performance Analysis of Weld Hardfacings Used in the Sugar/Alcohol Industry

    Science.gov (United States)

    Lima, Aldemi Coelho; Ferraresi, Valtair Antonio; Reis, Ruham Pablo

    2014-05-01

    The increasing demand for biofuel has pushed the sugar/alcohol industry to expansion, especially in Brazil. In this industry, the costs linked to equipment wear are significant. Abrasive wear is particularly present, especially in shredder knives, which are produced/repaired by weld hardfacings. In this case, FCAW has become a common choice. Considering the lack of results based on real-work wear conditions in such sector, this study compares the performance of weld hardfacings in laboratory and in industry. Three types of FCAW wires (FeCrC alloys) are assessed and compared to a SMAW electrode. The performance of the hardfacings is determined in terms of wear resistance and related to the microstructures produced. The laboratory test did not replicate the industry conditions. The FeCrC + Nb hardfacings had the best performance in laboratory (similar to the SMAW deposits), but the worst in industry. The FeCrC and FeCrC + Ti hardfacings, respectively, were the worst in laboratory and the best in industry (similar to the SMAW deposits). Spalling was decisive for poor hardfacing performance. The absence of cracks in the FeCrC + Ti hardfacings was crucial for their superior industry performance. A test combining abrasion and impact would better represent the wear really acting on the parts.

  2. Replacement of Cobalt base alloys hardfacing by NOREM alloy; EDF experience and development, some metallurgical considerations. Valves application (CLAMA, RAMA)

    Energy Technology Data Exchange (ETDEWEB)

    Carnus, M. [EDF DPN UTO Direction Expertise Technique, Noisy le Grand (France); Confort, X. [VELAN SAS, Lyon (France)

    2011-07-01

    Cobalt base alloys, such as Stellite 6 and 21, are used extensively in applications where superior resistance to wear and corrosion are required. However the use of Cobalt alloys hardfacing materials, especially on valves, is a major contributor to the level of radioactive contamination of nuclear facilities. NOREM alloys, an iron base and cobalt free materials, have been developed through an Electric Power Research Institute (EPRI) long running program during the eighties as an alternative of Stellite. This alloy has relatively good weldability properties, it was developed initially for repairing Stellite hardfacing (deposit over existing hardfacing alloys). This alloy has good corrosion resistance properties associated with elevated hardness (HRC 36-42). Technological properties (such as galling resistance, wear resistance) have been evaluated through different testing programs led by EPRI, AECL(Atomic Energy of Canada Limited), Valves manufacturers, EDF and others during the nineties. More recently EDF (for replacement of globe valves) has carried out testing program focused on weld deposit chemistry and mechanical properties. NOREM is a candidate for replacement of stellite hardfacing on valves. However this alloy is not so versatile as stellite alloys regarding technological properties (such as wear resistance) at elevated temperature and under high contact pressure. As a consequence some limits have to be considered for application on valves operating at elevated temperature and under high contact pressure (> 20 Mpa). Examples of application on valves, from VELAN manufacturer, for EDF PWR equipment are given. The industrial feedback from installed equipment (CLAMA, RAMA) since 2006 on EDF PWR has been good

  3. APPLICATION OF QC TOOLS FOR CONTINUOUS IMPROVEMENT IN AN EXPENSIVE SEAT HARDFACING PROCESS USING TIG WELDING

    Directory of Open Access Journals (Sweden)

    Mohammed Yunus

    2016-09-01

    Full Text Available The present study is carried out to improve quality level by identifying the prime reasons of the quality related problems in the seat hardfacing process involving the deposition of cobalt based super alloy in I.C. Engine valves using TIG welding process. During the Process, defects like stellite deposition overflow, head melt, non-uniform stellite merging, etc., are observed and combining all these defects, the rejection level was in top position in Forge shop. We use widely referred QC tools of the manufacturing field to monitor the complete operation and continuous progressive process improvement to ensure ability and efficiency of quality management system of any firm. The work aims to identify the various causes for the rejection by the detailed study of the operation, equipment, materials and the various process parameters that are very important to get defects-free products. Also, to evolve suitable countermeasures for reducing the rejection percentage using seven QC tools. To further understand and validate the obtained results, we need to address other studies related to motivations, advantages, and disadvantages of applying quality control tools.

  4. Microstructural design of hardfacing Ni-Cr-B-Si-C alloys

    NARCIS (Netherlands)

    Hemmati, I.; Huizenga, R. M.; Ocelik, V.; De Hosson, J. Th M.

    This work reports the procedure for selection of alloying elements to refine the microstructure of hardfacing Ni-Cr-B-Si-C alloys by providing in situ formed nucleation agents. It is concluded that the refining element should be able to spontaneously produce precipitates at high temperatures with

  5. Effect of volume fraction of (Cr, Fe7C3 carbides on corrosion resistance of the Fe-Cr-C hardfacing alloys at Cr/C=6

    Directory of Open Access Journals (Sweden)

    Hamed Sabet

    2013-06-01

    Full Text Available In this investigation, three different chemical compositions of Fe-Cr-C alloys were fabricated on AISI 1010 steel substrates by gas tungsten arc welding (GTAW. The optical emission spectroscopy (OES, optical microscopy (OM, scanning electron microscopy (SEM, techniques and corrosion test were used for determining chemical composition studying the microstructure and corrosion behavior of the Fe-Cr-C alloys. The OM and SEM results show that the microstructure of these alloys consisted of (Cr,Fe7C3 carbides with austenite, and by increasing of the carbon and chromium content in hardfacing alloys, the volume fraction of (Cr,Fe7C3 carbides in microstructure was increased. The polarization curves of the corrosion tests show that the increase of the volume fraction of (Cr,Fe7C3 carbides in the microstructure promotes the corrosion resistance of the Fe-Cr-C hardfacing alloys. The corrosion mechanism of the Fe-Cr-C hardfacing alloys was intergranular and galvanic corrosion.

  6. Weld overlay coatings for erosion control

    Energy Technology Data Exchange (ETDEWEB)

    Levin, B.; DuPont, J.N.; Marder, A.R.

    1993-03-03

    A literature review was made. In spite of similarities between abrasive wear and solid particle erosion, weld overlay hardfacing alloys that exhibit high abrasion resistance may not necessarily have good erosion resistance. The performance of weld overlay hardfacing alloys in erosive environments has not been studied in detail. It is believed that primary-solidified hard phases such as carbides and intermetallic compounds have a strong influence on erosion resistance of weld overlay hardfacing alloys. However, relationships between size, shape, and volume fraction of hard phases in a hardfacing alloys and erosion resistance were not established. Almost all hardfacing alloys can be separated into two major groups based upon chemical compositions of the primary solidified hard phases: (a) carbide hardening alloys (Co-base/carbide, WC-Co and some Fe base superalloys); and (b) intermetallic hardening alloys (Ni-base alloys, austenitic steels, iron-aluminides).

  7. Development of a Nitrogen-Modified Stainless-Steel Hardfacing Alloy

    Science.gov (United States)

    Smith, Ryan Thomas

    A 2nd generation hardfacing alloy, Nitromaxx, has been designed though an integrated approach of chemical modification, characterization, and testing. Nitromaxx is a stainless-steel alloy modified with 0.5wt% nitrogen which has improved elevated temperature properties and wear performance. This is achieved by changing both the microstructure phase balance and inherent deformation characteristics of the metal. The alloy is fabricated by a powder metallurgy-hot isostatic pressing (PM-HIP) method, rather than traditional cladding methods. This allows for alloy property modification by equilibrium heat treatment while eliminating significant fabrication defects, so that component life is extended wear and galling performance is improved. The design approach involved extensive characterization of severely worn and galled surfaces of the 1st generation of hardfacing alloys. Observation of samples after galling testing showed highly inhomogeneous deformation in regions of the gall scar, leading to the design hypothesis that strain-localization is a controlling mechanism in severe wear of stainless-steels. Additionally, the presence and subsequent loss was investigated and correlated microstructurally to the transition to poor galling behavior in the existing stainless steel hardfacing NOREM02. This provided new insight and identification of key microstructural and mechanical properties that improve galling performance: 1) increased strain-hardening rate in the metal matrix at elevated temperature, 2) increased yield strength in the matrix leading to higher hardness, and 3) increased volume fraction of hard, non-deforming phases. All of these alloy design goals can be realized by the addition of nitrogen, which 1) at high concentration is shown to lower the stacking fault energy in the stainless steel matrix, 2) increases interstitial matrix strengthening, and 3) increases the volume fraction of nitride phases. These observations have been confirmed qualitatively and

  8. Effect of molybdenum on the microstructure and wear resistance of Fe-based hardfacing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.H. [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)], E-mail: xinhongwang@sdu.edu.cn; Han, F. [Department of Mechanical and Electrical Engineering, College of Weifang, Weifang 261021 (China); Liu, X.M.; Qu, S.Y.; Zou, Z.D. [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2008-08-20

    Fe-based hardfacing alloys containing molybdenum compound have been deposited on AISI 1020 steel substrates by shield manual arc welding (SMAW) process. The effect of Mo on the microstructure and wear resistance of the Fe-based hardfacing alloys were investigated by means of X-ray diffraction, optical microscopy, scanning electron microscopy (SEM) and electron probe microanalysis, as well as wear test. The results indicated that cuboidal and rod-type complex carbides were synthesized in the lath martensite matrix. The fraction of carbides in hardfacing layer increased with an increasing of Mo content. The hardfacing layer with good cracking resistance and wear resistance could be obtained when the amounts of Fe-Mo was controlled within a range of 3-4 wt.%. The improvement of hardness and wear resistance of the hardfacing layers attributed to the formation of Mo{sub 2}C carbide and the solution strengthening of Mo.

  9. Weld overlay coatings for erosion control. Task A: Literature review, progress report

    Energy Technology Data Exchange (ETDEWEB)

    Levin, B.; DuPont, J.N.; Marder, A.R.

    1993-03-03

    A literature review was made. In spite of similarities between abrasive wear and solid particle erosion, weld overlay hardfacing alloys that exhibit high abrasion resistance may not necessarily have good erosion resistance. The performance of weld overlay hardfacing alloys in erosive environments has not been studied in detail. It is believed that primary-solidified hard phases such as carbides and intermetallic compounds have a strong influence on erosion resistance of weld overlay hardfacing alloys. However, relationships between size, shape, and volume fraction of hard phases in a hardfacing alloys and erosion resistance were not established. Almost all hardfacing alloys can be separated into two major groups based upon chemical compositions of the primary solidified hard phases: (a) carbide hardening alloys (Co-base/carbide, WC-Co and some Fe base superalloys); and (b) intermetallic hardening alloys (Ni-base alloys, austenitic steels, iron-aluminides).

  10. Wear Characteristic of Stellite 6 Alloy Hardfacing Layer by Plasma Arc Surfacing Processes.

    Science.gov (United States)

    Zhu, Zhiyuan; Ouyang, Chun; Qiao, Yanxin; Zhou, Xiaowei

    2017-01-01

    The microstructure and wear resistance of Stellite 6 alloy hardfacing layer at two different temperatures (room temperature and 300°C) were investigated by plasma arc surfacing processes on Q235 Steel. Tribological test was conducted to characterize the wear property. The microstructure of Stellite 6 alloy coating mainly consists of α-Co and (Cr, Fe)7C3 phases. The friction coefficient of Stellite 6 alloys fluctuates slightly under different loads at 300°C. The oxide layer is formed on the coating surface and serves as a special lubricant during the wear test. Abrasive wear is the dominant mechanism at room temperature, and microploughing and plasticity are the key wear mechanisms at 300°C.

  11. Wear Characteristic of Stellite 6 Alloy Hardfacing Layer by Plasma Arc Surfacing Processes

    Directory of Open Access Journals (Sweden)

    Zhiyuan Zhu

    2017-01-01

    Full Text Available The microstructure and wear resistance of Stellite 6 alloy hardfacing layer at two different temperatures (room temperature and 300°C were investigated by plasma arc surfacing processes on Q235 Steel. Tribological test was conducted to characterize the wear property. The microstructure of Stellite 6 alloy coating mainly consists of α-Co and (Cr, Fe7C3 phases. The friction coefficient of Stellite 6 alloys fluctuates slightly under different loads at 300°C. The oxide layer is formed on the coating surface and serves as a special lubricant during the wear test. Abrasive wear is the dominant mechanism at room temperature, and microploughing and plasticity are the key wear mechanisms at 300°C.

  12. Microstructure and Phase Formation in a Rapidly Solidified Laser-Deposited Ni-Cr-B-Si-C Hardfacing Alloy

    NARCIS (Netherlands)

    Hemmati, Ismail; Ocelik, Vaclav; Csach, Kornel; de Hosson, Jeff Th M.

    In this study, microstructural evolutions and phase selection phenomena during laser deposition of a hardfacing Ni-Cr-B-Si-C alloy at different processing conditions are experimentally investigated. The results show that even minor variations in the thermal conditions during solidification can

  13. Effect of Laser Power on Metallurgical, Mechanical and Tribological Characteristics of Hardfaced Surfaces of Nickel-Based Alloy

    Science.gov (United States)

    Gnanasekaran, S.; Padmanaban, G.; Balasubramanian, V.

    2017-10-01

    In this present work, nickel based alloy was deposited on 316 LN austenitic stainless steel (ASS) by a laser hardfacing technique to investigate the influence of laser power on macrostructure, microstructure, microhardness, dilution and wear characteristics. The laser power varied from 1.1 to 1.9 kW. The phase constitution, microstructure and microhardness were examined by optical microscope, scanning electron microscopy, energy dispersion spectroscopy and Vickers microhardness tester. The wear characteristics of the hardfaced surfaces and substrate were evaluated at room temperature (RT) under dry sliding wear condition (pin-on-disc). The outcome demonstrates that as the laser power increases, dilution increases and hardness of the deposit decreases. This is because excess heat melts more volume of substrate material and increases the dilution; subsequently it decreases the hardness of the deposit. The microstructure of the deposit is characterized by Ni-rich carbide, boride and silicide.

  14. review on hardfacing as method of improving the service life of ...

    African Journals Online (AJOL)

    eobe

    Powder metallurgy, atomisation and granulation are methods of producing hardfacing alloy powder. Most welding methods were identified to be successfully used in applying consumable on substrate surfaces. were identified to be successfully used in applying consumable on substrate surfaces. Dilution decreases with i.

  15. Analysis of PTA hardfacing with CoCrWC and CoCrMoSi alloys

    OpenAIRE

    Adriano Scheid; Ana Sofia Clímaco Monteiro de Oliveira

    2013-01-01

    CoCrWC alloys are widely used to protect components that operate under wear and high temperature environments. Enhanced performance has been achieved with the CoCrMoSi alloys but processing this alloy system is still a challenge due to the presence of the brittle Laves phase, particularly when welding is involved. This work evaluated Plasma Transferred Arc coatings processed with the Co-based alloy CoMoCrSi - Tribaloy T400, reinforced with Laves phase, comparing its weldability to the CoCrWC ...

  16. Machinability of Stellite 6 hardfacing

    Directory of Open Access Journals (Sweden)

    Dudzinski D.

    2010-06-01

    Full Text Available This paper reports some experimental findings concerning the machinability at high cutting speed of nickel-base weld-deposited hardfacings for the manufacture of hot tooling. The forging work involves extreme impacts, forces, stresses and temperatures. Thus, mould dies must be extremely resistant. The aim of the project is to create a rapid prototyping process answering to forging conditions integrating a Stellite 6 hardfacing deposed PTA process. This study talks about the dry machining of the hardfacing, using a two tips machining tool and a high speed milling machine equipped by a power consumption recorder Wattpilote. The aim is to show the machinability of the hardfacing, measuring the power and the tip wear by optical microscope and white light interferometer, using different strategies and cutting conditions.

  17. Corrosion Characteristics of Ni-Based Hardfacing Alloy Deposited on Stainless Steel Substrate by Laser Cladding

    Science.gov (United States)

    Awasthi, Reena; Abraham, Geogy; Kumar, Santosh; Bhattacharyya, Kaustava; Keskar, Nachiket; Kushwaha, R. P.; Rao, Ramana; Tewari, R.; Srivastava, D.; Dey, G. K.

    2017-06-01

    In this study, corrosion characteristics of a nickel-based Ni-Mo-Cr-Si hardfacing alloy having 32Mo, 15Cr, and 3Si (wt pct) as alloying elements, deposited on stainless steel SS316L substrate by laser cladding, have been presented. Corrosion behavior of the laser clad layer was evaluated in reducing (0.1 M HCl) and oxidizing (0.5 M HNO3) environments, in comparison with the reference substrate SS316L, using electrochemical potentiodynamic technique at room temperature. The corrosion mechanisms have been evaluated on the basis of microstructural and microchemical analysis using scanning electron microscopy attached with energy-dispersive spectrometry. Passivity behavior of the laser clad layer was studied in 0.5 M H2SO4, using the potentiostatic technique and analyzing the passive layer by X-ray photoelectron spectroscopy. Laser clad layer of Ni-Mo-Cr-Si exhibited higher pitting corrosion resistance in chloride (reducing) environment, indicated by much higher breakdown potential ( 0.8 VSCE) and the absence of pitting as compared to substrate SS316L ( 0.3 VSCE). However, in oxidizing (0.5 M HNO3) environment, both the laser clad layer and substrate SS316L showed excellent and similar corrosion resistance exhibiting high breakdown potential ( 0.85 VSCE) and wide passivation range ( 0.8 VSCE) with low passive current density ( 4 to 7 × 10-6 A/cm2). The stable passive layer formed on laser clad layer of Ni-Mo-Cr-Si after exposure in 0.5 M H2SO4 solution at constant potential 0.6 VSCE (within the passive range), consisted oxides of Mo as Mo+4 (MoO2) and Mo+6 (MoO4)-2, Cr as Cr3+ (mixture of both Cr2O3 and Cr (OH)3), and Si as Si4+(SiO2), which have contributed to passivation and repassivation and therefore excellent corrosion behavior.

  18. DIFFUSIVELY ALLOYED COMPOUNDS MADE OF METAL DISCARD WITH A REDUCED MELTING TEMPERATURE FOR OBTAINING WEAR RESISTANT COATINGS USING INDUCTION HARD-FACING TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    V. G. Shcherbakou

    2016-01-01

    Full Text Available The technology of obtaining diffusion doped alloys made from metal scrap is reviewed in the article. The influence of short term preprocessing at high temperature on structure formation by concentrated energy sources within the further induction deposit is reviewed. A mechanism of a contact eutectic melting in diffusion doped alloys at short term high temperature treatment is described and suggested in this work. It was shown that such kind of processing of diffusion doped alloys is a perspective way of treatment when using induction hard-facing technologies for obtaining wear resistant coatings. A resource and energy saving technology was developed for obtaining wear resistant coatings based on diffusion doped alloys from metal scrap treated using induction hard-facing process.

  19. Analysis of PTA hardfacing with CoCrWC and CoCrMoSi alloys

    Directory of Open Access Journals (Sweden)

    Adriano Scheid

    2013-12-01

    Full Text Available CoCrWC alloys are widely used to protect components that operate under wear and high temperature environments. Enhanced performance has been achieved with the CoCrMoSi alloys but processing this alloy system is still a challenge due to the presence of the brittle Laves phase, particularly when welding is involved. This work evaluated Plasma Transferred Arc coatings processed with the Co-based alloy CoMoCrSi - Tribaloy T400, reinforced with Laves phase, comparing its weldability to the CoCrWC - Stellite 6, reinforced with carbides. Coatings were also analyzed regarding the response to temperature exposure at 600°C for 7 days and subsequent effect on microstructure and sliding abrasive wear. Coatings characterization was carried out by light and scanning electron microscopy, X-ray diffraction and Vickers hardness. CoCrWC coatings exhibited a Cobalt solid solution dendritic microstructure and a thin interdendritic region with eutectic carbides, while CoCrMoSi deposits exhibit a large lamellar eutectic region of Laves phase and Cobalt solid solution and a small fraction of primary Laves phase. Although phase stability was observed by X-ray diffraction, coarsening of the microstructure occurred for both alloys. CoCrMoSi showed thicker lamellar Laves phase and CoCrWC coarser eutectic carbides. Coatings stability assessed by wear tests revealed that although the wear rate of the as-deposited CoCrMoSi alloy was lower than that of CoCrWC alloy its increase after temperature exposure was more significant, 22% against 15%. Results were discussed regarding the protection of industrial components in particular, bearings in 55AlZn hot dip galvanizing components.

  20. Hardfacing of aluminium alloys by means of metal matrix composites produced by laser surface alloying

    CSIR Research Space (South Africa)

    Pityana, SL

    2009-06-01

    Full Text Available Metal matrix composite layers were formed on an aluminium substrate by means of laser surface alloying method. Aluminium 1200 was used as a host material and TiC particles were used as the reinforcement. The microstructure of the modified layer...

  1. Welding of Prosthetic Alloys

    Directory of Open Access Journals (Sweden)

    Wojciechowska M.

    2015-04-01

    Full Text Available This paper presents the techniques of joining metal denture elements, used in prosthetic dentistry: the traditional soldering technique with a gas burner and a new technique of welding with a laser beam; the aim of the study was to make a comparative assessment of the quality of the joints in view of the possibility of applying them in prosthetic structures. Fractographic examinations were conducted along with tensile strength and impact strength tests, and the quality of the joints was assessed compared to the solid metal. The experiments have shown that the metal elements used to make dentures, joined by the technique which employs a laser beam, have better strength properties than those achieved with a gas burner.

  2. Welding of gamma titanium aluminide alloys

    Science.gov (United States)

    Smashey, Russell W. (Inventor); Kelly, Thomas J. (Inventor); Snyder, John H. (Inventor); Sheranko, Ronald L. (Inventor)

    1998-01-01

    An article made of a gamma titanium aluminide alloy is welded, as for example in the weld repair of surface cracks, by removing foreign matter from the area to be welded, first stress relieving the article, cooling the entire article to a welding temperature of from about 1000.degree. F. to about 1400.degree. F., welding a preselected region in an inert atmosphere at the welding temperature, and second stress relieving the article. Welding is preferably accomplished by striking an arc in the preselected region so as to locally melt the alloy in the preselected region, providing a filler metal having the same composition as the gamma titanium aluminide alloy of the article, and feeding the filler metal into the arc so that the filler metal is melted and fused with the article to form a weldment upon solidification.

  3. Friction Stir Welding of Steel Alloys

    Science.gov (United States)

    Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The friction stir welding process has been developed primarily for the welding of aluminum alloys. Other higher melting allows such, as steels are much more difficult to join. Special attention must be given to pin tool material selection and welding techniques. This paper addresses the joining of steels and other high melting point materials using the friction stir welding process. Pin tool material and welding parameters will be presented. Mechanical properties of weldments will also be presented. Significance: There are many applications for the friction stir welding process other than low melting aluminum alloys. The FSW process can be expanded for use with high melting alloys in the pressure vessel, railroad and ship building industries.

  4. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Energy Technology Data Exchange (ETDEWEB)

    Kilinc, B., E-mail: bkilinc@sakarya.edu.tr; Durmaz, M.; Abakay, E. [Department of Metallurgical and Materials Engineering, Institute of Arts and Sciences, SakaryaUniversity, Esentepe Campus, 54187Sakarya (Turkey); Sen, U.; Sen, S. [Department of Metallurgical and Materials Engineering, Engineering Faculty, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey)

    2015-03-30

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe{sub 12}Nb{sub 5}B{sub 3} and Fe{sub 2}NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe{sub 2}B, NbB{sub 2}, NbFeB and Fe0,2 Nb{sub 0,8} phases. The hardness of the presence phases are changing between 1689±85 HV{sub 0.01}, and 181±7 HV{sub 0.1}. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe{sub 12}Nb{sub 5}B{sub 3} and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  5. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Science.gov (United States)

    Kilinc, B.; Durmaz, M.; Abakay, E.; Sen, U.; Sen, S.

    2015-03-01

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe12Nb5B3 and Fe2NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe2B, NbB2, NbFeB and Fe0,2 Nb0,8 phases. The hardness of the presence phases are changing between 1689±85 HV0.01, and 181±7 HV0.1. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe12Nb5B3 and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  6. Filler wire for aluminum alloys and method of welding

    Science.gov (United States)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)

    2003-01-01

    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  7. Laser welding of selected aerospace alloys

    Science.gov (United States)

    Ebadan, Gracie E.

    The study was aimed at developing an understanding of the microstructural effects of the laser welding process on the alloys, and assessing the structural integrity of the resultant welds. The effect of laser processing parameters such as laser power, laser beam traverse speed, lens focal length, and the manipulation of these parameters on the welding efficiency and weld area integrity was also investigated. Other tasks within the project included a study on the possibility of using an anodic film to enhance the laser weld ability of Al 6061. Finally, attempts were made to identify phases observed in the weld area of the composite materials. Nimonics C263 and PE11 exhibited laser welds free of cracks and porosity. The difference in composition between the two alloys did not result in any significant dissimilarities in their response to the laser welding process. The welds in both alloys exhibited a fine columnar dendritic microstructure, and while carbides were observed in the interdendritic regions of the welds, electron optical analysis did not reveal any gamma' precipitates in this region. It was concluded that for the welding of thin gage materials above a threshold laser power the resultant welding efficiency shows a greater dependence on laser beam mode, and laser spot size, than on laser power, and beam traverse speed. Aluminum 6061 was not easily welded with a laser in its as received form, and the welds showed some degree of porosity. Anodizing was found to improve the welding efficiency in this material. While the presence of an anodic film on the metal surface increased the welding efficiency of the alloy, no relationship was found between the thickness of the anodic film and welding efficiency in the range of film thicknesses investigated. Weld regions were observed to be cellular dendritic in structure, with narrow heat affected zones. No precipitates or low melting point phases could be identified in the weld region. Melt zones were successfully

  8. Identification of internal defects of hardfacing coatings in regeneration of machine parts

    Directory of Open Access Journals (Sweden)

    Józwik Jerzy

    2017-01-01

    Full Text Available The quality control of hardfacing is one of the areas where non-destructive testing is applied. To detect defects and inconsistencies in the industrial practice one uses the same methods as in the testing of welded joints. Computed Tomography is a type of X-ray spectroscopy. It is used as a diagnostic method that allows to obtain layered images of examined hardfacing. The paper presents the use of Computed Tomography for the evaluation of defects of hardfacing parts and errors. Padding welds were produced using GMA consumable electrode welding with CO2 active gas. The padding material used were cored wires FILTUB DUR 16, and ones produced from a Fe-Mn-C-Si-Cr-Mo-Ti-W alloy. The layers were padded on to different surfaces: C45, 165CrV12, 42CrMo4, S235JR steel. Typical defects occurring in the pads and the influence of the type of wire on the concentration of defects were characterized. The resulting pads were characterized by occurring inconsistencies taking the form of pores, intrusions and fractures.

  9. Identification of internal defects of hardfacing coatings in regeneration of machine parts

    Science.gov (United States)

    Józwik, Jerzy; Dziedzic, Krzysztof; Pashechko, Mykhalo; Łukasiewicz, Andrzej

    2017-10-01

    The quality control of hardfacing is one of the areas where non-destructive testing is applied. To detect defects and inconsistencies in the industrial practice one uses the same methods as in the testing of welded joints. Computed Tomography is a type of X-ray spectroscopy. It is used as a diagnostic method that allows to obtain layered images of examined hardfacing. The paper presents the use of Computed Tomography for the evaluation of defects of hardfacing parts and errors. Padding welds were produced using GMA consumable electrode welding with CO2 active gas. The padding material used were cored wires FILTUB DUR 16, and ones produced from a Fe-Mn-C-Si-Cr-Mo-Ti-W alloy. The layers were padded on to different surfaces: C45, 165CrV12, 42CrMo4, S235JR steel. Typical defects occurring in the pads and the influence of the type of wire on the concentration of defects were characterized. The resulting pads were characterized by occurring inconsistencies taking the form of pores, intrusions and fractures.

  10. Developing and Studying the Methods of Hard-Facing with Heat-Resisting High-Hardness Steels

    Science.gov (United States)

    Malushin, N. N.; Kovalev, A. P.; Valuev, D. V.; Shats, E. A.; Borovikov, I. F.

    2016-08-01

    The authors develop the methods of hard-facing of mining-metallurgic equipment parts with heat-resisting high-hardness steels on the base of plasma-jet hard-facing in the shielding-alloying nitrogen atmosphere.

  11. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications

    Science.gov (United States)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert

    2003-01-01

    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading

  12. Laser-TIG Welding of Titanium Alloys

    Science.gov (United States)

    Turichin, G.; Tsibulsky, I.; Somonov, V.; Kuznetsov, M.; Akhmetov, A.

    2016-08-01

    The article presents the results of investigation the technological opportunity of laser-TIG welding of titanium alloys. The experimental stand for implementation of process with the capability to feed a filler wire was made. The research of the nature of transfer the filler wire into the welding pool has been demonstrated. The influence of distance between the electrode and the surface of the welded plates on the stability of the arc was shown. The relationship between welding velocity, the position of focal plane of the laser beam and the stability of penetration of plates was determined.

  13. Friction Pull Plug Welding in Aluminum Alloys

    Science.gov (United States)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  14. Microstructure and Mechanical Properties of an Ultrasonic Spot Welded Aluminum Alloy: The Effect of Welding Energy

    National Research Council Canada - National Science Library

    He Peng; Daolun Chen; Xianquan Jiang

    2017-01-01

    The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique-ultrasonic spot welding (USW...

  15. CO2 laser welding of magnesium alloys

    Science.gov (United States)

    Dhahri, Mohammed; Masse, Jean Eric; Mathieu, J. F.; Barreau, Gerard; Autric, Michel L.

    2000-02-01

    Metallic alloys with a low mass density can be considered to be basic materials in aeronautic and automotive industry. Magnesium alloys have better properties than aluminum alloys in respect of their low density and high resistance to traction. The main problems of magnesium alloy welding are the inflammability, the crack formation and the appearance of porosity during the solidification. The laser tool is efficient to overcome the difficulties of manufacturing by conventional processing. Besides, the laser processing mainly using shielding gases allows an effective protection of the metal against the action of oxygen and a small heat affected zone. In this paper, we present experimental results about 5 kW CO2 laser welding of 4 mm-thick magnesium alloy plates provided by Eurocopter France. The focused laser beam has about 0.15 mm of diameter. We have investigated the following sample: WE43, alloy recommended in aeronautic and space applications, is constituted with Mg, Y, Zr, rare earth. More ductile, it can be used at high temperatures until 250 degrees Celsius for times longer than 5000 hours without effects on its mechanical properties. A sample of RZ5 (French Norm: GZ4TR, United States Norm ZE41) is composed of Mg, Zn, Zr, La, rare earth. This alloy has excellent properties of foundry and it allows to the realization of components with complex form. Also, it has a good resistance and important properties of tightness. The parameters of the process were optimized in the following fields: laser power: 2 to 5 kW, welding speed: 1 to 4.5 m/min, focal position: -3 mm to +3 mm below or on the top of the metal surface, shielding gas: helium with a flow of 10 to 60 l/min at 4 bars. Metallurgical analyses and mechanical control are made (macroscopic structure, microscopic structure, interpretations of the structures and localization of possible defects, analyse phases, chemical composition, hardness, tensile test etc.) to understand the parameters influence of welding

  16. Bond strength of gold alloys laser welded to cobalt-chromium alloy.

    Science.gov (United States)

    Watanabe, Ikuya; Wallace, Cameron

    2008-01-01

    The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneously-welded groups showed inferior fracture load compared to corresponding control groups, except for Co-Cr. In the specimens welded heterogeneously to Co-Cr, Type IV was the greatest, followed by low-gold and Type II. There was no statistical difference (Palloys tested, the Type IV gold alloy was the most suitable alloy for laser-welding to Co-Cr.

  17. Laser welding of aluminium-magnesium alloys sheets process optimization and welds characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, C. [GEMPPM (CALFETMAT), 69 - Villeurbanne (France); Fouquet, F. [GEMPPM (CALFETMAT), 69 - Villeurbanne (France); Robin, M. [GEMPPM (CALFETMAT), 69 - Villeurbanne (France)

    1996-12-31

    The purpose of the present study was to obtain good quality welds using a CO2 laser with Al-Mg alloys sheet. Defects formation mechanisms were analyzed and a welding procedure was defined, using several characterization technics, in order to realize low defects welding seams. After laser welding optimization, comparative tensile tests and microstructural analysis were carried out. (orig.)

  18. Particulate and gaseous emissions when welding aluminum alloys.

    Science.gov (United States)

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  19. Bond Strength of Gold Alloys Laser Welded to Cobalt-Chromium Alloy

    OpenAIRE

    Watanabe, Ikuya; Wallace, Cameron

    2008-01-01

    The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneo...

  20. Welding of Aluminum Alloys to Steels: An Overview

    Science.gov (United States)

    2013-08-01

    UNCLASSIFIED 7 UNCLASSIFIED 2.1. Fusion welding methods 2.1.1. Gas metal arc (MIG) welding and tungsten inert gas ( TIG ) welding techniques...UNCLASSIFIED 8 UNCLASSIFIED Fig.3. (a) Schematic of the butt TIG welding for joining the aluminum to steel and (b) formation of the cracks at the...dissimilar metals TIG welding -brazing of aluminum alloy to stainless steel, Materials Science and Engineering A 509 (2009) 31-40. [28] S.B. Lin, J.L. Song

  1. Variable-Polarity Plasma Arc Welding Of Alloy 2219

    Science.gov (United States)

    Walsh, Daniel W.; Nunes, Arthur C., Jr.

    1989-01-01

    Report presents results of study of variable-polarity plasma arc (VPPA) welding of aluminum alloy 2219. Consists of two parts: Examination of effects of microsegregation and transient weld stress on macrosegregation in weld pool and, electrical characterization of straight- and reverse-polarity portions of arc cycle.

  2. Análise da resistência ao desgaste de revestimento duro aplicado por soldagem em facas picadoras de cana-de-açúcar Analysis of wear resistance of hardfacing applied by welding in sugarcane shredder knife

    Directory of Open Access Journals (Sweden)

    Aldemi Coelho Lima

    2010-06-01

    cost is high due to metallic losses by wear. This paper studies the application of hardfacings by flux cored arc welding on the wear resistance of sugarcane shredder knives comparing laboratory and field-test results. Four types of consumable were used: three selfshielded flux cored wires of diameter 1.6 mm of alloys FeCrC, FeCrC+Nb and FeCrC+Ti and a covered electrode of FeCrC alloy of diameter 4.0 mm. The base metal is SAE 1020 steel. Test specimens were evaluated using rubber wheel abrasion tests (ASTM G65. Sugarcane shredder knives hardfaced in the same welding conditions were also tested on a shredder in an alcohol distillery. Wear evaluation is by mass loss. The flux cored wires were welded in short-circuit transfer mode with the same current and voltage values. The wire with Nb had the highest wear resistance in laboratory test but due to cracks and spalling had the least wear resistance in field test. The FeCrC and FeCrC+Ti wires presented the worst results in laboratory tests and the best results in field test, respectively. In comparison with the covered electrode, the FeCrC+Nb wire presented similar performance in laboratory and the FeCrC+Ti wire presented similar performance in field tests.

  3. Effects of welding parameters on the mechanical properties of inert gas welded 6063 Aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ertan, Taner [MAKO Corporation (Turkey); Uguz, Agah [Uludag Univ. (Turkey). Mechnical Engineering Dept.; Ertan, Rukiye

    2012-07-01

    The influence of welding parameters, namely welding current and gas flow rate, on the mechanical properties of Gas Tungsten Arc Welding (GTAW) and Shielded Metal Arc Welding (SMAW) welded 6063 Aluminum alloy (AA 6063) has been investigated. In order to study the effect of the welding current and gas flow rate, microstructural examination, hardness measurements and room temperature tensile tests have been carried out. The experimental results show that the mechanical properties of GTAW welded joints have better mechanical properties than those of SMAW welded joints. Increasing the welding current appeared to have a beneficial effect on the mechanical properties. However, either increasing or decreasing the gas flow rate resulted in a decrease of hardness and tensile strength. It was also found that, the highest strength was obtained in GTAW welded samples at 220 A and 15 l/min gas flow rate.

  4. Electric pulse treatment of welded joint of aluminum alloy

    OpenAIRE

    A.A. Mitiaev; I. P. Volchok; Yu. L. Nadezhdin; V.A. Sokirko; I. A. Vakulenko

    2013-01-01

    Purpose. Explanation of the redistribution effect of residual strengthes after electric pulse treatment of arc welding seam of the aluminum alloy. Methodology. Alloy on the basis of aluminium of АК8М3 type served as the research material. As a result of mechanical treatment of the ingots after alloy crystallization the plates with 10 mm thickness were obtained. After edge preparation the elements, which are being connected were butt welded using the technology of semiautomatic argon arc weldi...

  5. Tool For Friction Stir Tack Welding of Aluminum Alloys

    Science.gov (United States)

    Bjorkman, Gerald W.; Dingler, Johnny W.; Loftus, Zachary

    2003-01-01

    A small friction-stir-welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force. It is possible to tack the pieces together by gas tungsten arc welding, but the process can be awkward and time-consuming and can cause sufficient damage to necessitate rework. Friction stir tack welding does not entail these disadvantages. In addition, friction stir tack welding can be accomplished by use of the same automated equipment (except for the welding tool) used in subsequent full friction stir welding. The tool for friction stir tack welding resembles the tool for full friction stir welding, but has a narrower shoulder and a shorter pin. The shorter pin generates a smaller workpiece-separating force so that clamping suffices to keep the workpieces together. This tool produces a continuous or intermittent partial-penetration tack weld. The tack weld is subsequently consumed by action of the larger tool used in full friction stir welding tool.

  6. Research Progress in Friction Welding of Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    YOU Guo-qiang

    2018-01-01

    Full Text Available The basic principles and features of friction welding were introduced.The research progresses in friction welding of Mg alloys were reviewed. The process, joining mechanism, microstructure and mechanical properties of Mg-Mg similar and Mg-Al dissimilar friction welded joints were primarily discussed. Meanwhile, the current problems were analyzed. It was pointed out that the temperature field, stress-strain field and plastic flow during the friction welding process of Mg alloys require further investigation. Furthermore, the future development should focus on the optimization of process and intermediate layer to obtain high quality joints.

  7. Investigate The Effect Of Welding Parameters On Mechanical Properties During The Welding Of Al-6061 Alloy

    Directory of Open Access Journals (Sweden)

    Rajendra Prasad

    2017-10-01

    Full Text Available Friction welding is a solid state welding technique which is being used in recent times to weld similar as well as dissimilar metals for getting defect free weld. Many combinations like low carbon to stainless steel austenitic to ferrite stainless steel aluminium to copper and titanium to aluminium or steel have been tried out by various solid state welding processes with quite good results. In the present work the 3 level full factorial design has been employed to investigate the effect of welding parameters on tensile strength toughness and heat generation during the welding of Al-6061 alloy. Mathematical relationships between friction welding parameters and mechanical properties like heat generation tensile strength and toughness have also been developed. An attempt has also been made to examine the fracture surfaces of test specimens using SEM. It has been found that welding speed is the most significant parameter thats affect the heat generation tensile strength and toughness. it has been found that tensile strength and toughness during welding increases with increased in welding speed while tensile strength and toughness initially increased as the welding time increases after that it decreased with increase in welding time. The difference in weight of alloying elements can be clearly seen by analyzing spectrum of elements.

  8. Specification and qualification of welding procedures for metallic materials : welding procedure test : part 1 : arc and gas welding of steels and arc welding of nickel and nickel alloys : technical corrigendum 1

    CERN Document Server

    International Organization for Standardization. Geneva

    2005-01-01

    Specification and qualification of welding procedures for metallic materials : welding procedure test : part 1 : arc and gas welding of steels and arc welding of nickel and nickel alloys : technical corrigendum 1

  9. Gas tungsten arc welding of vanadium alloys with impurity control

    Science.gov (United States)

    Grossbeck, M. L.; King, J. F.; Nagasaka, T.; David, S. A.

    2002-12-01

    Gas tungsten arc welding in vanadium alloys is controlled by interstitial impurities. Techniques have been developed to weld V-4Cr-4Ti in a high-purity argon atmosphere resulting in a DBTT of -20 °C. The atmosphere was controlled by a Zr-Al getter which is activated at high temperature to obtain a clean surface then cooled and allowed to absorb hydrogen and oxygen impurities. Through the use of low-oxygen base metal and high-purity weld filler wire, a DBTT of -145 °C was obtained. Experiments using electron beam welding have shown that grain size also has an important effect on weld ductility. Introduction of nitrogen and yttrium has been used to study their effect on grain size. Using a combination of atmosphere control, alloy purity control, and grain size control, it is anticipated that V-Cr-Ti alloys will be weldable in field conditions.

  10. Development of laser welding techniques for vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Strain, R.V.; Leong, K.H.; Smith, D.L.

    1996-04-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Lasers do not require a vacuum (as do electron beam welders) and the welds they produce high depth-to-width ratios. Scoping with a small pulsed 50 J YAG laser indicated that lasers could produce successful welds in vanadium alloy (V-5%Cr-5%Ti) sheet (1 mm thick) when the fusion zone was isolated from air. The pulsed laser required an isolating chamber filled with inert gas to produce welds that did not contain cracks and showed only minor hardness increases. Following the initial scoping tests, a series of tests were preformed with a 6 kW continuous CO{sub 2} laser. Successful bead-on-plate welds were made on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys to depths of about 4 mm with this laser.

  11. Analysis and Comparison of Aluminum Alloy Welded Joints Between Metal Inert Gas Welding and Tungsten Inert Gas Welding

    Science.gov (United States)

    Zhao, Lei; Guan, Yingchun; Wang, Qiang; Cong, Baoqiang; Qi, Bojin

    2015-09-01

    Surface contamination usually occurs during welding processing and it affects the welds quality largely. However, the formation of such contaminants has seldom been studied. Effort was made to study the contaminants caused by metal inert gas (MIG) welding and tungsten inert gas (TIG) welding processes of aluminum alloy, respectively. SEM, FTIR and XPS analysis was carried out to investigate the microstructure as well as surface chemistry. These contaminants were found to be mainly consisting of Al2O3, MgO, carbide and chromium complexes. The difference of contaminants between MIG and TIG welds was further examined. In addition, method to minimize these contaminants was proposed.

  12. Nanoindentation of Electropolished FeCrAl Alloy Welds

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mara, Nathan Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-13

    The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a larger reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength than C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.

  13. Numerical simulation of linear friction welding of aeronautical alloys

    Science.gov (United States)

    Potet, Antoine; Mocellin, Katia; Fourment, Lionel

    2017-10-01

    Numerical simulation of linear friction welding (LFW) of Titanium alloys is considered with the Forge® software, using a JMatPro constitutive model with the aim of supporting process design for the welding of dissimilar materials, such as Titanium and Inconel. Relying on forces and temperature experimental measurements, friction and other unknown parameters of the model have to be calibrated.

  14. Microfissuring in Electron-Beam-Welded Nickel Alloy

    Science.gov (United States)

    Nunes, A. C., Jr

    1985-01-01

    Mathematical model developed for microfissuring of commercial nickel alloy during electron-beam welding. Number of measured microfissures per unit length of weld plotted against excess power calculated by computer model. Excess power that above level likely to produce microfissures. In agreement with model, measured microfissures increase at rate of 4.5 per inch (1.8 per centimeter) per excess kilowatt.

  15. Effects of Flux Precoating and Process Parameter on Welding Performance of Inconel 718 Alloy TIG Welds

    Science.gov (United States)

    Lin, Hsuan-Liang; Wu, Tong-Min; Cheng, Ching-Min

    2014-01-01

    The purpose of this study is to investigate the effect of activating flux on the depth-to-width ratio (DWR) and hot cracking susceptibility of Inconel 718 alloy tungsten inert gas (TIG) welds. The Taguchi method is employed to investigate the welding parameters that affect the DWR of weld bead and to achieve optimal conditions in the TIG welds that are coated with activating flux in TIG (A-TIG) process. There are eight single-component fluxes used in the initial experiment to evaluate the penetration capability of A-TIG welds. The experimental results show that the Inconel 718 alloy welds precoated with 50% SiO2 and 50% MoO3 flux were provided with better welding performance such as DWR and hot cracking susceptibility. The experimental procedure of TIG welding process using mixed-component flux and optimal conditions not only produces a significant increase in DWR of weld bead, but also decreases the hot cracking susceptibility of Inconel 718 alloy welds.

  16. Fusion Welding of AerMet 100 Alloy

    Energy Technology Data Exchange (ETDEWEB)

    ENGLEHART, DAVID A.; MICHAEL, JOSEPH R.; NOVOTNY, PAUL M.; ROBINO, CHARLES V.

    1999-08-01

    A database of mechanical properties for weldment fusion and heat-affected zones was established for AerMet{reg_sign}100 alloy, and a study of the welding metallurgy of the alloy was conducted. The properties database was developed for a matrix of weld processes (electron beam and gas-tungsten arc) welding parameters (heat inputs) and post-weld heat treatment (PWHT) conditions. In order to insure commercial utility and acceptance, the matrix was commensurate with commercial welding technology and practice. Second, the mechanical properties were correlated with fundamental understanding of microstructure and microstructural evolution in this alloy. Finally, assessments of optimal weld process/PWHT combinations for cotildent application of the alloy in probable service conditions were made. The database of weldment mechanical properties demonstrated that a wide range of properties can be obtained in welds in this alloy. In addition, it was demonstrated that acceptable welds, some with near base metal properties, could be produced from several different initial heat treatments. This capability provides a means for defining process parameters and PWHT's to achieve appropriate properties for different applications, and provides useful flexibility in design and manufacturing. The database also indicated that an important region in welds is the softened region which develops in the heat-affected zone (HAZ) and analysis within the welding metallurgy studies indicated that the development of this region is governed by a complex interaction of precipitate overaging and austenite formation. Models and experimental data were therefore developed to describe overaging and austenite formation during thermal cycling. These models and experimental data can be applied to essentially any thermal cycle, and provide a basis for predicting the evolution of microstructure and properties during thermal processing.

  17. Cracking susceptibility of aluminum alloys during laser welding

    Directory of Open Access Journals (Sweden)

    Lara Abbaschian

    2003-06-01

    Full Text Available The influence of laser parameters in welding aluminum alloys was studied in order to reduce hot cracking. The extension of cracks at the welding surface was used as a cracking susceptibility (CS index. It has been shown that the CS changes with changing welding velocity for binary Al-Cu alloys. In general, the CS index increased until a maximum velocity and then dropped to zero, generating a typical lambda-curve. This curve is due to two different mechanisms: 1 the refinement of porosities with increasing velocity and 2 the changes in the liquid fraction due to decreasing microsegregation with increasing velocities.

  18. Predicting the dilution of plasma transferred arc hardfacing of stellite on carbon steel using response surface methodology

    Science.gov (United States)

    Lakshminarayanan, A. K.; Balasubramanian, V.; Varahamoorthy, R.; Babu, S.

    2008-12-01

    Control of dilution is important in hardfacing, where low dilution is typically desirable. At present, most fabrication industries use shielded metal are welding, gas metal arc welding, gas tungsten arc welding and submerged are welding processes for hardfacing purposes. In these processes, the percentage of the dilution level is higher, ranging between 10% and 30%. In Plasma Transferred Arc (PTA) hardfacing, a solidified metallurgical bond between the deposit and the substrate is obtained with minimum dilution (less than 10%). This paper highlights the application of response surface methodology to predict and optimize the percentage of the dilution of a cobalt-based hardfaced surface produced by the PTA process. Experiments were conducted based on a fully replicable five-factor, five-level central composite rotatable design and a mathematical model was developed using response surface methodology. Furthermore, the response surface methodology was used to optimize the process parameters that yield the lowest percentage of dilution.

  19. Feasibility of surface-coated friction stir welding tools to join AISI 304 grade austenitic stainless steel

    OpenAIRE

    A.K. Lakshminarayanan; C.S. Ramachandran; V. Balasubramanian

    2014-01-01

    An attempt is made to develop the tools that are capable enough to withstand the shear, impact and thermal forces that occur during friction stir welding of stainless steels. The atmospheric plasma spray and plasma transferred arc hardfacing processes are employed to deposit refractory ceramic based composite coatings on the Inconel 738 alloy. Five different combinations of self-fluxing alloy powder and 60% ceramic reinforcement particulate mixtures are used for coating. The best friction sti...

  20. A Survey on Friction Stir Welding Of Dissimilar Magnesium Alloys

    Science.gov (United States)

    Unnikrishnan, M. A.; Raja, Dhas. J. Edwin

    2017-10-01

    There is a consistent demand for superior materials in every industry. The areas on demand are automobile and aerospace sectors in major.. The most commonly used material in these fields is Aluminium.Though it possess all the properties up to some extent constant demand is pushing for alternate materials. Dissimilar alloys have been a relatively new approach towards these fields.. Friction stir welding dissimilar alloys is a big leap in Automobile sector. In this paper a detailed review of Friction stir welding of Dissimilar Magnesium alloys has been done. This work will serve as a reference to subsequent researchers.

  1. Gas-tungsten arc welding of aluminum alloys

    Science.gov (United States)

    Frye, L.D.

    1982-03-25

    The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  2. Mechanical Characteristics of Welded Joints of Aluminum Alloy 6061 T6 Formed by Arc and Friction Stir Welding

    Science.gov (United States)

    Astarita, A.; Squillace, A.; Nele, L.

    2016-01-01

    Butt welds formed by arc welding in inert gas with nonconsumable electrode (tungsten inert gas (TIG) welding) and by friction stir welding (FSW) from aluminum alloy AA6061 T6 are studied. Comparative analysis of the structures and mechanical properties of the welded joints is performed using the results of optical and electron microscopy, tensile tests, tests for residual bending ductility, and measurements of microhardness. The changes in the microstructure in different zones and the degrees of degradation of the mechanical properties after the welding are determined. It is shown that the size of the tool for the friction stir welding affects the properties of the welds. Quantitative results showing the relation between the microscopic behavior of the alloy and the welding-induced changes in the microstructure are obtained. Friction stir welding is shown to provide higher properties of the welds.

  3. Full-Field Strain Behavior of Friction Stir-Welded Titanium Alloy

    Science.gov (United States)

    2008-01-01

    titanium can be 9 achieved with Gas Tungsten-Arc welding , also known as TIG welding , and Gas Metal- Arc welding , also known as MIG welding , as long...Full-Field Strain Behavior of Friction Stir- Welded Titanium Alloy Trent A. Greenwell A thesis submitted in partial...Field Strain Behavior of Friction Stir- Welded Titanium Alloy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  4. Weld-brazing - a new joining process. [combination resistance spot welding and brazing of titanium alloys

    Science.gov (United States)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1972-01-01

    A joining process designated weld brazing which combines resistance spot welding and brazing has been developed. Resistance spot welding is used to position and align the parts as well as to establish a suitable faying surface gap for brazing. Fabrication is then completed by capillary flow of the braze alloy into the joint. The process has been used successfully to fabricate Ti-6Al-4V titanium alloy joints using 3003 aluminum braze alloy. Test results obtained on single overlap and hat-stiffened structural specimens show that weld brazed joints are superior in tensile shear, stress rupture, fatigue, and buckling than joint fabricated by spotwelding or brazing. Another attractive feature of the process is that the brazed joints is hermetically sealed by the braze material.

  5. Development of laser welding techniques for vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Strain, R.V.; Leong, K.H.; Smith, D.L. [Argonne National Laboratory, IL (United States)

    1996-10-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Bead-on-plate and butt welds were previously performed to depths of about 4 mm with a 6-kW CO{sub 2} laser on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys. These welds were made at a speed of 0.042 m/s using argon purging at a flow rate of 2.8 m{sup 3}/s. The purge was distributed with a diffuser nozzle aimed just behind the laser beam during the welding operation. The fusion zones of welds made under these conditions consisted of very fine, needle-shaped grains and were also harder than the bulk metal (230-270 dph, compared to {approx}180 dph for the bulk metal). A limited number of impact tests showed that the as-welded ductile-brittle transition temperatures (DBTT) was above room temperature, but heat treatment at 1000{degrees}C for 1 h in vacuum reduced the DBTT to <{minus}25{degrees}C. Activities during this reporting period focused on improvements in the purging system and determination of the effect of welding speed on welds. A 2-kW continuous YAG laser at Lumonics Corp. in Livonia, MI, was used to make 34 test welds for this study.

  6. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy.

    Science.gov (United States)

    Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo

    2013-12-18

    Friction Stir Welding (FSW) is a solid-state joining process; i.e. , no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

  7. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2014-05-01

    Full Text Available Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research.

  8. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    Science.gov (United States)

    Liu, Liming; Ren, Daxin; Liu, Fei

    2014-01-01

    Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC) such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research. PMID:28788646

  9. Technology of welding aluminum alloys-III

    Science.gov (United States)

    Harrison, J. R.; Kor, L. J.; Oleksiak, C. E.

    1978-01-01

    Control of porosity in weld beads was major objective in development of aluminum welding program. Porosity, most difficult defect to control, is caused by hydrogen gas unable to escape during solidification. Hard tooling allows hotter bead than free-fall tooling so hydrogen bubbles can boil out instead of forming pores. Welding position, moisture, and cleanliness are other important factors in control of porosity.

  10. Electric pulse treatment of welded joint of aluminum alloy

    Directory of Open Access Journals (Sweden)

    A.A. Mitiaev

    2013-08-01

    Full Text Available Purpose. Explanation of the redistribution effect of residual strengthes after electric pulse treatment of ark welding seam of the aluminum alloy. Methodology. Alloy on the basis of aluminium of АК8М3 type served as the research material. As a result of mechanical treatment of the ingots after alloy crystallization the plates with 10 mm thickness were obtained. After edge preparation the elements, which are being connected were butt welded using the technology of semiautomatic argon arc welding by the electrode with a diameter of 3 mm of AK-5 alloy. Metal structure of the welded joint was examined under the light microscope at a magnification of 200 and under the scanning electronic microscope «JSM-6360 LA». The Rockwell hardness (HRF was used as a strength characteristic of alloy. Hardness measuring of the phase constituents (microhardness was carried out using the device PМТ-3, with the indenter loadings 5 and 10 g. The crystalline structure parameters of alloy (dislocation density, second kind of the crystalline grid distortion and the scale of coherent scattering regions were determined using the methods of X-ray structural analysis. Electric pulse treatment (ET was carried out on the special equipment in the conditions of the DS enterprise using two modes A and В. Findings. On the basis of researches the previously obtained microhardness redistribution effect in the area of welded connection after ET was confirmed. As a result of use of the indicated treatment it was determined not only the reduction of microhardness gradient but also the simultaneous hardening effect in the certain thermal affected areas near the welding seam. During study of chemical composition of phase constituents it was discovered, that the structural changes of alloy as a result of ET first of all are caused by the redistribution of chemical elements, which form the connections themselves. By the nature of the influence the indicated treatment can be

  11. Microstructure and Mechanical Properties of an Ultrasonic Spot Welded Aluminum Alloy: The Effect of Welding Energy

    Science.gov (United States)

    Peng, He; Chen, Daolun; Jiang, Xianquan

    2017-01-01

    The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique–ultrasonic spot welding (USW)–at different energy levels. An ultra-fine necklace-like equiaxed grain structure is observed along the weld line due to the occurrence of dynamic crystallization, with smaller grain sizes at lower levels of welding energy. The tensile lap shear strength, failure energy, and critical stress intensity of the welded joints first increase, reach their maximum values, and then decrease with increasing welding energy. The tensile lap shear failure mode changes from interfacial fracture at lower energy levels, to nugget pull-out at intermediate optimal energy levels, and to transverse through-thickness (TTT) crack growth at higher energy levels. The fatigue life is longer for the joints welded at an energy of 1400 J than 2000 J at higher cyclic loading levels. The fatigue failure mode changes from nugget pull-out to TTT crack growth with decreasing cyclic loading for the joints welded at 1400 J, while TTT crack growth mode remains at all cyclic loading levels for the joints welded at 2000 J. Fatigue crack basically initiates from the nugget edge, and propagates with “river-flow” patterns and characteristic fatigue striations. PMID:28772809

  12. Review on hardfacing as method of improving the service life of ...

    African Journals Online (AJOL)

    Most welding methods were identified to be successfully used in applying consumable on substrate surfaces. Dilution decreases with increase in the number of hardfacing layers. Buffers, butters and build-up metals are used to compensate for composition differences to prevent spalling, overcome welding difficulties and ...

  13. Elements loss analysis based on spectral diagnosis in laser-arc hybrid welding of aluminum alloy

    Science.gov (United States)

    Chen, Yong; Chen, Hui; Zhu, Minhao; Yang, Tao; Shen, Lin

    2017-07-01

    Aluminum alloy has been widely used in automobiles, high-speed trains, aerospace and many other fields. The loss of elements during welding process causes welding defects and affects the microstructure and properties of the joints. This paper discusses the correlation between welding process, spectral intensity and loss of elements in laser-arc hybrid welding of Al alloys. The results show that laser power and arc current have a significant impact on the spectral intensity and loss of elements. Compared with the base metal, the contents of alloying elements in the weld area are lower. The burning losses of alloy elements increase with the welding heat input.

  14. 76 FR 36086 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results of Antidumping Duty...

    Science.gov (United States)

    2011-06-21

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results of... welded non- alloy steel pipe from Mexico. See Certain Circular Welded Non-Alloy Steel Pipe From Mexico... Antidumping Duty Changed Circumstances Review: Certain Circular Welded Non-Alloy Steel Pipe from Mexico, 75 FR...

  15. Stress corrosion cracking of welded Alloy 600 penetration mockups

    Energy Technology Data Exchange (ETDEWEB)

    Sarver, J.M. [Babcock and Wilcox, Alliance, OH (United States). Research and Development Div.; Pathania, R.S. [Electric Power Research Inst., Palo Alto, CA (United States); Stuckey, K.; Fyfitch, S. [B and W Nuclear Technologies, Lynchburg, VA (United States); Gelpi, A.; Foucault, M. [Framatome, Paris La Defense (France); Hunt, E.S. [Dominion Engineering, McLean, VA (United States)

    1995-12-31

    The primary water stress corrosion cracking (PWSCC) of Alloy 600 in components other than steam generators is a problem of increasing concern for nuclear power plants. Of greatest concern at the present time is the PWSCC of Alloy 600 vessel head penetrations. The common elements of these components are threefold: (1) the Alloy 600 material has a susceptible microstructure, (2) the Alloy 600 material is either a thick-walled tube or a bar which has been machined into a thick-walled tube, and (3) the Alloy 600 material has been welded into a structure such that high residual welding stresses exist in the postwelded Alloy 600 material. The objectives of the present program were to evaluate the PWSCC behavior of various configurations of welded Alloy 600 penetrations, and possible remedial measures which would prevent or retard PWSCC in these components. Mockups were instrumented to permit instantaneous remote sensing of through-wall cracking and were autoclave tested along with control C-rings in a doped steam environment. Following the test exposures, the mockups were split and examined to characterize the cracking morphology and the material microstructure. A Weibull distribution was used to analyze the time-to-failure results, and the observed cracking locations were compared to residual stress levels predicted by an elastic-plastic finite element analysis of the mockups.

  16. Microstructural issues in a friction-stir-welded aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Flores, O.V.; Kennedy, C.; Murr, L.E.; Brown, D.; Pappu, S.; Nowak, B.M.; McClure, J.C. [Univ. of Texas, El Paso, TX (United States)

    1998-02-03

    Recent observations of microstructures associated with friction-stir welding (FSW) in a number of aluminum alloys have consistently demonstrated the actual weld zone to consist of a (dynamically) recrystallized grain structure resulting from the extreme, solid-state, plastic deformation characterizing the process. Because of solubilities associated with the various precipitates in 7075 and 6061 aluminum alloys, and the fact that the precipitates were either homogeneously distributed throughout both the original (unwelded) work-piece plates and the well zones (or formed varying densities of Widmanstaetten patterns within the original and recrystallized grains), it has been difficult to follow the stirring of stable, second-phase particles from the base metal (work-piece) into the weld zone. In the present investigation, a compositionally modified 1100 aluminum alloy (nominally 99.2% Al, 0.5% Fe, 0.15% Cu, 0.12% Si, 0.05 Mn, 0.04 Ti, balance in weight percent of Be and Mg), forming a stable microdendritic (second-phase), equiaxed, cell structure was friction-stir welded. These thermally stable, geometrically specific, precipitates in the base metal were compared with their disposition within the friction-stir-weld zone. In addition, as-cast plates of this alloy were cold-rolled 50% and friction-stir-welded in order to compare these two schedules (as-cast and 50% cold-rolled) in terms of residual hardness variations and related microstructural issues as well as the effect of prior deformation on the friction-stir welding process.

