WorldWideScience

Sample records for weizmann institute scientists

  1. Recent work on superconducting QWRs at the Weizmann Institute (invited)

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Sokolowski, J.S.

    1986-01-01

    Recent work on superconducting quarter-wave resonators (QWR) at the Weizmann Institute of Science is reported. Two subjects are discussed: the performance of these resonators as particle acceleration devices in the booster module recently installed at the accelerator laboratory and new aspects of the electron multipactoring phenomenon in these resonators

  2. Weizmann ties with Cambridge in physics contest

    CERN Multimedia

    Siegel, J

    2004-01-01

    "Scientists and students from the Weizmann Institute of Science in Rehovot and Cambridge University in England have tied for first place in a physics competition aimed at simulating the future functioning of the particle accelerator being built at the European center CERN and due to open in 2007" (1/2 page)

  3. 29 March 2011 - Ninth President of Israel S.Peres welcomed by CERN Director-General R. Heuer who introduces Council President M. Spiro, Director for Accelerators and Technology S. Myers, Head of International Relations F. Pauss, Physics Department Head P. Bloch, Technology Department Head F. Bordry, Human Resources Department Head A.-S. Catherin, Beams Department Head P. Collier, Information Technology Department Head F. Hemmer, Adviser for Israel J. Ellis, Legal Counsel E. Gröniger-Voss, ATLAS Collaboration Spokesperson F. Gianotti, Former ATLAS Collaboration Spokesperson P. Jenni, Weizmann Institute G. Mikenberg, CERN VIP and Protocol Officer W. Korda.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    During his visit he toured the ATLAS underground experimental area with Giora Mikenberg of the ATLAS collaboration, Weizmann Institute of Sciences and Israeli industrial liaison office, Rolf Heuer, CERN’s director-general, and Fabiola Gianotti, ATLAS spokesperson. The president also visited the CERN computing centre and met Israeli scientists working at CERN.

  4. Russian scientists make desperate plea to save nuclear institute

    CERN Multimedia

    2003-01-01

    Scientists from a Russian nuclear research institute recently held a news conference in Moscow to publicize their work on a revolutionary new type of nuclear reactor. However, it transpired that the scientists were worried about their institute being closed down, and saw the news conference as an opportunity to draw attention to their plight (1 page).

  5. Top scientists join Stephen Hawking at Perimeter Institute

    Science.gov (United States)

    Banks, Michael

    2009-03-01

    Nine leading researchers are to join Stephen Hawking as visiting fellows at the Perimeter Institute for Theoretical Physics in Ontario, Canada. The researchers, who include string theorists Leonard Susskind from Stanford University and Asoka Sen from the Harisch-Chandra Research Institute in India, will each spend a few months of the year at the institute as "distinguished research chairs". They will be joined by another 30 scientists to be announced at a later date.

  6. Scientists in a Changed Institutional Environment: Subjective Adaptation and Social Responsibility Norms in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, T P; Ball, D Y

    2008-06-05

    How do scientists react when the institutional setting in which they conduct their work changes radically? How do long-standing norms regarding the social responsibility of scientists fare? What factors influence whether scientists embrace or reject the new institutions and norms? We examine these questions using data from a unique survey of 602 scientists in Russia, whose science system experienced a sustained crisis and sweeping changes in science institutions following the collapse of the Soviet Union. We develop measures of how respondents view financing based on grants and other institutional changes in the Russian science system, as well as measures of two norms regarding scientists social responsibility. We find that the majority of scientists have adapted, in the sense that they hold positive views of the new institutions, but a diversity of orientations remains. Social responsibility norms are common among Russian scientists, but far from universal. The main correlates of adaptation are age and current success at negotiating the new institutions, though prospective success, work context, and ethnicity have some of the hypothesized associations. As for social responsibility norms, the main source of variation is age: younger scientists are more likely to embrace individualistic rather than socially-oriented norms.

  7. The communications gap between scientists and public: More scientists and their institutions feel a need to communicate the results and nature of research with the public

    OpenAIRE

    Hunter, Philip

    2016-01-01

    Scientists and scientific institutions see an increasing need for outreach and communication to counter potentially dangerous misconceptions about science, or misinformation by lobbying groups. Along these lines, communication from scientists to the public is becoming more professional and better targeted to the audience.

  8. "A good personal scientific relationship": Philip Morris scientists and the Chulabhorn Research Institute, Bangkok.

    Science.gov (United States)

    Mackenzie, Ross; Collin, Jeff

    2008-12-23

    This paper examines the efforts of consultants affiliated with Philip Morris (PM), the world's leading transnational tobacco corporation, to influence scientific research and training in Thailand via the Chulabhorn Research Institute (CRI). A leading Southeast Asian institute for environmental health science, the CRI is headed by Professor Dr. Her Royal Highness Princess Chulabhorn, the daughter of the King of Thailand, and it has assumed international significance via its designation as a World Health Organization (WHO) Collaborating Centre in December 2005. This paper analyses previously confidential tobacco industry documents that were made publicly available following litigation in the United States. PM documents reveal that ostensibly independent overseas scientists, now identified as industry consultants, were able to gain access to the Thai scientific community. Most significantly, PM scientist Roger Walk has established close connections with the CRI. Documents indicate that Walk was able to use such links to influence the study and teaching of environmental toxicology in the institute and to develop relations with key officials and local scientists so as to advance the interests of PM within Thailand and across Asia. While sensitivities surrounding royal patronage of the CRI make public criticism extremely difficult, indications of ongoing involvement by tobacco industry consultants suggest the need for detailed scrutiny of such relationships. The establishment of close links with the CRI advances industry strategies to influence scientific research and debate around tobacco and health, particularly regarding secondhand smoke, to link with academic institutions, and to build relationships with national elites. Such strategies assume particular significance in the national and regional contexts presented here amid the globalisation of the tobacco pandemic. From an international perspective, particular concern is raised by the CRI's recently awarded status

  9. "A good personal scientific relationship": Philip Morris scientists and the Chulabhorn Research Institute, Bangkok.

    Directory of Open Access Journals (Sweden)

    Ross Mackenzie

    2008-12-01

    Full Text Available This paper examines the efforts of consultants affiliated with Philip Morris (PM, the world's leading transnational tobacco corporation, to influence scientific research and training in Thailand via the Chulabhorn Research Institute (CRI. A leading Southeast Asian institute for environmental health science, the CRI is headed by Professor Dr. Her Royal Highness Princess Chulabhorn, the daughter of the King of Thailand, and it has assumed international significance via its designation as a World Health Organization (WHO Collaborating Centre in December 2005.This paper analyses previously confidential tobacco industry documents that were made publicly available following litigation in the United States. PM documents reveal that ostensibly independent overseas scientists, now identified as industry consultants, were able to gain access to the Thai scientific community. Most significantly, PM scientist Roger Walk has established close connections with the CRI. Documents indicate that Walk was able to use such links to influence the study and teaching of environmental toxicology in the institute and to develop relations with key officials and local scientists so as to advance the interests of PM within Thailand and across Asia. While sensitivities surrounding royal patronage of the CRI make public criticism extremely difficult, indications of ongoing involvement by tobacco industry consultants suggest the need for detailed scrutiny of such relationships.The establishment of close links with the CRI advances industry strategies to influence scientific research and debate around tobacco and health, particularly regarding secondhand smoke, to link with academic institutions, and to build relationships with national elites. Such strategies assume particular significance in the national and regional contexts presented here amid the globalisation of the tobacco pandemic. From an international perspective, particular concern is raised by the CRI's recently

  10. Soviet scientists in chinese institutes: A historical study of cooperation between the two academies of sciences in 1950s.

    Science.gov (United States)

    Zhang, Jiuchen; Yu, Feklova T

    2018-03-01

    In the 1950s, the Chinese Academy of Sciences (CAS) engaged in close cooperation with the Soviet Academy of Sciences. The CAS sent scientists to the Soviet Academy to work as interns, study for advanced degrees, or engage in academic cooperation, and a large number of Soviet scientists were invited by the various institutes of the CAS to come to China to give lectures, direct research, help make scientific plans, and collaborate. The comprehensive cooperation between the two academies was launched at a time when the CAS institutes were in their embryonic stage, which suggests that the better-established Soviet scientists had the opportunity to play a dominate role. But the reality is not so straightforward. The case studies in this paper suggest that besides the influence of compatible political movements in China and the Soviet Union and bilateral ties between these two nations' scientific institutes, disharmony in actual working relationships prevented Soviet scientists from playing the role they might have envisioned within the CAS institutes. The rapid development of the cooperative relationship in a short span of time, combined with lack of experience on both sides, made for a disharmonious collaboration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Fire Modeling Institute: FY2012 Annual Report: Bridging scientists and managers

    Science.gov (United States)

    Robin J. Innes

    2013-01-01

    The Fire Modeling Institute (FMI) brings the best available fire and fuel science and technology developed throughout the research community to bear in fire-related management issues. Although located within the Fire, Fuel, and Smoke Science Program of the U.S. Forest Service Rocky Mountain Research Station, FMI is a national and international resource, serving fire...

  12. Conference 'Republic Anniversary Conference of young scientists, dedicated to 30 thirtieth anniversary of Institute of Chemistry of Academy of Sciences of Republic of Tajikistan' Proceedings

    International Nuclear Information System (INIS)

    1986-04-01

    This collection of thesis of Republic Anniversary Conference of young scientists, dedicated to 30 thirtieth anniversary of Institute of Chemistry of Academy of Sciences of Republic of Tajikistan present the results of investigation of young scientists-chemists of Tajikistan which was carried out from 1974 till 1976 years in the area of physical, nonorganic, analytical, applied and organic chemistry. They are consider the questions of matters synthesis with beforehand given properties

  13. The WeIzmann Supercooled Droplets Observation on a Microarray (WISDOM and application for ambient dust

    Directory of Open Access Journals (Sweden)

    N. Reicher

    2018-01-01

    Full Text Available The WeIzmann Supercooled Droplets Observation on Microarray (WISDOM is a new setup for studying ice nucleation in an array of monodisperse droplets for atmospheric implications. WISDOM combines microfluidics techniques for droplets production and a cryo-optic stage for observation and characterization of freezing events of individual droplets. This setup is designed to explore heterogeneous ice nucleation in the immersion freezing mode, down to the homogeneous freezing of water (235 K in various cooling rates (typically 0.1–10 K min−1. It can also be used for studying homogeneous freezing of aqueous solutions in colder temperatures. Frozen fraction, ice nucleation active surface site densities and freezing kinetics can be obtained from WISDOM measurements for hundreds of individual droplets in a single freezing experiment. Calibration experiments using eutectic solutions and previously studied materials are described. WISDOM also allows repeatable cycles of cooling and heating for the same array of droplets. This paper describes the WISDOM setup, its temperature calibration, validation experiments and measurement uncertainties. Finally, application of WISDOM to study the ice nucleating particle (INP properties of size-selected ambient Saharan dust particles is presented.

  14. European Innovation Partnership on Active and Healthy Ageing (EIP on AHA – the opportunities for Polish scientists and institutions

    Directory of Open Access Journals (Sweden)

    Kardas Przemysław

    2016-05-01

    Full Text Available Europe is facing great social and economic challenges now, being a result of the ageing process progressing faster than ever. This, however, might be perceived also as an opportunity for innovation, as well as an additional impulse for the so-called “Silver Economy”. To address these new needs and opportunities, the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA was initiated by the European Commission in 2012. After three years of its activity, it has proved to be a strong movement of European stakeholders committed to innovation, with its overarching target to increase the average healthy lifespan by two years by 2020. The ‘Triple Win’ strategy for Europe is based on the concepts of enabling the EU citizens to lead healthy, active and independent lives while ageing, improving the sustainability and efficiency of social and health care systems, and boosting and improving the competitiveness of markets for innovative products and services. Now, the EIP on AHA opens new calls that enable new stakeholders to become partners of this collaboration. This provides a unique opportunity to Polish institutions, as well as scientists. In order to help them use this opportunity effectively, the history, aims, structure and achievements of the EIP on AHA are shortly described in this paper.

  15. Key Barriers for Academic Institutions Seeking to Retain Female Scientists and Engineers: Family-Unfriendly Policies. Low Numbers, Stereotypes, and Harassment

    Science.gov (United States)

    Rosser, Sue V.; Lane, Eliesh O'neil

    At the end of a special meeting held at the Massachusetts Institute of Technology in January 2001, a statement released on behalf of the most prestigious U. S. research universities suggested that institutional harriers have prevented viomen from having a level playing field in science and engineering. In 2001, the National Science Foundation initiated a new awards program, ADVANCE, focusing on institutional rather than individual solutions to empower women to participate fully in science and technology. In this study, the authors evaluate survey responses from almost 400 Professional Opportunities for Women in Research and Education awardees from fiscal years 1997 to 2000 to elucidate problems and opportunities identified by female scientists and engineers. Besides other issues, the respondents identified balancing a career and a family as the most significant challenge facing female scientists and engineers today. Institutions must seek to remove or at least lower these and other harriers to attract and retain female scientists and engineers. Grouping the survey responses into four categories forms the basis for four corresponding policy areas, which could be addressed at the institutional level to mitigate the difficulties and challenges currently experienced by female scientists and engineers.

  16. State Incentives for Innovation, Star Scientists, and Jobs: Evidence from Biotech. Upjohn Institute Working Paper No. 14-203

    Science.gov (United States)

    Moretti, Enrico; Wilson, Daniel J.

    2013-01-01

    We evaluate the effects of state-provided financial incentives for biotech companies, which are part of a growing trend of placed-based policies designed to spur innovation clusters. We estimate that the adoption of subsidies for biotech employers by a state raises the number of star biotech scientists in that state by about 15 percent over a…

  17. How Scientists Can Become Entrepreneurs.

    Science.gov (United States)

    Thon, Jonathan N; Karlsson, Sven

    2017-05-01

    Translating basic research discoveries through entrepreneurship must be scientist driven and institutionally supported to be successful (not the other way around). Here, we describe why scientists should engage in entrepreneurship, where institutional support for scientist-founders falls short, and how these challenges can be overcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Peer Mentoring at the Uganda Cancer Institute: A Novel Model for Career Development of Clinician-Scientists in Resource-Limited Settings

    Directory of Open Access Journals (Sweden)

    Warren Phipps

    2018-03-01

    Full Text Available Cancer centers are beginning to emerge in low- and middle-income countries despite having relatively few oncologists and specialists in related fields. Uganda, like many countries in sub-Saharan Africa, has a cadre of highly motivated clinician-scientists-in-training who are committed to developing the capacity for cancer care and research. However, potential local mentors for these trainees are burdened with uniquely high demands on their time for clinical care, teaching, institutional development, advocacy, and research. Facilitated peer mentoring helps to fill skills and confidence gaps and teaches mentoring skills so that trainees can learn to support one another and regularly access a more senior facilitator/role model. With an added consultant component, programs can engage limited senior faculty time to address specific training needs and to introduce junior investigators to advisors and even potential dyadic mentors. Two years after its inception, our facilitated peer mentoring career development program at the Uganda Cancer Institute in Kampala is successfully developing a new generation of researchers who, in turn, are now providing role models and mentors from within their group. This program provides a practical model for building the next generation of clinical scientists in developing countries.

  19. Engaging Students and Teachers in Immersive Learning Experiences Alongside NASA Scientists and With Support from Institutional Partnerships

    Science.gov (United States)

    Jones, A. P.; Bleacher, L.; Glotch, T. D.; Heldmann, J. L.; Bleacher, J. E.; Young, K. E.; Selvin, B.; Firstman, R.; Lim, D. S. S.; Johnson, S. S.; Kobs-Nawotniak, S. E.; Hughes, S. S.

    2015-12-01

    The Remote, In Situ, and Synchrotron Studies for Science and Exploration (RIS4E) and Field Investigations to Enable Solar System Science and Exploration (FINESSE) teams of NASA's Solar System Exploration Research Virtual Institute conduct research that will help us more safely and effectively explore the Moon, Near Earth Asteroids, and the moons of Mars. These teams are committed to making their scientific research accessible and to using their research as a lens through which students and teachers can better understand the process of science. In partnership with the Alan Alda Center for Communicating Science at Stony Brook University, in spring of 2015 the RIS4E team offered a semester-long course on science journalism that culminated in a 10-day reporting trip to document scientific fieldwork in action during the 2015 RIS4E field campaign on the Big Island of Hawaii. Their work is showcased on ReportingRIS4E.com. The RIS4E science journalism course is helping to prepare the next generation of science journalists to accurately represent scientific research in a way that is appealing and understandable to the public. It will be repeated in 2017. Students and teachers who participate in FINESSE Spaceward Bound, a program offered in collaboration with the Idaho Space Grant Consortium, conduct science and exploration research in Craters of the Moon National Monument and Preserve. Side-by-side with NASA researchers, they hike through lava flows, operate field instruments, participate in science discussions, and contribute to scientific publications. Teachers learn about FINESSE science in the field, and bring it back to their classrooms with support from educational activities and resources. The second season of FINESSE Spaceward Bound is underway in 2015. We will provide more information about the RIS4E and FINESSE education programs and discuss the power of integrating educational programs within scientific programs, the strength institutional partnerships can

  20. Robust Scientists

    DEFF Research Database (Denmark)

    Gorm Hansen, Birgitte

    their core i nterests, 2) developing a selfsupply of industry interests by becoming entrepreneurs and thus creating their own compliant industry partner and 3) balancing resources within a larger collective of researchers, thus countering changes in the influx of funding caused by shifts in political...... knowledge", Danish research policy seems to have helped develop politically and economically "robust scientists". Scientific robustness is acquired by way of three strategies: 1) tasting and discriminating between resources so as to avoid funding that erodes academic profiles and push scientists away from...

  1. Key Barriers for Academic Institutions Seeking To Retain Female Scientists and Engineers: Family-Unfriendly Policies, Low Numbers, Stereotypes, and Harassment.

    Science.gov (United States)

    Rosser, Sue V.; Lane, Eliesh O'Neil

    2002-01-01

    Evaluates survey responses from almost (n=400) Professional Opportunities for Women in Research and Education (POWRE) awardees from fiscal years 1997-2000 to elucidate problems and opportunities identified by female scientists and engineers. (Contains 25 references.) (Author/YDS)

  2. 25th January 2011-Chief Scientist-Ministry of Industry,Trade and Labor-Mr Avi Hasson-Israel visiting the ATLAS Experiment at CERN

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    Photo 1-13:The delegation visiting ATLAS cavern with ATLAS Former Spokesperson Dr P. Jenni Photo 14:P. Jenni+ATLAS Collaboration Weizmann Institute of Sciences Israeli Industrial Liaison Office (ILO) Prof. Giora Mikenberg+Mr A. Hasson+Adviser for Israel Dr John Ellis+Commercial Attaché to Switzerland and Deputy Permanent Representative to the WTO Permanent Mission of Israel Mr Shai Moses Photo 15-22:Signature of the Guest Book with J. Ellis

  3. Soviet scientists speak out

    International Nuclear Information System (INIS)

    Holloway, D.

    1993-01-01

    In this article, Russian bomb designers answer the KGB's claim that espionage, not science, produced the Soviet bomb. Yuli Khariton and Yuri Smirnov wholly reject the argument that Soviet scientists can claim little credit for the first Soviet bomb. In a lecture delivered at the Kurchatov Institute, established in 1943 when Igor Kurchatov became the director of the Soviet nuclear weapons project, Khariton and Smironov point to the work done by Soviet nuclear physicists before 1941 and refute assertions that have been made in Western literature regarding the hydrogen bomb

  4. Strategic Institutional Change to Support Advancement of Women Scientists in the Academy: Lessons from a Study of ADVANCE-IT Projects

    Science.gov (United States)

    Laursen, S. L.; Austin, A. E.; Soto, M.; Martinez, D.

    2011-12-01

    While women's representation among undergraduate and graduate degree-earners has grown steadily in most science fields, progress at the faculty level has been slow to realize, especially in upper academic ranks and in higher status institutions. This is only partly explained by the slow turnover of faculty positions. While some efforts to address this issue have aimed to support individual women and foster their career success, the National Science Foundation's ADVANCE program has taken a different approach, calling for institutions to take a systemic and organizational approach to enhance women's representation in the academy. Since 2001, some 50 institutions have received ADVANCE Institutional Transformation (IT) awards to develop such systemic approaches. Most ADVANCE-IT projects have attended to structures (e.g. committee and departmental leadership roles), processes (e.g. hiring), policy (e.g. family leave), attitudes and awareness (e.g. training for chairs), and workplace climate, as well as interventions that focus on faculty members as valuable human resources. Our research team is studying ADVANCE institutions' approaches to organizational change, by identifying and categorizing individual change interventions, examining how they combine to build an overall change portfolio, and considering how change interventions are selected or adapted to fit a specific institutional context. Because universities are complex organizations composed of multiple, loosely coupled, interconnected sub-systems, an overall change strategy cannot depend on a single type of intervention. Yet any particular intervention might be deployed on behalf of multiple goals and in a variety of forms that may depend on the context, or institutional system, in which it is introduced. We will discuss some common types of strategic intervention used in ADVANCE-IT projects, categorized by Bolman and Deal's (1991) four main perspectives or "lenses" for understanding organizational issues. The

  5. Scientists from all over the world attended the 'Frederic Joliot/Otto Hahn Summer School 2011' at the Karlsruhe Institute of Technology (KIT)

    International Nuclear Information System (INIS)

    Sanchez, Victor H.; Fischer, Ulrich

    2011-01-01

    The Karlsruhe Institute of Technology (KIT) and the Commissariat r leEnergie Atomique et Aux Energies Alternatives (CEA), Cadarache, alternate in organizing the annual 'Frederic Joliot/Otto Hahn Summer School.' This year's event, the 17th since its inception, was held in Karlsruhe, Germany on August 25 to September 3. Its topic was 'High-fidelity Modeling for Nuclear Reactors: Challenges and Prospects.' Here is a list of the subjects covered: - Status and perspectives of modeling and its role in design, operation, and safety. - Thermal hydraulics of nuclear reactors and simulation of 2 phase flows. - Structural mechanics, structure? fluid interaction, and seismic safety. - Advanced simulation in neutronics and reactor physics. - Progress in simulating fuel and materials behavior. - Multiphysics and uncertainty analysis methods. Experts from eight leading international research institutions and universities presented, and discussed with the 59 participants from 19 countries, the current state of the art and most recent development trends in the subjects listed above. (orig.)

  6. The Local-Cosmopolitan Scientist

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, Ph.D., Hon. Ph.D.

    2011-12-01

    Full Text Available In contrast to previous discussions in the literature treating cosmopolitan and local as two distinct groups of scientists, this paperi demonstrates the notion of cosmopolitan and local as a dual orientation of highly motivated scientists. This dual orientation is derived from institutional motivation, which is a determinant of both high quality basic research and accomplishment of non-research organizational activities. The dual orientation arises in a context of similarity of the institutional goal of science with the goal of the organization; the distinction between groups of locals and cosmopolitans derives from a conflict between two goals.

  7. Scientists want more children.

    Directory of Open Access Journals (Sweden)

    Elaine Howard Ecklund

    Full Text Available Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  8. Scientists want more children.

    Science.gov (United States)

    Ecklund, Elaine Howard; Lincoln, Anne E

    2011-01-01

    Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows) who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  9. Scientists from all over the world attend the ''Frederic Joliot/Otto Hahn Summer School 2009'' at the Karlsruhe Institute of Technology (KIT)

    International Nuclear Information System (INIS)

    Sanchez Espinoza, Victor Hugo; Fischer, Ulrich

    2009-01-01

    The ''Frederic Joliot/Otto Hahn Summer School'' is organized each year alternately by the Karlsruhe Institute of Technology and the Commissariat a l'Energie Atomique (CEA), Cadarache. This year's Summer School, the 15th since its foundation, was run at the Advanced Training Center (FTU) of KIT Campus Nord on August 26 to September 4. The key topic this year was ''The Challenges in Implementing Fast Reactor Technology.'' These are the items discussed: Principles and challenges of future fast reactor designs, Fuels, fuel cycle, and recycling of minor actinides, Innovative cladding tube and structural materials, Special aspects of coolants and the challenges they pose, Fast reactor safety. Experts from 8 leading international research establishments and universities presented and discussed with the 58 participants from 16 countries the current state of the art and the latest development trends in the topics listed above. (orig.)

  10. The HIV and Drug Abuse Prevention Research Ethics Training Institute: Training Early-Career Scientists to Conduct Research on Research Ethics

    Science.gov (United States)

    Fisher, Celia B.; Yuko, Elizabeth

    2018-01-01

    The responsible conduct of HIV/drug abuse prevention research requires investigators with both the knowledge of and ability to generate empirical data that can enhance global ethical practices and policies. This article describes a multidisciplinary program offering early-career professionals a 2-year intensive summer curriculum along with funding to conduct a mentored research study on a wide variety of HIV/drug abuse research ethics topics. Now in its fifth year, the program has admitted 29 trainees who have to date demonstrated increased knowledge of research ethics, produced 17 peer-reviewed publications, 46 professional presentations, and submitted or been awarded five related federal grants. The institute also hosts a global information platform providing general and HIV/drug abuse relevant research ethics educational and research resources that have had more than 38,800 unique visitors from more than 150 countries. PMID:26564944

  11. The HIV and Drug Abuse Prevention Research Ethics Training Institute: Training Early-Career Scientists to Conduct Research on Research Ethics.

    Science.gov (United States)

    Fisher, Celia B; Yuko, Elizabeth

    2015-12-01

    The responsible conduct of HIV/drug abuse prevention research requires investigators with both the knowledge of and ability to generate empirical data that can enhance global ethical practices and policies. This article describes a multidisciplinary program offering early-career professionals a 2-year intensive summer curriculum along with funding to conduct a mentored research study on a wide variety of HIV/drug abuse research ethics topics. Now in its fifth year, the program has admitted 29 trainees who have to date demonstrated increased knowledge of research ethics, produced 17 peer-reviewed publications, 46 professional presentations, and submitted or been awarded five related federal grants. The institute also hosts a global information platform providing general and HIV/drug abuse relevant research ethics educational and research resources that have had more than 38,800 unique visitors from more than 150 countries. © The Author(s) 2015.

  12. I-tese Newsletter No. 21 Spring 2014. Quarterly newsletter of the Institute of Technique-Economics of Energetic Systems for scientists, managers, supervisors and decision-makers

    International Nuclear Information System (INIS)

    Devezeaux, Jean-Guy; Fabreguettes, Vincent; Gabriel, Sophie; Hache, Emmanuel; Hooge, Sophie; Kokshagina, Olga; Labussiere, Olivier; Le Masson, Pascal; Levillain, Kevin; Monnet, Antoine; Popiolek, Nathalie; Thais, Francoise; Weil, Benoit

    2014-01-01

    A first article presents and comments the energetic scenarios proposed by the ANCRE (Alliance Nationale de Coordination de la Recherche pour l'Energie) which gathers all French research institutions involved in the field of energy: reinforced sobriety (energy saving, energy efficiency, development of renewable energies), de-carbonation by electricity (energy efficiency, renewable and nuclear electricity), diversified vectors (local dimension, heat recovery, bio-energies, energy efficiency), nuclear and renewable, and trend (reference scenario corresponding to the present trend). Results are briefly discussed, notably in terms of primary and final energy consumption, of evolution of energy consumption per sector. Scenarios are assessed in terms of investment, of jobs, of impact on households, of energy independence and foreign trade, of impacts on the environment. A second article addresses the issue of the future of territories in the energy transition policy. A third article discusses why and how to develop generic technologies within the CEA (the authors discuss the contributions of an approach based on theories and methods of contemporary design)

  13. Scientists: Engage the Public!

    OpenAIRE

    Shugart, Erika C.; Racaniello, Vincent R.

    2015-01-01

    ABSTRACT Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or ?Sagan effect? associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist?s career. There are a varie...