  17. Microhardness Testing of Aluminum Alloy Welds

    Science.gov (United States)

    Bohanon, Catherine

    2009-01-01

    A weld is made when two pieces of metal are united or fused together using heat or pressure, and sometimes both. There are several different types of welds, each having their own unique properties and microstructure. Strength is a property normally used in deciding which kind of weld is suitable for a certain metal or joint. Depending on the weld process used and the heat required for that process, the weld and the heat-affected zone undergo microstructural changes resulting in stronger or weaker areas. The heat-affected zone (HAZ) is the region that has experienced enough heat to cause solid-state microstructural changes, but not enough to melt the material. This area is located between the parent material and the weld, with the grain structure growing as it progresses respectively. The optimal weld would have a short HAZ and a small fluctuation in strength from parent metal to weld. To determine the strength of the weld and decide whether it is suitable for the specific joint certain properties are looked at, among these are ultimate tensile strength, 0.2% offset yield strength and hardness. Ultimate tensile strength gives the maximum load the metal can stand while the offset yield strength gives the amount of stress the metal can take before it is 0.2% longer than it was originally. Both of these are good tests, but they both require breaking or deforming the sample in some way. Hardness testing, however, provides an objective evaluation of weld strengths, and also the difference or variation in strength across the weld and HAZ which is difficult to do with tensile testing. Hardness is the resistance to permanent or plastic deformation and can be taken at any desired point on the specimen. With hardness testing, it is possible to test from parent metal to weld and see the difference in strength as you progress from parent material to weld. Hardness around grain boundaries and flaws in the material will show how these affect the strength of the metal while still

  18. Effects of Friction Stir Welding Speed on AA2195 alloy

    Directory of Open Access Journals (Sweden)

    Lee Ho-Sung

    2016-01-01

    Full Text Available The application of friction stir welding (FSW to aerospace has grown rapidly due to the high efficiency and environmental friendly nature of the process. FSW is achieved by plastic flow of frictionally heated material in solid state and offers many advantages of avoiding hot cracking and limiting component distortion. Recently low density, high modulus and high strength AA2195 are used as substitute for conventional aluminum alloys since the weight saving is critical in aerospace applications. One of the problems for this alloy is weld metal porosity formation leading to hot cracking. Combination of FSW and AA2195 provides synergy effect to improve mechanical properties and weight saving of aerospace structure such as cryogenic fuel tanks for launch systems. The objective of this paper is to investigate the effect of friction stir welding speed on mechanical and microstructural properties of AA2195. The friction stir welded materials were joined with four different tool rotation speeds (350~800 rpm and five welding speeds (120~360 mm/min, which are the two prime welding parameters in this process.

  19. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    Science.gov (United States)

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  20. Initial Development in Joining of ODS Alloys Using Friction Stir Welding

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Feng, Zhili [ORNL

    2007-08-01

    Solid-state welding of oxide-dispersion-strengthened (ODS) alloy MA956 sheets using friction stir welding (FSW) was investigated. Butt weld was successfully produced. The weld and base metals were characterized using optical microscopy, scanning electronic microscopy, transmission electronic microscopy, and energy dispersion x-ray spectrum. Microhardness mapping was also conducted over the weld region. Analyses indicate that the distribution of the strengthening oxides was preserved in the weld. Decrease in microhardness of the weld was observed but was insignificant. The preliminary results seem to confirm the envisioned feasibility of FSW application to ODS alloy joining. For application to Gen IV nuclear reactor heat exchanger, further investigation is suggested.

  1. CHARACTERIZATION OF DEFECTS IN ALLOY 152, 52 AND 52M WELDS

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.; Seffens, Rob J.; Efsing, Pal G.

    2009-08-27

    Defect distributions have been documented by optical metallography, scanning electron microscopy and electron backscatter diffraction in alloy 152 and 52 mockups welds, alloy 52 and 52M overlay mockups and an alloy 52M inlay. Primary defects were small cracks at grain boundaries except for more extensive cracking in the dilution zone of an alloy 52 overlay on 304SS. Detailed characterizations of the dilution zone cracks were performed by analytical transmission electron microscopy identifying grain boundary titanium-nitride precipitation associated with the intergranular separations. I. INTRODUCTION Weldments continue to be a primary location of stress-corrosion cracking (SCC) in light-water reactor systems. While problems related to heat-affected-zone (HAZ) sensitization and intergranular (IG) SCC of austenitic stainless alloys in boiling-water reactors (BWRs) have been significantly reduced, SCC has now been observed in HAZs of non-sensitized materials and in dissimilar metal welds where Ni-base alloy weld metals are used. IGSCC in weld metals has been observed in both BWRs and pressurized water reactors (PWRs) with recent examples for PWR pressure vessel penetrations producing the most concern. This has led to the replacement of alloy 600/182/82 welds with higher Cr, more corrosion-resistant replacement materials (alloy 690/152/52/52M). Complicating this issue has been a known susceptibility to cracking during welding [1-7] of these weld metals. There is a critical need for an improved understanding of the weld metal metallurgy and defect formation in Ni-base alloy welds to effectively assess long-term performance. A series of macroscopic to microscopic examinations were performed on available mockup welds made with alloy 52 or alloy 152 plus selected overlay and inlay mockups. The intent was to expand our understanding of weld metal structures in simulated LWR service components with a focus on as-welded defects. Microstructural features, defect distributions

  2. [Cracking in laser welds of dental Ni-Cr alloys. Effect of alloy composition].

    Science.gov (United States)

    Matsui, Y

    1990-06-01

    For the purpose of clarifying the effect of alloy compositions on cracking in laser welds of dental Ni-Cr alloys, 12 commercial and 11 experimental Ni-Cr alloys for crown and bridges were subjected to pulsed YAG laser spot welding, and their welds were investigated by optical and scanning electron microscopy, and EDX and thermal analysis methods. Main conclusions are as follows. 1. Cracks in laser welds were solidification cracks at grain boundaries in weld fusion zones. 2. In the case of commercial dental Ni-Cr alloys, a considerable number of eutectics enriched in Si, A1 and/or S were formed. Greater cracking susceptibility was interpreted by considering that these eutectics solidified at solidification temperatures far lower than the nominal solidus. 3. In the case of experimental Ni-Cr alloys with a small amount of eutectics, S and Si enhanced cracking sensitivity, but Mn reduced cracking. 4. The above results suggest that it is beneficial to the prevention or reduction of cracking to decrease harmful elements such as Si and S forming low solidification temperature eutectics or to add some elements such as Mn forming higher solidification temperature eutectics instead of lower ones.

  3. STRESS CORROSION CRACKING OF ALLOY 152 WELD BUTTER NEAR THE LOW ALLOY STEEL INTERFACE

    Energy Technology Data Exchange (ETDEWEB)

    Alexandreanu, Bogdan; Chen, Yiren; Natesan, Ken; Shack, William J.

    2015-01-01

    The objective of this work was to obtain SCC growth data in Alloy 152 weld butter near the interface with Low Alloy Steel (LAS), which is a region where some dilution of Cr was expected to have occurred, thus presumably exhibiting an increased SCC-susceptibility vs. the bulk of the weld. The LAS piece used in this application was Alloy 533-Gr B from the Midland reactor lower head, and the Alloy 152 weld butter received a prototypical Post Weld Heat Treatment (PWHT) prior to joining by Alloy 152 to an Alloy 690 piece according to a procedure qualified to ASME IX. The compact tension specimens for SCC testing were aligned in the first layer of the Alloy 152 butter. The experimental approach based on tracking environmental enhancement vs. location was successful in identifying SCC-susceptible locations, and SCC rates ranging from 10-12 m/s to as high as 10-10 m/s were measured. The post-test examination of the specimens found that the fracture had the intergranular/interdendritic appearance typical of welds, and that the propagation was arrested wherever an intersection with the LAS occurred. The large range of SCC rates measured does not appear to correlate well with the local concentration of Cr (approx. 25% at the SCC locations), and, in fact, low Cr (20%) – high Fe “streaks” seemed to slow/arrest crack propagation. In short, simple “Cr dilution” does not seem to fully account for the “SCC-susceptible” microstructure that yielded the 10-10 m/s growth rate in this weld.

  4. Welding of Mo-Based Alloy Using Electron Beam and Laser-GTAW Hybrid Welding Techniques

    Science.gov (United States)

    Chatterjee, Anjan; Kumar, Santosh; Tewari, Raghvendra; Dey, Gautam Kumar

    2016-03-01

    In the current study, welding of TZM (molybdenum-based alloy) plates in square-butt configuration was carried out using electron beam and laser-GTAW hybrid power sources. Microstructures of weld joint containing three zones—parent metal, heat-affected zone, and fusion zone—were clearly identified when examined through optical and scanning electron microscopy. The weld joints were found to be sound with very wide fusion and heat-affected zones. The microstructure of the fusion zone was coarse-grained. as-solidified microstructure, while the microstructure of heat-affected zone was the recrystallized microstructure with reduction in grain size as distance from the fusion line increased. Microhardness profile using Vickers hardness tester was obtained across the weld region, and the tensile properties of the weld joints were evaluated by performing room temperature tensile test and fracture was examined using scanning electron microscope. Joint coefficient of the weld joints were ~40 to 45 pct of that of the parent metals with nonmeasurable tensile ductility with predominantly transgranular mode of fracture indicating weakness along the grain boundary. Detailed orientation imaging and transmission electron microscopy were carried out to understand the most dominating factor in introducing weld joint brittleness.

  5. Tailored Welding Technique for High Strength Al-Cu Alloy for Higher Mechanical Properties

    Science.gov (United States)

    Biradar, N. S.; Raman, R.

    AA2014 aluminum alloy, with 4.5% Cu as major alloying element, offers highest strength and hardness values in T6 temper and finds extensive use in aircraft primary structures. However, this alloy is difficult to weld by fusion welding because the dendritic structure formed can affect weld properties seriously. Among the welding processes, AC-TIG technique is largely used for welding. As welded yield strength was in the range of 190-195 MPa, using conventional TIG technique. Welding metallurgy of AA2014 was critically reviewed and factors responsible for lower properties were identified. Square-wave AC TIG with Transverse mechanical arc oscillation (TMAO) was postulated to improve the weld strength. A systematic experimentation using 4 mm thick plates produced YS in the range of 230-240 MPa, has been achieved. Through characterization including optical and SEM/EDX was conducted to validate the metallurgical phenomena attributable to improvement in weld properties.

  6. Feasibility of surface-coated friction stir welding tools to join AISI 304 grade austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    A.K. Lakshminarayanan

    2014-12-01

    Full Text Available An attempt is made to develop the tools that are capable enough to withstand the shear, impact and thermal forces that occur during friction stir welding of stainless steels. The atmospheric plasma spray and plasma transferred arc hardfacing processes are employed to deposit refractory ceramic based composite coatings on the Inconel 738 alloy. Five different combinations of self-fluxing alloy powder and 60% ceramic reinforcement particulate mixtures are used for coating. The best friction stir welding tool selected based on tool wear analysis is used to fabricate the austenitic stainless steel joints.

  7. Gas Metal Arc Welding Using Novel CaO-Added Mg Alloy Filler Wire

    OpenAIRE

    Minjung Kang; Youngnam Ahn; Cheolhee Kim

    2016-01-01

    Novel “ECO Mg” alloys, i.e., CaO-added Mg alloys, which exhibit oxidation resistance during melting and casting processes, even without the use of beryllium or toxic protection gases such as SF6, have recently been introduced. Research on ECO Mg alloys is still continuing, and their application as welding filler metals was investigated in this study. Mechanical and metallurgical aspects of the weldments were analysed after welding, and welding behaviours such as fume generation and droplet tr...

  8. Friction Welding of Aluminium and Aluminium Alloys with Steel

    Directory of Open Access Journals (Sweden)

    Andrzej Ambroziak

    2014-01-01

    Full Text Available The paper presents our actual knowledge and experience in joining dissimilar materials with the use of friction welding method. The joints of aluminium and aluminium alloys with the different types of steel were studied. The structural effects occurring during the welding process were described. The mechanical properties using, for example, (i microhardness measurements, (ii tensile tests, (iii bending tests, and (iv shearing tests were determined. In order to obtain high-quality joints the influence of different configurations of the process such as (i changing the geometry of bonding surface, (ii using the interlayer, or (iii heat treatment was analyzed. Finally, the issues related to the selection of optimal parameters of friction welding process were also investigated.

  9. Experimental and simulation study on the microstructure of TA15 titanium alloy laser beam welded joints

    Science.gov (United States)

    Zhan, Xiaohong; Peng, Qingyu; Wei, Yanhong; Ou, Wenmin

    2017-09-01

    Laser beam welding technique offers obvious advantages over other fusion welding processes in terms of joining titanium alloy. The microstructure of welded seam and heat affected zone resulted from diverse welding speeds and laser powers were investigated after simulating welding heat treatment. The analysis of the thermal transport properties successfully explained the morphology. Optimal process parameters were obtained. The simulation results were consistent with the corresponding experimental observations.

  10. Mechanical Behaviour Investigation Of Aluminium Alloy Tailor Welded Blank Developed By Using Friction Stir Welding Technique

    Science.gov (United States)

    Dwi Anggono, Agus; Sugito, Bibit; Hariyanto, Agus; Subroto; Sarjito

    2017-10-01

    The objective on the research was to investigate the mechanical properties and microstructure of tailor welded blank (TWB) made from AA6061-T6 and AA1100 using friction stir welding (FSW) process. Due to the dissimilar mechanical properties of the two aluminium alloys, microhardness test was conducted to measure the hardness distribution across the weld nugget. The mixing of two distinct materials was influenced by tool rotation speed. Therefore, microstructure analysis was carried out to investigate the grain size and shape. The grain size of AA6061-T6 has increased in the heat affected zone (HAZ) while for AA1100 has decreased. In the weld nugget, it has found a hook defects in the dissimilar aluminium joining. By using monotonic tensile load, the different weld line direction was observed with the expansion in tool rotation. The joints failure were consistently on the area of AA1100 series. Furthermore, two specimens were investigated, one through the dissimilar aluminium and the other through similiar material. Inspection of the weld nugget hardness was shown that nonhomogen material intermixing during the stiring process as confirmed by microhardness measurement.

  11. Mechanical and Tribological Characteristics of TIG Hardfaced Dispersive Layer by Reinforced with Particles Extruded Aluminium

    Directory of Open Access Journals (Sweden)

    R. Dimitrova

    2017-05-01

    Full Text Available The article presents the results of the implemented technology for generation of hardfaced dispersive layers obtained by additive material containing reinforcing phase of non-metal particles. The wear resistant coatings are deposited on pure aluminium metal matrix by shielded gas metal-arc welding applying tungsten inert gas (TIG with extruded aluminium wire reinforced by particles as additive material. Wire filler is produced by extrusion of a pack containing metalized and plated by flux micro/nano SiC particles. The metalized particles implanting in the metal matrix and its dispersive hardfacing are realized by solid-state welding under conditions of hot plastic deformation. Tribological characteristics are studied of the hardfaced layers of dispersive reinforced material on pure aluminium metal matrix with and without flux. Hardness profiles of the hardfaced layers are determined by nanoindentation. The surface layers are studied by means of Scanning Electron Microscopy (SEM and Energy Dispersive X-ray (EDX analysis. Increase by 15-31 % of the wear resistance of the hardfaced layers and 30-40 % of their hardness was found, which is due to the implanted in the layer reinforcing phase of metalized micro/nano SiC particles.

  12. A review on the effect of welding on the corrosion of magnesium alloys

    Science.gov (United States)

    Mohamed, N. S.; Alias, J.

    2017-10-01

    Welding is an important joining technique for lightweight alloys with their increasing applications in aerospace, aircraft, automotive, electronics and other industries. The applications of lightweight alloys particularly magnesium alloys increased rapidly due to their beneficial properties such as low density, high strength-to-mass ratio, good dimensional stability, electromagnetic shielding and good recyclability. The effect of welding on the corrosion of magnesium alloys are reviewed in this paper, which closely related to the developed microstructure by the welding process. The paper focuses particularly on friction stir and laser welding. The basic principles of friction stir and laser welding are discussed, to present the likelihood of defects which significantly affect the corrosion of magnesium alloy. The finding in corrosion demonstrated the morphology of corrosion occurrence on each welded region, and observation on the potential and current values are also included.

  13. Mechanical properties of friction stir welded aluminum alloys 5083 and 5383

    Directory of Open Access Journals (Sweden)

    Jeom Kee Paik

    2009-09-01

    Full Text Available The use of high-strength aluminum alloys is increasing in shipbuilding industry, particularly for the design and construction of war ships, littoral surface craft and combat ships, and fast passenger ships. While various welding methods are used today to fabricate aluminum ship structures, namely gas metallic arc welding (GMAW, laser welding and friction stir welding (FSW, FSW technology has been recognized to have many advantages for the construction of aluminum structures, as it is a low-cost welding process. In the present study, mechanical properties of friction stir welded aluminum alloys are examined experimentally. Tensile testing is undertaken on dog-bone type test specimen for aluminum alloys 5083 and 5383. The test specimen includes friction stir welded material between identical alloys and also dissimilar alloys, as well as unwelded (base alloys. Mechanical properties of fusion welded aluminum alloys are also tested and compared with those of friction stir welded alloys. The insights developed from the present study are documented together with details of the test database. Part of the present study was obtained from the Ship Structure Committee project SR-1454 (Paik, 2009, jointly funded by its member agencies.

  14. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    Science.gov (United States)

    Malyutina, Yu. N.; Bataev, A. A.; Mali, V. I.; Anisimov, A. G.; Shevtsova, L. I.

    2015-10-01

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  15. The effects of alloying elements on microstructures and mechanical properties of tungsten inert gas welded AZ80 magnesium alloys joint

    Science.gov (United States)

    Li, Hui; Zhang, Jiansheng; Ding, Rongrong

    2017-11-01

    The effects of alloying elements on the macrostructures, microstructures and tensile strength of AZ80 Mg alloy weldments were studied in the present study. The results indicate that with the decrease of Al element content of filler wire, the welding defects of seam are gradually eliminated and the β-Mg17Al12 phases at α-Mg boundaries are refined and become discontinuous, which are beneficial to the improvement of tensile strength. With AZ31 Mg alloy filler wire, the maximum tensile strength of AZ80 weldment is 220 MPa and fracture occurs at the welding seam of joint. It is experimentally proved that robust AZ80 Mg alloy joints can be obtained by tungsten inert gas (TIG) welding process with AZ31 Mg alloy filler wire. However, further study is required to improve the microstructures and reduce welding defects of joint in order to further improve the joining strength of AZ80 Mg alloy joint.

  16. Heat input effect of friction stir welding on aluminium alloy AA 6061-T6 welded joint

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar

    2016-01-01

    Full Text Available This paper deals with the heat input and maximum temperature developed during friction stir welding with different parameters. Aluminium alloy (AA 6061-T6 has been used for experimental and numerical analysis. Experimental analysis is based on temperature measurements by using infrared camera, whereas numerical analysis was based on empirical expressions and finite element method. Different types of defects have been observed in respect to different levels of heat input.

  17. Residual stresses of a magnesium alloy (AZ31 welded by the friction stir welding processes

    Directory of Open Access Journals (Sweden)

    Kouadri-Henni A.

    2016-01-01

    Full Text Available The objective of this study was to evaluate the residual stresses of FSW welding magnesium alloys (AZ31. The results show that the FSW processes lead to the formation of several distinct zones with differing mechanical properties. The residual stresses evolution have been explained by the heterogeneous modifications of the microstructure particularly a marked decrease in the grain size, a high modification of the crystallographic texture and the different anisotropic properties resulting from plasticity induced by the FSW process.

  18. PTA hardfacing of Nb/Al coatings Revestimentos Nb/Al depositados por PTA

    Directory of Open Access Journals (Sweden)

    Karin Graf

    2012-06-01

    Full Text Available Hardfacing is widely applied to components yet the majority of the welding techniques available restrain the variety of hard alloys that can be deposited. Plasma Transferred Arc hardfacing offsets this drawback by using powdered feedstock offering the ability to tailor the chemical composition of the coating and as a consequence its properties. The high strength and chemical inertia of aluminide alloys makes them very suitable to protect components. However, the strong interaction with the substrate during hardfacing requires analysis of each alloy system to optimize its properties and weldability. This work analyzed coatings processed with a cast and ground Nb40wt%Al alloy and the effect of Fe and C on the coatings features. It confirmed that sound Nb aluminide coatings can be processed by plasma Transferred arc hardfacing and will have a strong interaction with the substrate, which determines the final microstructure and properties of coatings. Final remarks point out that during Nb-Al coating tailoring the interaction with the substrate has to be considered at the early stages of design process.Revestimentos soldados são amplamente usados para proteger componentes mecânicos entretanto a maioria das técnicas de soldagem disponíveis restringe a variedade de ligas de alta resistência que podem ser depositadas. O processo de plasma por arco transferido permite ultrapassar esta limitação ao utilizar material de adição na forma de pó, oferecendo a possibilidade de se customizar a composição dos revestimentos e em consequências as suas propriedades. A elevada resistência mecânica e inercia química das ligas de aluminetos tornam estas ligas atrativas para a proteção de componentes diversos. Entretanto a grande interação com o substrato que ocorre quando do processamento exige que para a otimização das propriedades e soldabilidade seja realizada uma a análise de cada sistema liga e substrato. Neste trabalho foram processados e

  19. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, B., E-mail: mazumderb@ornl.gov [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Yu, X.; Edmondson, P.D.; Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Miller, M.K. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Meyer, H.M.; Feng, Z. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-02-15

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygen-enriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  20. 78 FR 78336 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary Results and Partial...

    Science.gov (United States)

    2013-12-26

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary... the antidumping duty order on circular welded non-alloy steel pipe (CWP) from the Republic of Korea...: Scope of the Order The merchandise subject to the order is circular welded non-alloy steel pipe and tube...

  1. 75 FR 77838 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary Results of the...

    Science.gov (United States)

    2010-12-14

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary... on circular welded non-alloy steel pipe (``CWP'') from the Republic of Korea (``Korea''). The period... Antidumping Duty Orders: Certain Circular Welded Non-Alloy Steel Pipe from Brazil, the Republic of Korea...

  2. 78 FR 34342 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results and Partial Rescission of...

    Science.gov (United States)

    2013-06-07

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results and... duty order on certain circular welded non- alloy steel pipe from Mexico.\\1\\ This administrative review.... \\1\\ See Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results and Partial...

  3. 76 FR 77770 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results of Antidumping Duty...

    Science.gov (United States)

    2011-12-14

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results of... welded non- alloy steel pipe from Mexico.\\1\\ This administrative review covers mandatory respondents... Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results of Antidumping Duty...

  4. 76 FR 66899 - Certain Circular Welded Non-Alloy Steel Pipe From Brazil, Mexico, the Republic of Korea, and...

    Science.gov (United States)

    2011-10-28

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Brazil, Mexico, the... certain circular welded non-alloy steel pipe from Brazil, Mexico, the Republic of Korea, and Taiwan; and... initiation of the sunset reviews of the antidumping duty orders on certain circular welded non-alloy steel...

  5. 78 FR 17637 - Certain Circular Welded Non-Alloy Steel Pipe from Mexico: Notice of Amended Final Results of...

    Science.gov (United States)

    2013-03-22

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe from Mexico: Notice of Amended... welded non-alloy steel pipe from Mexico. The period of review (POR) is November 1, 2007, through October 31, 2008.\\1\\ \\1\\ See Certain Circular Welded Non-Alloy Steel Pipe from Mexico: Final Results of...

  6. 76 FR 36089 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final Results of the Antidumping...

    Science.gov (United States)

    2011-06-21

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final... circular welded non-alloy steel pipe (``CWP'') from the Republic of Korea (``Korea''), covering the period.... SUPPLEMENTARY INFORMATION: Background Following publication of Circular Welded Non-Alloy Steel Pipe From the...

  7. 75 FR 34980 - Circular Welded Non-Alloy Steel Pipe from the Republic of Korea: Final Results of the Antidumping...

    Science.gov (United States)

    2010-06-21

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe from the Republic of Korea: Final... circular welded non-alloy steel pipe (``CWP'') from the Republic of Korea (``Korea''), covering the period November 1, 2007, through October 31, 2008. See Circular Welded Non-Alloy Steel Pipe from the Republic of...

  8. 78 FR 35248 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final Results of Antidumping...

    Science.gov (United States)

    2013-06-12

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final... order on circular welded non-alloy steel pipe (CWP) from the Republic of Korea (Korea) for the period... has been sold at less than normal value. \\1\\ See Circular Welded Non-Alloy Steel Pipe From the...

  9. 76 FR 49437 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2011-08-10

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results... circular welded non-alloy steel pipe from Mexico. This administrative review covers mandatory respondents... Circumstances Review: Certain Circular Welded Non-Alloy Steel Pipe From Mexico, 75 FR 82374 (December 30, 2010...

  10. 76 FR 31940 - Circular Welded Non-Alloy Steel Pipe From Taiwan: Notice of Rescission of Antidumping Duty...

    Science.gov (United States)

    2011-06-02

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From Taiwan: Notice of Rescission of... welded non-alloy steel pipe from Taiwan. The period of review is November 1, 2009, through October 31... circular welded non-alloy steel pipe from Taiwan. See Antidumping or Countervailing Duty Order, Finding, or...

  11. 76 FR 44304 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Amended Final Results of the...

    Science.gov (United States)

    2011-07-25

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Amended..., 2009. See Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final Results of the... during the period of review. See Circular Welded Non-Alloy Steel Pipe From the Republic of Korea...

  12. 76 FR 14649 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Extension of Time Limit for Final...

    Science.gov (United States)

    2011-03-17

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Extension of Time... circular welded non-alloy steel pipe from Mexico for the November 1, 2008, through October 31, 2009, period of review. See Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results of...

  13. 77 FR 8808 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Extension of the Final Results...

    Science.gov (United States)

    2012-02-15

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Extension of... antidumping duty administrative review of circular welded non-alloy steel pipe from the Republic of Korea, covering the period November 1, 2009, through October 31, 2010. See Circular Welded Non-Alloy Steel Pipe...

  14. 77 FR 73015 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2012-12-07

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary... conducting an administrative review of the antidumping duty order on circular welded non-alloy steel pipe... merchandise subject to the order is circular welded non-alloy steel pipe and tube. The product is currently...

  15. 75 FR 20342 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results of Antidumping Duty...

    Science.gov (United States)

    2010-04-19

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results of... antidumping duty order on certain circular welded non- alloy steel pipe from Mexico. See Certain Circular Welded Non-Alloy Steel Pipe From Mexico; Preliminary Results of Antidumping Duty Administrative Review...

  16. 76 FR 15941 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Extension of the Final Results...

    Science.gov (United States)

    2011-03-22

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Extension of... antidumping duty administrative review of circular welded non-alloy steel pipe from the Republic of Korea, covering the period November 1, 2008, through October 31, 2009. See Circular Welded Non-Alloy Steel Pipe...

  17. 78 FR 48647 - Certain Circular Welded Non-Alloy Steel Pipe from Mexico: Preliminary Results and Partial...

    Science.gov (United States)

    2013-08-09

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe from Mexico: Preliminary Results... antidumping duty order on certain circular welded non-alloy steel pipe from Mexico. This administrative review... Order The products covered by the order are circular welded non-alloy steel pipes and tubes, of circular...

  18. Grain structure and hardness of titanium alloy VT20 after electron-beam welding

    Science.gov (United States)

    Murav'ev, V. I.; Kim, V. A.; Shpileva, A. A.

    2008-03-01

    Quantitative parameters of the microstructure (the density of grain boundaries and the fractal size of grain boundaries) that characterize the grain composition of the material are computed. The microhardness of a weld in determined. Analysis of the structural inhomogeneity of a welded joint of titanium alloy produced by electron-beam welding is performed.

  19. Effect of tool shape and welding parameters on mechanical properties and microstructure of dissimilar friction stir welded aluminium alloys

    Directory of Open Access Journals (Sweden)

    Chetan Aneja

    2016-07-01

    Full Text Available In the present experimental study, dissimilar aluminum alloy AA5083 and AA6082 were friction stir welded by varying tool shape, welding speed and rotary speed of the tool in order to investigate the effect of varying tool shape and welding parameters on the mechanical properties as well as microstructure. The friction stir welding (FSW process parameters have great influence on heat input per unit length of weld. The outcomes of experimental study prove that mechanical properties increases with decreasing welding speed. Furthermore mechanical properties were also found to improve as the rotary speed increases and the same phenomenon was found to happen while using straight cylindrical threaded pin profile tool. The microstructure of the dissimilar joints revealed that at low welding speeds, the improved material mixing was observed. The similar phenomenon was found to happen at higher rotational speeds using straight cylindrical threaded tool.

  20. Crack growth rates of nickel alloy welds in a PWR environment.

    Energy Technology Data Exchange (ETDEWEB)

    Alexandreanu, B.; Chopra, O. K.; Shack, W. J.; Energy Technology

    2006-05-31

    In light water reactors (LWRs), vessel internal components made of nickel-base alloys are susceptible to environmentally assisted cracking. A better understanding of the causes and mechanisms of this cracking may permit less conservative estimates of damage accumulation and requirements on inspection intervals. A program is being conducted at Argonne National Laboratory to evaluate the resistance of Ni alloys and their welds to environmentally assisted cracking in simulated LWR coolant environments. This report presents crack growth rate (CGR) results for Alloy 182 shielded-metal-arc weld metal in a simulated pressurized water reactor (PWR) environment at 320 C. Crack growth tests were conducted on 1-T compact tension specimens with different weld orientations from both double-J and deep-groove welds. The results indicate little or no environmental enhancement of fatigue CGRs of Alloy 182 weld metal in the PWR environment. The CGRs of Alloy 182 in the PWR environment are a factor of {approx}5 higher than those of Alloy 600 in air under the same loading conditions. The stress corrosion cracking for the Alloy 182 weld is close to the average behavior of Alloy 600 in the PWR environment. The weld orientation was found to have a profound effect on the magnitude of crack growth: cracking was found to propagate faster along the dendrites than across them. The existing CGR data for Ni-alloy weld metals have been compiled and evaluated to establish the effects of key material, loading, and environmental parameters on CGRs in PWR environments. The results from the present study are compared with the existing CGR data for Ni-alloy welds to determine the relative susceptibility of the specific Ni-alloy weld to environmentally enhanced cracking.

  1. Weld Growth Mechanisms and Failure Behavior of Three-Sheet Resistance Spot Welds Made of 5052 Aluminum Alloy

    Science.gov (United States)

    Li, Yang; Yan, Fuyu; Luo, Zhen; Chao, Y. J.; Ao, Sansan; Cui, Xuetuan

    2015-06-01

    This paper investigates the weld nugget formation in three-sheet aluminum alloy resistance spot welding. The nugget formation process in three equal thickness sheets and three unequal thickness sheets of 5052 aluminum alloy were studied. The results showed that the nugget was initially formed at the workpiece/workpiece interfaces (i.e., both upper interface and lower interface). The two small nuggets then grew along the radial direction and axial direction (welding direction) as the welding time increased. Eventually, the two nuggets fused into one large nugget. During the welding process, the Peltier effect between the Cu-Al caused the shift of the nugget in the welding direction. In addition, the mechanical strength and fracture mode of the weld nuggets at the upper and lower interfaces were also studied using tensile shear specimen configuration. Three failure modes were identified, namely interfacial, mixed, and pullout. The critical welding time and critical nugget diameter corresponding to the transitions of these modes were investigated. Finally, an empirical failure load formula for three-sheet weld similar to two-sheet spot weld was developed.

  2. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Denis Clark; Ronald Mizia

    2012-05-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 C

  3. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Denis Clark; Ronald Mizia; Piyush Sabharwall

    2012-09-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 °C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700

  4. Experimental Investigation on Laser Impact Welding of Fe-Based Amorphous Alloys to Crystalline Copper

    Science.gov (United States)

    Wang, Xiao; Luo, Yapeng; Huang, Tao; Liu, Huixia

    2017-01-01

    Recently, amorphous alloys have attracted many researchers’ attention for amorphous structures and excellent properties. However, the welding of amorphous alloys to traditional metals in the microscale is not easy to realize in the process with amorphous structures unchanged, which restrains the application in industry. In this paper, a new method of welding Fe-based amorphous alloys (GB1K101) to crystalline copper by laser impact welding (LIW) is investigated. A series of experiments was conducted under different laser energies, during which Fe-based amorphous alloys and crystalline copper were welded successfully by LIW. In addition, the microstructure and mechanical properties of welding joints were observed and measured, respectively. The results showed that the surface wave and springback were observed on the flyer plate after LIW. The welding interface was straight or wavy due to different plastic deformation under different laser energies. The welding interface was directly bonded tightly without visible defects. No visible element diffusion and intermetallic phases were found in the welding interface. The Fe-based amorphous alloys retained amorphous structures after LIW under the laser energy of 835 mJ. The nanoindentation hardness across the welding interface showed an increase on both sides of the welding interface. The results of the lap shearing test showed that the fracture position was on the side of copper coil. PMID:28772886

  5. Experimental Investigation on Laser Impact Welding of Fe-Based Amorphous Alloys to Crystalline Copper.

    Science.gov (United States)

    Wang, Xiao; Luo, Yapeng; Huang, Tao; Liu, Huixia

    2017-05-12

    Recently, amorphous alloys have attracted many researchers' attention for amorphous structures and excellent properties. However, the welding of amorphous alloys to traditional metals in the microscale is not easy to realize in the process with amorphous structures unchanged, which restrains the application in industry. In this paper, a new method of welding Fe-based amorphous alloys (GB1K101) to crystalline copper by laser impact welding (LIW) is investigated. A series of experiments was conducted under different laser energies, during which Fe-based amorphous alloys and crystalline copper were welded successfully by LIW. In addition, the microstructure and mechanical properties of welding joints were observed and measured, respectively. The results showed that the surface wave and springback were observed on the flyer plate after LIW. The welding interface was straight or wavy due to different plastic deformation under different laser energies. The welding interface was directly bonded tightly without visible defects. No visible element diffusion and intermetallic phases were found in the welding interface. The Fe-based amorphous alloys retained amorphous structures after LIW under the laser energy of 835 mJ. The nanoindentation hardness across the welding interface showed an increase on both sides of the welding interface. The results of the lap shearing test showed that the fracture position was on the side of copper coil.

  6. Research data supporting "Surface residual stresses in multipass welds produced using low transformation temperature filler alloys"

    OpenAIRE

    Ramjaun, TI; Stone, HJ; Karlsson, L.; Gharghouri, M; Dalaei, K; Moat, R.; Bhadeshia, HKDH

    2017-01-01

    Tensile residual stresses at the surface of welded components are known to compromise fatigue resistance through the accelerated initiation of microcracks, especially at the weld toe. Inducement of compression in these regions is a common technique employed to enhance fatigue performance. Transformation plasticity has been established as a viable method to generate such compressive residual stresses in steel welds and exploits the phase transformation in welding filler alloys, that transform ...

  7. Research Progress in Plasma arc welding of Magnesium Alloys and Magnesium Matrix Composites

    Science.gov (United States)

    Hui, Li; Yang, Zou; Yongbo, Li; Lei, Jiao; Ruijun, Hou

    2017-11-01

    Magnesium alloys and magnesium matrix composites by means of its excellent performance have wide application prospect in electronics, automotive, biotechnology, aerospace field, and welding technology has become a key of restricting its application. This paper describes the welding characteristics of magnesium, the obvious advantages in the application and the domestic and foreign research advance technology of plasma arc welding of magnesium, and summarizes the existing problems and development trends of plasma arc welding technology of magnesium.

  8. Effects of thermal aging on microstructures of low alloy steel-Ni base alloy dissimilar metal weld interfaces

    Science.gov (United States)

    Choi, Kyoung Joon; Kim, Jong Jin; Lee, Bong Ho; Bahn, Chi Bum; Kim, Ji Hyun

    2013-10-01

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  9. Effects of thermal aging on microstructures of low alloy steel–Ni base alloy dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Kim, Jong Jin [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Lee, Bong Ho [National Center for Nanomaterials Technology (NCNT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Bahn, Chi Bum [Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439 (United States); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2013-10-15

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  10. Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints

    Science.gov (United States)

    Yuhua, Chen; Yuqing, Mao; Weiwei, Lu; Peng, He

    2017-06-01

    Dissimilar metals of NiTiNb shape memory alloy and Ti6Al4V alloy with a same thickness of 0.2 mm were joined by micro laser welding. The effect of laser power on crack sensitivity of the weld was investigated. The results show that full penetrated welds are obtained when the laser power of 7.2 W is used, many cracks are observed in the weld. With increasing the laser power to 12 W, the number of all cracks and cracking width first increase and then decrease. By XRD analysis, three different kinds of Ti2Ni, NbNi3 and AlNbTi2 intermetallic compounds are found in the weld. According to the formation enthalpy and binary phase diagram, brittle Ti2Ni phase with more contents is existed in the weld due to final solidification, and which is the main reason of crack formation along with large stress concentration. Moreover, the welding cracks like the weld center longitudinal solidification cracks, weld metal toe transversal liquid cracks, heat-affected-zone hot cracks and crater cracks are classified in the laser welded joints. A brittle cleavage fracture with cleavage planes and river patterns in the joints is presented from the fracture surface.

  11. Corrosion behavior of friction stir welded AZ31B Mg alloy - Al6063 alloy joint

    Directory of Open Access Journals (Sweden)

    B. Ratna Sunil

    2016-12-01

    Full Text Available In the present work, AZ31B Mg alloy and Al6063 alloy-rolled sheets were successfully joined by friction stir welding. Microstructural studies revealed a sound joint with good mechanical mixing of both the alloys at the nugget zone. Corrosion performance of the joint was assessed by immersing in 3.5% NaCl solution for different intervals of time and the corrosion rate was calculated. The joint has undergone severe corrosion attack compared with both the base materials (AZ31B and Al6063 alloys. The predominant corrosion mechanism behind the high corrosion rate of the joint was found to be high galvanic corrosion. From the results, it can be suggested that the severe corrosion of dissimilar Mg–Al joints must be considered as a valid input while designing structures intended to work in corroding environment.

  12. Rotary Friction Welding of Weight Heavy Alloy with Wrought AlMg3 Alloy for Subcaliber Ammunition

    Directory of Open Access Journals (Sweden)

    Olgierd Janusz Goroch

    2017-12-01

    Full Text Available The results of studies concerning friction welding of Weight Heavy Alloy (WHA with AlMg3 alloy are presented. The friction welding of density 17,5 Mg/m3 with aluminum alloy showed that it is possible to reach the joints with the strength exceeding the yield strength of wrought AlMg3 alloy. This strength looks to be promising from point of view of condition which have to be fulfilled in case of armor subcaliber ammunition, where WHA rods play the role Kinetic Energy Penetrators and aluminum is used for projectile ballistic cup.

  13. Factors affecting the strength of multipass low-alloy steel weld metal

    Science.gov (United States)

    Krantz, B. M.

    1972-01-01

    The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.

  14. Experimental Evaluation and Characterization of Electron Beam Welding of 2219 AL-Alloy

    Directory of Open Access Journals (Sweden)

    Mohamed Sobih

    2016-01-01

    Full Text Available Aiming to reduce the weight of components, thus allowing a profit in terms of energy saving, automotive industry as well as aircraft industry extensively uses aluminum alloys. The most widely used joining technology in aircraft industry is riveting, while welding seems to be used in the car industry in the case of aluminum alloys. However, welding technology is characterized by many defects, such as gas porosity; oxide inclusions; solidification cracking (hot tearing; and reduced strength in both the weld and the heat affected zones which could limit its development. Many techniques are used for aluminum alloys welding, among them is electron beam welding (EBW, which has unique advantages over other traditional fusion welding methods due to high-energy density, deep penetration, large depth-to-width ratio, and small heat affected zone. The welding parameters that yield to optimal weld joint have been previously obtained. These optimal parameters were validated by welding a specimen using these parameters. To evaluate this optimal weld joint, complete, microstructural observations and characterization have been carried out using scanning electron microscopy, optical microscopy, and energy dispersive X-ray analysis. This evaluation leads to description and quantification of the solidification process within this weld joint.

  15. Effect of different filler wires on weld formation for fiber laser welding 6A02 Aluminum alloy

    Science.gov (United States)

    Xu, F.; Chen, L.; Lu, W.; He, E. G.

    2017-12-01

    6A02 aluminum alloy was welded by fibre laser welding with two different filler wires (ER4043 and ER5356). The weld apperance, microstructure and mechanical properties were analysed. The results show the welding course with ER4043 is more stable than that with ER5356, and the welding spatters of the former are smaller than that of the latter. The microsturtrue of the weld zone, including columnar-grains near the fusion zone and mixed microstructures (columnar grains and equiaxed grains) in the weld center zone, is finer with ER5356 than that with ER4043. So the average microhardness value of the former is higher than the latter. A great number of low melting point eutectic phases disperse in grains boundary. Due to the eutectic phases distributing more in two zones (overheat zone near the fusion zone and the weld center zone) than other zones, the welded joints have these two low hardness and weak strength zones. The ultimate strength and the elongations after fracture of the welded joints with ER4043 are lower than that with ER5356 slihgtly. However, the former are improved obviously and higher than the latter after heat treatment. The tensile properties of all joints can reach to the base material level. And the tensile fractures always occur near the fusion zone.

  16. Effect of Local Post Weld Heat Treatment on Tensile Properties in Friction Stir Welded 2219-O Al Alloy

    Science.gov (United States)

    Chu, Guannan; Sun, Lei; Lin, Caiyuan; Lin, Yanli

    2017-11-01

    To improve the formability of the aluminum alloy welds and overcome the size limitation of the bulk post weld heat treatment (BPWHT) on large size friction stir welded joints, a local post weld heat treatment method (LPWHT) was proposed. In this method, the resistance heating as the moving heat source is adopted to only heat the weld seam. The temperature field of LPWHT and its influence on the mechanical properties and formability of FSW 2219-O Al alloy joints was investigated. The evaluation of the tensile properties of FSW samples was also examined by mapping the global and local strain distribution using the digital image correlation methodology. The results indicated that the formability was improved greatly after LPWHT, while the hardness distribution of the FSW joint was homogenized. The maximum elongation can reach 1.4 times that of as-welded joints with increase the strength and the strain of the nugget zone increased from 3 to 8% when annealing at 300 °C. The heterogeneity on the tensile deformation of the as-welded joints was improved by the nugget zone showing large local strain value and the reason was given according to the dimple fracture characteristics at different annealing temperatures. The tensile strength and elongation of LPWHT can reach 93.3 and 96.1% of the BPWHT, respectively. Thus, the LPWHT can be advantageous compared to the BPWHT for large size welds.

  17. Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.

  18. 76 FR 52636 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Partial Rescission of...

    Science.gov (United States)

    2011-08-23

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Partial... the antidumping duty order on certain circular welded non-alloy steel pipe (``circular welded pipe..., Wheatland Tube Company (``Wheatland'') and United States Steel Corporation (``U.S. Steel''), manufacturers...

  19. Corrosion behavior of Al6061 alloy weldment produced by friction stir welding process

    Directory of Open Access Journals (Sweden)

    Farhad Gharavi

    2015-07-01

    Full Text Available In this work, the corrosion behavior of welded lap joints of AA6061-T6 aluminum alloy produced by friction stir welding process has been investigated. Corrosion properties of welded lap joints were studied by cyclic polarization and electrochemical impedance spectroscopy tests. All tests were performed in an aerated 0.6 mol L−1 NaCl aqueous solution with pH = 6.5 at a temperature of 30 °C to characterize corrosion morphology and realize corrosion features of weld regions as opposed to the parent alloy. The microstructure of weld nugget (WN, heated affected zone (HAZ, and parent alloy were analyzed using scanning electron microscopy and energy dispersive spectroscopy. The experimental results indicated that the welding process has a major effect on the corrosion resistance, which possibly associated to the break-down and dissolution of intermetallic particles. It is supposed that an increasing in intermetallic distributed throughout the matrix of weld regions increases the galvanic corrosion couples. Furthermore, by decreasing the grain size in the weld regions, the susceptibility to corrosion is enhanced. The pitting corrosion and intergranular attack are the dominant corrosion types in the weld regions and the parent alloy.

  20. Optimization of welding parameters of Ti6Al4V alloy using electron beam

    Directory of Open Access Journals (Sweden)

    Petr Havlík

    2016-06-01

    Full Text Available Titanium alloys and their weld joints find wide application, in particular in the aircraft, automotive and chemical industries, because of their outstanding specific strength and corrosion resistance. The high reactivity of these alloys and the strong degradation effect of elements contained in the atmosphere (H, N and O make it necessary for these alloys to be welded in protective atmospheres or in vacuum. From this viewpoint, Electron Beam Welding is an advantageous welding technology, especially in large series production. In the literature, there is sufficient information about the effect of the basic welding parameters, namely accelerating voltage, current and welding speed, on the properties of welded joints. In the paper, the effects of the spot diameter and beam focusing on the penetration depth and the weld shape in the Ti6Al4V alloy are studied. The results obtained are complemented by an analysis of the microstructure and microhardness measurements across the welds.

  1. Upgrading weld quality of a friction stir welded aluminum alloys AMG6

    Science.gov (United States)

    Chernykh, I. K.; Vasil’ev, E. V.; Matuzko, E. N.; Krivonos, E. V.

    2018-01-01

    In the course of introduction of FSW technology into the industry there is a keen interest in this process; there are issues such as how does joining take place, what is the structure of the joint, and where there are dangerous zones. The objective of this research is to obtain information about the structure of the joint, what are the temperatures that arise during the joining, what strength is apply to the tool when joining the material, what tensile strength of joint, and where fracture tended to occur. Specimens were produced at different modes of welding at a tool rotation speed of 315 to 625 rpm and tool travel speed of 40 to 125 mm/min. During the experiment, the strength applied to the tool was measured, which reached 800016000 N (Fz) and 400-1400 N (Fx) and the temperature on the surface of the tool, which is in the range 250-400°C. Before the welding process the tool was heated to a temperature in the range of 100-250 degrees, but the tensile strength is not had a tangible impact. The tensile strength is about 80 % of that of the aluminum alloy base metal tensile strength, and fracture tended is occur not at the line of joint but follow the shape of the tool. In the transverse cross section of a FSW material there is a microstructural regions such as weld nugget, thermomechanically affected zone and heat-affected zone with parent material.

  2. Research on the microstructure and properties of laser-MIG hybrid welded joint of Invar alloy

    Science.gov (United States)

    Zhan, Xiaohong; Zhang, Dan; Wei, Yanhong; Wang, Yuhua

    2017-12-01

    In order to solve the problem of large deformation, low production efficiency and high tendency of hot cracking in welding 19.05 mm thick plates of Fe36Ni Invar alloy, laser-MIG hybrid multi-layer welding technique (LMHMW) has been developed. To investigate the influence of different welding parameters on the joint properties, optical microscope observation, SEM, EDS and microhardness measurement were conducted. Experimental results illustrated that different matching of welding parameters significantly affected the depth-to-width ratio, formation of defects and HAZ width. Besides, weld zone were consisted of two regions according to the different grain shape. The region near center of weld seam (region 1) was columnar dendrite induced by laser, while the region far away from weld seam center (region 2) was cellular dendrite which was mainly caused by MIG arc. The peak value of microhardness appeared at the center of weld seam since the grains in region 1 were relatively fine, and the lowest hardness value was obtained in HAZ. In addition, results showed that the sheets can be welded at optimum process parameters, with few defects such as, surface oxidation, porosity, cracks and lack of penetration in the welding seam: laser power of backing weld P = 5500 W, welding current I = 240 A, welding speed v = 1 m/min. laser power of filling weld P = 2000 W, welding current I = 220 A, welding speed v = 0.35 m/min. laser power of cosmetic weld P = 2000 W, welding current I = 300 A, welding speed v = 0.35 m/min.

  3. Assessing mechanical properties of the dissimilar metal welding between P92 steels and alloy 617 at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Hwang, J. H.; Park, Y. S.; Kim, T. M.; Bae, D. H. [Sungkyunkwan University, Suwon (Korea, Republic of); Seo, W. B. [Institute of Mechanical Engineering, Yeungnam University, Daegu (Korea, Republic of); Han, J. W. [School of Mechanical Engineering, Hoseo University, Cheonan (Korea, Republic of)

    2016-10-15

    In this study, a new welding technology of dissimilar materials, Cr-based P92 steels and Ni-based Alloy 617 is introduced and demonstrated to investigate its reliability. Firstly, multi-pass dissimilar metal welding between P92 steel and Alloy 617 was performed using DCEN TIG welding technology, buttering welding technique and a narrow gap groove. After welding, in order to understand characteristics of the dissimilar metal welds, metallurgical micro-structures analysis by optical observation and static tensile strength assessment of the dissimilar welded joints were conducted at 700°C.

  4. Low Alloy Steel Structures After Welding with Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.; Piwnik J.; Hadryś D.; Wszołek Ł.

    2017-01-01

    The paper focuses on low alloy steel after innovate welding method with micro-jet cooling. Weld metal deposit (WMD) was carried out for welding and for MIG and MAG welding with micro-jet cooling. This method is very promising mainly due to the high amount of AF (acicular ferrite) and low amount of MAC (self-tempered martensite, retained austenite, carbide) phases in WMD. That structure corresponds with very good mechanical properties, ie. high impact toughness of welds at low temperature. Mic...

  5. Microstructural Aspects in FSW and TIG Welding of Cast ZE41A Magnesium Alloy

    Science.gov (United States)

    Carlone, Pierpaolo; Astarita, Antonello; Rubino, Felice; Pasquino, Nicola

    2016-04-01

    In this paper, magnesium ZE41A alloy plates were butt joined through friction stir welding (FSW) and Tungsten Inert Gas welding processes. Process-induced microstructures were investigated by optical and SEM observations, EDX microanalysis and microhardness measurements. The effect of a post-welded T5 heat treatment on FSW joints was also assessed. Sound joints were produced by means of both techniques. Different elemental distributions and grain sizes were found, whereas microhardness profiles reflect microstructural changes. Post-welding heat treatment did not induce significant alterations in elemental distribution. The FSW-treated joint showed a more homogeneous hardness profile than the as-welded FSW joint.

  6. Laser-welded V-Cr-Ti alloys: Microstructural and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Smith, D.L.; Sanders, P.G.; Leong, K.H. [Argonne National Lab., IL (United States)

    1998-03-01

    A systematic study has been initiated to examine the use of lasers to weld sheet materials of V-Cr-Ti alloys and to characterize the microstructural and mechanical properties of the laser-welded materials. In addition, several post-welding heat treatments are being applied to the welded samples to evaluate their benefits, if any, to the structure and properties of the weldments. Hardness measurements are made across the welded regions of different samples to evaluate differences in the characteristics of various weldments.

  7. Residual Stress Test and Finite Element Analysis of Titanium Alloy Surface Obtained by Electron Beam Welding

    Directory of Open Access Journals (Sweden)

    LIU Xiaojia

    2016-08-01

    Full Text Available Ti60 titanium alloy plates were welded by electron beam,and the welding residual stress was tested and simulated by the residual stress tester and finite element analysis. The comparison of the residual stress values caused in the three kinds of welding processes of pre-heating, slow cooling and both pre-heating and slow cooling was carried out. The residual stress distribution law was also studied. Results show that in the vertical welding section, the longitudinal welding residual stress tested is similar to that simulated as to the change trend; in the parallel welding section, the distributions of the tested and simulated longitudinal welding residual stress are similar. These prove that the finite element analysis is reasonable and reliable. The process of pre-heating has little influence on the welding residual stress, but the slow cooling process can change its distribution.

  8. Electron beam welding of aircraft structures. [joining of titanium alloy wing structures on F-14 aircraft

    Science.gov (United States)

    Witt, R. H.

    1972-01-01

    Requirements for advanced aircraft have led to more extensive use of titanium alloys and the resultant search for joining processes which can produce lightweight, high strength airframe structures efficiently. As a result, electron beam welding has been investigated. The following F-14A components are now being EB welded in production and are mainly annealed Ti-6Al-4V except for the upper wing cover which is annealed Ti-6Al-6V-2Sn: F-14A wing center section box, and F-14A lower and upper wing covers joined to wing pivot fitting assemblies. Criteria for selection of welding processes, the EB welding facility, development work on EB welding titanium alloys, and F-14A production and sliding seal electron beam welding are reported.

  9. Study of 2219 aluminum alloy using direct current A-TIG welding

    Science.gov (United States)

    Li, Hui; Zou, Jiasheng

    2017-07-01

    Direct current A-TIG (DCEN A-TIG) welding using special active agent had eliminated the pores and the oxidation of 2219 high-strength aluminum alloy in welding. Addition of AlF3-25% LiF active agent to DCEN A-TIG welding and arc morphology showed a trailing phenomenon. However, the change in arc morphology was not remarkable when AlF3-75% LiF active agent was added. Addition of AlF3-75% LiF active agent can refine the grain size of DCEN A-TIG joint. The mechanical properties of the weld were optimal at 10% AlF3-75% LiF active agent. Compared with AC TIG and AC A-TIG welding, DCEN A-TIG welding yielded better results for 2219 Al alloy.

  10. Effect of tool rotational speed and penetration depth on dissimilar aluminum alloys friction stir spot welds

    Directory of Open Access Journals (Sweden)

    Joaquín M. Piccini

    2017-03-01

    Full Text Available In the last years, the automotive industry is looking for the use of aluminum parts in replace of steel parts in order to reduce the vehicles weight. These parts have to be joined, for instance, by welding processes. The more common welding process in the automotive industry is the Resistance Spot Welding (RSW technique. However, RSW of aluminum alloys has many disadvantages. Regarding this situation, a variant of the Friction Stir Welding process called Friction Stir Spot Welding (FSSW has been developed, showing a strong impact in welding of aluminum alloys and dissimilar materials in thin sheets. Process parameters affect the characteristics of the welded joints. However, the information available on this topic is scarce, particularly for dissimilar joints and thin sheets. The aim of this work was to study the effect of the rotational speed and the tool penetration depth on the characteristics of dissimilar FSS welded joints. Defects free joints have been achieved with higher mechanical properties than the ones reported. The maximum fracture load was 5800 N. It was observed that the effective joint length of the welded spots increased with the tool penetration depth, meanwhile the fracture load increased and then decreased. Finally, welding at 1200 RPM produced welded joints with lower mechanical properties than the ones achieved at 680 and 903 RPM.

  11. Fatigue Properties of Welded Butt Joint and Base Metal of MB8 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Ying-xia YU

    2016-09-01

    Full Text Available The fatigue properties of welded butt joint and base metal of MB8 magnesium alloy were investigated. The comparative fatigue tests were carried out using EHF-EM200K2-070-1A fatigue testing machine for both welded butt joint and base metal specimens with the same size and shape. The fatigue fractures were observed and analyzed by a scanning electron microscope of 6360 LA type. The experimental results show that the fatigue performance of the welded butt joint of MB8 magnesium alloy is sharply decreased. The conditional fatigue limit (1×107 of base metal and welded butt joint is about 69.41 and 32.76 MPa, respectively. The conditional fatigue limit (1×107 of the welded butt joint is 47.2 % of that of base metal. The main reasons are that the welding can lead to stress concentration in the weld toe area, tensile welding residual stress in the welded joint, as well as grain coarsening in the welding seam. The cleavage steps or quasi-cleavage patterns present on the fatigue fracture surface, indicating the fracture type of the welded butt joint belongs to a brittle fracture.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.9132

  12. Thermal Stir Welding of High Strength and High Temperature Alloys for Aerospace Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Keystone and MSU team propose to demonstrate the feasibility of solid-state joining high strength and temperature alloys utilizing the Thermal Stir Welding...

  13. Hazard of ultraviolet radiation emitted in gas tungsten arc welding of aluminum alloys

    OpenAIRE

    NAKASHIMA, Hitoshi; UTSUNOMIYA, Akihiro; FUJII, Nobuyuki; OKUNO, Tsutomu

    2015-01-01

    Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema. The extent of the hazard of UVR varies depending on the welding method and conditions. Therefore, it is important to identify the levels of UVR that are present under various conditions. In this study, we experimentally evaluated the hazard of UVR emitted in gas tungsten arc welding (GTAW) of aluminum alloys. The degree of hazard of UVR is measured by the effective irradiance defined in...

  14. 78 FR 79664 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results of the 2011-2012...

    Science.gov (United States)

    2013-12-31

    ... Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results of the 2011-2012 Antidumping Duty... circular welded non-alloy steel pipe from Mexico for the period November 1, 2011 through October 31, 2012... Non-Alloy Steel Pipe from Mexico: Preliminary Results and Partial Rescission of Antidumping Duty...

  15. Strain hardening and damage in 6xxx series aluminum alloy friction stir welds

    DEFF Research Database (Denmark)

    Simar, Aude; Nielsen, Kim Lau; de Meester, Bruno

    2010-01-01

    A friction stir weld in 6005A-T6 aluminum alloy has been prepared and analyzed by micro-hardness measurements, tensile testing and scanning electron microscopy (SEM). The locations of the various weld zones were determined by micro-hardness indentation measurements. The flow behavior of the vario...

  16. Structure and Corrosion Resistance of Welded Joints of Alloy 1151 in Marine Atmosphere

    Science.gov (United States)

    Bakulo, A. V.; Yakushin, B. F.; Puchkov, Yu. A.

    2017-07-01

    The corrosion behavior of joints formed by TIG and IMIG welding from clad sheets of heat-hardenable aluminum alloy 1151 of the Al - Cu - Mg system is studied. The corrosion tests are performed in an aqueous solution of NaCl in a salt-spray chamber. The welded joints are subjected to a metallographic analysis.

  17. Laser welding of SSM Cast A356 aluminium alloy processed with CSIR-Rheo technology

    CSIR Research Space (South Africa)

    Akhter, R

    2006-01-01

    Full Text Available Samples of aluminium alloy A356 were manufactured by Semi Solid Metals HPDC technology, developed recently in CSIR, Pretoria. They were butt welded in as cast conditions using as Nd: YAG laser. The best metal and weld microstructure were presented...

  18. Stress corrosion crack initiation of alloy 182 weld metal in primary coolant - Influence of chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Calonne, O.; Foucault, M.; Steltzlen, F. [AREVA (France); Amzallag, C. [EDF SEPTEN (France)

    2011-07-01

    Nickel-base alloys 182 and 82 have been used extensively for dissimilar metal welds. Typical applications are the J-groove welds of alloy 600 vessel head penetrations, pressurizer penetrations, heater sleeves and bottom mounted instrumented nozzles as well as some safe end butt welds. While the overall performance of these weld metals has been good, during the last decade, an increasing number of cases of stress corrosion cracking of Alloy 182 weld metal have been reported in PWRs. In this context, the role of weld defects has to be examined. Their contribution in the crack initiation mechanism requires laboratory investigations with small scale characterizations. In this study, the influence of both alloy composition and weld defects on PWSCC (Stress Corrosion Cracking in Primary Water) initiation was investigated using U-bend specimens in simulated primary water at 320 C. The main results are the following: -) the chemical compositions of the weld deposits leading to a large propensity to hot cracking are not the most susceptible to PWSCC initiation, -) macroscopically, superficial defects did not evolve during successive exposures. They can be included in large corrosion cracks but their role as 'precursors' is not yet established. (authors)

  19. Experimental Evaluation and Characterization of Electron Beam Welding of 2219 AL-Alloy

    OpenAIRE

    Mohamed Sobih; Zuhair Elseddig; Khalid Almazy; Mohamed Sallam

    2016-01-01

    Aiming to reduce the weight of components, thus allowing a profit in terms of energy saving, automotive industry as well as aircraft industry extensively uses aluminum alloys. The most widely used joining technology in aircraft industry is riveting, while welding seems to be used in the car industry in the case of aluminum alloys. However, welding technology is characterized by many defects, such as gas porosity; oxide inclusions; solidification cracking (hot tearing); and reduced strength in...

  20. A Review: Effect of Friction Stir Welding on Microstructure and Mechanical Properties of Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Yajie Li

    2017-11-01

    Full Text Available Friction stir welding (FSW is well recognized as a very practical technology for joining magnesium alloys. Although, a large amount of progress have been made on the FSW of magnesium alloys, it should be emphasized that many challenges still remain in joining magnesium using FSW. In this article, we briefly review the background of friction stir welding of magnesium alloys, and then focus on the effects of the friction stir welding on the macrostructure, microstructure evolution, texture distribution, and the mechanical properties of the welding joints. The macro-defects in welds and their relationship to the welding parameters such as welding speed, rotation speed, and axial force were also discussed. The review concluded with some suggested methods improvement and future challenges related to FSW of magnesium alloys. The purpose of the present review paper is to fully understand the relationships between the microstructure and the properties, and then establish a global, state-of-the-art FSW of magnesium alloys.

  1. Microstructural developments and mechanical properties of friction stir welding of AZ91D magnesium alloy plates

    Directory of Open Access Journals (Sweden)

    Nagabhushan Kumar Kadigithala

    2017-06-01

    Full Text Available Friction stir welding (FSW is an efficient technique which can be used particularly for magnesium and aluminum alloys that are difficult to fusion weld. In this work AZ91D Mg alloy plates 3mm thick were friction stir welded at different process variables such as rotational speed and welding speed. The range of rotational speeds varied from 1025 to 1525 rpm, and the welding speed varied from 25 to 75 mm/min. Good quality welds were obtained under 1025 rpm of rotational speed with the welding speeds range from 25 to 75 mm/min. The microstructure of the AZ91D alloy consists of primary α-phase, eutectic α-phase and eutectic β (Mg17Al12 phase in the received condition (gravity die cast. The original dendrite grain structure completely disappeared and was transformed to fine equiaxed grains in stir zone (SZ. It was observed that there was a slight increase in hardness in SZ, because of fine recrystallized grain structure. The transverse tensile test results of weld specimens indicated constant strength irrespective of traveling speed. Fractrographic analysis of the friction stir welded specimens showed the brittle failure.

  2. Effect of Welding Parameters on Microstructure and Mechanical Properties of Cast Fe-40Al Alloy

    Directory of Open Access Journals (Sweden)

    Osman Torun

    2016-09-01

    Full Text Available Friction welding of cast Fe-40Al alloy was carried out at 1000 rmp for various friction times, friction pressures, and forging pressures. The microstructures of the interface of welded samples were analyzed by optical and scanning electron microscopy (SEM. Micrographs demonstrated that excellent welding formed continuously along the interface, except for samples welded for 3 s. Chemical compositions of the interface of the friction welded samples and of the fractured surface of all the specimens were determined using energy dispersive spectroscopy (EDS. After the welding process, shear tests were applied to the welded samples to determine the shear strength of joints. Test results indicated that the maximum shear strength was 469.5 MPa.

  3. Low Alloy Steel Structures After Welding with Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2017-03-01

    Full Text Available The paper focuses on low alloy steel after innovate welding method with micro-jet cooling. Weld metal deposit (WMD was carried out for welding and for MIG and MAG welding with micro-jet cooling. This method is very promising mainly due to the high amount of AF (acicular ferrite and low amount of MAC (self-tempered martensite, retained austenite, carbide phases in WMD. That structure corresponds with very good mechanical properties, ie. high impact toughness of welds at low temperature. Micro-jet cooling after welding can find serious application in automotive industry very soon. Until that moment only argon, helium and nitrogen were tested as micro-jet gases. In that paper first time various gas mixtures (gas mixtures Ar-CO2 were tested for micro-jet cooling after welding.

  4. The welding metallurgy of HASTELLOY alloys C-4, C-22, and C-276

    Science.gov (United States)

    Cieslak, M. J.; Headley, T. J.; Romig, A. D.

    1986-11-01

    The welding metallurgy (solidification and solid state transformations) of HASTELLOY* Alloys C-4, C-22, and C-276 has been determined. Varestraint hot-cracking tests performed on commercial alloys revealed a weldability ranking as follows: C-4 > C-22 > C-276. All alloys would be expected to have good weldability, with Alloy C-4 having a very low hot-cracking tendency, comparable to 304L stainless steel. Microstructures of gas-tungsten-arc welds of these alloys have been characterized by scanning electron microscopy and analytical electron microscopy. Intermetallic secondary solidification constituents have been found associated with weld metal hot cracks in Alloys C-276 and C-22. In Alloy C-276, this constituent is a combination of P and ώ phases, and in Alloy C-22, this constituent is composed of σ, P, and ώ phases. With phase composition data obtained by AEM techniques and available ternary (Ni-Cr-Mo) phase diagrams, an equivalent chemistry model is proposed to account for the microstructures observed in each alloy's weld metal.

  5. Effect of Travel Speed and Beam Focus on Porosity in Alloy 690 Laser Welds

    Science.gov (United States)

    Tucker, Julie D.; Nolan, Terrance K.; Martin, Anthony J.; Young, George A.

    2012-12-01

    Advances in laser welding technology, including fiber optic delivery and high power density, are increasing the applicability of this joining technique. The inherent benefits of laser welding include small heat-affected zones, minimal distortion, and limited susceptibility to cracking. These advantages are of special interest to next-generation nuclear power systems where welding solute-rich alloys is expected to increase. Alloy 690 (A690) is an advanced corrosion-resistant structural material used in many replacement components and in construction of new commercial power plants. However, the application of A690 is hindered by its difficult weldability using conventional arc welding, and laser welding is a promising alternate. This work studies the effects of travel speed and beam focus on porosity formation in partial penetration, autogenous A690 laser welds. Porosity has been characterized by light optical microscopy and x-ray computed tomography to quantify its percent volume in the welds. This work describes the tradeoff between weld penetration and defect density as a function of beam defocus and travel speed. Additionally, the role of shield gas in porosity formation is discussed to provide a mitigation strategy for A690 laser welding. A process map is provided that shows the optimal combinations of travel speed and beam defocus to minimize porosity and maximize weld penetration at a laser power of 4 kW.

  6. The stress corrosion cracking behavior of Alloys 690 and 152 weld in a PWR environment

    Energy Technology Data Exchange (ETDEWEB)

    Alexandreanu, B.; Chopra, O.; Shack, W. [Argonne National Lab., Argonne, Illinois (United States)

    2007-07-01

    'Full text:' Alloys 690 and 152 are the replacement materials of choice for Alloys 600 and, respectively, 182. The objective of this work was to determine the stress corrosion cracking (SCC) crack growth rates (CGRs) in a simulated PWR water environment for the two replacement alloys. The study involved cold-rolled Alloy 690 and a laboratory-prepared Alloy 152 double-V weld. In testing in primary water, both alloys sustained SCC cracking under constant loading conditions in the 10E-11 m/s range. (author)

  7. Effect of post weld heat treatment on the mechanical and corrosion behaviour of welded Al-Fe-Si alloy joints

    Directory of Open Access Journals (Sweden)

    Isiaka Oluwole OLADELE

    2017-06-01

    Full Text Available Al-Fe-Si alloy was joined by shielded metal arc welding (SMAW process and the effects of post weld heat treatment (PWHT on the mechanical (tensile and hardness properties, corrosion behaviour and microstructure of the welded joints were investigated. The welded samples were divided into as-weld (AW, PWHT, base metal (BM and heat treated base metal (HT BM samples. Artificial aging was carried out on part of the welded sample at 177 °C with holding time of 8 hours to obtain the PWHT samples. The various samples were subjected to tensile, hardness and corrosion tests while microstructures of the fractured surfaces were viewed under optical microscope. From the results, it was observed that corrosion susceptibility of the alloy in 3.5 wt% NaCl solution was highly reduced after PWHT. The hardness was reduced after PWHT while the yield strength and joint efficiency was improved compared to the AW sample. The improvement in corrosion resistance, yield strength and joint efficiency are 78, 8.4 and 8.7 %, respectively.

  8. The structure and properties of autogenous laser beam welds in aluminium alloys

    OpenAIRE

    Whitaker, Iain Robert

    1994-01-01

    Autogenous laser beam welds were made in sheets of the aluminium alloys 8090, 8009 and 6061. The Al-Li based alloy 8090 was subjected to both continuous wave CO2 and pulsed Nd:YAG thermal cycles with average powers of 1.5-3.8 kW and 0.8- 0.9 kW respectively. The two techniques were compared for their influence on the 8090 solidified weld pool shape, the fusion zone microstructure and microhardness, the HAZ and the susceptibility of the fusion zone to post-weld heat treatment. It was found tha...

  9. Comparative study on laser welding and TIG welding of semi-solid high pressure die cast A356 aluminium alloy

    CSIR Research Space (South Africa)

    Govender, G

    2007-07-01

    Full Text Available components. The low porosity levels in SSM high pressure die castings (HPDC) improves the weldability of these components. The aim of the current research was to perform a comparative study of laser and TIG welding of SSM HPDC aluminium alloy A356. SSM...

  10. Simulation of Temperature Distribution in TIG Spot Welds of(Al-Mg) Alloy Using Finite Element Method

    OpenAIRE

    Ahlam Abid Ameer Alkhafajy; Abdul Hussain G. Al-Maliky; Muna K Abbas

    2008-01-01

    This research concern to analyse and simulate the temperature distribution in the spot welding joints using tungsten arc welding shielded with inert gas (TIG Spot) for the aluminum-magnesium alloy type (5052-O). The effect of and the quantity of the heat input that enter the weld zone has been investigated welding current, welding time and arc length on temperature distribution. The finite element method (by utilizing programme ANSYS 5.4) is presented the temperature distribution in a circula...

  11. Influence of Post Weld Heat Treatment on Strength of Three Aluminum Alloys Used in Light Poles

    Directory of Open Access Journals (Sweden)

    Craig C. Menzemer

    2016-03-01

    Full Text Available The conjoint influence of welding and artificial aging on mechanical properties were investigated for extrusions of aluminum alloy 6063, 6061, and 6005A. Uniaxial tensile tests were conducted on the aluminum alloys 6063-T4, 6061-T4, and 6005A-T1 in both the as-received (AR and as-welded (AW conditions. Tensile tests were also conducted on the AR and AW alloys, subsequent to artificial aging. The welding process used was gas metal arc (GMAW with spray transfer using 120–220 A of current at 22 V. The artificial aging used was a precipitation heat treatment for 6 h at 182 °C (360 °F. Tensile tests revealed the welded aluminum alloys to have lower strength, both for yield and ultimate tensile strength, when compared to the as-received un-welded counterpart. The beneficial influence of post weld heat treatment (PWHT on strength and ductility is presented and discussed in terms of current design provisions for welded aluminum light pole structures.

  12. Gas Metal Arc Welding Using Novel CaO-Added Mg Alloy Filler Wire

    Directory of Open Access Journals (Sweden)

    Minjung Kang

    2016-07-01

    Full Text Available Novel “ECO Mg” alloys, i.e., CaO-added Mg alloys, which exhibit oxidation resistance during melting and casting processes, even without the use of beryllium or toxic protection gases such as SF6, have recently been introduced. Research on ECO Mg alloys is still continuing, and their application as welding filler metals was investigated in this study. Mechanical and metallurgical aspects of the weldments were analysed after welding, and welding behaviours such as fume generation and droplet transfer were observed during welding. The tensile strength of welds was slightly increased by adding CaO to the filler metal, which resulted from the decreased grain size in the weld metal. When welding Mg alloys, fumes have been unavoidable so far because of the low boiling temperature of Mg. Fume reduction was successfully demonstrated with a wire composed of the novel ECO Mg filler. In addition, stable droplet transfer was observed and spatter suppression could be expected by using CaO-added Mg filler wire.

  13. Microstructure and Mechanical Properties of TIG Weld Joint of ZM5 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    QIN Ren-yao

    2016-06-01

    Full Text Available The ZM5 magnesium alloy plates were welded by TIG welding method. The microstructural characteristics and mechanical properties of ZM5 magnesium alloy joint were studied by optical microscopy, microhardness and tensile testers. The results show that the TIG weld joint of ZM5 magnesium alloy is composed of heat affected zone, partially melted zone and weld metal. The heat affected zone is consisted of primary α-Mg phase and eutectic phase that is composed of eutectic α-Mg and eutectic β-Mg17Al12 phase and mainly precipitated at grain boundaries. In the partially melted zone, the eutectic phase is not only increasingly precipitated at grain boundaries, but also dispersed in grains, and the growth of the β-Mg17Al12 phase is obviously observed. The microstructure in the weld is the typical dendritic morphology. The dendrites are considered as primary α-Mg phase, and the interdendritic regions are α+β eutectic phase. The difference in the microstructure of the heat affected zone, partially melted zone and weld results in their various microhardness values, and leads to the smaller tensile strength and ductility in the ZM5 alloy weld joint than parent metal.

  14. Strain signatures associated to the formation of hot cracks during laser beam welding of aluminum alloys

    Science.gov (United States)

    Hagenlocher, Christian; Stritt, Peter; Weber, Rudolf; Graf, Thomas

    2018-01-01

    The local surface displacement during the laser beam welding process of MgSi alloyed aluminum sheets (AA6014) in overlap configuration was optically determined near the weld seam by means of digital correlation of images recorded with a high-speed video camera. The analysis allowed the time- and space-resolved determination of the plane strain in the immediate vicinity of the solidification zone behind the weld pool. The observations revealed characteristic signatures in the temporal evolution of the strain that are related to the formation of centerline cracks in laser beam welding.

  15. The fatigue life of a cobalt-chromium alloy after laser welding.

    Science.gov (United States)

    Al-Bayaa, Nabil Jalal Ahmad; Clark, Robert K F; Juszczyk, Andrzej S; Radford, David R

    2011-03-01

    The aim of this study was to investigate the fatigue life of laser welded joints in a commercially available cast cobalt-chromium alloy. Twenty rod shaped specimens (40 mm x 1.5 mm) were cast and sand blasted. Ten specimens were used as controls and the remaining ten were sectioned and repaired using a pulsed Nd: YAG laser welder. All specimens were subjected to fatigue testing (30N - 2Hz) in a controlled environment. A statistically significant difference in median fatigue life was found between as-cast and laser welded specimens (p cracks, pores and constriction of the outer surface in the welded specimens despite 70% penetration of the weld.

  16. Microstructural evolution during friction stir welding of AlSi1MgMn alloy

    Directory of Open Access Journals (Sweden)

    M. Janjić

    2012-01-01

    Full Text Available This paper provides the research of the infl uence of geometric and kinematic parameters on the microstructure and mechanical properties of welded joint of aluminum alloy AlSi1MgMn (6082-T6 obtained through the Friction Stir Welding (FSW process. The experiment parameters were welding speed, rotation speed, angle of pin slope, pin diameter and shoulder diameter. On the obtained welded workpieces the dynamic testing on the impact toughness, and determination of microstructural zones were carried out.

  17. Resistance Spot Welding of Aluminum Alloy to Steel with Transition Material - From Process to Performance

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.; Shao, H; Kimchi, Menachem; Menachem Kimchi and Wanda Newman

    2004-05-11

    This paper summarizes work to date on resistance spot welding (RSW) of aluminum alloy to mild steel from process development to performance evaluation. A cold-rolled strip material is introduced as a transition material to aid the resistance welding process. The optimal welding parameters and electrode selections were established using a combination of experimental and analytical approaches. The mechanical behaviors of welded samples was evaluated using static and dynamic strength tests and cyclic fatigue tests. A statistical analysis was also performed to analyze the effect of different failure modes on the sample's peak load and energy absorption.

  18. High-cycle Fatigue Properties of Alloy718 Base Metal and Electron Beam Welded Joint

    Science.gov (United States)

    Ono, Yoshinori; Yuri, Tetsumi; Nagashima, Nobuo; Sumiyoshi, Hideshi; Ogata, Toshio; Nagao, Naoki

    High-cycle fatigue properties of Alloy 718 plate and its electron beam (EB) welded joint were investigated at 293 K and 77 K under uniaxial loading. At 293 K, the high-cycle fatigue strength of the EB welded joint with the post heat treatment exhibited somewhat lower values than that of the base metal. The fatigue strengths of both samples basically increased at 77 K. However, in longer life region, the EB welded joint fractured from a blow hole formed in the welded zone, resulting in almost the same fatigue strength at 107 cycles as that at 293 K.

  19. Friction Stir Welding of three dissimilar aluminium alloy used in aeronautics industry

    Science.gov (United States)

    Boşneag, A.; Constantin, M. A.; Niţu, E.; Iordache, M.

    2017-10-01

    Friction Stir Welding (FSW) is an innovative solid-state joining process. This process was, in first time, develop to join the similar aluminum plates but now the technology can be used to weld a large area of materials similar or dissimilar. Taking these into account FSW process, for dissimilar materials are increasingly required, more than traditional arc welding, in industrial environment. More than that FSW is used in aeronautics industry because of very good result and very good weldability between aluminum alloy used at building of airplanes, where the body of airplane are 20% aluminum alloy and this percent can be increaser in future. In this paper is presented an experimental study which includes welding three dissimilar aluminum alloy, with different properties, used in aeronautics industry, this materials are: AA 2024, AA6061 and AA7075. After welding with different parameters, the welding join and welding process will be analyzed considering process temperature, process vertical force, and roughnessof welding seams, visual aspect and microhardness.

  20. Susceptibility testing for welding of AlMg alloys intended for extrusion

    Directory of Open Access Journals (Sweden)

    J. Borowski

    2016-07-01

    Full Text Available The objective of research was to determine the weldability, using Tungsten Inert Gas (TIG of extruded sections made of hard-deformable 5xxx series aluminum alloys with differing magnesium content, i.e. AlMg3, AlMg4,5, AlMg5, AlMg7. Welded joints were obtained as a result of a welding process consisting of several steps. Only welds characterized by very good appearance and quality were selected for tests. As a result of conducted research, TIG welding parameters were determined for sections with a thickness of 8 mm. It was observed that alloys of differing Mg content are characterized by high weldability and do not exhibit a significant reduction of the yield point. Moreover, joints exhibit uniform hardness distribution in the welded joint and heat-affected zone. Tensile strength is reduced.

  1. Braze Welding TIG of Titanium and Aluminium Alloy Type Al – Mg

    Directory of Open Access Journals (Sweden)

    Winiowski A.

    2016-03-01

    Full Text Available The article presents the course and the results of technological tests related to TIG-based arc braze welding of titanium and AW-5754 (AlMg3 aluminium alloy. The tests involved the use of an aluminium filler metal (Al99.5 and two filler metals based on Al-Si alloys (AlSi5 and AlSi12. Braze welded joints underwent tensile tests, metallographic examinations using a light microscope as well as structural examinations involving the use of a scanning electron microscope and an X-ray energy dispersive spectrometer (EDS. The highest strength and quality of welds was obtained when the Al99.5 filler metal was used in a braze welding process. The tests enabled the development of the most convenient braze welding conditions and parameters.

  2. Evaluation of self-welding susceptibility of an austenitic stainless steel (alloy D9) in sodium

    Science.gov (United States)

    Kumar, Hemant; Albert, S. K.; Ramakrishnan, V.; Meikandamurthy, C.; Amarendra, G.; Bhaduri, A. K.

    2008-02-01

    Self-welding susceptibility of a 15Cr-15Ni-2Mo titanium-modified austenitic stainless steel (alloy D9), in both annealed and 20% cold-worked conditions, have been evaluated in flowing sodium at 823 K for 2160 and 4320 h under contact stress of 9.4 MPa. Tests were performed on flat-on-flat geometry of hollow cylindrical specimens under compression. One pair of 20% cold-worked alloy D9 vs. 20% cold-worked alloy D9 specimens tested for 4320 h was self-welded for which the breakaway shear force was measured. Scanning electron micrographs of the self-welded region showed that portions of the original interface no longer existed. The paper discusses the experimental set-up installed in the sodium loop test facility and the results of self-welding susceptibility studies on this material.

  3. Effect of plasma welding parameters on the flexural strength of Ti-6Al-4V alloy.

    Science.gov (United States)

    Lyra e Silva, João Paulo; Fernandes Neto, Alfredo Júlio; Raposo, Luís Henrique Araújo; Novais, Veridiana Resende; de Araujo, Cleudmar Amaral; Cavalcante, Luisa de Andrade Lima; Simamoto Júnior, Paulo Cezar

    2012-01-01

    The aim of this study was to assess the effect of different plasma arc welding parameters on the flexural strength of titanium alloy beams (Ti-6Al-4V). Forty Ti-6Al-4V and 10 NiCr alloy beam specimens (40 mm long and 3.18 mm diameter) were prepared and divided into 5 groups (n=10). The titanium alloy beams for the control group were not sectioned or subjected to welding. Groups PL10, PL12, and PL14 contained titanium beams sectioned and welded at current 3 A for 10, 12 or 14 ms, respectively. Group NCB consisted of NiCr alloy beams welded using conventional torch brazing. After, the beams were subjected to a three-point bending test and the values obtained were analyzed to assess the flexural strength (MPa). Statistical analysis was carried out by one-way ANOVA and Tukey's HSD test at 0.05 confidence level. Significant difference was verified among the evaluated groups (pplasma welded groups (p>0.05). The NCB group showed the lowest flexural strength, although it was statistically similar to the PL 14 group (p>0.05). The weld depth penetration was not significantly different among the plasma welded groups (p=0.05). Three representative specimens were randomly selected to be evaluated under scanning electron microcopy. The composition of the welded regions was analyzed by energy dispersive X-ray spectroscopy. This study provides an initial set of parameters supporting the use of plasma welding during fabrication of titanium alloy dental frameworks.

  4. The stress corrosion cracking behavior of alloys 690 and 152 WELD in a PWR environment.

    Energy Technology Data Exchange (ETDEWEB)

    Alexandreanu, B.; Chopra, O. K.; Shack, W. J. (Nuclear Engineering Division); ( EVS); ( ESE)

    2009-01-01

    Alloys 690 and 152 are the replacement materials of choice for Alloys 600 and 182, respectively. The latter two alloys are used as structural materials in pressurized water reactors (PWRs) and have been found to undergo stress corrosion cracking (SCC). The objective of this work is to determine the crack growth rates (CGRs) in a simulated PWR water environment for the replacement alloys. The study involved Alloy 690 cold-rolled by 26% and a laboratory-prepared Alloy 152 double-J weld in the as-welded condition. The experimental approach involved pre-cracking in a primary water environment and monitoring the cyclic CGRs to determine the optimum conditions for transitioning from the fatigue transgranular to intergranular SCC fracture mode. The cyclic CGRs of cold-rolled Alloy 690 showed significant environmental enhancement, while those for Alloy 152 were minimal. Both materials exhibited SCC of 10{sup -11} m/s under constant loading at moderate stress intensity factors. The paper also presents tensile property data for Alloy 690TT and Alloy 152 weld in the temperature range 25--870 C.

  5. Microstructure change in the interface of co2 laser welded zirconium alloys

    Science.gov (United States)

    Boutarek, N.; Azzougui, B.; Saidi, D.; Neggache, M.

    2009-11-01

    Welding is a joining procedure that offers some benefits over mechanical fasteners such as weight reduction and absence of notches induced by machining operations. CO2 laser beam welding with a continuous wave is a high energy density and low heat input process. The result of this is a small heat-affected zone (HAZ), which cools very rapidly with very little distortion, and a high depth-to-width ratio for the Welding is a necessary process during fabricating fuel rods and fuel assemblies with Zircaloy-4 cladding, and electron beam welding is one of the commonly- used method. In this work, the joining of zirconium alloys was attempted by laser beam welding. A 2 kW CO2 laser is used and the joints are obtained from similar materials, which are plates of Zircaloy-4 (2 mm thick). A series of zirconium alloys were welded and investigated in a tow-fold approach: (1) process optimisation: the laser processing parameters are optimized to obtain welds with minimum defects, and (2) material characterisation: weld microstructures were evaluated. The microstructure and the phases present in the resolidified zone of the laser -welded specimens were analyzed by optical and scanning electron microscopy, X-ray diffraction, and also by the realization of micro hardness diagrams. A particular attention was made to study the correlation between surface structure and mechanical behaviour.

  6. Temporal pulse shaping: a key parameter for the laser welding of dental alloys.

    Science.gov (United States)

    Bertrand, Caroline; Poulon-Quintin, Angeline

    2015-07-01

    This study aims to describe the effect of pulse shaping on the prevention of internal defects during laser welding for two dental alloys mainly used in prosthetic dentistry. Single spot, weld beads, and welds with 80 % overlapping were performed on Co-Cr-Mo and Pd-Ag-Sn cast plates with a pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser. A specific welding procedure using adapted parameters to each alloy was completed. All the possibilities for pulse shaping were tested: (1) the square pulse shape as a default setting, (2) a rising edge slope for gradual heating, (3) a falling edge slope to slow the cooling process, and (4) a combination of rising and falling edges. The optimization of the pulse shape is supposed to produce defect-free welds (crack, pores, voids). Cross-section SEM observations and Vickers microhardness measurements were made. Pd-Ag-Sn was highly sensitive to hot cracking, and Co-Cr-Mo was more sensitive to voids and small porosities (sometimes combined with cracks). Using a slow cooling ramp allowed a better control on the solidification process for those two alloys always preventing internal defects. A rapid slope should be preferred for Co-Cr-Mo alloys due to its low-laser beam reflectivity. On the opposite, for Pd-Ag-Sn alloy, a slow rising slope should be preferred because this alloy has a high-laser beam reflectivity.

  7. A Comparative Study on the Laser Welding of Ti6Al4V Alloy Sheets in Flat and Horizontal Positions

    Directory of Open Access Journals (Sweden)

    Baohua Chang

    2017-04-01

    Full Text Available Laser welding has been increasingly utilized to manufacture a variety of components thanks to its high quality and speed. For components with complex shapes, the welding position needs be continuously adjusted during laser welding, which makes it necessary to know the effects of the welding position on the quality of the laser welds. In this paper, the weld quality under two (flat and horizontal welding positions were studied comparatively in the laser welding of Ti6Al4V titanium alloy, in terms of weld profiles, process porosity, and static tensile strengths. Results show that the flat welding position led to better weld profiles, less process porosity than that of the horizontal welding position, which resulted from the different actions of gravity on the molten weld metals and the different escape routes for pores under different welding positions. Although undercuts showed no association with the fracture positions and tensile strengths of the welds, too much porosity in horizontal laser welds led to significant decreases in the strengths and specific elongations of welds. Higher laser powers and travel speeds were recommended, for both flat and horizontal welding positions, to reduce weld porosity and improve mechanical properties.

  8. Effect of welding parameters of the Nd:YAG laser on the penetration depth of cobalt chromium alloys.

    Science.gov (United States)

    Vlachogianni, V; Clark, R K F; Juszczyk, A S; Radford, D R

    2012-03-01

    The aim of the investigation was to study the effect of the laser welding parameters of energy and spot diameter on the penetration depth of the weld of cast Co-Cr alloy when a single weld was performed. Within the limitations of the study as voltage increased and the spot diameter decreased, penetration depth increased. However, SEM investigation showed more defects in the welded area under these circumstances. The clinical significance is that during selection of the welding parameters the thickness of the components to be welded should be considered to achieve an extended welded area without the induction of micro-structural defects.

  9. Analysis of Nickel Based Hardfacing Materials Manufactured by Laser Cladding for Sodium Fast Reactor

    Science.gov (United States)

    Aubry, P.; Blanc, C.; Demirci, I.; Dal, M.; Malot, T.; Maskrot, H.

    For improving the operational capacity, the maintenance and the decommissioning of the future French Sodium Fast Reactor ASTRID which is under study, it is asked to find or develop a cobalt free hardfacing alloy and the associated manufacturing process that will give satisfying wear performances. This article presents recent results obtained on some selected nickel-based hardfacing alloys manufactured by laser cladding, particularly on Tribaloy 700 alloy. A process parameter search is made and associated the microstructural analysis of the resulting clads. A particular attention is made on the solidification of the main precipitates (chromium carbides, boron carbides, Laves phases,…) that will mainly contribute to the wear properties of the material. Finally, the wear resistance of some samples is evaluated in simple wear conditions evidencing promising results on tribology behavior of Tribaloy 700.

  10. Development of Alloy and Superalloy Large Shafts by Friction Welding Process

    Science.gov (United States)

    Jeong, H. S.; Cho, J. R.; Choi, S. K.; Oh, J. S.; Kim, E. N.

    2010-06-01

    The aim of this study is to examine the process parameters of superalloy and alloy steel inertia welding using FE simulation and to evaluate the mechanical properties of a welded joint. FE simulation was carried out to optimize the inertia welding process parameters. Disk of rotor shaft and head of exhaust valve spindle are made by the hot closed die forging. Dissimilar inertia welding for large exhaust valve spindle manufacturing composed of the Nimonic 80 A valve head of 540 mm diameter and the SNCrW valve stem of 115 mm diameter, and for large rotor shaft manufacturing composed of the 310 mm diameter disk and the 140 mm diameter shaft were carried out with optimal process parameter conditions obtained simulation result. Inertia friction welded joint part was joined by inertia friction welder, MTI model 400. Mechanical and metallurgical properties of welded joints were evaluated by using microstructure, tensile, hardness and fatigue tests.

  11. Numerical Simulation of Mechanical Property of Post Friction Stir Weld Artificial Ageing of Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    WAN Zhenyu

    2017-08-01

    Full Text Available KWN model was used to establish the precipitation evolution model of friction stir welding of Al-Mg-Si alloy. The yield strength was divided into three parts:the contribution from grain size, the contribution from solid solution and the contribution from the precipitations. Based on this model, the yield strength and hardness of friction stir weld was predicted. The effect of post weld artificial ageing on mechanical properties of friction stir weld was further investigated. The results indicate that longer holding time can be beneficial to the recovery of mechanical properties in the stirring zone. Higher temperature can lead to quick recovery of mechanical properties in the stirring zone, but when the holding temperature is higher than 200℃, longer holding time can lead the base metal softened, which is harmful to the service of friction stir welds. The mechanical property in the heat affected zone cannot be improved by post weld artificial ageing.

  12. Laser-welded V-Cr-Ti alloys: Microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Smith, D.L.; Xu, Z.; Leong, K.H. [Argonne National Lab., IL (United States)

    1998-09-01

    A systematic study has been in progress at Argonne National Laboratory to examine the use of YaG or CO{sub 2} lasers to weld sheet materials of V-Cr-Ti alloys and to characterize the microstructural and mechanical properties of the laser-welded materials. In addition, several postwelding heat treatments are being applied to the welded samples to evaluate their benefits, if any, to the structure and properties of the weldments. Hardness measurements are made across the welded regions of different samples to evaluate differences in the characteristics of various weldments. Several weldments were used to fabricate specimens for four-point bend tests. Several additional weldments were made with a YaG laser; here, the emphasis was on determining the optimal weld parameters to achieve deep penetration in the welds. A preliminary assessment was then made of the weldments on the basis of microstructure, hardness profiles, and defects.

  13. Emission of nanoparticles during friction stir welding (FSW) of aluminium alloys.

    Science.gov (United States)

    Gomes, J F; Miranda, R M; Santos, T J; Carvalho, P A

    2014-01-01

    Friction stir welding (FSW) is now well established as a welding process capable of joining some different types of metallic materials, as it was (1) found to be a reliable and economical way of producing high quality welds, and (2) considered a "clean" welding process that does not involve fusion of metal, as is the case with other traditional welding processes. The aim of this study was to determine whether the emission of particles during FSW in the nanorange of the most commonly used aluminum (Al) alloys, AA 5083 and AA 6082, originated from the Al alloy itself due to friction of the welding tool against the item that was being welded. Another goal was to measure Al alloys in the alveolar deposited surface area during FSW. Nanoparticles dimensions were predominantly in the 40- and 70-nm range. This study demonstrated that microparticles were also emitted during FSW but due to tool wear. However, the biological relevance and toxic manifestations of these microparticles remain to be determined.

  14. Ultrasonic Impact Treatment to Improve Stress Corrosion Cracking Resistance of Welded Joints of Aluminum Alloy

    Science.gov (United States)

    Yu, J.; Gou, G.; Zhang, L.; Zhang, W.; Chen, H.; Yang, Y. P.

    2016-07-01

    Stress corrosion cracking is one of the major issues for welded joints of 6005A-T6 aluminum alloy in high-speed trains. High residual stress in the welded joints under corrosion results in stress corrosion cracking. Ultrasonic impact treatment was used to control the residual stress of the welded joints of 6005A-T6 aluminum alloy. Experimental tests show that ultrasonic impact treatment can induce compressive longitudinal and transverse residual stress in the welded joint, harden the surface, and increase the tensile strength of welded joints. Salt-fog corrosion tests were conducted for both an as-welded sample and an ultrasonic impact-treated sample. The surface of the treated sample had far fewer corrosion pits than that of the untreated sample. The treated sample has higher strength and lower tensile residual stress than the untreated sample during corrosion. Therefore, ultrasonic impact treatment is an effective technique to improve the stress corrosion cracking resistance of the welded joints of 6005A-T6 aluminum alloy.

  15. A study of the weldability and weld related microstructure of cabot alloy 214

    Science.gov (United States)

    Cieslak, M. J.; Stephens, J. J.; Carr, M. J.

    1988-03-01

    The weldability and weld metal microstructure of Cabot Alloy 214 have been investigated with a variety of experimental and analytical techniques. These include Varestraint hot crack testing, hot ductility testing, pulsed Nd:YAG laser welding, scanning and analytical electron microscopy, electron microprobe analysis, and X-ray diffraction. A heat of Alloy 214 containing intentionally alloyed B (0.003 wt pct) and Zr (0.07 wt pct) was much more sensitive to both fusion zone hot cracking as quantified by the Varestraint test and to simulated heat-affected-zone (HAZ) cracking as quantified by hot ductility testing than a heat of Alloy 214 containing no intentionally added B (0.0002 wt pct) or Zr (0.02 wt pct). Scanning electron microscopy of the high B and Zr alloy showed the presence of dendritically-shaped, Zr-rich constituents in interdendritic regions in the gas-tungsten-arc (GTA) welds. Electron microprobe analysis of these welds revealed a segregation pattern of Cr, Al, Mn, and Zr enrichment in interdendritic regions and Ni and Fe enrichment in dendrite core regions. Analytical electron microscopy revealed the presence of ZrX (X = B, C, N, O), M23C6, and γ' in the fusion zone of GTA weld specimens, γ' was also found in the as-received base metal and in the GTA weld HAZ. X-ray diffraction analysis of extractions from the high B and Zr GTA weld metal also indicated the presence of a ZrX-type constituent. The results of this study are in qualitative agreement with earlier work performed on alloys such as NIMONIC 90 and INCONEL 718∗ relative to the detrimental effect of B and Zr additions on fusion zone and HAZ hot cracking susceptibility.

  16. Microstructure and Mechanical Properties of Friction Welding Joints with Dissimilar Titanium Alloys

    Directory of Open Access Journals (Sweden)

    Yingping Ji

    2016-05-01

    Full Text Available Titanium alloys, which are important in aerospace application, offer different properties via changing alloys. As design complexity and service demands increase, dissimilar welding of the titanium alloys becomes a particular interest. Linear friction welding (LFW is a relatively novel bond technique and has been successfully applied for joining titanium alloys. In this paper, dissimilar joints with Ti-6Al-4V and Ti-5Al-2Sn-2Zr-4Mo-4Cr alloys were produced by LFW process. Microstructure was studied via optical microscopy and scanning electron microscopy (SEM, while the chemical composition across the welded samples was identified by energy dispersive X-ray spectroscopy. Mechanical tests were performed on welded samples to study the joint mechanical properties and fracture characteristics. SEM was carried out on the fracture surface to reveal their fracture modes. A significant microstructural change with fine re-crystallization grains in the weld zone (WZ and small recrystallized grains in the thermo-mechanically affected zone on the Ti-6Al-4V side was discovered in the dissimilar joint. A characteristic asymmetrical microhardness profile with a maximum in the WZ was observed. Tensile properties of the dissimilar joint were comparable to the base metals, but the impact toughness exhibited a lower value.

  17. Microstructure and mechanical properties of GTAW welded joints of AA6105 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Minerva Dorta-Almenara

    2016-09-01

    Full Text Available Gas Tungsten Arc Welding (GTAW is one of the most used methods to weld aluminum. This work investigates the influence of welding parameters on the microstructure and mechanical properties of GTAW welded AA6105 aluminum alloy joints. AA6105 alloy plates with different percent values of cold work were joined by GTAW, using various combinations of welding current and speed. The fusion zone, in which the effects of cold work have disappeared, and the heat affected zone of the welded samples were examined under optical and scanning electron microscopes, additionally, mechanical tests and measures of Vickers microhardness were performed. Results showed dendritic morphology with solute micro- and macrosegregation in the fusion zone, which is favored by the constitutional supercooling when heat input increases. When heat input increased and welding speed increased or remained constant, greater segregation was obtained, whereas welding speed decrease produced a coarser microstructure. In the heat affected zone recrystallization, dissolution, and coarsening of precipitates occurred, which led to variations in hardness and strength.

  18. Research on the welding process of aluminum alloy based on high power fiber laser

    Science.gov (United States)

    Zhang, Jian; Zhang, Wei; Pan, Xiaoming; Huang, Shanshi; Liu, Wenwen

    2017-08-01

    To research the formation and variation principle of the weld seam and molten pool for aluminum alloy high power fiber laser welding, the welding experiments for 5052 aluminum alloy were carried out. The influences of laser power, scanning velocity and protection gas on the welding process were systematically researched. The results show that with the increase of power and scanning velocity, the depth to width ratio first increases and then decreases. The ratio reaches the maximum value at 2.6 KW and 30 mm/s, respectively. When the power located at 2.6 KW to 2.8 KW or the velocity located at 25 mm/s to 30 mm/s, stable deep penetration welding can be obtained. The weld seam shows relative flat appearance and the molten pool presents typical "T shape" topography. Moreover, the protection gas also influences the appearance of the weld seam. Using the independently designed fixture, the quality of the weld seam can be well improved.

  19. 75 FR 13729 - Circular Welded Non-Alloy Steel Pipe from the Republic of Korea: Extension of Time Limit for the...

    Science.gov (United States)

    2010-03-23

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe from the Republic of Korea: Extension of... circular welded non-alloy steel pipe from the Republic of Korea, covering the period November 1, 2007 through October 31, 2008. See Circular Welded Non-Alloy Steel Pipe from the Republic of Korea: Preliminary...

  20. 75 FR 44763 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico; Extension of Time Limit for Preliminary...

    Science.gov (United States)

    2010-07-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico; Extension of Time... welded non- alloy steel pipe from Mexico. We also received review requests on November 30, 2009, from...

  1. 76 FR 40689 - Certain Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Extension of Time Limit...

    Science.gov (United States)

    2011-07-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From the Republic of Korea... administrative review of the antidumping duty order on certain circular welded non- alloy steel pipe (``circular...

  2. The use of Spark Plasma Sintering method for high-rate diffusion welding of high-strength UFG titanium alloys

    Science.gov (United States)

    Nokhrin, A. V.; Chuvil'deev, V. N.; Boldin, M. S.; Piskunov, A. V.; Kozlova, N. A.; Chegurov, M. K.; Popov, A. A.; Lantcev, E. A.; Kopylov, V. I.; Tabachkova, N. Yu

    2017-07-01

    The article provides an example of applying the technology of spark plasma sintering (SPS) to ensure high-rate diffusion welding of high-strength ultra-fine-grained UFG titanium alloys. Weld seams produced from Ti-5Al-2V UFG titanium alloy and obtained through SPS are characterized by high density, hardness and corrosion resistance.

  3. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  4. Formation of Brittle Phases During Pulsed Current Gas Tungsten Arc Welding of Titanium to Aluminum Alloys

    Science.gov (United States)

    Wei, Shouzheng; Li, Yajiang; Wang, Juan; Liu, Kun

    2014-04-01

    Welding of titanium alloy TA15 to aluminum alloy Al 2024 was conducted by pulsed current gas tungsten arc welding using AlSi12 filler metal. Formation process of phases near the Ti/Al interface was discussed. Titanium and aluminum were partially fusion welded in the upper part while brazed together in the middle and bottom parts of the joint. In the upper part of the joint, intermetallics Ti3Al + Ti5Si3, TiAl + Ti5Si3, and TiAl3 were formed as three layers orderly from the titanium side to the weld metal. In the middle and bottom parts of the joint, intermetallics Ti5Si3 and TiAl3 were formed as two layers near the Ti/Al interface.

  5. Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys

    Science.gov (United States)

    Lee, Hee-Keun; Chun, Kwang-San; Park, Sang-Hyeon; Kang, Chung-Yun

    2015-07-01

    Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG) hybrid (PMH) welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.

  6. Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys

    Directory of Open Access Journals (Sweden)

    Hee-Keun Lee

    2015-07-01

    Full Text Available Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG hybrid (PMH welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.

  7. Improved TIG weld joint strength in aluminum alloy 2219-T87 by filler metal substitution

    Science.gov (United States)

    Poorman, R. M.; Lovoy, C. V.

    1972-01-01

    The results of an investigation on weld joint characteristics of aluminum alloy 2219-T87 are given. Five different alloys were utilized as filler material. The mechanical properties of the joints were determined at ambient and cryogenic temperatures for weldments in the as-welded condition and also, for weldments after elevated temperature exposures. Other evaluations included hardness surveys, stress corrosion susceptibility, and to a limited extent, the internal metallurgical weld structures. The overall results indicate that M-943 filler weldments are superior in strength to weldments containing either the standard 2319 filler or fillers 2014, 2020, and a dual wire feed consisting of three parts 2319 and one part 5652. In addition, no deficiencies were evident in M-934 filler weldments with regard to ductility, joint strength after elevated temperature exposure, weld hardness, metallographic structures, or stress corrosion susceptibility.

  8. Secondary hardening of low-alloyed creep-resistant steel welds

    Directory of Open Access Journals (Sweden)

    P. Mohyla

    2014-01-01

    Full Text Available The T24 steel represents the new generation of low-alloyed creep resistant steels with higher creep resistance and lower carbon content. It was designed as prospective material for membrane waterwalls of ultra super critical (USC power plants, enabling to avoid preheating and post weld heat treatment (PWHT during welding. However, our investigations concerning secondary hardening of vanadium containing low-alloyed steels show that non-tempered welded joints undergo a significant increase in hardness during exposure to operating temperature. The results then imply that PWHT of T24 steel welds is necessary and this idea is at present supported by the occurrence of several troubles with new installations of USC blocks in Europe.

  9. Characterization of disk-laser dissimilar welding of titanium alloy Ti-6Al-4V to aluminum alloy 2024

    Science.gov (United States)

    Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Corrado, Gaetano; Sergi, Vincenzo

    2013-02-01

    Both technical and economic reasons suggest to join dissimilar metals, benefiting from the specific properties of each material in order to perform flexible design. Adhesive bonding and mechanical joining have been traditionally used although adhesives fail to be effective in high-temperature environments and mechanical joining are not adequate for leak-tight joints. Friction stir welding is a valid alternative, even being difficult to perform for specific joint geometries and thin plates. The attention has therefore been shifted to laser welding. Interest has been shown in welding titanium to aluminum, especially in the aviation industry, in order to benefit from both corrosive resistance and strength properties of the former, and low weight and cost of the latter. Titanium alloy Ti-6Al-4V and aluminum alloy 2024 are considered in this work, being them among the most common ones in aerospace and automotive industries. Laser welding is thought to be particularly useful in reducing the heat affected zones and providing deep penetrative beads. Nevertheless, many challenges arise in welding dissimilar metals and the aim is further complicated considering the specific features of the alloys in exam, being them susceptible to oxidation on the upper surface and porosity formation in the fused zone. As many variables are involved, a systematic approach is used to perform the process and to characterize the beads referring to their shape and mechanical features, since a mixture of phases and structures is formed in the fused zone after recrystallization.

  10. Effect of Stress Relief Annealing on Microstructure & Mechanical Properties of Welded Joints Between Low Alloy Carbon Steel and Stainless Steel

    Science.gov (United States)

    Nivas, R.; Das, G.; Das, S. K.; Mahato, B.; Kumar, S.; Sivaprasad, K.; Singh, P. K.; Ghosh, M.

    2017-01-01

    Two types of welded joints were prepared using low alloy carbon steel and austenitic stainless steel as base materials. In one variety, buttering material and weld metal were Inconel 82. In another type, buttering material and weld metal were Inconel 182. In case of Inconel 82, method of welding was GTAW. For Inconel 182, welding was done by SMAW technique. For one set of each joints after buttering, stress relief annealing was done at 923 K (650 °C) for 90 minutes before further joining with weld metal. Microstructural investigation and sub-size in situ tensile testing in scanning electron microscope were carried out for buttered-welded and buttered-stress relieved-welded specimens. Adjacent to fusion boundary, heat-affected zone of low alloy steel consisted of ferrite-pearlite phase combination. Immediately after fusion boundary in low alloy steel side, there was increase in matrix grain size. Same trend was observed in the region of austenitic stainless steel that was close to fusion boundary between weld metal-stainless steel. Close to interface between low alloy steel-buttering material, the region contained martensite, Type-I boundary and Type-II boundary. Peak hardness was obtained close to fusion boundary between low alloy steel and buttering material. In this respect, a minimum hardness was observed within buttering material. The peak hardness was shifted toward buttering material after stress relief annealing. During tensile testing no deformation occurred within low alloy steel and failure was completely through buttering material. Crack initiated near fusion boundary between low alloy steel-buttering material for welded specimens and the same shifted away from fusion boundary for stress relieved annealed specimens. This observation was at par with the characteristics of microhardness profile. In as welded condition, joints fabricated with Inconel 82 exhibited superior bond strength than the weld produced with Inconel 182. Stress relief annealing

  11. Friction Stir Welding of Stainless Steel to Al Alloy: Effect of Thermal Condition on Weld Nugget Microstructure

    Science.gov (United States)

    Ghosh, M.; Gupta, R. K.; Husain, M. M.

    2014-02-01

    Joining of dissimilar materials is always a global challenge. Sometimes it is unavoidable to execute multifarious activities by a single component. In the present investigation, 6061 aluminum alloy and 304 stainless steel were joined by friction stir welding (FSW) at different tool rotational rates. Welded joints were characterized in optical and scanning electron microscopes. Reaction products in the stirring zone (SZ) were confirmed through X-ray diffraction. Joint strength was evaluated by tensile testing. It was found that the increment in average heat input and temperature at the weld nugget (WN) facilitated iron enrichment near the interface. Enhancement in the concentration of iron shifted the nature of intermetallics from the Fe2Al5 to Fe-rich end of the Fe-Al binary phase diagram. The peak microhardness and ultimate tensile strength were found to be maxima at the intermediate tool rotational rate, where Fe3Al and FeAl2 appeared along with Fe2Al5.

  12. Diffusion Bonding and Post-Weld Heat Treatment of Extruded AZ91 Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Fei LIN

    2015-11-01

    Full Text Available The grain size of as-extruded AZ91 magnesium alloys was refined to 12.31 μm from 21.41 μm by recrystallization annealing. The vacuum diffusion welding of as-annealed AZ91 magnesium alloys was researched. The results showed that the maximum shear strength of joints reached 64.70 MPa in the situation of 10 MPa bonding pressure, 18 Pa vacuum degree, 470 °C bonding temperature and 90 min bonding time; both bonding temperature and time are the main influence factors on as-extruded AZ91 magnesium alloys diffusion welding. Then the diffusion welded specimens were annealed, and the shear strength of joints was further improved to 76.93 MPa.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9699

  13. Friction Stir-Welded Titanium Alloy Ti-6Al-4V: Microstructure, Mechanical and Fracture Properties

    Science.gov (United States)

    Sanders, D. G.; Edwards, P.; Cantrell, A. M.; Gangwar, K.; Ramulu, M.

    2015-05-01

    Friction stir welding (FSW) has been refined to create butt welds from two sheets of Ti-6Al-4V alloy to have an ultra-fine grain size. Weld specimen testing was completed for three different FSW process conditions: As welded, stress relieved, stress relieved and machined, and for the un-welded base material. The investigation includes macrostructure, microstructure, microhardness, tensile property testing, notched bar impact testing, and fracture toughness evaluations. All experiments were conducted in accordance with industry standard testing specifications. The microstructure in the weld nugget was found to consist of refined and distorted grains of alpha in a matrix of transformed beta containing acicular alpha. The enhanced fracture toughness of the welds is a result of increased hardness, which is attributed to an increase in alpha phase, increase in transformed beta in acicular alpha, and grain refinement during the weld process. The noted general trend in mechanical properties from as welded, to stress relieved, to stress relieved and machined conditions exhibited a decrease in ultimate tensile strength, and yield strength with a small increase in ductility and a significant increase in fracture toughness.

  14. Disk Laser Weld Brazing of AW5083 Aluminum Alloy with Titanium Grade 2

    Science.gov (United States)

    Sahul, Miroslav; Sahul, Martin; Vyskoč, Maroš; Čaplovič, Ľubomír; Pašák, Matej

    2017-03-01

    Disk laser weld brazing of dissimilar metals was carried out. Aluminum alloy 5083 and commercially pure titanium Grade 2 with the thickness of 2.0 mm were used as experimental materials. Butt weld brazed joints were produced under different welding parameters. The 5087 aluminum alloy filler wire with a diameter of 1.2 mm was used for joining dissimilar metals. The elimination of weld metal cracking was attained by offsetting the laser beam. When the offset was 0 mm, the intermixing of both metals was too high, thus producing higher amount of intermetallic compounds (IMCs). Higher amount of IMCs resulted in poorer mechanical properties of produced joints. Grain refinement in the fusion zone occurred especially due to the high cooling rates during laser beam joining. Reactions at the interface varied in the dependence of its location. Continuous thin IMC layer was observed directly at the titanium-weld metal interface. Microhardness of an IMC island in the weld metal reached up to 452.2 HV0.1. The XRD analysis confirmed the presence of tetragonal Al3Ti intermetallic compound. The highest tensile strength was recorded in the case when the laser beam offset of 300 μm from the joint centerline toward aluminum alloy was utilized.

  15. Numerical Simulations on the Laser Spot Welding of Zirconium Alloy Endplate for Nuclear Fuel Bundle Assembly

    Science.gov (United States)

    Satyanarayana, G.; Narayana, K. L.; Boggarapu, Nageswara Rao

    2018-01-01

    In the nuclear industry, a critical welding process is joining of an end plate to a fuel rod to form a fuel bundle. Literature on zirconium welding in such a critical operation is limited. A CFD model is developed and performed for the three-dimensional non-linear thermo-fluid analysis incorporating buoyancy and Marnangoni stress and specifying temperature dependent properties to predict weld geometry and temperature field in and around the melt pool of laser spot during welding of a zirconium alloy E110 endplate with a fuel rod. Using this method, it is possible to estimate the weld pool dimensions for the specified laser power and laser-on-time. The temperature profiles will estimate the HAZ and microstructure. The adequacy of generic nature of the model is validated with existing experimental data.

  16. Effect of linear energy on the properties of an AL alloy in DPMIG welding

    Science.gov (United States)

    Liao, Tianfa; Jin, Li; Xue, Jiaxiang

    2018-01-01

    The effect of different linear energy parameters on the DPMIG welding performance of AA1060 aluminium alloy is studied in this paper. The stability of the welding process is verified with a Labview electrical signal acquisition system, and the microstructure and tensile properties of the welded joint are studied via optical microscopy, scanning electron microscopy and electrical tensile tests. The test results show that the welding process for the DPMIG methods stable and that the weld beads appear as scales. Tensile strength results indicate that, with increasing linear energy, the tensile strength first increases and then decreases. The tensile strength of the joint is maximized when the linear energy is 120.5 J / mm-1.

  17. Microstructure and Salt Fog Corrosion Behavior of AA2219 Friction-Stir-Welded Aluminum Alloy

    Science.gov (United States)

    Srinivasa Rao, G.; Subba Rao, V. V.; Rao, S. R. K.

    2017-07-01

    Plates (8.1-mm-thick) from aluminum alloy AA2219-T87 are studied after friction stir welding. The plates are subjected to salt fog corrosion tests according to ASTM B117 at different pH values and different spraying times. The regions affected by corrosion are studied in different zones of welded joints by the methods of optical and transmission electron microscopy. The corrosion resistance is determined in acid, basic and neutral solutions. The resistances of the base metal and of the zones of welded joints are compared.

  18. Structural Phase Evolution in Ultrasonic-Assisted Friction Stir Welded 2195 Aluminum Alloy Joints

    Science.gov (United States)

    Eliseev, A. A.; Fortuna, S. V.; Kalashnikova, T. A.; Chumaevskii, A. V.; Kolubaev, E. A.

    2017-10-01

    The authors examined the structural and phase state of fixed joints produced by method of friction stir welding (FSW) and ultrasonic-assisted friction stir welding (UAFSW) from extruded profile of aluminum alloy AA2195. In order to identify the role of ultrasonic application in the course of welding, such characteristics, as volume fraction and average size of secondary particles are compared in the base material and stir zones of FSW and UAFSW joints. By applying the methods of SEM and TEM analysis, researchers established the complex character of phase transitions as a result of ultrasonic application.

  19. Hazard of ultraviolet radiation emitted in gas tungsten arc welding of aluminum alloys.

    Science.gov (United States)

    Nakashima, Hitoshi; Utsunomiya, Akihiro; Fujii, Nobuyuki; Okuno, Tsutomu

    2016-01-01

    Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema. The extent of the hazard of UVR varies depending on the welding method and conditions. Therefore, it is important to identify the levels of UVR that are present under various conditions. In this study, we experimentally evaluated the hazard of UVR emitted in gas tungsten arc welding (GTAW) of aluminum alloys. The degree of hazard of UVR is measured by the effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines. The effective irradiances measured in this study are in the range 0.10-0.91 mW/cm(2) at a distance of 500 mm from the welding arc. The maximum allowable exposure times corresponding to these levels are only 3.3-33 s/day. This demonstrates that unprotected exposure to UVR emitted by GTAW of aluminum alloys is quite hazardous in practice. In addition, we found the following properties of the hazard of UVR. (1) It is more hazardous at higher welding currents than at lower welding currents. (2) It is more hazardous when magnesium is included in the welding materials than when it is not. (3) The hazard depends on the direction of emission from the arc.

  20. Experiments and simulation for 6061-T6 aluminum alloy resistance spot welded lap joints

    Science.gov (United States)

    Florea, Radu Stefanel

    This comprehensive study is the first to quantify the fatigue performance, failure loads, and microstructure of resistance spot welding (RSW) in 6061-T6 aluminum (Al) alloy according to welding parameters and process sensitivity. The extensive experimental, theoretical and simulated analyses will provide a framework to optimize the welding of lightweight structures for more fuel-efficient automotive and military applications. The research was executed in four primary components. The first section involved using electron back scatter diffraction (EBSD) scanning, tensile testing, laser beam profilometry (LBP) measurements, and optical microscopy(OM) images to experimentally investigate failure loads and deformation of the Al-alloy resistance spot welded joints. Three welding conditions, as well as nugget and microstructure characteristics, were quantified according to predefined process parameters. Quasi-static tensile tests were used to characterize the failure loads in specimens based upon these same process parameters. Profilometer results showed that increasing the applied welding current deepened the weld imprints. The EBSD scans revealed the strong dependency between the grain sizes and orientation function on the process parameters. For the second section, the fatigue behavior of the RSW'ed joints was experimentally investigated. The process optimization included consideration of the forces, currents, and times for both the main weld and post-heating. Load control cyclic tests were conducted on single weld lap-shear joint coupons to characterize the fatigue behavior in spot welded specimens. Results demonstrate that welding parameters do indeed significantly affect the microstructure and fatigue performance for these welds. The third section comprised residual strains of resistance spot welded joints measured in three different directions, denoted as in-plane longitudinal, in-plane transversal, and normal, and captured on the fusion zone, heat affected zone

  1. Braze Welding TIG of Titanium and Aluminium Alloy Type Al – Mg

    OpenAIRE

    Winiowski A.; Majewski D.

    2016-01-01

    The article presents the course and the results of technological tests related to TIG-based arc braze welding of titanium and AW-5754 (AlMg3) aluminium alloy. The tests involved the use of an aluminium filler metal (Al99.5) and two filler metals based on Al-Si alloys (AlSi5 and AlSi12). Braze welded joints underwent tensile tests, metallographic examinations using a light microscope as well as structural examinations involving the use of a scanning electron microscope and an X-ray energy disp...

  2. Friction stir welding (FSW process of copper alloys

    Directory of Open Access Journals (Sweden)

    M. Miličić

    2016-01-01

    Full Text Available The present paper analyzes the structure of the weld joint of technically pure copper, which is realized using friction stir welding (FSW. The mechanism of thermo-mechanical processes of the FSW method has been identified and a correlation between the weld zone and its microstructure established. Parameters of the FSW welding technology influencing the zone of the seam material and the mechanical properties of the resulting joint were analyzed. The physical joining consists of intense mixing the base material along the joint line in the “doughy” phase. Substantial plastic deformations immediately beneath the frontal surface of tool provide fine-grained structure and a good quality joint. The optimum shape of the tool and the optimum welding regime (pressure force, rotation speed and the traverse speed of the tool in the heat affected zone enable the achievement of the same mechanical properties as those of the basic material, which justifies its use in welding reliable structures.

  3. Fatigue of friction stir welded 2024-T351 aluminium alloy

    OpenAIRE

    Booth, D.; Sinclair, I.

    2002-01-01

    Fatigue failure characteristics of friction stir welds in 13mm gauge 2024-T351 plate have been assessed. Failure occurred from either the weld region (nugget/flow arm) or from the material immediately surrounding the weld. Fatigue failure from the surrounding material was essentially conventional, initiating from large S-phase intermetallic particles and growing in a macroscopic mode I manner. Corresponding fatigue lives were seen to be comparable to parent plate and results previously report...

  4. Effects of Post-Weld Heat Treatment on the Mechanical Properties of Similar- and Dissimilar-Alloy Friction Stir Welded Blanks

    Science.gov (United States)

    Zadpoor, Amir Abbas; Sinke, Jos

    2011-01-01

    Friction stir welding is a solid state joining process with relatively low welding temperatures. Nevertheless, the mechanical properties of friction stir welded blanks are degraded after welding. Indeed, both strength and ductility of the welds are decreased after welding. Often, the resulting friction stir welded blanks need to be formed to their final structural shape. Therefore, the formability of friction stir welded blanks is of primary importance in the manufacturing of structural parts. This paper studies how the mechanical properties and particularly formability of friction stir welded blanks can be improved by applying a post weld heat treatment. Two aluminum alloys from 2000 and 7000 series, namely 2024-T3 and 7075-T6, are selected for the study. The sheet thickness of both materials is 2,0 mm. The selected alloys are welded in three configurations: 2024-T3 and 2024-T3, 7075-T6 and 7075-T6, and 2024-T3 and 7075-T6. The resulting welds are naturally aged for a few months. Three sets of standard dog bone shape tensile test specimens are then machined from the welds. The first set of the specimens is tested without any heat treatment. The second set of the specimens is solution heat treated and quenched before testing. The third set of the specimens is solution heat treated, quenched, and naturally aged for a week before testing. The mechanical properties of the three different sets of specimens are compared with each other. It is shown that careful selection of post weld heat-treatment can greatly improve the formability of friction stir welded blanks.

  5. Microstructure and Mechanical Properties of Fiber-Laser-Welded and Diode-Laser-Welded AZ31 Magnesium Alloy

    Science.gov (United States)

    Chowdhury, S. M.; Chen, D. L.; Bhole, S. D.; Powidajko, E.; Weckman, D. C.; Zhou, Y.

    2011-07-01

    The microstructures, tensile properties, strain hardening, and fatigue strength of fiber-laser-welded (FLW) and diode-laser-welded (DLW) AZ31B-H24 magnesium alloys were studied. Columnar dendrites near the fusion zone (FZ) boundary and equiaxed dendrites at the center of FZ, with divorced eutectic β-Mg17Al12 particles, were observed. The FLW joints had smaller dendrite cell sizes with a narrower FZ than the DLW joints. The heat-affected zone consisted of recrystallized grains. Although the DLW joints fractured at the center of FZ and exhibited lower yield strength (YS), ultimate tensile strength (UTS), and fatigue strength, the FLW joints failed at the fusion boundary and displayed only moderate reduction in the YS, UTS, and fatigue strength with a joint efficiency of ~91 pct. After welding, the strain rate sensitivity basically vanished, and the DLW joints exhibited higher strain-hardening capacity. Stage III hardening occurred after yielding in both base metal (BM) and welded samples. Dimple-like ductile fracture characteristics appeared in the BM, whereas some cleavage-like flat facets together with dimples and river marking were observed in the welded samples. Fatigue crack initiated from the specimen surface or near-surface defects, and crack propagation was characterized by the formation of fatigue striations along with secondary cracks.

  6. Investigation of Microstructure in Solid State Welded Al-Cu-Li alloy

    Directory of Open Access Journals (Sweden)

    No Kookil

    2016-01-01

    Full Text Available Al-Li alloys have been extensively used in aerospace vehicle structure since the presence of lithium increases the modulus and reduce the density of the alloy. Especially the third generation Al-Cu-Li alloy shows enhanced fracture toughness at cryogenic temperatures so that the alloy has been used on the fuel tank of space launchers, like Super Lightweight External Tank of the Space Shuttle. Since the commercial size of the plate cannot accommodate the large tank size of the launcher, joining several pieces is required. However, lithium is highly reactive and its compounds can decompose with heat from conventional fusion welding and form different types of gases which result in formation of defects. In this study, the microstructure change is investigated after solid state welding process to join the Al-Cu-Li sheets with optical and transmission electron microscopic analysis of precipitates.

  7. A thermomechanical criterion for hot cracking during electron beam welding of CuCrZr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, J.; Pilvin, R. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DEN/DANS/DM2S/SEMT/LTA), 91 - Gif sur Yvette (France); Carron, D. [Universite de Bretagne-Sud, LET2E (EA3373), 56 - Lorient (France); Ayrault, D. [CEA Saclay (LTA), 91 - Gif-sur-Yvette (France); Durocher, A. [Association Euratom-CEA Cadarache (DSM/DRFC), 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Primaux, F.; Cauwe, B. [Le Bronze Industriel, 51 - Suippes (France)

    2007-07-01

    Full text of publication follows: Due to its good thermomechanical and thermophysical properties, precipitation hardened CuCrZr alloy is used for structural components in fusion experiments such as Tore Supra, JET, W7X and will find also application in the thermonuclear fusion reactor ITER. In Tore Supra (CEA Cadarache, France) this material is typically used for heat sink structures of plasma facing components. The experience feedback showed that the CuCrZr alloy was very sensitive to the hot tearing phenomenon during electron beam welding, leading to defects in and/or near the melted zone. The objective of the project under consideration is to propose a hot tearing criterion by mean of numerical simulations, in order to define a welding acceptance test which could be applied to the material, delivered from different manufacturers. In order to characterize the hot tearing phenomenon, a laboratory test, inspired by the Shibahara's experiment, is used. An electron beam welding seam is performed on a thin rectangular plate, which is instrumented with thermocouples while a CCD camera allows recording of eventual cracking defects during welding. The image correlation method permits to determine the displacement field in the solidified welding seam as well as in the non melted zone. In order to identify the hot tearing criterion due to the welding process, the stress and strain state in the material during the laboratory test is calculated with a Lagrangian thermomechanical finite element simulation. For high temperatures, the alloy viscosity is taken into account in order to identify an elasto-viscoplastic behaviour law. Thermomechanical experiments are performed with a Gleeble physical simulator. A thermomechanical criterion for the initiation of hot tearing during electron beam welding of a quenched and aged CuCr1Zr alloy (DIN 17672 standard) has been identified. (authors)

  8. Microstructure Stability During Creep of Friction Stir Welded AA2024-T3 Alloy

    Science.gov (United States)

    Regev, Michael; Rashkovsky, Tal; Cabibbo, Marcello; Spigarelli, Stefano

    2018-01-01

    The poor weldability of the AA2024 aluminum alloy limits its use in industrial applications. Because friction stir welding (FSW) is a non-fusion welding process, it seems to be a promising solution for welding this alloy. In the current study, FSW was applied to butt weld AA2024-T3 aluminum alloy plates. Creep tests were conducted at 250 and at 315 °C on both the parent material and the friction stir welded specimens. The microstructures of the welded and non-welded AA2024-T3 specimens before and after the creep tests were studied and compared. A comprehensive transmission electron microscopy study together with a high-resolution scanning electron microscopy study and energy-dispersive x-ray spectroscopy analysis was conducted to investigate the microstructure stability. The parent material seems to contain two kinds of Cu-rich precipitates—coarse precipitates of a few microns each and uniformly dispersed fine nanosized precipitates. Unlike the parent material, the crept specimens were found to contain the two kinds of precipitates mentioned above together with platelet-like precipitates. In addition, extensive decoration of the grain boundaries with precipitates was clearly observed in the crept specimens. Controlled aging experiments for up to 280 h at the relevant temperatures were conducted on both the parent material and the welded specimens in order to isolate the contribution of exposure to high temperatures to the microstructure changes. TEM study showed the development of dislocation networks into a cellular dislocation structure in the case of the parent metal. Changes in the dislocation structure as a function of the creep strain and the FSW process were recorded. A detailed creep data analysis was conducted, taking into account the instability of the microstructure.