  14. Voices of Romanian scientists

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    As Romania has now become a Member State of CERN, Romanian scientists share their thoughts about this new era of partnership for their community.   Members of ATLAS from Romanian institutes at CERN (from left to right): Dan Ciubotaru, Michele Renda, Bogdan Blidaru, Alexandra Tudorache, Marina Rotaru, Ana Dumitriu, Valentina Tudorache, Adam Jinaru, Calin Alexa. On 17 July 2016, Romania became the twenty-second Member State of CERN, 25 years after the first cooperation agreement with the country was signed. “CERN and Romania already have a long history of strong collaboration”, says Emmanuel Tsesmelis, head of Relations with Associate Members and Non-Member States. “We very much look forward to strengthening this collaboration as Romania becomes CERN’s twenty-second Member State, which promises the development of mutual interests in scientific research, related technologies and education,” he affirms. Romania&...

  15. A Serendipitous Scientist.

    Science.gov (United States)

    Lefkowitz, Robert J

    2018-01-06

    Growing up in a middle-class Jewish home in the Bronx, I had only one professional goal: to become a physician. However, as with most of my Vietnam-era MD colleagues, I found my residency training interrupted by the Doctor Draft in 1968. Some of us who were academically inclined fulfilled this obligation by serving in the US Public Health Service as commissioned officers stationed at the National Institutes of Health. This experience would eventually change the entire trajectory of my career. Here I describe how, over a period of years, I transitioned from the life of a physician to that of a physician-scientist; my 50 years of work on cellular receptors; and some miscellaneous thoughts on subjects as varied as Nobel prizes, scientific lineages, mentoring, publishing, and funding.

  16. The Foster Laboratory in The Residencia de Señoritas. The JAES’s relationship with the International Institute for Girls in Spain, and the Training of Spanish scientist women

    Directory of Open Access Journals (Sweden)

    Magallón Portolés, Carmen

    2007-12-01

    Full Text Available In the first third of the twentieth century, relations among American and Spanish university women began; particularly the relationship between the JAE and the International Institute for Girls in Spain had a positive influence in the education of women scientists in Spain. An interchange of students and teachers came out from this relationship, and Spanish women received scholarships to stay in American universities. The history of the Foster Laboratory and some biographical notes of her founder are included in the paper.

    En el primer tercio del siglo XX crecieron diversas líneas de relación entre las universitarias norteamericanas y españolas; en particular, la que se estableció entre la Junta para Ampliación de Estudios e Investigaciones Científicas (JAE y el International Institute for Girls in Spain (IIGS influyó positivamente en la formación de las mujeres de ciencia españolas. Esta relación se concretó en un intercambio de estudiantes y profesoras, y en el establecimiento de una línea de becas para las jóvenes graduadas. El artículo incluye la historia del Laboratorio Foster y la biografía de su fundadora.

  17. Chinese, US scientists find new particle

    CERN Multimedia

    2003-01-01

    "Chinese and US scientists have discovered a new particle at the Beijing Electron Position Collider, which is hard to be explained with any known particles, according to scientists from the Institute of High Energy Physics under the Chinese Academy of Sciences Wednesday" (1/2 page).

  18. Challenges before Women Scientists, Technologists & Engineers

    Indian Academy of Sciences (India)

    NATIONAL INSTITUTE OF TECHNOLOGY. ROURKELA ... oBjectives. To provide a common platform for women scientists, engineers and technologists ... particularly from companies involving women entrepreneurs and managers. expected ...

  19. Drawings of Scientists

    Science.gov (United States)

    experiment can be reduplicated. He/she must check and double-check all of his/her work. A scientist is very , environment, nutrition, and other aspects of our daily and future life." . . . Marisa The scientists

  20. Scientists must speak

    National Research Council Canada - National Science Library

    Walters, D. Eric; Walters, Gale Climenson

    2011-01-01

    .... Scientists Must Speak: Bringing Presentations to Life helps readers do just that. At some point in their careers, the majority of scientists have to stand up in front of an inquisitive audience or board and present information...

  1. WFIRST CGI Adjutant Scientist

    Science.gov (United States)

    Kasdin, N.

    One of the most exciting developments in exoplanet science is the inclusion of a coronagraph instrument on WFIRST. After more than 20 years of research and development on coronagraphy and wavefront control, the technology is ready for a demonstration in space and to be used for revolutionary science. Good progress has already been made at JPL and partner institutions on the coronagraph technology and instrument design and test. The next five years as we enter Phase A will be critical for raising the TRL of the coronagraph to the needed level for flight and for converging on a design that is robust, low risk, and meets the science requirements. In addition, there is growing excitement over the possibility of rendezvousing an occulter with WFIRST/AFTA as a separate mission; this would both demonstrate that important technology and potentially dramatically enhance the science reach, introducing the possibility of imaging Earth-like planets in the habitable zone of nearby stars. In this proposal I will be applying for the Coronagraph Adjutant Scientist (CAS) position. I bring to the position the background and skills needed to be an effective liaison between the project office, the instrument team, and the Science Investigation Team (SIT). My background in systems engineering before coming to Princeton (I was Chief Systems Engineer for the Gravity Probe-B mission) and my 15 years of working closely with NASA on both coronagraph and occulter technology make me well-suited to the role. I have been a lead coronagraph scientist for the WFIRST mission from the beginning, including as a member of the SDT. Together with JPL and NASA HQ, I helped organize the process for selecting the coronagraphs for the CGI, one of which, the shaped pupil, has been developed in my lab. All of the key algorithms for wavefront control (including EFC and Stroke Minimization) were originally developed by students or post-docs in my lab at Princeton. I am thus in a unique position to work with

  2. Entrepreneurship for Creative Scientists

    Science.gov (United States)

    Parker, Dawood; Raghu, Surya; Brooks, Richard

    2018-05-01

    Through patenting and commercialization, scientists today can develop their work beyond a publication in a learned journal. Indeed, universities and governments are encouraging today's scientists and engineers to break their research out of the laboratory and into the commercial world. However, doing so is complicated and can be daunting for those more used to a research seminar than a board room. This book, written by experienced scientists and entrepreneurs, deals with businesses started by scientists based on innovation and sets out to clarify for scientists and engineers the steps necessary to take an idea along the path to commercialization and maximise the potential for success, regardless of the path taken.

  3. Give Young Scientists a Break

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H. S.

    2009-11-01

    There has been much concern about the impact of tight funding on the careers of young scientists. When only a small percentage of grants are approved, even the smallest problem or error with an application can push it out of the funding range. Unfortunately, the relative lack of grant writing skills by new investigators often has this effect. To avoid a situation where only experienced investigators with polished writing skills are funded, the National Institutes of Health has instituted a more generous ranking scale for new investigators. Not surprisingly, some senior investigators have protested, calling it reverse discrimination. I say that their anger is misplaced. New investigators do deserve a break.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 6: The relationship between the use of US government technical reports by US aerospace engineers and scientists and selected institutional and sociometric variables. Ph.D. Thesis - Indiana Univ., Nov. 1990 No. 6

    Science.gov (United States)

    Pinelli, Thomas E.

    1991-01-01

    The relationship between the use of U.S. government technical reports by U.S. aerospace engineers and scientists and selected institutional and sociometric variables was investigated. The methodology used for this study was survey research. Data were collected by means of a self-administered mail questionnaire. The approximately 34,000 members of the American Institute of Aeronautics and Astronauts (AIAA) served as the study population. The response rate for the survey was 70 percent. A dependent relationship was found to exist between the use of U.S. government technical reports and three of the institutional variables (academic preparation, years of professional aerospace work experience, and technical discipline). The use of U.S. government technical reports was found to be independent of all of the sociometric variables. The institutional variables best explain the use of U.S. government technical reports by U.S. aerospace engineers and scientists.

  5. Scientists Shaping the Discussion

    Science.gov (United States)

    Abraham, J. A.; Weymann, R.; Mandia, S. A.; Ashley, M.

    2011-12-01

    Scientific studies which directly impact the larger society require an engagement between the scientists and the larger public. With respect to research on climate change, many third-party groups report on scientific findings and thereby serve as an intermediary between the scientist and the public. In many cases, the third-party reporting misinterprets the findings and conveys inaccurate information to the media and the public. To remedy this, many scientists are now taking a more active role in conveying their work directly to interested parties. In addition, some scientists are taking the further step of engaging with the general public to answer basic questions related to climate change - even on sub-topics which are unrelated to scientists' own research. Nevertheless, many scientists are reluctant to engage the general public or the media. The reasons for scientific reticence are varied but most commonly are related to fear of public engagement, concern about the time required to properly engage the public, or concerns about the impact to their professional reputations. However, for those scientists who are successful, these engagement activities provide many benefits. Scientists can increase the impact of their work, and they can help society make informed choices on significant issues, such as mitigating global warming. Here we provide some concrete steps that scientists can take to ensure that their public engagement is successful. These steps include: (1) cultivating relationships with reporters, (2) crafting clear, easy to understand messages that summarize their work, (3) relating science to everyday experiences, and (4) constructing arguments which appeal to a wide-ranging audience. With these steps, we show that scientists can efficiently deal with concerns that would otherwise inhibit their public engagement. Various resources will be provided that allow scientists to continue work on these key steps.

  6. Community Capacity Building as a vital mechanism for enhancing the growth and efficacy of a sustainable scientific software ecosystem: experiences running a real-time bi-coastal "Open Science for Synthesis" Training Institute for young Earth and Environmental scientists

    Science.gov (United States)

    Schildhauer, M.; Jones, M. B.; Bolker, B.; Lenhardt, W. C.; Hampton, S. E.; Idaszak, R.; Rebich Hespanha, S.; Ahalt, S.; Christopherson, L.

    2014-12-01

    Continuing advances in computational capabilities, access to Big Data, and virtual collaboration technologies are creating exciting new opportunities for accomplishing Earth science research at finer resolutions, with much broader scope, using powerful modeling and analytical approaches that were unachievable just a few years ago. Yet, there is a perceptible lag in the abilities of the research community to capitalize on these new possibilities, due to lacking the relevant skill-sets, especially with regards to multi-disciplinary and integrative investigations that involve active collaboration. UC Santa Barbara's National Center for Ecological Analysis and Synthesis (NCEAS), and the University of North Carolina's Renaissance Computing Institute (RENCI), were recipients of NSF OCI S2I2 "Conceptualization awards", charged with helping define the needs of the research community relative to enabling science and education through "sustained software infrastructure". Over the course of our activities, a consistent request from Earth scientists was for "better training in software that enables more effective, reproducible research." This community-based feedback led to creation of an "Open Science for Synthesis" Institute— a innovative, three-week, bi-coastal training program for early career researchers. We provided a mix of lectures, hands-on exercises, and working group experience on topics including: data discovery and preservation; code creation, management, sharing, and versioning; scientific workflow documentation and reproducibility; statistical and machine modeling techniques; virtual collaboration mechanisms; and methods for communicating scientific results. All technologies and quantitative tools presented were suitable for advancing open, collaborative, and reproducible synthesis research. In this talk, we will report on the lessons learned from running this ambitious training program, that involved coordinating classrooms among two remote sites, and

  7. Young Scientist Wetenschapskalender 2018

    NARCIS (Netherlands)

    van Dalen-Oskam, K.H.; van Zundert, Joris J.; Koolen, Corina

    2017-01-01

    Bijdragen scheurkalender Young Scientist Wetenschapskalender 2018. Karina van Dalen-Oskam, Belangrijk woord: Wat is het belangrijkste woord in de Nederlandse taal? In: Young Scientist Wetenschapskalender 2018, 1 september Corina Koolen, Op naar het boekenbal: Hoe wordt je beroemd als schrijver? In:

  8. Making Lists, Enlisting Scientists

    DEFF Research Database (Denmark)

    Jensen, Casper Bruun

    2011-01-01

    was the indicator conceptualised? How were notions of scientific knowledge and collaboration inscribed and challenged in the process? The analysis shows a two-sided process in which scientists become engaged in making lists but which is simultaneously a way for research policy to enlist scientists. In conclusion...

  9. Birth of prominent scientists

    Science.gov (United States)

    Reyes Gonzalez, Leonardo; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star. PMID:29543855

  10. Birth of prominent scientists.

    Science.gov (United States)

    Reyes Gonzalez, Leonardo; González Brambila, Claudia N; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star.

  11. Preparing Planetary Scientists to Engage Audiences

    Science.gov (United States)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  12. Code of conduct for scientists (abstract)

    International Nuclear Information System (INIS)

    Khurshid, S.J.

    2011-01-01

    The emergence of advanced technologies in the last three decades and extraordinary progress in our knowledge on the basic Physical, Chemical and Biological properties of living matter has offered tremendous benefits to human beings but simultaneously highlighted the need of higher awareness and responsibility by the scientists of 21 century. Scientist is not born with ethics, nor science is ethically neutral, but there are ethical dimensions to scientific work. There is need to evolve an appropriate Code of Conduct for scientist particularly working in every field of Science. However, while considering the contents, promulgation and adaptation of Codes of Conduct for Scientists, a balance is needed to be maintained between freedom of scientists and at the same time some binding on them in the form of Code of Conducts. The use of good and safe laboratory procedures, whether, codified by law or by common practice must also be considered as part of the moral duties of scientists. It is internationally agreed that a general Code of Conduct can't be formulated for all the scientists universally, but there should be a set of 'building blocks' aimed at establishing the Code of Conduct for Scientists either as individual researcher or responsible for direction, evaluation, monitoring of scientific activities at the institutional or organizational level. (author)

  13. Scientists planning new internet

    CERN Multimedia

    Cookson, C

    2000-01-01

    British scientists are preparing to build the next generation internet - 'The Grid'. The government is expected to announce about 100 million pounds of funding for the project, to be done in collaboration with CERN (1/2 p).

  14. Scientists must speak

    National Research Council Canada - National Science Library

    Walters, D. Eric; Walters, Gale Climenson

    2011-01-01

    .... This can be a stressful experience for many. For scientists, the experience may be further complicated by the specialist nature of the data and the fact that most self-help books are aimed at business or social situations...

  15. Scientists vs. the administration

    CERN Multimedia

    2004-01-01

    Article denouncing the supposed impartiality of signatories of a report released by the Union of Concerned Scientists (UCS), which accused the Bush administration of systemically suborning objective science to a political agenda (1 page).

  16. Scientists as writers

    Science.gov (United States)

    Yore, Larry D.; Hand, Brian M.; Prain, Vaughan

    2002-09-01

    This study attempted to establish an image of a science writer based on a synthesis of writing theory, models, and research literature on academic writing in science and other disciplines and to contrast this image with an actual prototypical image of scientists as writers of science. The synthesis was used to develop a questionnaire to assess scientists' writing habits, beliefs, strategies, and perceptions about print-based language. The questionnaire was administered to 17 scientists from science and applied science departments of a large Midwestern land grant university. Each respondent was interviewed following the completion of the questionnaire with a custom-designed semistructured protocol to elaborate, probe, and extend their written responses. These data were analyzed in a stepwise fashion using the questionnaire responses to establish tentative assertions about the three major foci (type of writing done, criteria of good science writing, writing strategies used) and the interview responses to verify these assertions. Two illustrative cases (a very experienced, male physical scientist and a less experienced, female applied biological scientist) were used to highlight diversity in the sample. Generally, these 17 scientists are driven by the academy's priority of publishing their research results in refereed, peer-reviewed journals. They write their research reports in isolation or as a member of a large research team, target their writing to a few journals that they also read regularly, use writing in their teaching and scholarship to inform and persuade science students and other scientists, but do little border crossing into other discourse communities. The prototypical science writer found in this study did not match the image based on a synthesis of the writing literature in that these scientists perceived writing as knowledge telling not knowledge building, their metacognition of written discourse was tacit, and they used a narrow array of genre

  17. The Celebrity Scientists

    OpenAIRE

    Fahy, Declan

    2010-01-01

    This collective case study examines how four contemporary British scientists and popular science writers, Stephen Hawking, Richard Dawkins, Susan Greenfield and James Lovelock, are portrayed in mass media as celebrities. It finds that the scientists’ private and public lives merge in their representations, their images commodified and marketed by the cultural industries, their mediated personae embodying abstract ideas of truth and reason. The celebrity scientists base their authority on thei...

  18. Education and Outreach: Advice to Young Scientists

    Science.gov (United States)

    Lopes, R. M. C.

    2005-08-01

    Carl Sagan set an example to all scientists when he encouraged us to reach out to the public and share the excitement of discovery and exploration. The prejudice that ensued did not deter Sagan and, with the passing of years, more and more scientists have followed his example. Although at present scientists at all ranks are encouraged by their institutions to do outreach, the balancing of a successful scientific career with teaching and outreach is often not an easy one. Young scientists, in particular, may worry about how their outreach efforts are viewed in the community and how they will find the time and energy for these efforts. This talk will offer suggestions on how to balance an active science research program with outreach activities, the many different ways to engage in education and public outreach, and how the rewards are truly priceless.

  19. Marketing for scientists

    CERN Document Server

    Kuchner, Marc J

    2012-01-01

    It's a tough time to be a scientist: universities are shutting science departments, funding organisations are facing flat budgets, and many newspapers have dropped their science sections altogether. But according to Marc Kuchner, this anti-science climate doesn't have to equal a career death knell - it just means scientists have to be savvier about promoting their work and themselves. In "Marketing for Scientists", he provides clear, detailed advice about how to land a good job, win funding, and shape the public debate. As an astrophysicist at NASA, Kuchner knows that "marketing" can seem like a superficial distraction, whether your daily work is searching for new planets or seeking a cure for cancer. In fact, he argues, it's a critical component of the modern scientific endeavour, not only advancing personal careers but also society's knowledge. Kuchner approaches marketing as a science in itself. He translates theories about human interaction and sense of self into methods for building relationships - one o...

  20. Responsability of scientists

    CERN Document Server

    Harigel, G G

    1997-01-01

    This seminar is intended to give some practical help for CERN guides,who are confronted with questions from visitors concerning the purpose of research in general and - in paticular - of the work in our laboratory, its possible application and benefits.The dual use of scientific results will be emphasised by examples across natural sciences. Many investigations were neutral,others aimed at peaceful and beneficial use for humanity, a few were made for destructive purposes. Researchers have no or very little influence on the application of their results. The interplay between natural scientists ,social scientists,politicians,and their dependence on economic factors will be discussed.

  1. Non-natives: 141 scientists object

    NARCIS (Netherlands)

    Simberloff, D.; Van der Putten, W.H.

    2011-01-01

    Supplementary information to: Non-natives: 141 scientists object Full list of co-signatories to a Correspondence published in Nature 475, 36 (2011); doi: 10.1038/475036a. Daniel Simberloff University of Tennessee, Knoxville, Tennessee, USA. dsimberloff@utk.edu Jake Alexander Institute of Integrative

  2. Talk Like a Scientist

    Science.gov (United States)

    Marcum-Dietrich, Nanette

    2010-01-01

    In the scientific community, the symposium is one formal structure of conversation. Scientists routinely hold symposiums to gather and talk about a common topic. To model this method of communication in the classroom, the author designed an activity in which students conduct their own science symposiums. This article presents the science symposium…

  3. Ethics for life scientists

    NARCIS (Netherlands)

    Korthals, M.J.J.A.A.; Bogers, R.J.

    2004-01-01

    In this book we begin with two contributions on the ethical issues of working in organizations. A fruitful side effect of this start is that it gives a good insight into business ethics, a branch of applied ethics that until now is far ahead of ethics for life scientists. In the second part, ethics

  4. Developing Scientists' "Soft" Skills

    Science.gov (United States)

    Gordon, Wendy

    2014-02-01

    A great deal of professional advice directed at undergraduates, graduate students, postdoctoral fellows, and even early-career scientists focuses on technical skills necessary to succeed in a complex work environment in which problems transcend disciplinary boundaries. Collaborative research approaches are emphasized, as are cross-training and gaining nonacademic experiences [Moslemi et al., 2009].

  5. On Responsibility of Scientists

    Science.gov (United States)

    Burdyuzha, Vladimir

    The situation of modern world is analised. It is impossible for our Civilization when at least half of the World Scientists are engaged in research intended to solve military problems. Civilization cannot be called reasonable so long as it spends a huge portion of national incomes on armaments. For resolution of our global problems International Scientific Center - Brain Trust of planet must be created, the status of which should be defined and sealed by the UN organization.

  6. ECNS '99 - Young scientists forum

    DEFF Research Database (Denmark)

    Ceretti, M.; Janssen, S.; McMorrow, D.F.

    2000-01-01

    The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups, they disc......The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups......, they discussed emerging scientific trends in their areas of expertise and the instrumentation required to meet the scientific challenges. The outcome was presented in the Young Scientists Panel on the final day of ECNS '99. This paper is a summary of the four working group reports prepared by the Group Conveners...

  7. Ernest Rutherford: scientist supreme

    International Nuclear Information System (INIS)

    Campbell, J.

    1998-01-01

    One hundred years ago this month, Ernest Rutherford a talented young New Zealander who had just spent three years as a postgraduate student in Britain left for Canada, where he was to do the work that won him a Nobel prize. All three countries can justifiably claim this great scientist as their own. Ernest Rutherford is one of the most illustrious scientists that the world has ever seen. He achieved enduring international fame because of an incredibly productive life, during which he altered our view of nature on three separate occasions. Combining brilliantly conceived experiments with much hard work and special insight, he explained the perplexing problem of naturally occurring radioactivity, determined the structure of the atom, and was the world's first successful alchemist, changing nitrogen into oxygen. Rutherford received a Nobel prize for the first discovery, but the other two would have been equally worthy candidates, had they been discovered by someone else. Indeed, any one of his other secondary achievements many of which are now almost forgotten would have been enough to bring fame to a lesser scientist. For example, he invented an electrical method for detecting individual ionizing radiations, he dated the age of the Earth, and briefly held the world record for the distance over which wireless waves could be detected. He predicted the existence of neutrons, he oversaw the development of large-scale particle accelerators, and, during the First World War, he led the allied research into the detection of submarines. In this article the author describes the life and times of Ernest Rutherford. (UK)

  8. Scientists warn DOE of dwindling funding

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Fusion scientists have raised their voices to let the Department of Energy know that they are concerned about the DOE's commitment to fusion research. In a letter dated February 28, 1994, 37 scientists from 21 institutions noted that open-quotes US funding for fusion has steadily decreased: It is now roughly half its level of 1980. This peculiar and painful circumstance has forced the program to contract drastically, losing skilled technical personnel, even as it faces its most exciting opportunities.close quotes The letter was addressed to Martha Krebs, the DOE's director of the Office of Energy Research, and N. Anne Davies, associated director for fusion energy. The scientists wanted to make two points. The first was that fusion energy research, only midway between concept and commercialization, deserves major reinvestment. The second was that basic scientific knowledge in the area of fusion, not just applied engineering, must remain a priority

  9. Chemistry for environmental scientists

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Detlev [Brandenburgische Technische Univ., Berlin (Germany). Lehrstuhl fuer Luftchemie und Luftreinhaltung

    2015-07-01

    Non-chemists in environmental sciences and engineering (e.g. physicists, biologists, ecologists, geographers, soil scientists, hydrologists, meteorologists, economists, engineers) need chemical basic knowledge for understanding chemical processes in the environment. This book focuses on general and fundamental chemistry (including required physics) such as properties and bonding of matter, chemical kinetics and mechanisms, phase and chemical equilibrium, the basic features of air (gases), water (liquids) and soil (solids) and the most important substances and their reactions in the environment. Selected key environmental chemical processes are shortly characterised in the light of multi-component and multiphase chemistry. This book is also useful for chemists who are beginning work on environmental issues.

  10. Chemistry for environmental scientists

    International Nuclear Information System (INIS)

    Moeller, Detlev

    2015-01-01

    Non-chemists in environmental sciences and engineering (e.g. physicists, biologists, ecologists, geographers, soil scientists, hydrologists, meteorologists, economists, engineers) need chemical basic knowledge for understanding chemical processes in the environment. This book focuses on general and fundamental chemistry (including required physics) such as properties and bonding of matter, chemical kinetics and mechanisms, phase and chemical equilibrium, the basic features of air (gases), water (liquids) and soil (solids) and the most important substances and their reactions in the environment. Selected key environmental chemical processes are shortly characterised in the light of multi-component and multiphase chemistry. This book is also useful for chemists who are beginning work on environmental issues.

  11. Medical laboratory scientist

    DEFF Research Database (Denmark)

    Smith, Julie; Qvist, Camilla Christine; Jacobsen, Katja Kemp

    2017-01-01

    Previously, biomarker research and development was performed by laboratory technicians working as craftsmen in laboratories under the guidance of medical doctors. This hierarchical structure based on professional boundaries appears to be outdated if we want to keep up with the high performance...... of our healthcare system, and take advantage of the vast potential of future biomarkers and personalized medicine. We ask the question; does our healthcare system benefit from giving the modern medical laboratory scientist (MLS) a stronger academic training in biomarker research, development...

  12. Scientists discover how deadly fungal microbes enter host cells

    OpenAIRE

    Whyte, Barry James

    2010-01-01

    A research team led by scientists at the Virginia Bioinformatics Institute at Virginia Tech has discovered a fundamental entry mechanism that allows dangerous fungal microbes to infect plants and cause disease.

  13. Scientists adopt new strategy to find Huntington's disease therapies

    Science.gov (United States)

    ... Links PubMed Stem Cell Information OppNet NIDB NIH Blueprint for Neuroscience Research Institutes at NIH List of ... Release Friday, August 7, 2015 Scientists adopt new strategy to find Huntington’s disease therapies A skyline view ...

  14. CERN scientists predict supernova

    CERN Multimedia

    2003-01-01

    "A team of theoretical physicists working at CERN and the Technion Institute of Technology in Israel has developed a theory to account for the mysterious gamma ray bursts that come from the depths of the Universe" (1/2 page).

  15. Universities Earth System Scientists Program

    Science.gov (United States)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  16. Using Videoconferencing in a School-Scientist Partnership: Students' Perceptions and Scientists' Challenges

    Science.gov (United States)

    Falloon, Garry

    2012-01-01

    This research studied a series of videoconference teaching workshops and virtual labs, which formed a component of a school-scientist partnership involving a New Zealand science research institute and year 13 students at a Wellington high school. It explored students' perceptions of the effectiveness of the videoconferences as an interactive…

  17. Joint Quantum Institute

    Data.gov (United States)

    Federal Laboratory Consortium — The Joint Quantum Institute (JQI) is pursuing that goal through the work of leading quantum scientists from the Department of Physics of the University of Maryland...

  18. Python for scientists

    CERN Document Server

    Stewart, John M

    2017-01-01

    Scientific Python is a significant public domain alternative to expensive proprietary software packages. This book teaches from scratch everything the working scientist needs to know using copious, downloadable, useful and adaptable code snippets. Readers will discover how easy it is to implement and test non-trivial mathematical algorithms and will be guided through the many freely available add-on modules. A range of examples, relevant to many different fields, illustrate the language's capabilities. The author also shows how to use pre-existing legacy code (usually in Fortran77) within the Python environment, thus avoiding the need to master the original code. In this new edition, several chapters have been re-written to reflect the IPython notebook style. With an extended index, an entirely new chapter discussing SymPy and a substantial increase in the number of code snippets, researchers and research students will be able to quickly acquire all the skills needed for using Python effectively.

  19. Forgotten women the scientists

    CERN Document Server

    Tsjeng, Zing

    2018-01-01

    The women who shaped and were erased from our history. The Forgotten Women series will uncover the lost histories of the influential women who have refused over hundreds of years to accept the hand they've been dealt and, as a result, have formed, shaped and changed the course of our futures. The Scientists celebrates 48* unsung scientific heroines whose hugely important, yet broadly unacknowledged or incorrectly attributed, discoveries have transformed our understanding of the scientific world. Mary Anning, the amateur paleontologist whose fossil findings changed scientific thinking about prehistoric life Emmy Noether, dubbed "The Mighty Mathematician You've Never Heard Of" Ynés Mexía, the Mexican-American botanist who discovered over 500 new plant species Wangari Maathai, who started an environmental and ecological revolution in Kenya Margaret Sanger, the maverick nurse who paved the way for the legalization of contraception Chapters including Earth & Universe; Biology & N...