  9. Microstructural characterisation of friction stir welding joints of mild steel to Ni-based alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J. [Brazilian Nanotechnology National Laboratory (LNNano), P.O. Box 6192, Campinas, SP (Brazil); University of Campinas (UNICAMP), Campinas, SP (Brazil); Ramirez, A.J., E-mail: ramirezlondono.1@osu.edu [Brazilian Nanotechnology National Laboratory (LNNano), P.O. Box 6192, Campinas, SP (Brazil); University of Campinas (UNICAMP), Campinas, SP (Brazil); Department of Materials Science and Engineering, The Ohio State University — OSU, Columbus, OH 43221 (United States)

    2015-12-15

    In this study, 6-mm-thick mild steel and Ni-based alloy 625 plates were friction stir welded using a tool rotational speed of 300 rpm and a travel speed of 100 mm·min{sup −1}. A microstructural characterisation of the dissimilar butt joint was performed using optical microscopy, scanning and transmission electron microscopy, and energy dispersive X-ray spectroscopy (XEDS). Six different weld zones were found. In the steel, the heat-affected zone (HAZ) was divided into three zones and was composed of ferrite, pearlite colonies with different morphologies, degenerated regions of pearlite and allotriomorphic and Widmanstätten ferrite. The stir zone (SZ) of the steel showed a coarse microstructure consisting of allotriomorphic and Widmanstätten ferrite, degenerate pearlite and MA constituents. In the Ni-based alloy 625, the thermo-mechanically affected zone (TMAZ) showed deformed grains and redistribution of precipitates. In the SZ, the high deformation and temperature produced a recrystallised microstructure, as well as fracture and redistribution of MC precipitates. The M{sub 23}C{sub 6} precipitates, present in the base material, were also redistributed in the stir zone of the Ni-based alloy. TMAZ in the steel and HAZ in the Ni-based alloy could not be identified. The main restorative mechanisms were discontinuous dynamic recrystallisation in the steel, and discontinuous and continuous dynamic recrystallisation in the Ni-based alloy. The interface region between the steel and the Ni-based alloy showed a fcc microstructure with NbC carbides and an average length of 2.0 μm. - Highlights: • Comprehensive microstructural characterisation of dissimilar joints of mild steel to Ni-based alloy • Friction stir welding of joints of mild steel to Ni-based alloy 625 produces sound welds. • The interface region showed deformed and recrystallised fcc grains with NbC carbides and a length of 2.0 μm.

  10. Joining of an Ni-Al alloy by means of laser beam welding

    Science.gov (United States)

    Adamiec, Janusz; Grabowski, Andrzej; Lisiecki, Aleksander

    2003-10-01

    Trials of wlding an alloy based on an Ni3Al phase matrix with a diode laser have been made. In the base metal of Ni3Al, typical casting structures have been found. The Heat Affected Zone consists of a fine-grained structure, whereas in the weld structure, columnar crystals have been observed. A possibility of joining intermetallic phase-based alloys by measn of a diode laser has been affirmed.

  11. Effect of Intermetallic Compound Formation in Friction Welded Al Alloy Rods.

    Science.gov (United States)

    Im, Yong-Deok; Park, Kwang-Suk; Song, Kuk-Hyun

    2018-03-01

    This study was carried out to evaluate the development of microstructures and mechanical properties on friction welded dissimilar materials with a light weight. For this work, Al6063 and Duralumin alloys with a shape of rod were selected as experimental materials, and friction welding was performed under conditions with a rotation speed of 2,000 RPM, a friction load of 12 kgf/cm2 and an upset force of 25 kgf/cm2, respectively. After welding, the microstructural analysis such as the grain boundary characteristic distributions and the formation of intermetallic compounds was analyzed by electron back-scattering diffraction method and transmission electron microscopy, respectively. In addition, the evaluation of mechanical properties on welded materials was conducted by Vickers microhardness and tensile test. As a result, applying the friction welding led to the significant grain refinement from 50 μm in base material to 2 μm in welded zone, respectively. In case of mechanical properties, Vickers micro-hardness and tensile strength of the welded material occupied 81% and 96% in fraction relative to the base material, respectively, which was attributable to the formation and growth of intermetallic compounds during the welding.

  12. Analysis of Heat Affected Zone in Welded Aluminum Alloys Using Inverse and Direct Modeling

    Science.gov (United States)

    Zervaki, A. D.; Haidemenopoulos, G. N.; Lambrakos, S. G.

    2008-06-01

    The concept of constructing parameter spaces for process control and the prediction of properties within the heat affected zone (HAZ) of welds using inverse modeling is examined. These parameter spaces can be, in principle, either independent or a function of weld process conditions. The construction of these parameter spaces consists of two procedures. One procedure entails calculation of a parameterized set of temperature histories using inverse heat transfer analysis of the heat deposition occurring during welding. The other procedure entails correlating these temperature histories with either a specific process control parameter or physical property of the weld that is measurable. Two quantitative case study analyses based on inverse modeling are presented. One analysis examines the calculation of temperature histories as a function of process control parameters. For this case, the specific process control parameter adopted as prototypical is the electron beam focal point. Another analysis compares some general characteristics of inverse and direct modeling with respect to the prediction of properties of the HAZ for deep penetration welding of aluminum alloys. For this case, the specific property adopted as prototypical is hardness. This study provides a foundation for an examination of the feasibility of constructing a parameter space for the prediction of weld properties using weld cross-section measurements that are independent of weld process conditions.

  13. Low Cycle Fatigue behavior of SMAW welded Alloy28 superaustenitic stainless steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kchaou, Y., E-mail: yacinekchaou@yahoo.fr [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia); Pelosin, V.; Hénaff, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Haddar, N.; Elleuch, K. [Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia)

    2016-01-10

    This paper focused on the study of Low Cycle Fatigue of welded joints of superaustenitic (Alloy28) stainless steels. Chemical composition and microstructure investigation of Base Metal (BM) and Weld Metal (WM) were identified. The results showed that both of composition is fully austenitic with a dendritic microstructure in the WM. Low cycle fatigue tests at different strain levels were performed on Base Metal (BM) and Welded Joint (WJ) specimens with a strain ratio R{sub ε}=−1. The results indicated that the fatigue life of welded joints is lower than the base metal. This is mainly due to the low ductility of the Welded Metal (WM) and the presence of welding defects. Simultaneously, Scanning Electron Microscope (SEM) observations of fractured specimens show that WJ have brittle behavior compared to BM with the presence of several welding defects especially in the crack initiation site. An estimation of the crack growth rate during LCF tests of BM and WJ was performed using distance between striations. The results showed that the crack initiation stage is shorter in the case of WJ compared to BM because of the presence of welding defects in WJ specimens.

  14. Forge Welding of Magnesium Alloy to Aluminum Alloy Using a Cu, Ni, or Ti Interlayer

    Science.gov (United States)

    Yamagishi, Hideki; Sumioka, Junji; Kakiuchi, Shigeki; Tomida, Shogo; Takeda, Kouichi; Shimazaki, Kouichi

    2015-08-01

    The forge-welding process was examined to develop a high-strength bonding application of magnesium (Mg) alloy to aluminum (Al) alloy under high-productivity conditions. The effect of the insert material on the tensile strength of the joints, under various preheat temperatures and pressures, was investigated by analyzing the reaction layers of the bonded interface. The tensile strengths resulting from direct bonding, using pure copper (Cu), pure nickel (Ni), and pure titanium (Ti) inserts were 56, 100, 119, and 151 MPa, respectively. The maximum joint strength reached 93 pct with respect to the Mg cast billet. During high-pressure bonding, a microscopic plastic flow occurred that contributed to an anchor effect and the generation of a newly formed surface at the interface, particularly prominent with the Ti insert in the form of an oxide layer. The bonded interfaces of the maximum-strength inserts were investigated using scanning electron microscopy-energy-dispersive spectroscopy and electron probe microanalysis. The diffusion reaction layer at the bonded interface consisted of brittle Al-Mg intermetallics having a thickness of approximately 30 μm. In contrast, for the three inserts, the thicknesses of the diffusion reaction layer were infinitely thin. For the pure Ti insert, exhibiting the maximum tensile strength value among the inserts tested, focused ion beam-transmission electron microscopy-EDS analysis revealed a 60-nm-thick Al-Ti reaction layer, which had formed at the bonded interface on the Mg alloy side. Thus, a high-strength Al-Mg bonding method in air was demonstrated, suitable for mass production.

  15. Microstructures and fatigue properties of electron beam welds with beam oscillation for heavy section TC4-DT alloy

    Directory of Open Access Journals (Sweden)

    Fu Pengfei

    2014-08-01

    Full Text Available With the development of the manufacturing technology, electron beam welding (EBW is capable of producing titanium alloy large parts in aero fields. To increase the applications and improve the properties, EBW with beam oscillation was investigated on TC4-DT alloy with 50 mm thickness. We detected the welding samples by X-ray NDT, observed the microstructures of the welds, and tested the fatigue properties of the joints. The results showed that EBW with beam oscillation improved the weld morphology as well as welding quality, and the microstructure homogeneity of the welds and HAZ along the weld penetration were also improved. The fatigue properties of the joints with beam oscillation were more excellent than those of conventional EBW, even equal to those of the base metal under high stresses. The influences of the processing and the microstructure on the properties with beam oscillation were discussed.

  16. Microstructural analysis of cracks generated during welding of 2195 aluminum-lithium alloy

    Science.gov (United States)

    Talia, George E.

    1994-01-01

    This research summarizes a series of studies conducted at Marshall Space Flight Center to characterize the properties of 2195 Al-Li alloy. 2195 Al-Li alloy, developed by Martin Marietta laboratories, is designated as a replacement of 2219 Al-Cu alloy for the External Tank (E.T.) of the space shuttle. 2195 Al-Li alloy with its advantage of increased strength per weight over its predecessor, 2219 Al-Cu alloy, also challenges current technology. 2195 Al-Li has a greater tendency to crack than its predecessor. The present study began with the observation of pore formation in 2195 Al-Li alloy in a thermal aging process. In preliminary studies, Talia and Nunes found that most of the two pass welds studied exhibited round and crack-like porosity at the weld roots. Furthermore, the porosity observed was associated with the grain boundaries. The porosity level can be increased by thermal treatment in the air. A solid state reaction proceeding from dendritic boundaries in the weld fusion zone was observed to correlate with the generation of the porosity.

  17. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-08-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10, and iron = 83.71. The cast ingots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot- worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  18. Impurity effects on gas tungsten arc welds in V?Cr?Ti alloys

    Science.gov (United States)

    Grossbeck, M. L.; King, J. F.; Hoelzer, D. T.

    2000-12-01

    Plates 6.4 mm thick of V-Cr-Ti alloys, mostly V-4Cr-4Ti, were welded in a glove box argon atmosphere. A hot titanium getter led to excessive hydrogen concentrations. A cold zirconium-aluminum getter was used to reduce both oxygen and hydrogen. It was observed that a major source of hydrogen was dissociation of water vapor by the electric arc of the welding torch. Careful monitoring of atmospheric impurities and successive pumping and backfilling cycles permitted welds of higher quality than previously achieved. Welds were evaluated primarily by the Charpy impact test. A ductile-to-brittle transition temperature (DBTT) of -28°C was achieved in V-4Cr-4Ti. Previous GTA welds in the same material seldom had a DBTT below room temperature. Electron beam welding can achieve a DBTT of below -90°C in the V-4Cr-4Ti alloy, indicating a lower limit to the DBTT by impurity control.

  19. Morphology, microstructure, and mechanical properties of laser-welded joints in GH909 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunming; Cai, Yuanzheng; Hu, Chongjing; Zhang, Xiong; Yan, Fei; Hu, Xiyuan [Huazhong University of Science and Technology, Wuhan (China)

    2017-05-15

    The experimental laser welding of GH909 alloy was conducted in this study. The morphology, microstructure, and mechanical properties of laser-welded joints were analyzed by scanning electron microscopy, energy diffraction spectroscopy, and other techniques. Results revealed that the microstructure of the welded joints mainly consisted of tiny cellular structures, dendritic structures, and equiaxed crystals. Pores appeared in the interdendritic regions because of the insufficient local feeding of molten metal during solidification. Nb segregation in the heat-affected zone caused liquation cracking, whereas C segregation further induced the formation of carbide precipitates along the grain boundaries during the welding thermal cycle. The instability of the keyhole significantly promoted the escape of the metal vapor/plasma from the hole; as a result, porosity defects formed in the weld. The average tensile strength of the test joints was 756 MPa, which is 93.1 % of that of the base metal. The average microhardness of the weld zone (250 HV) was higher than that of the GH909 alloy substrate (208 HV), peaking at 267 HV. Microcracks appeared along the grain boundaries, proving that the grain boundaries were the weakest areas in the joint.

  20. Electron Beam Welding of a Depleted Uranium Alloy to Niobium Using a Calibrated Electron Beam Power Density Distribution

    Science.gov (United States)

    Elmer, J. W.; Teruya, A. T.; Terrill, P. E.

    2000-08-01

    Electron beam test welds were made joining flat plates of commercially pure niobium to a uranium-6wt%Nb (binary) alloy. The welding parameters and joint design were specifically developed to minimize mixing of the niobium with the U-6%Nb alloy. A Modified Faraday Cup (MFC) technique using computer-assisted tomography was employed to determine the precise power distribution of the electron beam so that the welding parameters could be directly transferred to other welding machines and/or to other facilities.

  1. Physical simulation method for the investigation of weld seam formation during the extrusion of aluminum alloys

    NARCIS (Netherlands)

    Fang, G; Zhou, J.

    2017-01-01

    Extrusion through the porthole die is a predominant forming process used in the production of hollow aluminum alloy profiles across the aluminum extrusion industry. Longitudinal weld seams formed during the process may negatively influence the quality of extruded profiles. It is therefore of

  2. Comparing Reactivation Behavior of TIG and Laser Beam Welded Alloy 690

    Science.gov (United States)

    Abraham, Geogy J.; Bhambroo, Rajan; Kain, V.; Dey, G. K.; Raja, V. S.

    2013-02-01

    The nickel base Alloy 690 was subjected to simulated autogenous welding treatment employing two different techniques, laser beam welding (LBW) and tungsten inert gas (TIG) welding. The resultant weld fusion zone (WFZ) and heat-affected zone (HAZ) were compared by studying the reactivation behavior. The chromium depletion effect was assessed by measuring the degree of sensitization (DOS) from the electrochemical potentiodynamic reactivation (EPR) test. A double-loop EPR test for Alloy 690 was employed to measure the DOS at different regions of weldments by masking the remaining regions. The results clearly demonstrated that Alloy 690 showed no sensitization in the parent material and the WFZ region of both TIG and laser weldments. However, it exhibited reactivation in the HAZ region of both the weldments. The DOS values measured for Alloy 690 were very low for all the regions of the LBW weldment as compared to that in the TIG weldment. The HAZ region of the LBW weldment showed the highest DOS value in any region of the weldment but even this value was quite low indicating absence of sensitization in LBW weldment. The attack along the grain boundaries for the weldments after EPR experiments were studied using optical and scanning electron microscopy.

  3. An Experimental Evaluation of Electron Beam Welded Thixoformed 7075 Aluminum Alloy Plate Material

    Directory of Open Access Journals (Sweden)

    Ava Azadi Chegeni

    2017-12-01

    Full Text Available Two plates of thixoformed 7075 aluminum alloy were joined using Electron Beam Welding (EBW. A post-welding-heat treatment (PWHT was performed within the semi-solid temperature range of this alloy at three temperatures, 610, 617 and 628 °C, for 3 min. The microstructural evolution and mechanical properties of EB welded plates, as well as the heat-treated specimens, were investigated in the Base Metal (BM, Heat Affected Zone (HAZ, and Fusion Zone (FZ, using optical microscopy, Scanning Electron Microscopy (SEM, EDX (Energy Dispersive X-ray Analysis, and Vickers hardness test. Results indicated that after EBW, the grain size substantially decreased from 67 µm in both BM and HAZ to 7 µm in the FZ, and a hardness increment was observed in the FZ as compared to the BM and HAZ. Furthermore, the PWHT led to grain coarsening throughout the material, along with a further increase in hardness in the FZ.

  4. On the effect of β phase on the microstructure and mechanical properties of friction stir welded commercial brass alloys.

    Science.gov (United States)

    Heidarzadeh, Akbar; Saeid, Tohid

    2015-12-01

    Conventional fusion welding of brass (Cu-Zn) alloys has some difficulties such as evaporation of Zn, toxic behavior of Zn vapor, solidification cracking, distortion, and oxidation [1], [2], [3]. Fortunately, friction stir welding (FSW) has been proved to be a good candidate for joining the brass alloys, which can overcome the fusion welding short comes [4], [5], [6], [7]. The data presented here relates to FSW of the single and double phase brass alloys. The data is the microstructure and mechanical properties of the base metals and joints.

  5. Similar and Dissimilar Nd:YAGlaser Welding of NiTi Shape Memory Alloy to AISI 420Stainless Steel

    Directory of Open Access Journals (Sweden)

    Jassim Mohammed Salman Al-Murshdy

    2017-03-01

    Full Text Available Similar NiTi shape memory alloy(SMA plates, 420 Martensitic stainless steelplates and dissimilar NiTi shape memory alloy with Martensiticstainless steel were welded by a pulsed Nd:YAGlaser welding method.The nature microstructure of the base metal (BM, weld zone (WZ, interface and the heat affected zones(HAZ were showedby in a scanning electron microscope (SEM and optical microscope.Vickers hardness tests wasconducted to specifythe properties of the weld. The outcomes showed that the hardness of dissimilar NiTi-Stainless steel (St.St. weld is higher than that in similar NiTi-NiTi and St.St.-St.St. weld.TheMicrostructural examination in both NiTi-St.St. and NiTi-NiTi welds illustrates that the solidification process in the fusion zone changed the kind of plan to the cell type as well as the changes that occur in the cell to dentritic kind of intra- region of the weld through the weld center in the welded sample sides but in the St.St.-St.St. weld showed dendrite microstructure. In this study it is found that the increase of the welding speed leads to a decrease in hardness in all jointsNiTi-NiTi, NiTi-St.St. and St.St.-St.St.

  6. Influence of heat input on HAZ liquation cracking in laser welded GH909 alloy

    Science.gov (United States)

    Yan, Fei; Hu, Chongjing; Zhang, Xiong; Cai, Yuanzheng; Wang, Chunming; Wang, Jun; Hu, Xiyuan

    2017-07-01

    In this paper, we describe influence of heat input on HAZ liquation cracking in laser welded GH909 alloy. The results demonstrated that more cracks were produced using high laser power and welding speed. The presence of cracks greatly weakened the hot ductility of this material and the binding force between the adjacent grains, resulting in reducing the tensile strength of welded joints. The occurrence of HAZ cracking was mainly attributable to the coarseness of microstructures and large tensile stresses. A new method was proposed to prevent HAZ liquation cracking using low laser power and welding speed at a constant heat input. The simulated results were consistent with the experimental results, verifying the correctness and feasibility of the method.

  7. Microstructure of friction stir welded joints of 2017A aluminium alloy sheets.

    Science.gov (United States)

    Mroczka, K; Dutkiewicz, J; Pietras, A

    2010-03-01

    The present study examines a friction stir welded 2017A aluminium alloy. Transmission electron microscope investigations of the weld nugget revealed the average grain size of 5 microm, moderate density of dislocations as well as the presence of nanometric precipitates located mostly in grains interiors. Scanning electron microscope observations of fractures showed the presence of ductile fracture in the region of the weld nugget with brittle precipitates in the lower part. The microhardness analysis performed on the cross-section of the joints showed fairly small changes; however, after the artificial ageing process an increase in hardness was observed. The change of the joint hardness subject to the ageing process indicates partial supersaturation in the material during friction stir welding and higher precipitation hardening of the joint.

  8. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    Science.gov (United States)

    2011-01-01

    interfaces alone. 233Li et al. (Ref 25) carried out a series of FSW experiments 234involving either dissimilar aluminum-alloy grades or alumi - 235num/copper...within the weld region in a 317variety of solid-solution strengthened and age-hardened alumi - 318num- and titanium-based alloys. Since the main emphasis of...o o f U N C O R R E C T E D P R O O F 495 3.2 Material Models 496 3.2.1 Tool Material. FSW tools used for joining alumi - 497 num alloys are typically

  9. Identifying Combination of Friction Stir Welding Parameters to Maximize Strength of Lap Joints of AA2014-T6 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Rajendrana C.

    2017-01-01

    Full Text Available AA2014 aluminum alloy (Al-Cu alloy has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE, analysis of variance (ANOVA, response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.

  10. Microstructures and mechanical properties of bonding layers between low carbon steel and alloy 625 processed by gas tungsten arc welding

    Science.gov (United States)

    Lou, Shuai; Lee, Seul Bi; Nam, Dae-Geun; Choi, Yoon Suk

    2017-11-01

    A filler metal wire, Alloy 625, was cladded on a plate of a low carbon streel, SS400, by gas tungsten arc welding, and the morphology of the weld bead and resulting dilution ratio were investigated under different welding parameter values (the input current, weld speed and wire feed speed). The wire feed speed was found to be most influential in controlling the dilution ratio of the weld bead, and seemed to limit the influence of other welding parameters. Two extreme welding conditions (with the minimum and maximum dilution ratios) were identified, and the corresponding microstructures, hardness and tensile properties near the bond line were compared between the two cases. The weld bead with the minimum dilution ratio showed superior hardness and tensile properties, while the formation lath martensite (due to relatively fast cooling) affected mechanical properties in the heat affected zone of the base metal with the maximum dilution ratio.

  11. Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints

    Directory of Open Access Journals (Sweden)

    S. Ragu Nathan

    2015-09-01

    Full Text Available Naval grade high strength low alloy (HSLA steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding (FSW. In this investigation, a comparative evaluation of mechanical (tensile, impact, hardness properties and microstructural features of shielded metal arc (SMA, gas metal arc (GMA and friction stir welded (FSW naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints.

  12. Temperature distribution study during the friction stir welding process of Al2024-T3 aluminum alloy

    Science.gov (United States)

    Yau, Y. H.; Hussain, A.; Lalwani, R. K.; Chan, H. K.; Hakimi, N.

    2013-08-01

    Heat flux characteristics are critical to good quality welding obtained in the important engineering alloy Al2024-T3 by the friction stir welding (FSW) process. In the present study, thermocouples in three different configurations were affixed on the welding samples to measure the temperatures: in the first configuration, four thermocouples were placed at equivalent positions along one side of the welding direction; the second configuration involved two equivalent thermocouple locations on either side of the welding path; while the third configuration had all the thermocouples on one side of the layout but with unequal gaps from the welding line. A three-dimensional, non-linear ANSYS computational model, based on an approach applied to Al2024-T3 for the first time, was used to simulate the welding temperature profiles obtained experimentally. The experimental thermal profiles on the whole were found to be in agreement with those calculated by the ANSYS model. The broad agreement between the two kinds of profiles validates the basis for derivation of the simulation model and provides an approach for the FSW simulation in Al2024-T3 and is potentially more useful than models derived previously.

  13. Design of Laser Welding Parameters for Joining Ti Grade 2 and AW 5754 Aluminium Alloys Using Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Mária Behúlová

    2017-01-01

    Full Text Available Joining of dissimilar Al-Ti alloys is very interesting from the point of view of weight reduction of components and structures in automotive or aerospace industries. In the dependence on cooling rate and chemical composition, rapid solidification of Al-Ti alloys during laser welding can lead to the formation of metastable phases and brittle intermetallic compounds that generally reduce the quality of produced weld joints. The paper deals with design and testing of welding parameters for preparation of weld joints of two sheets with different thicknesses from titanium Grade 2 and AW 5754 aluminium alloy. Temperature fields developed during the formation of Al-Ti butt joints were investigated by numerical simulation in ANSYS software. The influence of laser welding parameters including the laser power and laser beam offset on the temperature distribution and weld joint formation was studied. The results of numerical simulation were verified by experimental temperature measurement during laser beam welding applying the TruDisk 4002 disk laser. The microstructure of produced weld joints was assessed by light microscopy and scanning electron microscopy. EDX analysis was applied to determine the change in chemical composition across weld joints. Mechanical properties of weld joints were evaluated using tensile tests and Vickers microhardness measurements.

  14. Low cycle fatigue of Alloy 690 and welds in a simulated PWR primary water environment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jongdae; Cho, Pyungyeon; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Cho, Pyungyeon [Khalifa Univ., Abu Dhabi (United Arab Emirates); Kim, Tae Soon; Lee, Yong Sung [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2013-05-15

    In this study, environmental fatigue tests for these materials were performed and the new prediction model of fatigue life of Alloy 690 and weld in primary water condition was proposed. To evaluate the fatigue life of Alloy 690 and 52M in a PWR environment, low cycle fatigue tests were performed and revised fatigue life prediction models and environmental factor were proposed. With the revised Fen model for Alloy 690 and 52M, the reliability of the fatigue life prediction has been improved. The reduction of low cycle fatigue life of metallic materials in the primary coolant water environments has been the subject of debate between the utility and regulator since 1980s. It became the significant licensing problem since the issue of RG-1.207 by U. S. NRC. The statistical model for the environmental factor, Fen, specified in RG-1.207 was based on the extensive test results accumulated by the ANL and Japanese national program. Of the materials, the limited fatigue life data of Ni-Cr-Fe alloys were used to develop the Fen for the alloys. Furthermore, test data for Alloy 690 and its weld are limited. Considering that Alloy 690 will be extensively used in the new nuclear power plants, additional effort to validate or improve current Fen model is required.

  15. Effect of fiber laser parameters on laser welded AZ31B Magnesium alloys

    Directory of Open Access Journals (Sweden)

    Mat Salleh Naqiuddin

    2017-01-01

    Full Text Available Recently, the usage of Magnesium (Mg alloys has been hugely applied in the industrial application such as in automotive, marine, and electronic due to its advantages of recyclability and lightweight. This alloys required low heat input to be weld since it is easily evaporated due to the Magnesium Oxide (MgO at the surface and it also possesses lower melting point compared to steel. Laser welding is more convenient to weld Mg alloys due to its high power and lower heat input. AZ31B was selected since it has strong mechanical properties among others Mg alloys due to the major alloying elements; Aluminium (Al and Zinc (Zn. Low power fiber laser machine with wavelength of 900 nm was used in this experiment. The intention of this work was to investigate the effect of low power fiber laser parameters and effect of shielding gas on weld penetration and microstructure. Another aim in this work was to produce the joint for this thin sheets metal. Penetration depth and microstructure evaluation were emphasized in the analysis section. Bead-on-Plate (BOP and laser lap welding was conducted on AZ31B with thicknesses of 1.0 mm and 0.6 mm for feasibility study using pulsed wave (PW mode. Defocusing features was used in order to find better focal position, which has less occurrence of evaporation (underfill. The effect of different angle of irradiation was also investigated. Two types of shielding gases, Argon (Ar and Nitrogen (N2 were used in order to study the effect of shielding gas. Lastly, the effect of pulsed energy on penetration types and depth of BOP welded samples was investigated. Focus point was found at focal length of 156 mm with 393.75 μm. For BOP experiment, higher pulsed energy used contributes to melt through defect. Meanwhile, Ns shielding gas proved to be better shielding gas in laser welding the AZ31B. Higher angle of irradiation could reduce the underfill defect. Fillet Lap joint of similar metal was successfully done where 2.0 J of

  16. Welding.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  17. Hard hardfacing by welding in the manufacture of valves; Problem Cobalt, alternatives, advantages, disadvantages; Recargues Duros por Soldadura en la Fabricacion de Valvulas ; el Problema del Cobalto, alternativas, ventajas, inconvenientes

    Energy Technology Data Exchange (ETDEWEB)

    Piquer Caballero, J.

    2014-07-01

    Alloys of recharge usually used in the field of the valves are base alloys cobalt (stellite), but in the field of nuclear power plants, due to radioactive activation of the cobalt, there is a growing trend to replace these alloys with other calls cobalt free . In this paper we will explore the most frequent and will be deducted the relevant advantages and disadvantages of these, in comparison with base alloys cobalt. (Author)

  18. Comparison of laboratory and field experience of PWSCC in Alloy 182 weld metal

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.; Meunier, M.-C.; Steltzlen, F. [AREVA NP, Tour AREVA, Paris La Defense (France); Calonne, O.; Foucault, M. [AREVA NP, Centre Technique, Le Creusot Cedex (France); Combrade, P. [ACXCOR, Saint Etienne (France); Amzallag, C. [EDF, SEPTEN, Villeurbanne (France)

    2007-07-01

    Laboratory studies of stress corrosion cracking of the nickel base weld metal, Alloy 182, in simulated PWR primary water suggest similar resistance to crack initiation and somewhat enhanced propagation rates relative to wrought Alloy 600. By contrast, field experience of cracking in the primary circuits of PWRs shows in general much better performance for Alloy 182 relative to Alloy 600 than would be anticipated from laboratory studies. This paper endeavours to resolve this apparent conundrum. It draws on the conclusions of recent research that has focussed on the role of surface finish, particularly cold work and residual stresses resulting from different fabrication processes, on the risk of initiating IGSCC in nickel base alloys in PWR primary water. It also draws on field experience of stress corrosion cracking that highlights the important role of surface finish for crack initiation. (author)

  19. Heat Sink Welding for Preventing Hot Cracking in Alloy 2195 Intersection Welds: A Feasibility Study

    Science.gov (United States)

    Yang, Yu-Ping; Dong, Pingsha; Rogers, Patrick

    2000-01-01

    Two concepts, stationary cooling and trailing cooling, were proposed to prevent weld intersection cracking. Finite element analysis was used to demonstrate the potential effectiveness of those two concepts. Both stationary and trailing heat sink setups were proposed for preventing intersection cracking. The cooling media could be liquid nitrogen, or pressured air knife. Welding experiments on the small test panel with the localized heat sink confirmed the feasibility of using such a stationary cooling technique. The required cooling was achieved in this test panel. Systematic welding experiments should be conducted in the future to validate and refine the heat sink technique for preventing intersection cracking.

  20. Effect of molybdenum on wear resistance of Cr-Nb hard-faced S355JR steel

    Energy Technology Data Exchange (ETDEWEB)

    Thongchitrugsa, Nut; Chianpairot, Amnuaysak; Hartung, Fritz; Lothongkum, Gobboon [Chulalongkorn Univ., Bangkok (Thailand). Dept. of Metallurgical Engineering

    2014-03-01

    The effect of Mo on the abrasive wear resistance of (20-23)Cr-(7-8)Nb hard-faced S355JR steel by shielded metal arc welding (SMAW) was studied. Four types of flux, consisting of fixed Cr and Nb but varying Mo contents, coated on hard-facing electrode were used. Microstructure, micro hardness, and abrasive wear resistance of the hard-faced surface were investigated by ASTM G65 D procedure. The original microstructures consist of the primary coarse and eutectic carbides. Mo affects morphology of carbides by decreasing primary carbide size. When Mo content in the hard-faced surface was up to 6.43 wt.-%, the highest abrasive wear resistance and micro hardness were obtained. The decrease of primary carbide size is attributed to the increased nucleation induced by Mo addition. Network structure was observed when the Mo content reaches 10.19 wt.-%. The main mechanisms of wear are micro-cutting and carbide pulling out. (orig.)

  1. PFM Analysis for Pre-Existing Cracks on Alloy 182 Weld in PWR Primary Water Environment using Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Phil; Bahn, Chi Bum [Pusan National University, Busan (Korea, Republic of)

    2015-10-15

    Probabilistic Fracture Mechanics (PFM) analysis was generally used to consider the scatter and uncertainty of parameters in complex phenomenon. Weld defects could be present in weld regions of Pressurized Water Reactors (PWRs), which cannot be considered by the typical fracture mechanics analysis. It is necessary to evaluate the effects of the pre-existing cracks in welds for the integrity of the welds. In this paper, PFM analysis for pre-existing cracks on Alloy 182 weld in PWR primary water environment was carried out using a Monte Carlo simulation. PFM analysis for pre-existing cracks on Alloy 182 weld in PWR primary water environment was carried out. It was shown that inspection decreases the gradient of the failure probability. And failure probability caused by the pre-existing cracks was stabilized after 15 years of operation time in this input condition.

  2. Transverse-Weld Tensile Properties of a New Al-4Cu-2Si Alloy as Filler Metal

    Science.gov (United States)

    Sampath, K.

    2009-12-01

    AA2195, an Al-Cu-Li alloy in the T8P4 age-hardened condition, is a candidate aluminum armor for future combat vehicles, as this material offers higher static strength and ballistic protection than current aluminum armor alloys. However, certification of AA2195 alloy for armor applications requires initial qualification based on the ballistic performance of welded panels in the as-welded condition. Currently, combat vehicle manufacturers primarily use gas metal arc welding (GMAW) process to meet their fabrication needs. Unfortunately, a matching GMAW consumable electrode is currently not commercially available to allow effective joining of AA2195 alloy. This initial effort focused on an innovative, low-cost, low-risk approach to identify an alloy composition suitable for effective joining of AA2195 alloy, and evaluated transverse-weld tensile properties of groove butt joints produced using the identified alloy. Selected commercial off-the-shelf (COTS) aluminum alloy filler wires were twisted to form candidate twisted filler rods. Representative test weldments were produced using AA2195 alloy, candidate twisted filler rods and gas tungsten arc welding (GTAW) process. Selected GTA weldments produced using Al-4wt.%Cu-2wt.%Si alloy as filler metal consistently provided transverse-weld tensile properties in excess of 275 MPa (40 ksi) UTS and 8% El (over 25 mm gage length), thereby showing potential for acceptable ballistic performance of as-welded panels. Further developmental work is required to evaluate in detail GMAW consumable wire electrodes based on the Al-Cu-Si system containing 4.2-5.0 wt.% Cu and 1.6-2.0 wt.% Si.

  3. The porosity formation mechanism in the laser-MIG hybrid welded joint of Invar alloy

    Science.gov (United States)

    Zhan, Xiaohong; Gao, Qiyu; Gu, Cheng; Sun, Weihua; Chen, Jicheng; Wei, Yanhong

    2017-10-01

    The porosity formation mechanism in the laser-metal inter gas (MIG) multi-layer hybrid welded (HW) joint of 19.05 mm thick Invar alloy is investigated. The microstructure characteristics and energy dispersive spectroscopy (EDS) are analyzed. The phase identification was conducted by the X-ray diffractometer (XRD). Experimental results show that the generation of porosity is caused by the relatively low laser power in the root pass and low current in the cover pass. It is also indicated that the microstructures of the welded joints are mainly observed to be columnar crystal and equiaxial crystal, which are closely related to the porosity formation. The EDS results show that oxygen content is significantly high in the inner wall of the porosity. The XRD results indicate that the BM and the WB of laser-MIG HW all are composed of Fe0.64Ni0.36 and γ-(Fe,Ni). When the weld pool is cooled quickly, [NiO] [FeO] and [MnO] are formed that react on C to generate CO/CO2 gases. The porosity of laser-MIG HW for Invar alloy is oxygen pore. The root source of metallurgy porosity formation is that the dissolved gases are hard to escape sufficiently and thus exist in the weld pool. Furthermore, 99.99% pure Argon is recommended as protective gas in the laser-MIG HW of Invar alloy.

  4. Tensile Behavior of Electron Beam-Welded and Post-Weld Vacuum-Annealed Nb-10% Hf-1% Ti Refractory Alloy Weldments

    Science.gov (United States)

    Anil Kumar, V.; Gupta, R. K.; Venkateswaran, T.; Ram Kumar, P.

    2018-01-01

    Nb-10% Hf-1% Ti refractory alloy is a high performance material extensively used for high temperature applications. Electron beam welding is one of the most widely used techniques to join refractory and reactive alloys. Bigger sizes of nozzles for rocket propulsion applications can be either made through deep drawing and flow turning route or by roll bending and welding route both using sheets/plates as input material for fabrication. The latter is a more economical option for mass production of the hardware using such exotic and expensive alloys. In view of this, both as-welded (AW) coupon and weld plus post-weld vacuum-annealed (AW + VA) coupon have been prepared to study their mechanical behavior. It has been observed that tensile strength and ductility have not been reduced in both these conditions vis-à-vis the base metal, confirming weld efficiency of the alloy to be 100%. Microhardness is found to be 150-160 VHN in the base metal and 200-225 VHN in the weld fusion zone in AW condition, which became uniform (145-155 VHN) throughout the weldment in AW + VA condition. Microstructure of the weldment in AW condition is found to be consisting of grains solidified by epitaxial mode from base metal toward the weld centre. In AW + VA condition, improvement in tensile elongation is observed, which is found to be due to the presence of homogenized grains/more uniform microstructure near the heat-affected zone as compared to the steep gradient in grain size in different zones in the weld in AW condition.

  5. Measurement of the Residual Stresses and Investigation of Their Effects on a Hardfaced Grid Plate due to Thermal Cycling in a Pool Type Sodium-Cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    S. Balaguru

    2016-01-01

    Full Text Available In sodium-cooled fast reactors (SFR, grid plate is a critical component which is made of 316 L(N SS. It is supported on core support structure. The grid plate supports the core subassemblies and maintains their verticality. Most of the components of SFR are made of 316 L(N/304 L(N SS and they are in contact with the liquid-metal sodium which acts as a coolant. The peak operating temperature in SFR is 550°C. However, the self-welding starts at 500°C. To avoid self-welding and galling, hardfacing of the grid plate has become necessary. Nickel based cobalt-free colmonoy 5 has been identified as the hardfacing material due to its lower dose rate by Plasma Transferred Arc Welding (PTAW. This paper is concerned with the measurement and investigations of the effects of the residual stress generated due to thermal cycling on a scale-down physical model of the grid plate. Finite element analysis of the hardfaced grid plate model is performed for obtaining residual stresses using elastoplastic analysis and hence the results are validated. The effects of the residual stresses due to thermal cycling on the hardfaced grid plate model are studied.

  6. Peculiarities of welding pool degassing at surface deposition of aluminium alloys with powder wire

    Directory of Open Access Journals (Sweden)

    Володимир Якович Зусін

    2016-11-01

    Full Text Available The article contains the analysis of the conventional methods of surface deposition of aluminium alloys. It was shown that at surface deposition of aluminium alloys interstices, arising at hydrogen bubbles formation in the weld pool lat the moment of its crystallization are the most probable defects. An additional source of hydrogen supply into the weld pool springs up at surface deposition of aluminium alloys-this is the powder electrode charge. So, a model of formation of gas bubbles with due regard to this factor was developed. Presence of various surface defects, like cavities, shears, and micro-cracks is a factor, promoting formation of gaseous hydrogen phase inside a drop of electrode metal. Further development of gas bubbles, entrapped into the weld pool goes on by their consolidation and hydrogen diffusion from the molten metal into gaseous section. Intensification of bubble degassing, both at the stage of molten metal drop and at the welding pool stage is the most efficient way. The process of degassing depends on the amount of hydrogen, introduced into the weld pool. Proposed was an analytical dependence of evaluation of the original hydrogen concentration in the weld pool upon the coefficient of powder wire filling and dimensions of the charge particles. Experimental research of the influence of the parameters of powder wire upon the porosity of deposited metal made it possible to determine an optimal range of charge granulation and the coefficient of powder wire filling, ensuring intensive degassing during the period of its existence in liquid state and reaching deposited metal with sufficient density

  7. Welding of aluminum alloys through thermite like reactions in Al-CuO-Ni system

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami Motlagh, Ehsan, E-mail: ehsan.bahramimotlagh@stu-mail.um.ac.ir [Department of Materials Science and Engineering, Engineering Faculty, Ferdowsi University of Mashhad, P.O. Box 9177948944, Mashhad (Iran, Islamic Republic of); Vahdati Khaki, Jalil; Haddad Sabzevar, Mohsen [Department of Materials Science and Engineering, Engineering Faculty, Ferdowsi University of Mashhad, P.O. Box 9177948944, Mashhad (Iran, Islamic Republic of)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Combustion synthesis reactions were utilized for welding of aluminum alloys. Black-Right-Pointing-Pointer A composite joint reinforced by different intermetallic compounds was obtained. Black-Right-Pointing-Pointer Using metal oxides as a part of raw materials makes the welding process economical. Black-Right-Pointing-Pointer Furthermore, this process introduces new applications for thermite reactions. - Abstract: In this work, first, a metastable composite powder of '14Al-3CuO-Ni' with a decreased ignition temperature was obtained via Arrested Reactive Milling (ARM), then this exothermic blend was used for welding of 1100 Aluminum alloy. The reactive media and the weld zones were investigated using scanning electron microscope. X-ray diffraction experiment and morphological investigations accompanied with the EDS analyses were carried out in order to evaluate the reactions' products. Vickers microhardness profile across the joint and the shear strength of the joints were determined. The weld zone thickness in each of the parent alloys was measured to be 750 {mu}m, approximately. Results showed that different reactions occurring during the process lead to the in situ formation of different intermetallic compounds such as Al{sub 3}Ni{sub 2} and Al{sub 7}Cu{sub 4}Ni as well as Al{sub 2}O{sub 3} nanoparticles at the interface. Thus, this area has the maximum hardness (80-90 VHN) and the minimum hardness of 35 VHN belongs to the parent alloys. The mean shear strength of the obtained joints was 27 MPa.

  8. Cold weld cracking susceptibility of high strength low alloyed (HSLA steel NIONIKRAL 70

    Directory of Open Access Journals (Sweden)

    A. S. Tawengi

    2014-10-01

    Full Text Available In view of the importance of high strength low alloy (HSLA steels, particularly for critical applications such as offshore plat forms, pipeline and pressure vessels, this paper reports on an investigation of how to weld this type of steel without cold cracking. Using manual metal arc welding process and Tekken test (Y - Grove test has been carried out both to observe the cold cracking phenome non, and to investigate the influencing factors, such as preheating temperature and energy input, as well as electrode strength and diameter. How ever the results of the experiments show that there is a risk of cold cracking.

  9. Fatigue behaviour of welded joints from magnesium alloy (AZ31) according to the local strain concept

    Energy Technology Data Exchange (ETDEWEB)

    Karakas, Oe.; Guelsoez, A. [Engineering Faculty, Department of Mechanical Engineering, University Pamukkale, Denizli (Turkey); Kaufmann, H.; Sonsino, C.M. [Fraunhofer - Institute for Structural Durability and System Reliability, LBF, Darmstadt (Germany)

    2010-02-15

    In the present study, the results of fatigue tests with the magnesium alloy AZ31 (ISO-MgAl3Zn1) in the material states base metal, heat affected zone and weld metal obtained under strain control at room temperature within a range from 2.10{sup 2} to 5 .10 {sup 6} cycles are presented. The fatigue behaviour was characterized by the Coffin-Manson-Basquin equations and the stress - strain behaviour by the Ramberg-Osgood equation. The data can be used to assess welded magnesium joints according to the local strain concept. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys

    Science.gov (United States)

    2011-01-01

    M.J. Starink, Precipitates and Intermetallic Phases in 972Precipitation Hardening Al-Cu-Mg-(Li) Based Alloys, Int. Mater. Rev., 9732005, 50, p 193...REPORT Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys 14. ABSTRACT 16. SECURITY...CLASSIFICATION OF: A fully coupled thermo-mechanical finite-element analysis of the friction-stir welding (FSW) process developed in our previous work

  11. Slag Metal Reactions during Submerged Arc Welding of Alloy Steels

    Science.gov (United States)

    Mitra, U.; Eagar, T. W.

    1984-01-01

    The transfer of Cr, Si, Mn, P, S, C, Ni, and Mo between the slag and the weld pool has been studied for submerged arc welds made with calcium silicate and manganese silicate fluxes. The results show a strong interaction between Cr and Si transfer but no interaction with Mn. The manganese silicate flux produces lower residual sulfur while the calcium silicate fluxes are more effective for removal of phosphorus. The effective oxygen reaction temperature lies between 1700 and 2000 °C for all elements studied. Evidence of Cr and Mn loss by metal vaporization is also presented.

  12. Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration

    Science.gov (United States)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-03-01

    Porosity within laser welds of magnesium alloys is one of the main roadblocks to achieving high quality joints. One of the causes of pore formation is the presence of pre-existing coatings on the surface of magnesium alloy such as oxide or chromate layers. In this study, single-beam and dual-beam laser heat sources are investigated in relation to mitigation of pores resulting from the presence of the as-received oxide layer on the surface of AZ31B-H24 magnesium alloy during the laser welding process. A fiber laser with a power of up to 4 kW is used to weld samples in a zero-gap lap joint configuration. The effect of dual-beam laser welding with different beam energy ratios is studied on the quality of the weld bead. The purpose of this paper is to identify the beam ratio that best mitigates pore formation in the weld bead. The laser molten pool and the keyhole condition, as well as laser-induced plasma plume are monitored in real-time by use of a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. Results showed that a dual-beam laser configuration can effectively mitigate pore formation in the weld bead by a preheating-welding mechanism.

  13. The use of new PHACOMP in understanding the solidification microstructure of nickel base alloy weld metal

    Science.gov (United States)

    Cieslak, M. J.; Knorovsky, G. A.; Headley, T. J.; Romig, A. D.

    1986-12-01

    The weld metal microstructures of five commercial nickel base alloys (HASTELLOYS* C-4, C-22, and C-276, and INCONELS* 625 and 718) have been examined by electron probe microanalysis and analytical electron microscopy. It has been found that solidification terminates in many of these alloys with the formation of a constituent containing a topologically-close-packed (TCP) intermetallic phase (i.e., σ, P, Laves). Electron microprobe examination of gas-tungsten-arc welds revealed a solidification segregation pattern of Ni depletion and solute enrichment in interdendritic volumes. New PHACOMP calculations performed on these segregation profiles revealed a pattern of increasing M d (metal- d levels) in traversing from a dendrite core to an adjacent interdendritic volume. In alloys forming a terminal solidification TCP constituent, the calculated M d values in interdendritic regions were greater than the critical M d values for formation of σ as stated by Morinaga et al. Implications of the correlation between TCP phase formation and M d in the prediction of weld metal solidification microstructure, prediction of potential hot-cracking behavior, and applications in future alloy design endeavors are discussed.

  14. 'FOURCRACK' - An investigation of the creep performance of advanced high alloy steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J. [E.On-Uk, Materials and Welding Section, Power Technology, Ratcliffe on Soar, Nottingham NG11 0EE (United Kingdom)]. E-mail: David.Allen@eon-uk.com; Harvey, B. [Mitsui Babcock (United Kingdom); Brett, S.J. [RWE npower (United Kingdom)

    2007-01-15

    Creep failure by 'Type IV' cracking in the weld heat-affected zone (HAZ) is likely to be the life-limiting failure mechanism in high-alloy steel components for advanced power plant. A UK collaborative project, 'FOURCRACK', has therefore been carried out to investigate and compare the cross-weld creep rupture performance of several casts of the advanced steels E911, P92, and P122, and the established steel P91. The experimental matrix included both stress and temperature variations while minimising the testing required to characterise the comparative performance of different welded materials. The results clarify the interplay between weld metal and HAZ failure mechanisms, the relationships between parent material and cross-weld creep strength, and the relative merits of the alternative steels. Finally, problems which arise in the assessment of cross-weld creep test data are discussed, and recommendations put forward to address the risks of biased assessment when failure can take place in different locations within the weldment.

  15. Effect of friction stir welding on microstructure and corrosion behavior of LF6 aluminum alloy

    Science.gov (United States)

    Ghauri, Faizan Ali; Farooq, A.; Ahmad, A.; Deen, K. M.

    2017-03-01

    The LF6 aluminum alloy plates were joined by friction stir welding method. The tool rotational (1180 rpm) and transverse speed (0.56 mm s-1) were kept constant during welding of 4 mm thick plates. The microstructural features, hardness and tensile properties of the welded samples were determined to evaluate the structural integrity in comparison with the base metal. The electrochemical behavior of base metal (BM), thermo-mechanically affected zone (TMAZ) and weld nugget zone (WNZ) was also investigated by potentiodynamic polarization and electrochemical impedance spectroscopy in 3.5% NaCl solution. The microstructural study revealed significant grain refinement and agglomeration of β (Mg2Al3) intermetallic precipitates in the WNZ. The relatively higher hardness and a decrease in the ductility (3%) also assured the formation of precipitates β precipitates in the WNZ welded samples. The fracture surface of welded sample also revealed the existence of β precipitates within the elongated dimples which may be considered as the crack initiation sites. The relatively lower corrosion rate (23.68 mpy) and higher charge transfer resistance (403 Ω cm2) of BM compared to WNZ could be associated with the galvanic dissolution of Al-matrix through competitive charge transfer and relaxation (adsorption/desorption of intermediate species) processes specifically at the vicinity of the β precipitates.

  16. Parameter Design in Fusion Welding of AA 6061 Aluminium Alloy using Desirability Grey Relational Analysis (DGRA) Method

    Science.gov (United States)

    Adalarasan, R.; Santhanakumar, M.

    2015-01-01

    In the present work, yield strength, ultimate strength and micro-hardness of the lap joints formed with Al 6061 alloy sheets by using the processes of Tungsten Inert Gas (TIG) welding and Metal Inert Gas (MIG) welding were studied for various combinations of the welding parameters. The parameters taken for study include welding current, voltage, welding speed and inert gas flow rate. Taguchi's L9 orthogonal array was used to conduct the experiments and an integrated technique of desirability grey relational analysis was disclosed for optimizing the welding parameters. The ignored robustness in desirability approach is compensated by the grey relational approach to predict the optimal setting of input parameters for the TIG and MIG welding processes which were validated through the confirmation experiments.

  17. Susceptibility of Welded and Non-Welded Titanium Alloys to Environmentally Assisted Cracking in Simulated Concentrated Ground Waters

    Energy Technology Data Exchange (ETDEWEB)

    Fix, D V; Estill, J C; Wong, L L; Rebak, R B

    2003-10-14

    The engineering barriers for the nuclear waste repository at Yucca Mountain include a double walled container and a detached drip shield. The material selected to construct the drip shield will be Titanium Grade 7 (Ti Gr 7 or R52400). Ti Gr 7 is highly resistant to corrosion and consequently it is widely used to handle aggressive industrial environments. The model for the degradation of the engineering barriers includes three modes of corrosion, namely general corrosion, localized corrosion and environmentally assisted cracking (EAC). The objective of the current research was to characterize the susceptibility of three titanium alloys to EAC in several environmental conditions with varying solution composition, pH and temperature. The susceptibility to EAC was evaluated using constant deformation (deflection) U-bend specimens in both the non-welded and welded conditions. Results show that after more than five years exposure in the vapor and liquid phases of alkaline (pH {approx} 10) and acidic (pH {approx} 3) multi-ionic environments at 60 C and 90 C, most of the specimens were free from EAC. The only specimens that suffered EAC were welded Ti Gr 12 (R53400) exposed to liquid simulated concentrated water (SCW) at 90 C.

  18. Cladding of Advanced Al Alloys Employing Friction Stir Welding

    NARCIS (Netherlands)

    van der Stelt, A.A.; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Akkerman, Remko; van den Boogaard, Antonius H.

    2013-01-01

    In this paper an advanced solid state cladding process, based on Friction Stir Welding, is presented. The Friction Surface Cladding (FSC) technology enables the deposition of a solid-state coating using filler material on a substrate with good metallurgical bonding. A relatively soft AA1050 filler

  19. Effect of joint design and welding type on the flexural strength and weld penetration of Ti-6Al-4V alloy bars.

    Science.gov (United States)

    Simamoto Júnior, Paulo Cézar; Resende Novais, Veridiana; Rodrigues Machado, Asbel; Soares, Carlos José; Araújo Raposo, Luís Henrique

    2015-05-01

    Framework longevity is a key factor for the success of complete-arch prostheses and commonly depends on the welding methods. However, no consensus has been reached on the joint design and welding type for improving framework resistance. The purpose of this study was to assess the effect of different joint designs and welding methods with tungsten inert gas (TIG) or laser to join titanium alloy bars (Ti-6Al-4V). Seventy titanium alloy bar specimens were prepared (3.18 mm in diameter × 40.0 mm in length) and divided into 7 groups (n=10): the C-control group consisting of intact specimens without joints and the remaining 6 groups consisting of specimens sectioned perpendicular to the long-axis and rejoined using an I-, X30-, or X45-shaped joint design with TIG welding (TI, TX30, and TX45) or laser welding (LI, LX30, and LX45). The specimens were tested with 3-point bending. The fracture surfaces were first evaluated with stereomicroscopy to measure the weld penetration area and then analyzed with scanning electron microscopy (SEM). The data were statistically analyzed with 2-way ANOVA and the Tukey post hoc test, 1-way ANOVA and the Dunnett test, and the Pearson correlation test (α=.05). Specimens from the X30 and X45 groups showed higher flexural strength (Pwelded area (Pwelding type. TIG welded groups showed significantly higher flexural strength than the laser groups (PTIG welding also resulted in higher welded areas than laser welding for the I-shaped specimens. No significant differences were found for the weld penetration area in the X45 group, either for laser or TIG welding. SEM analysis showed more pores at the fracture surfaces of the laser specimens. Fracture surfaces indicative of regions of increased ductility were detected for the TIG specimens. TIG welding resulted in higher flexural strength for the joined titanium specimens than laser welding. For both welding methods, X30- and X45-shaped joint designs resulted in higher flexural strength and

  20. Effect of temporal pulse shaping on the reduction of laser weld defects in a Pd-Ag-Sn dental alloy.

    Science.gov (United States)

    Bertrand, C; Poulon-Quintin, A

    2011-03-01

    To describe the influence of pulse shaping on the behavior of a palladium-based dental alloy during laser welding and to show how its choice is effective to promote good weld quality. Single spots, weld beads and welds with 80% overlapping were performed on Pd-Ag-Sn cast plates. A pulsed Nd:Yag laser was used with a specific welding procedure using all the possibilities for pulse-shaping: (1) the square pulse shape as the default setting, (2) a rising edge slope for gradual heating, (3) a falling edge slope to slow the cooling and (4) a combination of a rising and falling edges called bridge shape. The optimization of the pulse shape is supposed to enhance weldability and produce defect-free welds (cracks, pores…) Vickers microhardness measurements were made on cross sections of the welds. A correlation between laser welding parameters and microstructure evolution was found. Hot cracking and internal porosities were systematically detected when using rapid cooling. The presence of these types of defects was significantly reduced with the slow cooling of the molten pool. The best weld quality was obtained with the use of the bridge shape. The use of a slow cooling ramp is the only way to significantly reduce the presence of typical defects within the welds for this Pd-based alloy studied. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Microstructure and anisotropic mechanical behavior of friction stir welded AA2024 alloy sheets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhihan [State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China); Li, Wenya, E-mail: liwy@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China); Li, Jinglong [State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China); Chao, Y.J. [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Vairis, A. [Mechanical Engineering Department, TEI of Crete, Heraklion, Crete 71004 (Greece)

    2015-09-15

    The anisotropic mechanical properties of friction stir welded (FSW) AA2024-T3 alloy joints were investigated based on the uniaxial tensile tests. The joint microstructure was examined by using electron back-scattered diffraction and transmission electron microscope. Results show that the evident anisotropic failure and yielding are present in the FSW joints. With the increase of loading angle from 0° to 90° the ultimate tensile strength and elongation of the specimens consistently decrease, or at first decrease and then increase, depending on the FSW process parameters. The specimen cut from the weld direction, i.e. a loading angle of 0°, exhibits the highest strength and elongation. - Highlights: • Microstructure and anisotropy of friction stir welded joints were studied. • The evident anisotropic failure and yielding are present in joints. • The lowest yield stress and UTS are at 45° and 60° loadings, respectively. • Rotation speed heavily impact on the anisotropy of joints.

  2. Effect of Post Weld Heat Treatment on Microstructure and Mechanical Properties of Submerged Friction Stir Welded 7A04 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    HAO Ya-xin

    2016-06-01

    Full Text Available 7A04 aluminum alloy plate was jointed by submerged friction stir welding(SFSW, and welded joints were treated (Post Weld Heat Treatment, PWHT, and the effect of post weld heat treatment on the microstructure and mechanical properties in SFSW was investigated. The results show that PWHT joints exhibit dispersively distributed fine precipitates phase morphology, are significantly superior than the feature of the small amount of precipitates with dispersed distribution in SFSW joints. Compared with SFSW joints, the mechanical properties of joints are improved significantly by PWHT. The average hardness of the weld joints nugget zone is increased by 39.7HV, and the tensile strength is increased by 67MPa, reaches 96.1% of the base material, strain hardening capacity of the joints is also enhanced, the tensile fracture exhibits mixed fracture feature of microporous polymerization and cleavage.

  3. Tensile strength and corrosion resistance of brazed and laser-welded cobalt-chromium alloy joints.

    Science.gov (United States)

    Zupancic, Rok; Legat, Andraz; Funduk, Nenad

    2006-10-01

    The longevity of prosthodontic restorations is often limited due to the mechanical or corrosive failure occurring at the sites where segments of a metal framework are joined together. The purpose of this study was to determine which joining method offers the best properties to cobalt-chromium alloy frameworks. Brazed and 2 types of laser-welded joints were compared for their mechanical and corrosion characteristics. Sixty-eight cylindrical cobalt-chromium dental alloy specimens, 35 mm long and 2 mm in diameter, were cast. Sixteen specimens were selected for electrochemical measurements in an artificial saliva solution and divided into 4 groups (n=4). In the intact group, the specimens were left as cast. The specimens of the remaining 3 groups were sectioned at the center, perpendicular to the long-axis, and were subsequently rejoined by brazing (brazing group) or laser welding using an X- or I-shaped joint design (X laser and I laser groups, respectively). Another 16 specimens were selected for electrochemical measurements in a more acidic artificial saliva solution. These specimens were also divided into 4 groups (n=4) as described above. Electrochemical impedance spectroscopy and potentiodynamic polarization were used to assess corrosion potentials, breakdown potentials, corrosion current densities, total impedances at lowest frequency, and polarization charge-transfer resistances. The remaining 36 specimens were used for tensile testing. They were divided into 3 groups in which specimen pairs (n=6) were joined by brazing or laser welding to form 70-mm-long cylindrical rods. The tensile strength (MPa) was measured using a universal testing machine. Differences between groups were analyzed using 1-way analysis of variance (alpha=.05). The fracture surfaces and corrosion defects were examined with a scanning electron microscope. The average tensile strength of brazed joints was 792 MPa and was significantly greater (Pcobalt-chromium alloy joints, but strength is

  4. The effect of electric spot-welding on the mechanical properties of different orthodontic wire alloys

    Directory of Open Access Journals (Sweden)

    Leonard Euler Andrade Gomes Nascimento

    2012-06-01

    Full Text Available The aim of this study was to test the hypothesis that there is a direct relationship between surface structure and tensile strength of orthodontic alloys submitted to different levels of welding current. Three types of alloys were assessed. One hundred and eight cross-sectional test specimens ("X" were made, 18 for each wire combination, and divided into 6 groups: SS (steel-steel; SN (steel-NiTi; SB (steel-Beta-Ti; NN (NiTi-NiTi; NB (NiTi-Beta-Ti and BB (Beta-Ti-Beta-Ti, submitted to 6 spot-welding procedures at different levels of current (Super Micro Ponto 3000. Student-Newman-Keuls, Wilcoxon signed-rank, and Kruskal-Wallis tests were used (p < .05. Statistical difference was found between SN group and all the other alloy combinations (p < .05. Initial roughness of alloys ranged from .04 to .55 Ra, with statistical difference between groups (p < .001. The hypothesis was rejected and the tensile strength of Ti-alloys combinations Steel × Beta-Ti was significantly affected by the current level at P50, which changed the properties and structure of the wires.

  5. Experimental and Theoretical Investigation of Three Alloy 690 Mockup Components: Base Metal and Welding Induced Changes

    Directory of Open Access Journals (Sweden)

    Rickard R. Shen

    2014-01-01

    Full Text Available The stress corrosion cracking (SCC resistance of cold deformed thermally treated (TT Alloy 690 has been questioned in recent years. As a step towards understanding its relevancy for weld deformed Alloy 690 in operating plants, Alloy 690 base metal and heat affected zone (HAZ microstructures of three mockup components have been studied. All mockups were manufactured using commercial heats and welding procedures in order to attain results relevant to the materials in the field. Thermodynamic calculations were performed to add confidence in phase identification as well as understanding of the evolution of the microstructure with temperature. Ti(C,N banding was found in all materials. Bands with few large Ti(C,N precipitates had negligible effect on the microstructure, whereas bands consisting of numerous small precipitates were associated with locally finer grains and coarser M23C6 grain boundary carbides. The Ti(C,N remained unaffected in the HAZ while the M23C6 carbides were fully dissolved close to the fusion line. Cold deformed solution annealed Alloy 690 is believed to be a better representation of this region than cold deformed TT Alloy 690.

  6. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance; Desenvolvimento de uma liga de ferro fundido branco alto cromo com niobio, tratada termicamente, para resistencia ao desgaste abrasivo

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Alessandro Fraga

    1997-07-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  7. review on hardfacing as method of improving the service life of ...

    African Journals Online (AJOL)

    eobe

    ABSTRACT. A review on hardfacing is presented. Hardfacing. A review on hardfacing is presented. Hardfacing involves applying a consumable with desired wear properties over a involves applying a consumable with desired wear properties over a soft base metal surface to enhance resistance to different wear ...

  8. Corrosion behavior of dissimilar weld joint of 316L and alloy 182 filler metal with different post-weld heat treatments in saline environments

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Joao H.N.; Santos, Neice F.; Esteves, Luiza; Campos, Wagner R.C.; Rabello, Emerson G., E-mail: joao.garcia@cdtn.br, E-mail: nfs@cdtn.br, E-mail: luiza.esteves@cdtn.br, E-mail: wrcc@cdtn.br, E-mail: egr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (SEIES/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Serviço de Integridade Estrutural

    2017-11-01

    Austenitic stainless steel and nickel alloys are widely used in nuclear reactors components and other plants of energy generation, chemical and petrochemical industries, due to their high corrosion resistance. These metals require post weld heat treatment (PWHT) to relieve stresses from the welding processes, although it can lead to a degradation of the weld microstructure. The aim of this work was to evaluate the influence of different PWHT on corrosion behavior of a dissimilar weld joint of two AISI 316L austenitic stainless steel plates with nickel alloy as filler material in saline environments. The material was submitted to heat treatments for three hours at 600, 700 and 800 °C. The weld joint was examined by optical microscopy to determine the effects of PWHT in the microstructure. The corrosion behavior of the samples before and after heat treatment was evaluated using cyclic potentiodynamic polarization (CPP) in sodium chloride solutions (19% v/v) and pH 4.0 at room temperature. Metallographic analyses showed that delta ferrite dissolute with PWHT temperature increase. CPP curves demonstrated an increase of pitting corrosion resistance as the PWHT temperature increases, although the pit size has been increased. The heat treated weld joint at 600 °C showed corrosion resistance close to the as welded material. (author)

  9. Effect of Tool Geometry and Welding Speed on Mechanical Properties and Microstructure of Friction Stir Welded Joints of Aluminium Alloys AA6082-T6

    Directory of Open Access Journals (Sweden)

    Patil Hiralal Subhash

    2014-12-01

    Full Text Available Friction stir welding is a solid state innovative joining technique, widely being used for joining aluminium alloys in aerospace, marine automotive and many other applications of commercial importance. The welding parameters and tool pin profile play a major role in deciding the weld quality. In this paper, an attempt has been made to understand the influences of welding speed and pin profile of the tool on friction stir welded joints of AA6082-T6 alloy. Three different tool pin profiles (tapered cylindrical four flutes, triangular and hexagonal have been used to fabricate the joints at different welding speeds in the range of 30 to 74 mm/min. Microhardness (HV and tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. In order to analyse the microstructural evolution of the material, the weld’s cross-sections were observed optically and SEM observations were made of the fracture surfaces. From this investigation it is found that the hexagonal tool pin profile produces mechanically sound and metallurgically defect free welds compared to other tool pin profiles.

  10. Influence of Friction Stir Welding on Mechanical Properties of Butt Joints of AZ61 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Seung-Ju Sun

    2017-01-01

    Full Text Available In this study, the effect of heat input on the mechanical properties and fracture behaviors of AZ61 magnesium alloy joints has been studied. Magnesium alloy AZ61 plates with thickness of 5 mm were welded at different ratios of tool rotational speed to welding speed (ω/ν. The average ultimate tensile strength of all weld conditions satisfying a ω/ν ratio of 3 reached 100% of the strength of the base material. Fractures occurred at the interface between the thermomechanical affected zone at advancing side and the stir zone in all welded specimens. From the scanning electron microscope and electron backscatter diffraction analysis, it was determined that the interface between the thermomechanical affected zone and the stir zone, which is the region where the grain orientation changes, was the weakest part; the advancing side region was relatively weaker than the retreating side region because the grain orientation change occurred more dramatically in the advancing side region.

  11. Reparatory and Manufacturing Hard-Facing of Working Parts Made of Stainless Steels in Confectionary Industry

    Directory of Open Access Journals (Sweden)

    S. Rakic

    2012-09-01

    Full Text Available In this paper, for the sake of improving the reparatory hard-facing technology is especially analyzed reparatory hard-facing of tools for manufacturing compressed products in confectionary industry. Those products are being made of a mixture consisting of several powdery components, which is compressed under high pressure. In that way the connection between particles is realized, thus achieving certain hardness and strength of the confectionary product. The considered tool is made of high-alloyed stainless steel. The tool contains 30 identical working places. Besides the production process wear, on those tools, from time to time, appear mechanical damage on some of the products' shape punches, as cracks at the edges, where the products' final shapes are formed. Those damages are small, size wise, but they cause strong effect on the products' final shape. The aggravating circumstance is that the shape punch is extremely loaded in pressure, thus after the reparatory hard-facing, the additional heat treatment is necessary. Mechanical properties in the heat affected zone (HAZ are being leveled by annealing and what also partially reduces the residual internal stresses.

  12. Weldability of AA 5052 H32 aluminium alloy by TIG welding and FSW process - A comparative study

    Science.gov (United States)

    Shanavas, S.; Raja Dhas, J. Edwin

    2017-10-01

    Aluminium 5xxx series alloys are the strongest non-heat treatable aluminium alloy. Its application found in automotive components and body structures due to its good formability, good strength, high corrosion resistance, and weight savings. In the present work, the influence of Tungsten Inert Gas (TIG) welding parameters on the quality of weld on AA 5052 H32 aluminium alloy plates were analyzed and the mechanical characterization of the joint so produced was compared with Friction stir (FS) welded joint. The selected input variable parameters are welding current and inert gas flow rate. Other parameters such as welding speed and arc voltage were kept constant throughout the study, based on the response from several trial runs conducted. The quality of the weld is measured in terms of ultimate tensile strength. A double side V-butt joints were fabricated by double pass on one side to ensure maximum strength of TIG welded joints. Macro and microstructural examination were conducted for both welding process.

  13. Friction Stir Welding of Age-Hardenable Aluminum Alloys: A Parametric Approach Using RSM Based GRA Coupled With PCA

    Science.gov (United States)

    Vijayan, D.; Rao, V. S.

    2014-04-01

    Age-hardenable aluminum alloys, primarily used in the aerospace, automobile and marine industries (2×××, 6××× and 7×××), can be welded using solid-state welding techniques. Friction stir welding is an emerging solid-state welding technique used to join both similar and dissimilar materials. The strength of a friction stir welded joint depends on the joining process parameters. Therefore, a combination of the statistical techniques of a response surface methodology based on a grey relational analysis coupled to a principal component analysis was proposed to select the process parameters suitable for joining AA 2024 and AA 6061 aluminum alloys via friction stir welding. The significant process parameters, such as rotational speed, welding speed, axial load and pin shapes (PS) were considered during the statistical experiment. The results indicate that the square PS plays a vital role and yields an ultimate tensile strength of 141 MPa for an elongation of 12 % versus cylinder and taper pin profiles. The root cause for joint strength loss and fracture mode was analyzed using scanning electron microscopy. Severe material flow during macro defects, such as pin holes and porosity, degrades the joint strength by approximately 44 % for AA 2024 and 51 % for AA 6061 fabricated FS-welded aluminum alloys relative to the base material. The results of this approach are useful for accurately controlling the response and optimize the process parameters.

  14. Corrosion resistance and microstructure of alloy 625 weld overlay on ASTM A516 grade 70

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Mohammad J. [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Petroleum Engineering Dept.; Ketabchi, Mostafa [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Mining and Metallurgical Engineering Dept.

    2016-02-01

    Nickel-based alloys are a crucial class of materials because of their excellent corrosion resistance. In the present study, single layer and two layers alloy 625 weld overlays were deposited by GTAW process on A516 grade 70 carbon steel. The dilution in terms of Fe, Ni, Mo and Nb content was calculated in 30 points of weld overlay. Microstructure observations showed that alloy 625 had austenitic structure with two types of Laves and NbC secondary phases. The uniform and pitting corrosion resistance of alloy 625 weld overlay as casted and as forged were evaluated in accordance with ASTM G48-2011 standard at different temperatures to determine the weight loss and critical pitting temperature. For achieving a better comparison, samples from alloy 625 as casted and as forged were tested under the same conditions. The results point out that single layer alloy 625 weld overlay is not suitable for chloride containing environments, two layers alloy 625 weld overlay and alloy 625 as casted have acceptable corrosion resistance and almost the same critical pitting temperature. Alloy 625 as forged has the best corrosion resistance and the highest critical pitting temperature among all test specimens. Also, the corrosion behavior was evaluated in accordance with ASTM G28 standard. The corrosion rate of single layer weld overlay was unacceptable. The average corrosion rate of two layers weld overlay and in casted condition were 35.82 and 33.01 mpy, respectively. [German] Nickellegierungen sind aufgrund ihres exzellenten Korrosionswiderstandes eine bedeutende Werkstoffklasse. In der diesem Beitrag zugrunde liegenden Studie wurden mittels WIG-Schweissens ein- und zweilagige Schweissplattierungen auf den Kohlenstoffstahl A516 (Grade 70) aufgebracht. Die Vermischung in Form des Fe-, Ni-, Mo- und Nb-Gehaltes wurde an 30 Punkten der Schweissplattierungen berechnet. Die mikrostrukturellen Untersuchungen ergaben, dass die Legierung 625 eine austenitische Struktur mit zwei Arten von

  15. Assessment of The Cracking Properties of Stainless Steel Alloys and their Usability for Laser Welding in Production

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther

    2001-01-01

    Methods to assess stainless steel alloys’ cracking properties and usability for laser welding has been studied. Also tests to assess alloys’ susceptibility to hot cracking has been conducted. Among these is the so-called Weeter test which assesses the alloy by executing a number of spot welds...... to provoke cracking in the alloy. In this work the Weeter test has been modified and changed in order to develop a faster and easier test also applicable to small specimens. The new test, called a Groove test differs from the Weeter test by its procedure in which linear seam welds are conducted instead...... of spot welds. The Groove test has the advantage of an easier microscopy and analysis in the welds. Results from crack tests was partly confirmed by predictions made on the basis of the alloy’s constituents and solidification growth rate....

  16. 75 FR 39917 - Circular Welded Non-Alloy Steel Pipe from the Republic of Korea: Extension of Time Limit for...

    Science.gov (United States)

    2010-07-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration (A-580-809) Circular Welded Non-Alloy Steel Pipe from the Republic of Korea... non-alloy steel pipe from the Republic of Korea, covering the period November 1, 2008 through October...

  17. Passive fit of frameworks in titanium and palladium-silver alloy submitted the laser welding.

    Science.gov (United States)

    de Sousa, S A; de Arruda Nobilo, M A; Henriques, G E P; Mesquita, M F

    2008-02-01

    This study evaluated the precision of fit of implant frameworks cast in titanium (cp Ti) and palladium-silver alloy (Pd-Ag), made by the one-piece cast and laser welding techniques. From a metal matrix with five implants, 20 master casts were obtained, to which replicas of implants were incorporated. On these masters 10 frameworks were made for each type of material (cp Ti and Pd-Ag alloy). Half of these were made by the one-piece cast technique and the other half by the laser welding technique. The implant/prosthesis interface was analysed and measured in the vestibular and lingual regions of the central and distal implants with the help of a measuring microscope. The results indicated that in the central cylinders, the Tukey test (Pwelded frameworks (34.73 microm) and those one-piece cast frameworks (151.39 microm), and as regards materials, the palladium-silver alloy (66.30 microm) showed better results than the titanium (119.83 microm). In the distal cylinders there was no significant difference between the frameworks cast in titanium and palladium-silver by the one-piece technique. However, after laser welding, there was a significant difference for the frameworks cast in titanium (31.37 microm) and palladium-silver (106.59 microm).

  18. Aging and Phase Stability of Alloy 22 Welds FY05 SUMMARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Torres, S G; El-Dasher, B; McGregor, M; Etien, R; Edgecumbe, T S; Gdowski, G; Yang, N; Headley, T; Chames, J; Yio, J L; Garcdea, A

    2005-11-23

    Evaluation of the fabrication processes involved in the manufacture of waste containers is important as these processes can have an effect on the metallurgical structure of an alloy. Since material properties such as strength, toughness, aging kinetics and corrosion resistance are all dependent on the microstructure, it is important that prototypes be built and evaluated for processing effects on the performance of the material. Of particular importance are welds, which have an as-cast microstructure with chemical segregation and precipitation of complex phases resulting from the welding process. The work presented in this report focuses on the effects of processes such as solution annealing, stress mitigation, and welding on the kinetics of precipitation and corrosion properties. For a waste package lifetime of thousands of years, it is impossible to test directly in the laboratory the behavior of Alloy 22 under expected repository conditions. The changes that may occur in these materials must be accelerated. For phase-stability studies this is achieved by accelerating the phase transformations by increasing test temperatures above those anticipated in the proposed repository. For these reasons, Alloy 22 characterization specimens are currently being aged at Lawrence Livermore National Laboratory (LLNL) Aging Facilities for times from 1 hour to 20 years at temperatures ranging from 200-750 C. These data as well as the data from specimens aged at 260 C, 343 C, and 427 C for 100,000 hours at Haynes International will be used for performance confirmation.

  19. The Structure and Properties of Microcrystalline and Submicrocrystalline Titanium Alloy VT1-0 in the Area of the Electron Beam Welding Seam

    Science.gov (United States)

    Klimenov, V. A.; Gnyusov, S. F.; Potekaev, A. I.; Klopotov, A. A.; Abzaev, Yu. A.; Kurgan, K. A.; Marzol, M. R.; Galsanov, S. V.; Tsellermayer, V. Ya.; Marchenko, E. S.

    2017-10-01

    An investigation of the welding seam structure of micro- and submicrocrystalline specimens of VT1-0 alloy is reported. Special features are revealed in the formation of the heat-affected zone in the alloy as a result of electron-beam action due to its structural state. Particular attention is given to the role of α→β-transformations characterizing titanium alloys subjected to thermal impacts. It is found that the structural features of all welding-joint zones, considering the phase transformations, determine the character of hardness value distribution and the respective strength properties of the weld joints. A comparison is given between the structure formation in microcrystalline alloys and in welding seams formed by laser-beam welding. The welding of submicrocrystalline titanium is also compared to another high-energy impact - resistance welding.

  20. Heat input effect of friction stir welding on aluminum alloy AA 6061-T6 welded joint

    Czech Academy of Sciences Publication Activity Database

    Sedmak, A.; Kumar, R.; Chattopadhyaya, S.; Hloch, Sergej; Tadić, S.; Djurdjević, A. A.; Čeković, I. R.; Dončeva, E.

    2016-01-01

    Roč. 20, č. 2 (2016), s. 637-641 ISSN 0354-9836 Institutional support: RVO:68145535 Keywords : friction stir welding * defect * heat input * maximum temperature Subject RIV: JQ - Machines ; Tools Impact factor: 1.093, year: 2016 http://www.doiserbia.nb.rs/img/doi/0354-9836/2016/0354-98361500147D.pdf

  1. Study on Mg/Al Weld Seam Based on Zn–Mg–Al Ternary Alloy

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2014-02-01

    Full Text Available Based on the idea of alloying welding seams, a series of Zn–xAl filler metals was calculated and designed for joining Mg/Al dissimilar metals by gas tungsten arc (GTA welding. An infrared thermography system was used to measure the temperature of the welding pool during the welding process to investigate the solidification process. It was found that the mechanical properties of the welded joints were improved with the increasing of the Al content in the Zn–xAl filler metals, and when Zn–30Al was used as the filler metal, the ultimate tensile strength could reach a maximum of 120 MPa. The reason for the average tensile strength of the joint increasing was that the weak zone of the joint using Zn–30Al filler metal was generated primarily by α-Al instead of MgZn2. When Zn–40Al was used as the filler metal, a new transition zone, about 20 μm-wide, appeared in the edge of the fusion zone near the Mg base metal. Due to the transition zones consisting of MgZn2- and Al-based solid solution, the mechanical property of the joints was deteriorated.

  2. Hot cracking in Al-Mg-Si alloy laser welding - operating parameters and their effects

    Energy Technology Data Exchange (ETDEWEB)

    Cicala, E. [Polytechnic University, Mechanical Faculty, 1 blv. Mihai Viteazu, 300222 Timisoara (Romania); Duffet, G. [Universite de Bourgogne, Laboratoire Laser et Traitements des Materiaux (LTm), 12 rue de la Fonderie, 71200 Le Creusot (France)]. E-mail: g.duffet@u-bourgogne.fr; Andrzejewski, H. [Universite de Bourgogne, Laboratoire Laser et Traitements des Materiaux (LTm), 12 rue de la Fonderie, 71200 Le Creusot (France); Grevey, D. [Universite de Bourgogne, Laboratoire Laser et Traitements des Materiaux (LTm), 12 rue de la Fonderie, 71200 Le Creusot (France); Ignat, S. [Polytechnic University, Mechanical Faculty, 1 blv. Mihai Viteazu, 300222 Timisoara (Romania); Universite de Bourgogne, Laboratoire Laser et Traitements des Materiaux (LTm), 12 rue de la Fonderie, 71200 Le Creusot (France)

    2005-03-25

    Hot cracking is a phenomenon that frequently occurs in the laser welding of some 'special' alloys, such as the aluminium-magnesium-silicon type. Each occurrence of this phenomenon needs to be studied in itself, taking into account not only the individual, but also the interactive, influences of the various parameters. The advantage of using laser beams in welding processes lies in the speeds that can be reached. The disadvantage, however, is that, owing to the high cooling rates characteristic of the interaction between the laser beam and the material, the welding speed itself becomes a cause of hot cracking. The aim of this paper is to see how this disadvantage may be eliminated. We consider what the most important parameters may be, relating to tensile strength and the quantity of cracks produced, that might influence the presence or absence of hot cracking. The most influential factors in avoiding hot cracking are the welding speed and wire parameters. Also important is welding stability, as instability generates cracks. We can then determine a technological window, useful for industrial applications, which takes into account the values of these influential factors and stability.

  3. Processing and structure of in situ Fe-Al alloys produced by gas tungsten arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-02-14

    Iron aluminide weld overlays are being investigated for corrosion and erosion protection of boiler tubes in low NOx burners. The primary objective of the research is to identify overlay compositions which can be deposited in a crack-free condition and provide corrosion protection in moderately reducing environments. In the current phase of work, Fe-Al alloy weld overlays were produced by depositing commercially pure aluminum wire on to low carbon steel substrates using Gas Tungsten Arc Welding. A systematic variation of the wire feed speed and current, two major factors affecting dilution, resulted in a variation in aluminum contents of the welds ranging from 3--42 wt% aluminum. The aluminum content was observed to increase with wire feed speed and a decrease in the current. The aluminum content was also found to affect the cracking susceptibility of the overlays. At 10wt% aluminum, few to no cracks were observed in the deposits. Above this value, cracking was prevalent throughout the weld. In addition, two types of microstructures were found correlating to different concentrations of aluminum. A homogeneous matrix with second phase particles consisting of coarse columnar grains was found for low aluminum concentrations. With higher aluminum contents, a two-phase constituent was observed to surround primary dendrites growing from the substrate. The transition of the microstructures occurred between 24 and 32 wt% Al.

  4. Titanium Alloys Thin Sheet Welding with the Use of Concentrated Solar Energy

    Science.gov (United States)

    Pantelis, D. I.; Kazasidis, M.; Karakizis, P. N.

    2017-11-01

    The present study deals with the welding of titanium alloys thin sheets 1.3 mm thick, with the use of concentrated solar energy. The experimental part of the work took place at a medium size solar furnace at the installation of the Centre National de la Recherche Scientifique, at Odeillo, in Southern France, where similar and dissimilar defect-free welds of titanium Grades 4 and 6 were achieved, in the butt joint configuration. After the determination of the appropriate welding conditions, the optimum welded structures were examined and characterized microstructurally, by means of light optical microscopy, scanning electron microscopy, and microhardness testing. In addition, test pieces extracted from the weldments were tested under uniaxial tensile loading aiming to the estimation of the strength and the ductility of the joint. The analysis of the experimental results and the recorded data led to the basic concluding remarks which demonstrate increased hardness distribution inside the fusion area and severe loss of ductility, but adequate yield and tensile strength of the welds.

  5. Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2014-02-01

    Full Text Available Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints was obtained as 83–98 J·mm−1. Within this range, the joint is stronger than 200 MPa and fractures in weld metal, or else, it becomes weaker and fractures at the intermetallic compounds (IMCs layer. The IMCs layer of an accepted joint is usually thin and continuous, which is about 1μm-thick and only consists of TiAl2 due to fast solidification rate. However, the IMCs layer at the top corner of fusion zone/Ti substrate is easily thickened with increasing heat input. This thickened IMCs layer consists of a wide TiAl3 layer close to FZ and a thin TiAl2 layer close to Ti substrate. Furthermore, both bead shape formation and interface growth were discussed by laser-arc interaction and melt flow. Tensile behavior was summarized by interface properties.

  6. Infrared thermography for monitoring heat generation in a linear friction welding process of Ti6Al4V alloy

    Science.gov (United States)

    Maio, L.; Liberini, M.; Campanella, D.; Astarita, A.; Esposito, S.; Boccardi, S.; Meola, C.

    2017-03-01

    The increasing use of titanium alloys in a wider range of applications requires the development of new techniques and processes capable to decrease production costs and manufacturing times. In this regard welding and other joining techniques play an important role. Today, solid state friction joining processes, such as friction stir welding, friction spot welding, inertia friction welding, continuous-drive friction welding and linear friction welding (LFW), represent promising methods for part manufacturing. They allow for joining at temperature essentially below the melting point of the base materials being joined, without the addition of filler metal. However, the knowledge of temperature is essential to understand and model the phenomena involved in metal welding. A global measured value represents only a clue of the heat generation during the process; while, a deep understanding of welding thermal aspects requires temperature field measurement. This paper is focused on the use of infrared thermography applied to the linear friction welding process of Ti6Al4V alloy. The attention is concentrated on thermal field that develops on the outer wall of the two parts to be joined (i.e. heat generated in the friction zone), and on the maximum temperature that characterizes the process before and after the flash formation.

  7. The geometry of the strip electrode used in the process of submerged arc hardfacing of continuous casting rolls

    Directory of Open Access Journals (Sweden)

    Леонід Кімович Лещинськiй

    2015-03-01

    Full Text Available The results of the investigation of the influence of the size of the strip electrode on the dilution of the base metal used in the process of submerged arc hardfacing of continuous casting rolls are presented. Increasing the thickness and decreasing the width of the strip electrode (60´0,5 mm, 45´0,7 mm, 30´1,0 mm results in the changing of the shape and dimensions of the fusion zone of the base metal to enhance the depth and reduce the non-uniformity of fusion penetration. The experimental data show that the dilution ratio of the base metal using the strip electrode 45´0,7 mm, containing 13,5 % chromium, made it possible to obtain more than 11 % chromium in the chemical composition of the third deposited layer. In the process of submerged arc hardfacing increasing the travel speed of the strip electrode (heat source up to 12 m/hour enhance the dilution ratio of the base metal. Despite this, the chromium content of the third layer is not less than 11 %. At the same time, the improved parameters of the hardfacing process allowed to achieve the better weld shape and to reduce the number of welding defects. When deposited on continuous casting rolls, the chemical composition of the deposited metal insures the corrosion resistance of the rolls and increases their longevity

  8. Fusion zone microstructure and porosity in electron beam welds of an α+β titanium alloy

    Science.gov (United States)

    Mohandas, T.; Banerjee, D.; Kutumba Rao, V. V.

    1999-03-01

    The effect of electron beam welding parameters on fusion zone (FZ) microstructure and porosity in a Ti -6.8 Al -3.42 Mo -1.9 Zr -0.21 Si alloy (Russian designation VT 9) has been investigated. It has been observed that the FZ grain width increased continuously with increase in heat input when the base metal was in the β heat-treated condition, while in the α+β heat-treated base metal welds, the FZ grain width increased only after a threshold energy input. The difference is attributed to both the weld thermal cycle and the pinning effect of equiaxed primary alpha on grain growth in the heat-affected zone (HAZ) of α+β heat-treated base metal. Postweld heat treatment (PWHT) in the subtransus and supertransus regions did not alter the columnar grain morphology in the FZ, possibly due to the lack of enough driving force for the formation of new grains by the breaking up of the columnar grains and grain boundary movement for grain growth. As the PWHTs were conducted in a furnace, the role of thermal gradients can be ruled out. Intragranular microstructure in the aswelded condition consisted of hexagonal martensite. The scale of the martensite laths depended on welding speed. The highest porosity was observed at intermediate welding speeds. At low speeds, a majority of pores formed at the fusion boundary, while at high speeds, occurrence of porosity was maximum at the weld center. The trends on porosity can be explained on the basis of solubility of hydrogen in titanium as a function of temperature and the influence of weld thermal cycle on nucleation, growth, and escape of hydrogen gas bubbles. The porosity at slow welding speeds is low because sufficient time exists for the nucleation, growth, and escape of hydrogen gas bubbles, while insufficient time exists for the nucleation of gas bubbles at high welding speeds. The effect of pickling of joint surface, vacuum annealing of the base metal, and successive remelting of the weld metal has also been investigated.

  9. Effect of Welding Speed on Microstructure and Mechanical Properties due to The Deposition of Reinforcements on Friction Stir Welded Dissimilar Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Baridula Ravinder Reddy

    2017-01-01

    Full Text Available The strength of the welded joint obtained by solid state stir welding process was found to be improved as compared to fusion welding process. The deposition of reinforcements during friction stir welding process can further enhance the strength of the welded joint by locking the movement of grain boundaries. In the present study, the aluminium alloys AA2024 and AA7075 were welded effectively by depositing the multi-walled carbon nanotubes in to the stir zone. The mechanical properties and microstructures were studied by varying the traverse speed at constant rotational speed. The results show that rotating tool pin stirring action and heat input play an important role in controlling the grain size. The carbon nanotubes were found to be distributed uniformly at a welding speed (traverse speed of 80mm/min. This enhanced the mechanical properties of the welded joint. The microstructure and Electron dispersive X-ray analysis (EDX studies indicate that the deposition of carbon nanotubes in the stir zone was influenced by the traverse speed.

  10. 3D modelling of a multi pass dissimilar tube welding and post weld heat treatment of nickel based alloy and chromium steel

    Energy Technology Data Exchange (ETDEWEB)

    Kumar-Krishnasamy, Ram, E-mail: ram.kumar.krishnasamy@iwm.fraunhofer.d [Fraunhofer Institute for Mechanics of Materials, Woehlerstrasse 11, 79108 Freiburg (Germany); Siegele, Dieter [Fraunhofer Institute for Mechanics of Materials, Woehlerstrasse 11, 79108 Freiburg (Germany)

    2010-11-15

    A dissimilar tube welding is performed between the nickel based Alloy617 and creep resistant steel VM12 using the former as the weld material. SYSWELD welding software is used to model the thermal and mechanical analysis. A readily available thermal history is used to calibrate the heat source input for the thermal analysis to generate the adequate thermal cycle by fitting the welding velocity, heat intensity factor of the GOLDAK heat source and the length of molten zone. The transient temperature field is then incorporated as the input for the mechanical analysis to obtain the residual stresses in which the phase transformation of the materials during welding is taken into account. Subsequently, the weld materials are characterized by using the Norton's creep law to determine the Norton parameters based on relaxation experiments. The residual stresses generated after the multi pass welding by SYSWELD is transferred into ABAQUS as the initial condition for the post weld heat treatment (PWHT) simulation. The simulations show that the residual stresses reduce in magnitude but still present even after PWHT.

  11. Measurement of the composition change in Al5754 alloy during long pulsed Nd : YAG laser welding based on LIBS

    Energy Technology Data Exchange (ETDEWEB)

    Jandaghi, M; Parvin, P [Physics Department, Amir Kabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Torkamany, M J; Sabbaghzadeh, J, E-mail: Parvin@aut.ac.i [Iranian National Centre for Laser Science and Technology (INLC), PO Box 14665-576, Tehran (Iran, Islamic Republic of)

    2009-10-21

    Weld metal composition change in aluminium alloy 5754 in keyhole mode welding, using a long pulsed Nd : YAG laser, was investigated theoretically and supported with experimental measurements. A comprehensive model for the calculation of vaporization rates was developed based on the kinetic theory of gases and the thermodynamic laws. During the laser welding process, the significant variables were pulse duration and power density. It was predicted in the model and concurred experimentally that the concentration of magnesium in the weld metal decreases with an increase in the laser pulse duration, while the aluminium concentration increases. Moreover, the concentrations of aluminium and magnesium elements in the weld metal were determined by laser induced breakdown spectroscopy for different welding conditions.

  12. Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    High temperature oxidation resistant iron-chromium-aluminum (FeCrAl) alloys are candidate alloys for nuclear applications due to their exceptional performance during off-normal conditions such as a loss-of-coolant accident (LOCA) compared to currently deployed zirconium-based claddings [1]. A series of studies have been completed to determine the weldability of the FeCrAl alloy class and investigate the weldment performance in the as-received (non-irradiated) state [2,3]. These initial studies have shown the general effects of composition and microstructure on the weldability of FeCrAl alloys. Given this, limited details on the radiation tolerance of FeCrAl alloys and their weldments exist. Here, the highest priority candidate FeCrAl alloys and their weldments have been investigated after irradiation to enable a better understanding of FeCrAl alloy weldment performance within a high-intensity neutron field. The alloys examined include C35M (Fe-13%Cr-5% Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions. Two different sub-sized tensile geometries, SS-J type and SS-2E (or SS-mini), were neutron irradiated in the High Flux Isotope Reactor to 1.8-1.9 displacements per atom (dpa) in the temperature range of 195°C to 559°C. Post irradiation examination of the candidate alloys was completed and included uniaxial tensile tests coupled with digital image correlation (DIC), scanning electron microscopy-electron back scattered diffraction analysis (SEM-EBSD), and SEM-based fractography. In addition to weldment testing, non-welded parent material was examined as a direct comparison between welded and non-welded specimen performance. Both welded and non-welded specimens showed a high degree of radiation-induced hardening near irradiation temperatures of 200°C, moderate radiation-induced hardening near temperatures of 360°C, and almost no radiation-induced hardening at elevated temperatures near 550°C. Additionally, low-temperature irradiations showed

  13. Optimization of process parameters of aluminum alloy AA 2014-T6 friction stir welds by response surface methodology

    Directory of Open Access Journals (Sweden)

    Ramanjaneyulu Kadaganchi

    2015-09-01

    Full Text Available The heat treatable aluminum–copper alloy AA2014 finds wide application in the aerospace and defence industry due to its high strength-to-weight ratio and good ductility. Friction stir welding (FSW process, an emerging solid state joining process, is suitable for joining this alloy compared to fusion welding processes. This work presents the formulation of a mathematical model with process parameters and tool geometry to predict the responses of friction stir welds of AA 2014-T6 aluminum alloy, viz yield strength, tensile strength and ductility. The most influential process parameters considered are spindle speed, welding speed, tilt angle and tool pin profile. A four-factor, five-level central composite design was used and a response surface methodology (RSM was employed to develop the regression models to predict the responses. The mechanical properties, such as yield strength (YS, ultimate tensile strength (UTS and percentage elongation (%El, are considered as responses. Method of analysis of variance was used to determine the important process parameters that affect the responses. Validation trials were carried out to validate these results. These results indicate that the friction stir welds of AA 2014-T6 aluminum alloy welded with hexagonal tool pin profile have the highest tensile strength and elongation, whereas the joints fabricated with conical tool pin profile have the lowest tensile strength and elongation.

  14. The Quality of Welded Connections Elements from the Steel 30HGS and Titanium Alloy Ti6Al4V

    Directory of Open Access Journals (Sweden)

    Z. Łapiński

    2012-04-01

    Full Text Available The aim of that work was the evaluation of the quality of welded connections elements (welds from the 30HGS steel and titanium alloy Ti6Al4V. The metallographic, factographic tests were used, and measurements of microhardness with the Vickers method. In the head weld of the 30HGS steel there were non-metallic partial division and bubbles observed. The average microhardness in the head connection was 320 HV0.1. There was no significant increase/decrease observed of microhardness in the head influence zone of the weld. There was a good condition of head connections observed, in accordance with the standard EN12517 and EN25817. In the head weld of Ti6Al4V titanium alloy there were single, occasional non-metallic interjections and bubbles observed. There were no cracks both on the weld, and on the border of the heat influence zone. The value of microhardness in head connection was in the range 300÷445 HV0.1. Reveal a very good condition of the head connections in accordance with the standard EN12517 and EN25817. The factographic tests prove the correctness of welded connections done and then heat treatment in case of steel and titanium alloy.

  15. Friction Stir Welding in Wrought and Cast Aluminum Alloys: Weld Quality Evaluation and Effects of Processing Parameters on Microstructure and Mechanical Properties

    Science.gov (United States)

    Pan, Yi; Lados, Diana A.

    2017-04-01

    Friction stir welding (FSW) is a solid-state process widely used for joining similar and dissimilar materials for critical applications in the transportation sector. Understanding the effects of the process on microstructure and mechanical properties is critical in design for structural integrity. In this study, four aluminum alloy systems (wrought 6061-T651 and cast A356, 319, and A390) were processed in both as-fabricated and pre-weld heat-treated (T6) conditions using various processing parameters. The effects of processing and heat treatment on the resulting microstructures, macro-/micro-hardness, and tensile properties were systematically investigated and mechanistically correlated to changes in grain size, characteristic phases, and strengthening precipitates. Tensile tests were performed at room temperature both along and across the welding zones. A new method able to evaluate weld quality (using a weld quality index) was developed based on the stress concentration calculated under tensile loading. Optimum processing parameter domains that provide both defect-free welds and good mechanical properties were determined for each alloy and associated with the thermal history of the process. These results were further related to characteristic microstructural features, which can be used for component design and materials/process optimization.

  16. Investigation of residual stresses in welded joints of heat-resistant magnesium alloy ML10 after electrodynamic treatment

    Directory of Open Access Journals (Sweden)

    L.M. Lobanov

    2016-06-01

    Full Text Available In repair of aircraft structures of magnesium alloy ML10, the argon arc non-consumable electrode welding is used. In this case, the residual welding stresses occur in repair welds, being one of the causes for reducing the service characteristics of the restored products. Residual stresses arise as a result of welding. Post-weld heat treatment is used to reduce the residual stresses. The heat treatment, which occurs after welding, increases the cost of repair. This leads to the search for alternative methods to control the stressed state of welded joints, one of which is electrodynamic treatment, which reduces the level of residual stresses in repair welds, and as a consequence, the cost of the welding repair in restoring aircraft structures. It was found from the results of experiments carried out, that the electrodynamic treatment allows reduces the initial level of stresses in welded joints, reaching 120 MPa, to 30 MPa, and at definite geometric characteristics of the specimens forming the field of compressive stresses, the values of which are equal to –50 MPa. It is shown that the optimum distance between the zones of treatment, being 5 mm, provides the guaranteed covering the zones of electrodynamic effect and, as a consequence, the maximum efficiency of the electric dynamic treatment.

  17. The environmentally-assisted cracking behaviour in the transition region of nickel-base alloy/low-alloy steel dissimilar weld joints under simulated BWR conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H.P.; Leber, H.J. [Paul Scherrer Institute, Nuclear Energy and Safety Research Department, Lab for Nuclear Materials, 5232 Villigen PSI (Switzerland)

    2011-07-01

    The stress corrosion cracking (SCC) behaviour perpendicular to the fusion line in the transition region between the Alloy 182 nickel-base weld metal and the adjacent low-alloy reactor pressure vessel (RPV) steel of simulated dissimilar metal weld joints was investigated under boiling water reactor normal water chemistry conditions at different stress intensities and chloride concentrations. A special emphasis was placed to the question whether a fast growing inter-dendritic SCC crack in the highly susceptible Alloy 182 weld metal can easily cross the fusion line and significantly propagate into the adjacent low-alloy RPV steel. Cessation of inter-dendritic stress corrosion crack growth was observed in high-purity or sulphate-containing oxygenated water under periodical partial unloading or constant loading conditions with stress intensity factors below 60 MPa-m{sup 1/2} for those parts of the crack front, which reached the fusion line. In chloride containing water, on the other hand, the inter-dendritic stress corrosion crack in the Alloy 182 weld metal very easily crossed the fusion line and further propagated with a very high growth rate as a transgranular crack into the heat-affected zone and base material of the adjacent low-alloy steel. (authors)

  18. Effect of post weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armour grade AA7075-T651 aluminium alloy

    Directory of Open Access Journals (Sweden)

    P. Sivaraj

    2014-03-01

    Full Text Available This paper reports the effects of post weld heat treatments, namely artificial ageing and solution treatment followed by artificial ageing, on microstructure and mechanical properties of 12 mm thick friction stir welded joints of precipitation hardenable high strength armour grade AA7075-T651 aluminium alloy. The tensile properties, such as yield strength, tensile strength, elongation and notch tensile strength, are evaluated and correlated with the microhardness and microstructural features. The scanning electron microscope is used to characterie the fracture surfaces. The solution treatment followed by ageing heat treatment cycle is found to be marginally beneficial in improving the tensile properties of friction stir welds of AA7075-T651 aluminium alloy.

  19. Flexural strength of pure Ti, Ni-Cr and Co-Cr alloys submitted to Nd:YAG laser or TIG welding.

    Science.gov (United States)

    Rocha, Rick; Pinheiro, Antônio Luiz Barbosa; Villaverde, Antonio Balbin

    2006-01-01

    Welding of metals and alloys is important to Dentistry for fabrication of dental prostheses. Several methods of soldering metals and alloys are currently used. The purpose of this study was to assess, using the flexural strength testing, the efficacy of two processes Nd:YAG laser and TIG (tungsten inert gas) for welding of pure Ti, Co-Cr and Ni-Cr alloys. Sixty cylindrical specimens were prepared (20 of each material), bisected and welded using different techniques. Four groups were formed (n=15). I: Nd:YAG laser welding; II- Nd:YAG laser welding using a filling material; III- TIG welding and IV (control): no welding (intact specimens). The specimens were tested in flexural strength and the results were analyzed statistically by one-way ANOVA. There was significant differences (pwelded materials, the Co-Cr alloy being the most resistant to deflection. Comparing the welding processes, significant differences (pTIG and laser welding and also between laser alone and laser plus filling material. In conclusion, TIG welding yielded higher flexural strength means than Nd:YAG laser welding for the tested Ti, Co-Cr and Ni-Cr alloys.

  20. Influence of heat treatments on microstructure, mechanical properties, and corrosion resistance of weld alloy 625

    Science.gov (United States)

    Cortial, F.; Corrieu, J. M.; Vernot-Loier, C.

    1995-05-01

    The effects of heat treatments of the industrial type (eight-hour hold times at temperatures between 600 °C and 1000 °C) on the structural, mechanical, and corrosion resistance characteristics of weld alloy 625 have been studied. During the heat treatment, the mean concentration ratios of Nb, Mo, Si, Cr, Ni, and Fe elements between the interdendritic spaces and dendrite cores show little evolution up to 850 °C. Beyond that temperature, this ratio approximates 1, and the composition heterogeneity has practically disappeared at 1000 °C. An eight-hour heat treatment at temperatures between 650 °C and 750 °C results in increased mechanical strength values and reduced ductility and impact strength linked to the precipitation of body-centered tetragonal metastable intermetallic γ″ Ni3Nb phase in the interdendritic spaces. An eight-hour treatment in the temperature range between 750 °C and 950 °C has catastrophic effects on all mechanical characteristics in relation with the precipitation, in the interdendritic spaces, of the stable orthorhombic intermetallic δ Ni3(Nb, Mo, Cr, Fe, Ti) phase. At 1000 °C, the ductility and impact strength are restored. However, the higher the heat treatment temperature, the weaker the mechanical strength. Heat treatments have no effect on the pitting resistance of weld alloy 625 in sea water. The comparison of the results of this study on weld alloy 625 with those previously obtained on forged metal 625 shows that heat treatments below 650 °C and above 1000 °C are the sole treatments to avoid embrittlement and impairment of the corrosion resistance characteristics of alloy 625.

  1. Experimental and numerical investigations of hybrid laser arc welding of aluminum alloys in the thick T-joint configuration

    Science.gov (United States)

    Mazar Atabaki, M.; Nikodinovski, M.; Chenier, P.; Ma, J.; Liu, W.; Kovacevic, R.

    2014-07-01

    In the present investigation, a numerical finite element model was developed to simulate the hybrid laser arc welding of different aluminum alloys, namely 5××× to 6××× series. The numerical simulation has been considered two double-ellipsoidal heat sources for the gas metal arc welding and laser welding. The offset distance of the metal arc welding and laser showed a significant effect on the molten pool geometry, the heat distribution and penetration depth during the welding process. It was confirmed that when the offset distance is within the critical distance the laser and arc share the molten pool and specific amount of penetration and dilution can be achieved. The models and experiments show that the off-distance between the two heat sources and shoulder width have considerable influence on the penetration depth and appearance of the weld beads. The experiments also indicate that the laser power, arc voltage and type of the filler metal can effectively determine the final properties of the bonds, specifically the bead appearance and microhardness of the joints. The experiments verified the numerical simulation as the thermocouples assist to comprehend the amount of heat distribution on the T-joint coupons. The role of the welding parameters on the mechanism of the hybrid laser welding of the aluminum alloys was also discussed.

  2. Microstructure and Properties of TIG/FSW Welded Joints of a New Al-Zn-Mg-Sc-Zr Alloy

    Science.gov (United States)

    Lei, Xuefeng; Deng, Ying; Peng, Yongyi; Yin, Zhimin; Xu, Guofu

    2013-09-01

    A new Al-Zn-Mg-Sc-Zr alloy with low Sc content was welded by tungsten inert gas (TIG) and friction stir welding (FSW) techniques. The microstructure and properties of those two welded joints were investigated by property tests and microstructural observations. The results show that the new Al-Zn-Mg-Sc-Zr alloy has desirable welding property. The ultimate tensile strength and welding coefficient of the TIG joint reach 405 MPa and 76.7%, respectively, and in FSW joint those property values reach 490 MPa and 92.6%, respectively. The studied base metal has a deformed fibrous subgrains structure, many nano-scaled Al3(Sc,Zr) particles, and very fine aging precipitates. In the TIG joint, the fusion zone consists of coarsened dendritic grains and the heat-affected zone (HAZ) has fibrous micro-scaled subgrains. The FSW welded joint is characterized by a weld nugget zone, thermo-mechanically affected zone (TMAZ), and HAZ. Due to plastic deformation around the rotating pin and anti-recrystallized effectiveness of Al3(Sc,Zr) particles, the weld nugget zone has a very fine subgrain structure. The TMAZ experiences some dissolution of aging precipitates. Coarsening of aging precipitates was observed in the HAZ. The better mechanical properties of the FSW joint are derived from a fine subgrain structure and homogeneous chemical compositions.

  3. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al–Zn–Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ying, E-mail: csudengying@163.com [School of Metallurgy and Environment, Central South University, Hunan, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); State Key Laboratory for Power Metallurgy, Central South University, Hunan, Changsha 410083 (China); Peng, Bing [School of Metallurgy and Environment, Central South University, Hunan, Changsha 410083 (China); Xu, Guofu, E-mail: csuxgf66@csu.edu.cn [School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); State Key Laboratory for Power Metallurgy, Central South University, Hunan, Changsha 410083 (China); Pan, Qinglin; Yin, Zhimin; Ye, Rui [School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); Wang, Yingjun; Lu, Liying [Northeast Light Alloy Co. Ltd., Hei Longjiang, Harbin 150060 (China)

    2015-07-15

    New aerospace high strength Al–Zn–Mg and Al–Zn–Mg–0.25Sc–0.10Zr (wt%) alloys were welded by tungsten inert gas (TIG) process using a new Al–6.0Mg–0.25Sc–0.10Zr (wt%) filler material, and friction stir welding (FSW) process, respectively. Mechanical property and microstructure of the welded joints were investigated comparatively by tensile tests and microscopy methods. The results show that Sc and Zr can improve the yield strength and ultimate tensile strength of Al–Zn–Mg alloy by 59 MPa (23.3%) and 16 MPa (4.0%) in TIG welded joints, and by 77 MPa (23.8%) and 54 MPa (11.9%) in FSW welded joints, respectively. The ultimate tensile strength and elongation of new Al–Zn–Mg–Sc–Zr alloy FSW welded joint are 506±4 MPa and 6.34±0.2%, respectively, showing superior post welded performance. Mechanical property of welded joint is mainly controlled by its “weakest microstructural zone”. TIG welded Al–Zn–Mg and Al–Zn–Mg–Sc–Zr alloys reinforced with weld bead both failed at fusion boundaries. Secondary Al{sub 3}Sc{sub x}Zr{sub 1−x} particles originally present in parent alloy coarsen during TIG welding process, but they can restrain the grain growth and recrystallization here, thus improving welding performance. For two FSW welded joints, fracture occurred in weld nugget zone. Secondary Al{sub 3}Sc{sub x}Zr{sub 1−x} nano-particles almost can keep unchangeable size (20–40 nm) across the entire FSW welded joint, and thus provide effective Orowan strengthening, grain boundary strengthening and substructure strengthening to strengthen FSW joints. The positive effect from Sc and Zr additions into base metals can be better preserved by FSW process than by TIG welding process.

  4. Aluminum alloy weldability. Identification of weld solidification cracking mechanisms through novel experimental technique and model development

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, Nicolas

    2008-07-01

    The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated. Afterwards, cracking models are developed to propose mechanisms for solidification crack initiation and growth. Cracking Sensitivity. Building upon the concept that silicon improves weldability and that weldability can be defined by a critical strain rate, strain rate-composition combinations required for solidification crack formation in the Al- 6060/4043 system were determined using the newly developed Controlled Tensile Weldability (CTW) test utilizing local strain extensometer measurements. Results, presented in a critical strain rate - dilution map, show a crack - no crack boundary which reveals that higher local strain rates require higher 4043 filler dilution to avoid solidification cracking when arc welding Alloy 6060. Using the established crack - no crack boundary as a line of reference, additional parameters were examined and their influence on cracking characterized. These parameter influences have included studies of weld travel speed, weld pool contaminants (Fe, O, and H), and grain refiner additions (TiAl{sub 3} + Boron). Each parameter has been independently varied and its effect on cracking susceptibility quantified in terms of strain rate - composition combinations. Solidification Path. Solidification path of the Al-6060/4043 system was characterized using thermal analysis and phase identification. Increasing 4043 filler dilution from 0 to 16% in Alloy 6060 arc welds resulted in little effect on thermal arrests and microstructure, no effect on

  5. Friction Stir Welding (FSW) of Aged CuCrZr Alloy Plates

    Science.gov (United States)

    Jha, Kaushal; Kumar, Santosh; Nachiket, K.; Bhanumurthy, K.; Dey, G. K.

    2018-01-01

    Friction Stir Welding (FSW) of Cu-0.80Cr-0.10Zr (in wt pct) alloy under aged condition was performed to study the effects of process parameters on microstructure and properties of the joint. FSW was performed over a wide range of process parameters, like tool-rotation speed (from 800 to 1200 rpm) and tool-travel speed (from 40 to 100 mm/min), and the resulting thermal cycles were recorded on both sides (advancing and retreating) of the joint. The joints were characterized for their microstructure and tensile properties. The welding process resulted in a sound and defect-free weld joint, over the entire range of the process parameters used in this study. Microstructure of the stir zone showed fine and equiaxed grains, the scale of which varied with FSW process parameters. Grain size in the stir zone showed direct correlation with tool rotation and inverse correlation with tool-travel speed. Tensile strength of the weld joints was ranging from 225 to 260 MPa, which is substantially lower than that of the parent metal under aged condition ( 400 MPa), but superior to that of the parent material under annealed condition ( 220 MPa). Lower strength of the FSW joint than that of the parent material under aged condition can be attributed to dissolution of the precipitates in the stir zone and TMAZ. These results are presented and discussed in this paper.

  6. Influence of friction stir welding parameters on properties of 2024 T3 aluminium alloy joints

    Directory of Open Access Journals (Sweden)

    Eramah Abdsalam M.

    2014-01-01

    Full Text Available The aim of this work is to analyse the process of friction stir welding (FSW of 3mm thick aluminium plates made of high strength aluminium alloy - 2024 T3, as well as to assess the mechanical properties of the produced joints. FSW is a modern procedure which enables joining of similar and dissimilar materials in the solid state, by the combined action of heat and mechanical work. This paper presents an analysis of the experimental results obtained by testing the butt welded joints. Tensile strength of the produced joints is assessed, as well as the distribution of hardness, micro-and macrostructure through the joints (in the base material, nugget, heat affected zone and thermo-mechanically affected zone. Different combinations of the tool rotation speed and the welding speed are used, and the dependence of the properties of the joints on these parameters of welding technology is determined. [Projekat Ministarstva nauke Republike Srbije, br. TR 34018 i br. TR 35006

  7. Experimental Research on Fatigue Failure for 2219-T6 Aluminum Alloy Friction Stir-Welded Joints

    Science.gov (United States)

    Sun, Guo-Qin; Niu, Jiang-Pei; Chen, Ya-Jing; Sun, Feng-Yang; Shang, De-Guang; Chen, Shu-Jun

    2017-08-01

    The fatigue experiment was executed for the 2219-T6 aluminum alloy friction stir-welded joints at the rotation speed of 800 r/min and the welding velocity of 150 mm/min. Most fatigue failures occurred in the weld nugget zone (WNZ), the thermo-mechanical affected zone and the nearby areas. The experimental results demonstrated that the sudden hardness gradient increases sites corresponding to the fatigue failure locations. The high-angle grain boundaries with the highest concentration were scattered within the WNZ. The microcracks initiated at the intersection of the soft grains. More than one crack initiation site was observed within the WNZ and the thermo-mechanical affected zone, when the fracture occurred in these areas. The rough surface of the welding area should be one of the main reasons for the fatigue failure occurrence. The fatigue crack growth rate in the WNZ at the first stage was fastest in comparison with the fatigue crack growth rate in the other areas of the joint.

  8. Dissimilar welding of nickel-based Alloy 690 to SUS 304L with Ti addition

    Science.gov (United States)

    Lee, H. T.; Jeng, S. L.; Yen, C. H.; Kuo, T. Y.

    2004-10-01

    This study investigates the effects of Ti addition on the weldability, microstructure and mechanical properties of a dissimilar weldment of Alloy 690 and SUS 304L. Shielding metal arc welding (SMAW) is employed to butt-weld two plates with three welding layers, where each layer is deposited in a single pass. To investigate the effects of Ti addition, the flux coatings of the electrodes used in the welding process are modified by varying additions of either a Ti-Fe compound or a Ti powder. The results indicate that the microstructure of the fusion zone (FZ) is primarily dendritic. With increasing Ti content, it is noted that the microstructure changes from a columnar dendritic to an equiaxed dendritic, in which the primary dendrite arm spacing (PDAS) becomes shorter. Furthermore, it is observed that the amount of Al-Ti oxide phase increases in the inter-dendritic region, while the amount of Nb-rich phase decreases. Moreover, the average hardness of the FZ increases slightly. The results indicate that Ti addition prompts a significant increase in the elongation of the weldment (i.e. 36.5%, Ti: 0.41 wt%), although the tensile strength remains relatively unchanged. However, at an increased Ti content of 0.91 wt%, an obvious reduction in the tensile strength is noted, which can be attributed to a general reduction in the weldability of the joint.

  9. Direct observation of keyhole plasma characteristics in deep penetration laser welding of aluminum alloy 6016

    Science.gov (United States)

    Jin, Xiangzhong; Zeng, Licheng; Cheng, Yuanyong

    2012-06-01

    Deep penetration laser welding is associated with violent plasma generation which consists of metal vapour, ionized ions and electrons. The plasma resides both outside and inside the keyhole, known as the plasma plume and keyhole plasma, respectively. Plasma plumes have been studied extensively due to the convenience of observing them. However, very little work has been carried out on the investigation of keyhole plasmas. In this paper, a novel experimental set-up is designed to observe the keyhole plasma directly in CW and PW deep penetration laser welding of aluminum alloy 6016. Then on the basis of the experimentally obtained spectra, the electron temperature distribution of the keyhole plasma both in the radial and depth directions of the keyhole is calculated, and the effects of processing parameters such as laser power, welding velocity and defocus on the keyhole plasma temperature are studied. The results show that the electron temperature of the keyhole plasma both in the radial and depth directions is not uniformly distributed. The temperature increases as the laser power increases, decreases as the welding velocity increases and decreases as the location of the laser beam focal point is moved from within to above the keyhole.

  10. Characteristics of AZ31 Mg alloy joint using automatic TIG welding

    Science.gov (United States)

    Liu, Hong-tao; Zhou, Ji-xue; Zhao, Dong-qing; Liu, Yun-teng; Wu, Jian-hua; Yang, Yuan-sheng; Ma, Bai-chang; Zhuang, Hai-hua

    2017-01-01

    The automatic tungsten-inert gas welding (ATIGW) of AZ31 Mg alloys was performed using a six-axis robot. The evolution of the microstructure and texture of the AZ31 auto-welded joints was studied by optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction. The ATIGW process resulted in coarse recrystallized grains in the heat affected zone (HAZ) and epitaxial growth of columnar grains in the fusion zone (FZ). Substantial changes of texture between the base material (BM) and the FZ were detected. The {0002} basal plane in the BM was largely parallel to the sheet rolling plane, whereas the c-axis of the crystal lattice in the FZ inclined approximately 25° with respect to the welding direction. The maximum pole density increased from 9.45 in the BM to 12.9 in the FZ. The microhardness distribution, tensile properties, and fracture features of the AZ31 auto-welded joints were also investigated.

  11. Friction Stir Welding (FSW) of Aged CuCrZr Alloy Plates

    Science.gov (United States)

    Jha, Kaushal; Kumar, Santosh; Nachiket, K.; Bhanumurthy, K.; Dey, G. K.

    2017-11-01

    Friction Stir Welding (FSW) of Cu-0.80Cr-0.10Zr (in wt pct) alloy under aged condition was performed to study the effects of process parameters on microstructure and properties of the joint. FSW was performed over a wide range of process parameters, like tool-rotation speed (from 800 to 1200 rpm) and tool-travel speed (from 40 to 100 mm/min), and the resulting thermal cycles were recorded on both sides (advancing and retreating) of the joint. The joints were characterized for their microstructure and tensile properties. The welding process resulted in a sound and defect-free weld joint, over the entire range of the process parameters used in this study. Microstructure of the stir zone showed fine and equiaxed grains, the scale of which varied with FSW process parameters. Grain size in the stir zone showed direct correlation with tool rotation and inverse correlation with tool-travel speed. Tensile strength of the weld joints was ranging from 225 to 260 MPa, which is substantially lower than that of the parent metal under aged condition ( 400 MPa), but superior to that of the parent material under annealed condition ( 220 MPa). Lower strength of the FSW joint than that of the parent material under aged condition can be attributed to dissolution of the precipitates in the stir zone and TMAZ. These results are presented and discussed in this paper.

  12. Multi-response optimization of process parameters in friction stir welded AM20 magnesium alloy by Taguchi grey relational analysis

    Directory of Open Access Journals (Sweden)

    Prakash Kumar Sahu

    2015-03-01

    Full Text Available The purpose of this paper is to optimize the process parameter to get the better mechanical properties of friction stir welded AM20 magnesium alloy using Taguchi Grey relational analysis (GRA. The considered process parameters are welding speed, tool rotation speed, shoulder diameter and plunging depth. The experiments were carried out by using Taguchi's L18 factorial design of experiment. The processes parameters were optimized and ranked the parameters based on the GRA. The percentage influence of each process parameter on the weld quality was also quantified. A validation experimental run was conducted using optimal process condition, which was obtained from the analysis, to show the improvement in mechanical properties of the joint. This study also shows the feasibility of the GRA with Taguchi technique for improvement in welding quality of magnesium alloy.

  13. Effect of laser irradiation conditions on the laser welding strength of cobalt-chromium and gold alloys.

    Science.gov (United States)

    Kikuchi, Hisaji; Kurotani, Tomoko; Kaketani, Masahiro; Hiraguchi, Hisako; Hirose, Hideharu; Yoneyama, Takayuki

    2011-09-01

    Using tensile tests, this study investigated differences in the welding strength of casts of cobalt-chromium and gold alloys resulting from changes in the voltage and pulse duration in order to clarify the optimum conditions of laser irradiation for achieving favorable welding strength. Laser irradiation was performed at voltages of 150 V and 170 V with pulse durations of 4, 8, and 12 ms. For cobalt-chromium and gold alloys, it was found that a good welding strength could be achieved using a voltage of 170 V, a pulse duration of 8 ms, and a spot diameter of 0.5 mm. However, when the power density was set higher than this, defects tended to occur, suggesting the need for care when establishing welding conditions.

  14. Investigation of plasma arc welding as a method for the additive manufacturing of titanium-(6)aluminum-(4)vanadium alloy components

    Science.gov (United States)

    Stavinoha, Joe N.

    The process of producing near net-shape components by material deposition is known as additive manufacturing. All additive manufacturing processes are based on the addition of material with the main driving forces being cost reduction and flexibility in both manufacturing and product design. With wire metal deposition, metal is deposited as beads side-by-side and layer-by-layer in a desired pattern to build a complete component or add features on a part. There are minimal waste products, low consumables, and an efficient use of energy and feedstock associated with additive manufacturing processes. Titanium and titanium alloys are useful engineering materials that possess an extraordinary combination of properties. Some of the properties that make titanium advantageous for structural applications are its high strength-to-weight ratio, low density, low coefficient of thermal expansion, and good corrosion resistance. The most commonly used titanium alloy, Ti-6Al-4V, is typically used in aerospace applications, pressure vessels, aircraft gas turbine disks, cases and compressor blades, and surgical implants. Because of the high material prices associated with titanium alloys, the production of near net-shape components by additive manufacturing is an attractive option for the manufacturing of Ti-6Al-4V alloy components. In this thesis, the manufacturing of cylindrical Ti-6Al-4V alloy specimens by wire metal deposition utilizing the plasma arc welding process was demonstrated. Plasma arc welding is a cost effective additive manufacturing technique when compared to other current additive manufacturing methods such as laser beam welding and electron beam welding. Plasma arc welding is considered a high-energy-density welding processes which is desirable for the successful welding of titanium. Metal deposition was performed using a constant current plasma arc welding power supply, flow-purged welding chamber, argon shielding and orifice gas, ERTi-5 filler metal, and Ti-6Al

  15. Friction stir spot welding of 2024-T3 aluminum alloy with SiC nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Paidar, Moslem; Sarab, Mahsa Laali [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-01-15

    In this study, the Friction stir spot welding (FSSW) of 2024-T3 aluminum alloy with 1.6 mm thickness was investigated. The effects of the silicon carbide (SiC) nanoparticles on the metallurgical and mechanical properties were discussed. The effects of particles on tension shear and wear tests were also investigated. The process was conducted at a constant rotational speed of 1000 rpm. Results showed that adding SiC nanoparticles to the weld during FSSW had a major effect on the mechanical properties. In fact, the addition of nanoparticles as barriers prevented grain growth in the Stir zone (SZ). The data obtained in the tensile-shear and wear tests showed that tensile-shear load and wear resistance increased with the addition of SiC nanoparticles, which was attributed to the fine grain size produced in the SZ.

  16. Mitigation of Tensile Weld Stresses in Alloy 22 Using Laser Peening

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H L; Evans, K J; Hackel, L A; Rankin, J E; Yamamoto, R M; Demma, A G; Dewald, A T; Lee, M J; Hill, M R

    2002-11-27

    The goal of the Yucca Mountain Project (YMP) is safe permanent disposal of high-level nuclear waste. One of the many technical challenges to this plan is the design of the Engineered Barrier System (EBS) including the waste package that will contain the radioactive waste. One potential failure mode of the waste package is stress corrosion cracking (SCC), which occurs when three criteria simultaneously exist. These criteria are a potentially corrosive environment, a material susceptible to SCC, and the presence of tensile residual stresses at the surface of the material. While many design decisions have been made to attempt to minimize the occurrence of the first two conditions, it is necessary to control the third condition, the presence of tensile residual stresses. These stresses occur as a result of a variety of manufacturing techniques, including welding. While most of the residual stresses due to the welding of the waste package can be mitigated through solution heat-treating, the final closure weld, which occurs after the radioactive waste has been placed in the waste package, must be treated to eliminate the presence of tensile residual stress near the surface. Laser peening is a commercially proven technology that has been shown to create compressive residual stress in both unstressed materials, as well as materials containing tensile surface residual stresses generated by welding. Lawrence Livermore National Laboratory (LLNL) has developed the laser peening process and the associated hardware for use by the YMP. Upon completion of the testing and engineering phases, LLNL will transfer the laser peening technology to U.S. industry and assist DOE in developing vendors to supply production units to be installed at the YMP facilities. The overall testing effort is divided into-two phases. Phase I of this project consisted of a study into the effectiveness of laser peening in generating compressive stress in small Alloy 22 base metal coupons and converting

  17. Analysis of Smut Formation Phenomena on MIG and Plasma-MIG Hybrid Weld of Cryogenic Al-Mg Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee-keun [Daewoo Shipbuilding and Marine Engineering, Geoje (Korea, Republic of); Yoon, Tae-jin; Kang, Chung-yun [Pusan National University, Busan (Korea, Republic of)

    2016-02-15

    Black deposits (smut) are created on MIG welds in cryogenic Al alloys. The smut should be removed because it ruins the appearance of the end product and affects surface treatments such as painting. It was recently reported that plasma–MIG hybrid (PMH) welding controls the formation of smut during welding. In order to determine the reason for this, smut formation using both MIG and PMH welding was investigated through metallurgy and arc phenomena analysis. Smut on MIG welds is a Mg–Al–O amorphous layer that includes nano-sized MgO particles less than 100 nm in diameter and MgO particles 1–2 µm in diameter. Smut on MIG welds is created by large amounts of metal vapor from the arc explosion generated between the welding wire and the weld pool after a short circuit transfer. However, smut on PMH welds is not created owing to the small amount of metal vapor produced from a stable globular transfer rather than a short circuit transfer and arc explosion.