  20. Radiation Technician Scientist service

    International Nuclear Information System (INIS)

    Prieto Miranda, Enrique; Barrera Gonzalez, Gisela; Guerra Torres, Mercedes; Mora Lopez, Leonor; Altanes Valentin, Sonia; Rapado Paneque, Manuel; Plasencia Gutierrez, Manuel

    2003-01-01

    The irradiation service is part of the specialized technician scientist services of the Center of Technological Applications and Nuclear Development it belonging to the Radiobiological Department it provides a self shielded laboratory irradiator, PX y 30 type with Cobalt 60 sources, it destined for searches studies, so much basic as applying, in several branches of the science, like the radiobiology, the radiation chemistry, the solid state physics, the medicine, the agriculture and the Pharmaceutical- Medical Industry and besides offering the irradiation service properly with the which have been gotten significant economical outputs. The radiation processing is controlled by means of the dosimetric systems of Freckle, ceric cerous sulfate, Perspex (red, clear and Amber) and dose indicators

  1. Non-natives: 141 scientists object

    OpenAIRE

    Simberloff, Daniel; Vilà, Montserrat

    2011-01-01

    Supplementary information to: Non-natives: 141 scientists object Full list of co-signatories to a Correspondence published in Nature 475, 36 (2011); doi: 10.1038/475036a. Daniel Simberloff University of Tennessee, Knoxville, Tennessee, USA. Jake Alexander Institute of Integrative Biology, Zurich, Switzerland. Fred Allendorf University of Montana, Missoula, Montana, USA. James Aronson CEFE/CNRS, Montpellier, France. Pedro M. Antunes Algoma University, Sault Ste. Marie, Onta...

  2. The scientist lady

    Indian Academy of Sciences (India)

    Lawrence

    stream of her life also must have been quiet, easy, un- eventful. It was not so, she ... That too when she had full support from her family. Little Kamala ... doing research work at that famous institute was a matter of course. She then applied for ... work would not be recognized until the director was satisfied about its quality and.

  3. Has ADVANCE Affected Senior Compared to Junior Women Scientists Differently?

    Science.gov (United States)

    Rosser, Sue

    2015-01-01

    Substantial evidence exists to demonstrate that the NSF ADVANCE Inititiative has made a positive impact upon institutions. Since it began in 2001, ADVANCE has changed the conversation, policies, and practices in ways to remove obstacles and systemic barriers preventing success for academic women scientists and engineers. Results from ADVANCE projects on campuses have facilitated consensus nationally about policies and practices that institutions may implement to help to alleviate issues, particularly for junior women scientists.Although getting women into senior and leadership positions in STEM constituted an initial impetus for ADVANCE, less emphasis was placed upon the needs of senior women scientists. Surveys of academic women scientists indicate that the issues faced by junior and senior women scientists differ significantly. The focus of ADVANCE on junior women in many ways seemed appropriate--the senior cohort of women scinetists is fed by the junior cohort of scientists; senior women serve as mentors, role models, and leaders for the junior colleagues, while continuing to struggle to achieve full status in the profession. This presentation will center on the differences in issues faced by senior compared to junior women scientists to explore whether a next step for ADVANCE should be to address needs of senior academic women scientists.

  4. Staff Scientist - RNA Bioinformatics | Center for Cancer Research

    Science.gov (United States)

    The newly established RNA Biology Laboratory (RBL) at the Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) in Frederick, Maryland is recruiting a Staff Scientist with strong expertise in RNA bioinformatics to join the Intramural Research Program’s mission of high impact, high reward science. The RBL is the equivalent of an

  5. Seven scientists advise

    International Nuclear Information System (INIS)

    1959-01-01

    The Scientific Advisory Committee of the International Atomic Energy Agency held its second series of meetings in Vienna on 4-5 June 1959. The members of the Committee are seven distinguished scientists from different countries: Dr. H.J. Bhabha (India), Sir John Cockcroft (UK), Professor V.S. Emelyanov (USSR), Dr. B. Goldschmidt (France), Dr. B. Gross (Brazil), Dr. W.B. Lewis (Canada) and Professor I.I. Rabi (USA). The function of the Committee is to provide the Director General and through him the Board of Governors with scientific and technical advice on questions relating to the Agency's activities. Subjects for consideration by the Committee can be submitted by the Director General either on his own behalf or on behalf of the Board. At its recent session, the Committee considered several aspects of the Agency's scientific programme, including the proposed conferences, symposia and seminars for 1960, scientific and technical publications, and the research contracts which had been or were to be awarded by the Agency. The programme of conferences for the current year had been approved earlier by the Board of Governors on the recommendation of the Committee. A provisional list of 17 conferences, symposia and seminars for 1960 was examined by the Committee and recommendations were made to the Director General. The Committee also examined the Agency's policy on the award of contracts for research work and studies. An important subject before the Committee was the principles and regulations for the application of Agency safeguards. Another subject considered by the Committee was the possibility of a project for an exchange of knowledge on controlled thermonuclear fusion. The Committee also examined a proposal for the determination of the world-wide distribution of hydrogen and oxygen isotopes in water. Exact information on the distribution of hydrogen and oxygen isotopes in rain, in rivers, in ground water and in oceans would be important for areas with limited water

  6. Seven scientists advise

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-07-15

    The Scientific Advisory Committee of the International Atomic Energy Agency held its second series of meetings in Vienna on 4-5 June 1959. The members of the Committee are seven distinguished scientists from different countries: Dr. H.J. Bhabha (India), Sir John Cockcroft (UK), Professor V.S. Emelyanov (USSR), Dr. B. Goldschmidt (France), Dr. B. Gross (Brazil), Dr. W.B. Lewis (Canada) and Professor I.I. Rabi (USA). The function of the Committee is to provide the Director General and through him the Board of Governors with scientific and technical advice on questions relating to the Agency's activities. Subjects for consideration by the Committee can be submitted by the Director General either on his own behalf or on behalf of the Board. At its recent session, the Committee considered several aspects of the Agency's scientific programme, including the proposed conferences, symposia and seminars for 1960, scientific and technical publications, and the research contracts which had been or were to be awarded by the Agency. The programme of conferences for the current year had been approved earlier by the Board of Governors on the recommendation of the Committee. A provisional list of 17 conferences, symposia and seminars for 1960 was examined by the Committee and recommendations were made to the Director General. The Committee also examined the Agency's policy on the award of contracts for research work and studies. An important subject before the Committee was the principles and regulations for the application of Agency safeguards. Another subject considered by the Committee was the possibility of a project for an exchange of knowledge on controlled thermonuclear fusion. The Committee also examined a proposal for the determination of the world-wide distribution of hydrogen and oxygen isotopes in water. Exact information on the distribution of hydrogen and oxygen isotopes in rain, in rivers, in ground water and in oceans would be important for areas with limited water

  7. Frontier Scientists use Modern Media

    Science.gov (United States)

    O'connell, E. A.

    2013-12-01

    Engaging Americans and the international community in the excitement and value of Alaskan Arctic discovery is the goal of Frontier Scientists. With a changing climate, resources of polar regions are being eyed by many nations. Frontier Scientists brings the stories of field scientists in the Far North to the public. With a website, an app, short videos, and social media channels; FS is a model for making connections between the public and field scientists. FS will demonstrate how academia, web content, online communities, evaluation and marketing are brought together in a 21st century multi-media platform, how scientists can maintain their integrity while engaging in outreach, and how new forms of media such as short videos can entertain as well as inspire.

  8. Impact of a Scientist-Teacher Collaborative Model on Students, Teachers, and Scientists

    Science.gov (United States)

    Shein, Paichi Pat; Tsai, Chun-Yen

    2015-09-01

    Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school science curriculum reform to promote scientific innovation and inquiry through an integration of advanced science and technology in high school science curricula through partnership between high school teachers and higher education scientists and science educators. This study, as part of this governmental effort, a scientist-teacher collaborative model (STCM) was constructed by 8 scientists and 4 teachers to drive an 18-week high school science curriculum reform on environmental education in a public high school. Partnerships between scientists and teachers offer opportunities to strengthen the elements of effective science teaching identified by Shulman and ultimately affect students' learning. Mixed methods research was used for this study. Qualitative methods of interviews were used to understand the impact on the teachers' and scientists' science teaching. A quasi-experimental design was used to understand the impact on students' scientific competency and scientific interest. The findings in this study suggest that the use of the STCM had a medium effect on students' scientific competency and a large effect on students' scientific individual and situational interests. In the interviews, the teachers indicated how the STCM allowed them to improve their content knowledge and pedagogical content knowledge (PCK), and the scientists indicated an increased knowledge of learners, knowledge of curriculum, and PCK.

  9. Astrophysical Institute, Potsdam

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Built upon a tradition of almost 300 years, the Astrophysical Institute Potsdam (AIP) is in an historical sense the successor of one of the oldest astronomical observatories in Germany. It is the first institute in the world which incorporated the term `astrophysical' in its name, and is connected with distinguished scientists such as Karl Schwarzschild and Albert Einstein. The AIP constitutes on...

  10. Reviews Book: Voyage to the Heart of the Matter: The ATLAS Experiment at CERN Equipment: SEP Spectroscope Books: Quantum Gods / The Universe Places to visit: The Royal Institution of Great Britain Book: What is this Thing Called Science? Book: Don't be Such a Scientist: Talking Substance in the Age of Style Equipment: La Crosse Anemometer Book: Wonder and Delight Web Watch

    Science.gov (United States)

    2010-05-01

    WE RECOMMEND SEP Spectroscope Flatpacked classroom equipment for pupils aged 10 and over Quantum Gods Book attacks spiritualism and religion with physics The Universe Study of whether physics alone can explain origin of universe La Crosse Anemometer Handheld monitor is packed with useful features Wonder and Delight Essays in science education in honour of Eric Rogers WORTH A LOOK Voyage to the Heart of the Matter: The ATLAS Experiment at CERN Pop-up book explains background to complex physics The Royal Institution of Great Britain RI museum proves interesting but not ideal for teaching What is this Thing Called Science? Theory and history of science in an opinionated study Don't be Such a Scientist: Talking Substance in the Age of Style Explanation of how science is best communicated to the public WEB WATCH Particle physics simulations vary in complexity, usefulness and how well they work

  11. THE TRAINING OF NEXT GENERATION DATA SCIENTISTS IN BIOMEDICINE.

    Science.gov (United States)

    Garmire, Lana X; Gliske, Stephen; Nguyen, Quynh C; Chen, Jonathan H; Nemati, Shamim; VAN Horn, John D; Moore, Jason H; Shreffler, Carol; Dunn, Michelle

    2017-01-01

    With the booming of new technologies, biomedical science has transformed into digitalized, data intensive science. Massive amount of data need to be analyzed and interpreted, demand a complete pipeline to train next generation data scientists. To meet this need, the transinstitutional Big Data to Knowledge (BD2K) Initiative has been implemented since 2014, complementing other NIH institutional efforts. In this report, we give an overview the BD2K K01 mentored scientist career awards, which have demonstrated early success. We address the specific trainings needed in representative data science areas, in order to make the next generation of data scientists in biomedicine.

  12. Assessing the bibliometric productivity of forest scientists in Italy

    Directory of Open Access Journals (Sweden)

    Francesca Giannetti

    2016-07-01

    Full Text Available Since 2010, the Italian Ministry of University and Research issued new evaluation protocols to select candidates for University professorships and assess the bibliometric productivity of Universities and Research Institutes based on bibliometric indicators, i.e. scientific paper and citation numbers and the h-index. Under this framework, the objective of this study was to quantify the bibliometric productivity of the Italian forest research community during the 2002-2012 period. We examined the following productivity parameters: (i the bibliometric productivity under the Forestry subject category at the global level; (ii compared the aggregated bibliometric productivity of Italian forest scientists with scientists from other countries; (iii analyzed publication and citation temporal trends of Italian forest scientists and their international collaborations; and (iv characterized productivity distribution among Italian forest scientists at different career levels. Results indicated the following: (i the UK is the most efficient country based on the ratio between Gross Domestic Spending (GDS on Research and Development (R&D and bibliometric productivity under the Forestry subject category, followed by Italy; (ii Italian forest scientist productivity exhibited a significant positive time trend, but was characterized by high inequality across authors; (iii one-half of the Italian forest scientist publications were written in collaboration with foreign scientists; (iv a strong relationship exists between bibliometric indicators calculated by WOS and SCOPUS, suggesting these two databases have the same potential to evaluate the forestry research community; and (v self-citations did not significantly affect the rank of Italian forest scientists.

  13. Refugee scientists under the spotlight

    Science.gov (United States)

    Extance, Andy

    2017-07-01

    Thousands of people are forced to flee war-torn regions every year, but the struggles of scientists who have to leave their homeland often goes under the radar. Andy Extance reports on initiatives to help

  14. History and Outcomes of 50 Years of Physician-Scientist Training in Medical Scientist Training Programs.

    Science.gov (United States)

    Harding, Clifford V; Akabas, Myles H; Andersen, Olaf S

    2017-10-01

    Physician-scientists are needed to continue the great pace of recent biomedical research and translate scientific findings to clinical applications. MD-PhD programs represent one approach to train physician-scientists. MD-PhD training started in the 1950s and expanded greatly with the Medical Scientist Training Program (MSTP), launched in 1964 by the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health. MD-PhD training has been influenced by substantial changes in medical education, science, and clinical fields since its inception. In 2014, NIGMS held a 50th Anniversary MSTP Symposium highlighting the program and assessing its outcomes. In 2016, there were over 90 active MD-PhD programs in the United States, of which 45 were MSTP supported, with a total of 988 trainee slots. Over 10,000 students have received MSTP support since 1964. The authors present data for the demographic characteristics and outcomes for 9,683 MSTP trainees from 1975-2014. The integration of MD and PhD training has allowed trainees to develop a rigorous foundation in research in concert with clinical training. MSTP graduates have had relative success in obtaining research grants and have become prominent leaders in many biomedical research fields. Many challenges remain, however, including the need to maintain rigorous scientific components in evolving medical curricula, to enhance research-oriented residency and fellowship opportunities in a widening scope of fields targeted by MSTP graduates, to achieve greater racial diversity and gender balance in the physician-scientist workforce, and to sustain subsequent research activities of physician-scientists.

  15. An Earth System Scientist Network for Student and Scientist Partnerships

    Science.gov (United States)

    Ledley, T. S.

    2001-05-01

    Successful student and scientist partnerships require that there is a mutual benefit from the partnership. This means that the scientist needs to be able to see the advantage of having students work on his/her project, and the students and teachers need to see that the students contribute to the project and develop the skills in inquiry and the content knowledge in the geosciences that are desired. Through the Earth System Scientist Network (ESSN) for Student and Scientist Partnerships project we are working toward developing scientific research projects for the participation of high school students. When these research projects are developed they will be posted on the ESSN web site that will appear in the Digital Library for Earth System Education (DLESE). In DLESE teachers and students who are interested in participating in a research program will be able to examine the criteria for each project and select the one that matches their needs and situation. In this paper we will report on how the various ESSN research projects are currently being developed to assure that both the scientist and the students benefit from the partnership. The ESSN scientists are working with a team of scientists and educators to 1) completely define the research question that the students will be addressing, 2) determine what role the students will have in the project, 3) identify the data that the students and teachers will work with, 4) map out the scientific protocols that the students will follow, and 5) determine the background and support materials needed to facilitate students successfully participating in the project. Other issues that the team is addressing include 1) identifying the selection criteria for the schools, 2) identifying rewards and recognition for the students and teacher by the scientist, and 3) identifying issues in Earth system science, relevant to the scientists data, that the students and teachers could use as a guide help develop students investigative

  16. Professional Ethics for Climate Scientists

    Science.gov (United States)

    Peacock, K.; Mann, M. E.

    2014-12-01

    Several authors have warned that climate scientists sometimes exhibit a tendency to "err on the side of least drama" in reporting the risks associated with fossil fuel emissions. Scientists are often reluctant to comment on the implications of their work for public policy, despite the fact that because of their expertise they may be among those best placed to make recommendations about such matters as mitigation and preparedness. Scientists often have little or no training in ethics or philosophy, and consequently they may feel that they lack clear guidelines for balancing the imperative to avoid error against the need to speak out when it may be ethically required to do so. This dilemma becomes acute in cases such as abrupt ice sheet collapse where it is easier to identify a risk than to assess its probability. We will argue that long-established codes of ethics in the learned professions such as medicine and engineering offer a model that can guide research scientists in cases like this, and we suggest that ethical training could be regularly incorporated into graduate curricula in fields such as climate science and geology. We recognize that there are disanalogies between professional and scientific ethics, the most important of which is that codes of ethics are typically written into the laws that govern licensed professions such as engineering. Presently, no one can legally compel a research scientist to be ethical, although legal precedent may evolve such that scientists are increasingly expected to communicate their knowledge of risks. We will show that the principles of professional ethics can be readily adapted to define an ethical code that could be voluntarily adopted by scientists who seek clearer guidelines in an era of rapid climate change.

  17. Do scientists trace hot topics?

    Science.gov (United States)

    Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.

  18. Scientists, government, and nuclear power

    International Nuclear Information System (INIS)

    Katz, J.E.

    1982-01-01

    Scientists in less-developed countries (LDCs) that undertake nuclear programs become involved in political decisions on manpower and resource allocations that will preclude other options. Controversy over the adoption of sophisticated technology has put those who see science as the servant of society in conflict with those who see the pursuit of science as a social service. The role model which LDC scientists present in this issue has given them increasing power, which can be either in accord with or in conflict with the perceived national interest. 29 references

  19. Involving Practicing Scientists in K-12 Science Teacher Professional Development

    Science.gov (United States)

    Bertram, K. B.

    2011-12-01

    The Science Teacher Education Program (STEP) offered a unique framework for creating professional development courses focused on Arctic research from 2006-2009. Under the STEP framework, science, technology, engineering, and math (STEM) training was delivered by teams of practicing Arctic researchers in partnership with master teachers with 20+ years experience teaching STEM content in K-12 classrooms. Courses based on the framework were offered to educators across Alaska. STEP offered in-person summer-intensive institutes and follow-on audio-conferenced field-test courses during the academic year, supplemented by online scientist mentorship for teachers. During STEP courses, teams of scientists offered in-depth STEM content instruction at the graduate level for teachers of all grade levels. STEP graduate-level training culminated in the translation of information and data learned from Arctic scientists into standard-aligned lessons designed for immediate use in K-12 classrooms. This presentation will focus on research that explored the question: To what degree was scientist involvement beneficial to teacher training and to what degree was STEP scientist involvement beneficial to scientist instructors? Data sources reveal consistently high levels of ongoing (4 year) scientist and teacher participation; high STEM content learning outcomes for teachers; high STEM content learning outcomes for students; high ratings of STEP courses by scientists and teachers; and a discussion of the reasons scientists indicate they benefited from STEP involvement. Analyses of open-ended comments by teachers and scientists support and clarify these findings. A grounded theory approach was used to analyze teacher and scientist qualitative feedback. Comments were coded and patterns analyzed in three databases. The vast majority of teacher open-ended comments indicate that STEP involvement improved K-12 STEM classroom instruction, and the vast majority of scientist open-ended comments

  20. The Women Scientists of India | Women in Science | Initiatives ...

    Indian Academy of Sciences (India)

    She had 11 papers to her credit in international journals. ... in India at the Indian Cancer Research Centre (presently Cancer Research Institute). ..... eminent Indian Woman Scientists, the Ranbaxy Science Foundation Award for Clinical Research, etc. ... She is Professor at the Saraswati Medical & Dental College, Lucknow.

  1. Symbiosis on Campus: Collaborations of Scientists and Science Educators.

    Science.gov (United States)

    Duggan-Haas, Don; Moscovici, Hedy; McNulty, Brendan; Gilmer, Penny J.; Eick, Charles J.; Wilson, John

    This symposium will provide insights into collaborations among scientists and science educators in a variety of contexts-large research universities, small state and private institutions, and collaborations involving both pre- service and in-service programs. The session will begin with a brief framing of these collaborations as management of the…

  2. Introductory mathematics for earth scientists

    CERN Document Server

    Yang, Xin-She

    2009-01-01

    Any quantitative work in earth sciences requires mathematical analysis and mathematical methods are essential to the modelling and analysis of the geological, geophysical and environmental processes involved. This book provides an introduction to the fundamental mathematics that all earth scientists need.

  3. Uma ilha de competência: a história do Instituto de Química Agrícola na memória de seus cientistas An island of scientific competence: a history of Brazil's Institute of Agricultural Chemistry in the memory of its scientists

    Directory of Open Access Journals (Sweden)

    Line Rodrigues de Faria

    1997-06-01

    Full Text Available Este artigo apresenta a história do IQA, mostrando sua importância para o desenvolvimento da ciência brasileira, bem como os motivos e circunstâncias históricas que provocaram sua desestruturação. A evolução desse instituto está associada às trajetórias de Walter Mors, Otto Gottlieb e Benjamin Gilbert, cujas pesquisas contribuíram para a formação de cientistas na área de química do produtos naturais. Na década de 1950, o instituto se projetou como "ilha de competência", mas foi afetado pelas mudanças ocorridas no Ministério da Agricultura e no setor agrícola nacional. A extinção desse centro de excelência não significou o fim das importantes tradições científicas que brotaram. Em grupos e instituições que surgiram em vários estados brasileiros, Mors, Gottheb a Gilbert deram continuidade às pesquisas que vinham implementando no instituto de origem.This history of Brazil's IQA, underscores the role the institution played in the development of Brazilian science as well as the historical motives and circumstances that led to its demise. The IQA's history is linked to the stories of Walter Mors, Otto Gottlieb, and Benjamin Gilbert whose research contributed to the training of scientists in the field of natural product chemistry. Although the institute earned a reputation as an "island of competence" during the 195Os, it was affected by changes within the Ministry of Agriculture and Brazil's farm sector. The closing of this center of excellence did not mean the end of important scientific traditions that blossomed there. As part of groups and institutions that emerged in different states around Brazil, Mors, Gottlieb, and Gilbert ensured the continuity of the research steadies they had been conducting within the IQA.

  4. Changing the Culture of Science Communication Training for Junior Scientists

    Science.gov (United States)

    Bankston, Adriana; McDowell, Gary S.

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today’s society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists. PMID:29904538

  5. Biotechnology awareness study, Part 1: Where scientists get their information.

    Science.gov (United States)

    Grefsheim, S; Franklin, J; Cunningham, D

    1991-01-01

    A model study, funded by the National Library of Medicine (NLM) and conducted by the Southeastern/Atlantic Regional Medical Library (RML) and the University of Maryland Health Sciences Library, attempted to assess the information needs of researchers in the developing field of biotechnology and to determine the resources available to meet those needs in major academic health sciences centers. Nine medical schools in RML Region 2 were selected to participate in a biotechnology awareness study. A survey was conducted of the nine medical school libraries to assess their support of biotechnology research. To identify the information needs of scientists engaged in biotechnology-related research at the schools, a written survey was sent to the deans of the nine institutions and selected scientists they had identified. This was followed by individual, in-depth interviews with both the deans and scientists surveyed. In general, scientists obtained information from three major sources: their own experiments, personal communication with other scientists, and textual material (print or electronic). For textual information, most study participants relied on personal journal subscriptions. Tangential journals were scanned in the department's library. Only a few of these scientists came to the health sciences library on a regular basis. Further, the study found that personal computers have had a major impact on how biotechnologists get and use information. Implications of these findings for libraries and librarians are discussed. PMID:1998818

  6. Changing the Culture of Science Communication Training for Junior Scientists.

    Science.gov (United States)

    Bankston, Adriana; McDowell, Gary S

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today's society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists.

  7. The challenges for scientists in avoiding plagiarism.

    Science.gov (United States)

    Fisher, E R; Partin, K M

    2014-01-01

    Although it might seem to be a simple task for scientists to avoid plagiarism and thereby an allegation of research misconduct, assessment of trainees in the Responsible Conduct of Research and recent findings from the National Science Foundation Office of Inspector General regarding plagiarism suggests otherwise. Our experiences at a land-grant academic institution in assisting researchers in avoiding plagiarism are described. We provide evidence from a university-wide multi-disciplinary course that understanding how to avoid plagiarism in scientific writing is more difficult than it might appear, and that a failure to learn the rules of appropriate citation may cause dire consequences. We suggest that new strategies to provide training in avoiding plagiarism are required.

  8. Scientists from all over the world attended the 'Frederic Joliot/Otto Hahn Summer School 2011' at the Karlsruhe Institute of Technology (KIT); Wissenschaftler aus aller Welt bei der 'Frederic Joliot/Otto Hahn Summer School 2011' am Karlsruhe Institute of Technology (KIT)

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Victor H.; Fischer, Ulrich [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (DE). Inst. for Neutron Physics and Reactor Technology (INR)

    2011-12-15

    The Karlsruhe Institute of Technology (KIT) and the Commissariat r leEnergie Atomique et Aux Energies Alternatives (CEA), Cadarache, alternate in organizing the annual 'Frederic Joliot/Otto Hahn Summer School.' This year's event, the 17th since its inception, was held in Karlsruhe, Germany on August 25 to September 3. Its topic was 'High-fidelity Modeling for Nuclear Reactors: Challenges and Prospects.' Here is a list of the subjects covered: - Status and perspectives of modeling and its role in design, operation, and safety. - Thermal hydraulics of nuclear reactors and simulation of 2 phase flows. - Structural mechanics, structure? fluid interaction, and seismic safety. - Advanced simulation in neutronics and reactor physics. - Progress in simulating fuel and materials behavior. - Multiphysics and uncertainty analysis methods. Experts from eight leading international research institutions and universities presented, and discussed with the 59 participants from 19 countries, the current state of the art and most recent development trends in the subjects listed above. (orig.)

  9. Poll of radiation health scientists

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1986-01-01

    A sampling of 210 university-employed radiation health scientists randomly selected from the membership lists of the Health Physics Society and the Radiation Research Society was polled in a secret ballot. The results support the positions that the public's fear of radiation is substantially greater than realistic, that TV, newspapers and magazines substantially exaggerate the dangers of radiation, that the amount of money now being spent on radiation protection is sufficient, and that the openness and honesty of U.S. government agencies about dangers of radiation were below average before 1972 but have been above average since then. Respondents give very high credibility ratings to BEIR, UNSCEAR, ICRP, and NCRP and to the individual scientists associated with their reports, and very low credibility ratings to those who have disputed them

  10. Mathematics for the Student Scientist

    Science.gov (United States)

    Lauten, A. Darien; Lauten, Gary N.

    1998-03-01

    The Earth Day:Forest Watch Program, introduces elementary, middle, and secondary students to field laboratory, and satellite-data analysis methods for assessing the health of Eastern White Pine ( Pinus strobus). In this Student-Scientist Partnership program, mathematics, as envisioned in the NCTM Standards, arises naturally and provides opportunities for science-mathematics interdisciplinary student learning. School mathematics becomes the vehicle for students to quantify, represent, analyze, and interpret meaningful, real data.

  11. Thermodynamics for scientists and engineers

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2011-02-01

    This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.

  12. The Scientist as Sentinel (Invited)

    Science.gov (United States)

    Oreskes, N.

    2013-12-01

    Scientists have been warning the world for some time about the risks of anthropogenic interference in the climate system. But we struggle with how, exactly, to express that warning. The norms of scientific behavior enjoin us from the communication strategies normally associated with warnings. If a scientist sounds excited or emotional, for example, it is often assumed that he has lost his capac¬ity to assess data calmly and therefore his conclusions are suspect. If the scientist is a woman, the problem is that much worse. In a recently published article my colleagues and I have shown that scientists have systematically underestimated the threat of climate change (Brysse et al., 2012). We suggested that this occurs for norma¬tive reasons: The scientific values of rationality, dispassion, and self-restraint lead us to demand greater levels of evidence in support of surprising, dramatic, or alarming conclusions than in support of less alarming conclusions. We call this tendency 'err¬ing on the side of least drama.' However, the problem is not only that we err on the side of least drama in our assessment of evidence, it's also that we speak without drama, even when our conclusions are dramatic. We speak without the emotional cadence that people expect to hear when the speaker is worried. Even when we are worried, we don't sound as if we are. In short, we are trying to act as sentinels, but we lack the register with which to do so. Until we find those registers, or partner with colleagues who are able to speak in the cadences that communicating dangers requires, our warnings about climate change will likely continue to go substantially unheeded.