  18. Nickel-based alloy/austenitic stainless steel dissimilar weld properties prediction on asymmetric distribution of laser energy

    Science.gov (United States)

    Zhou, Siyu; Ma, Guangyi; Chai, Dongsheng; Niu, Fangyong; Dong, Jinfei; Wu, Dongjiang; Zou, Helin

    2016-07-01

    A properties prediction method of Nickel-based alloy (C-276)/austenitic stainless steel (304) dissimilar weld was proposed and validated based on the asymmetric distribution of laser energy. Via the dilution level DC-276 (the ratio of the melted C-276 alloy), the relations between the weld properties and the energy offset ratio EC-276 (the ratio of the irradiated energy on the C-276 alloy) were built, and the effects of EC-276 on the microstructure, mechanical properties and corrosion resistance of dissimilar welds were analyzed. The element distribution Cweld and EC-276 accorded with the lever rule due to the strong convention of the molten pool. Based on the lever rule, it could be predicted that the microstructure mostly consists of γ phase in each weld, the δ-ferrite phase formation was inhibited and the intermetallic phase (P, μ) formation was promoted with the increase of EC-276. The ultimate tensile strength σb of the weld joint could be predicted by the monotonically increasing cubic polynomial model stemming from the strengthening of elements Mo and W. The corrosion potential U, corrosion current density I in the active region and EC-276 also met the cubic polynomial equations, and the corrosion resistance of the dissimilar weld was enhanced with the increasing EC-276, mainly because the element Mo could help form a steady passive film which will resist the Cl- ingress.

  19. Effects of Electron Beam Welding on Microstructure, Microhardness, and Electrical Conductivity of Cu-Cr-Zr Alloy Plates

    Science.gov (United States)

    Kanigalpula, P. K. C.; Chatterjee, Arya; Pratihar, D. K.; Jha, M. N.; Derose, J.

    2015-12-01

    In this study, the effects of electron beam welding on the microstructure, microhardness, and electrical conductivity of precipitation-hardened Cu-0.804%Cr-0.063%Zr (wt.%) alloy plates were investigated. Experiments were carried out following a central composite design of experiments. Five welding schedules yielding the higher hardness were chosen and then were subjected to standard metallographic and various microscopy techniques to reveal the type, morphology, and distribution of the precipitates and to obtain the sub-structural information from the weld zone. X-ray diffraction studies revealed predominant formation of intermetallic phases in the welded zones of some of the samples, which could have resulted in higher hardness and better electrical conductivity compared to those of other ones. Microhardness values in the fusion zone and heat-affected zone were found to be less than that of the parent material. The mechanism of damage in Cu-Cr-Zr plates due to welding was also explained.

  20. Cerium Addition Improved the Dry Sliding Wear Resistance of Surface Welding AZ91 Alloy

    Directory of Open Access Journals (Sweden)

    Qingqiang Chen

    2018-02-01

    Full Text Available In this study, the effects of cerium (Ce addition on the friction and wear properties of surface welding AZ91 magnesium alloys were evaluated by pin-on-disk dry sliding friction and wear tests at normal temperature. The results show that both the friction coefficient and wear rate of surfacing magnesium alloys decreased with the decrease in load and increase in sliding speed. The surfacing AZ91 alloy with 1.5% Ce had the lowest friction coefficient and wear rate. The alloy without Ce had the worst wear resistance, mainly because it contained a lot of irregularly shaped and coarse β-Mg17Al12 phases. During friction, the β phase readily caused stress concentration and thus formed cracks at the interface between β phase and α-Mg matrix. The addition of Ce reduced the size and amount of Mg17Al12, while generating Al4Ce phase with a higher thermal stability. The Al-Ce phase could hinder the grain-boundary sliding and migration and reduced the degree of plastic deformation of subsurface metal. Scanning electron microscopy observation showed that the surfacing AZ91 alloy with 1.5% Ce had a total of four types of wear mechanism: abrasion, oxidation, and severe plastic deformation were the primary mechanisms; delamination was the secondary mechanism.

  1. Cerium Addition Improved the Dry Sliding Wear Resistance of Surface Welding AZ91 Alloy.

    Science.gov (United States)

    Chen, Qingqiang; Zhao, Zhihao; Zhu, Qingfeng; Wang, Gaosong; Tao, Kai

    2018-02-06

    In this study, the effects of cerium (Ce) addition on the friction and wear properties of surface welding AZ91 magnesium alloys were evaluated by pin-on-disk dry sliding friction and wear tests at normal temperature. The results show that both the friction coefficient and wear rate of surfacing magnesium alloys decreased with the decrease in load and increase in sliding speed. The surfacing AZ91 alloy with 1.5% Ce had the lowest friction coefficient and wear rate. The alloy without Ce had the worst wear resistance, mainly because it contained a lot of irregularly shaped and coarse β-Mg 17 Al 12 phases. During friction, the β phase readily caused stress concentration and thus formed cracks at the interface between β phase and α-Mg matrix. The addition of Ce reduced the size and amount of Mg 17 Al 12 , while generating Al₄Ce phase with a higher thermal stability. The Al-Ce phase could hinder the grain-boundary sliding and migration and reduced the degree of plastic deformation of subsurface metal. Scanning electron microscopy observation showed that the surfacing AZ91 alloy with 1.5% Ce had a total of four types of wear mechanism: abrasion, oxidation, and severe plastic deformation were the primary mechanisms; delamination was the secondary mechanism.

  2. The influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes in seawater

    Science.gov (United States)

    Bai, Qiang; Zou, Yan; Kong, Xiangfeng; Gao, Yang; Dong, Sheng; Zhang, Wei

    2017-02-01

    The high strength low-alloy steels are welded by underwater wet welding with stainless steel electrodes. The micro-structural and electrochemical corrosion study of base metal (BM), weld zone (WZ) and heat affected zone (HAZ) are carried out to understand the influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes, methods used including, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The results indicate that the WZ acts as a cathode and there is no corrosion product on it throughout the immersion period in seawater. The HAZ and BM acts as anodes. The corrosion rates of the HAZ and BM change with the immersion time increasing. In the initial immersion period, the HAZ has the highest corrosion rate because it has a coarse tempered martensite structure and the BM exhibites a microstructure with very fine grains of ferrite and pearlite. After a period of immersion, the BM has the highest corrosion rate. The reason is that the corrosion product layer on the HAZ is dense and has a better protective property while that on the BM is loose and can not inhibit the diffusion of oxygen.

  3. Contribution of precipitate on migrated grain boundaries to ductility-dip cracking in Alloy 625 weld joints

    Science.gov (United States)

    Lee, Dong Jin; Kim, Youn Soo; Shin, Yong Taek; Jeon, Eon Chan; Lee, Sang Hwa; Lee, Hyo-Jong; Lee, Sung Keun; Lee, Jun Hee; Lee, Hae Woo

    2010-10-01

    We investigated the crack properties in Alloy 625 weld metals and their characteristics using experimentally designed filler wires fabricated by varying the niobium and manganese contents in the flux with the shield metal arc welding (SMAW) process. The fast diffusivity of niobium on the migrated grain boundary (MGB) under strong restraint tensile stress, which was induced by the hardened matrix in weld metal containing high niobium and manganese, accelerated the growth of niobium carbide (NbC) in multipass deposits. Coalescence of microvoids along with incoherent NbC and further propagation induced ductility-dip cracking (DDC) on MGB.

  4. [Submicron particles in smoke resulting from welding alloys and cast alloy in metalworking industry].

    Science.gov (United States)

    Avino, P; Manigrasso, M; Fanizza, Carla; Carrai, P; Solfanelli, Linda

    2013-01-01

    The toxicity of welding fumes depends on both chemical composition and ability to penetrate and deposit deeply in the lungs. Their penetration and deposition in the regions of the respiratory system is mainly determined by their size. The knowledge of the size distribution of welding fumes is a crucial information towards the estimate of the doses of toxic compounds delivered into the respiratory tract. Particle number size distribution was continuously measured during different welding operations by means of a Fast Mobility Particle Sizer, which counts and classifies particles, according to their electrical mobility, in 32 size-channels, in the range from 5.6 to 523 nm, with is time resolution. The temporal evolution of submicrometric particles (6-523 nm), nucleation mode particles (6-16 nm) and the fraction 19-523 nm before, during and after the welding operations performed with/without local exhaust ventilation are reported and extensively discussed. Before welding, nucleation mode particles represent about 7% of submicrometric particles; after about 40 s from the welding start, the percent contribution of nucleation mode particles increases to 60%. Total and nucleation mode particle concentrations increase from 2.1 x 10(4) to 2.0 x 10(6) and from 1.6 x 10(3) to 1.0 x 10(6), respectively. The temporal variation of the particle number size distribution across the peaks, evidences the strong and fast-evolving contribution of nucleation mode particles: peak values are maintained for less than 10 s. The implication of such contribution on human health is linked to high deposition efficiency of the submicrometric particles in the alveolar interstitial region of the human respiratory system, where gas exchange occurs.

  5. Influence of welding parameter on texture distribution and plastic deformation behavior of as-rolled AZ31 Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Renlong, E-mail: rlxin@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing (China); State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing (China); Liu, Dejia; Shu, Xiaogang; Li, Bo; Yang, Xiaofang; Liu, Qing [College of Materials Science and Engineering, Chongqing University, Chongqing (China)

    2016-06-15

    Friction stir welding (FSW) has promising application potential for Mg alloys. However, softening was frequently occurred in FSW Mg joints because of the presence of a β-type fiber texture. The present study aims to understand the influence of texture distribution in stir zone (SZ) on deformation behavior and joint strength of FSW Mg welds. AZ31 Mg alloy joints were obtained by FSW with two sets of welding speed and rotation rate. Detailed microstructure and texture evolutions were examined on Mg welds by electron backscatter diffraction (EBSD) techniques. It was found that the changes of welding parameters can affect texture distribution and the characteristic of texture in the transition region between SZ and thermal-mechanical affected zone (TMAZ). As a consequence, the activation ability of basal slip and extension twinning was changed, which therefore influenced joint strength, inhomogeneous plastic deformation and fracture behaviors. The present work provided some insights into understanding the texture–property relationship in FSW Mg welds and indicated that it is effective to tailor the joint performance by texture control. - Highlights: • Welding parameters largely affect the inclination angle of SZ/TMAZ boundary. • Fracture morphology is associated with the characteristic of SZ/TMAZ boundary. • The characteristic of plastic deformation is explained from the activation of basal slip.

  6. Influence of electron beam welding parameters and metallurgical factors on intergranular liquation cracking susceptibility of cast alloy 718

    Science.gov (United States)

    Woo, Insu; Kang, Chungyun; Nishimoto, Kazutoshi

    2001-07-01

    The factors affecting intergranular liquation cracking susceptibility in electron beam welds were investigated for cast alloy 718. The materials used were as-received plates and heat-treated plates with three different levels of grain size. Liquation cracking susceptibility in HAZ was evaluated by a bead-on-plate test and a restraint/relaxation U-type hot cracking test. The penetrated shapes in the welds were classified into wine cup-like Type W and nail head-like Type N. For a given beam current, Type w and Type N were observed at the lower and higher welding speeds, respectively. Welding defects, i.e., underfills and microcracks were seen in the electron beam welds. Compared with Type W, the liquation cracking was more sensitive for the Type N bead cross sectional shape. Furthermore, it easily occurred at grain boundaries in Region II, i.e., very near the nail head necked part. According to the restraint/relaxation U-type hot cracking test, the liquation cracking susceptibility decreased with decreasing grain size or with homogenization heat treatment. These results suggested that the liquation cracking susceptibility in cast alloy 718 electron beam welds could be improved by using the Type W bead cross sectional shape, a decreasing the grain size and using appropriate heat treatment before welding.

  7. Microstructural characterization and mechanical properties of dissimilar friction welding of 1060 aluminum to AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zhida; Qin, Guoliang, E-mail: glqin@sdu.edu.cn; Wang, Liyuan; Meng, Xiangmeng; Li, Fei

    2015-10-01

    Dissimilar welding of aluminum bars and magnesium bars was produced by the friction welding technique. The interfacial microstructure characteristics was evaluated after friction welding of Al–Mg alloy using optical microscopy, scanning electron microscopy, as well as X-ray diffraction analysis. Friction and forge pressure were selected as variable parameters. The friction time was maintained at 10 s for a rotational speed of 2800 rpm. The chemical compositions of the interfaces of the welded joints were determined by using energy dispersive spectroscopy. Experimental results showed that intermetallic compounds (IMCs), consisting of phase β-Al{sub 3}Mg{sub 2} and γ-Al{sub 12}Mg{sub 17}, were generated in the interfaces of the Al and Mg alloys. When the friction and forge pressure increased the thickness of IMCs layer at the interfaces decreased as a result of more mass discarded from the welding interfaces. Heavy thickness of IMCs layer seriously deteriorated the mechanical properties of the joints. Microcracks were generated along the welded interfaces of all the welded samples. Formation of microcracks could be controlled effectively under the higher friction and forge pressure. Mechanical evaluations were conducted by determining microhardness and the tensile tests. It was observed that the tensile strength of the joints depended on the friction and forge pressure and the maximum tensile strength was 138 MPa.

  8. Influence of tool speeds on dissimilar friction stir spot welding characteristics of bulk metallic glass/Mg alloy

    Science.gov (United States)

    Shin, Hyung-Seop; Jung, Yoon-Chul; Lee, Jin-Kyu

    2012-08-01

    A small-scale joining technique of dissimilar friction stir spot welding (FSSW) between bulk metallic glass and Mg alloy sheet has been tried using an apparatus which was devised with a CNC milling machine to give a precise control of tool speeds. The influence of tool speeds on the joining characteristics during FSSW was investigated. As a result, it was found that the rotation speed and plunge speed of a tool during FSSW significantly influenced the welding performance of dissimilar FSSW between bulk metallic glasses and Mg alloy.

  9. Microstructure and mechanical properties of an electron beam welds in a spray-deposited Al-Zn-Mg-Cu alloy

    Science.gov (United States)

    Feng, Wang; Baiqing, Xiong; yongan, Zhang; Yuting, Zuo; Hongwei, Liu; ZHihui, Li; Xiwu, Li

    In this study, an electron beam welds produced in a spray-deposited Al-8.6Zn-2.6Mg-2.2Cu (wt,%) alloy were characterized by optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and tensile tests. It is found that the joint of the alloy contained three distinctive regions, i.e. fusion zone, heat affected zone and base metal region. Tensile properties of the joints were obtained by testing flat transverse tensile specimens, and the results indicated that tensile strength of these welds approached 82.3 85.3% of the base metal.

  10. Property Evaluation of Friction Stir Welded Dissimilar Metals : AA6101-T6 and AA1350 Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Rajendran ASHOK KUMAR

    2017-02-01

    Full Text Available Next to copper, aluminium alloys are widely used in electrical industries, because of their high electrical conductivity. AA6101-T6 and AA1350 aluminium alloys are widely used in electrical bus bars. As these alloys are joined by mechanical fasteners in electrical bus bars, the conductive area has been reduced. To avoid this problem, they should be joined without removal of metal as well as their properties. Friction stir welding technique is mainly invented for joining similar and dissimilar aluminium alloys. In this investigation, friction stir welding of AA6101-T6 and AA1350 aluminium alloys was done by varying tool traversing speed, rotational speed and tilt angle with hexagonal pin profiled tool. The analysis of variance was employed to study the effect of above parameters on mechanical properties of welded joints. From the experimental results, it is observed that welded joint with the combination of 1070 rpm rotating speed, 78 mm/min traversing speed and 2° tilt angle provides better mechanical properties. Analysis of variance shows that most significant impact on tensile strength is made by variation in tool rotating speed while tool tilt angle makes the most significant impact on elongation and bending strength.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14132

  11. Resistance-Spot-Welded AZ31 Magnesium Alloys: Part I. Dependence of Fusion Zone Microstructures on Second-Phase Particles

    Science.gov (United States)

    Xiao, L.; Liu, L.; Zhou, Y.; Esmaeili, S.

    2010-03-01

    A comparison of microstructural features in resistance spot welds of two AZ31 magnesium (Mg) alloys, AZ31-SA (from supplier A) and AZ31-SB (from supplier B), with the same sheet thickness and welding conditions, was performed via optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). These alloys have similar chemical composition but different sizes of second-phase particles due to manufacturing process differences. Both columnar and equiaxed dendritic structures were observed in the weld fusion zones of these AZ31 SA and SB alloys. However, columnar dendritic grains were well developed and the width of the columnar dendritic zone (CDZ) was much larger in the SB alloy. In contrast, columnar grains were restricted within narrow strip regions, and equiaxed grains were promoted in the SA alloy. Microstructural examination showed that the as-received Mg alloys contained two sizes of Al8Mn5 second-phase particles. Submicron Al8Mn5 particles of 0.09 to 0.4 μm in length occured in both SA and SB alloys; however, larger Al8Mn5 particles of 4 to 10 μm in length were observed only in the SA alloy. The welding process did not have a great effect on the populations of Al8Mn5 particles in these AZ31 welds. The earlier columnar-equiaxed transition (CET) is believed to be related to the pre-existence of the coarse Al8Mn5 intermetallic phases in the SA alloy as an inoculant of α-Mg heterogeneous nucleation. This was revealed by the presence of Al8Mn5 particles at the origin of some equiaxed dendrites. Finally, the columnar grains of the SB alloy, which did not contain coarse second-phase particles, were efficiently restrained and equiaxed grains were found to be promoted by adding 10 μm-long Mn particles into the fusion zone during resistance spot welding (RSW).

  12. Laser-induced fluorescence applied to laser welding of austenitic stainless steel for dilute alloying element detection

    Science.gov (United States)

    Simonds, Brian J.; Sowards, Jeffrey W.; Williams, Paul A.

    2017-08-01

    Optical spectral analysis of the laser weld plume is a common technique for non-contact, in situ weld plume analysis. However, the low sensitivity of optical emission spectroscopy limits the available information during 1070 nm wavelength laser welding, which is becoming the standard in many industrial operations. Here we demonstrate an improved sensitivity of optical spectroscopy by applying laser-induced fluorescence (LIF) for probing the hot gas plume induced during fiber laser welding of 304L austenitic stainless steel. As a proof-of-principle, we show that LIF is capable of resolving a spectral signal from silicon being emitted during welding. Optical detection of such a low concentration alloying element has not previously been reported and shows the capability of LIF for increased sensitivity. Silicon atoms in the weld plume were excited in the ultraviolet at 221.09 nm and detected at 221.64 nm. We demonstrate the detection of silicon LIF down to laser welding powers of 600 W (210 kW cm-2) making this technique applicable even in low-power laser welding or additive manufacturing scenarios.

  13. The effect of laser surface melting on microstructure and corrosion behavior of friction stir welded aluminum alloy 2219

    Science.gov (United States)

    Ma, Shengchong; Zhao, Yong; Zou, Jiasheng; Yan, Keng; Liu, Chuan

    2017-11-01

    This study aimed to explore the electrochemical properties and microstructure of friction stir welds to understand the correlation between their properties and processing. Friction stir welding is a promising solid-state joining process for high-strength aluminum alloys (AA). Although friction stir welding (FSW) eliminates the problems of fusion welding due to the fact that it is performed below Tm, it causes severe plastic deformation in the material. Some AA welded by FSW exhibit relatively poor corrosion resistance. In this research, the corrosion resistance of such welds was enhanced through laser surface melting. A friction stir weld of AA 2219 was laser melted. The melt depth and microstructure were observed using optical and scanning electron microscopy. The melt zone exhibited epitaxially grown columnar grains. The redistribution of elemental composition was analyzed using energy-dispersive spectroscopy. The anticorrosion properties of both laser-melted and original welds were studied in aqueous 3.5% NaCl solution using cyclic potentiodynamic polarization. The results indicated a noticeable increase in the pitting corrosion resistance after the laser treatment on the surface. The repassivation potential was nobler than the corrosion potential after the laser treatment, confirming that the resistance to pitting growth improved.

  14. Hardfacing materials used in valves for seating and wear surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, W.G.

    1996-12-01

    Most valves and essentially all critical service valves utilize hardfacing materials for seating and wear surfaces to minimize wear and galling. The type of hardfacing materials used, the methods of deposition, and the quality of the final product all contribute to the wear characteristics, required operating force, and life of the final product. Over the last forty years the most prevalent hardfacing materials furnished to the commercial nuclear industry consisted of cobalt base and nickel base materials. In the last several years there has been extensive development and evaluation work performed on iron base hardfacing materials. This presentation will address the wear characteristics of the various materials and the importance of consistent quality of deposited materials necessary to achieve optimum product performance and longevity.

  15. The effect of postprocessing on tensile property and microstructure evolution of friction stir welding aluminum alloy joint

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Z.L., E-mail: zhilihuhit@163.com [Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (China); Wang, X.S. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Pang, Q. [School of Mechanical and Electrical Engineering, Wuhan Donghu University, Wuhan 430070 (China); Huang, F.; Qin, X.P.; Hua, L. [Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China)

    2015-01-15

    Friction stir welding is an efficient manufacturing method for joining aluminum alloy and can dramatically reduce grain size conferring excellent plastic deformation properties. Consequently, friction stir welding is used to manufacture tailor welded blanks to optimize weight or performance in the final component. In the study, the microstructural evolution and mechanical properties of friction stir welding joint during plastic forming and subsequent heat treatment were investigated. The microstructural characteristics of the friction stir welding joints were studied by Electron Backscattered Diffraction and Transmission Electron Microscopy. The mechanical properties were evaluated by tensile and microhardness tests. It is found that the tensile and yield strengths of friction stir welding joints are significantly improved after severe plastic deformation due to the grain refinement. Following heat treatment, the strength of the friction stir welding joints significantly decrease due to the obvious abnormal grain growth. Careful attention must be given to the processing route of any friction stir welding joint intended for plastic forming, especially the annealing between forming passes. Severe plastic deforming of the friction stir welding joint leads to a high level of stored energy/dislocation density, which causes the abnormal grain growth during subsequent heat treatment, and consequently reduce the mechanical properties of the friction stir welding joint. - Highlights: • Great changes are observed in the microstructure of FSW joint after postprocessing. • Postprocessing shows great effect on the microstructure stability of FSW joint. • The weld shows more significant decrease in strength than the BM due to the AGG. • Attention must be given to the processing route of FSW joint for plastic forming.

  16. Joining of AZ31 and AZ91 Mg alloys by friction stir welding

    Directory of Open Access Journals (Sweden)

    B. Ratna Sunil

    2015-12-01

    Full Text Available Two dissimilar magnesium (Mg alloy sheets, one with low aluminium (AZ31 and another with high aluminium (AZ91 content, were successfully joined by friction stir welding (FSW. The effect of process parameters on the formation of hot cracks was investigated. A sound metallurgical joint was obtained at optimized process parameters (1400 rpm with 25 mm/min feed which contained fine grains and distributed β (Mg17Al12 phase within the nugget zone. An increasing trend in the hardness measurements has also confirmed more amount of dissolution of aluminium within the nugget zone. A sharp interface between nugget zone and thermo mechanical affected zone (TMAZ was clearly noticed at the AZ31 Mg alloy side (advancing but not on the AZ91 Mg alloy side (retreating. From the results it can be concluded that FSW can be effectively used to join dissimilar metals, particularly difficult to process metals such as Mg alloys, and hot cracking can be completely eliminated by choosing appropriate process parameters to achieve sound joint.

  17. Influence of tube spinning on formability of friction stir welded aluminum alloy tubes for hydroforming application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.S. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hu, Z.L., E-mail: zhilihuhit@163.com [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China); State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology (China); Yuan, S.J. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hua, L. [Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China)

    2014-06-01

    Due to economic and ecological reasons, the application of tailor-welded blanks of aluminum alloy has gained more and more attention in manufacturing lightweight structures for automotives and aircrafts. In the study, the research was aimed to highlight the influence of spinning on the formability of FSW tubes. The microstructural characteristics of the FSW tubes during spinning were studied by electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). The formability of the FSW tubes with different spinning reduction was assessed by hydraulic bulge test. It is found that the spinning process shows a grain refinement of the tube. The grains of the FSW tube decrease with increasing thickness reduction, and the effect of grain refinement is more obvious for the BM compared to that of the weld. The difference of grain size and precipitates between the weld and BM leads to an asymmetric W-type microhardness distribution after spinning. The higher thickness reduction of the tube, the more uniform distribution of grains and precipitates it shows, and consequently results in more significant increase of strength. As compared with the result of tensile test, the tube after spinning shows better formability when the stress state changes from uniaxial to biaxial stress state.

  18. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding.

    Science.gov (United States)

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-10-23

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately t H = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  19. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  20. The Effect of Solution Annealing on the Microstructural Behavior of Alloy 22 Welds

    Energy Technology Data Exchange (ETDEWEB)

    El-Dasher, B S; Edgecumbe, T S; Torres, S G

    2005-05-06

    Multi-pass gas tungsten arc welds of Alloy 22 were subjected to solution annealing durations of 20 minutes, 24 hours, 72 hours and 1 week at temperatures of 1075, 1121, 1200, and 1300 C. The specimens were studied in cross section by secondary electron microscopy to determine the effect of solution annealing on tetrahedrally close packed (TCP) precipitate stability. Electron backscatter diffraction mapping was also performed on all of the specimens to determine the recrystallization behavior of the welds. It was found that complete TCP precipitate dissolution occurs after solution annealing at 1075 C and 1121 C for 24 hours, and at 1200 C and 1300 C for durations of 20 minutes. Regions of most rapid recrystallization were correlated to the regions of lowest solute content and highest residual tensile stresses. Texture analysis indicated that while the columnar dendrites originally present in the weld grew with a <001> orientation in the transverse direction (opposite the heat flow direction), the recrystallized grains adopt a <101> orientation in the transverse direction when recrystallization and TCP phase dissolution occur simultaneously.

  1. Softening Behavior of a New Al-Zn-Mg-Cu Alloy Due to TIG Welding

    Science.gov (United States)

    Zhang, Liang; Li, Xiaoyan; Nie, Zuoren; Huang, Hui; Sun, Jiantong

    2016-05-01

    A new Al-Zn-Mg-Cu alloy with T6 temper was welded by TIG welding, and the softening behavior of the joint was evaluated. Results show that the ultimate tensile strength of the joint is 436.2 ± 26.4 MPa which is about 64.5% of that of the base metal (BM). Fusion zone (FZ) is the weakest region even though its microhardness increases from 107.6 to 131.3 HV within 90 days after welding. Microhardness of the heat-affected zone (HAZ) adjacent to FZ increases from 125.2 to 162.3 HV within 90 days. However, a valley value of microhardness appears in the rest of the HAZ that increases from 112.1 to 128.1 HV within 90 days. The variation of grain size and precipitates is regarded as the main cause of softening in both FZ and HAZ. The grain size of FZ is about 33.9 μm, whereas 8.7 and 8.4 μm for HAZ and BM, respectively. A large number of η' phases distribute dispersively in BM, whereas precipitates in FZ identified as GPI zones are finer and fewer. Besides, precipitates in HAZ adjacent to FZ are also GPI zones. Precipitates in HAZ far away from FZ are coarser and fewer than those in BM and η phases begin to emerge.

  2. Influence of Laser Welding Speed on the Morphology and Phases Occurring in Spray-Compacted Hypereutectic Al-Si-Alloys

    Directory of Open Access Journals (Sweden)

    Thomas Gietzelt

    2016-11-01

    Full Text Available Normally, the weldability of aluminum alloys is ruled by the temperature range of solidification of an alloy according to its composition by the formation of hot cracks due to thermal shrinkage. However, for materials at nonequilibrium conditions, advantage can be taken by multiple phase formation, leading to an annihilation of temperature stress at the microscopic scale, preventing hot cracks even for alloys with extreme melting range. In this paper, several spray-compacted hypereutectic aluminum alloys were laser welded. Besides different silicon contents, additional alloying elements like copper, iron and nickel were present in some alloys, affecting the microstructure. The microstructure was investigated at the delivery state of spray-compacted material as well as for a wide range of welding speeds ranging from 0.5 to 10 m/min, respectively. The impact of speed on phase composition and morphology was studied at different disequilibrium solidification conditions. At high welding velocity, a close-meshed network of eutectic Al-Si-composition was observed, whereas the matrix is filled with nearly pure aluminum, helping to diminish the thermal stress during accelerated solidification. Primary solidified silicon was found, however, containing considerable amounts of aluminum, which was not expected from phase diagrams obtained at the thermodynamic equilibrium.

  3. Characteristics of plasma plume in fiber laser welding of aluminum alloy

    Science.gov (United States)

    Gao, Ming; Chen, Cong; Hu, Ming; Guo, Lianbo; Wang, Zemin; Zeng, Xiaoyan

    2015-01-01

    To understand the laser-matter interaction in fiber laser welding of aluminum alloys, the effects of laser power on the characteristics of fiber laser induced plasma plume were studied by emission spectroscopic analysis firstly. The plasma characteristic parameters including electron temperature, electron density, ionization degree, and inverse bremsstrahlung linear absorption coefficient were computed according to the spectral data. It was found that the laser power of 5 kW is a turning point. After the laser power reaches 5 kW, the plume changes from a metal vapor dominated weakly ionized plasma to a strongly ionized plasma. The corresponding phenomena are the dramatic increase of the value of characteristic parameters and the appearance of strong plasma shielding effect. The calculation of effective laser power density demonstrated that the plasma shielding effect is dominated by inverse bremsstrahlung absorption. The finding suggested the plasma shielding effect must be considered in fiber laser welding of aluminum alloys, rather than is ignored as claimed in previous view.

  4. Characterization of Friction Welded Titanium Alloy and Stainless Steel with a Novel Interlayer Geometry

    Science.gov (United States)

    Kumar, R.; Balasubramanian, M.

    The main purpose of the current research work is to identify and investigate a novel method of holding an intermediate metal and to evaluate its metallurgical and mechanical properties. Copper was used as an interlayer material for the welding of this dissimilar Ti-6Al-4V (Ti alloy) and 304L stainless steel (SS). The study shows that the input parameters and surface geometry played a very significant role in producing a good quality joints with minimum heat affected zone and metal loss. A sound weld was achieved between Ti-6Al-4V and SS304L, on the basis of the earlier experiments conducted by the authors in their laboratory, by using copper rod as intermediate metal. Box-Behnken method was used for performing a minimum number of experiments for the study. In the present study, Ti-6Al-4V alloy and SS304L were joined by a novel method of holding the interlayer and new surface geometry for the interlayer. Initially, the drop test was used for determining the quality of the fabricated joint and, subsequently, non-destructive techniques like radiography and C-scan were used. Further optical micrograph, SEM-EDS, hardness and tensile test were done for understanding the performance of the joint.

  5. Evaluation of Mechanical Properties of Alloy 82/182 Weld Joint Between SA508 Gr.3 Nozzle and F316L Safe-End

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Weon [Chosun University, Gwangju (Korea, Republic of); Lee, Kyung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2010-03-15

    This paper presents the distributions of the tensile and fracture properties of an alloy 82/182 dissimilar weld joint between an SA508 Gr.3 nozzle and F316L SS safe-end at ambient temperature. Tensile and J-R tests were conducted using specimens extracted from base metals, heat-affected zones (HAZs), buttering regions, and various regions of the weld metal. The results show that the root region of the weld has higher strength than the upper region. The yield and tensile strengths vary considerably within the root region of the weld. The buttering region had the lowest strengths. The strengths gradually increased as the F316L stainless steel weld boundary was approached. The variation of the strengths within the upper region of the weld is insignificant. The fracture toughness of the alloy 82/182 weld metal is less than those of both the base metals and both HAZs. Within the alloy 82/182 weld, the center of weld has a slightly lower fracture toughness than the weld boundary and buttering region, and the root region has greater toughness than the upper region of the weld.

  6. Distribution of mechanical properties in Alloy 82/182 dissimilar weld joint between SA508 Gr.3 nozzle and F316L safe-end

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Weon [Chosun Univ., Gwangju (Korea, Republic of)

    2009-07-01

    This paper presents the distribution of tensile properties and fracture toughness in Alloy 82/182 dissimilar weld joint between SA508 Gr.3 nozzle and F316L SS safe-end at ambient temperature. Tensile and J-R tests were conducted using the specimens extracted form both base metals, Heat Affected Zones (HAZs), buttering, and various regions of weld metal. It showed that root region of weld exhibits higher strengths than upper region. The yield and tensile strengths considerably varied within root region of weld, the lowest strengths appeared at buttering region and gradually increased with approaching boundary with F316L stainless steel, whereas the variation of strengths within the weld was insignificant at upper region of weld. It was also indicated that fracture toughness of Alloy 82/182 weld metal was lower than that of both base metals and both HAZs. Within the Alloy 82/182 weld, the center of weld showed slightly lower fracture toughness than weld boundary and buttering, and the root region showed higher toughness than upper region of weld.

  7. Heterogeneities in local plastic flow behavior in a dissimilar weld between low-alloy steel and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mas, Fanny [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Martin, Guilhem, E-mail: guilhem.martin@simap.grenoble-inp.fr [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Lhuissier, Pierre; Bréchet, Yves; Tassin, Catherine [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Roch, François [Areva NP, Tour Areva, 92084 Paris La Défense (France); Todeschini, Patrick [EDF R& D, Avenue des Renardières, 77250 Moret-sur-Loing (France); Simar, Aude [Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)

    2016-06-14

    In dissimilar welds between low-alloy steel and stainless steel, the post-weld heat-treatment results in a high variety of microstructures coexisting around the fusion line, due to carbon diffusion and carbides dissolution/precipitation. The local constitutive laws in the vicinity of the fusion zone were identified by micro tensile specimens for the sub-millimeter sized zones, equivalent bulk materials representing the decarburized layer using both wet H{sub 2} atmosphere and diffusion couple, and nano-indentation for the carburized regions (i.e. the martensitic band and the austenitic region). The decarburized zone presents only 50% of the yield strength of the low-alloy steel heat affected zone and a ductility doubled. The carburized zones have a yield strength 3–5 times higher than that of the low-alloy steel heat affected zone and have almost no strain hardening capacity. These properties result in heterogeneous plastic deformation happening over only millimeters when the weld is loaded perpendicularly to the weld line, affecting its overall behavior. The constitutive laws experimentally identified were introduced as inputs into a finite elements model of the transverse tensile test performed on the whole dissimilar weld. A good agreement between experiments and simulations was achieved on the global stress-strain curve. The model also well predicts the local strain field measured by microscale DIC. A large out-of-plane deformation due to the hard carburized regions has also been identified.

  8. Microstructure and Mechanical Properties of Inconel 625 Alloy on Low Carbon Steel by Heat Treatment after Overlay Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungpil; Jang, Jaeho; Kim, Jungsoo; Kim, Byung Jun; Sohn, Keun Yong; Nam, Dae-Geun [Korea Institute of Industrial Technology, Busan (Korea, Republic of)

    2016-08-15

    Overlay welding technique is one of methods used to improve metal mechanical properties such as strength, toughness and corrosion resistance. Generally, Inconel 625 alloy is used for overlay welding layer on low carbon steels for economic consideration. However, the method produces some problems in the microstructure of the cast structure and some defects, caused by the elevated temperatures of the overlay process. To resolve these problems, heat treatments are required. In this study, Inconel 625 alloy was welded on a low carbon steel by the overlay welding process to investigate the resulting microstructure and mechanical properties. A double heat treatment was performed to improve the mechanical properties of the welding and substrate layers. It was found that Inconel 625 alloy had an austenite microstructure after the first heat treatment, but the low carbon steel had a ferrite-pearlite microstructure after the second heat treatment. After the double heat treatment, the sample showed the optimum hardness because of grain refinement and homogenization of the microstructure.

  9. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho [KAERI, Daejeon (Korea, Republic of); Lee, Ki-Hyoung [KAIST, Daejeon (Korea, Republic of); Lee, Chang-Hee [Hanyang Univ., Seoul (Korea, Republic of)

    2011-08-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  10. Laser beam welding of NiTi-shape memory alloys; Laserstrahl-Schweissen von NiTi-Formgedaechtnislegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Haas, T.

    1996-04-01

    Using a Nd:YAG laser, the weldability of binary nickel-titanium shape memory alloys containing 50.0 and 48.5 at.-% Ti respectively was investigated. By tensile tests within a temperature range of -80 C to +200 C the mechanical properties of the laser welded joints were examined. Changes in the transformation behaviour were detected by calorimetric measurements (DSC method). The stress-strain behaviour was attributed to the microstructure of the welds, revealed by optical microscopy and transmission electron microscopy (TEM). Using a scanning electron microscope (SEM), the mechanisms of failure were examined. Joints of the martensitic Ti-rich alloy were brittle, showing an ultimate tensile strength of 600 MPa, corresponding to half of the value of the base material. The reduction in strength was explained by the formation of Ti{sub 2}Ni precipitations along grain boundaries in the weld. Since the welds still exhibited twin deformation, pseudoplastic strains of 7% were achieved. Ultimate strength data showed a very low scatter. Therefore it was possible to use the shape memory effect up to a strain of 6% without failure. After a total elongation to 6% strain, the laser welded joints showed a free recovery with an amnesia of 0.3%. The shape memory effect was shown to be retained in the laser welded joints. 154 refs.

  11. Local zone-wise elastic-plastic constitutive parameters of Laser-welded aluminium alloy 6061 using digital image correlation

    Science.gov (United States)

    Bai, Ruixiang; Wei, Yuepeng; Lei, Zhenkun; Jiang, Hao; Tao, Wang; Yan, Cheng; Li, Xiaolei

    2018-02-01

    The mechanical properties of aluminium alloys can be affected by the local high temperature in laser welding. In this paper, an inversion identification method of local zone-wise elastic-plastic constitutive parameters for laser welding of aluminium alloy 6061 was proposed based on full-field optical measurement data using digital image correlation (DIC). Three regions, i.e., the fusion zone, heat-affected zone, and base zone, of the laser-welded joint were distinguished by means of microstructure optical observation and micrometer hardness measurement. The stress data were obtained using a laser-welded specimen via a uniaxial tensile test. Meanwhile, the local strain data of the laser-welded specimen were obtained by the DIC technique. Thus, the stress-strain relationship for different local regions was established. Finally, the constitutive parameters of the Ramberg-Osgood model were identified by least-square fitting to the experimental stress-strain data. Experimental results revealed that the mechanical properties of the local zones of the welded joints clearly weakened, and these results are consistent with the results of the hardness measurement.

  12. Submerged Friction-Stir Welding (SFSW) Underwater and Under Liquid Nitrogen: An Improved Method to Join Al Alloys to Mg Alloys

    Science.gov (United States)

    Mofid, Mohammad Ammar; Abdollah-Zadeh, Amir; Ghaini, Farshid Malek; Gür, Cemil Hakan

    2012-12-01

    Submerged friction-stir welding (SFSW) underwater and under liquid nitrogen is demonstrated as an alternative and improved method for creating fine-grained welds in dissimilar metals. Plates of AZ31 (Mg alloy) and AA5083 H34 were joined by friction-stir welding in three different environments, i.e., in air, water, and liquid nitrogen at 400 rpm and 50 mm/min. The temperature profile, microstructure, scanning electron microscopy (SEM)-energy-dispersive spectroscopy (EDS) analysis, X-ray diffraction (XRD), hardness, and tensile testing results were evaluated. In the stir zone of an air-welded specimen, formation of brittle intermetallic compounds of Al3Mg2, Al12Mg17, and Al2Mg3 contributed to cracking in the weld nugget. These phases were formed because of constitutional liquation. Friction-stir welding underwater and under liquid nitrogen significantly suppresses the formation of intermetallic compounds because of the lower peak temperature. Furthermore, the temperature profiles plotted during this investigation indicate that the largest amount of ∆ T is generated by the weld under liquid nitrogen, which is performed at the lowest temperature. It is shown that in low-temperature FSW, the flow stress is higher, plastic contribution increases, and so adiabatic heating, a result of high strain and high strain-rate deformation, drives the recrystallization process beside frictional heat.

  13. Evolution of microstructures and mechanical properties during dissimilar electron beam welding of titanium alloy to stainless steel via copper interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Tomashchuk, I., E-mail: iryna.tomashchuk@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 12 rue de la Fonderie, F-71200 Le Creusot (France); Sallamand, P. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 12 rue de la Fonderie, F-71200 Le Creusot (France); Belyavina, N. [Department of Physics, Taras Shevchenko University, 2, Glushkov Avenue, 03022 Kiev (Ukraine); Pilloz, M. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 12 rue de la Fonderie, F-71200 Le Creusot (France)

    2013-11-15

    The influence of operational parameters on the local phase composition and mechanical stability of the electron beam welds between titanium alloy and AISI 316L austenitic stainless steel with a copper foil as an intermediate layer has been studied. It was shown that two types of weld morphologies could be obtained depending on beam offset from the center line. Beam shift toward the titanium alloy side results in formation of a large amount of the brittle TiFe{sub 2} phase, which is located at the steel/melted zone interface and leads to reducing the mechanical resistance of the weld. Beam shift toward the steel side inhibits the melting of titanium alloy and, so, the formation of brittle intermetallics at the titanium alloy/melted zone interface. Mechanical stability of the obtained junctions was shown to depend on the thickness of this intermetallic layer. The fracture zone of the weld was found to be a mixture of TiCu (3–42 wt%), TiCu{sub 1−x}Fe{sub x} (x=0.72–0.84) (22–68 wt%) and TiCu{sub 1−x}Fe{sub x} (x=0.09–0.034) (0–22 wt%). In order to achieve the maximal ultimate tensile strength (350 MPa), the diffusion path length of Ti in the melted zone should be equal to 40–80 µm.

  14. Determination of the activation energy for SCC crack growth for Alloy 182 weld in a PWR environment

    Energy Technology Data Exchange (ETDEWEB)

    Alexandreanu, B.; Chopra, O.K.; Shack, W.J. [Argonne National Lab., Nuclear Engineering Div., Argonne, Illinois (United States)

    2007-07-01

    The objective of this work was to determine the activation energy for stress corrosion cracking growth rates in a simulated PWR water environment for Alloy 182 weld metals. For this purpose, the crack growth rates (CGRs) of two heats of Alloy 182 were measured as a function of temperature between 290{sup o}C and 350{sup o}C. The difference in electrochemical potential between the specimen and the Ni/NiO line was maintained constant at each temperature by adjusting the hydrogen overpressure on the water supply tank. The CGR data as a function of temperature yielded activation energies of 252 kJ/mol for a double-J weld and 189 kJ/mol for a deep-groove weld. The data reported here and those in the literature suggest that the average activation energy for Alloy 182 welds is on the order of 220-230 kJ/mol, higher than the 130 kJ/mol commonly used for Alloy 600. The consequences of using a larger value of activation energy for SCC CGR data analysis are discussed. (author)

  15. Microstructure and pitting corrosion resistance of AA2219 Al–Cu alloy friction stir welds – Effect of tool profile

    Directory of Open Access Journals (Sweden)

    Ch Venkata Rao

    2015-06-01

    Full Text Available AA2219 Al–Cu alloy is widely used in defence and aerospace applications due to required combination of high strength-to-weight ratio and toughness. Fabrication of components used for defence always involves welding. Even though the mechanical properties of the base metal are better, but the alloy suffers from poor mechanical and corrosion properties during fusion welding. To overcome the problems of fusion welding, friction stir welding (FSW is recognized as an alternative solid state joining method aimed to improve the mechanical and corrosion properties. Tool profile is one of the important variables which affect the performance of the friction stir weld. In the present work the effect of tool profile on the microstructure and pitting corrosion of AA2219 aluminium–copper alloy was studied. Electron backscattered diffraction results established that the grain size and orientation of weld nugget of triangle profile is finer than that of conical profile. Differential scanning calorimetric results show the evidence of precipitate dissolution during FSW. It was found that the microstructure changes, such as grain size and its orientation precipitate dissolution during FSW influence the hardness and corrosion behaviour. Pitting corrosion resistance of friction stir welds of AA2219 was found to be better for triangle profile tool compared to conical profile which is attributed to material flow and strengthening precipitate morphology in various zones. Higher amount of heat generation during FSW made using triangle profile tool may be the reason for greater dissolution of strengthening precipitates in nugget zone and coarsening in thermo mechanically affected zone (TMAZ and heat affected zone (HAZ.

  16. Analysis of Thermo-Elastic Fracture Problem during Aluminium Alloy MIG Welding Using the Extended Finite Element Method

    Directory of Open Access Journals (Sweden)

    Kuanfang He

    2017-01-01

    Full Text Available The thermo-elastic fracture problem and equations are established for aluminium alloy Metal Inert Gas (MIG welding, which include a moving heat source and a thermoelasticity equation with the initial and boundary conditions for a plate structure with a crack. The extended finite element method (XFEM is implemented to solve the thermo-elastic fracture problem of a plate structure with a crack under the effect of a moving heat source. The combination of the experimental measurement and simulation of the welding temperature field is done to verify the model and solution method. The numerical cases of the thermomechanical parameters and stress intensity factors (SIFs of the plate structure in the welding heating and cooling processes are investigated. The research results provide reference data and an approach for the analysis of the thermomechanical characteristics of the welding process.

  17. Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy

    Science.gov (United States)

    Maleki, E.

    2015-12-01

    Friction stir welding (FSW) is a relatively new solid-state joining technique that is widely adopted in manufacturing and industry fields to join different metallic alloys that are hard to weld by conventional fusion welding. Friction stir welding is a very complex process comprising several highly coupled physical phenomena. The complex geometry of some kinds of joints makes it difficult to develop an overall governing equations system for theoretical behavior analyse of the friction stir welded joints. Weld quality is predominantly affected by welding effective parameters, and the experiments are often time consuming and costly. On the other hand, employing artificial intelligence (AI) systems such as artificial neural networks (ANNs) as an efficient approach to solve the science and engineering problems is considerable. In present study modeling of FSW effective parameters by ANNs is investigated. To train the networks, experimental test results on thirty AA-7075-T6 specimens are considered, and the networks are developed based on back propagation (BP) algorithm. ANNs testing are carried out using different experimental data that they are not used during networks training. In this paper, rotational speed of tool, welding speed, axial force, shoulder diameter, pin diameter and tool hardness are regarded as inputs of the ANNs. Yield strength, tensile strength, notch-tensile strength and hardness of welding zone are gathered as outputs of neural networks. According to the obtained results, predicted values for the hardness of welding zone, yield strength, tensile strength and notch-tensile strength have the least mean relative error (MRE), respectively. Comparison of the predicted and the experimental results confirms that the networks are adjusted carefully, and the ANN can be used for modeling of FSW effective parameters.

  18. The Effects of Pulse Parameters on Weld Geometry and Microstructure of a Pulsed Laser Welding Ni-Base Alloy Thin Sheet with Filler Wire

    Directory of Open Access Journals (Sweden)

    Dongsheng Chai

    2016-10-01

    Full Text Available Due to its excellent resistance to corrosive environments and its superior mechanical properties, the Ni-based Hastelloy C-276 alloy was chosen as the material of the stator and rotor cans of a nuclear main pump. In the present work, the Hastelloy C-276 thin sheet 0.5 mm in thickness was welded with filler wire by a pulsed laser. The results indicated that the weld pool geometry and microstructure were significantly affected by the duty ratio, which was determined by the pulse duration and repetition rate under a certain heat input. The fusion zone area was mainly affected by the duty ratio, and the relationship was given by a quadratic polynomial equation. The increase in the duty ratio coarsened the grain size, but did not obviously affect microhardness. The weld geometry and base metal dilution rate was manipulated by controlling pulsed parameters without causing significant change to the performance of the weld. However, it should be noted that, with a larger duty ratio, the partial molten zone is a potential weakness of the weld.

  19. Effect of laser pulse on alternative current arc discharge during laser-arc hybrid welding of magnesium alloy

    Science.gov (United States)

    Chen, Minghua; Xin, Lijun; Zhou, Qi; He, Lijia; Wu, Fufa

    2018-01-01

    The coupling effect between a laser and arc plasma was studied in situations in which the laser acts at the positive and negative waveforms of the arc discharge during the laser-arc hybrid welding of magnesium alloy. Using the methods of direct observation, high speed imaging, and spectral analysis, the surface status of weld seams, weld penetration depths, plasma behavior, and spectral characteristics of welding plasma were investigated, respectively. Results show that, as compared with the laser pulse acting at the negative waveform of the arc plasma discharge, a better weld seam formation can be achieved when the laser pulse acts at the positive waveform of the arc discharge. At the same time, the radiation intensity of Mg atoms in the arc plasma increases significantly. However, the weld penetration depth is weaker. The findings show that when the laser pulse is acting at the negative waveform of the arc plasma discharge, the position of the arc plasma discharge on the workpiece can be restrained by the laser action point, which improves the energy density of the welding arc.

  20. Investigation on the Effect of Pulsed Energy on Strength of Fillet Lap Laser Welded AZ31B Magnesium Alloys

    Science.gov (United States)

    Salleh, M. N. M.; Ishak, M.; Aiman, M. H.; Idris, S. R. A.; Romlay, F. R. M.

    2017-09-01

    AZ31B magnesium alloy have been hugely applied in the aerospace, automotive, and electronic industries. However, welding thin sheet AZ31B was challenging due to its properties which is easily to evaporated especially using conventional fusion welding method such as metal inert gas (MIG). Laser could be applied to weld this metal since it produces lower heat input. The application of fiber laser welding has been widely since this type of laser could produce better welding product especially in the automotive sectors. Low power fiber laser was used to weld this non-ferrous metal where pulse wave (PW) mode was used. Double fillet lap joint was applied to weld as thin as 0.6 mm thick of AZ31B and the effect of pulsed energy on the strength was studied. Bond width, throat length, and penetration depth also was studied related to the pulsed energy which effecting the joint. Higher pulsed energy contributes to the higher fracture load with angle of irradiation lower than 3 °

  1. Exemplification of Tomographic Method to Evaluate the Quality of Welded Joints Made from EN 5754-H22 Alloy

    Directory of Open Access Journals (Sweden)

    Błachnio Józef

    2016-12-01

    Full Text Available The quality of welded joints depends on many factors. The relevant standards stipulate technical conditions of welds quality assessment, which provides the basis for stating whether the given joint is compatible with the requirements or whether it is defective. In practice, making welded joints that are totally devoid of defects is extremely difficult. To conduct the control of inner structure of the given joint a non-destructive method with the application of industrial CT scanner might be applied. This modern diagnosing method combines the x-ray examination with advanced computer technology. The basic advantage of computer-assisted tomography consists in examining objects in three dimensions and the possibility to carry out three-dimensional reconstructions. The aim of this article is to discuss the use of this method to evaluate the quality of welded joints made of aluminium alloys. Capabilities of computer-assisted tomography were depicted by the case of weld probes constructed with TIG (ang. Tungsten Inert Gas welding by different process variables. One has made the analysis of the quality of probes showing the smallest and the biggest internal and external welding defects.

  2. Experimental and numerical thermo-mechanical analysis of friction stir welding of high-strength alluminium alloy

    Directory of Open Access Journals (Sweden)

    Veljić Darko M.

    2014-01-01

    Full Text Available This paper presents experimental and numerical analysis of the change of temperature and force in the vertical direction during the friction stir welding of high-strength aluminium alloy 2024 T3. This procedure confirmed the correctness of the numerical model, which is subsequently used for analysis of the temperature field in the welding zone, where it is different to determine the temperature experimentally. 3D finite element model is developed using the software package Abaqus; arbitrary Lagrangian-Eulerian formulation is applied. Johnson-Cook material law and Coulomb’s Law of friction are used for modelling the material behaviour. Temperature fields are symmetrical with respect to the welding line. The temperature values below the tool shoulder, i.e. in the welding zone, which are reached during the plunge stage, are approximately constant during the entire welding process and lie within the interval 430-502°C. The temperature of the material in the vicinity of the tool is about 500°C, while the values on the top surface of the welding plates (outside the welding zone, but close to the tool shoulder are about 400°C. The temperature difference between the top and bottom surface of the plates is small, 10-15°C. [Projekat Ministarstva nauke Republike Srbije, br. TR 34018 and ON 174004

  3. Microstructure Characterization and Hardness Evaluation of Alloy 52 Welded Stainless Steel 316 Subjected to Ultrasonic Nanocyrtal Surface Modification Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. D.; Amanov, A.; Pyun, Y. S. [Sun Moon Univ., Asan (Korea, Republic of); Kim, Y. S.; Choi, Y. S. [Andong National Univ., Andong (Korea, Republic of)

    2015-10-15

    In this study, an ultrasonic nanocrystal surface modification (UNSM) technique was applied to dissimilar weld point between STS316L and Alloy 52. This UNSM technique is a patented technology, which can be described as a type of ultrasonic cold-forging technology. It has been demonstrated that the UNSM technique is a simple method to produce a nanocrystalline surface layer at the top surface of metallic materials. Microstructure and hardness of STS316L and Alloy 52 are investigated before and after UNSM treatment. It is expected according to the previous study that the UNSM technique is able to release the residual stress which delays PWSCC. In this study, microstructural characterization and hardness evaluation of STS316L and welded Alloy 52 subjected to UNSM technique were investigated.

  4. Characterization of Discontinuous Coarsening Reaction Products in INCONEL® Alloy 740H® Fusion Welds

    Science.gov (United States)

    Bechetti, Daniel H.; Dupont, John N.; Watanabe, Masashi; de Barbadillo, John J.

    2017-04-01

    Characterization of γ' coarsened zones (CZs) in alloy 740H fusion welds via a variety of electron microscopy techniques was conducted. The effects of solute partitioning during nonequilibrium solidification on the amount of strengthening precipitates along the grain boundaries were evaluated via electron-probe microanalysis and scanning electron microscopy. Electron backscatter diffraction was used to present evidence for the preferential growth of CZs toward regions of lower γ' content, even if growth in that direction increases grain boundary area. Scanning electron microscopy and image analysis were used to quantify the propensity for CZs to develop along certain segments of the grain boundaries, as governed by the local variations in γ' content. Scanning transmission electron microscopy with X-ray energy-dispersive spectrometry (XEDS) was used to assess the compositions of the matrix and precipitate phases within the CZs and to quantify the segregation of alloying components to the reaction front. Thermodynamic and kinetic modeling were used to compare calculated and experimental compositions. The work presented here provides new insight into the progression of the discontinuous coarsening (DC) reaction in a complex engineering alloy.

  5. Influence of joint line remnant on crack paths under static and fatigue loadings in friction stir welded Al-Mg-Sc alloy

    Directory of Open Access Journals (Sweden)

    Y. Besel

    2016-01-01

    Full Text Available The influence of the joint line remnant (JLR on tensile and fatigue fracture behaviour has been investigated in a friction stir welded Al-Mg-Sc alloy. JLR is one of the microstructural features formed in friction stir welds depending on welding conditions and alloy systems. It is attributed to initial oxide layer on butting surfaces to be welded. In this study, two different tool travel speeds were used. JLR was formed in both welds but its spatial distribution was different depending on the tool travel speeds. Under the tensile test, the weld with the higher heat input fractured partially along JLR, since strong microstructural inhomogeneity existed in the vicinity of JLR in this weld and JLR had weak bonding. Resultantly, the mechanical properties of this weld were deteriorated compared with the other weld. Fatigue crack initiation was not affected by the existence of JLR in all welds. But the crack propagated preferentially along JLR in the weld of the higher heat input, when it initiated on the retreating side. Consequently, such crack propagation behaviour along JLR could bring about shorter fatigue lives in larger components in which crack growth phase is dominant.

  6. Experimental investigation of Ti–6Al–4V titanium alloy and 304L stainless steel friction welded with copper interlayer

    Directory of Open Access Journals (Sweden)

    R. Kumar

    2015-03-01

    Full Text Available The basic principle of friction welding is intermetallic bonding at the stage of super plasticity attained with self-generating heat due to friction and finishing at upset pressure. Now the dissimilar metal joints are especially popular in defense, aerospace, automobile, bio-medical, refinery and nuclear engineerings. In friction welding, some special alloys with dual phase are not joined successfully due to poor bonding strength. The alloy surfaces after bonding also have metallurgical changes in the line of interfacing. The reported research work in this area is scanty. Although the sound weld zone of direct bonding between Ti–6Al–4V and SS304L was obtained though many trials, the joint was not successful. In this paper, the friction welding characteristics between Ti–6Al–4V and SS304L into which pure oxygen free copper (OFC was introduced as interlayer were investigated. Box–Behnken design was used to minimize the number of experiments to be performed. The weld joint was analyzed for its mechanical strength. The highest tensile strength between Ti–6Al–4V and SS304L between which pure copper was used as insert metal was acquired. Micro-structural analysis and elemental analysis were carried out by EDS, and the formation of intermetallic compound at the interface was identified by XRD analysis.

  7. Influence of Friction Stir Welding (FSW on Mechanical and Corrosion Properties of AW-7020M and Aw-7020 Alloys

    Directory of Open Access Journals (Sweden)

    Dudzik Krzysztof

    2016-09-01

    Full Text Available Friction welding associated with mixing the weld material (FSW - Friction Stir Welding is an alternative to MIG and TIG welding techniques for Al-alloys. This paper presents experimental results obtained from static tension tests on specimens made of AW-7020M and AW-7020 alloys and their joints welded by using FSW method carried out on flat specimens, according to Polish standards : PN-EN ISO 4136:2011 and PN-EN ISO 6892-1:2010. Results of corrosion resistance tests are also presented. The tests were performed by using the electrochemical impedance spectroscopy (EIS. EIS measurement was conducted with the use of three-electrode system in a substitute sea water environment (3,5% NaCl - water solution. The impedance tests were carried out under corrosion potential. Voltage signal amplitude was equal to 10mV, and its frequency range - 100 kHz ÷ 0,1 Hz. Atlas 0531 EU&IA potentiostat was used for the tests. For the tested object an equivalent model was selected in the form of a substitute electric circuit. Results of the impedance spectroscopy tests are presented in the form of parameters which characterize corrosion process, as well as on Nyquist’s graphs together with the best-fit theoretical curve.

  8. An Assessment of the Mechanical Properties and Microstructural Analysis of Dissimilar Material Welded Joint between Alloy 617 and 12Cr Steel

    Directory of Open Access Journals (Sweden)

    Hafiz Waqar Ahmad

    2016-10-01

    Full Text Available The most effective method to reduce CO2 gas emission from the steam power plant is to improve its performance by elevating the steam temperature to more than 700 °C. For this, it is necessary to develop applicable materials at high temperatures. Ni-based Alloy 617 and 12Cr steel are used in steam power plants, due to their remarkable mechanical properties, high corrosion resistance, and creep strength. However, since Alloy 617 and 12Cr steel have different chemical compositions and thermal and mechanical properties, it is necessary to develop dissimilar material welding technologies. Moreover, in order to guarantee the reliability of dissimilar material welded structures, the assessment of mechanical and metallurgical properties, fatigue strength, fracture mechanical analysis, and welding residual stress analysis should be conducted on dissimilar material welded joints. In this study, first, multi-pass dissimilar material welding between Alloy 617 and 12Cr steel was performed under optimum welding conditions. Next, mechanical properties were assessed, including the static tensile strength, hardness distribution, and microstructural analysis of a dissimilar material welded joint. The results indicated that the yield strength and tensile strength of the dissimilar metal welded joint were higher than those of the Alloy 617 base metal, and lower than those of the 12Cr steel base metal. The hardness distribution of the 12Cr steel side was higher than that of Alloy 617 and the dissimilar material weld metal zone. It was observed that the microstructure of Alloy 617 HAZ was irregular austenite grain, while that of 12Cr steel HAZ was collapsed martensite grain, due to repeatable heat input during multi-pass welding.

  9. Effects of Annealing Process on the Formability of Friction Stir Welded Al-Li Alloy 2195 Plates

    Science.gov (United States)

    Chen, Po-Shou; Bradford, Vann; Russell, Carolyn

    2011-01-01

    Large rocket cryogenic tank domes have typically been fabricated using Al-Cu based alloys like Al-Cu alloy 2219. The use of aluminum-lithium based alloys for rocket fuel tank domes can reduce weight because aluminum-lithium alloys have lower density and higher strength than Al-Cu alloy 2219. However, Al-Li alloys have rarely been used to fabricate rocket fuel tank domes because of the inherent low formability characteristic that make them susceptible to cracking during the forming operations. The ability to form metal by stretch forming or spin forming without excessive thinning or necking depends on the strain hardening exponent "n". The stain hardening exponent is a measure of how rapidly a metal becomes stronger and harder. A high strain hardening exponent is beneficial to a material's ability to uniformly distribute the imposed strain. Marshall Space Flight Center has developed a novel annealing process that can achieve a work hardening exponent on the order of 0.27 to 0.29, which is approximately 50% higher than what is typically obtained for Al-Li alloys using the conventional method. The strain hardening exponent of the Al-Li alloy plates or blanks heat treated using the conventional method is typically on the order of 0.17 to 0.19. The effects of this novel annealing process on the formability of friction stir welded Al-Li alloy blanks are being studied at Marshall Space Flight Center. The formability ratings will be generated using the strain hardening exponent, strain rate sensitivity and forming range. The effects of forming temperature on the formability will also be studied. The objective of this work is to study the deformation behavior of the friction stir welded Al-Li alloy 2195 blank and determine the formability enhancement by the new annealing process.