  13. Media resource service: Getting scientists and the media together

    International Nuclear Information System (INIS)

    Jerome, F.

    1990-01-01

    The Three Mile Island nuclear plant accident in 1979 led to the establishment of the Media Resource Service (MRS), which puts journalists in touch with scientists by telephone to help the press meet the public's need to understand science and technology. The Chernobyl nuclear power accident in 1986 underscored that need. The MRS is run by the Scientists' Institute for Public Information (SIPI), a non-profit group in the USA. Similar services have since been set up in Canada and the United Kingdom, and interest has been shown in many other countries

  14. Scientists from all over the world attend the ''Frederic Joliot/Otto Hahn Summer School 2009'' at the Karlsruhe Institute of Technology (KIT); Wissenschaftler aus aller Welt bei der ''Frederic Joliot/Otto Hahn Summer School 2009'' am Karlsruhe Institute of Technologie (KIT)

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Espinoza, Victor Hugo; Fischer, Ulrich [Karlsruhe Inst. of Tech. (KIT), Campus Nord/Inst. for Neutron Physics and Reactor Tech. (INR), Eggenstein-Leopoldshafen (Germany)

    2009-11-15

    The ''Frederic Joliot/Otto Hahn Summer School'' is organized each year alternately by the Karlsruhe Institute of Technology and the Commissariat a l'Energie Atomique (CEA), Cadarache. This year's Summer School, the 15th since its foundation, was run at the Advanced Training Center (FTU) of KIT Campus Nord on August 26 to September 4. The key topic this year was ''The Challenges in Implementing Fast Reactor Technology.'' These are the items discussed: Principles and challenges of future fast reactor designs, Fuels, fuel cycle, and recycling of minor actinides, Innovative cladding tube and structural materials, Special aspects of coolants and the challenges they pose, Fast reactor safety. Experts from 8 leading international research establishments and universities presented and discussed with the 58 participants from 16 countries the current state of the art and the latest development trends in the topics listed above. (orig.)

  15. Educating the Next Generation of Lunar Scientists

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2010-12-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute (LPI) and NASA’s Johnson Space Center (JSC), is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA’s and NLSI’s objective to train the next generation of scientists, CLSE’s High School Lunar Research Project is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The High School Lunar Research Project engages teams of high school students in authentic lunar research that envelopes them in the process of science and supports the science goals of the CLSE. Most high school students’ lack of scientific research experience leaves them without an understanding of science as a process. Because of this, each team is paired with a lunar scientist mentor responsible for guiding students through the process of conducting a scientific investigation. Before beginning their research, students undertake “Moon 101,” designed to familiarize them with lunar geology and exploration. Students read articles covering various lunar geology topics and analyze images from past and current lunar missions to become familiar with available lunar data sets. At the end of “Moon 101”, students present a characterization of the geology and chronology of features surrounding the Apollo 11 landing site. To begin their research, teams choose a research subject from a pool of topics compiled by the CLSE staff. After choosing a topic, student teams ask their own research questions, within the context of the larger question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results and, after receiving feedback, create and present a conference style poster to a panel of

  16. Syllabus for Weizmann Course: Earth System Science 101

    Science.gov (United States)

    Wiscombe, Warren J.

    2011-01-01

    This course aims for an understanding of Earth System Science and the interconnection of its various "spheres" (atmosphere, hydrosphere, etc.) by adopting the view that "the microcosm mirrors the macrocosm". We shall study a small set of microcosims, each residing primarily in one sphere, but substantially involving at least one other sphere, in order to illustrate the kinds of coupling that can occur and gain a greater appreciation of the complexity of even the smallest Earth System Science phenomenon.

  17. Access to scientific publications: the scientist's perspective.

    Directory of Open Access Journals (Sweden)

    Yegor Voronin

    , subscriptions do not provide access to the full range of HIV vaccine research literature. Access to papers through subscriptions is complemented by a variety of other means, including emailing corresponding authors, joint affiliations, use of someone else's login information and posting requests on message boards. This complex picture makes it difficult to assess the real ability of scientists to access literature, but the observed differences in access levels between institutions suggest an unlevel playing field, in which some researchers have to spend more efforts than others to obtain the same information.

  18. Historical Trends of Participation of Women Scientists in Robotic Spacecraft Mission Science Teams: Effect of Participating Scientist Programs

    Science.gov (United States)

    Rathbun, Julie A.; Castillo-Rogez, Julie; Diniega, Serina; Hurley, Dana; New, Michael; Pappalardo, Robert T.; Prockter, Louise; Sayanagi, Kunio M.; Schug, Joanna; Turtle, Elizabeth P.; Vasavada, Ashwin R.

    2016-10-01

    Many planetary scientists consider involvement in a robotic spacecraft mission the highlight of their career. We have searched for names of science team members and determined the percentage of women on each team. We have limited the lists to members working at US institutions at the time of selection. We also determined the year each team was selected. The gender of each team member was limited to male and female and based on gender expression. In some cases one of the authors knew the team member and what pronouns they use. In other cases, we based our determinations on the team member's name or photo (obtained via a google search, including institution). Our initial analysis considered 22 NASA planetary science missions over a period of 41 years and only considered NASA-selected PI and Co-Is and not participating scientists, postdocs, or graduate students. We found that there has been a dramatic increase in participation of women on spacecraft science teams since 1974, from 0-2% in the 1970s - 1980s to an average of 14% 2000-present. This, however, is still lower than the recent percentage of women in planetary science, which 3 different surveys found to be ~25%. Here we will present our latest results, which include consideration of participating scientists. As in the case of PIs and Co-Is, we consider only participating scientists working at US institutions at the time of their selection.

  19. Partnerships and Grassroots Action in the 500 Women Scientists Network

    Science.gov (United States)

    Weintraub, S. R.; Zelikova, T. J.; Pendergrass, A. G.; Bohon, W.; Ramirez, K. S.

    2017-12-01

    The past year has presented real challenges for scientists, especially in the US. The political context catalyzed the formation of many new organizations with a range of goals, from increasing the role of science in decision making to improving public trust in science and scientists. The grassroots organization 500 Women Scientists formed in the wake of the 2016 US election as a response to widespread anti-science, intolerant rhetoric and to form a community that could take action together. Within months, the network grew to more than 20,000 women scientists from across the globe. We evolved from our reactionary beginnings towards a broader mission to serve society by making science open, inclusive, and accessible. With the goal of transforming scientific institutions towards a more inclusive and just enterprise, we have been building alliances with diverse groups to provide training and mentorship opportunities to our members. In so doing, we created space for scientists from across disciplines to work together, speak out, and channel their energies toward making a difference. In partnership with the Union of Concerned Scientists and Rise Stronger, we assembled resources to help scientists write op-eds and letters to the editor about the importance of science in their communities. We partnered with researchers in Jordan to explore a new peer-to-peer mentoring model. Along with a healthcare advocacy group, we participated in dialogue to examine the role of science in affordable medicine. Finally, we are working with other groups to expand peer networks and career development resources for international STEM women. Our local chapters often initiate this work, teaming up with diverse organizations to bring science to their communities and, in the process, shift perceptions of what a scientist looks like. While as scientists, we would rather be conducting experiments or running models, what brings us together is an urgent sense that our scientific expertise is needed

  20. A Situated Analysis of Global Knowledge Networks: Capital Accumulation Strategies of Transnationally Mobile Scientists in Singapore

    Science.gov (United States)

    Sidhu, Ravinder; Yeoh, Brenda; Chang, Sushila

    2015-01-01

    This paper investigates the geographic and professional mobility of scientists employed in Singapore's publicly funded research institutes in various techno-and lifescience specialisations. Using Bourdieu's conceptual framework, we analyse the capital portfolios of individual scientists against the structures of power which have informed…

  1. Cybercafés Use By The Research Scientists In Agricultural ...

    African Journals Online (AJOL)

    This study examined the use of internet by the research scientists in Agricultural research institutes in Ibadan. A descriptive survey design was adapted for the study. A purposeful sampling technique was also used to select the sample and the method produced 180 Research Scientists. A total of 162 cases were finally ...

  2. Science Based Policies: How Can Scientist Communicate their Points Across?

    International Nuclear Information System (INIS)

    Elnakat, A. C.

    2002-01-01

    With the complexity of environmental problems faced today, both scientists and policymakers are striving to combine policy and administration with the physical and natural sciences in order to mitigate and prevent environmental degradation. Nevertheless, communicating science to policymakers has been difficult due to many barriers. Even though scientists and policymakers share the blame in the miscommunication. This paper will provide recommendations targeted to the scientific arena. Establishing guidelines for the cooperation of scientists and policymakers can be an unattainable goal due to the complexity and diversity of political policymaking and environmental issues. However, the recommendations provided in this paper are simple enough to be followed by a wide variety of audiences and institutions in the scientific fields. This will aid when trying to fill the gap that has prevented the enhancement of scientific policymaking strategies, which decide on the critical issue s such as the disposal, transportation and production of hazardous waste

  3. Social scientists in public health: a fuzzy approach

    Directory of Open Access Journals (Sweden)

    Juliana Luporini do Nascimento

    2015-05-01

    Full Text Available This study aims to describe and analyze the presence of social scientists, anthropologists, sociologists and political scientists in the field of public health. A survey by the Lattes Curriculum and sites of Medical Colleges, Institutes of Health Research Collective, seeking professionals who work in healthcare and have done some stage of their training in the areas of social sciences. In confluence with Norbert Elias' concepts of social networks and configuration of interdependence it was used fuzzy logic, and the tool free statistical software R version 2.12.0 which enabled a graphic representation of social scientists interdependence in the field of social sciences-health-social sciences. A total of 238 professionals were ready in 6 distinct clusters according to the distance or closer of each professional in relation to public health and social sciences. The work was shown with great analytical and graphical representation possibilities for social sciences of health, in using this innovative quantitative methodology.

  4. A scientist at the seashore

    CERN Document Server

    Trefil, James S

    2005-01-01

    ""A marvelous excursion from the beach to the ends of the solar system . . . captivating.""-The New York Times""So easy to understand yet so dense with knowledge that you'll never look at waves on a beach the same way again.""-San Francisco Chronicle""One of the best popular science books.""-The Kansas City Star""Perfect for the weekend scientist.""-The Richmond News-LeaderA noted physicist and popular science writer heads for the beach to answer common and uncommon questions about the ocean. James S. Trefil, author of Dover Publications' The Moment of Creation: Big Bang Physics from Before th

  5. Groves and the scientists: Compartmentalization and the building of the bomb

    International Nuclear Information System (INIS)

    Goldberg, S.

    1995-01-01

    The general understood that although the contributions of the scientists were crucial, their work was only one of a host of critical components that made up the totality of the Manhattan Project. copyright 1995 American Institute of Physics

  6. Scientists find link between allergic and autoimmune diseases in mouse study

    Science.gov (United States)

    Scientists at the National Institutes of Health, and their colleagues, have discovered that a gene called BACH2 may play a central role in the development of diverse allergic and autoimmune diseases, such as multiple sclerosis, asthma, Crohn's disease, ce

  7. FNL Scientists Introduce Concept That Could Help the Immune System Respond to Vaccines | FNLCR Staging

    Science.gov (United States)

    Scientists have discovered an efficient and straightforward model to manipulate RNA nanoparticles, a new concept that could help trigger desirable activation of the immune system with vaccines and therapies. A multi-institutional team of researchers

  8. From Laboratories to Classrooms: Involving Scientists in Science Education

    Science.gov (United States)

    DeVore, E. K.

    2001-12-01

    Scientists play a key role in science education: the adventure of making new discoveries excites and motivates students. Yet, American science education test scores lag behind those of other industrial countries, and the call for better science, math and technology education is widespread. Thus, improving American science, math and technological literacy is a major educational goal for the NSF and NASA. Today, funding for research often carries a requirement that the scientist be actively involved in education and public outreach (E/PO) to enhance the science literacy of students, teachers and citizens. How can scientists contribute effectively to E/PO? What roles can scientists take in E/PO? And, how can this be balanced with research requirements and timelines? This talk will focus on these questions, with examples drawn from the author's projects that involve scientists in working with K-12 teacher professional development and with K-12 curriculum development and implementation. Experiences and strategies for teacher professional development in the research environment will be discussed in the context of NASA's airborne astronomy education and outreach projects: the Flight Opportunities for Science Teacher EnRichment project and the future Airborne Ambassadors Program for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Effective partnerships with scientists as content experts in the development of new classroom materials will be described with examples from the SETI Institute's Life in the Universe curriculum series for grades 3-9, and Voyages Through Time, an integrated high school science course. The author and the SETI Institute wish to acknowledge funding as well as scientific and technical support from the National Science Foundation, the National Aeronautics and Space Administration, the Hewlett Packard Company, the Foundation for Microbiology, and the Combined Federated Charities.

  9. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Information Optical Illusions Printables Ask a Scientist Video Series Why can’t you see colors well in ... and more with our Ask a Scientist video series. Dr. Sheldon Miller answers questions about color blindness, ...

  10. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Listen All About Vision About the Eye Ask a Scientist Video Series ... Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun ...

  11. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables Ask a Scientist Video Series Why can’ ... a scientist? Click to Watch What is an optical illusion? Click to Watch What is color blindness? Click ...

  12. Young scientists in the making

    CERN Multimedia

    Corinne Pralavorio

    2011-01-01

    Some 700 local primary-school children will be trying out the scientific method for themselves from February to June. After "Draw me a physicist", the latest project "Dans la peau d’un chercheur" ("Be a scientist for a day") is designed to give children a taste of what it's like to be a scientist. Both schemes are the fruit of a partnership between CERN, "PhysiScope" (University of Geneva) and the local education authorities in the Pays de Gex and the Canton of Geneva.   Juliette Davenne (left) and Marie Bugnon (centre) from CERN's Communication Group prepare the mystery boxes for primary schools with Olivier Gaumer (right) of PhysiScope. Imagine a white box that rattles and gives off a strange smell when you shake it… How would you go about finding out what's inside it without opening it? Thirty primary-school teachers from the Pays de Gex and the Canton of Geneva tried out this exercise on Wednesday 26 ...

  13. Scientists Discover Sugar in Space

    Science.gov (United States)

    2000-06-01

    The prospects for life in the Universe just got sweeter, with the first discovery of a simple sugar molecule in space. The discovery of the sugar molecule glycolaldehyde in a giant cloud of gas and dust near the center of our own Milky Way Galaxy was made by scientists using the National Science Foundation's 12 Meter Telescope, a radio telescope on Kitt Peak, Arizona. "The discovery of this sugar molecule in a cloud from which new stars are forming means it is increasingly likely that the chemical precursors to life are formed in such clouds long before planets develop around the stars," said Jan M. Hollis of the NASA Goddard Space Flight Center in Greenbelt, MD. Hollis worked with Frank J. Lovas of the University of Illinois and Philip R. Jewell of the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, on the observations, made in May. The scientists have submitted their results to the Astrophysical Journal Letters. "This discovery may be an important key to understanding the formation of life on the early Earth," said Jewell. Conditions in interstellar clouds may, in some cases, mimic the conditions on the early Earth, so studying the chemistry of interstellar clouds may help scientists understand how bio-molecules formed early in our planet's history. In addition, some scientists have suggested that Earth could have been "seeded" with complex molecules by passing comets, made of material from the interstellar cloud that condensed to form the Solar System. Glycolaldehyde, an 8-atom molecule composed of carbon, oxygen and hydrogen, can combine with other molecules to form the more-complex sugars Ribose and Glucose. Ribose is a building block of nucleic acids such as RNA and DNA, which carry the genetic code of living organisms. Glucose is the sugar found in fruits. Glycolaldehyde contains exactly the same atoms, though in a different molecular structure, as methyl formate and acetic acid, both of which were detected previously in interstellar clouds

  14. Helping Young People Engage with Scientists

    Science.gov (United States)

    Leggett, Maggie; Sykes, Kathy

    2014-01-01

    There can be multiple benefits of scientists engaging with young people, including motivation and inspiration for all involved. But there are risks, particularly if scientists do not consider the interests and needs of young people or listen to what they have to say. We argue that "dialogue" between scientists, young people and teachers…

  15. The History of Winter: teachers as scientists

    Science.gov (United States)

    Koenig, L.; Courville, Z.; Wasilewski, P. J.; Gow, T.; Bender, K. J.

    2013-12-01

    The History of Winter (HOW) is a NASA Goddard Space Flight Center-funded teacher enrichment program that was started by Dr. Peter Wasilewski (NASA), Dr. Robert Gabrys (NASA) and Dr. Tony Gow (Cold Regions Research and Engineering Laboratory, or CRREL) in 2001 and continues with support and involvement of scientists from both the NASA Cryospheric Sciences Laboratory and CREEL. The program brings educators mostly from middle and high schools but also from state parks, community colleges and other institutions from across the US to the Northwood School (a small, private boarding school) in Lake Placid, NY for one week to learn about several facets of winter, polar, and snow research, including the science and history of polar ice core research, lake ice formation and structure, snow pack science, winter ecology, and remote sensing including current and future NASA cryospheric missions. The program receives support from the Northwood School staff to facilitate the program. The goal of the program is to create 'teachers as scientists' which is achieved through several hands-on field experiences in which the teachers have the opportunity to work with polar researchers from NASA, CRREL and partner Universities to dig and sample snow pits, make ice thin sections from lake ice, make snow shelters, and observe under-ice lake ecology. The hands-on work allows the teachers to use the same tools and techniques used in polar research while simultaneously introducing science concepts and activities to support their classroom work. The ultimate goal of the program is to provide the classroom teachers with the opportunity to learn about current and timely cryospheric research as well as to engage in real fieldwork experiences. The enthusiasm generated during the week-long program is translated into classroom activities with guidance from scientists, teachers and educational professionals. The opportunity to engage with polar researchers, both young investigators and renowned

  16. Is evaluation of scientist's objective

    CERN Document Server

    Wold, A

    2000-01-01

    There is ample data demonstrating that female scientists advance at a far slower rate than their male colleagues. The low numbers of female professors in European and North American universities is, thus, not solely an effect of few women in the recruitment pool but also to obstacles specific to the female gender. Together with her colleague Christine Wennerås, Agnes Wold conducted a study of the evaluation process at the Swedish Medical Research Council. Evaluators judged the "scientific competence", "research proposal" and "methodology" of applicants for post-doctoral positions in 1995. By relating the scores for "scientific competence" to the applicants' scientific productivity and other factors using multiple regression, Wennerås and Wold demonstrated that the applicant's sex exerted a strong influence on the "competence" score so that male applicants were perceived as being more competent than female applicants of equal productivity. The study was published in Nature (vol 387, p 341-3, 1997) and inspir...

  17. Refugee scientists and nuclear energy

    International Nuclear Information System (INIS)

    Segre, E.

    1985-01-01

    The coming together of many of the world's experts in nuclear physics in the 1930's was largely the result of the persecution of Jews in Germany and later in Italy. Initially this meant there were no jobs for young physicists to go into as the senior scientists had been sacked. Later, it resulted in the assembly of many of the world's foremost physicists in the United States, specifically at the Los Alamos Laboratory to work on the Manhattan Project. The rise of antisemitism in Italy (to where many physicists had fled at first) provoked the emigration of Fermi, the leading expert on neutrons at that time. The politics, physics and personalities in the 1930's, relevant to the development of nuclear energy, are discussed. (UK)

  18. LHCb Early Career Scientist Awards

    CERN Multimedia

    Patrick Koppenburg for the LHCb Collaboration

    2016-01-01

    On 15 September 2016, the LHCb collaboration awarded the first set of prizes for outstanding contributions of early career scientists.   From left to right: Guy Wilkinson (LHCb spokesperson), Sascha Stahl, Kevin Dungs, Tim Head, Roel Aaij, Conor Fitzpatrick, Claire Prouvé, Patrick Koppenburg (chair of committee) and Sean Benson. Twenty-five nominations were submitted and considered by the committee, and 5 prizes were awarded to teams or individuals for works that had a significant impact within the last year. The awardees are: Roel Aaij, Sean Benson, Conor Fitzpatrick, Rosen Matev and Sascha Stahl for having implemented and commissioned the revolutionary changes to the LHC Run-2 high-level-trigger, including the first widespread deployment of real-time analysis techniques in High Energy Physics;   Kevin Dungs and Tim Head for having launched the Starterkit initiative, a new style of software tutorials based on modern programming methods. “Starterkit is a group of ph...

  19. The Roundtable on Sustainable Biofuels: plant scientist input needed.

    Science.gov (United States)

    Haye, Sébastien; Hardtke, Christian S

    2009-08-01

    The Energy Center at the Ecole Polytechnique Fédérale de Lausanne (Swiss federal institute of technology) is coordinating a multi-stakeholder effort, the Roundtable on Sustainable Biofuels (http://energycenter.epfl.ch/biofuels), to develop global standards for sustainable biofuels production and processing. Given that many of the aspects related to biofuel production request a high scientific level of understanding, it is crucial that scientists take part in the discussion.

  20. PREFACE: FAIRNESS 2014: FAIR Next Generation ScientistS 2014

    Science.gov (United States)

    2015-04-01

    FAIRNESS 2014 was the third edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on September 22-27 2014 in Vietri sul Mare, Italy. The topics of the workshops cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permanent position to present their work, to foster active informal discussions and build up of networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in a box to stimulate discussions. The broad physics program at FAIR is reflected in the wide range of topics covered by the workshop: • Physics of hot and dense nuclear matter, QCD phase transitions and critical point • Nuclear structure, astrophysics and reactions • Hadron Spectroscopy, Hadrons in matter and Hypernuclei • New developments in atomic and plasma physics • Special emphasis is put on the experiments CBM, HADES, PANDA, NUSTAR, APPA and related experiments For each of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2014 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of research that

  1. Summary of safeguards interactions between Los Alamos and Chinese scientists

    International Nuclear Information System (INIS)

    Eccleston, G.W.

    1994-01-01

    Los Alamos has been collaborating since 1984 with scientists from the Chinese Institute of Atomic Energy (CIAE) to develop nuclear measurement instrumentation and safeguards systems technologies that will help China support implementation of the nonproliferation treaty (NPT). To date, four Chinese scientists have visited Los Alamos, for periods of six months to two years, where they have studied nondestructive assay instrumentation and learned about safeguards systems and inspection techniques that are used by International Atomic Energy Agency (IAEA) inspectors. Part of this collaboration involves invitations from the CIAE to US personnel to visit China and interact with a larger number of Institute staff and to provide a series of presentations on safeguards to a wider audience. Typically, CIAE scientists, Beijing Institute of Nuclear Engineering (BINE) staff, and officials from the Government Safeguards Office attend the lectures. The BINE has an important role in developing the civilian nuclear power fuel cycle. BINE is designing a reprocessing plant for spent nuclear fuel from Chinese nuclear Power reactors. China signed the nonproliferation treaty in 1992 and is significantly expanding its safeguards expertise and activities. This paper describes the following: DOE support for US and Chinese interactions on safeguards; Chinese safeguards; impacts of US-China safeguards interactions; and possible future safeguards interactions

  2. Why I became a scientist

    Indian Academy of Sciences (India)

    Lawrence

    science in school is perhaps the earliest influence in choos- ing a career in ... oriented education of our students, I feel that we must have such dedicated and ... Technology (BITS), Pilani and the Indian Institute of Technol- ogy, Kanpur to join ... my shoulder and a big ambition to do elementary particle physics. I was the only ...

  3. 'Women Scientists need helping hand'

    Indian Academy of Sciences (India)

    ROOPA

    out of top jobs due to gender discrimination. These issues were the subject of discussion at a round table conference organised by the Centre for. Contemporary Studies, Indian Institute of Science on Wednesday, in collaboration with the Panel of the. Indian Academy of Sciences for Women in Science. “The mandate of the ...

  4. Search, access and dissemination of scientific information from scientists, social scientists and humanists

    Directory of Open Access Journals (Sweden)

    Fernando César Lima Leite

    2015-05-01

    Full Text Available This paper presents results of study on the characteristics of search activities, access to and use of information, and dissemination habits of researchers from scientific research institutes. From the methodological point of view, it is a mixed methods study which adopted the concurrent triangulation strategy. Data were collected through questionnaires, interviews and checklist, and then submitted to statistical and text analysis. The research sphere was consisted of researchers linked to the research units of the Ministry of Science, Technology and Innovation, and the sample basis were the researchers of the Brazilian Centre for Physics Research (CBPF and Museum of Astronomy and Related Sciences (MAST. Among other aspects, the findings shows that the safeguarded their disciplinary differences, search, access and communication activities, regardless of the knowledge area, occurring mainly in the digital environment; communication habits are stimulated by motives common to scientists and social scientists and humanists, share knowledge and visibility are the main reasons for the dissemination of research results, physicists are naturally within the open access context.

  5. The Francis Crick Institute.

    Science.gov (United States)

    Peters, Keith; Smith, Jim

    2017-04-01

    The Francis Crick Institute Laboratory, opened in 2016, is supported by the Medical Research Council, Cancer Research UK, the Wellcome Trust, and University College London, King's College London and Imperial College London. The emphasis on research training and early independence of gifted scientists in a multidisciplinary environment provides unique opportunities for UK medical science, including clinical and translational research. © Royal College of Physicians 2017. All rights reserved.

  6. EGU's Early Career Scientists Network

    Science.gov (United States)

    Roberts Artal, L.; Rietbroek, R.

    2017-12-01

    The EGU encourages early career scientists (ECS) to become involved in interdisciplinary research in the Earth, planetary and space sciences, through sessions, social events and short courses at the annual General Assembly in April and throughout the year. Through division-level representatives, all ECS members can have direct input into matters of the division. A Union-wide representative, who sits on the EGU Council, ensures that ECS are heard at a higher level in the Union too. After a brief introduction as to how the network is organised and structured, this presentation will discuss how EGU ECS activities have been tailored to the needs of ECS members and how those needs have been identified. Reaching and communicating opportunities to ECS remains an ongoing challenge; they will be discussed in this presentation too, as well as some thoughts on how to make them more effective. Finally, the service offered to EGU ECS members would certainly benefit from building links and collaboration with other early career networks in the geosciences. This presentation will outline some of our efforts in that direction and the challenges that remain.

  7. Gifted and Talented Students’ Images of Scientists

    Directory of Open Access Journals (Sweden)

    Sezen Camcı-Erdoğan

    2013-06-01

    Full Text Available The purpose of this study was to investigate gifted students’ images of scientists. The study involved 25 students in grades 7 and 8. The Draw-a-Scientist Test (DAST (Chamber, 183 was used to collect data. Drawings were eval-uated using certain criterion such as a scien-tist’s appearance and investigation, knowledge and technology symbols and gender and working style, place work, expressions, titles-captions-symbols and alternative images and age. The results showed that gifted students’ perceptions about scientists were stereotypical, generally with glasses and laboratory coats and working with experiment tubes, beakers indoors and using books, technological tools and dominantly lonely males. Most gifted stu-dents drew male scientists. Although females drew male scientists, none of the boys drew female scientist.

  8. Frederic Joliot-Curie, a tormented scientist

    International Nuclear Information System (INIS)

    Pinault, M.

    2000-01-01

    This article is a short biography of the French scientist Frederic Joliot-Curie. His fight for a peaceful use of atomic energy, his responsibilities as nuclear physicist and as the first director of the French atomic commission (CEA) have led him to face contradictions very difficult to manage. All along his career as a scientist and as a high ranked civil servant, F.Joliot-Curie tried to find an ethical way for scientists in modern societies. (A.C.)

  9. Exploring Scientists' Working Timetable: A Global Survey

    OpenAIRE

    Wang, Xianwen; Peng, Lian; Zhang, Chunbo; Xu, Shenmeng; Wang, Zhi; Wang, Chuanli; Wang, Xianbing

    2013-01-01

    In our previous study (Wang et al., 2012), we analyzed scientists' working timetable of 3 countries, using realtime downloading data of scientific literatures. In this paper, we make a through analysis about global scientists' working habits. Top 30 countries/territories from Europe, Asia, Australia, North America, Latin America and Africa are selected as representatives and analyzed in detail. Regional differences for scientists' working habits exists in different countries. Besides differen...

  10. Scientists Must Not Film but Must Appear on Screen!

    Science.gov (United States)

    Gerdes, A.; Madlener, S.

    2013-12-01

    Film production in science has affected its subjects in a truly remarkable way. Where scientists were once perceived to be poor communicators with an overwhelming aptitude for numbers and figures, audiences now have access to scientists they can understand and even relate to. Over the years, scientists have grown accustomed to involving and using the media in their research and exposing their science to wider audiences, making them better communicators. This is a huge development, and one that is especially noticeable at MARUM, the Center for Marine Environmental Sciences at the University of Bremen/Germany. Over time, the collaboration between the scientists and public relations staff has taught us all to be better at what we do. A unique characteristic of MARUM TV is that more or less all videos are produced 'in house'; we have established the small yet effective infrastructure necessary do develop, execute, and distribute semi-professional videos to access broader audiences and increase world-wide visibility. MARUM TV relies on our research scientists to operate cameras and capture important moments offshore on expedition, and to cooperate with us as we shoot footage of them and conduct interviews onshore in the lab. In turn, we promote their research and help increase their accessibility. At the forefront of our success is the relatively recent implementation of HD cameras on MARUM's fleet of remotely operated vehicles, which capture stunning video footage of the deep sea. Furthermore, sustained collaborations with national tv stations, online media portals, and large production companies helps inform our process and increases MARUM's visibility. The result is an extensive suite of about 70 short and long format science videos with some of the highest view counts on YouTube compared to other marine institutes. In the session PA011 'Scientists must film!' we intent to address issues regarding roadblocks to bridging science and media: a) Science communication

  11. Interviewing German scientists on climate change. A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Ungar, S. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Kuestenforschung; Toronto Univ., Scarborough (Canada)

    2004-07-01

    This study is based on in-depth interviews with 25 German scientists at the Coastal Research Institute of the GKSS-Forschungszentrum. It takes as its context the differential rhetoric and planning on climate change found in Germany and North America. The interviews try to throw light on the early German decision to address climate change, and to assess the current attitudes, beliefs and experiences of these German scientists. The results reveal a degree of complacency among these scientists, including a sense that Germany is not particularly threatened by climate change and has the capacity to adapt to it. The scientists are critical of inaction among the German population, but themselves uphold a ''light version'' of the precautionary principle. They have great difficulty translating the idea of climate change into popular metaphors that can be grasped by children. They strongly reject any link between German leadership on the issue as a result of a sense of guilt about the German past. (orig.)

  12. Politics and scientific expertise: Scientists, risk perception, and nuclear waste policy

    International Nuclear Information System (INIS)

    Barke, R.P.; Jenkins-Smith, H.C.

    1993-01-01

    To study the homogeneity and influences on scientists' perspectives of environmental risks, the authors have examined similarities and differences in risk perceptions, particularly regarding nuclear wastes, and policy preferences among 1011 scientists and engineers. Significant differences (p<0.05) were found in the patterns of beliefs among scientists from different fields of research. In contrast to physicists, chemists, and engineers, life scientists tend to: (a) perceive the greatest risks from nuclear energy and nuclear waste management; (b) perceive higher levels of overall environmental risk; (c) strongly oppose imposing risks on unconsenting individuals; and (d) prefer stronger requirements for environmental management. On some issues related to priorities among public problems and calls for government action, there are significant variations among life scientists or physical scientists. It was also found that-independently of field of research-perceptions of risk and its correlates are significantly associated with the type of institution in which the scientist is employed. Scientists in universities or state and local governments tend to see the risks of nuclear energy and wastes as greater than scientists who work as business consultants, for federal organizations, or for private research laboratories. Significant differences also are found in priority given to environmental risks, the perceived proximity of environmental disaster, willingness to impose risks on an unconsenting population, and the necessity of accepting risks and sacrifices. 33 refs., 3 figs., 9 tabs

  13. Surgeon Scientists Are Disproportionately Affected by Declining NIH Funding Rates.

    Science.gov (United States)

    Narahari, Adishesh K; Mehaffey, J Hunter; Hawkins, Robert B; Charles, Eric J; Baderdinni, Pranav K; Chandrabhatla, Anirudha S; Kocan, Joseph W; Jones, R Scott; Upchurch, Gilbert R; Kron, Irving L; Kern, John A; Ailawadi, Gorav

    2018-04-01

    Obtaining National Institutes of Health (NIH) funding over the last 10 years has become increasingly difficult due to a decrease in the number of research grants funded and an increase in the number of NIH applications. National Institutes of Health funding amounts and success rates were compared for all disciplines using data from NIH, Federation of American Societies for Experimental Biology (FASEB), and Blue Ridge Medical Institute. Next, all NIH grants (2006 to 2016) with surgeons as principal investigators were identified using the National Institutes of Health Research Portfolio Online Reporting Tools Expenditures and Results (NIH RePORTER), and a grant impact score was calculated for each grant based on the publication's impact factor per funding amount. Linear regression and one-way ANOVA were used for analysis. The number of NIH grant applications has increased by 18.7% (p = 0.0009), while the numbers of funded grants (p rate of funded grants with surgeons as principal investigators (16.4%) has been significantly lower than the mean NIH funding rate (19.2%) (p = 0.011). Despite receiving only 831 R01s during this time period, surgeon scientists were highly productive, with an average grant impact score of 4.9 per $100,000, which increased over the last 10 years (0.15 ± 0.05/year, p = 0.02). Additionally, the rate of conversion of surgeon scientist-mentored K awards to R01s from 2007 to 2012 was 46%. Despite declining funding over the last 10 years, surgeon scientists have demonstrated increasing productivity as measured by impactful publications and higher success rates in converting early investigator awards to R01s. Copyright © 2018 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Chinese Scientists | Women in Science | Initiatives | Indian Academy ...

    Indian Academy of Sciences (India)

    Home; Initiatives; Women in Science; Chinese Scientists. Chinese Scientists. One third Chinese scientists are women [What about India?] ... scientists, at a young age of 52, after a valiant battle with cancer, today on 29th March 2016 in Delhi.

  15. Supervising Scientist, Annual Report 2000-2001

    International Nuclear Information System (INIS)

    2001-01-01

    The year under review has seen the resolution of the major issue that has dominated the work of the Supervising Scientist Division over the past three years the review of scientific uncertainties associated with the environmental assessment of the proposal to mine uranium at Jabiluka. The Supervising Scientist prepared a comprehensive report on the risks associated with mining at Jabiluka, which has been under various stages of peer review by an Independent Science Panel (ISP) appointed by the WHC since May 1999. This process culminated in a visit to Australia by the ISP in July 2000 for detailed discussion and assessment and the submission of the final report of the ISP to the World Heritage Committee in September 2000. The report of the ISP was considered at the meeting of the World Heritage Committee in Cairns in December 2000. The Committee reached the conclusion that 'the currently approved proposal for the mine and mill at Jabiluka does not threaten the health of people or the biological and ecological systems of Kakadu National Park that the Mission believed to be at risk'. As a result, the WHC decided not to register Kakadu National Park on the World Heritage List in Danger. But the people of Kakadu themselves remain to be convinced. A major challenge is to gain the confidence of Aboriginal people in the integrity and independence of our scientific assessments and to reduce the concerns that they have for the future of their people and their country. Monitoring of the Jabiluka project was extensive throughout the reporting period. Chemical and biological monitoring programmes of Energy Resources of Australia (ERA) and the Environmental Research Institute of the Supervising Scientist (ERISS) demonstrated that no adverse impact occurred in downstream aquatic ecosystems. Similarly, radiological measurements close to the nearest population centre demonstrated that radiation exposure of the public due to current operations at Jabiluka is not detectable

  16. Student Pugwash Conference Probes Scientists' Individual Responsibility.

    Science.gov (United States)

    Seltzer, Richard J.

    1985-01-01

    Students from 25 nations and senior scientists examined ethical and social dimensions of decision making about science and technology during the 1985 Student Pugwash Conference on scientists' individual responsibilities. Working groups focused on toxic wastes, military uses of space, energy and poverty, genetic engineering, and individual rights.…

  17. Scientists Like Me: Faces of Discovery

    Science.gov (United States)

    Enevoldsen, A. A. G.; Culp, S.; Trinh, A.

    2010-08-01

    During the International Year of Astronomy, Pacific Science Center is hosting a photography exhibit: Scientists Like Me: Faces of Discovery. The exhibit contains photographs of real, current astronomers and scientists working in astronomy and aerospace-related fields from many races, genders, cultural affiliations and walks of life. The photographs were taken and posters designed by Alyssa Trinh and Sarah Culp, high school interns in Discovery Corps, Pacific Science Center's youth development program. The direct contact between the scientists and the interns helps the intended audience of teachers and families personally connect with scientists. The finished posters from this exhibit are available online (http://pacificsciencecenter.org/scientists) for teachers to use in their classrooms, in addition to being displayed at Pacific Science Center and becoming part of Pacific Science Center's permanent art rotation. The objective of this project was to fill a need for representative photographs of scientists in the world community. It also met two of the goals of International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by all people in scientific and engineering careers. We would like to build on the success of this project and create an annual summer internship, with different interns, focusing on creating posters for different fields of science.

  18. Tens of Romanian scientists work at CERN

    CERN Multimedia

    Silian, Sidonia

    2007-01-01

    "The figures regarding the actual number of Romanian scientists working at the European Center for Nuclear Research, or CERN, differ. The CERN data base lists some 30 Romanians on its payroll, while the scientists with the Nuclear Center at Magurele, Romania, say they should be around 50." (1 page)

  19. How Middle Schoolers Draw Engineers and Scientists

    Science.gov (United States)

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-01-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are…

  20. Communicating Like a Scientist with Multimodal Writing

    Science.gov (United States)

    McDermott, Mark; Kuhn, Mason

    2012-01-01

    If students are to accurately model how scientists use written communication, they must be given opportunities to use creative means to describe science in the classroom. Scientists often integrate pictures, diagrams, charts, and other modes within text and students should also be encouraged to use multiple modes of communication. This article…

  1. How Scientists Develop Competence in Visual Communication

    Science.gov (United States)

    Ostergren, Marilyn

    2013-01-01

    Visuals (maps, charts, diagrams and illustrations) are an important tool for communication in most scientific disciplines, which means that scientists benefit from having strong visual communication skills. This dissertation examines the nature of competence in visual communication and the means by which scientists acquire this competence. This…

  2. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables Ask a Scientist Video Series ...

  3. Developing and Sustaining a Career as a Transdisciplinary Nurse Scientist.

    Science.gov (United States)

    Hickey, Kathleen T

    2018-01-01

    The purpose of this article is to provide an overview of strategies to build and sustain a career as a nurse scientist. This article examines how to integrate technologies and precision approaches into clinical practice, research, and education of the next generation of nursing scholars. This article presents information for shaping a sustainable transdisciplinary career. Programs of research that utilize self-management to improve quality of life are discussed throughout the article. The ongoing National Institute of Nursing Research-funded (R01 grant) iPhone Helping Evaluate Atrial Fibrillation Rhythm through Technology (iHEART) study is the first prospective, randomized controlled trial to evaluate whether electrocardiographic monitoring with the AliveCor™ device in the real-world setting will improve the time to detection and treatment of recurrent atrial fibrillation over a 6-month period as compared to usual cardiac care. Opportunities to sustain a career as a nurse scientist and build programs of transdisciplinary research are identified. These opportunities are focused within the area of research and precision medicine. Nurse scientists have the potential and ability to shape their careers and become essential members of transdisciplinary partnerships. Exposure to clinical research, expert mentorship, and diverse training opportunities in different areas are essential to ensure that contributions to nursing science are visible through publications and presentations as well as through securing grant funding to develop and maintain programs of research. Transcending boundaries and different disciplines, nurses are essential members of many diverse teams. Nurse scientists are strengthening research approaches, clinical care, and communication and improving health outcomes while also building and shaping the next generation of nurse scientists. © 2017 Sigma Theta Tau International.

  4. Two Japanese scientists and the Curie family, Nobuo Yamada and Toshiko Yuasa

    International Nuclear Information System (INIS)

    Kawashima, Keiko

    2012-01-01

    This article presents two Japanese scientists, a man and a woman, who worked with Pierre and Marie Curie, and with Irene and Pierre Joliot-Curie. Nobuo Yamada (1896-1927) was the first Japanese researcher at the French Radium Institute; he was a specialist of researches on helium. Toshiko Yuasa was the first Japanese scientist to obtain a permanent appointment in France. Her researches were a contribution to the investigation of the continuous spectrum of beta radiation emitted by artificial radioactive bodies

  5. Developmental Scientist | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Institute of Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the considerable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and

  6. Exploring project selection behavior of academic scientists in India

    OpenAIRE

    Anju Chawla

    2007-01-01

    This study is based on retrospective accounts of a stratified sample of about 1,100 academic scien-tists in India on the criteria actually used by them in the choice of research projects. A basic objective is to examine the effects of contextual factors such as academic rank, institutional and disciplinary setting, and sources of research funds on the choice of research projects. A struc-tured questionnaire was used to tap the criteria for project selection. The items were factor-analyzed and...

  7. What scientists want from their research ethics committee.

    Science.gov (United States)

    Keith-Spiegel, Patricia; Tabachnick, Barbara

    2006-03-01

    Whereas investigators have directed considerable criticism against Institutional Review Boards (IRBs), the desirable characteristics of IRBs have not previously been empirically determined. A sample of 886 experienced biomedical and social and behavioral scientists rated 45 descriptors of IRB actions and functions as to their importance. Predictions derived from organizational justice research findings in other work settings were generally borne out. Investigators place high value on the fairness and respectful consideration of their IRBs. Expected differences between biomedical and social behavioral researchers and other variables were unfounded. Recommendations are offered for educating IRBs to accord researchers greater respect and fair treatment.

  8. Engineering Institute

    Science.gov (United States)

    Projects Past Projects Publications NSEC » Engineering Institute Engineering Institute Multidisciplinary engineering research that integrates advanced modeling and simulations, novel sensing systems and new home of Engineering Institute Contact Institute Director Charles Farrar (505) 665-0860 Email UCSD EI

  9. FNL Scientists Introduce Concept That Could Help the Immune System Respond to Vaccines | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Scientists have discovered an efficient and straightforward model to manipulate RNA nanoparticles, a new concept that could help trigger desirable activation of the immune system with vaccines and therapies. A multi-institutional team of researchers

  10. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Scientist Video Series Why can’t you see colors well in the dark? Do fish have eyelids? ... video series. Dr. Sheldon Miller answers questions about color blindness, whether it can be treated, and how ...

  11. Meet EPA Physical Scientist Lukas Oudejans

    Science.gov (United States)

    Lukas Oudejans, Ph.D. is a physical scientist working in EPA’s National Homeland Security Research Center. His research focuses on preparing cleanup options for the agency following a disaster incident.

  12. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Disease Education Program Glaucoma Education Program Low Vision Education Program ... Eye Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety ...

  13. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... video below to get answers to questions like these and more with our Ask a Scientist video ... Is perfect vision real? Click to Watch Are these common eye-related myths true or false? Click ...

  14. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... search for current job openings visit HHS USAJobs Home >> NEI for Kids >> Ask a Scientist Video Series ... can see clearly from 25 feet away. NEI Home Contact Us A-Z Site Map NEI on ...

  15. Elements of ethics for physical scientists

    CERN Document Server

    Greer, Sandra C

    2017-01-01

    This book offers the first comprehensive guide to ethics for physical scientists and engineers who conduct research. Written by a distinguished professor of chemistry and chemical engineering, the book focuses on the everyday decisions about right and wrong faced by scientists as they do research, interact with other people, and work within society. The goal is to nurture readers’ ethical intelligence so that they know an ethical issue when they see one, and to give them a way to think about ethical problems. After introductions to the philosophy of ethics and the philosophy of science, the book discusses research integrity, with a unique emphasis on how scientists make mistakes and how they can avoid them. It goes on to cover personal interactions among scientists, including authorship, collaborators, predecessors, reviewers, grantees, mentors, and whistle-blowers. It considers underrepresented groups in science as an ethical issue that matters not only to those groups but also to the development of scien...

  16. Women scientists reflections, challenges, and breaking boundaries

    CERN Document Server

    Hargittai, Magdolna

    2015-01-01

    Magdolna Hargittai uses over fifteen years of in-depth conversation with female physicists, chemists, biomedical researchers, and other scientists to form cohesive ideas on the state of the modern female scientist. The compilation, based on sixty conversations, examines unique challenges that women with serious scientific aspirations face. In addition to addressing challenges and the unjustifiable underrepresentation of women at the higher levels of academia, Hargittai takes a balanced approach by discussing how some of the most successful of these women have managed to obtain professional success and personal happiness. Women Scientists portrays scientists from different backgrounds, different geographical regions-eighteen countries from four continents-and leaders from a variety of professional backgrounds, including eight Nobel laureate women. The book is divided into three sections: "Husband and Wife Teams," "Women at the Top," and "In High Positions." Hargittai uses her own experience to introduce her fi...

  17. The persistent stereotype: children's images of scientists

    Science.gov (United States)

    Emens McAdam, Janice

    1990-03-01

    Through their reading children learn to regard scientists as eccentrics. It is shown that this stereotype has persisted for over thirty years and affects many adult attitudes. Some methods of breaking the author-reader cycle are suggested.

  18. CGH Short Term Scientist Exchange Program (STSEP)

    Science.gov (United States)

    STSEP promotes collaborative research between established U.S. and foreign scientists from low, middle, and upper-middle income countries (LMICs) by supporting, in part, exchange visits of cancer researchers between U.S. and foreign laboratories.

  19. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Illusions Printables Ask a Scientist Video Series Why can’t you see colors well in the dark? ... Miller answers questions about color blindness, whether it can be treated, and how people become color blind. ...

  20. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Photos and Images Spanish Language Information Grants and Funding Extramural Research Division of Extramural Science Programs Division ... Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety ...

  1. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Accomplishments Budget and Congress About the NEI Director History of the NEI NEI 50th Anniversary NEI Women Scientists Advisory Committee (WSAC) Board of Scientific Counselors ...

  2. Yelavarthy Nayudamma: Scientist, Leader, and Mentor Extraordinary

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Yelavarthy Nayudamma: Scientist, Leader, and Mentor Extraordinary. J Raghava Rao T Ramasami. General Article Volume 19 Issue 10 October 2014 pp 887-899 ...

  3. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... search for current job openings visit HHS USAJobs Home » NEI for Kids » Ask a Scientist Video Series ... can see clearly from 25 feet away. NEI Home Contact Us A-Z Site Map NEI on ...

  4. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... History of the NEI NEI 50th Anniversary NEI Women Scientists Advisory Committee (WSAC) Board of Scientific Counselors ... Emily Y. Chew, M.D., Deputy Clinical Director Education Programs National Eye Health Education Program (NEHEP) Diabetic ...

  5. Dual use and the ethical responsibility of scientists.

    Science.gov (United States)

    Ehni, Hans-Jörg

    2008-01-01

    The main normative problem in the context of dual use is to determine the ethical responsibility of scientists especially in the case of unintended, harmful, and criminal dual use of new technological applications of scientific results. This article starts from an analysis of the concepts of responsibility and complicity, examining alternative options regarding the responsibility of scientists. Within the context of the basic conflict between the freedom of science and the duty to avoid causing harm, two positions are discussed: moral skepticism and the ethics of responsibility by Hans Jonas. According to these reflections, four duties are suggested and evaluated: stopping research, systematically carrying out research for dual-use applications, informing public authorities, and not publishing results. In the conclusion it is argued that these duties should be considered as imperfect duties in a Kantian sense and that the individual scientist should be discharged as much as possible from obligations which follow from them by the scientific community and institutions created for this purpose.

  6. Scientists' views of the philosophy of science

    OpenAIRE

    Riesch, H.

    2008-01-01

    Many studies in public understanding of science emphasise that learning how to do science also involves learning about the philosophical issues surrounding the nature of science. This thesis aims to find out how scientists themselves talk and write about these philosophical topics, and how these topics get used in scientific thought. It contrasts scientists' opinions on these issues with how they are portrayed in popular science, and also contrasts them with how philosophers themselves have j...

  7. Photonics4All Crossword: Light Scientist

    OpenAIRE

    Dr. Adam, Aurèle

    2015-01-01

    Photonics4All developed the quiz “The Optics Scientist“. It tests our knowledge regarding famous people in optics & photonics. 14 famous scientists you should know, if you consider yourself a photoncis experts, are presented! For instance: Do you know the Dutch scientist who lived in Delft and invented the microscope? …find our more & test yourself, your friends, co-workers, students or family members!

  8. Analyzing prospective teachers' images of scientists using positive, negative and stereotypical images of scientists

    Science.gov (United States)

    Subramaniam, Karthigeyan; Esprívalo Harrell, Pamela; Wojnowski, David

    2013-04-01

    Background and purpose : This study details the use of a conceptual framework to analyze prospective teachers' images of scientists to reveal their context-specific conceptions of scientists. The conceptual framework consists of context-specific conceptions related to positive, stereotypical and negative images of scientists as detailed in the literature on the images, role and work of scientists. Sample, design and method : One hundred and ninety-six drawings of scientists, generated by prospective teachers, were analyzed using the Draw-A-Scientist-Test Checklist (DAST-C), a binary linear regression and the conceptual framework. Results : The results of the binary linear regression analysis revealed a statistically significant difference for two DAST-C elements: ethnicity differences with regard to drawing a scientist who was Caucasian and gender differences for indications of danger. Analysis using the conceptual framework helped to categorize the same drawings into positive, stereotypical, negative and composite images of a scientist. Conclusions : The conceptual framework revealed that drawings were focused on the physical appearance of the scientist, and to a lesser extent on the equipment, location and science-related practices that provided the context of a scientist's role and work. Implications for teacher educators include the need to understand that there is a need to provide tools, like the conceptual framework used in this study, to help prospective teachers to confront and engage with their multidimensional perspectives of scientists in light of the current trends on perceiving and valuing scientists. In addition, teacher educators need to use the conceptual framework, which yields qualitative perspectives about drawings, together with the DAST-C, which yields quantitative measure for drawings, to help prospective teachers to gain a holistic outlook on their drawings of scientists.

  9. Meandering Musings by Linus Pauling: "American Scientists and the Spirit of the Frontier".

    Science.gov (United States)

    Bause, George S

    2016-04-01

    Hoping to raise funds in 1975 for his namesake institute, Linus Pauling submitted to Esquire magazine a 32-page handwritten manuscript, "American Scientists and the Spirit of the Frontier." Angered when his submission for publication was declined, Pauling eventually gifted the original manuscript in 1986 to his friend, Linus Pauling Institute fundraiser Stephen Maddox, who would sell it in 2004 to the Wood Library-Museum of Anesthesiology. Published accurately here for the first time, the manuscript captures not only Pauling's sweeping metaphor of scientists as frontiersmen but also the creative process by which Pauling formulated his hydrate microcrystal theory of general anesthesia. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Improving Communication Skills in Early Career Scientists

    Science.gov (United States)

    Saia, S. M.

    2013-12-01

    The AGU fall meeting is a time for scientists to share what we have been hard at work on for the past year, to share our trials and tribulations, and of course, to share our science (we hope inspirational). In addition to sharing, the AGU fall meeting is also about collaboration as it brings old and new colleagues together from diverse communities across the planet. By sharing our ideas and findings, we build new relationships with the potential to cross boundaries and solve complex and pressing environmental issues. With ever emerging and intensifying water scarcity, extreme weather, and water quality issues across the plant, it is especially important that scientists like us share our ideas and work together to put these ideas into action. My vision of the future of water sciences embraces this fact. I believe that better training is needed to help early career scientists, like myself, build connections within and outside of our fields. First and foremost, more advanced training in effective storytelling concepts and themes may improve our ability to provide context for our research. Second, training in the production of video for internet-based media (e.g. YouTube) may help us bring our research to audiences in a more personalized way. Third, opportunities to practice presenting at highly visible public events such as the AGU fall meeting, will serve to prepare early career scientists for a variety of audiences. We hope this session, ';Water Sciences Pop-Ups', will provide the first steps to encourage and train early career scientists as they share and collaborate with scientists and non-scientists around the world.

  11. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    OpenAIRE

    Fang, Jin-Qing; Liu, Qiang

    2013-01-01

    Nobelist TD Lee scientist cooperation network (TDLSCN) and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scie...

  12. Sky Fest: A Model of Successful Scientist Participation in E/PO

    Science.gov (United States)

    Dalton, H.; Shipp, S. S.; Shaner, A. J.; LaConte, K.; Shupla, C. B.

    2014-12-01

    Participation in outreach events is an easy way for scientists to get involved with E/PO and reach many people with minimal time commitment. At the Lunar and Planetary Institute (LPI) in Houston, Texas, the E/PO team holds Sky Fest outreach events several times a year. These events each have a science content theme and include several activities for children and their parents, night sky viewing through telescopes, and scientist presentations. LPI scientists have the opportunity to participate in Sky Fest events either by helping lead an activity or by giving the scientist presentation (a short lecture and/or demonstration). Scientists are involved in at least one preparation meeting before the event. This allows them to ask questions, understand what activity they will be leading, and learn the key points that they should be sharing with the public, as well as techniques for effectively teaching members of the public about the event topic. During the event, each activity is run by one E/PO specialist and one scientist, enabling the scientist to learn about effective E/PO practices from the E/PO specialist and the E/PO specialist to get more science information about the event topic. E/PO specialists working together with scientists at stations provides a more complete, richer experience for event participants. Surveys of event participants have shown that interacting one-on-one with scientists is often one of their favorite parts of the events. Interviews with scientists indicated that they enjoyed Sky Fest because there was very little time involved on their parts outside of the actual event; the activities were created and/or chosen by the E/PO professionals, and setup for the events was completed before they arrived. They also enjoyed presenting their topic to people without a background in science, and who would not have otherwise sought out the information that was presented.

  13. Institutional advantage

    NARCIS (Netherlands)

    Martin, Xavier

    Is there such a thing as institutional advantage—and what does it mean for the study of corporate competitive advantage? In this article, I develop the concept of institutional competitive advantage, as distinct from plain competitive advantage and from comparative institutional advantage. I first

  14. Evolutionary institutionalism.

    Science.gov (United States)

    Fürstenberg, Dr Kai

    Institutions are hard to define and hard to study. Long prominent in political science have been two theories: Rational Choice Institutionalism (RCI) and Historical Institutionalism (HI). Arising from the life sciences is now a third: Evolutionary Institutionalism (EI). Comparative strengths and weaknesses of these three theories warrant review, and the value-to-be-added by expanding the third beyond Darwinian evolutionary theory deserves consideration. Should evolutionary institutionalism expand to accommodate new understanding in ecology, such as might apply to the emergence of stability, and in genetics, such as might apply to political behavior? Core arguments are reviewed for each theory with more detailed exposition of the third, EI. Particular attention is paid to EI's gene-institution analogy; to variation, selection, and retention of institutional traits; to endogeneity and exogeneity; to agency and structure; and to ecosystem effects, institutional stability, and empirical limitations in behavioral genetics. RCI, HI, and EI are distinct but complementary. Institutional change, while amenable to rational-choice analysis and, retrospectively, to criticaljuncture and path-dependency analysis, is also, and importantly, ecological. Stability, like change, is an emergent property of institutions, which tend to stabilize after change in a manner analogous to allopatric speciation. EI is more than metaphorically biological in that institutional behaviors are driven by human behaviors whose evolution long preceded the appearance of institutions themselves.