  10. Joining of Dissimilar alloy Sheets (Al 6063&AISI 304 during Resistance Spot Welding Process: A Feasibility Study for Automotive industry

    Directory of Open Access Journals (Sweden)

    Reddy Sreenivasulu

    2014-12-01

    Full Text Available Present design trends in automotive manufacture have shifted emphasis to alternative lightweight materials in order to achieve higher fuel efficiency and to bring down vehicle emission. Although some other joining techniques are more and more being used, spot welding still remains the primary joining method in automobile manufacturing so far. Spot welds for automotive applications should have a sufficiently large diameter, so that nugget pullout mode is the dominant failure mode. Interfacial mode is unacceptable due to its low load carrying and energy absorption capability. Strength tests with different static loading were performed in, to reveal the failure mechanisms for the lap-shear geometry and the cross-tension geometry. Based on the literature survey performed, venture into this work was amply motivated by the fact that a little research work has been conducted to joining of dissimilar materials like non ferrous to ferrous. Most of the research works concentrated on joining of different materials like steel to steel or aluminium alloy to aluminium alloy by resistance spot welding. In this work, an experimental study on the resistance spot weldability of aluminium alloy (Al 6063 and austenitic stainless steel (AISI304 sheets, which are lap joined by using a pedestal type resistance spot welding machine. Welding was conducted using a 45-deg truncated cone copper electrode with 10-mm face diameter. The weld nugget diameter, force estimation under lap shear test and T – peel test were investigated using digital type tensometer attached with capacitive displacement transducer (Mikrotech, Bangalore, Model: METM2000ER1. The results shows that joining of Al 6063 and AISI 304 thin sheets by RSW method are feasible for automotive structural joints where the loads are below 1000N act on them, it is observed that by increasing the spots per unit length, then the joint with standing strength to oppose failure is also increased linearly incase of

  11. Corrosion in artificial saliva of a Ni-Cr-based dental alloy joined by TIG welding and conventional brazing.

    Science.gov (United States)

    Matos, Irma C; Bastos, Ivan N; Diniz, Marília G; de Miranda, Mauro S

    2015-08-01

    Fixed prosthesis and partial dental prosthesis frameworks are usually made from welded Ni-Cr-based alloys. These structures can corrode in saliva and have to be investigated to establish their safety. The purpose of this study was to evaluate the corrosion behavior of joints joined by tungsten inert gas (TIG) welding and conventional brazing in specimens made of commercial Ni-Cr alloy in Fusayama artificial saliva at 37°C (pH 2.5 and 5.5). Eighteen Ni-Cr base metal specimens were cast and welded by brazing or tungsten inert gas methods. The specimens were divided into 3 groups (base metal, 2 welded specimens), and the composition and microstructure were qualitatively evaluated. The results of potential corrosion and corrosion current density were analyzed with a 1-way analysis of variance and the Tukey test for pairwise comparisons (α=.05). Base metal and tungsten inert gas welded material showed equivalent results in electrochemical corrosion tests, while the air-torched specimens exhibited low corrosion resistance. The performance was worst at pH 2.5. These results suggest that tungsten inert gas is a suitable welding process for use in dentistry, because the final microstructure does not reduce the corrosion resistance in artificial saliva at 37°C, even in a corrosion-testing medium that facilitates galvanic corrosion processes. Moreover, the corrosion current density of brazed Ni-Cr alloy joints was significantly higher (Pwelded joints. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Stress Corrosion Cracking Behavior of Peened Friction Stir Welded 2195 Aluminum Alloy Joints

    Science.gov (United States)

    Hatamleh, Omar; Singh, Preet M.; Garmestani, Hamid

    2009-06-01

    The surface treatment techniques of laser and shot peening were used to investigate their effect on stress corrosion cracking (SCC) in friction stir welded (FSW) 2195 aluminum alloy joints. The investigation consisted of two parts: the first part explored the peening effects on slow strain rate testing (SSRT) in a 3.5% NaCl solution, while the second part investigated the effects of peening on corrosion while submerged in a 3.5% NaCl solution with no external loads applied. For the SSRT, the laser-peened samples demonstrated superior properties to the other samples, but no signs of corrosion pitting or SCC were evident on any of the samples. For the second part of the study, the FSW plates were inspected periodically for signs of corrosion. After 60 days there were signs of corrosion pitting, but no stress corrosion cracking was noticed in any of the peened and unpeened samples.

  13. Dissimilar ultrasonic spot welding of Mg-Al and Mg-high strength low alloy steel

    Directory of Open Access Journals (Sweden)

    V.K. Patel

    2014-01-01

    Full Text Available Sound dissimilar lap joints were achieved via ultrasonic spot welding (USW, which is a solid-state joining technique. The addition of Sn interlayer during USW effectively blocked the formation of brittle al12Mg17 intermetallic compound in the Mg-Al dissimilar joints without interlayer, and led to the presence of a distinctive composite-like Sn and Mg2Sn eutectic structure in both Mg-Al and Mg-high strength low alloy (HSLA steel joints. The lap shear strength of both types of dissimilar joints with a Sn interlayer was significantly higher than that of the corresponding dissimilar joints without interlayer. Failure during the tensile lap shear tests occurred mainly in the mode of cohesive failure in the Mg-Al dissimilar joints and in the mode of partial cohesive failure and partial nugget pull-out in the Mg-HSLA steel dissimilar joints.

  14. Low-cycle fatigue of dissimilar friction stir welded aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R.I. [The University of Alabama, Department of Mechanical Engineering, Tuscaloosa, AL 35487 (United States); Jordon, J.B., E-mail: bjordon@eng.ua.edu [The University of Alabama, Department of Mechanical Engineering, Tuscaloosa, AL 35487 (United States); Allison, P.G. [The University of Alabama, Department of Mechanical Engineering, Tuscaloosa, AL 35487 (United States); Rushing, T.; Garcia, L. [Engineering Research and Development Center, Army Corps of Engineers, Vicksburg, MS 39180 (United States)

    2016-01-27

    In this work, experiments were conducted to quantify structure-property relations of low-cycle fatigue behavior of dissimilar friction stir welding (FSW) of AA6061-to-AA7050 high strength aluminum alloys. In addition, a microstructure-sensitive fatigue model is employed to further elucidate cause-effect relationships. Experimental strain-controlled fatigue testing revealed an increase in the cyclic strain hardening and the number-of cycles to failure as the tool rotational speed was increased. At higher applied strain amplitudes (>0.3%), the corresponding stress amplitude increased and the plastic strain amplitude decreased, as the number of cycles increased. However, at 0.2% strain amplitude, the plastic strain decreased until it was almost negligible. Inspection of the hysteresis loops demonstrated that at low strain amplitudes, there was an initial stage of strain hardening that increased until it reached a maximum strain hardening level, afterwards a nearly perfect elastic behavior was observed. Under fully-reversed fatigue loading, all samples failed at the region between the heat-affected and thermomechanically-affected zones. Inspection of the fractured surfaces under scanning electron microscopy revealed that the cracks initiated at either the crown or the root surface of the weld, and from secondary intermetallic particles located near the free surface of the weld. Lastly, a microstructure-sensitive multistage fatigue model was employed to correlate the fatigue life of the dissimilar FSW of AA6061-to-AA7050 considering microstructural features such as grain size, intermetallic particles and mechanical properties.

  15. Analysis of thermal cycles and microstructure of heat affected zone for a low alloy carbon steel pipe under multipass weld

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woan; Ha, Joon Wook; Kim, Dong Jin; Kim, Jeong Tae [Doosan Heavy Industries and Construction Co., Ltd., Changwon (Korea, Republic of)

    2002-03-01

    The purpose of this study is to analyze thermal cycles and to investigate microstructures of heat affected zones for a low alloy carbon steel pipe under a multipass weld. The commercial finite element code SYSWELD is used to compute thermal cycles during multipass weld. The numerical results such as thermal cycles and size of heat affected zone are compared with those of the experiment and the two results show a good agreement. In addition, the microstructure and hardness and investigated from the weldment in detail. The weakest location is founded at intercritical region near the base metal.

  16. Microstructures and mechanical properties of Ti3Al/Ni-based superalloy joints arc welded with Ti–Nb and Ti–Ni–Nb filler alloys

    Directory of Open Access Journals (Sweden)

    Bingqing Chen

    2014-08-01

    Full Text Available Dissimilar joining of Ti3Al-based alloy to Ni-based superalloy has been carried out using gas tungsten arc (GTA welding technology with Ti–Nb and Ti–Ni–Nb filler alloys. The joint welded with the Ti–Nb filler alloy contained much less interfacial brittle phases than the one using the Ti–Ni–Nb filler alloy. The average room-temperature tensile strength of the joint welded with Ti–Nb was 202 MPa and the strength value of the one welded with Ti–Ni–Nb was 128 MPa. For both fillers, the weak links of the dissimilar joints were the weld/In718 interfaces. The presence of TiNi, TiNi3 and Ni3Nb intermetallic compounds in the joint welded with Ti–Ni–Nb induced microcracks at the weld/In718 interface and deteriorated the mechanical properties of the joint. And the adoption of the Ti–Nb filler alloy decreased the formation tendency of interfacial brittle phases to some extent and thus enhanced the tensile strength of the joint.

  17. Optimizing tensile strength of low-alloy steel joints in upset welding

    OpenAIRE

    Hamedi, M

    2006-01-01

    Purpose: Purpose In resistance upset welding, the heat is generated by resistance of the interface of abutting surfaces to the flow of electrical current in heating and post-weld heating stages. Upset welding typically results in solid-state welds with no melting at the joint. In this paper, the effect of process parameters including heating and post-weld heating power and their corresponding duration along with interference, on the tensile strength of the welded joint are experimentally inve...

  18. Experimental Investigation of the Corrosion Behavior of Friction Stir Welded AZ61A Magnesium Alloy Welds under Salt Spray Corrosion Test and Galvanic Corrosion Test Using Response Surface Methodology

    OpenAIRE

    Dhanapal, A.; S. RAJENDRA BOOPATHY; Balasubramanian, V.; Chidambaram, K.; A. R. Thoheer Zaman

    2013-01-01

    Extruded Mg alloy plates of 6 mm thick of AZ61A grade were butt welded using advanced welding process and friction stir welding (FSW) processes. The specimens were exposed to salt spray conditions and immersion conditions to characterize their corrosion rates on the effect of pH value, chloride ion concentration, and corrosion time. In addition, an attempt was made to develop an empirical relationship to predict the corrosion rate of FSW welds in salt spray corrosion test and galvanic corrosi...

  19. Effect of Rotation Rate on Microstructure and Properties of Underwater Friction Stir Welded 7A04-T6 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    WANG Wen

    2017-10-01

    Full Text Available Underwater friction stir welding (FSW on 7A04-T6 aluminum alloy plates was carried out, and the effect of rotation rate on microstructure and mechanical properties of joints was investigated. The results show that the minimum hardness of underwater FSW joints is located in the thermo-mechanically affected zone. The hardness of welded joints at the high rotation rate of 950r/min exhibits W-shaped distribution, and the average hardness value in the nugget zone is higher than that of welded joints at the low rotation rate of 475, 600, 750r/min. When the rotation rate increases from 475r/min to 750r/min with a constant welding speed of 235mm/min, the precipitated phases in the nugget zone gradually become coarse, and the ultimate tensile strength coefficient of the joint decreases from 89.71% to 82.33%; when rotation rate increases to 950r/min, the precipitated phases dissolve into aluminum matrix during welding, and age after welding. This produces the fine and homogeneous dispersed phases, which results in an increase of the strength coefficient to 89.04% and a certain enhancement of strain hardening capacity and elongation for the joints. All the tensile fracture surfaces exhibit the mixed characteristics of microporous polymerization and cleavage fracture.

  20. Effect of Friction Stir Welding Parameters on the Microstructure and Mechanical Properties of AA2024-T4 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    A. W. El-Morsy

    2018-02-01

    Full Text Available In this work, the effects of rotational and traverse speeds on the 1.5 mm butt joint performance of friction stir welded 2024-T4 aluminum alloy sheets have been investigated. Five rotational speeds ranging from 560 to 1800 rpm and five traverse speeds ranging from 11 to 45 mm/min have been employed. The characterization of microstructure and the mechanical properties (tensile, microhardness, and bending of the welded sheets have been studied. The results reveal that by varying the welding parameters, almost sound joints and high performance welded joints can be successfully produced at the rotational speeds of 900 rpm and 700 rpm and the traverse speed of 35 mm/min. The maximum welding performance of joints is found to be 86.3% with 900 rpm rotational speed and 35 mm/min traverse speed. The microhardness values along the cross-section of the joints show a dramatic drop in the stir zone where the lowest value reached is about 63% of the base metal due to the softening of the welded zone caused by the heat input during joining.

  1. Microhardness and Strain Field Characterization of Self-Reacting Friction Stir and Plug Welds of Dissimilar Aluminum Alloys

    Science.gov (United States)

    Horton, Karla Renee

    2011-01-01

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA 2014-T6 plate on the advancing side and an AA 2219-T87 plate on the retreating side and a SR-FSW (AA 2014-T6 to AA 2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures.

  2. Welding.

    Science.gov (United States)

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  3. An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy

    Science.gov (United States)

    Faraji, Amir Hosein; Moradi, Mahmoud; Goodarzi, Massoud; Colucci, Pietro; Maletta, Carmine

    2017-09-01

    This paper surveys the capability of the hybrid laser-arc welding in comparison with lone laser welding for AA2198 aluminum alloy experimentally. In the present research, a continuous Nd:YAG laser with a maximum power of 2000 W and a 350 A electric arc were used as two combined welding heat sources. In addition to the lone laser welding experiments, two strategies were examined for hybrid welding; the first one was low laser power (100 W) accompanied by high arc energy, and the second one was high laser power (2000 W) with low arc energy. Welding speed and arc current varied in the experiments. The influence of heat input on weld pool geometry was surveyed. The macrosection, microhardness profile and microstructure of the welded joints were studied and compared. The results indicated that in lone laser welding, conduction mode occurred and keyhole was not formed even in low welding speeds and thus the penetration depth was so low. It was also found that the second approach (high laser power accompanied with low arc energy) is superior to the first one (low laser power accompanied with high arc energy) in hybrid laser-arc welding of Al2198, since lower heat input was needed for full penetration weld and as a result a smaller HAZ was created.

  4. Multi-Track Friction Stir Lap Welding of 2024 Aluminum Alloy: Processing, Microstructure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Shengke Zou

    2016-12-01

    Full Text Available Friction stir lap welding (FSLW raises the possibility of fabricating high-performance aluminum components at low cost and high efficiency. In this study, we mainly applied FSLW to fabricate multi-track 2024 aluminum alloy without using tool tilt angle, which is important for obtaining defect-free joint but significantly increases equipment cost. Firstly, systematic single-track FSLW experiments were conducted to attain appropriate processing parameters, and we found that defect-free single-track could also be obtained by the application of two-pass processing at a rotation speed of 1000 rpm and a traverse speed of 300 mm/min. Then, multi-track FSLW experiments were conducted and full density multi-track samples were fabricated at an overlapping rate of 20%. Finally, the microstructure and mechanical properties of the full density multi-track samples were investigated. The results indicated that ultrafine equiaxed grains with the grain diameter about 9.4 μm could be obtained in FSLW samples due to the dynamic recrystallization during FSLW, which leads to a yield strength of 117.2 MPa (17.55% higher than the rolled 2024-O alloy substrate and an elongation rate of 31.05% (113.84% higher than the substrate.

  5. Beam focusing characteristics and alloying element effects on high-intensity electron beam welding

    Science.gov (United States)

    Wei, P. S.; Chow, Y. T.

    1992-01-01

    Effects of focusing characteristics of the beam as well as concentrations of a volatile alloying element in the workpiece on the shape of the cavity produced by a high-energy beam are systematically and quantitatively investigated. The energy flux of the focused energy beam is independently specified by the convergence angle, the energy distribution parameter at the focal spot, and the focal spot location relative to the workpiece surface. Energy flux at any cross section of the beam is a Gaussian distribution. The geometry of the cavity is determined by satisfying interfacial energy and momentum balances. By accounting for beam focusing characteristics, the cavity surface temperatures, depths of penetration, and cavity shapes are found to agree with experimental data. The opening diameter and depth of the cavity depend primarily upon the energy distribution parameter at the workpiece surface for a surface-focused weld t increase in the content of the volatile alloying element zinc in aluminum exhibits a pronounced influence on the shape of the cavity.

  6. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D., E-mail: dhb@ansto.gov.au; Davis, J.; Drew, M.; Harrison, R.P.; Edwards, L.

    2015-07-15

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiG welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni{sub 2}(Mo,Cr){sub 4}(Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni{sub 3}(Mo,Cr){sub 3}(Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld

  7. Numerical simulation of spatter formation during fiber laser welding of 5083 aluminum alloy at full penetration condition

    Science.gov (United States)

    Wu, Dongsheng; Hua, Xueming; Huang, Lijin; Zhao, Jiang

    2018-03-01

    The droplet escape condition in laser welding is established in this paper. A three-dimensional numerical model is developed to study the weld pool convection and spatter formation at full penetration during the fiber laser welding of 5083 aluminum alloy. It is found that when laser power is 9 kW, the bottom of the keyhole is dynamically opened and closed. When the bottom of the keyhole is closed, the molten metal at the bottom of the back keyhole wall flows upwards along the fusion line. When the bottom of the keyhole is opened, few spatters can be seen around the keyhole at the top surface, two flow patterns exists in the rear part of the keyhole: a portion of molten metal flows upwards along the fusion line, other portion of molten metal flows to the bottom of the keyhole, which promote the spatter formation at the bottom of the keyhole rear wall.

  8. Fatigue properties of 6061-T6 aluminum alloy butt joints processed by vacuum brazing and tungsten inert gas welding

    Directory of Open Access Journals (Sweden)

    Huei Lin

    2016-04-01

    Full Text Available Tungsten inert gas welding and vacuum brazing butt joints of Al–Mg–Si alloy 6061 in the artificially aged condition T6 were studied. Constant amplitude and variable amplitude fatigue loading tests were performed. The experimental S-N curves were compared with the fatigue design curves recommended by the International Institute of Welding, British Standard, and Eurocode 9. Two mean stress correction methods, Goodman and Gerber, were evaluated. In terms of the size effect on the fatigue life, this article proposed an innovational thickness correction method based on the ratio of the ultimate tensile strengths of specimens with different thickness. For vacuum brazing components, the tensile strength–based thickness correction method was better than the thickness correction methods recommended by the International Institute of Welding and Eurocode 9.

  9. Electron beam welding of Fe-Mn-Al-Ni shape memory alloy: Microstructure evolution and shape memory response

    Science.gov (United States)

    Krooß, P.; Günther, J.; Halbauer, L.; Vollmer, M.; Buchwalder, A.; Zenker, R.; Biermann, H.; Niendorf, T.

    The present study reports on the impact of abnormal grain growth (AGG) on the microstructural evolution following electron beam (EB) welding of Fe-Mn-Al-Ni shape memory alloy (SMA). Polycrystalline sheet-like material was EB-welded and a cyclic heat treatment, studied in previous work, was conducted for inducing AGG and a bamboo-like microstructure, respectively. Optical and electron microscopy were carried out to characterize the prevailing microstructure upon cyclic heat treatment. For characterization of the functional properties following AGG, a load increase test was conducted. The current results clearly show that good shape memory response can be obtained in Fe-Mn-Al-Ni SMA upon EB welding and subsequent post-heat treatment. These results further substantiate the potential use of conventional processing routes for Fe-Mn-Al-Ni SMA.

  10. Influence of the microstructural changes and induced residual stresses on tensile properties of wrought magnesium alloy friction stir welds

    Energy Technology Data Exchange (ETDEWEB)

    Commin, Loreleie, E-mail: lorelei.commin@kit.edu [LMPF, Arts et Metiers ParisTech, rue St Dominique, 51000 Chalons en Champagne (France); Dumont, Myriam [Aix-Marseille Universite, CNRS, IM2NP (UMR 6242), Faculte St-Jerome, Case 261, Av. Escadrille Normandie-Niemen, 13 397 Marseille Cedex 20 (France); Rotinat, Rene; Pierron, Fabrice [LMPF, Arts et Metiers ParisTech, rue St Dominique, 51000 Chalons en Champagne (France); Masse, Jean-Eric; Barrallier, Laurent [MecaSurf, Arts et Metiers ParisTech, 2 cours des Arts et Metiers, 13100 Aix en Provence (France)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Study of AZ31 FSW mechanical behaviour. Black-Right-Pointing-Pointer Early yielding occurs in the TMAZ, the nugget and base metal zones undergo almost no plastic strains. Black-Right-Pointing-Pointer Texture gradient in the TMAZ localises the deformations in this area. Black-Right-Pointing-Pointer Residual stresses have a major influence in FSW mechanical behaviour. - Abstract: Friction stir welding induces a microstructural evolution and residual stresses that will influence the resulting mechanical properties. Friction stir welds produced from magnesium alloy hot rolled plates were studied. Electron back scattered diffraction was used to determine the texture evolution, residual stresses were analysed using X ray diffraction and tensile tests coupled with speckle interferometry were performed. The residual stresses induced during friction stir welding present a major influence on the final mechanical properties.

  11. Microstructure and calorimetric behavior of laser welded open cell foams in CuZnAl shape memory alloy

    Science.gov (United States)

    Biffi, Carlo Alberto; Previtali, Barbara; Tuissi, Ausonio

    Cellular shape memory alloys (SMAs) are very promising smart materials able to combine functional properties of the material with lightness, stiffness, and damping capacity of the cellular structure. Their processing with low modification of the material properties remains an open question. In this work, the laser weldability of CuZnAl SMA in the form of open cell foams was studied. The cellular structure was proved to be successfully welded in lap joint configuration by using a thin plate of the same alloy. Softening was seen in the welded bead in all the investigated ranges of process speed as well as a double stage heat affected zone was identified due to different microstructures; the martensitic transformation was shifted to higher temperatures and the corresponding peaks were sharper with respect to the base material due to the rapid solidification of the material. Anyways, no compositional variations were detected in the joints.

  12. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    Science.gov (United States)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  13. Influence of tool material and rotational speed on mechanical properties of friction stir welded AZ31B magnesium alloy

    Directory of Open Access Journals (Sweden)

    Ugender Singarapu

    2015-12-01

    Full Text Available In this investigation, the effect of friction stir welding (FSW parameters such as tool material rotational speed, and welding speed on the mechanical properties of tensile strength, hardness and impact energy of magnesium alloy AZ31B was studied. The experiments were carried out as per Taguchi parametric design concepts and an L9 orthogonal array was used to study the influence of various combinations of process parameters. Statistical optimization technique, ANOVA, was used to determine the optimum levels and to find the significance of each process parameter. The results indicate that rotational speed (RS and traverse speed (TS are the most significant factors, followed by tool material (TM, in deciding the mechanical properties of friction stir processed magnesium alloy. In addition, mathematical models were developed to establish relationship between different process variables and mechanical properties.

  14. Influence of pulsation in thermo-mechanical analysis on laser micro-welding of Ti6Al4V alloy

    Science.gov (United States)

    Baruah, M.; Bag, S.

    2017-05-01

    The pulse parameters of laser heat source have a definite effect on the weld joint structure. However, the complexity in parameter selection increases many folds with reduction in geometric dimensions of the specimen. Hence, an attempt has been made to investigate the laser microwelding of 500 μm thick Ti6Al4V alloy in butt joint configuration using pulse Nd:YAG laser. The influence of laser scanning speed and pulse energy is analyzed to produce a defect-free joint. High peak power is actually dampen by pulsation of laser cratered to use in microwelding process. The feasible range of process parameters like laser scanning speed of 3-7 mm/s and peak power of 1-5 kW produces high quality weld joint using other favorable conditions that mainly diminishes the formation of oxides in welding of titanium alloy. A sophisticated numerical model is always beneficial to capture the thermo-mechanical behavior under differential influence of process parameters. A 3D finite element based sequentially coupled thermo-mechanical model is developed by considering the pulse mode of heat flux. There is considerably variation in temperature profile using actual pulse mode of heat flux as compared to average laser power. Typical hourglass heat source for over penetrated weld is developed for the simulation of microwelding process. Large-displacement theory is considered to predict the weld-induced distortion for laser microwelding process. The computed results are well agreed with experimentally measured values and show the robustness of the present numerical model used for micro scale welding process.

  15. Effects of select parameters on electron beam welding of AL6061-T6 alloy

    Science.gov (United States)

    Yost, Thomas E.

    Electron beam welding was used for joining Al6061-T6, precision machined, cylindrical sections. The welded assembly exhibited a minimum amount of distortion, but a better understanding of the effects of several key welding parameters on the structural integrity of the weld was required. The contents of this document describe the relative importance and interaction between welding speed, volume of filler, and beam pattern on the microstructural and mechanical properties of the welded joint. Understanding of the relationship between welding parameters and weld properties was accomplished by macrophotography and microstructural examination, microhardness testing, energy dispersive spectroscopy (EDX), and mechanical tensile testing of weld coupons. The results of this study will help quantify the robustness of the EBW process for this common aerospace material and joint geometry and will help determine the impacts of process deviations on weld fidelity in the production environment.

  16. Investigations on Laser Beam Welding of Different Dissimilar Joints of Steel and Aluminum Alloys for Automotive Lightweight Construction

    Science.gov (United States)

    Seffer, Oliver; Pfeifer, Ronny; Springer, André; Kaierle, Stefan

    Due to the enormous potential of weight saving, and the consequential reduction of pollutant emissions, the use of hybrid components made of steel and aluminum alloys is increasing steadily, especially concerning automotive lightweight construction. However, thermal joining of steel and aluminum is still being researched, due to a limited solubility of the binary system of iron and aluminum causing the formation of hard and brittle intermetallic phases, which decrease the strength and the formability of the dissimilar seam. The presented results show the investigation of laser beam welding for joining different dissimilar hybrid components of the steel materials HX220LAD+Z100, 22MnB5+AS150 and 1.4301, as well as the aluminum alloy AA6016-T4 as a lap joint. Among other things, the influences of the energy per unit length, the material grade, the sheet thickness t, the weld type (lap weld, fillet weld) and the arrangement of the base materials in a lap joint (aluminum-sided irradiation, steel-sided irradiation) on the achievable strengths are analyzed. The characterization of the dissimilar joints includes tensile shear tests and metallographic analyses, depending on the energy per unit length.

  17. Experimental and numerical investigation on under-water friction stir welding of armour grade AA2519-T87 aluminium alloy

    Directory of Open Access Journals (Sweden)

    S. Sree Sabari

    2016-08-01

    Full Text Available Friction stir welding (FSW is a promising welding process that can join age hardenable aluminium alloys with high joint efficiency. However, the thermal cycles experienced by the material to be joined during FSW resulted in the deterioration of mechanical properties due to the coarsening and dissolution of strengthening precipitates in the thermo-mechanical affected zone (TMAZ and heat affected zone (HAZ. Under water friction stir welding (UWFSW is a variant of FSW process which can maintain low heat input as well as constant heat input along the weld line. The heat conduction and dissipation during UWFSW controls the width of TMAZ and HAZ and also improves the joint properties. In this investigation, an attempt has been made to evaluate the mechanical properties and microstructural characteristics of AA2519-T87 aluminium alloy joints made by FSW and UWFSW processes. Finite element analysis has been used to estimate the temperature distribution and width of TMAZ region in both the joints and the results have been compared with experimental results and subsequently correlated with mechanical properties.

  18. Dissimilar ultrasonic spot welding of aerospace aluminum alloy AA2139 to titanium alloy TiAl6V4

    OpenAIRE

    Prangnell, Philip; Zhang, Chaoqun Q; Robson, Joseph

    2016-01-01

    The microstructure, hardness, lap shear strength and fracture energy of AA2139–TiAl6V4 spot joints produced by ultrasonic welding were investigated and related to the weld thermal cycle. No obvious intermetallic reaction layer was observed in the AA2139–TiAl6V4 welds, even using transmission electron microscopy. The hardness profile of AA2139 side after welding was studied, demonstrating that the heat introduced by the welding process leads to some softening with partial hardness recovery aft...

  19. Friction stir welding and processing of oxide dispersion strengthened (ODS) alloys

    Science.gov (United States)

    Ren, Weiju

    2014-11-11

    A method of welding including forming a filler material of a first oxide dispersoid metal, the first oxide dispersoid material having first strengthening particles that compensate for decreases in weld strength of friction stir welded oxide dispersoid metals; positioning the filler material between a first metal structure and a second metal structure each being comprised of at least a second oxide dispersoid metal; and friction welding the filler material, the first metal structure and the second metal structure to provide a weld.

  20. The Influence of Calcite, Fluorite, and Rutile on the Fusion-Related Behavior of Metal Cored Coated Electrodes for Hardfacing

    Science.gov (United States)

    Cruz-Crespo, Amado; Fuentes, Rafael Fernández; Scotti, Américo

    2010-07-01

    Coated electrodes for SMAW have exhibited their advantages for longer than one century. Means of boosting their performance, particularly for hardfacing, would be a raise in the alloying transfer efficiency and a lowering of the dilution with the substrate, without losing the production capacity. In this study, an evaluation about the operational behavior of a new conception of electrodes for hardfacing is described, i.e., metal cored coated electrodes. Experimental electrodes were produced using metal cored technique to obtain the rods. FeCrMn was used as alloying material at two grain sizes. Using the Mc Lean Anderson experimental design approach, the content ratio of CaCO3:CaF2:TiO2 in the coating was varied. The effect of the coating composition and granulometry of the filling alloying material on the formation a cannon-like end was assessed. Fusion and metal transfer behaviors were evaluated through measurements of fusion and deposition rates, deposition efficiency, and duration and frequencies of short-circuiting. Based on a balance of performances, the most appropriate composition for the coating was determined. It was also observed that a coarser FeCrMn presented better performance.

  1. Microstructure and Mechanical Properties of Dissimilar Friction Stir Welding between Ultrafine Grained 1050 and 6061-T6 Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Yufeng Sun

    2016-10-01

    Full Text Available The ultrafine grained (UFGed 1050 Al plates with a thickness of 2 mm, which were produced by the accumulative roll bonding technique after five cycles, were friction stir butt welded to 2 mm thick 6061-T6 Al alloy plates at a different revolutionary pitch that varied from 0.5 to 1.25 mm/rev. In the stir zone, the initial nano-sized lamellar structure of the UFGed 1050 Al alloy plate transformed into an equiaxial grain structure with a larger average grain size due to the dynamic recrystallization and subsequent grain growth. However, an equiaxial grain structure with a much smaller grain size was simultaneously formed in the 6061 Al alloy plates, together with coarsening of the precipitates. Tensile tests of the welds obtained at different welding speeds revealed that two kinds of fracture modes occurred for the specimens depending on their revolutionary pitches. The maximum tensile strength was about 110 MPa and the fractures were all located in the stir zone close to the 1050 Al side.

  2. Microstructural Evolution and Creep-Rupture Behavior of Fusion Welds Involving Alloys for Advanced Ultrasupercritical Power Generation

    Science.gov (United States)

    Bechetti, Daniel H., Jr.

    Projections for large increases in the global demand for electric power produced by the burning of fossil fuels, in combination with growing environmental concerns surrounding these fuel sources, have sparked initiatives in the United States, Europe, and Asia aimed at developing a new generation of coal fired power plant, termed Advanced Ultrasupercritical (A-USC). These plants are slated to operate at higher steam temperatures and pressures than current generation plants, and in so doing will offer increased process cycle efficiency and reduced greenhouse gas emissions. Several gamma' precipitation strengthened Ni-based superalloys have been identified as candidates for the hottest sections of these plants, but the microstructural instability and poor creep behavior (compared to wrought products) of fusion welds involving these alloys present significant hurdles to their implementation and a gap in knowledge that must be addressed. In this work, creep testing and in-depth microstructural characterization have been used to provide insight into the long-term performance of these alloys. First, an investigation of the weld metal microstructural evolution as it relates to creep strength reductions in A-USC alloys INCONELRTM 740, NIMONICRTM 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and HaynesRTM 282RTM (Haynes and 282 are registered trademarks of Haynes International) was performed. gamma'-precipitate free zones were identified in two of these three alloys, and their development was linked to the evolution of phases that precipitate at the expense of gamma'. Alloy 282 was shown to avoid precipitate free zone formation because the precipitates that form during long term aging in this alloy are poor in the gamma'-forming elements. Next, the microstructural evolution of INCONELRTM 740H (a compositional variant of alloy 740) during creep was investigated. Gleeble-based interrupted creep and creep-rupture testing was used to

  3. Effect of adding powder on joint properties of laser penetration welding for dual phase steel and aluminum alloy

    Science.gov (United States)

    Zhou, D. W.; Liu, J. S.; Lu, Y. Z.; Xu, S. H.

    2017-09-01

    The experiments of laser penetration welding for dual phase steel and aluminum alloy were carried out, and the effect of adding Mn or Si powder on mechanical properties and microstructure of the weld was investigated. Some defects, such as spatter, inclusion, cracks and softening in heat affected zone (HAZ), can be avoided in welding joints, and the increased penetration depth is obtained by adding Mn or Si powder. The average tensile-shear strength of Si-added joint is 3.84% higher than that of Mn-added joint, and the strength of both joints exceeds that of no-added joint. In the case of adding Mn powder, small amount of liquid Al is mixed into steel molten pool, and the Al content increases in both sides of the weld, which leads to the increased weld width in aluminum molten pool. Thus, transverse area increases in jointing steel to aluminum, which is significant for the improved tensile-shear strength of joints. As far as adding Si powder is concerned, it is not the case, the enhancement of the joint properties benefits from improvement of metallurgical reaction.

  4. Study of the Microstructure Evolution and Properties Response of a Friction-Stir-Welded Copper-Chromium-Zirconium Alloy

    Directory of Open Access Journals (Sweden)

    Ruilin Lai

    2017-09-01

    Full Text Available In this article, the copper-chromium-zirconium (CuCrZr alloys plates with 21 mm in thickness were butt joined together by means of FSW (friction stir welding. The properties of the FSW joints are studied. The microstructure variations during the process of FSW were investigated by optical microscopy (OM, electron back-scattered diffraction (EBSD, and transmission electron microscopy (TEM. The results show that the grains size in the nugget zone (NZ are significantly refined, which can be attributed to the dynamic recrystallization (DRX. The microstructure distribution in the NZ is inhomogeneous and the size of equiaxed grains are decreased gradually along the thickness direction from the top to bottom area of the welds. Meanwhile, it is found that the micro-hardness and tensile strength of the welds are slightly increased along the thickness direction from the top to the bottom area of the welds. All the nano-strengthening precipitates in the BM are dissolved into the Cu matrix in the NZ. Therefore, the decreases in hardness, tensile strength, and electrical conductivity can be attributed to the comprehensive effect of dissolution of nano-strengthening precipitates into the supersaturation matrix and severe DRX in the welded NZ.

  5. Analysis of interface solid-state reaction on dissimilar ultrasonic spot welding of Al-Mg alloys

    Science.gov (United States)

    Shin, Hyung-Seop; de Leon, Michael

    2017-05-01

    The solid-state joining nature of the ultrasonic spot welding (USW) process has been proven useful in the fields where joining applications involve dissimilar lightweight materials. This study focused on the USW of challenging dissimilar aluminum (Al)-magnesium (Mg) alloys to gain a better understanding of the dominant factors of joint performance with particular emphasis on proper lap-joint positioning. Weld qualities of dissimilar ultrasonic spot welds, classified through a series of experiments, were determined. Process parameters effects, such as failure load and fracture morphologies, showed distinctions between two dissimilar welds based on lap-joint position. Characteristic distinctions between welding process parameters and material combinations (lap-positioning) were found. Incomplete deformation zones were found during USW of Mg/Al combination, yet they were noticeable and almost the same size as the horn diameter. It can be found that proper lap-positioning of the top part of the specimen is important for efficient utilization of the USW process.

  6. Study of the corrosion behavior of magnesium alloy weldings in NaCl solutions by gravimetric tests

    Directory of Open Access Journals (Sweden)

    Segarra, José A.

    2015-09-01

    Full Text Available In this article, the corrosion behavior of commercial AZ31 welded plates in aqueous chloride media was investigated by means of gravimetric techniques and Neutral Salt Spray tests (NSS. The AZ31 samples tested were welded using Gas Tugsten Arc Welding (GTAW and different filler materials. Material microstructures were investigated by optical microscopy to stablish the influence of those microstructures in the corrosion behavior. Gravimetric and NSS tests indicate that the use of more noble filler alloys for the sample welding, preventing the reduction of aluminum content in weld beads, does not imply a better corrosion behavior.En este artículo se ha investigado el comportamiento frente a la corrosión en medios acuosos salinos de chapas soldadas de aleación AZ31 mediante técnicas gravimétricas y ensayo en cámara de niebla salina. Las muestras estudiadas han sido soldadas mediante soldadura TIG (Tungsten Inert Gas y con diferentes materiales de aporte. En el estudio se ha empleado microscopía óptica para analizar la microestructura. Los ensayos de gravimetría y los ensayos de niebla salina indican que el empleo de materiales de aporte más nobles para soldar las muestras evitando la disminución del contenido en aluminio en los cordones, no implica un mejor comportamiento frente a la corrosión.

  7. Influence of shielding gas on the mechanical and metallurgical properties of DP-GMA-welded 5083-H321 aluminum alloy

    Science.gov (United States)

    Koushki, Amin Reza; Goodarzi, Massoud; Paidar, Moslem

    2016-12-01

    In the present research, 6-mm-thick 5083-H321 aluminum alloy was joined by the double-pulsed gas metal arc welding (DP-GMAW) process. The objective was to investigate the influence of the shielding gas composition on the microstructure and properties of GMA welds. A macrostructural study indicated that the addition of nitrogen and oxygen to the argon shielding gas resulted in better weld penetration. Furthermore, the tensile strength and bending strength of the welds were improved when oxygen and nitrogen (at concentrations as high as approximately 0.1vol%) were added to the shielding gas; however, these properties were adversely affected when the oxygen and nitrogen contents were increased further. This behavior was attributed to the formation of excessive brown and black oxide films on the bead surface, the formation of intermetallic compounds in the weld metal, and the formation of thicker oxide layers on the bead surface with increasing nitrogen and oxygen contents in the argon-based shielding gas. Analysis by energy-dispersive X-ray spectroscopy revealed that most of these compounds are nitrides or oxides.

  8. Advanced characterization techniques in understanding the roles of nickel in enhancing strength and toughness of submerged arc welding high strength low alloy steel multiple pass welds in the as-welded condition

    Science.gov (United States)

    Sham, Kin-Ling

    Striving for higher strength along with higher toughness is a constant goal in material properties. Even though nickel is known as an effective alloying element in improving the resistance of a steel to impact fracture, it is not fully understood how nickel enhances toughness. It was the goal of this work to assist and further the understanding of how nickel enhanced toughness and maintained strength in particular for high strength low alloy (HSLA) steel submerged arc welding multiple pass welds in the as-welded condition. Using advanced analytical techniques such as electron backscatter diffraction, x-ray diffraction, electron microprobe, differential scanning calorimetry, and thermodynamic modeling software, the effect of nickel was studied with nickel varying from one to five wt. pct. in increments of one wt. pct. in a specific HSLA steel submerged arc welding multiple pass weldment. The test matrix of five different nickel compositions in the as-welded and stress-relieved condition was to meet the targeted mechanical properties with a yield strength greater than or equal to 85 ksi, a ultimate tensile strength greater than or equal to 105 ksi, and a nil ductility temperature less than or equal to -140 degrees F. Mechanical testing demonstrated that nickel content of three wt. pct and greater in the as-welded condition fulfilled the targeted mechanical properties. Therefore, one, three, and five wt. pct. nickel in the as-welded condition was further studied to determine the effect of nickel on primary solidification mode, nickel solute segregation, dendrite thickness, phase transformation temperatures, effective ferrite grain size, dislocation density and strain, grain misorientation distribution, and precipitates. From one to five wt. pct nickel content in the as-welded condition, the primary solidification was shown to change from primary delta-ferrite to primary austenite. The nickel partitioning coefficient increased and dendrite/cellular thickness was

  9. The Analysis of the General Performance and Mechanical Behavior of Unirradiated FeCrAl Alloys Before and After Welding

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-06-03

    The present report summarizes and discusses the preliminary results for the in-depth characterization of the modern, nuclear-grade FeCrAl alloys currently under development. The alloys were designed for enhanced radiation tolerance and weldability, and the research is currently being pursued by the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Last year, seven candidate FeCrAl alloys with well-controlled chemistry and microstructures were designed and produced; welding was performed under well-controlled conditions. The structure and general performance of unirradiated alloys were assessed using standardized and advanced microstructural characterization techniques and mechanical testing. The primary objective is to identify the best candidate alloy, or at a minimum to identify the contributing factors that increase the weldability and radiation tolerance of FeCrAl alloys, therefore enabling future generations of FeCrAl alloys to deliver better performance parameters. This report is structured so as to describe these critical assessments of the weldability; radiation tolerance will be reported on in later reports from this program.

  10. Numerical Analysis of Crack Progress in Different Areas of a Friction Stir Welded Bead for an 5251 H14 Aluminum Alloy Specimen

    Directory of Open Access Journals (Sweden)

    Y. Kambouz

    2014-02-01

    Full Text Available The assemblies welded by Friction Stir Welding have a major advantage which is the absence of a metal filler. This process contributes to the welding of materials that are known to be difficult to weld using the conventional techniques often employed in the field of transport, for example in the automobile body by applying a spot welding. The numerical modeling of this type of process is complex, not only in terms of the variety of physical phenomena which must be considered, but also because of the experimental procedure that must be followed in order to verify and validate numerical predictions. In this work, a finite element model is proposed in order to simulate the crack propagation under monotonic loading in different areas of the weld seam of a strain hardening CT-50 aluminum alloy 5251H14 specimen.

  11. Effect of Prior and Post-Weld Heat Treatment on Electron Beam Weldments of (α + β) Titanium alloy Ti-5Al-3Mo-1.5V

    Science.gov (United States)

    Anil Kumar, V.; Gupta, R. K.; Manwatkar, Sushant K.; Ramkumar, P.; Venkitakrishnan, P. V.

    2016-06-01

    Titanium alloy Ti5Al3Mo1.5V is used in the fabrication of critical engine components for space applications. Double vacuum arc re-melted and (α + β) forged blocks were sliced into 10-mm-thick plates and subjected to electron beam welding (EBW) with five different variants of prior and post-weld heat treatment conditions. Effects of various heat treatment conditions on the mechanical properties of the weldments have been studied. The welded coupons were characterized for microstructure, mechanical properties, and fracture analysis. An optimized heat treatment and welding sequence has been suggested. Weld efficiency of 90% could be achieved. Weldment has shown optimum properties in solution treated and aged condition. Heat-affected zone adjacent to weld fusion line is found to have lowest hardness in all conditions.

  12. Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints

    Science.gov (United States)

    Peng, Dong; Shen, Jun; Tang, Qin; Wu, Cui-ping; Zhou, Yan-bing

    2013-03-01

    Aging treatment and various heat input conditions were adopted to investigate the microstructural evolution and mechanical properties of TIG welded 6061-T6 alloy joints by microstructural observations, microhardness tests, and tensile tests. With an increase in heat input, the width of the heat-affected zone (HAZ) increases and grains in the fusion zone (FZ) coarsen. Moreover, the hardness of the HAZ decreases, whereas that of the FZ decreases initially and then increases with an increase in heat input. Low heat input results in the low ultimate tensile strength of the welded joints due to the presence of partial penetrations and pores in the welded joints. After a simple artificial aging treatment at 175°C for 8 h, the microstructure of the welded joints changes slightly. The mechanical properties of the welded joints enhance significantly after the aging process as few precipitates distribute in the welded seam.

  13. Aluminum Lithium Alloy 2195 Fusion Welding Improvements with New Filler Wire

    Science.gov (United States)

    Russell, C.

    2001-01-01

    The objective of this research was to assess the B218 weld filler wire for Super Lightweight External Tank production, which could improve current production welding and repair productivity. We took the following approaches: (1) Perform a repair weld quick look evaluation between 4043/B218 and B218/B218 weld filler wire combinations and evaluation tensile properties for planished and unplanished conditions; and (2) Perform repair weld evaluation on structural simulation panel using 4043-B218 and B218/B218 weld filler wire combinations and evaluation tensile and simulated service fracture properties for planished and unplanished conditions.

  14. Dissimilar steel welding and overlay covering with nickel based alloys using SWAM (Shielded Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) processes in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Arce Chilque, Angel Rafael [Centro Tecnico de Engenharia e Inovacao Empresarial Ltda., Belo Horizonte, MG (Brazil); Bracarense, Alexander Queiroz; Lima, Luciana Iglesias Lourenco [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Quinan, Marco Antonio Dutra; Schvartzman, Monica Maria de Abreu Mendonca [Nuclear Technology Development Centre (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Marconi, Guilherme [Federal Center of Technological Education (CEFET-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    This work presents the welding of dissimilar ferritic steel type A508 class 3 and austenitic stainless steel type AISI 316 L using Inconel{sup R} 600 (A182 and A82) and overlay covering with Inconel{sup R} 690 (A52) as filler metal. Dissimilar welds with these materials without defects and weldability problems such as hot, cold, reheat cracking and Ductility Dip Crack were obtained. Comparables mechanical properties to those of the base metal were found and signalized the efficiency of the welding procedure and thermal treatment selected and used. This study evidences the importance of meeting compromised properties between heat affected zone of the ferritic steel and the others regions presents in the dissimilar joint, to elaborate the dissimilar metal welding procedure specification and weld overlay. Metallographic studies with optical microscopy and Vickers microhardness were carried out to justified and support the results, showing the efficiency of the technique of elaboration of dissimilar metal welding procedure and overlay. The results are comparables and coherent with the results found by others. Some alternatives of welding procedures are proposed to attain the efficacy. Further studies are proposed like as metallographic studies of the fine microstructure, making use, for example, of scanning electron microscope (SEM adapted with an EDS) to explain looking to increase the resistance to primary water stress corrosion (PWSCC) in nuclear equipment. (author)

  15. Human biomonitoring of chromium and nickel from an experimental exposure to manual metal arc welding fumes of low and high alloyed steel.

    Science.gov (United States)

    Bertram, Jens; Brand, Peter; Schettgen, Thomas; Lenz, Klaus; Purrio, Ellwyn; Reisgen, Uwe; Kraus, Thomas

    2015-05-01

    The uptake and elimination of metals from welding fumes is currently not fully understood. In the Aachen Workplace Simulation Laboratory (AWSL) it is possible to investigate the impact of welding fumes on human subjects under controlled exposure conditions. In this study, the uptake and elimination of chromium or chromium (VI) respectively as well as nickel was studied in subjects after exposure to the emissions of a manual metal arc welding process using low or high alloyed steel. In this present study 12 healthy male non-smokers, who never worked as welders before, were exposed for 6h to welding fumes of a manual metal arc welding process. In a three-fold crossover study design, subjects were exposed in randomized order to either clean air, emissions from welding low alloyed steel, and emissions from welding high alloyed steel. Particle mass concentration of the exposure aerosol was 2.5mg m(-3). The content of chromium and nickel in the air was determined by analysing air filter samples on a high emission scenario. Urine analysis for chromium and nickel was performed before and after exposure using methods of human biomonitoring. There were significantly elevated chromium levels after exposure to welding fumes from high alloyed steel compared to urinary chromium levels before exposure to high alloyed welding fumes, as well as compared to the other exposure scenarios. The mean values increased from 0.27 µg l(-1) to 18.62 µg l(-1). The results were in good agreement with already existing correlations between external and internal exposure (German exposure equivalent for carcinogenic working materials EKA). The variability of urinary chromium levels was high. For urinary nickel no significant changes could be detected at all. Six-hour exposure to 2.5mg m(-3) high alloyed manual metal arc welding fumes lead to elevated urinary chromium levels far higher (7.11-34.16 µg l(-1)) than the German biological exposure reference value (BAR) of 0.6 µg l(-1) directly after

  16. Influence of tool pin profile on microstructure and corrosion behaviour of AA2219 Al–Cu alloy friction stir weld nuggets

    Directory of Open Access Journals (Sweden)

    Ch. Venkata Rao

    2015-09-01

    Full Text Available To overcome the problems of fusion welding of aluminium alloys, the friction stir welding (FSW is recognized as an alternative joining method to improve the mechanical and corrosion properties. Tool profile is one of the important variables which affect the performance of the FS weld. In the present work, the effect of tool profile on the weld nugget microstructure and pitting corrosion of AA2219 aluminium–copper alloy was studied. FSW of AA2219 alloy was carried out using five profiles, namely conical, square, triangle, pentagon and hexagon. The temperature measurements were made in the region adjacent to the rotating pin. It was observed that the peak temperature is more in hexagonal tool pin compared to the welds produced with other tool pin profiles. It is observed that the extensive deformation experienced at the nugget zone and the evolved microstructure strongly influences the hardness and corrosion properties of the joint during FSW. It was found that the microstructure changes like grain size, misorientation and precipitate dissolution during FSW influence the hardness and corrosion behaviour. Pitting corrosion resistance of friction stir welds of AA2219 was found to be better for hexagon profile tool compared to other profiles, which was attributed to material flow and strengthening precipitate morphology in nugget zone. Higher amount of heat generation in FS welds made with hexagonal profile tool may be the reason for greater dissolution of strengthening precipitates in nugget zone.

  17. Forming Limits of Weld Metal in Aluminum Alloys and Advanced High-Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Elizabeth V.; Smith, Mark T.; Grant, Glenn J.; Davies, Richard W.

    2010-10-25

    This work characterizes the mechanical properties of DP600 laser welded TWBs (1 mm-1.5 mm) near and in the weld, as well as their limits of formability. The approach uses simple uniaxial experiments to measure the variability in the forming limits of the weld region, and uses a theoretical forming limit diagram calculation to establish a probabilistic distribution of weld region imperfection using an M-K method approach

  18. Influence of Filler Alloy Composition and Process Parameters on the Intermetallic Layer Thickness in Single-Sided Cold Metal Transfer Welding of Aluminum-Steel Blanks

    Science.gov (United States)

    Silvayeh, Zahra; Vallant, Rudolf; Sommitsch, Christof; Götzinger, Bruno; Karner, Werner; Hartmann, Matthias

    2017-11-01

    Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.

  19. Fracture toughness of Alloy 690 and EN52 weld in air and water

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.M.; Mills, W.J.

    1999-06-01

    The effect of low and high temperature water with high hydrogen on the fracture toughness of Alloy 690 and its weld, EN52, was characterized using elastic-plastic J{sub IC} methodology. While both materials display excellent fracture resistance in air and elevated temperature (>93 C) water, a dramatic degradation in toughness is observed in 54 C water. The loss of toughness is associated with a hydrogen-induced intergranular cracking mechanism where hydrogen is picked up from the water. Comparison of the cracking behavior in low temperature water with that for hydrogen-precharged specimens tested in air indicates that the critical local hydrogen content required to cause low temperature embrittlement is on the order of 120 to 160 ppm. Loading rate studies show that the cracking resistance is significantly improved at rates above ca. 1000 MPa{radical}m/h because there is insufficient time to produce grain boundary embrittlement. Electron fractographic examinations were performed to correlate cracking behavior with microstructural features and operative fracture mechanics.

  20. Analysis of the tool plunge in friction stir welding - comparison of aluminium alloys 2024 T3 and 2024 T351

    Directory of Open Access Journals (Sweden)

    Veljić Darko

    2016-01-01

    Full Text Available Temperature, plastic strain and heat generation during the plunge stage of the friction stir welding (FSW of high-strength aluminium alloys 2024 T3 and 2024 T351 are considered in this work. The plunging of the tool into the material is done at different rotating speeds. A three-dimensional finite element (FE model for thermomechanical simulation is developed. It is based on arbitrary Lagrangian-Eulerian formulation, and Johnson-Cook material law is used for modelling of material behaviour. From comparison of the numerical results for alloys 2024 T3 and 2024 T351, it can be seen that the former has more intensive heat generation from the plastic deformation, due to its higher strength. Friction heat generation is only slightly different for the two alloys. Therefore, temperatures in the working plate are higher in the alloy 2024 T3 for the same parameters of the plunge stage. Equivalent plastic strain is higher for 2024 T351 alloy, and the highest values are determined under the tool shoulder and around the tool pin. For the alloy 2024 T3, equivalent plastic strain is the highest in the influence zone of the tool pin. [Projekat Ministarstva nauke Republike Srbije, br. TR 34016 i br. TR 35006

  1. Effect of thermal exposure, forming, and welding on high-temperature, dispersion-strengthened aluminum alloy: Al-8Fe-1V-2Si

    Science.gov (United States)

    Kennedy, J. R.; Gilman, P. S.; Zedalis, M. S.; Skinner, D. J.; Peltier, J. M.

    1991-01-01

    The feasibility of applying conventional hot forming and welding methods to high temperature aluminum alloy, Al-8Fe-1V-2Si (FVS812), for structural applications and the effect of thermal exposure on mechanical properties were determined. FVS812 (AA8009) sheet exhibited good hot forming and resistance welding characteristics. It was brake formed to 90 deg bends (0.5T bend radius) at temperatures greater than or equal to 390 C (730 F), indicating the feasibility of fabricating basic shapes, such as angles and zees. Hot forming of simple contoured-flanged parts was demonstrated. Resistance spot welds with good static and fatigue strength at room and elevated temperatures were readily produced. Extended vacuum degassing during billet fabrication reduced porosity in fusion and resistance welds. However, electron beam welding was not possible because of extreme degassing during welding, and gas-tungsten-arc welds were not acceptable because of severely degraded mechanical properties. The FVS812 alloy exhibited excellent high temperature strength stability after thermal exposures up to 315 C (600 F) for 1000 h. Extended billet degassing appeared to generally improve tensile ductility, fatigue strength, and notch toughness. But the effects of billet degassing and thermal exposure on properties need to be further clarified. The manufacture of zee-stiffened, riveted, and resistance-spot-welded compression panels was demonstrated.

  2. Study of the effect of low-power pulse laser on arc plasma and magnesium alloy target in hybrid welding by spectral diagnosis technique

    Science.gov (United States)

    Liu, Liming; Hao, Xinfeng

    2008-10-01

    In order to study the effect of laser pulses on arc plasma and target metal in the hybrid welding process, the spectra of the plasmas in the welding process of magnesium alloys are analysed in this paper. The acquisition system of plasma spectra is set up and the spectral lines of welding plasma are acquired. Compared with tungsten-inert gas (TIG) welding, the intensities of the spectral lines of magnesium increase sharply while those of Ar decrease for strong evaporation and ionization of magnesium alloys in low-power laser/arc hybrid welding. The electron temperature and density are estimated by the Boltzmann plot method and the Stark broadening effect. The result shows that the electron temperature of arc plasma in the hybrid welding process is much lower than that in TIG welding, especially in the laser beam-affected zone. In contrast, the electron density of the plasma is enhanced. The influences of laser parameters on electron temperature are also studied. The changes in electron temperature and density indicate that the effect of laser pulse on the target metal is the dominant factor influencing the electron temperature and density in low-power laser/arc hybrid welding.

  3. Effect of tool offsetting on microstructure and mechanical properties dissimilar friction stir welded Mg-Al alloys

    Science.gov (United States)

    Baghdadi, Amir Hossein; Fazilah Mohamad Selamat, Nor; Sajuri, Zainuddin

    2017-09-01

    Automotive and aerospace industries are attempting to produce lightweight structure by using materials with low density such as aluminum and magnesium alloys to increase the fuel efficiency and consequently reduce the environmental pollution. It can be beneficial to join Mg to Al to acquire ideal performance in special applications. Friction stir welding (FSW) is solid state welding processes and relatively lower temperature of the process compared to fusion welding processes. This makes FSW a potential joining technique for joining of the dissimilar materials. In this study, Mg-Al butt joints were performed by FSW under different tool offset conditions, rotation rates (500-600 rpm) and traverse speeds (20 mm/min) with tool axis offset 1 mm shifted into AZ31B or Al6061 (T6), and without offset. During the welding process AZ31B was positioned at the advancing side (AS) and Al6061 (T6) was located at the retreating side (RS). Defect free AZ31B-Al6061 (T6) dissimilar metal FSW joints with good mechanical properties were obtained with the combination of intermediate rotation rate and low traverse speed pin is in the middle. When tool positioned in -1 mm or +1 mm offsetting, some defects were found in SZ of dissimilar FSWed joints such as cavity, tunnel, and crack. Furthermore, a thin layer of intermetallic compounds was observed in the stir zone at the interface between Mg-Al plates. The strength of the joint was influenced by FSW parameters. Good mechanical properties obtained with the combination of intermediate rotational speed of 600 rpm and low travelling speed of 20 mm/min by locating Mg on advancing side when pin is in the middle. Also, Joint efficiency of the welds prepared in the present study was between 29% and 68% for the different welding parameters.

  4. Effects of process parameters on microstructure and mechanical properties of friction stir lap linear welded 6061 aluminum alloy to NZ30K magnesium alloy

    Directory of Open Access Journals (Sweden)

    Shuai Tan

    2017-03-01

    Full Text Available The microstructures and lap-shear behaviors of friction stir lap linear welded as-extruded 6061 Al alloy to as-cast Mg–3.0Nd–0.2Zn–0.7Zr (wt.% (NZ30K alloy joints were examined. Various tool rotation and travel speeds were adopted to prepare the joints. The analysis of temperature field indicates that the peak temperature for each sample can reach 450 °C, which exceeds the eutectic reaction temperatures of 437 °C and 450 °C according to the binary phase diagram of Al–Mg system. The fierce intermixing can be found at the interface between Al and Mg alloys, forming the intermetallic of Al3Mg2. Welds with the rotation speed of 900 rpm and travel speed of 120 mm/min display the highest tensile shear failure load of about 2.24 kN. The value was increased by 13% after the sample was heat treated at 400 °C for 0.5 h.

  5. Mechanical properties and microstructure of laser welded Ti–6Al–2Sn–4Zr–2Mo (Ti6242) titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chamanfar, A., E-mail: ahc215@lehigh.edu [Institute for Metal Forming, Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015 (United States); Pasang, T. [Department of Mechanical Engineering, Auckland University of Technology, Auckland (New Zealand); Ventura, A.; Misiolek, W.Z. [Institute for Metal Forming, Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015 (United States)

    2016-04-29

    Room temperature tensile properties and microhardness of a laser welded Ti–6Al–2Sn–4Zr–2Mo (Ti6242) titanium alloy sheet were examined and correlated to the microstructure evolution across the weld. Tensile testing integrated with the optical image correlation Instron® system indicated that the average yield strength (YS), ultimate tensile strength (UTS), and total elongation of the weldment were respectively 88%, 87%, and 69% of the corresponding base material (BM) values. Electron probe microanalysis (EPMA) demonstrated a uniform distribution of the main alloying elements across the weld. The hardness raised increasingly from the BM toward the heat affected zone (HAZ) and the fusion zone (FZ) due to mainly a higher α volume fraction in HAZ and acicular α′ martensite formation in the FZ. Because of the higher hardness of the HAZ and FZ, a higher YS for the weldment relative to the BM would be expected. However, the lower YS as well as the lower UTS of the weldment can be explained by presence of some porosity and underfill in the FZ. The lower total elongation of the weldment compared to the BM can be related to the higher hardness of the HAZ and FZ.

  6. Comparison of the Effects of Tool Geometry for Friction Stir Welding Thin Sheet Aluminum Alloys for Aerospace Applications

    Science.gov (United States)

    Merry, Josh; Takeshita, Jennifer; Tweedy, Bryan; Burford, Dwight

    2006-01-01

    In this presentation, the results of a recent study on the effect of pin tool design for friction stir welding thin sheets (0.040") of aluminum alloys 2024 and 7075 are provided. The objective of this study was to investigate and document the effect of tool shoulder and pin diameter, as well as the presence of pin flutes, on the resultant microstructure and mechanical properties at both room temperature and cryogenic temperature. Specifically, the comparison between three tools will include: FSW process load analysis (tool forces required to fabricate the welds), Static Mechanical Properties (ultimate tensile strength, yield strength, and elongation), and Process window documenting the range of parameters that can be used with the three pin tools investigated. All samples were naturally aged for a period greater than 10 days. Prior research has shown 7075 may require post weld heat treatment. Therefore, an additional pair of room temperature and cryogenic temperature samples was post-weld aged to the 7075-T7 condition prior to mechanical testing.

  7. Interfacial Reaction Characteristics and Mechanical Properties of Welding-brazing Bonding Between AZ31B Magnesium Alloy and PRO500 Ultra-high Strength Steel

    Directory of Open Access Journals (Sweden)

    CHEN Jian-hua

    2017-11-01

    Full Text Available Experiments were carried out with TIG welding-brazing of AZ31B magnesium alloy to PRO500 steel using TIG arc as heat source. The interfacial reaction characteristics and mechanical properties of the welding-brazing bonding were investigated. The results show that an effective bonding is achieved between AZ31B magnesium alloy and PRO500 steel by using TIG welding-brazing method. Some spontaneous oxidation reactions result in the formation of a transition zone containing AlFe3 phase with rich oxide. The micro-hardness value of the interfacial transition zone is between that of the AZ31B and the PRO500. Temper softening zone appears due to the welding thermal cycle nearby the bonding position in the interface. A higher heat input makes an increase of the brittle phases and leads to an obvious decrease of the bonding strength.