  15. The Rehabilitation Medicine Scientist Training Program

    Science.gov (United States)

    Whyte, John; Boninger, Michael; Helkowski, Wendy; Braddom-Ritzler, Carolyn

    2016-01-01

    Physician scientists are seen as important in healthcare research. However, the number of physician scientists and their success in obtaining NIH funding have been declining for many years. The shortage of physician scientists in Physical Medicine and Rehabilitation is particularly severe, and can be attributed to many of the same factors that affect physician scientists in general, as well as to the lack of well developed models for research training. In 1995, the Rehabilitation Medicine Scientist Training Program (RMSTP) was funded by a K12 grant from the National Center of Medical Rehabilitation Research (NCMRR), as one strategy for increasing the number of research-productive physiatrists. The RMSTP's structure was revised in 2001 to improve the level of preparation of incoming trainees, and to provide a stronger central mentorship support network. Here we describe the original and revised structure of the RMSTP and review subjective and objective data on the productivity of the trainees who have completed the program. These data suggest that RMSTP trainees are, in general, successful in obtaining and maintaining academic faculty positions and that the productivity of the cohort trained after the revision, in particular, shows impressive growth after about 3 years of training. PMID:19847126

  16. Assessing scientists for hiring, promotion, and tenure.

    Science.gov (United States)

    Moher, David; Naudet, Florian; Cristea, Ioana A; Miedema, Frank; Ioannidis, John P A; Goodman, Steven N

    2018-03-01

    Assessment of researchers is necessary for decisions of hiring, promotion, and tenure. A burgeoning number of scientific leaders believe the current system of faculty incentives and rewards is misaligned with the needs of society and disconnected from the evidence about the causes of the reproducibility crisis and suboptimal quality of the scientific publication record. To address this issue, particularly for the clinical and life sciences, we convened a 22-member expert panel workshop in Washington, DC, in January 2017. Twenty-two academic leaders, funders, and scientists participated in the meeting. As background for the meeting, we completed a selective literature review of 22 key documents critiquing the current incentive system. From each document, we extracted how the authors perceived the problems of assessing science and scientists, the unintended consequences of maintaining the status quo for assessing scientists, and details of their proposed solutions. The resulting table was used as a seed for participant discussion. This resulted in six principles for assessing scientists and associated research and policy implications. We hope the content of this paper will serve as a basis for establishing best practices and redesigning the current approaches to assessing scientists by the many players involved in that process.

  17. Assessing scientists for hiring, promotion, and tenure

    Science.gov (United States)

    Naudet, Florian; Cristea, Ioana A.; Miedema, Frank; Ioannidis, John P. A.; Goodman, Steven N.

    2018-01-01

    Assessment of researchers is necessary for decisions of hiring, promotion, and tenure. A burgeoning number of scientific leaders believe the current system of faculty incentives and rewards is misaligned with the needs of society and disconnected from the evidence about the causes of the reproducibility crisis and suboptimal quality of the scientific publication record. To address this issue, particularly for the clinical and life sciences, we convened a 22-member expert panel workshop in Washington, DC, in January 2017. Twenty-two academic leaders, funders, and scientists participated in the meeting. As background for the meeting, we completed a selective literature review of 22 key documents critiquing the current incentive system. From each document, we extracted how the authors perceived the problems of assessing science and scientists, the unintended consequences of maintaining the status quo for assessing scientists, and details of their proposed solutions. The resulting table was used as a seed for participant discussion. This resulted in six principles for assessing scientists and associated research and policy implications. We hope the content of this paper will serve as a basis for establishing best practices and redesigning the current approaches to assessing scientists by the many players involved in that process. PMID:29596415

  18. Women Young Scientists of INSA | Women in Science | Initiatives ...

    Indian Academy of Sciences (India)

    Home; Initiatives; Women in Science; Women Young Scientists of INSA. Women Young Scientists of INSA. INSA - Indian National Science Academy .... Charusita Chakravarty, one of the stars of our community of women scientists, at a young ...

  19. International Scientist Mobility and the Locus of Knowledge and Technology Transfer

    DEFF Research Database (Denmark)

    Edler, Jakob; Fier, Hedie; Grimpe, Christoph

    2011-01-01

    Despite the growing interest of scholars and policymakers to better understand the determinants for researchers in public science to transfer knowledge and technology to firms, little is known how temporary international mobility of scientists affects both their propensity to engage in knowledge ...... circulation”. The article contributes to the growing strand of the literature on scientist mobility and on the determinants of industry–science linkages at the individual level.Scientist......Despite the growing interest of scholars and policymakers to better understand the determinants for researchers in public science to transfer knowledge and technology to firms, little is known how temporary international mobility of scientists affects both their propensity to engage in knowledge...... and technology transfer (KTT) as well as the locus of such transfer. Based on a sample of more than 950 German academics from science and engineering faculties, we investigate how the duration and the frequency of scientists’ visits at research institutions outside their home country affect KTT activities. We...

  20. Teenagers as scientist - Learning by doing or doing without learning?

    Science.gov (United States)

    Kapelari, Suzanne; Carli, Elisabeth; Tappeiner, Ulrike

    2010-05-01

    Title: Teenagers as scientist - Learning by doing or doing without learning? Authors: Dr. Suzanne Kapelari* and Elsabeth Carli*, Ulrike Tappeiner** *Science Educaton Center,**Institute of Ecology,University Innsbruck, Austria The PISA (2006-2007) Assessment Framework asks for"…. the development of a general understanding of important concepts and explanatory framework of science, of the methods by which science derives evidence to support claims for its knowledge and of the strength and limitations of science in the real world….". To meet these requirements pupils are eventually asked to engage in "working like scientists learning activities" at school or while visiting informal learning institutions. But what does it mean in a real life situation? An ambitious project call named "Sparkling Science" was launched by the Austrian Federal Ministry of Science and Research in 2008, asking scientists to run their research in tight co-operation with local teachers and pupils. Although this would be enough of a challenge anyway, the ultimate goals of these projects are to achieve publishable scientific results in the particular field. The project design appears to be promising. Pupils and teachers are invited to gain first hand experience as part of a research team investigating current research questions. Pupils experience science research first hand, explore laboratories and research sites, gather data, discuss findings, draw conclusions and finally publish them. They set off on an exciting two years journey through a real scientific project. Teachers have the unique opportunity to get insight into a research project and work closely together with scientists. In addition teachers and pupils have the opportunity to gain first hand knowledge about a particular topic and are invited to discuss science matters on the uppermost level. Sparkling Science promoting agents have high expectations. Their website (www.sparklingscience.at) says: "Forming research teams that

  1. Science communication a practical guide for scientists

    CERN Document Server

    Bowater, Laura

    2012-01-01

    Science communication is a rapidly expanding area and meaningful engagement between scientists and the public requires effective communication. Designed to help the novice scientist get started with science communication, this unique guide begins with a short history of science communication before discussing the design and delivery of an effective engagement event. Along with numerous case studies written by highly regarded international contributors, the book discusses how to approach face-to-face science communication and engagement activities with the public while providing tips to avoid potential pitfalls. This book has been written for scientists at all stages of their career, including undergraduates and postgraduates wishing to engage with effective science communication for the first time, or looking to develop their science communication portfolio.

  2. Phobias and underutilization of university scientists

    International Nuclear Information System (INIS)

    Mandra, Y.T.

    1992-01-01

    This paper reports that there is an urgent need for a large scale, nationwide education program designed to correct the almost ubiquitous misconceptions that exist because of the public's misinformation about commercial nuclear power. It is suggested that this program use only university professors and that it have a precisely defined target of community colleges. To do this a Distinguished Visiting Scientist Program needs to be established by the Department of Energy. This would be the means by which these visiting scientists could get invited for 2-day visits at community colleges. When on campus the visiting scientist would give lectures in the morning and it the afternoon to student and professors on just two topics dealing with commercial nuclear power: nuclear plants and disposal of the waste. It is suggested that a pilot program be done in California and selected hub-centers, and that it be evaluated by an independent agency so that it can be improved

  3. The Normative Orientations of Climate Scientists.

    Science.gov (United States)

    Bray, Dennis; von Storch, Hans

    2017-10-01

    In 1942 Robert K. Merton tried to demonstrate the structure of the normative system of science by specifying the norms that characterized it. The norms were assigned the abbreviation CUDOs: Communism, Universalism, Disinterestedness, and Organized skepticism. Using the results of an on-line survey of climate scientists concerning the norms of science, this paper explores the climate scientists' subscription to these norms. The data suggests that while Merton's CUDOs remain the overall guiding moral principles, they are not fully endorsed or present in the conduct of climate scientists: there is a tendency to withhold results until publication, there is the intention of maintaining property rights, there is external influence defining research and the tendency to assign the significance of authored work according to the status of the author rather than content of the paper. These are contrary to the norms of science as proposed by Robert K. Merton.

  4. Women scientists joining Rokkasho women to sciences

    Energy Technology Data Exchange (ETDEWEB)

    Aratani, Michi [Office of Regional Collaboration, Institute for Environmental Sciences, Rokkasho, Aomori (Japan); Sasagawa, Sumiko

    1999-09-01

    Women scientists generally play a great role in the public acceptance (PA) for the national policy of atomic energy developing in Japan. The reason may be that, when a woman scientist stands in the presence of women audience, she will be ready to be accepted by them as a person with the same gender, emotion and thought to themselves. A case of interchange between the Rokkasho women and the women scientists either resident at the nuclear site of Rokkasho or staying for a short time at Rokkasho by invitation has been described from the viewpoint of PA for the national policy of atomic energy developing, and more fundamentally, for promotion of science education. (author)

  5. A distant light scientists and public policy

    CERN Document Server

    2000-01-01

    A collection of essays by a Nobel Prize Laureate on a wide range of critical issues facing the world, and the role of scientists in solving these problems. Kendall has been closely involved with the Union of Concerned Scientists, a group that began as an informal assocation at MIT in 1969 to protest US involvement in Vietnam and is today an organization with an annual budget exceeding $6 million, with 100,000 supporters worldwide. UCD is today a voice of authority in US government science policy, particularly with regard to environment issues, most recently the worldwide initiatives on global warming. Together, these essays represent both the sucessses and failures of science to impact public policy, the challenges facing scientists, and offers practical guidelines for involvement in science policy. The essays are roughly chronological, organized by subject with introductions, beginning with the controversies on nuclear power safety and Three Mile Island,then followed by sections on national security issues, ...

  6. Women scientists joining Rokkasho women to sciences

    International Nuclear Information System (INIS)

    Aratani, Michi; Sasagawa, Sumiko

    1999-01-01

    Women scientists generally play a great role in the public acceptance (PA) for the national policy of atomic energy developing in Japan. The reason may be that, when a woman scientist stands in the presence of women audience, she will be ready to be accepted by them as a person with the same gender, emotion and thought to themselves. A case of interchange between the Rokkasho women and the women scientists either resident at the nuclear site of Rokkasho or staying for a short time at Rokkasho by invitation has been described from the viewpoint of PA for the national policy of atomic energy developing, and more fundamentally, for promotion of science education. (author)

  7. Institutional entrepreneurship:

    DEFF Research Database (Denmark)

    Gretzinger, Susanne

    2018-01-01

    Institutional entrepreneurship pays specific attention to the process and outcomes of agents who are willing and capable of changing institutions. It has some common ground with the political entrepreneur, a concept that proposes change in norms and institutions because of commitment and activities...... of agents or organisations in the policy arena. The present chapter understands institutional entrepreneurship as the process of changing institutionalised practices. Based on a literature review, it describes the triggers, activities and potential effects of institutional entrepreneurs. The chapter...... concludes by tentatively arguing that political entrepreneurs can be institutional entrepreneurs, but institutional entrepreneurship can be considered as the broader concept that incorporates strategies and visions as well as interpretative-discursive power into the conceptual framework....

  8. Media and the making of scientists

    Science.gov (United States)

    O'Keeffe, Moira

    This dissertation explores how scientists and science students respond to fictional, visual media about science. I consider how scientists think about images of science in relation to their own career paths from childhood onwards. I am especially interested in the possibility that entertainment media can inspire young people to learn about science. Such inspiration is badly needed, as schools are failing to provide it. Science education in the United States is in a state of crisis. Studies repeatedly find low levels of science literacy in the U.S. This bleak situation exists during a boom in the popularity of science-oriented television shows and science fiction movies. How might entertainment media play a role in helping young people engage with science? To grapple with these questions, I interviewed a total of fifty scientists and students interested in science careers, representing a variety of scientific fields and demographic backgrounds, and with varying levels of interest in science fiction. Most respondents described becoming attracted to the sciences at a young age, and many were able to identify specific sources for this interest. The fact that interest in the sciences begins early in life, demonstrates a potentially important role for fictional media in the process of inspiration, perhaps especially for children without access to real-life scientists. One key aspect to the appeal of fiction about science is how scientists are portrayed as characters. Scientists from groups traditionally under-represented in the sciences often sought out fictional characters with whom they could identify, and viewers from all backgrounds preferred well-rounded characters to the extreme stereotypes of mad or dorky scientists. Genre is another aspect of appeal. Some respondents identified a specific role for science fiction: conveying a sense of wonder. Visual media introduce viewers to the beauty of science. Special effects, in particular, allow viewers to explore the

  9. Career Management for Scientists and Engineers

    Science.gov (United States)

    Borchardt, John K.

    2000-05-01

    This book will be an important resource for both new graduates and mid-career scientists, engineers, and technicians. Through taking stock of existing or desired skills and goals, it provides both general advice and concrete examples to help asses a current job situation or prospect, and to effectively pursue and attain new ones. Many examples of properly adapted resumes and interview techniques, as well as plenty of practical advice about adaptation to new workplace cultural paradigms, such as team-based management, make this book an invaluable reference for the professional scientist in today's volatile job market.

  10. How to Grow Project Scientists: A Systematic Approach to Developing Project Scientists

    Science.gov (United States)

    Kea, Howard

    2011-01-01

    The Project Manager is one of the key individuals that can determine the success or failure of a project. NASA is fully committed to the training and development of Project Managers across the agency to ensure that highly capable individuals are equipped with the competencies and experience to successfully lead a project. An equally critical position is that of the Project Scientist. The Project Scientist provides the scientific leadership necessary for the scientific success of a project by insuring that the mission meets or exceeds the scientific requirements. Traditionally, NASA Goddard project scientists were appointed and approved by the Center Science Director based on their knowledge, experience, and other qualifications. However the process to obtain the necessary knowledge, skills and abilities was not documented or done in a systematic way. NASA Goddard's current Science Director, Nicholas White saw the need to create a pipeline for developing new projects scientists, and appointed a team to develop a process for training potential project scientists. The team members were Dr. Harley Thronson, Chair, Dr. Howard Kea, Mr. Mark Goldman, DACUM facilitator and the late Dr. Michael VanSteenberg. The DACUM process, an occupational analysis and evaluation system, was used to produce a picture of the project scientist's duties, tasks, knowledge, and skills. The output resulted in a 3-Day introductory course detailing all the required knowledge, skills and abilities a scientist must develop over time to be qualified for selections as a Project Scientist.

  11. Forensic scientists' conclusions: how readable are they for non-scientist report-users?

    Science.gov (United States)

    Howes, Loene M; Kirkbride, K Paul; Kelty, Sally F; Julian, Roberta; Kemp, Nenagh

    2013-09-10

    Scientists have an ethical responsibility to assist non-scientists to understand their findings and expert opinions before they are used as decision-aids within the criminal justice system. The communication of scientific expert opinion to non-scientist audiences (e.g., police, lawyers, and judges) through expert reports is an important but under-researched issue. Readability statistics were used to assess 111 conclusions from a proficiency test in forensic glass analysis. The conclusions were written using an average of 23 words per sentence, and approximately half of the conclusions were expressed using the active voice. At an average Flesch-Kincaid Grade level of university undergraduate (Grade 13), and Flesch Reading Ease score of difficult (42), the conclusions were written at a level suitable for people with some tertiary education in science, suggesting that the intended non-scientist readers would find them difficult to read. To further analyse the readability of conclusions, descriptive features of text were used: text structure; sentence structure; vocabulary; elaboration; and coherence and unity. Descriptive analysis supported the finding that texts were written at a level difficult for non-scientists to read. Specific aspects of conclusions that may pose difficulties for non-scientists were located. Suggestions are included to assist scientists to write conclusions with increased readability for non-scientist readers, while retaining scientific integrity. In the next stage of research, the readability of expert reports in their entirety is to be explored. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Scientists' coping strategies in an evolving research system: the case of life scientists in the UK

    NARCIS (Netherlands)

    Morris, Norma; Rip, Arie

    2006-01-01

    Scientists in academia have struggled to adjust to a policy climate of uncertain funding and loss of freedom from direction and control. How UK life scientists have negotiated this challenge, and with what consequences for their research and the research system, is the empirical entrance point of

  13. International environmental and occupational health: From individual scientists to networked science Hubs.

    Science.gov (United States)

    Rosenthal, Joshua; Jessup, Christine; Felknor, Sarah; Humble, Michael; Bader, Farah; Bridbord, Kenneth

    2012-12-01

    For the past 16 years, the International Training and Research in Environmental and Occupational Health program (ITREOH) has supported projects that link U.S. academic scientists with scientists from low- and middle-income countries in diverse research and research training activities. Twenty-two projects of varied duration have conducted training to enhance the research capabilities of scientists at 75 institutions in 43 countries in Asia, Africa, Eastern Europe, and Latin America, and have built productive research relationships between these scientists and their U.S. partners. ITREOH investigators and their trainees have produced publications that have advanced basic sciences, developed methods, informed policy outcomes, and built institutional capacity. Today, the changing nature of the health sciences calls for a more strategic approach. Data-rich team science requires greater capacity for information technology and knowledge synthesis at the local institution. More robust systems for ethical review and administrative support are necessary to advance population-based research. Sustainability of institutional research capability depends on linkages to multiple national and international partners. In this context, the Fogarty International Center, the National Institute of Environmental Sciences and the National Institute for Occupational Safety and Health, have reengineered the ITREOH program to support and catalyze a multi-national network of regional hubs for Global Environmental and Occupational Health Sciences (GEOHealth). We anticipate that these networked science hubs will build upon previous investments by the ITREOH program and will serve to advance locally and internationally important health science, train and attract first-class scientists, and provide critical evidence to guide policy discussions. Published in 2012. This article is a U.S. Government work and is in the public domain in the USA.

  14. The "Periphery Principle": Unesco and the International Commitment of Scientists After World War II

    OpenAIRE

    Petitjean, Patrick

    2007-01-01

    To be published in the proceedings of the 2nd ESHS conference (Krakow, September 2006); International audience; Before World War II, international science was mainly European and Eurocentric. The International Council of Scientific Unions and the International Institute for Intellectual Co-operation paid very little attention to science and scientists beyond Europe, which were mostly confined to colonial science institutions. Non-Western scientific achievements were ignored.When joining the n...

  15. The Oratorical Scientist: A Guide for Speechcraft and Presentation for Scientists

    Science.gov (United States)

    Lau, G. E.

    2015-12-01

    Public speaking organizations are highly valuable for individuals seeking to improve their skills in speech development and delivery. The methodology of such groups usually focuses on repetitive, guided practice. Toastmasters International, for instance, uses a curriculum based on topical manuals that guide their members through some number of prepared speeches with specific goals for each speech. I have similarly developed a public speaking manual for scientists with the intention of guiding scientists through the development and presentation of speeches that will help them hone their abilities as public speakers. I call this guide The Oratorical Scientist. The Oratorical Scientist will be a free, digital publication that is meant to guide scientists through five specific types of speech that the scientist may be called upon to deliver during their career. These five speeches are: The Coffee Talk, The Educational Talk, Research Talks for General Science Audiences, Research Talks for Specific Subdiscipline Audiences, and Taking the Big Stage (talks for public engagement). Each section of the manual focuses on speech development, rehearsal, and presentation for each of these specific types of speech. The curriculum was developed primarily from my personal experiences in public engagement. Individuals who use the manual may deliver their prepared speeches to groups of their peers (e.g. within their research group) or through video sharing websites like Youtube and Vimeo. Speeches that are broadcast online can then be followed and shared through social media networks (e.g. #OratoricalScientist), allowing a larger audience to evaluate the speech and to provide criticism. I will present The Oratorical Scientist, a guide for scientists to become better public speakers. The process of guided repetitive practice of scientific talks will improve the speaking capabilities of scientists, in turn benefitting science communication and public engagement.

  16. Should Scientists Be Involved in Teaching Science Writing and If So, How?

    Science.gov (United States)

    Goodell, Rae

    Realizing the importance of writing skills in communicating with other professionals and in educating the public, scientists and scientific institutions have renewed their interest in the writing education of science students. Informal surveys show that technological and engineering schools are reinstituting writing requirements and staffing the…

  17. The Role of Policy in Constructing the Peripheral Scientist in the Era of Globalization

    Science.gov (United States)

    Englander, Karen; Uzuner-Smith, Sedef

    2013-01-01

    This study explores how the logic and values of globalization are manifested in international discourses of higher education in relation to scientific knowledge production and how those values are appropriated in national and institutional policies. This study also explores how this confluence of discourses and policies construct scientists in two…

  18. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... other programs with respect to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, and the special health ... Eye Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and ...

  19. Scientists riff on fabric of the universe

    CERN Multimedia

    2008-01-01

    Their music may be the scourge of parents, but the thrashing guitars of heavy metal bands like Metallica and Iron Maiden could help explain the mysteries of the universe. The string vibrations from the frantic strumming of rock guitarists form the basis of String Theory, a mathematic theory that seeks to explain what the world is made of, says scientist Mark Lewney.

  20. Do Doctors differ from Medical Laboratory Scientists?

    African Journals Online (AJOL)

    Background: Doctors and laboratory scientists are at risk of infection from blood borne pathogens during routine clinical duties. After over 20 years of standard precautions, health care workers knowledge and compliance is not adequate. Aim: This study is aimed at comparing adherence and knowledge of standard ...

  1. A scientist's guide to engaging decision makers

    Science.gov (United States)

    Vano, J. A.

    2015-12-01

    Being trained as a scientist provides many valuable tools needed to address society's most pressing environmental issues. It does not, however, provide training on one of the most critical for translating science into action: the ability to engage decision makers. Engagement means different things to different people and what is appropriate for one project might not be for another. However, recent reports have emphasized that for research to be most useful to decision making, engagement should happen at the beginning and throughout the research process. There are an increasing number of boundary organizations (e.g., NOAA's Regional Integrated Sciences and Assessment program, U.S. Department of the Interior's Climate Science Centers) where engagement is encouraged and rewarded, and scientists are learning, often through trial and error, how to effectively include decision makers (a.k.a. stakeholders, practitioners, resource managers) in their research process. This presentation highlights best practices and practices to avoid when scientists engage decision makers, a list compiled through the personal experiences of both scientists and decision makers and a literature review, and how this collective knowledge could be shared, such as through a recent session and role-playing exercise given at the Northwest Climate Science Center's Climate Boot Camp. These ideas are presented in an effort to facilitate conversations about how the science community (e.g., AGU researchers) can become better prepared for effective collaborations with decision makers that will ultimately result in more actionable science.

  2. Scientists' internal models of the greenhouse effect

    Science.gov (United States)

    Libarkin, J. C.; Miller, H.; Thomas, S. R.

    2013-12-01

    A prior study utilized exploratory factor analysis to identify models underlying drawings of the greenhouse effect made by entering university freshmen. This analysis identified four archetype models of the greenhouse effect that appear within the college enrolling population. The current study collected drawings made by 144 geoscientists, from undergraduate geoscience majors through professionals. These participants scored highly on a standardized assessment of climate change understanding and expressed confidence in their understanding; many also indicated that they teach climate change in their courses. Although geoscientists held slightly more sophisticated greenhouse effect models than entering freshmen, very few held complete, explanatory models. As with freshmen, many scientists (44%) depict greenhouse gases in a layer in the atmosphere; 52% of participants depicted this or another layer as a physical barrier to escaping energy. In addition, 32% of participants indicated that incoming light from the Sun remains unchanged at Earth's surface, in alignment with a common model held by students. Finally, 3-20% of scientists depicted physical greenhouses, ozone, or holes in the atmosphere, all of which correspond to non-explanatory models commonly seen within students and represented in popular literature. For many scientists, incomplete models of the greenhouse effect are clearly enough to allow for reasoning about climate change. These data suggest that: 1) better representations about interdisciplinary concepts, such as the greenhouse effect, are needed for both scientist and public understanding; and 2) the scientific community needs to carefully consider how much understanding of a model is needed before necessary reasoning can occur.

  3. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Accomplishments Budget and Congress About the NEI Director History of the NEI NEI 50th Anniversary NEI Women Scientists Advisory Committee (WSAC) Board of Scientific Counselors National Advisory Eye Council (NAEC) Donating to the NEI Contact Us Visiting the NIH Campus Mission Statement As part ...

  4. Knowledge transfer activities of scientists in nanotechnology

    NARCIS (Netherlands)

    Zalewska-Kurek, Katarzyna; Egedova, Klaudia; Geurts, Petrus A.T.M.; Roosendaal, Hans E.

    In this paper, we present a theory of strategic positioning that explains scientists’ strategic behavior in knowledge transfer from university to industry. The theory is based on the drivers strategic interdependence and organizational autonomy and entails three modes of behavior of scientists:

  5. A Systematic Identification of Scientists on Twitter

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Q.; Ahn, Y.Y.; Sugimoto, C.R.

    2016-07-01

    There is an increasing use of Twitter and other social media to estimate the broader social impacts of scholarship. However, without systematic understanding of the entities that participate in conversations about science, efforts to translate altmetrics into impact indicators may produce highly misleading results. Here we present a systematic approach to identifying scientists on Twitter. (Author)

  6. Alexandre Gustave Eiffel: An Engineer Scientist

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 9. Alexandre Gustave Eiffel: An Engineer Scientist. Ananth Ramaswamy. General Article Volume 14 Issue 9 September 2009 pp 840-848. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety ... Employee Emergency Information NEI Intranet (Employees Only) *PDF files require the free Adobe® Reader® software for viewing. ...

  8. Scientists hope collider makes a big bang

    CERN Multimedia

    Nickerson, Colin

    2007-01-01

    "In a 17-ile circular tunnel curving beneath the Swiss-French border, scientists are poised to recreate the universe's first trillionth of a second. The aim of the audacious undertaking is to solve one of the most perturbing puzzles of physics: How did matter attain mass and form the cosmos? (2 pages)

  9. The Political Scientist as Local Campaign Consultant

    Science.gov (United States)

    Crew, Robert E., Jr.

    2011-01-01

    During my 45 years as an academic, I have followed the admonition sometimes attributed to the legendary Jedi warrior Obi-Wan Kenobe that political scientists should "use [their] power for good and not for evil." In this spirit, I have devoted substantial portions of my career to public service by providing strategic advice and campaign management…

  10. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Search the NEI Website search NEI on Social Media | Search A-Z | en español | Text size S M L About NEI NEI Research Accomplishments Budget and Congress About the NEI Director History of the NEI NEI 50th Anniversary NEI Women Scientists Advisory Committee (WSAC) Board of Scientific Counselors ...

  11. Engineers, scientists to benefit from CERN agreement

    CERN Multimedia

    2008-01-01

    Prime Minister Lawrence Gonzi will later this week sign a memorandum of understanding with the European Laboratory for Particle Physics in Geneva (CERN), the largest laboratory of its kind in the world, which will create new opportunities for Maltese engineers and scientists.

  12. Careers in Science: Being a Soil Scientist

    Science.gov (United States)

    Bryce, Alisa

    2015-01-01

    Being a soil scientist is a fascinating and certainly diverse career, which can indeed involve working in a laboratory or diagnosing sick orange trees. However it often involves much, much more. In 2015, as part of the United Nations' "International Year of Soils," Soil Science Australia's (SSA) "Soils in Schools" program…

  13. New initiative links scientists and entertainers

    Science.gov (United States)

    Gwynne, Peter

    2009-01-01

    The US National Academy of Sciences has teamed up with Hollywood to improve the quality of science portrayed in films, TV shows and video games. The new Science and Entertainment Exchange (SEE) aims to create better links between entertainment-industry professionals and scientists to improve the credibility of programming related to science.

  14. Exploring Native American Students' Perceptions of Scientists

    Science.gov (United States)

    Laubach, Timothy A.; Crofford, Geary Don; Marek, Edmund A.

    2012-07-01

    The purpose of this descriptive study was to explore Native American (NA) students' perceptions of scientists by using the Draw-A-Scientist Test and to determine if differences in these perceptions exist between grade level, gender, and level of cultural tradition. Data were collected for students in Grades 9-12 within a NA grant off-reservation boarding school. A total of 133 NA students were asked to draw a picture of a scientist at work and to provide a written explanation as to what the scientist was doing. A content analysis of the drawings indicated that the level of stereotype differed between all NA subgroups, but analysis of variance revealed that these differences were not significant between groups except for students who practised native cultural tradition at home compared to students who did not practise native cultural tradition at home (p educational and career science, technology, engineering, and mathematics paths in the future. The educational implication is that once initial perceptions are identified, researchers and teachers can provide meaningful experiences to combat the stereotypes.

  15. Educational Mismatch and the Careers of Scientists

    Science.gov (United States)

    Bender, Keith A.; Heywood, John S.

    2011-01-01

    Previous research confirms that many employees work in jobs not well matched to their skills and education, resulting in lower pay and job satisfaction. While this literature typically uses cross-sectional data, we examine the evolution of mismatch and its consequences over a career, by using a panel data set of scientists in the USA. The results…

  16. Life as a Mother-Scientist

    Science.gov (United States)

    Louis, Lucille

    2006-01-01

    In this article, the author shares the difficulties she faced as she tried to reach a balance between her career as a scientist and her role as a mother. She speaks of how she often found problems in putting her children into day care centers. She also relates that the confidence mothers have in their academic careers is correlated to the quality…

  17. University scientists test Mars probe equipment

    CERN Multimedia

    2002-01-01

    Scientists at Leicester University have spent four years researching and designing the Flight Model Position Adjustable Workbench (PAW) at the university. It will be attached to the Beagle 2 probe before being sent to the Red Planet in the spring (1/2 page).

  18. First interactive conference of young scientists. Posters

    International Nuclear Information System (INIS)

    2009-05-01

    This interactive conference of young scientists was realised on the Internet. Conference proceeded in five sections: (1) Cellular metabolism, physiology, molecular biology and genetics; (2) Biotechnology and food technology; (3) The use of instrumental methods in the analysis of biologically important substances; (4) Ecology and environmental science; (5) Open section for students. Relevant posters were included into the database INIS.

  19. Methods & Strategies: Sculpt-a-Scientist

    Science.gov (United States)

    Jackson, Julie; Rich, Ann

    2014-01-01

    Elementary science experiences help develop students' views of science and scientific interests. As a result, teachers have been charged with the task of inspiring, cultivating, recruiting, and training the scientists needed to create tomorrow's innovations and solve future problems (Business Roundtable 2005). Who will these future…

  20. Scientists Involved in K-12 Education

    Science.gov (United States)

    Robigou, V.

    2004-12-01

    The publication of countless reports documenting the dismal state of science education in the 1980s, and the Third International Mathematics and Science Study (TIMMS) report (1996) called for a wider involvement of the scientific community in K-12 education and outreach. Improving science education will not happen without the collaboration of educators and scientists working in a coordinated manner and it requires a long-term, continuous effort. To contribute effectively to K-12 education all scientists should refer to the National Science Education Standards, a set of policies that guide the development of curriculum and assessment. Ocean scientists can also specifically refer to the COSEE recommendations (www.cosee.org) that led to the creation of seven regional Centers for Ocean Sciences Education Excellence. Scientists can get involved in K-12 education in a multitude of ways. They should select projects that will accommodate time away from their research and teaching obligations, their talent, and their interest but also contribute to the education reform. A few examples of effective involvement are: 1) collaborating with colleagues in a school of education that can lead to better education of all students and future teachers, 2) acting as a resource for a national program or a local science fair, 3) serving on the advisory board of a program that develops educational material, 4) speaking out at professional meetings about the value of scientists' involvement in education, 5) speaking enthusiastically about the teaching profession. Improving science education in addition to research can seem a large, overwhelming task for scientists. As a result, focusing on projects that will fit the scientist's needs as well as benefit the science reform is of prime importance. It takes an enormous amount of work and financial and personnel resources to start a new program with measurable impact on students. So, finding the right opportunity is a priority, and stepping

  1. Martin Stutzmann: Editor, Teacher, Scientist and Friend

    Science.gov (United States)

    Cardona, Manuel

    2005-03-01

    On 2 January 1995 Martin Stutzmann became Editor-in-Chief of physica status solidi, replacing Professor E. Gutsche, who had led the journal through the stormy period involving the fall of the Iron Curtain, the unification of Germany and the change in its Eastern part, where physica status solidi was based, from socialism as found in the real world (a German concept) to real world capitalism. In 1995 it was thought that the process had been completed (we should have known better!) and after the retirement of Prof. Gutsche the new owners of physica status solidi (Wiley-VCH) decided that a change in scientific management was desirable to adapt to the new socio-political facts and to insure the scientific continuity of the journal.Martin had moved in 1993 from my department at the Max-Planck-Institute to Munich where he soon displayed a tremendous amount of science man- agement ability during the build-up of the Walter Schottky Institute. The search for a successor as Edi- tor-in-Chief was not easy: the job was not very glamorous after the upheavals which had taken place in the editorial world following the political changes. Somebody in the Editorial Boards must have suggested Martin Stutzmann. I am sure that there was opposition: one usually looks for a well-established person ready to leave his direct involvement in science and take up a new endeavor of a more administrative nature. Nevertheless, the powers that be soon realized that Martin was an excellent, if somewhat unconventional candidate who had enough energy to remain a topnotch scientist and to lead the journal in the difficult times ahead: he was offered the job. In the negotiations that followed, he insisted in getting the administrative structures that would allow him to improve the battered quality of the journal and to continue his scientific productivity. Today we are happy to see that he succeeded in both endeavors. The journal has since grown in size and considerably improved its quality

  2. Scientists' Perceptions of Communicating During Crises

    Science.gov (United States)

    Dohaney, J. A.; Hudson-Doyle, E.; Brogt, E.; Wilson, T. M.; Kennedy, B.

    2015-12-01

    To further our understanding of how to enhance student science and risk communication skills in natural hazards and earth science courses, we conducted a pilot study to assess the different perceptions of expert scientists and risk communication practitioners versus the perceptions of students. These differences will be used to identify expert views on best practice, and improve the teaching of communication skills at the University level. In this pilot study, a perceptions questionnaire was developed and validated. Within this, respondents (geoscientists, engineers, and emergency managers; n=44) were asked to determine their agreement with the use and effectiveness of specific communication strategies (within the first 72 hours after a devastating earthquake) when communicating to the public. In terms of strategies and information to the public, the respondents were mostly in agreement, but there were several statements which elicited large differences between expert responses: 1) the role and purpose of the scientific communication during crises (to persuade people to care, to provide advice, to empower people to take action); 2) the scientist's delivery (showing the scientists emotions and enthusiasm for scientific concepts they are discussing); and 3) the amount of data that is discussed (being comprehensive versus 'only the important' data). The most disagreed upon dimension was related to whether to disclose any political influence on the communication. Additionally, scientists identified that being an effective communicator was an important part of their job, and agreed that it is important to practice these skills. Respondents generally indicated that while scientists should be accountable for the science advice provided, they should not be held liable.

  3. Everyone Knows What a Scientist Looks Like: The Image of a Modern Scientist

    Science.gov (United States)

    Enevoldsen, A. A. G.

    2008-11-01

    Children are inspired to follow career paths when they can imagine themselves there. Seeing pictures of adult individuals who look like them working in a given career can provide this spark to children's imaginations. Most (though not all) of the current available posters of scientists are of Einstein, and Einstein-like scientists. This is not representative of the current face of science. To change this, Pacific Science Center will host a photography exhibit: photographs of real, current scientists from all races, genders, beliefs, and walks of life. Photos will be taken and short biographies written by Discovery Corps Interns (Pacific Science Center's youth development program) to increase the amount of direct contact between students and scientists, and to give the exhibit an emotional connection for local teachers and families. We plan to make the photographs from this exhibit available to teachers for use in their classrooms, in addition to being displayed at Pacific Science Center during the International Year of Astronomy. The objectives of this project are to fill a need for representative photographs of scientists in the world community and to meet two of the goals of the International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by under-represented minorities in scientific and engineering careers.

  4. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    Directory of Open Access Journals (Sweden)

    Jin-Qing Fang

    2013-01-01

    Full Text Available Nobelist TD Lee scientist cooperation network (TDLSCN and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scientist cooperation networks before. To demonstrate and explain this new finding, we propose a theoretical model for a nature scientist and his/her team innovation ability. The theoretical results are consistent with the empirical studies very well. This research demonstrates that the model has a certain universality and can be extended to estimate innovation ability for any nature scientist and his/her team. It is a better method for evaluating scientist innovation ability and his/her team for the academic profession and is of application potential.

  5. Attitudes of agricultural scientists in Indonesia towards genetically modified foods.

    Science.gov (United States)

    Februhartanty, Judhiastuty; Widyastuti, Tri Nisa; Iswarawanti, Dwi Nastiti

    2007-01-01

    Conflicting arguments and partial truths on genetically modified (GM) foods have left confusion. Although studies of consumer acceptance of GM foods are numerous, the study of scientists is limited. Therefore, the main objective of this study was to assess the attitudes of scientists towards GM foods. The study was a cross sectional study. A total of 400 scientists (involved in at least one of teaching, research and consultancy) in the Bogor Agricultural Institute, Indonesia were selected randomly from its faculties of agriculture, veterinary, fishery, animal husbandry, forestry, agricultural technology, mathematics and science, and the post graduate department. Data collection was done by face-to-face interview using a structured questionnaire and self-administered questionnaire. The result showed that the majority (72.8%) of the respondents were favorably disposed towards GM foods, 14.8% were neutral, and only 12.5% were against them. The majority (78.3%) stated that they would try GM food if offered. Most (71%) reported that they were aware of the term "GM foods". Only half of the respondents felt that they had a basic understanding about GM foods. However, based on a knowledge test, 69.8% had a good knowledge score. Nearly 50% indicated that they were more exposed to news which supported GM foods. Over 90% said that there should be some form of labeling to distinguish food containing GM ingredients from non-GM foods. Attitudes were significantly associated with willingness to try GM foods if offered, restrictions on GM foods, and exposure to media reports about the pros and cons of GM foods.

  6. Not going it alone: scientists and their work featured online at FrontierScientists

    Science.gov (United States)

    O'Connell, E. A.; Nielsen, L.

    2015-12-01

    Science outreach demystifies science, and outreach media gives scientists a voice to engage the public. Today scientists are expected to communicate effectively not only with peers but also with a braod public audience, yet training incentiives are sometimes scarce. Media creation training is even less emphasized. Editing video to modern standards takes practice; arrangling light and framing shots isn't intuitive. While great tutorials exist, learning videography, story boarding, editing and sharing techniques will always require a commitment of time and effort. Yet ideally sharing science should be low-hanging fruit. FrontierScientists, a science-sharing website funded by the NSF, seeks to let scientists display their breakthroughs and share their excitement for their work with the public by working closely yet non-exhaustively with a professional media team. A director and videographer join scientists to film first-person accounts in the field or lab. Pictures and footage with field site explanations give media creators raw material. Scientists communicate efficiently and retain editorial control over the project, but a small team of media creators craft the public aimed content. A series of engaging short videos with narrow focuses illuminate the science. Written articles support with explanations. Social media campaigns spread the word, link content, welcome comments and keep abreast of changing web requirements. All FrontierScientists featured projects are aggregated to one mobile-friendly site available online or via an App. There groupings of Arctic-focused science provide a wealth of topics and content to explore. Scientists describe why their science is important, what drew them to it, and why the average American should care. When scientists share their work it's wonderful; a team approach is a schedule-friendly way that lets them serve as science communicators without taking up a handful of extra careers.

  7. Colonial Institutions

    DEFF Research Database (Denmark)

    McAtackney, Laura; Palmer, Russell

    2016-01-01

    and the USA which reveal that the study of colonial institutions should not be limited to the functional life of these institutions—or solely those that take the form of monumental architecture—but should include the long shadow of “imperial debris” (Stoler 2008) and immaterial institutions....

  8. Institute of Laboratory Animal Resources

    Science.gov (United States)

    1992-06-01

    special issues: Special Issues on Animal Models in Biomedical Research1 °, New Ra Models of Obesity and Type II Diabetes ", and Pain in Animals and...country of Central and South America, as well as to the Caribbean, and Mexico and published notices in newsletters. Young scientists from Mexico, Peru , and... diabetes ) Kom MowaKi Ph.D, Department of Cell Genetics, National Institute of Genetics, 25 S . . .. ,2

  9. Institutional upbringing

    DEFF Research Database (Denmark)

    Gulløv, Eva

    2008-01-01

    In the chapter, I discuss the role day care institutions play in the construction of the idea of proper childhood in Denmark. Drawing on findings from research on ethnic minority children in two Danish day care institutions, I begin with a discussion of how childcare institutions act as civilising...... agents, empowered with the legitimate right to define and control normality and proper ways of behaving oneself. I aim to show how institutions come to define the normal child and proper childhood in accordance with current efforts toward reinventing national culture, exemplified by legislation requiring...... current testing of Danish language fluency levels among pre-school minority children. Testing language skills marks and defines distinctions that reinforce images of deviance that, in turn, legitimize initiatives to enrol children, specifically minority children, in child care institutions....

  10. Martha Wollstein: A pioneer American female clinician-scientist.

    Science.gov (United States)

    Abrams, Jeanne; Wright, James R

    2018-01-01

    Martha Wollstein was not only the first fully specialized pediatric perinatal pathologist practicing exclusively in a North America children's hospital, she also blazed another pathway as a very early pioneer female clinician-scientist. Wollstein provided patient care at Babies Hospital of New York City from 1891 until her retirement in 1935, and also simultaneously worked for many years as a basic scientist at the prestigious Rockefeller Institute for Medical Research. Wollstein published over 65 papers, many frequently cited, during her career on a wide range of topics including pediatric and infectious diseases. Wollstein was a rare female in the field of pathology in an era when just a relatively small number of women became doctors in any medical specialty. Wollstein was born into an affluent Jewish American family in New York City in 1868 and graduated from the Women's Medical College in 1889. This paper explores her family support and ethnic and religious background, which helped facilitate her professional success. During her time, she was recognized internationally for her research and was respected for her medical and scientific skills; unfortunately today her important career has been largely forgotten.

  11. Core competencies for pharmaceutical physicians and drug development scientists

    Science.gov (United States)

    Silva, Honorio; Stonier, Peter; Buhler, Fritz; Deslypere, Jean-Paul; Criscuolo, Domenico; Nell, Gerfried; Massud, Joao; Geary, Stewart; Schenk, Johanna; Kerpel-Fronius, Sandor; Koski, Greg; Clemens, Norbert; Klingmann, Ingrid; Kesselring, Gustavo; van Olden, Rudolf; Dubois, Dominique

    2013-01-01

    Professional groups, such as IFAPP (International Federation of Pharmaceutical Physicians and Pharmaceutical Medicine), are expected to produce the defined core competencies to orient the discipline and the academic programs for the development of future competent professionals and to advance the profession. On the other hand, PharmaTrain, an Innovative Medicines Initiative project, has become the largest public-private partnership in biomedicine in the European Continent and aims to provide postgraduate courses that are designed to meet the needs of professionals working in medicines development. A working group was formed within IFAPP including representatives from PharmaTrain, academic institutions and national member associations, with special interest and experience on Quality Improvement through education. The objectives were: to define a set of core competencies for pharmaceutical physicians and drug development scientists, to be summarized in a Statement of Competence and to benchmark and align these identified core competencies with the Learning Outcomes (LO) of the PharmaTrain Base Course. The objectives were successfully achieved. Seven domains and 60 core competencies were identified and aligned accordingly. The effective implementation of training programs using the competencies or the PharmaTrain LO anywhere in the world may transform the drug development process to an efficient and integrated process for better and safer medicines. The PharmaTrain Base Course might provide the cognitive framework to achieve the desired Statement of Competence for Pharmaceutical Physicians and Drug Development Scientists worldwide. PMID:23986704

  12. Scientists Popularizing Science: Characteristics and Impact of TED Talk Presenters

    Science.gov (United States)

    Sugimoto, Cassidy R.; Thelwall, Mike; Larivière, Vincent; Tsou, Andrew; Mongeon, Philippe; Macaluso, Benoit

    2013-01-01

    The TED (Technology, Entertainment, Design) conference and associated website of recorded conference presentations (TED Talks) is a highly successful disseminator of science-related videos, claiming over a billion online views. Although hundreds of scientists have presented at TED, little information is available regarding the presenters, their academic credentials, and the impact of TED Talks on the general population. This article uses bibliometric and webometric techniques to gather data on the characteristics of TED presenters and videos and analyze the relationship between these characteristics and the subsequent impact of the videos. The results show that the presenters were predominately male and non-academics. Male-authored videos were more popular and more liked when viewed on YouTube. Videos by academic presenters were more commented on than videos by others and were more liked on YouTube, although there was little difference in how frequently they were viewed. The majority of academic presenters were senior faculty, males, from United States-based institutions, were visible online, and were cited more frequently than average for their field. However, giving a TED presentation appeared to have no impact on the number of citations subsequently received by an academic, suggesting that although TED popularizes research, it may not promote the work of scientists within the academic community. PMID:23638069

  13. Scientists popularizing science: characteristics and impact of TED talk presenters.

    Directory of Open Access Journals (Sweden)

    Cassidy R Sugimoto

    Full Text Available The TED (Technology, Entertainment, Design conference and associated website of recorded conference presentations (TED Talks is a highly successful disseminator of science-related videos, claiming over a billion online views. Although hundreds of scientists have presented at TED, little information is available regarding the presenters, their academic credentials, and the impact of TED Talks on the general population. This article uses bibliometric and webometric techniques to gather data on the characteristics of TED presenters and videos and analyze the relationship between these characteristics and the subsequent impact of the videos. The results show that the presenters were predominately male and non-academics. Male-authored videos were more popular and more liked when viewed on YouTube. Videos by academic presenters were more commented on than videos by others and were more liked on YouTube, although there was little difference in how frequently they were viewed. The majority of academic presenters were senior faculty, males, from United States-based institutions, were visible online, and were cited more frequently than average for their field. However, giving a TED presentation appeared to have no impact on the number of citations subsequently received by an academic, suggesting that although TED popularizes research, it may not promote the work of scientists within the academic community.

  14. Scientists popularizing science: characteristics and impact of TED talk presenters.

    Science.gov (United States)

    Sugimoto, Cassidy R; Thelwall, Mike; Larivière, Vincent; Tsou, Andrew; Mongeon, Philippe; Macaluso, Benoit

    2013-01-01

    The TED (Technology, Entertainment, Design) conference and associated website of recorded conference presentations (TED Talks) is a highly successful disseminator of science-related videos, claiming over a billion online views. Although hundreds of scientists have presented at TED, little information is available regarding the presenters, their academic credentials, and the impact of TED Talks on the general population. This article uses bibliometric and webometric techniques to gather data on the characteristics of TED presenters and videos and analyze the relationship between these characteristics and the subsequent impact of the videos. The results show that the presenters were predominately male and non-academics. Male-authored videos were more popular and more liked when viewed on YouTube. Videos by academic presenters were more commented on than videos by others and were more liked on YouTube, although there was little difference in how frequently they were viewed. The majority of academic presenters were senior faculty, males, from United States-based institutions, were visible online, and were cited more frequently than average for their field. However, giving a TED presentation appeared to have no impact on the number of citations subsequently received by an academic, suggesting that although TED popularizes research, it may not promote the work of scientists within the academic community.

  15. Core Competencies for Pharmaceutical Physicians and Drug Development Scientists

    Directory of Open Access Journals (Sweden)

    Honorio eSilva

    2013-08-01

    Full Text Available Professional groups, such as IFAPP (International Federation of Pharmaceutical Physicians and Pharmaceutical Medicine, are expected to produce the defined core competencies to orient the discipline and the academic programs for the development of future competent professionals and to advance the profession. On the other hand, PharmaTrain, an Innovative Medicines Initiative project, has become the largest public-private partnership in biomedicine in the European Continent and aims to provide postgraduate courses that are designed to meet the needs of professionals working in medicines development. A working group was formed within IFAPP including representatives from PharmaTrain, academic institutions and national member associations, with special interest and experience on Quality Improvement through education. The objectives were: to define a set of core competencies for pharmaceutical physicians and drug development scientists, to be summarized in a Statement of Competence and to benchmark and align these identified core competencies with the Learning Outcomes of the PharmaTrain Base Course. The objectives were successfully achieved. Seven domains and 60 core competencies were identified and aligned accordingly. The effective implementation of training programs using the competencies or the PharmaTrain Learning Outcomes anywhere in the world may transform the drug development process to an efficient and integrated process for better and safer medicines. The PharmaTrain Base Course might provide the cognitive framework to achieve the desired Statement of Competence for Pharmaceutical Physicians and Drug Development Scientists worldwide.

  16. To Crowdfund Research, Scientists Must Build an Audience for Their Work.

    Directory of Open Access Journals (Sweden)

    Jarrett E K Byrnes

    Full Text Available As rates of traditional sources of scientific funding decline, scientists have become increasingly interested in crowdfunding as a means of bringing in new money for research. In fields where crowdfunding has become a major venue for fundraising such as the arts and technology, building an audience for one's work is key for successful crowdfunding. For science, to what extent does audience building, via engagement and outreach, increase a scientist's abilities to bring in money via crowdfunding? Here we report on an analysis of the #SciFund Challenge, a crowdfunding experiment in which 159 scientists attempted to crowdfund their research. Using data gathered from a survey of participants, internet metrics, and logs of project donations, we find that public engagement is the key to crowdfunding success. Building an audience or "fanbase" and actively engaging with that audience as well as seeking to broaden the reach of one's audience indirectly increases levels of funding. Audience size and effort interact to bring in more people to view a scientist's project proposal, leading to funding. We discuss how projects capable of raising levels of funds commensurate with traditional funding agencies will need to incorporate direct involvement of the public with science. We suggest that if scientists and research institutions wish to tap this new source of funds, they will need to encourage and reward activities that allow scientists to engage with the public.

  17. Is there a glass ceiling for highly cited scientists at the top of research universities?

    Science.gov (United States)

    Ioannidis, John P A

    2010-12-01

    University leaders aim to protect, shape, and promote the missions of their institutions. I evaluated whether top highly cited scientists are likely to occupy these positions. Of the current leaders of 96 U.S. high research activity universities, only 6 presidents or chancellors were found among the 4009 U.S. scientists listed in the ISIHighlyCited.com database. Of the current leaders of 77 UK universities, only 2 vice-chancellors were found among the 483 UK scientists listed in the same database. In a sample of 100 top-cited clinical medicine scientists and 100 top-cited biology and biochemistry scientists, only 1 and 1, respectively, had served at any time as president of a university. Among the leaders of 25 U.S. universities with the highest citation volumes, only 12 had doctoral degrees in life, natural, physical or computer sciences, and 5 of these 12 had a Hirsch citation index m < 1.0. The participation of highly cited scientists in the top leadership of universities is limited. This could have consequences for the research and overall mission of universities.

  18. To Crowdfund Research, Scientists Must Build an Audience for Their Work.

    Science.gov (United States)

    Byrnes, Jarrett E K; Ranganathan, Jai; Walker, Barbara L E; Faulkes, Zen

    2014-01-01

    As rates of traditional sources of scientific funding decline, scientists have become increasingly interested in crowdfunding as a means of bringing in new money for research. In fields where crowdfunding has become a major venue for fundraising such as the arts and technology, building an audience for one's work is key for successful crowdfunding. For science, to what extent does audience building, via engagement and outreach, increase a scientist's abilities to bring in money via crowdfunding? Here we report on an analysis of the #SciFund Challenge, a crowdfunding experiment in which 159 scientists attempted to crowdfund their research. Using data gathered from a survey of participants, internet metrics, and logs of project donations, we find that public engagement is the key to crowdfunding success. Building an audience or "fanbase" and actively engaging with that audience as well as seeking to broaden the reach of one's audience indirectly increases levels of funding. Audience size and effort interact to bring in more people to view a scientist's project proposal, leading to funding. We discuss how projects capable of raising levels of funds commensurate with traditional funding agencies will need to incorporate direct involvement of the public with science. We suggest that if scientists and research institutions wish to tap this new source of funds, they will need to encourage and reward activities that allow scientists to engage with the public.

  19. Forging School-Scientist Partnerships: A Case of Easier Said than Done?

    Science.gov (United States)

    Falloon, Garry

    2013-12-01

    Since the early 1980s, a number of initiatives have been undertaken worldwide which have involved scientists and teachers working together in projects designed to support the science learning of students. Many of these have attempted to establish school-scientist partnerships. In these, scientists, teachers, and students formed teams engaged in mutually beneficial science-based activities founded on principles such as equal recognition and input, and shared vision, responsibility and risk. This article uses two partnership programmes run by a New Zealand Science Research Institute, to illustrate the challenges faced by scientists and teachers as they attempted to forge meaningful and effective partnerships. It argues that achieving the theorised position of a shared partnership space at the intersection of the worlds of scientists and teachers is problematic, and that scientists must instead be prepared to penetrate deeply into the world of the classroom when undertaking any such interactions. Findings indicate epistemological differences, curriculum and school systems and issues, and teacher efficacy and science knowledge significantly affect the process of partnership formation. Furthermore, it is argued that a re-thinking of partnerships is needed to reflect present economic and education environments, which are very different to those in which they were originally conceived nearly 30 years ago. It suggests that technology has an important role to play in future partnership interactions.

  20. Radiation protection. A guide for scientists and physicians

    International Nuclear Information System (INIS)

    Shapiro, J.

    1972-01-01

    This manual was written for individuals who wish to become qualified in radiation protection as an adjunct to working with sources of ionizing radiation or using radionuclides in the field of medicine. It provides the radiation user with information needed to protect himself and others and to understand and comply with governmental and institutional regulations regarding the use of radionuclides and radiation machines. It is designed for a wide spectrum of users, including physicians, research scientists, engineers, and technicians. It should be useful also to radiation safety officers, members of radiation safety committees, and others who are responsible for the proper use of radiation sources, although they may not be working with the sources directly. The presentation in this manual is designed to obviate the need for reviews of atomic and radiation physics, and the mathematics has been limited to elementary arithmetical and algebraic operations

  1. Research project management 101: insiders' tips from Early Career Scientists

    Science.gov (United States)

    Cristini, Luisa; Pabortsava, Katsiaryna; Stichel, Torben

    2016-04-01

    From the very beginning of their career, it is important for Early Career Scientists (ECS) to develop project management skills to be able to organise their research efficiently. ECS are often in charge of specific tasks within their projects or for their teams. However, without specific training or tools, the successful completion of these assignments will depend entirely on the organisational skills of individual researchers. ECS are thus facing "sink-or-swim" situations, which can be either instructive or disastrous for their projects. Here we provide experience-based tips from fellow ECS that can help manage various project activities, including: 1. Communication with supervisors and peers 2. Lab management 3. Field trips (e.g., oceanographic campaigns) 4. Internships and collaborations with other institutions 5. Literature/background research 6. Conference convening These are potential "life buoys" for ECS, which will help them to carry out these tasks efficiently and successfully.

  2. Conservation beyond science: scientists as storytellers

    Directory of Open Access Journals (Sweden)

    Diogo Veríssimo

    2014-11-01

    Full Text Available As scientists we are often unprepared and unwilling to communicate our passion for what we do to those outside our professional circles. Scientific literature can also be difficult or unattractive to those without a professional interest in research. Storytelling can be a successful approach to enable readers to engage with the challenges faced by scientists. In an effort to convey to the public what it means to be a field biologist, 18 Portuguese biologists came together to write a book titled “BIOgraphies: The lives of those who study life”, in the original Portuguese “BIOgrafias: Vidas de quem estuda a vida”. This book is a collection of 35 field stories that became career landmarks for those who lived them. We discuss the obstacles and opportunities of the publishing process and reflect on the lessons learned for future outreach efforts.

  3. Emeritus Scientists, Mathematicians and Engineers (ESME) program

    Energy Technology Data Exchange (ETDEWEB)

    Sharlin, H.I.