  8. Multi-Objective Optimization of Friction Stir Welding of Aluminium Alloy Using Grey Relation Analysis with Entropy Measurement Method

    Directory of Open Access Journals (Sweden)

    SAURABH KUMAR GUPTA

    2015-01-01

    Full Text Available The present research focus on optimization of Friction Stir Welding (FSW process parameters for joining of AA6061 aluminium alloy using hybrid approach. The FSW process parameters considered are tool rotational speed, welding speed and axial force. The quality characteristics considered are tensile strength (TS and percentage of tensile elongation (TE. Taguchi based experimental design L9 orthogonal array is used for determining the experimental results. The value of weights corresponding to each quality characteristic is determined by using the entropy measurement method so that their importance can be properly explained. Analysis of Variance (ANOVA is used to determine the contribution of FSW process parameters. The confirmation tests also have been done for verifying the results.

  9. Effect of friction time on the properties of friction welded YSZ‐alumina composite and 6061 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Uday M. Basheer

    2012-03-01

    Full Text Available The aim of this work was to study the effect of friction time on the microstructure and mechanical properties of alumina 0, 25, 50 wt% yttria stabilized zirconia (YSZ composite and 6061 aluminium alloy joints formed by friction welding. The alumina-YSZ composites were prepared through slip casting in plaster of Paris molds (POP and subsequently sintered at 1600°C, while the aluminium rods were machined down using a lathe machine to the dimension required. The welding process was carried out under different rotational speeds and friction times, while friction force (0.5 ton-force was kept constant. Scanning electron microscopy was used to characterize the interface of the joints structure. The experimental results showed that the friction time has a significant effect on joint structure and mechanical properties.

  10. The effect of advanced ultrasonic forging on fatigue fracture mechanisms of welded Ti-6A1-4V alloy

    Science.gov (United States)

    Smirnova, A.; Pochivalov, Yu.; Panin, V.; Panin, S.; Eremin, A.; Gorbunov, A.

    2017-12-01

    The current study is devoted to application of advanced postwelding ultrasonic forging to joints formed by laser welding of Ti-6A1-4V alloy in order to enhance their mechanical properties and fatigue durability. Low cycle fatigue tests were performed via digital image correlation technique used to obtain strain fields and in situ characterization of deformation, crack growth and fracture. Fracture surfaces were studied by SEM analysis accompanied with calculation of fracture patterns percentage. The fatigue tests demonstrate the high increase in the number of cycles until fracture (from 17 000 to 32 000 cycles) which could be explained by high ductility of welded material after treatment. This leads to lower fatigue crack growth rate due to higher energy dissipation. The obtained effect is attributable only for small cracks on micro-/mesoscales and fails to play a significant role for macro cracks.

  11. Effect of post-weld heat treatment on microstructure, hardness and low-temperature impact toughness of electron beam welds of NIFS-HEAT-2 and CEA-J57 heats of V–4Ti–4Cr alloy

    Directory of Open Access Journals (Sweden)

    V. Tsisar

    2016-12-01

    Full Text Available Bead-on-plate electron beam welding in high vacuum atmosphere was applied to the plates of NIFS-HEAT-2 and CEA-J57 heats of V–4Ti–4Cr alloy. Effect of post-weld heat treatment (PWHT in the temperature range 673–1273K on the hardness, impact toughness at 77K and microstructure of weld metal was investigated. After PWHT at 773K, hardness of weld metal slightly decreases from 180HV100 (as-welded state to ∼170HV100 while absorbed energy increases up to ∼10J showing ductile fracture mode. PWHT at 973K results in re-hardening of weld metal up to ∼180HV100 caused by re-precipitation of Ti–C,O,N precipitates and corresponding decreasing absorbed energy to ∼2J with brittle fracture mode. PWHT in-between 1073–1273K results in gradual recovery of hardness towards values comparable with those of base metal. Impact toughness (77 K of weld metal after PWHT at 1073K is not recovered nether to the value in as-welded state nor to that one of base metal.

  12. Dual wire weld feed proportioner

    Science.gov (United States)

    Nugent, R. E.

    1968-01-01

    Dual feed mechanism enables proportioning of two different weld feed wires during automated TIG welding to produce a weld alloy deposit of the desired composition. The wires are fed into the weld simultaneously. The relative feed rates of the wires and the wire diameters determine the weld deposit composition.

  13. Effects of Heat Treatment on Grain-Boundary β-Mg17Al12 and Fracture Properties of Resistance Spot-Welded AZ80 Mg Alloy

    Science.gov (United States)

    Niknejad, Seyed Tirdad; Liu, Lei; Nguyen, Tam; Lee, Mok-Young; Esmaeili, Shahrzad; Zhou, Norman Y.

    2013-08-01

    The distribution and morphology of β-Mg17Al12 intermetallic phase in resistance spot-welded AZ80 Mg alloy were investigated by means of optical microscopy, scanning electron microscopy, and X-ray diffraction. The influence of intermetallic phase on mechanical strength was studied by tensile shear testing and fractography. The results showed that continuous networks of β-Mg17Al12 formed along grain boundaries in both the nugget and heat-affected zone of the spot-welded AZ80 Mg alloy. Those continuous grain-boundary β-Mg17Al12 networks acted as effective crack propagation paths, which had negative effects on the weld strength. Post-weld solution heat treatment effectively reduced the amount of β-Mg17Al12 and broke the grain-boundary intermetallic networks in both the nugget and heat-affected zone. This significantly increased the weld strength of AZ80 Mg alloy and changed the fracture mode from nugget pull-out in the as-welded condition to through-thickness after heat treatment.

  14. In situ Raman spectroscopic analysis of surface oxide films on Ni-base alloy/low alloy steel dissimilar metal weld interfaces in high-temperature water

    Science.gov (United States)

    Kim, Jongjin; Choi, Kyung Joon; Bahn, Chi Bum; Kim, Ji Hyun

    2014-06-01

    In situ Raman spectroscopy has been applied to analyze the surface oxide films formed on dissimilar metal weld (DMW) interfaces of nickel-base alloy/low alloy steel under hydrogenated high-temperature water condition. For the analysis of the oxide films under high temperature/pressure aqueous conditions, an in situ Raman spectroscopy system was developed by constructing a hydrothermal cell where the entire optics including the excitation laser and the Raman light collection system were located at the nearest position to the specimen by means of immersion optics. In situ Raman spectra of the DMW interfaces were collected in hydrogenated water condition at different temperatures up to 300 °C. The measured in situ Raman spectra showed peaks of Cr2O3, NiCr2O4 and Fe3O4 at the DMW interface. It is considered that differences in the oxide chemistry originated from the chemical element distribution inside of the DMW interface region.

  15. Modelling of plastic flow localization and damage development in friction stir welded 6005A aluminium alloy using physics based strain hardening law

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Pardoen, Thomas; Tvergaard, Viggo

    2010-01-01

    Plastic flow localisation and ductile failure during tensile testing of friction stir welded aluminium spec- imens are investigated with a specific focus on modelling the local, finite strain, hardening response. In the experimental part, friction stir welds in a 6005A-T6 aluminium alloy were...... prepared and analysed using digital image correlation (DIC) during tensile testing as well as scanning electron microscopy (SEM) on polished samples and on fracture surfaces. The locations of the various regions of the weld were determined based on hardness measurements, while the flow behaviour...

  16. Experimental Investigation of the Corrosion Behavior of Friction Stir Welded AZ61A Magnesium Alloy Welds under Salt Spray Corrosion Test and Galvanic Corrosion Test Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    A. Dhanapal

    2013-01-01

    Full Text Available Extruded Mg alloy plates of 6 mm thick of AZ61A grade were butt welded using advanced welding process and friction stir welding (FSW processes. The specimens were exposed to salt spray conditions and immersion conditions to characterize their corrosion rates on the effect of pH value, chloride ion concentration, and corrosion time. In addition, an attempt was made to develop an empirical relationship to predict the corrosion rate of FSW welds in salt spray corrosion test and galvanic corrosion test using design of experiments. The corrosion morphology and the pit morphology were analyzed by optical microscopy, and the corrosion products were examined using scanning electron microscope and X-ray diffraction analysis. From this research work, it is found that, in both corrosion tests, the corrosion rate decreases with the increase in pH value, the decrease in chloride ion concentration, and a higher corrosion time. The results show the usage of the magnesium alloy for best environments and suitable applications from the aforementioned conditions. Also, it is found that AZ61A magnesium alloy welds possess low-corrosion rate and higher-corrosion resistance in the galvanic corrosion test than in the salt spray corrosion test.

  17. Microstructure and Mechanical Properties of Dissimilar Welded Ti3Al/Ni-Based Superalloy Joint Using a Ni-Cu Filler Alloy

    Science.gov (United States)

    Chen, Bing-Qing; Xiong, Hua-Ping; Guo, Shao-Qing; Sun, Bing-Bing; Chen, Bo; Tang, Si-Yi

    2015-02-01

    Dissimilar welding of a Ti3Al-based alloy and a Ni-based superalloy (Inconel 718) was successfully carried out using gas tungsten arc welding technology in this study. With a Ni-Cu alloy as filler material, sound joints have been obtained. The microstructure evolution along the cross section of the dissimilar joint has been revealed based on the results of scanning electron microscopy and X-ray energy dispersive spectroscopy as well as X-ray diffractometer. It is found that the weld/Ti3Al interface is composed of Ti2AlNb matrix dissolved with Ni and Cu, Al(Cu, Ni)2Ti, (Cu, Ni)2Ti, (Nb, Ti) solid solution, and so on. The weld and In718/weld interface mainly consist of (Cu, Ni) solid solutions. The weld exhibits higher microhardness than the two base materials. The average room-temperature tensile strength of the joints reaches 242 MPa and up to 73.6 pct of the value can be maintained at 873 K (600 °C). The brittle intermetallic phase of Ti2AlNb matrix dissolved with Ni and Cu at the weld/Ti3Al interface is the weak link of the joint.

  18. Microstructures and mechanical properties of Gas Tungsten Arc Welded joints of new Al–Mg–Sc and Al–Mg–Er alloy plates

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Le [Key Laboratory of Super-Microstructure and Ultrafast Process in Advanced Materials of Hunan Province, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Peng, Yongyi, E-mail: pengyongyi@126.com [Key Laboratory of Super-Microstructure and Ultrafast Process in Advanced Materials of Hunan Province, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Huang, Jiwu; Deng, Ying; Yin, Zhimin [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China)

    2015-01-03

    The effect of microalloy element Sc and Er on Gas Tungsten Arc Welded (GTAW) joints of Al–Mg alloy was studied by comparative method. The microstructures and mechanical properties of Al–Mg–Sc and Al–Mg–Er alloy welded joint were examined by microhardness measurement, tensile test, optical microscopy and transmission electron microscope. The strength of Al–Mg–Sc welded joint is higher than that of Al–Mg–Er welded joint. The differences of the two welded joints can be attributed to the different thermal stability and the effect of Al{sub 3}(Sc{sub 1−x},Zr{sub x}) particles and Al{sub 3}(Er{sub 1−x},Zr{sub x}) particles. Al{sub 3}(Sc{sub 1−x},Zr{sub x}) particles, which have higher thermal stability, are still coherent with Al matrix in the HAZ, can strongly pin dislocations and subgrain boundaries of the HAZ. There are strain strengthening and precipitation strengthening in the HAZ of Al–Mg–Sc welded joints. Notable coarsening of Al{sub 3}(Er{sub 1−x},Zr{sub x}) particles and recrystallization in the HAZ of Al–Mg–Er welded joint lead to the reduction and disappearance of strain strengthening and precipitation strengthening.

  19. Experimental and numerical studies on the issues in laser welding of light-weight alloys in a zero-gap lap joint configuration

    Science.gov (United States)

    Harooni, Masoud

    It is advantageous for the transportation industry to use lightweight components in the structure in order to save mass and reduce CO2 emissions. One of the lightest structural metals, magnesium, fulfills the need for mass reduction within the automotive industry. Many of the body structure components in the automotive industry are assembled using joining processes such as fusion welding. Furthermore, laser welding offers a low heat impact, high process rate, joining method which is becoming increasingly popular as the cost for laser systems continues to decrease. However, there is a limited body of work investigating the laser welding of magnesium and therefore, in the current study, different techniques and methods for laser welding of magnesium alloys are numerically and experimentally studied in order to optimize process parameters to achieve high quality welds. A feasibility study was designed in order to study the effect of various laser welding process parameters (such as laser power levels and welding speeds) on weld quality. Three regression models were developed to find the best fit model that relates process parameters to the shear load of the weld. Furthermore, to understand the effect of laser welding parameters on temperature distribution in laser welding of AZ31B magnesium alloy, a numerical model was developed. A rotary Gaussian volumetric body heat source was applied in this study to obtain the temperature history during the laser welding process. Cross-sectional views of the weld beads, temperature history recorded by thermocouples, and temperature history recorded by infrared camera were used to validate the numerical model. In order to study the real-time dynamic behavior of the molten pool and the keyhole during the welding process, a high speed charge-coupled device (CCD) assisted with a green laser as an illumination source was used. In order to observe the presence of pores, prior studies destructively evaluated the weld bead however; in the

  20. Development of a Powder-feed Device and Procedures for the Application of an Experimental Alloy in Overhead PTA-P Welding

    Directory of Open Access Journals (Sweden)

    Jônathas Alexandre Alves

    2015-12-01

    Full Text Available Abstract: When they are damaged by cavitation, hydroelectric power plant turbine blades must be repaired using operations that could benefit from developments in welding technologies. In light of this, the LABSOLDA welding laboratory at the Federal University of Santa Catarina is making efforts to enhance the flexibility and robustness of the powder-fed plasma transferred arc (PTA-P process so that it can be used in any welding position and with different powders. The use of consumables in powder form in PTA-P welding allows experiments to be carried out to develop an alloy with special properties suitable for use in generator repairs. To this end, the RV-F PF powder feeder, which can operate with consumables with non-standard morphologies and particle sizes, was developed. The feeder was required to provide a regular flow of consumable material in out-of-position welding operations without the need for high gas flow rates and regardless of the morphology or particle size of the consumables. The RV-F PF is shown to operate efficiently with materials whose properties differ greatly from those of standard consumables. It is also suitable for overhead PTA-P welding and provides a constant supply of filler material efficiently with normal gas flow rates. The welding tests carried out involved deposition of a mixture of two alloys and were followed by cavitation testing of the resulting coating.

  1. Complete Status Report Documenting Development of Friction Stir Welding for Joining Thin Wall Tubing of ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bunn, Jeffrey R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    The development of friction stir welding (FSW) for joining thin sections of the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy was initiated in Fuel Cycle Research and Development (FCRD), now the Nuclear Technology Research and Development (NTRD), in 2015. The first FSW experiment was conducted in late FY15 and successfully produced a bead-on-plate stir zone (SZ) on a 1 mm thick plate of 14YWT (SM13 heat). The goal of this research task is to ultimately demonstrate that FSW is a feasible method for joining thin wall (0.5 mm thick) tubing of 14YWT.

  2. Intermediate layer, microstructure and mechanical properties of aluminum alloy/stainless steel butt joint using laser-MIG hybrid welding-brazing method

    Science.gov (United States)

    Zhu, Zongtao; Wan, Zhandong; Li, Yuanxing; Xue, Junyu; Hui, Chen

    2017-07-01

    Butt joining of AA6061 aluminum (Al) alloy and 304 stainless steel of 2-mm thickness was conducted using laser-MIG hybrid welding-brazing method with ER4043 filler metal. To promote the mechanical properties of the welding-brazing joints, two kinds of intermediate layers (Al-Si-Mg alloy and Ag-based alloy) are used to adjust the microstructures of the joints. The brazing interface and the tensile strength of the joints were characterized. The results showed that the brazing interface between Al alloy and stainless steel consisted of double layers of Fe2Al5 (near stainless steel) and Fe4Al13 intermetallic compounds (IMCs) with a total thickness of 3.7 μm, when using Al-Si-Mg alloy as the intermediate layer. The brazing interface of the joints using Ag-based alloy as intermediate layer also consists of double IMC layers, but the first layer near stainless steel was FeAl2 and the total thickness of these two IMC layers decreased to 3.1 μm. The tensile strength of the joints using Al-Si-Mg alloy as the intermediate layer was promoted to 149 MPa, which was 63 MPa higher than that of the joints using Al-Si-Mg alloy as the intermediate layer. The fractures occurred in the brazing interface between Al alloy and stainless steel.

  3. Soldagem por ponto no estado sólido de ligas leves Solid state spot welding of lightweight alloys

    Directory of Open Access Journals (Sweden)

    Leonardo Contri Campanelli

    2011-09-01

    Full Text Available A recente preocupação quanto às mudanças climáticas vem impulsionando pesquisas em eficiência energética dos meios de transportes no sentido de reduzir a emissão de gases. Uma das principais soluções consiste na redução do peso estrutural através da aplicação de novos materiais, como as ligas leves de alumínio e magnésio. Entretanto, novos usos ficam muitas vezes limitados pela dificuldade de união desses materiais. A técnica de soldagem por fricção e mistura (FSW é um processo de união no estado sólido que surge como uma alternativa viável para substituir ou complementar as tecnologias de união consagradas. Como uma junta contínua não é sempre a requisitada, duas tecnologias de união por ponto derivadas do FSW estão em desenvolvimento: soldagem por fricção e mistura por ponto (FSSW e soldagem por fricção por ponto (FSpW. Além de fornecerem juntas de elevada resistência e praticamente isentas de defeitos, estas técnicas apresentam alta eficiência energética, curto ciclo de soldagem, facilidade de automação e compatibilidade com o meio-ambiente, fazendo frente às técnicas convencionais de união por ponto, como a soldagem por resistência por ponto (RSW e a rebitagem.The recent concern about climate change has stimulated research into transport energy efficiency in order to reduce the emission of gases. One of the main solutions is to reduce the structural weight through the application of new materials, such as aluminum and magnesium lightweight alloys. However, new applications are often limited by the difficulty of joining these materials. Friction Stir Welding (FSW is a solid state joining technique that emerges as a viable alternative to replace or complement the established joining technologies. As a continuous weld is not always requested, two spot welding technologies derived from FSW are under development: Friction Stir Spot Welding (FSSW and Friction Spot Welding (FSpW. Besides providing

  4. Neuro-Fuzzy Model for the Prediction and Classification of the Fused Zone Levels of Imperfections in Ti6Al4V Alloy Butt Weld

    Directory of Open Access Journals (Sweden)

    Giuseppe Casalino

    2013-01-01

    Full Text Available Weld imperfections are tolerable defects as stated from the international standard. Nevertheless they can produce a set of drawbacks like difficulty to assembly, reworking, limited fatigue life, and surface imperfections. In this paper Ti6Al4V titanium butt welds were produced by CO2 laser welding. The following tolerable defects were analysed: weld undercut, excess weld metal, excessive penetration, incomplete filled groove, root concavity, and lack of penetration. A neuro-fuzzy model for the prediction and classification of the defects in the fused zone was built up using the experimental data. Weld imperfections were connected to the welding parameters by feed forward neural networks. Then the imperfections were clustered using the C-means fuzzy clustering algorithm. The clusters were named after the ISO standard classification of the levels of imperfection for electron and laser beam welding of aluminium alloys and steels. Finally, a single-value metric was proposed for the assessment of the overall bead geometry quality. It combined an index for each defect and functioned according to the criterion “the-smallest-the-best.”

  5. Experimental Investigation and Optimization of TIG Welding Parameters on Aluminum 6061 Alloy Using Firefly Algorithm

    Science.gov (United States)

    Kumar, Rishi; Mevada, N. Ramesh; Rathore, Santosh; Agarwal, Nitin; Rajput, Vinod; Sinh Barad, AjayPal

    2017-08-01

    To improve Welding quality of aluminum (Al) plate, the TIG Welding system has been prepared, by which Welding current, Shielding gas flow rate and Current polarity can be controlled during Welding process. In the present work, an attempt has been made to study the effect of Welding current, current polarity, and shielding gas flow rate on the tensile strength of the weld joint. Based on the number of parameters and their levels, the Response Surface Methodology technique has been selected as the Design of Experiment. For understanding the influence of input parameters on Ultimate tensile strength of weldment, ANOVA analysis has been carried out. Also to describe and optimize TIG Welding using a new metaheuristic Nature - inspired algorithm which is called as Firefly algorithm which was developed by Dr. Xin-She Yang at Cambridge University in 2007. A general formulation of firefly algorithm is presented together with an analytical, mathematical modeling to optimize the TIG Welding process by a single equivalent objective function.

  6. Hydrogen diffusion and effect on degradation in welded microstructures of creep-resistant low-alloyed steels

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, Michael

    2016-04-04

    The main challenge for the future is to further increase the power plant thermal efficiency independent of the type of power plant concept, i.e. fossil-fired or nuclear power plant, where the material selection can directly affect reduction of CO{sub 2} emissions. In power plant design, welding is the most applied manufacturing technique in component construction. The necessary weld heat input causes metallurgical changes and phase transitions in the heat affected zone (HAZ) of the base materials and in the deposited weld metal. The weld joint can absorb hydrogen during welding or in later service - This absorption can cause degradation of mechanical properties of the materials, and in certain loading conditions, hydrogen-assisted cold cracks can occur. This cracking phenomenon can appear time delayed due to the temperature dependency of the hydrogen diffusion and the presence of a ''critical'' hydrogen concentration. Additionally, each specific weld microstructure shows a certain hydrogen diffusion and solubility that contribute to susceptibility of the cracking phenomenon. Therefore hydrogen cannot be neglected as possible failure effect, which was identified recently in the case of T24 creep-resistant tube-to-tube weld joints. It is necessary to identify and assess the hydrogen effect in weld joints of low-alloyed steel grades for to improve further early detection of possible failures. For each specific weld joint microstructure, it is necessary to separate the interdependencies between mechanical load and the hydrogen concentration. The diffusivity and solubility must be considered to identify hydrogen quantities in the material at any given time. In this case, the effects of mechanical loading were dealt with independently. For the characterization of the mechanical properties, hydrogen charged tensile specimens were investigated for the base materials and thermally simulated HAZ microstructures. The hydrogen diffusion was characterized

  7. Análise da microestrutura e da resistência ao desgaste de revestimento duro utilizado pela indústria sucroalcooleira Analysis of microstructure and wear strength of hardfacing used by the sugar and alcohol industry

    Directory of Open Access Journals (Sweden)

    Aldemi Coelho Lima

    2009-06-01

    Full Text Available O setor sucroalcooleiro tem apresentado um expressivo crescimento nos últimos anos no Brasil, entretanto, a manutenção das indústrias apresenta um elevado custo devido à perda de metal dos equipamentos por mecanismos de desgaste. O objetivo deste trabalho é avaliar a resistência ao desgaste abrasivo e a microestrutura de revestimentos duros depositados em camada única. Foram utilizados quatro tipos de consumíveis utilizados na indústria sucroalcooleira: um eletrodo revestido da liga FeCrC de 4,0 mm de diâmetro e três arames tubulares autoprotegidos de 1,6 mm de diâmetro, de ligas FeCrC, FeCrCNb, FeCrCTiMo. O metal de base utilizado foi um aço SAE 1020. As soldagens com os arames tubulares foram efetuadas no modo de transferência por curto-circuito, com mesmos valores de corrente e tensão de soldagem. Para o ensaio de desgaste utilizou-se o abrasômetro Roda de Borracha, segundo a norma ASTM G65-91. Os corpos de prova de desgaste foram retirados da região central das chapas de testes e da mesma região retirou-se dois conjuntos de amostras para análise microestrutural (microscopia ótica. Os resultados dos ensaios com a roda de borracha mostrou que a liga FeCrCNb apresenta maior resistência ao desgaste, seguida do eletrodo revestido e com pior desempenho a liga FeCrCMoTi e a liga FeCrC. A liga FeCrC (tanto para o eletrodo revestido como para o arame tubular apresentou microestrutura formada por carbonetos primários M7C3 distribuídos em uma matriz de menor dureza; a liga contendo Nb apresentou microestrutura similar além da presença de carbonetos NbC; por sua vez, a liga com adição de Ti e Mo apresentou a presença de grandes carbonetos primários de titânio.The Brazilian sugar/alcohol sector presented expressive growth in recent years. However, maintenance cost is high due to metallic losses by wear. This paper studies the application of hardfacing by flux cored arc welding on the wear resistance and microstructure of

  8. Effect of Sleeve Plunge Depth on Microstructure and Mechanical Properties of Refill Friction Stir Spot Welding of 2198 Aluminum Alloy

    Science.gov (United States)

    Yue, Yumei; Shi, Yao; Ji, Shude; Wang, Yue; Li, Zhengwei

    2017-10-01

    Refill friction stir spot welding (RFSSW) is a new spot welding technology, by which spot joint without keyhole can be obtained. In this work, RFSSW was used to join 2-mm-thick 2198-T8 aluminum alloy sheets and effects of the sleeve plunge depth on microstructure and lap shear properties of the joints were mainly discussed. Results showed that when using small plunge depths of 2.4 and 2.6 mm, joints showed good formation and no defects were observed. Incomplete refilling defect was observed with increasing plunge depth due to material loss during welding. Size of the grains at sleeve-affected zone (SAZ) is smaller than that at the pin-affected zone, and the size becomes bigger with increasing the plunge depth. More secondary phase particles can be observed at SAZ with increasing the sleeve plunge depth. The lap shear failure load firstly increased and then decreased with increasing the sleeve plunge depth. The maximum failure load of 9819 N was attained with plug fracture mode when using 2.6 mm. Fracture morphologies show ductile fracture mode.

  9. Microstructural Characteristics and Mechanical Properties of Friction Stir Spot Welded 2A12-T4 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Huijie Liu

    2013-01-01

    Full Text Available 2A12-T4 aluminum alloy was friction stir spot welded, and the microstructural characteristics and mechanical properties of the joints were investigated. A softened microstructural region existed in the joint, and it consisted of stir zone (SZ, thermal mechanically affected zone (TMAZ, and heat affected zone (HAZ. The minimum hardness was located in TMAZ, and the average hardness value in SZ can be improved by appropriately increasing welding heat input. The area of complete bonding region at the interface increased with increasing welding heat input because more interface metals were mixed. In a certain range of FSSW parameters, the tensile shear failure load of the joint increased with increasing rotation speed, but it decreased with increasing plunge rate or decreasing shoulder plunging depth. Two kinds of failure modes, that is, shear fracture mode and tensile-shear mixed fracture mode, can be observed in the tensile shear tests, and the joint that failed in the tensile-shear mixed fracture mode possessed a high carrying capability.

  10. Effect of Sleeve Plunge Depth on Microstructure and Mechanical Properties of Refill Friction Stir Spot Welding of 2198 Aluminum Alloy

    Science.gov (United States)

    Yue, Yumei; Shi, Yao; Ji, Shude; Wang, Yue; Li, Zhengwei

    2017-09-01

    Refill friction stir spot welding (RFSSW) is a new spot welding technology, by which spot joint without keyhole can be obtained. In this work, RFSSW was used to join 2-mm-thick 2198-T8 aluminum alloy sheets and effects of the sleeve plunge depth on microstructure and lap shear properties of the joints were mainly discussed. Results showed that when using small plunge depths of 2.4 and 2.6 mm, joints showed good formation and no defects were observed. Incomplete refilling defect was observed with increasing plunge depth due to material loss during welding. Size of the grains at sleeve-affected zone (SAZ) is smaller than that at the pin-affected zone, and the size becomes bigger with increasing the plunge depth. More secondary phase particles can be observed at SAZ with increasing the sleeve plunge depth. The lap shear failure load firstly increased and then decreased with increasing the sleeve plunge depth. The maximum failure load of 9819 N was attained with plug fracture mode when using 2.6 mm. Fracture morphologies show ductile fracture mode.

  11. Effect of cyclic solution treatment on microstructure and mechanical properties of friction stir welded 7075 Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bayazid, S.M., E-mail: mahmoud.bayazid@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. 11155-4563, Tehran Iran (Iran, Islamic Republic of); Farhangi, H. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. 11155-4563, Tehran Iran (Iran, Islamic Republic of); Asgharzadeh, H. [Department of Materials Engineering, University of Tabriz, P.O. Box 51666-16471, Tabriz (Iran, Islamic Republic of); Radan, L. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, P.O. Box 71348-51154, Shiraz (Iran, Islamic Republic of); Ghahramani, A. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. 11155-4563, Tehran Iran (Iran, Islamic Republic of); Mirhaji, A. [Department of Materials Engineering, University of Tabriz, P.O. Box 51666-16471, Tabriz (Iran, Islamic Republic of)

    2016-01-01

    7075-T6 aluminum alloy plates were prepared by friction stir welding (FSW) followed by age hardening. A novel solutionizing method, namely cyclic solution treatment (CST), comprising of a repeated heating between 400 and 480 °C for 0.25 h was employed. The microstructure of the joints was studied by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The effect of CST on mechanical properties was assessed by means of tensile test and microhardness measurement. A significant grain size refinement is taken place by FSW whilst the grain size is not considerably changed after CST. The results show that precipitate particles of the welding area before and after heat treatment are MgZn{sub 2} and MgAlCu/Al{sub 7}Cu{sub 2}Fe, respectively. CST improves tensile strength and elongation while homogenizes the hardness distribution of the FSWed joint. A noteworthy enhancement in the hardness (~45%) and tensile strength (~33%) of the FSWed sample is achieved after CST and aging at 130 °C for 24 h. The tensile fracture surface of the Al alloy joint demonstrates fine dimples after CST while less-developed dimples are detected after aging.

  12. Creep properties and simulation of weld repaired low alloy heat resistant CrMo and Mo steels at 540 deg C. Sub project 1 - Ex-serviced parent metal and virgin weld metals

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Storesund, Jan; Borggreen, Kjeld; Weilin Zang

    2006-10-15

    Many existing power generating and process plants, where low alloy heat resistant CrMo(V) steels are extensively used for critical components, have exceeded their design lifetime of usually 100,000 hours. Assessment of residual lifetime and extension of economic life by weld repair have become increasingly important and attractive. This project aims at i) performing weld repair and determining the degree of mismatching, ii) evaluating the creep properties of weld repairs, iii) analysing creep behaviour of weld repair and providing necessary data for further reliable simulations of weld repair creep behaviour in long term service, and iv), simulating and assessing lifetime and creep damage evolution of weld repair. Weld repair using 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 consumables has been carried out in a service-exposed 10 CrMo 9 10 pipe. Creep specimens have been extracted from the service-exposed 10 CrMo 9 10 parent metal (PM), from the virgin 10 CrMo 9 10 weld metal (WM), from the virgin 13 CrMo 4 4 WM as well as from the virgin 15 Mo 3 WM. Iso-thermal uniaxial creep tests have been performed at 540 deg C in air. Pre- and post-metallography are carried out on the selected samples. FEM simulations using obtained creep data are executed. Pre-test metallography shows normal and acceptable weld repairs at given welding conditions. Creep tests demonstrate that the virgin 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 WMs have apparently longer creep lifetime than the service-exposed CrMo 9 10 PM at higher stresses than 110 MPa. Among the weld metals, the longest creep lifetime is found in 10 CrMo 9 10. Higher creep strength and lower creep strain rate in the weld metals indicate an overmatch weld. At 95 MPa, however, lifetime of 13 CrMo 4 4 WM is surprisingly short (factors which may shorten lifetime are discussed and one more test will start to verify creep strength at low stress) and tests are still running for other two weld metals. More results regarding low stress

  13. Mechanical properties of friction stir welded 5083 aluminum alloy at cryogenic temperatures : Study on low temperature materials used in WE-NET 20

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, H.; Ishige, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan). Materials Technology Dept.; Hayashi, M.; Oyama, K.; Fujii, H.; Tanaka, J. [Cryogenic Materials Working Group Task 10 (Japan). WE-NET Program

    2002-07-01

    Using hydrogen conversion, the objective of the World Energy Network (WE-NET) program in Japan is the introduction of an international clean energy network, where liquid hydrogen promises to be the most effective carrier and storage medium. The widespread usage of 5083 aluminum alloy in liquid natural gas tankers makes it one of the candidate materials, since it is exposed to cryogenic temperature down to the 111 Kelvin mark. The fracture toughness of the weld metals prepared by conventional large current metal inert-gas (LC-MIG) arc welding was clarified. It was shown to decrease dramatically at temperatures below 77 Kelvin including 20 Kelvin of liquid hydrogen. The microstructure of the weld metals must be refined to achieve an improvement in their fracture toughness. The existence of numerous reports on fine microstructure in welding part of an aluminum alloy with friction stir welding (FSW) makes it a candidate as a possible solution for their usage. In this paper, the authors discussed and reported on the microstructural characteristics and different mechanical properties at cryogenic temperatures of the FSW and the LC-MIG welding. 2 refs., 1 tab., 11 figs.

  14. Obtaining in an electric arc furnace alloys of the Fe-Mn-Cr-C system and slag destined to the development of welding consumables

    Directory of Open Access Journals (Sweden)

    Lorenzo Perdomo-González

    2018-01-01

    Full Text Available The production of chromium manganese ferroalloys for the use in the development of alloying loads of welding consumables is presented. On the basis of variations in the proportions of the chromium and manganese minerals in the loads, different combinations are established, which allow obtaining multicomponent ferroalloys with composition ranging from 9 to 32 % chromium and from 24 to 65 % manganese. The melting-reduction process is carried out in an electric arc furnace with a graphite crucible and with the presence of coke as a reducing component which guarantees the obtaining of high carbon alloys (5–6 %. The use of the multicomponent ferroalloy in the formulation of welding consumables simplifies and makes cheaper the obtaining of these materials. As result of metallurgical processing, slag formed by the silicon, aluminum, magnesium, manganese and calcium oxides are obtained, which are feasible to use in the production of flux matrices for submerged arc welding process.

  15. Experimental investigation and metallographic characterization of fiber laser beam welding of Ti-6Al-4V alloy using response surface method

    Science.gov (United States)

    Kumar, Chandan; Das, Manas; Paul, C. P.; Singh, B.

    2017-08-01

    In the present study, experimental investigations of fiber-laser-beam-welding of 5 mm thick Ti-6Al-4V alloy are carried out based on statistical design of experiments. The relationship between the process parameters such as welding power, welding speed, and defocused position of the laser beam with the output responses such as width of the fusion zone, size of the heat affected zone, and fusion zone area are established in terms of regression models. Also, the most significant process parameters and their optimum ranges are identified and their percentage contributions on output responses are calculated. It is observed that welding power and speed plays the major role for full penetration welding. Also, welding power shows direct effect whereas welding speed shows the inverse effect on the output responses. The bead geometry is influenced by the defocused position of the laser beam due to the change in power density on the workpiece surface. However, overall fusion zone area is unaffected. Mechanical characterization of the welded samples such as microstructural analysis, hardness, and tensile tests are conducted. It is noticed that the hardness value of the FZ is higher than the HAZ and BM zone due to the difference in cooling rate during welding which promotes the formation of α‧ martensitic phase in the FZ. Also, an average hardness value in the FZ is compared for two different defocusing positions (i.e. 1 and 2 mm). It is found that hardness value is higher for 1 mm defocused position than 2 mm due the decrement in grain size below a critical range at 2 mm defocused position. The ultimate tensile strength and % elongation of the welded samples are degraded as compared to BM which can be further improved by post heat treatment.

  16. Modelling of fluid flow phenomenon in laser+GMAW hybrid welding of aluminum alloy considering three phase coupling and arc plasma shear stress

    Science.gov (United States)

    Xu, Guoxiang; Li, Pengfei; Cao, Qingnan; Hu, Qingxian; Gu, Xiaoyan; Du, Baoshuai

    2018-03-01

    The present study aims to develop a unified three dimensional numerical model for fiber laser+GMAW hybrid welding, which is used to study the fluid flow phenomena in hybrid welding of aluminum alloy and the influence of laser power on weld pool dynamic behavior. This model takes into account the coupling of gas, liquid and metal phases. Laser heat input is described using a cone heat source model with changing peak power density, its height being determined based on the keyhole size. Arc heat input is modeled as a double ellipsoid heat source. The arc plasma flow and droplet transfer are simulated through the two simplified models. The temperature and velocity fields for different laser powers are calculated. The computed results are in general agreement with the experimental data. Both the peak and average values of fluid flow velocity during hybrid welding are much higher than those of GMAW. At a low level of laser power, both the arc force and droplet impingement force play a relatively large role on fluid flow in the hybrid welding. Keyhole depth always oscillates within a range. With an increase in laser power, the weld pool behavior becomes more complex. An anti-clockwise vortex is generated and the stability of keyhole depth is improved. Besides, the effects of laser power on different driving forces of fluid flow in weld pool are also discussed.

  17. Study on Pores in Ultrasonic‐Assisted TIG Weld of  Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Qihao Chen

    2017-02-01

    Full Text Available Ultrasonic‐assisted tungsten inert gas welding was carried out on a thin plate of 2195 Al‐Li alloy, and the characteristics of the weld pores were analyzed in terms of their size and porosity. The effects of welding speed and ultrasonic power on the porosity and size of the pores were investigated. The pores were found to occur primarily adjacent to the surface of the weld. The porosity decreased and the size increased with a decrease in welding speed. The effect of ultrasonic power on the characteristics of the pores was different from that of the welding speed. The porosity and size of the pores decreased and then increased with an increase in ultrasonic power. A relationship was found between the transient cavitation intensity and the characteristics of pores. An increasing transient cavitation intensity results in a decrease in the porosity and size of pores when the transient cavitation intensity is lower. However, it can result in an increase in the porosity and pore size when the transient cavitation intensity further increases. Finally, the influencing mechanism of cavitation on welding pores was discussed.

  18. Effect of the rotational speed of on the surface quality of 6061 Al-alloy welded joint using friction stir welding

    Science.gov (United States)

    Feng, T. T.; Zhang, X. H.; Fan, G. J.; Xu, L. F.

    2017-06-01

    The rotational speed of the stir-welding head is an important technological parameter in friction stir welding (FSW) process. For investigating the effect of the rotational speed of the stir-welding head on the surface quality of the welded joint, in this study, the weld tests were conducted under different rotational speeds (in which the welding speed was fixed), and then the effects were analyzed using the heat-fluid analysis model established. The test results revealed that cracks or grooves could be observed on the welded joint at small rotational speeds; with the increase of rotational speed, the weld surface became bright and clean; as the rotational speed further increased, the surface of the welded joint may be over burnt. Through analysis, it can be observed that appropriate increasing the rotational speed of the stir-welding joint increased the heat input in welding; meanwhile, fewer materials participated in the formation of weld, the material’s flowability was improved, and the resistance that impeded the advance of the stir-welding needle was reduced, thereby improving the quality of the welded joint.

  19. The three dimensional distribution of chromium and nickel alloy welding fumes.

    Science.gov (United States)

    Mori, T; Matsuda, A; Akashi, S; Ogata, M; Takeoka, K; Yoshinaka, M

    1991-08-01

    In the present study, the fumes generated from manual metal arc (MMA) and submerged metal arc (SMA) welding of low temperature service steel, and the chromium and nickel percentages in these fumes, were measured at various horizontal distances and vertical heights from the arc in order to obtain a three dimensional distribution. The MMA welding fume concentrations were significantly higher than the SMA welding fume concentrations. The highest fume concentration on the horizontal was shown in the fumes collected directly above the arc. The fume concentration vertically was highest at 50 cm height and reduced by half at 150 cm height. The fume concentration at 250 cm height was scarcely different from that at 150 cm height. The distribution of the chromium concentration vertically was analogous to the fume concentration, and a statistically significant difference in the chromium percentages was not found at the different heights. The nickel concentrations were not statistically significant within the welding processes, but the nickel percentages in the SMA welding fumes were statistically higher than in the MMA welding fumes. The highest nickel concentration on the horizontal was found in the fumes collected directly above the arc. The highest nickel concentration vertically showed in the fume samples collected at 50 cm height, but the greater the height the larger the nickel percentage in the fumes.

  20. Aluminum-Scandium Alloys: Material Characterization, Friction Stir Welding, and Compatibility With Hydrogen Peroxide (MSFC Center Director's Discretionary Fund Final Report, Proj. No. 04-14)

    Science.gov (United States)

    Lee, J. A.; Chen, P. S.

    2004-01-01

    This Technical Memorandum describes the development of several high-strength aluminum (Al) alloys that are compatible with hydrogen peroxide (H2O2) propellant for NASA Hypersonic-X (Hyper-X) vehicles fuel tanks and structures. The yield strengths for some of these Al-magnesium-based alloys are more than 3 times stronger than the conventional 5254-H112 Al alloy, while maintaining excellent H2O2 compatibility similar to class 1 5254 alloy. The alloy development strategy is to add scandium, zirconium, and other transitional metals with unique electrochemical properties, which will not act as catalysts, to decompose the highly concentrated 90 percent H2O2. Test coupons are machined from sheet metals for H2O2 long-term exposure testing and mechanical properties testing. In addition, the ability to weld the new alloys using friction stir welding has also been explored. The new high-strength alloys could represent an enabling material technology for Hyper-X vehicles, where flight weight reduction is a critical requirement.

  1. Monte Carlo Simulation of Alloy Design Techniques: Fracture and Welding Studied Using the BFS Method for Alloys

    Science.gov (United States)

    Bozzolo, Guillermo H.; Good, Brian; Noebe, Ronald D.; Honecy, Frank; Abel, Phillip

    1999-01-01

    Large-scale simulations of dynamic processes at the atomic level have developed into one of the main areas of work in computational materials science. Until recently, severe computational restrictions, as well as the lack of accurate methods for calculating the energetics, resulted in slower growth in the area than that required by current alloy design programs. The Computational Materials Group at the NASA Lewis Research Center is devoted to the development of powerful, accurate, economical tools to aid in alloy design. These include the BFS (Bozzolo, Ferrante, and Smith) method for alloys (ref. 1) and the development of dedicated software for large-scale simulations based on Monte Carlo- Metropolis numerical techniques, as well as state-of-the-art visualization methods. Our previous effort linking theoretical and computational modeling resulted in the successful prediction of the microstructure of a five-element intermetallic alloy, in excellent agreement with experimental results (refs. 2 and 3). This effort also produced a complete description of the role of alloying additions in intermetallic binary, ternary, and higher order alloys (ref. 4).

  2. Improving the Mechanical Properties of the Fusion Zone in Electron-Beam Welded Ti-5Al-5Mo-5V-3Cr Alloys

    Science.gov (United States)

    Marvel, Christopher J.; Sabol, Joseph C.; Pasang, Timotius; Watanabe, Masashi; Misiolek, Wojciech Z.

    2017-04-01

    It is well-known that ω-phase precipitates embrittle Ti-5553 alloys and that ω-phase embrittlement can be overcome with appropriate heat treatments. However, the microstructural evolution of electron-beam welded Ti-5553 is not as understood as compared to the cast or wrought material. This study compared the microstructures of as-welded and post-weld heat-treated specimens by scanning and transmission electron microscopy, and similarly compared the localized mechanical behavior of the fusion zones with microhardness testing and digital image correlation coupled tensile testing. The primary observations were that the embrittling ω-phase precipitates formed upon cooling, and could not be fully solutionized in a single-step treatment of 1077 K (804 °C) for 1 hour. It was also discovered that nanoscale α-phase precipitates nucleated after the single-step treatment, although they were small in number and sparsely distributed. However, a two-step heat treatment of 1077 K (804 °C) for 1 hour and 873 K (600 °C) for 4 hours completely solutionized the ω-phase and produced a dense network of 2- μm-wide α-phase plates, which significantly improved the mechanical properties. Overall, this study has shown that post-weld heat treatments improve the strength and ductility of electron-beam welded Ti-5553 alloys by controlling ω- and α-phase evolution.

  3. Tribological Investigations of Hard-Faced Layers and Base Materials of Forging Dies with Different Kinds of Lubricants Applied

    Directory of Open Access Journals (Sweden)

    V. Lazić

    2010-12-01

    Full Text Available This paper gives a procedure for choosing the right technology for reparative hard facing of damaged forging dies. Since they are subject to impact loads and cyclic temperature elevations, forging dies should be made of steel that is able to withstand great impact loads, maintain good mechanical properties at elevated temperatures and that is resistant to wear and thermal fatigue. For these reasons, forging dies are made of conditionally weldable alloy tool steels; however it makes hard facing of damaged tools even more difficult. In this paper, wear resistance of base materials, hard-faced layers and heat-affected zones are tribologically investigated when two different lubricants - pure synthetical oil LM 76 and LM 76 with 6% molybdenum disulfide (MoS2 are applied. Tribological investigations have shown that the wear resistance of the hard faced layers is considerably greater than the wear resistance of the base material. However, the base material has better properties concerning friction.

  4. Numerical Investigation of Residual Stress in Thick Titanium Alloy Plate Joined with Electron Beam Welding

    Science.gov (United States)

    Liu, Chuan; Wu, Bing; Zhang, Jian Xun

    2010-10-01

    A finite-element (FE) simulation process integrating three dimensional (3D) with two-dimensional (2D) models is introduced to investigate the residual stress of a thick plate with 50-mm thickness welded by an electron beam. A combined heat source is developed by superimposing a conical volume heat source and a uniform surface heat source to simulate the temperature field of the 2D model with a fine mesh, and then the optimal heat source parameters are employed by the elongated heat source for the 3D simulation without trial simulations. The welding residual stress also is investigated with emphasis on the through-thickness stress for the thick plate. Results show that the agreement between simulation and experiment is good with a reasonable degree of accuracy in respect to the residual stress on the top surface and the weld profile. The through-thickness residual stress of the thick plate induced by electron beam welding is distinctly different from that of the arc welding presented in the references.

  5. Evaluation of Creep Strength of Heterogeneous Welded Joint in HR6W Alloy and Sanicro 25 Steel

    Directory of Open Access Journals (Sweden)

    Zieliński A.

    2017-12-01

    Full Text Available This article presents the results of investigations on HR6W alloy and Sanicro 25 steel and the dissimilar welded joint made of them. The characteristic images of microstructure of the investigated materials in the as-received condition and following the creep test, observed with a scanning electron microscope (SEM, are shown. The X-ray analysis of phase composition of the existing precipitates was carried out. The method for evaluation of creep strength based on abridged creep tests carried out at a temperature higher than the design one is presented. The obtained results do not deviate from the values of creep strength determined in long-term creep tests. The maximum difference in creep strength of the investigated materials is ±20%, which is in compliance with the acceptable scatter band. The methodology presented can be used for verification of creep strength (life time of the material of finished components to be operated under creep conditions.

  6. Prediction of corrosion fatigue crack initiation behavior of A7N01P-T4 aluminum alloy welded joints

    Science.gov (United States)

    An, J.; Chen, J.; Gou, G.; Chen, H.; Wang, W.

    2017-07-01

    Through investigating the corrosion fatigue crack initiation behavior of A7N01P-T4 aluminum alloy welded joints in 3.5 wt.% NaCl solution, corrosion fatigue crack initiation life is formulated as Ni = 6.97 × 1012[Δσeqv1.739 - 491.739]-2 and the mechanism of corrosion fatigue crack initiation is proposed. SEM and TEM tests revealed that several corrosion fatigue cracks formed asynchronously and the first crack does not necessarily develop into the leading crack. The uneven reticular dislocations produced by fatigue loading are prone to piling up and tangling near the grain boundaries or the second phases and form the “high dislocation-density region” (HDDR), which acts as an anode in microbatteries and dissolved to form small crack. Thus the etching pits, HDDR near the grain boundaries and second phases are confirmed as the main causes inducing the initiation of fatigue crack.

  7. Shielded Metal Arc Welding and Carbon Arc Cutting--Air. Teacher Edition [and] Student Edition [and] Student Workbook. Third Edition.

    Science.gov (United States)

    Harper, Eddie; Knapp, John

    This document contains the teacher and student texts and student workbook for a secondary-level course in shielded metal arc welding (SMAW) and carbon arc cutting that consists of units on the following topics: SMAW safety; SMAW equipment, applications, and techniques; hardfacing; and carbon arc cutting--air. The teacher edition includes the…

  8. Evaluation of Microstructure, Mechanical Properties and Corrosion Resistance of Friction Stir-Welded Aluminum and Magnesium Dissimilar Alloys

    Science.gov (United States)

    Verma, Jagesvar; Taiwade, Ravindra V.; Sapate, Sanjay G.; Patil, Awanikumar P.; Dhoble, Ashwinkumar S.

    2017-10-01

    Microstructure, mechanical properties and corrosion resistance of dissimilar friction stir-welded aluminum and magnesium alloys were investigated by applying three different rotational speeds at two different travel speeds. Sound joints were obtained in all the conditions. The microstructure was examined by an optical and scanning electron microscope, whereas localized chemical information was studied by energy-dispersive spectroscopy. Stir zone microstructure showed mixed bands of Al and Mg with coarse and fine equiaxed grains. Grain size of stir zone reduced compared to base metals, indicated by dynamic recrystallization. More Al patches were observed in the stir zone as rotational speed increased. X-ray diffraction showed the presence of intermetallics in the stir zone. Higher tensile strength and hardness were obtained at a high rotational speed corresponding to low travel speed. Tensile fractured surface indicated brittle nature of joints. Dissimilar friction stir weld joints showed different behaviors in different corrosive environments, and better corrosion resistance was observed at a high rotational speed corresponding to low travel speed (FW3) in a sulfuric and chloride environments. Increasing travel speed did not significantly affect on microstructure, mechanical properties and corrosion resistance as much as the rotational speed.

  9. Evaluation of Microstructure, Mechanical Properties and Corrosion Resistance of Friction Stir-Welded Aluminum and Magnesium Dissimilar Alloys

    Science.gov (United States)

    Verma, Jagesvar; Taiwade, Ravindra V.; Sapate, Sanjay G.; Patil, Awanikumar P.; Dhoble, Ashwinkumar S.

    2017-09-01

    Microstructure, mechanical properties and corrosion resistance of dissimilar friction stir-welded aluminum and magnesium alloys were investigated by applying three different rotational speeds at two different travel speeds. Sound joints were obtained in all the conditions. The microstructure was examined by an optical and scanning electron microscope, whereas localized chemical information was studied by energy-dispersive spectroscopy. Stir zone microstructure showed mixed bands of Al and Mg with coarse and fine equiaxed grains. Grain size of stir zone reduced compared to base metals, indicated by dynamic recrystallization. More Al patches were observed in the stir zone as rotational speed increased. X-ray diffraction showed the presence of intermetallics in the stir zone. Higher tensile strength and hardness were obtained at a high rotational speed corresponding to low travel speed. Tensile fractured surface indicated brittle nature of joints. Dissimilar friction stir weld joints showed different behaviors in different corrosive environments, and better corrosion resistance was observed at a high rotational speed corresponding to low travel speed (FW3) in a sulfuric and chloride environments. Increasing travel speed did not significantly affect on microstructure, mechanical properties and corrosion resistance as much as the rotational speed.

  10. Genesis of the microstructures during friction stir welding of aluminium alloys of the series 2000 and 5000 and resulting mechanical behavior; Genese des microstructures lors du soudage par friction malaxage d'alliages d'aluminium de la serie 2000 et 5000 et comportement mecanique resultant

    Energy Technology Data Exchange (ETDEWEB)

    Genevois, C.

    2004-09-15

    The 2024 alloy (Al-Cu-Mg) is used for minimizing the weight of structural components in the transportation industry. However, this alloy is not easy to weld by traditional techniques. Friction stir welding (FSW) is a recently developed solid state process which removes the solidification defects. In this study, the microstructures of FSW welds of this alloy were finely characterized by SAXS, DSC, TEM, SEM, EBSD and optical microscopy. In order to highlight the interactions between deformation, precipitation and recrystallization, which all take place during the welding of the 2024 alloy, model experiments were carried out as well as a comparative study between the alloys 5251 and 2024. The combination of the welding characterisation and the model experiments allow to define the metallurgical phenomena controlling the mechanical strength of the welded joints and their microstructure. In addition, a detailed characterisation of the mechanical behaviour of the welded joints was carried out, validated by a finite element model. (author)

  11. Characterization of stress corrosion cracks in Ni-based weld alloys 52, 52M and 152 grown in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yi [Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210 (United States); Wu, Yaqiao; Burns, Jatuporn [Department of Materials Science and Engineering, Boise State University, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83401 (United States); Zhang, Jinsuo, E-mail: zhang.3558@osu.edu [Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210 (United States)

    2016-02-15

    Ni-based weld alloys 52, 52M and 152 are extensively used in repair and mitigation of primary water stress corrosion cracking (SCC) in nuclear power plants. In the present study, a series of microstructure and microchemistry at the SCC tips of these alloys were examined with scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), scanning transmission electron microscopy (STEM) and energy filtered transmission electron microscopy (EFTEM). The specimens have similar chemical compositions and testing conditions. Intergranular (IG) and transgranular (TG) SCC was observed in all of them. The cracks were filled with nickel-oxides and partial precipitations of chrome carbides (CrCs), niobium carbides (NbCs), titanium nitrides (TiNs) and silicon carbides (SiCs), while iron (Fe) was largely dissolved into the solution. However, the crack densities, lengths and distributions were different for all three specimens. - Highlights: • Microstructure and microchemistry at the SCC tips of Ni-based weld alloys 52, 52M and 152 were examined. • The crack densities, lengths and distributions were found to be different for different alloys. • IGSCC and TGSCC were observed on alloy 52, only TGSCC was observed on alloy 52M and 152. • The cracks were filled by Ni-oxides and precipitated CrCs, NbCs, TiNs and SiCs.

  12. In situ Raman spectroscopic analysis of surface oxide films on Ni-base alloy/low alloy steel dissimilar metal weld interfaces in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongjin; Choi, Kyung Joon [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Bahn, Chi Bum [School of Mechanical Engineering, Pusan National University 2, 63-gil, Geumjeong-Gu, Pusan 609-735 (Korea, Republic of); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2014-06-01

    In situ Raman spectroscopy has been applied to analyze the surface oxide films formed on dissimilar metal weld (DMW) interfaces of nickel-base alloy/low alloy steel under hydrogenated high-temperature water condition. For the analysis of the oxide films under high temperature/pressure aqueous conditions, an in situ Raman spectroscopy system was developed by constructing a hydrothermal cell where the entire optics including the excitation laser and the Raman light collection system were located at the nearest position to the specimen by means of immersion optics. In situ Raman spectra of the DMW interfaces were collected in hydrogenated water condition at different temperatures up to 300 °C. The measured in situ Raman spectra showed peaks of Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and Fe{sub 3}O{sub 4} at the DMW interface. It is considered that differences in the oxide chemistry originated from the chemical element distribution inside of the DMW interface region.

  13. Electron Beam Welding Characteristics of Cast Iron and Bonding of Mild Steel to Cast Iron by using Iron-base Alloy of High Nickel Content

    Science.gov (United States)

    Hatate, Minoru; Shiota, Toshio; Nagasaki, Yoichi; Abe, Nobuyuki; Amano, Masaharu; Tanaka, Toshio

    Bonding characteristics of mild steel to cast iron using electron beam welding (EBW) process are investigated from the viewpoint of microstructure and mechanical properties. When the electron beam is radiated to a cast iron, remelting of the surface and corresponding rapid cooling take place, and it results in formation of brittle fine-cementite structure whose hardness is over 700 Hv. As Ni is an alloying element that may prevent formation of cementite, we compare two kinds of welding methods with Ni addition. One method is EBW process, radiating the electron beam to a thin plate made of spheroidal graphite cast iron with a high Ni content after the plate inserts between cast iron and steel, and other one is a metal active gas (MAG) welding process using a Fe-Ni wire. Bonding tensile strength by EBW process is higher than that by MAG welding process. In case of welding of cast iron and other metallic material, EBW process is found to be more advantageous than MAG welding process.

  14. Wear characteristics and defects analysis of friction stir welded joint of aluminium alloy 6061-t6

    Czech Academy of Sciences Publication Activity Database

    Kumar, R.; Chattopadhyaya, S.; Hloch, Sergej; Krolczyk, G.; Legutko, S.

    2016-01-01

    Roč. 18, č. 1 (2016), s. 128-135 ISSN 1507-2711 Institutional support: RVO:68145535 Keywords : Friction stir welding (FSW) * grinding machine * Field Emission Scanning Electron Microscope (FESEM) Subject RIV: JQ - Machines ; Tools Impact factor: 1.145, year: 2016 http://www.ein.org.pl/2016-01-17

  15. Characterization of Residual Stress Effects on Fatigue Crack Growth of a Friction Stir Welded Aluminum Alloy

    Science.gov (United States)

    Newman, John A.; Smith, Stephen W.; Seshadri, Banavara R.; James, Mark A.; Brazill, Richard L.; Schultz, Robert W.; Donald, J. Keith; Blair, Amy

    2015-01-01

    An on-line compliance-based method to account for residual stress effects in stress-intensity factor and fatigue crack growth property determinations has been evaluated. Residual stress intensity factor results determined from specimens containing friction stir weld induced residual stresses are presented, and the on-line method results were found to be in excellent agreement with residual stress-intensity factor data obtained using the cut compliance method. Variable stress-intensity factor tests were designed to demonstrate that a simple superposition model, summing the applied stress-intensity factor with the residual stress-intensity factor, can be used to determine the total crack-tip stress-intensity factor. Finite element, VCCT (virtual crack closure technique), and J-integral analysis methods have been used to characterize weld-induced residual stress using thermal expansion/contraction in the form of an equivalent delta T (change in local temperature during welding) to simulate the welding process. This equivalent delta T was established and applied to analyze different specimen configurations to predict residual stress distributions and associated residual stress-intensity factor values. The predictions were found to agree well with experimental results obtained using the crack- and cut-compliance methods.

  16. A comparative study of microstructure and mechanical properties between friction stir welded single and double phase brass alloys

    Energy Technology Data Exchange (ETDEWEB)

    Heidarzadeh, A.; Saeid, T., E-mail: saeid@sut.ac.ir

    2016-01-01

    This study was done in order to compare the microstructure and mechanical properties of friction stir welded single and double phase brass alloys. The microstructure of the joints were examined using optical microscope, scanning electron microscope (SEM), scanning transmission electron microscope (STEM), and X-ray diffraction. Furthermore, tensile test and fractography were applied to evaluate the mechanical properties of the joints. The results showed that the grain size of the stir zone in the double phase joint was smaller than that of the single phase alloy. In comparison with base metals, both of the joints contained high density of dislocations with a qualitatively similar texture. However, the dislocation density of the double phase joint was somewhat lower than that of the single phase one. Moreover, the joints had higher tensile strength, lower elongation and less ductile fracture compared to their base metals due to their finer grain size and higher dislocation density. The double phase joint had higher strength and lower elongation than single phase joint due to the effect of the second phase.

  17. Reactive resistance welding of Ti6Al4V alloy with the use of Ni(V)/Al multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Lukasz; Morgiel, Jerzy [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow (Poland); Mars, Krzysztof; Godlewska, Elzbieta [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow (Poland)

    2017-02-15

    The freestanding Ni(V)/Al multilayer foil was applied as a filler material in order to join Ti6Al4V alloy with the use of reactive resistance welding (RRW) technique. Present investigations, performed with the use of transmission electron microscopy (TEM) method, allowed to show that an application of high current (I = 400 A for 2 min in vacuum conditions ∝10{sup -1} mbar) transformed the Ni(V)/Al multilayers into fine grain (<300 nm) NiAl phase. It also showed that the RRW process led to the formation of firm connection with nanoporosity limited only to the original contact plane between base material and the foil. Simultaneously, the formation of a narrow strip of crystallites of Ti{sub 3}Al intermetallic phase elongated along the joint line (average size of ∝200 nm) was observed. The base material was separated from the joint area by a layer of up to ∝2 μm thickness of nearly defect free α-Ti and β-Ti grains from a heat affected zone (HAZ). The performed experiment proved that Ni(V)/Al multilayer could serve as a filler material for joining of Ti6Al4V alloys even without additional solder layer. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. The Tribological Performance of Hardfaced/ Thermal Sprayed Coatings for Increasing the Wear Resistance of Ventilation Mill Working Parts

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2015-09-01

    Full Text Available During the coal pulverizing, the working parts of the ventilation mill are being worn by the sand particles. For this reason, the working parts are usually protected with materials resistant to wear (hardfaced/thermal sprayed coatings. The aim of this study was to evaluate the tribological performance of four different types of coatings as candidates for wear protection of the mill’s working parts. The coatings were produced by using the filler materials with the following nominal chemical composition: NiFeBSi-WC, NiCrBSiC, FeCrCTiSi, and FeCrNiCSiBMn, and by using the plasma arc welding and flame and electric arc spraying processes. The results showed that Ni-based coatings exhibited higher wear resistance than Fe-based coatings. The highest wear resistance showed coating produced by using the NiFeBSi-WC filler material and plasma transferred arc welding deposition process. The hardness was not the only characteristic that affected the wear resistance. In this context, the wear rate of NiFeBSi-WC coating was not in correlation with its hardness, in contrast to other coatings. The different wear performance of NiFeBSi-WC coating was attributed to the different type and morphological features of the reinforcing particles (WC.

  19. Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Nan, E-mail: xunan@hhu.edu.cn; Bao, Yefeng

    2016-02-08

    In this study, tungsten inert gas (TIG) welded AZ31 magnesium alloy joint was subjected to two-pass rapid cooling friction stir processing (RC-FSP). The main results show that, two-pass RC-FSP causes the significant dissolution of the coarse eutectic β-Mg{sub 17}Al{sub 12} phase into the magnesium matrix and the remarkable grain refinement in the stir zone. The low-hardness region which frequently located at heat-affected zone was eliminated. The stir zone showed ultrafine grains of 3.1 μm, and exhibited a good combination of ultrahigh tensile strength of 284 MPa and large elongation of 7.1%. This work provides an effective strategy to enhance the strength of TIG welded magnesium alloy joint without ductility loss.

  20. Full-Field Strain Behavior of Friction Stir-Welded Titanium Alloy

    National Research Council Canada - National Science Library

    Greenwell, Trent A

    2008-01-01

    .... Due to properties of high strength, low weight, high heat tolerance, and exceptional corrosion resistance, titanium alloys are used extensively in a number of industries, such as power production...