    1992-09-01

    The Emeritus Scientists, Mathematicians and Engineers (ESME) program matches retired scientists and engineers with wide experience with elementary school children in order to fuel the children's natural curiosity about the world in which they live. The long-range goal is to encourage students to maintain the high level of mathematical and science capability that they exhibit at an early age by introducing them to the fun and excitement of the world of scientific investigation and engineering problem solving. Components of the ESME program are the emeriti, established teacher-emeriti teams that work to produce a unit of 6 class hours of demonstration or hands-on experiments, and the encounter by students with the world of science/engineering through the classroom sessions and a field trip to a nearby plant or laboratory.

  4. Nuclear Targeting Terms for Engineers and Scientists

    Energy Technology Data Exchange (ETDEWEB)

    St Ledger, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-01

    The Department of Defense has a methodology for targeting nuclear weapons, and a jargon that is used to communicate between the analysts, planners, aircrews, and missile crews. The typical engineer or scientist in the Department of Energy may not have been exposed to the nuclear weapons targeting terms and methods. This report provides an introduction to the terms and methodologies used for nuclear targeting. Its purpose is to prepare engineers and scientists to participate in wargames, exercises, and discussions with the Department of Defense. Terms such as Circular Error Probable, probability of hit and damage, damage expectancy, and the physical vulnerability system are discussed. Methods for compounding damage from multiple weapons applied to one target are presented.

  5. Kristian Birkeland the first space scientist

    CERN Document Server

    Egeland, Alv

    2005-01-01

    At the beginning of the 20th century Kristian Birkeland (1867-1917), a Norwegian scientist of insatiable curiosity, addressed questions that had vexed European scientists for centuries. Why do the northern lights appear overhead when the Earth’s magnetic field is disturbed? How are magnetic storms connected to disturbances on the Sun? To answer these questions Birkeland interpreted his advance laboratory simulations and daring campaigns in the Arctic wilderness in the light of Maxwell’s newly discovered laws of electricity and magnetism. Birkeland’s ideas were dismissed for decades, only to be vindicated when satellites could fly above the Earth’s atmosphere. Faced with the depleting stocks of Chilean saltpeter and the consequent prospect of mass starvation, Birkeland showed his practical side, inventing the first industrial scale method to extract nitrogen-based fertilizers from the air. Norsk Hydro, one of modern Norway’s largest industries, stands as a living tribute to his genius. Hoping to demo...

  6. Differential forms for scientists and engineers

    Science.gov (United States)

    Blair Perot, J.; Zusi, Christopher J.

    2014-01-01

    This paper is a review of a number of mathematical concepts from differential geometry and exterior calculus that are finding increasing application in the numerical solution of partial differential equations. The objective of the paper is to introduce the scientist/ engineer to some of these ideas via a number of concrete examples in 2, 3, and 4 dimensions. The goal is not to explain these ideas with mathematical precision but to present concrete examples and enable a physical intuition of these concepts for those who are not mathematicians. The objective of this paper is to provide enough context so that scientist/engineers can interpret, implement, and understand other works which use these elegant mathematical concepts.

  7. Institutional actorhood

    DEFF Research Database (Denmark)

    Madsen, Christian Uhrenholdt

    In this paper I describe the changing role of intra-organizational experts in the face of institutional complexity of their field. I do this through a qualitative investigation of the institutional and organizational roles of actors in Danish organizations who are responsible for the efforts...... to comply with the Danish work environment regulation. And by doing so I also describe how institutional complexity and organizational responses to this complexity are particular important for the changing modes of governance that characterizes contemporary welfare states....

  8. REVIEW: EXPLORERS AND SCIENTISTS IN CHINA'S BORDERLANDS

    OpenAIRE

    Gregory Rohlf

    2013-01-01

    Review of: Denise M Glover, Stevan Harrel, Charles F McKhann, and Margaret Byrne Swain (eds). 2011. Explorers and Scientists in China's Borderlands, 1880-1950. Seattle: University of Washington Press. This collection of eight biographical essays from a 2007 symposium makes for engaging reading and holds together well as a book. The authors, mainly anthropologists, examine the lives of ten explorers who were active primarily in the first half of the twentieth century. Some worked for d...

  9. Space groups for solid state scientists

    CERN Document Server

    Glazer, Michael

    2013-01-01

    This comprehensively revised - essentially rewritten - new edition of the 1990 edition (described as ""extremely useful"" by MATHEMATICAL REVIEWS and as ""understandable and comprehensive"" by Scitech) guides readers through the dense array of mathematical information in the International Tables Volume A. Thus, most scientists seeking to understand a crystal structure publication can do this from this book without necessarily having to consult the International Tables themselves. This remains the only book aimed at non-crystallographers devoted to teaching them about crystallogr

  10. Modern physics for scientists and engineers

    CERN Document Server

    Morrison, John C

    2010-01-01

    Intended for a first course in modern physics, following an introductory course in physics with calculus, Modern Physics for Scientists and Engineers begins with a brief and focused account of the historical events leading to the formulation of modern quantum theory, while later chapters delve into the underlying physics. Streamlined content, chapters on semiconductors, Dirac Equation and Quantum Field Theory, and a robust pedagogy and ancillary package including an accompanying website with computer applets assists students in learning the essential material.

  11. Opinion: the basic scientist in radiology

    International Nuclear Information System (INIS)

    Holloway, A.F.; Taylor, K.W.

    1984-01-01

    Diagnostic radiology has experienced many scientific and technical advances in the past decade. New imaging methods have allowed diagnostic procedures that have in some cases produced marked advances in treatment of disease. The complexity of the science and technology requires increased knowledge of equipment and techniques on the part of users. This, together with the necessity of exploration of other new developments in science and technology, requires a closer relationship between radiologists on the one hand and basic scientists on the other. (author)

  12. Cultural isolation of third-world scientists

    International Nuclear Information System (INIS)

    Sadiq, A.

    1981-10-01

    The isolation of third world scientists from the modes of production and from the culture of their countries seems to be related to the alienation of the urban culture of these countries from their respective rural backgrounds. It is suggested that this alienation may be overcome by directly interfacing modern science and technology to the corresponding elements in their rural culture through the process of education. (author)

  13. Interactive conference of young scientists 2011. Posters

    International Nuclear Information System (INIS)

    2011-05-01

    This interactive conference of young scientists was realised on the Internet. Conference proceeded in seven sections: (1) Cellular metabolism, physiology, molecular biology and genetics; (2) Biotechnology and food technology; (3) The use of instrumental methods in the analysis of biologically important substances; (4) Organic, bio-organic and pharmaceuticals chemistry, pharmacology; (5) Ecology and environmental science; (6) Biophysics, mathematic modelling, biostatistics; (7) Open section for students. Relevant posters were included into the database INIS.

  14. Learning with Teachers; A Scientist's Perspective

    Science.gov (United States)

    Czajkowski, K. P.

    2004-12-01

    Over the past six years, as an Assistant Professor and now as an Associate Professor, I have engaged in educational outreach activities with K-12 teachers and their students. In this presentation I will talk about the successes and failures that I have had as a scientist engaged in K-12 educational outreach, including teaching the Earth System Science Education Alliance (ESSEA) distance learning course, teaching inquiry-based science to pre-service teachers through the NASA Opportunities for Visionary Academics (NOVA) program, GLOBE, school visits, and research projects with teachers and students. I will reflect on the potential impact this has had on my career, negative and positive. I will present ways that I have been able to engage in educational outreach while remaining a productive scientist, publishing research papers, etc. Obtaining grant funding to support a team of educational experts to assist me perform outreach has been critical to my groups success. However, reporting for small educational grants from state agencies can often be overwhelming. The bottom line is that I find working with teachers and students rewarding and believe that it is a critical part of me being a scientist. Through the process of working with teachers I have learned pedagogy that has helped me be a better teacher in the university classroom.

  15. The scientist's role in the nuclear debate

    International Nuclear Information System (INIS)

    Blackstein, F.P.

    1981-01-01

    Until recently the public had little time for, or interest in, studying scientific developments. Details on topics such as medical research, energy developments and communications advances were left to scientific journals and specialist conferences. For the most part the public had faith in science and science was able to maintain that faith through developments which recognizably improved the lot of mankind. But faith is no longer sufficient; scientists must now interact with people if we are to fulfil our obligations in this new theatre of increased public awareness. Scientists and egineers like myself and my colleagues at Atomic Energy of Canada Ltd. are communicating with the public as one part of a broad programme of public information. This includes: operation of public information centres, visits to our laboratories, interaction with teachers, distribution of reports and hosting exhibits. Technical people have a lot to learn about communicating with the public, the media and the critics. It is an extremely difficult task, but as concerned scientists it is something we should and must do, openly and constructively

  16. Teacher-Scientist-Communicator-Learner Partnerships: Reimagining Scientists in the Classroom.

    Science.gov (United States)

    Noel-Storr, Jacob; Terwilliger, Michael; InsightSTEM Teacher-Scientist-Communicator-Learner Partnerships Team

    2016-01-01

    We present results of our work to reimagine Teacher-Scientist partnerships to improve relationships and outcomes. We describe our work in implementing Teacher-Scientist partnerships that are expanded to include a communicator, and the learners themselves, as genuine members of the partnership. Often times in Teacher-Scientist partnerships, the scientist can often become more easily described as a special guest into the classroom, rather than a genuine partner in the learning experience. We design programs that take the expertise of the teacher and the scientist fully into account to develop practical and meaningful partnerships, that are further enhanced by using an expert in communications to develop rich experiences for and with the learners. The communications expert may be from a broad base of backgrounds depending on the needs and desires of the partners -- the communicators include, for example: public speaking gurus; journalists; web and graphic designers; and American Sign Language interpreters. Our partnership programs provide online support and professional development for all parties. Outcomes of the program are evaluated in terms of not only learning outcomes for the students, but also attitude, behavior, and relationship outcomes for the teachers, scientists, communicators and learners alike.

  17. Scientists in the public sphere: Interactions of scientists and journalists in Brazil.

    Science.gov (United States)

    Massarani, Luisa; Peters, Hans P

    2016-06-07

    In order to map scientists' views on media channels and explore their experiences interacting with journalists, the authors conducted a survey of about 1,000 Brazilian scientists. Results indicate that scientists have clear and high expectations about how journalists should act in reporting scientific information in the media, but such expectations, in their opinion, do not always seem to be met. Nonetheless, the results show that surveyed scientists rate their relation with the media positively: 67% say that having their research covered by media has a positive impact on their colleagues. One quarter of the respondents expressed that talking to the media can facilitate acquisition of more funds for research. Moreover, 38% of the total respondents believe that writing about an interesting topic for release on media channels can also facilitate research publication in a scientific journal. However, 15% of the respondents outright agree that research reported in the media beforehand can threaten acceptance for publication by a scientific journal. We hope that these results can foster some initiatives for improving awareness of the two cultures, scientists and journalists; increasing the access of journalists to Brazilian scientific endeavors; stimulating scientists to communicate with the public via social networks.

  18. Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Stephan E.

    2004-10-01

    Pacific Northwest National Laboratory (PNNL) hosted its first annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2004. During this period, fourteen PNNL scientists hosted sixteen young scientists from eleven different universities. Of the sixteen participants, fourteen were graduate students; one was transitioning to graduate school; and one was a university faculty member.

  19. [The boycott against German scientists and the German language after World War I].

    Science.gov (United States)

    Reinbothe, R

    2013-12-01

    After the First World War, the Allied academies of sciences staged a boycott against German scientists and the German language. The objective of the boycott was to prevent the re-establishment of the prewar dominance of German scientists, the German language and German publications in the area of international scientific cooperation. Therefore the Allies excluded German scientists and the German language from international associations, congresses and publications, while they created new international scientific organizations under their leadership. Medical associations and congresses were also affected, e. g. congresses on surgery, ophthalmology and tuberculosis. Allied physicians replaced the "International Anti-Tuberculosis Association" founded in Berlin in 1902 with the "Union Internationale contre la Tuberculose"/"International Union against Tuberculosis", founded in Paris in 1920. Only French and English were used as the official languages of the new scientific organizations, just as in the League of Nations. The boycott was based on the fact that the German scientists had denied German war guilt and war crimes and glorified German militarism in a manifesto "To The Civilized World!" in 1914. The boycott first started in 1919 and had to be abolished in 1926, when Germany became a member of the League of Nations. Many German and foreign physicians as well as other scientists protested against the boycott. Some German scientists and institutions even staged a counter-boycott impeding the resumption of international collaboration. The boycott entailed an enduring decline of German as an international scientific language. After the Second World War scientists of the victorious Western Powers implemented a complete reorganization of the international scientific arena, based on the same organizational structures and language restrictions they had built up in 1919/1920. At the same time scientists from the U.S.A. staged an active language and publication policy, in

  20. Institutional Investors

    DEFF Research Database (Denmark)

    Birkmose, Hanne Søndergaard; Strand, Therese

    Research Question/Issue: Institutional investors are facing increased pressure and threats of legislation from the European Union to abandon passive ownership strategies. This study investigates the prerequisites for – and potential dissimilarities in the practice of, active ownership among...... institutional investors in two Scandinavian countries with diminutive legal and cultural distance in general. Research Findings/Insights: Using data on shareholder proposals from Danish and Swedish annual general meetings from 2006 throughout 2010, we find that institutional investors are approximately....../Policy Implications: Regulators should be aware of the impact by local governance mechanisms, and how shareholders react under different legal and practical prerequisites. The paper also highlights legal elements that differ between Denmark and Sweden, and which might affect institutional activism....

  1. Institutional Controls

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of institutional control data from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different...

  2. Institutional Assessment

    International Development Research Centre (IDRC) Digital Library (Canada)

    Many approaches can and have helped research institutions in the developing .... There are many good texts on project and program evaluation, not to ...... has challenged managers and students of organizational development for decades.

  3. Professionals and Emerging Scientists Sharing Science

    Science.gov (United States)

    Graff, P. V.; Allen, J. S.; Tobola, K.

    2010-01-01

    The Year of the Solar System (YSS) celebration begins in the fall of 2010. As YSS provides a means in which NASA can inspire members of the public about exciting missions to other worlds in our solar system, it is important to remember these missions are about the science being conducted and new discoveries being made. As part of the Year of the Solar System, Astromaterials Research and Exploration Science (ARES) Education, at the NASA Johnson Space Center, will infuse the great YSS celebration within the Expedition Earth and Beyond Program. Expedition Earth and Beyond (EEAB) is an authentic research program for students in grades 5-14 and is a component of ARES Education. Students involved in EEAB have the opportunity to conduct and share their research about Earth and/or planetary comparisons. ARES Education will help celebrate this exciting Year of the Solar System by inviting scientists to share their science. Throughout YSS, each month will highlight a topic related to exploring our solar system. Additionally, special mission events will be highlighted to increase awareness of the exciting missions and exploration milestones. To bring this excitement to classrooms across the nation, the Expedition Earth and Beyond Program and ARES Education will host classroom connection events in which scientists will have an opportunity to share discoveries being made through scientific research that relate to the YSS topic of the month. These interactive presentations will immerse students in some of the realities of exploration and potentially inspire them to conduct their own investigations. Additionally, scientists will share their own story of how they were inspired to pursue a STEM-related career that got them involved in exploration. These career highlights will allow students to understand and relate to the different avenues that scientists have taken to get where they are today. To bring the sharing of science full circle, student groups who conduct research by

  4. Supporting Students as Scientists: One Mission's Efforts

    Science.gov (United States)

    Taylor, J.; Chambers, L. H.; Trepte, C. R.

    2012-12-01

    NASA's CALIPSO satellite mission provides an array of opportunities for teachers, students, and the general public. In developing our latest plan for education and public outreach, CALIPSO focused on efforts that would support students as scientists. CALIPSO EPO activities are aimed at inspiring young scientists through multiple avenues of potential contact, including: educator professional development, student-scientist mentoring, curriculum resource development, and public outreach through collaborative mission efforts. In this session, we will explore how these avenues complement one another and take a closer look at the development of the educator professional development activities. As part of CALIPSO's EPO efforts, we have developed the GLOBE Atmosphere Investigations Programs (AIP). The program encourages students to engage in authentic science through research on the atmosphere. The National Research Council (NRC) has emphasized the importance of teaching scientific inquiry in the National Science Education Standards (1996, 2000) and scientific practice in the recent Framework for K-12 Science Education (2011). In order to encourage student-centered science inquiry, teacher training utilizing GLOBE Atmosphere Investigations and GLOBE's Student Research Process are provided to middle and high school teachers to assist them in incorporating real scientific investigations into their classroom. Through participation in the program, teachers become a part of GLOBE (Global Learning and Observations to Benefit the Environment) - an international community of teachers, students, and scientists studying environmental science in over 24,000 schools around the world. The program uses NASA's satellites and the collection of atmosphere data by students to provide an engaging science learning experience for the students, and teachers. The GLOBE Atmosphere Investigations program offers year-long support to both teachers and students through direct involvement with NASA

  5. Scientists' Views about Attribution of Global Warming

    Science.gov (United States)

    Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo

    2015-04-01

    What do scientists think? That is an important question when engaging in science communication, in which an attempt is made to communicate the scientific understanding to a lay audience. To address this question we undertook a large and detailed survey among scientists studying various aspects of climate change , dubbed "perhaps the most thorough survey of climate scientists ever" by well-known climate scientist and science communicator Gavin Schmidt. Among more than 1800 respondents we found widespread agreement that global warming is predominantly caused by human greenhouse gases. This consensus strengthens with increased expertise, as defined by the number of self-reported articles in the peer-reviewed literature. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), agreed that anthropogenic greenhouse gases are the dominant cause of recent global warming, i.e. having contributed more than half of the observed warming. With this survey we specified what the consensus position entails with much greater specificity than previous studies. The relevance of this consensus for science communication will be discussed. Another important result from our survey is that the main attribution statement in IPCC's fourth assessment report (AR4) may lead to an underestimate of the greenhouse gas contribution to warming, because it implicitly includes the lesser known masking effect of cooling aerosols. This shows the importance of the exact wording in high-profile reports such as those from IPCC in how the statement is perceived, even by fellow scientists. The phrasing was improved in the most recent assessment report (AR5). Respondents who characterized the human influence on climate as insignificant, reported having the most frequent media coverage regarding their views on climate change. This shows that contrarian opinions are amplified in the media in relation to their prevalence in the scientific community. This

  6. Scientists feature their work in Arctic-focused short videos by FrontierScientists

    Science.gov (United States)

    Nielsen, L.; O'Connell, E.

    2013-12-01

    Whether they're guiding an unmanned aerial vehicle into a volcanic plume to sample aerosols, or documenting core drilling at a frozen lake in Siberia formed 3.6 million years ago by a massive meteorite impact, Arctic scientists are using video to enhance and expand their science and science outreach. FrontierScientists (FS), a forum for showcasing scientific work, produces and promotes radically different video blogs featuring Arctic scientists. Three- to seven- minute multimedia vlogs help deconstruct researcher's efforts and disseminate stories, communicating scientific discoveries to our increasingly connected world. The videos cover a wide range of current field work being performed in the Arctic. All videos are freely available to view or download from the FrontierScientists.com website, accessible via any internet browser or via the FrontierScientists app. FS' filming process fosters a close collaboration between the scientist and the media maker. Film creation helps scientists reach out to the public, communicate the relevance of their scientific findings, and craft a discussion. Videos keep audience tuned in; combining field footage, pictures, audio, and graphics with a verbal explanation helps illustrate ideas, allowing one video to reach people with different learning strategies. The scientists' stories are highlighted through social media platforms online. Vlogs grant scientists a voice, letting them illustrate their own work while ensuring accuracy. Each scientific topic on FS has its own project page where easy-to-navigate videos are featured prominently. Video sets focus on different aspects of a researcher's work or follow one of their projects into the field. We help the scientist slip the answers to their five most-asked questions into the casual script in layman's terms in order to free the viewers' minds to focus on new concepts. Videos are accompanied by written blogs intended to systematically demystify related facts so the scientists can focus

  7. US and Cuban Scientists Forge Collaboration on Arbovirus Research.

    Science.gov (United States)

    Pérez-Ávila, Jorge; Guzmán-Tirado, Maria G; Fraga-Nodarse, Jorge; Handley, Gray; Meegan, James; Pelegrino-Martínez de la Cotera, Jose L; Fauci, Anthony S

    2018-04-01

    After December 17, 2014, when the US and Cuban governments announced their intent to restore relations, the two countries participated in various exchange activities in an effort to encourage cooperation in public health, health research and biomedical sciences. The conference entitled Exploring Opportunities for Arbovirus Research Collaboration, hosted at Havana's Hotel Nacional, was part of these efforts and was the first major US-Cuban scientific conference in over 50 years. Its purpose was to share information about current arbovirus research and recent findings, and to explore opportunities for future joint research. The nearly 100 participants included leading arbovirus and vector transmission experts from ten US academic institutions, NIH, CDC, FDA and the US Department of Defense. Cuban participants included researchers, clinicians and students from Cuba's Ministry of Public Health, Pedro Kourí Tropical Medicine Institute, Center for Genetic Engineering and Biotechnology, Center for State Control of Medicines and Medical Devices and other health research and regulatory organizations. Topics highlighted at the three-day meeting included surveillance, research and epidemiology; pathogenesis, immunology and virology; treatment and diagnosis; vector biology and control; vaccine development and clinical trials; and regulatory matters. Concurrent breakout discussions focused on novel vector control, nonvector transmission, community engagement, Zika in pregnancy, and workforce development. Following the conference, the Pedro Kourí Tropical Medicine Institute and the US National Institute of Allergic and Infectious Diseases have continued to explore ways to encourage and support scientists in Cuba and the USA who wish to pursue arbovirus research cooperation to advance scientific discovery to improve disease prevention and control. KEYWORDS Arboviruses, flavivirus, Zika virus, chikungunya virus, dengue virus, research, disease vectors, Cuba, USA.

  8. Clinician-scientists in Canada: barriers to career entry and progress.

    Directory of Open Access Journals (Sweden)

    Bryn Lander

    Full Text Available BACKGROUND: Clinician-scientists play an important role in translating between research and clinical practice. Significant concerns about a decline in their numbers have been raised. Potential barriers for career entry and progress are explored in this study. METHODS: Case-study research methods were used to identify barriers perceived by clinician-scientists and their research teams in two Canadian laboratories. These perceptions were then compared against statistical analysis of data from Canadian Institutes of Health Research (CIHR databases on grant and award performance of clinician-scientists and non-clinical PhDs for fiscal years 2000 to 2008. RESULTS: Three main barriers were identified through qualitative analysis: research training, research salaries, and research grants. We then looked for evidence of these barriers in the Canada-wide statistical dataset for our study period. Clinician-scientists had a small but statistically significant higher mean number of degrees (3.3 than non-clinical scientists (3.2, potentially confirming the perception of longer training times. But evidence of the other two barriers was equivocal. For example, while overall growth in salary awards was minimal, awards to clinician-scientists increased by 45% compared to 6.3% for non-clinical PhDs. Similarly, in terms of research funding, awards to clinician-scientists increased by more than 25% compared with 5% for non-clinical PhDs. However, clinician-scientist-led grants funded under CIHR's Clinical thematic area decreased significantly from 61% to 51% (p-value<0.001 suggesting that clinician-scientists may be shifting their attention to other research domains. CONCLUSION: While clinician-scientists continue to perceive barriers to career entry and progress, quantitative results suggest improvements over the last decade. Clinician-scientists are awarded an increasing proportion of CIHR research grants and salary awards. Given the translational importance of

  9. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... As part of the federal government’s National Institutes of Health (NIH), the National Eye Institute’s mission is to “ ... be addressed to the NEI Website Manager . Department of Health and Human Services | The National Institutes of Health | ...

  10. Data sharing by scientists: Practices and perceptions

    Science.gov (United States)

    Tenopir, C.; Allard, S.; Douglass, K.; Aydinoglu, A.U.; Wu, L.; Read, E.; Manoff, M.; Frame, M.

    2011-01-01

    Background: Scientific research in the 21st century is more data intensive and collaborative than in the past. It is important to study the data practices of researchers - data accessibility, discovery, re-use, preservation and, particularly, data sharing. Data sharing is a valuable part of the scientific method allowing for verification of results and extending research from prior results. Methodology/Principal Findings: A total of 1329 scientists participated in this survey exploring current data sharing practices and perceptions of the barriers and enablers of data sharing. Scientists do not make their data electronically available to others for various reasons, including insufficient time and lack of funding. Most respondents are satisfied with their current processes for the initial and short-term parts of the data or research lifecycle (collecting their research data; searching for, describing or cataloging, analyzing, and short-term storage of their data) but are not satisfied with long-term data preservation. Many organizations do not provide support to their researchers for data management both in the short- and long-term. If certain conditions are met (such as formal citation and sharing reprints) respondents agree they are willing to share their data. There are also significant differences and approaches in data management practices based on primary funding agency, subject discipline, age, work focus, and world region. Conclusions/Significance: Barriers to effective data sharing and preservation are deeply rooted in the practices and culture of the research process as well as the researchers themselves. New mandates for data management plans from NSF and other federal agencies and world-wide attention to the need to share and preserve data could lead to changes. Large scale programs, such as the NSF-sponsored DataNET (including projects like DataONE) will both bring attention and resources to the issue and make it easier for scientists to apply sound

  11. How Many Women Scientists Does It Take?

    Science.gov (United States)

    Zelikova, T. J.; Ramirez, K. S.; Pendergrass, A. G.; Vijayaraghavan, R.; Weintraub, S. R.; Bohon, W.; Bartel, B. A.

    2017-12-01

    Science and activism are not mutually exclusive. In today's political and cultural landscape, scientists must become advocates. But we cannot simply support the scientific enterprise while ignoring marginalized groups in science. We must promote diversity and confront the structural inequalities and discrimination that are prevalent in science today. How do we begin to confront this challenge? 500 Women Scientists is a grassroots organization that formed in the wake of the 2016 US election. We quickly grew to more than 20,000 supporters from across the globe and moved towards a broader mission to serve society by making science open, inclusive, and accessible. Ensuring women's inclusion and an explicit consideration of diversity improves science and spurs innovation. A focus on diversity means that the best minds and talent are in the room and that we implement the most effective solutions to solve the complex global challenges we face. We accomplish our mission by bringing together communities to foster real change that comes from small groups, not large crowds. Across the world, groups of 500 Women Scientists - pods - help create deep roots through strong, personal relationships and focus on issues that resonate in their communities. Pod members meet regularly to carry out our mission through 3 types of activities: 1. Empowering women to succeed in science through mentorship, networking, and support; 2. Advocating for science through participation in marches and efforts like the "#ourEPA" and "Summer of Op-Eds" campaigns; and 3. Local outreach at schools, local community events, and more. We are building a powerful voice in conversations at the intersection of science and our most pressing issues: environmental degradation, gender politics, structural inequalities and cultural diversity. We tell our own story so that we do not remain `hidden figures,' and so that future generations can inherit and advance the knowledge that we work so hard to produce.

  12. Frederic Joliot-Curie the history of a civic-minded scientist

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The year 2000 marks the hundredth anniversary of the birth of Frederic Joliot-Curie, who can be safely termed as one of the most prominent figures of the twentieth century. The scientist and his wife Irene discovered artificial radioactivity at the Radium Institute; in 1935, they received the Nobel Chemistry Prize for their discovery. At the College de France four years later, Frederic Joliot-Curie uncovered the conditions required for a chain reaction in uranium. He gave meaning to the word civic-minded citizen. His many deeds were a statement that a scientist should offer more than his research and its possible applications to society; that he should not shrink from committing to political and social struggles. That is why this exceptional man is a model of a committed scientist. (author)

  13. Scientist impact factor (SIF): a new metric for improving scientists' evaluation?

    Science.gov (United States)

    Lippi, Giuseppe; Mattiuzzi, Camilla

    2017-08-01

    The publication of scientific research is the mainstay for knowledge dissemination, but is also an essential criterion of scientists' evaluation for recruiting funds and career progression. Although the most widespread approach for evaluating scientists is currently based on the H-index, the total impact factor (IF) and the overall number of citations, these metrics are plagued by some well-known drawbacks. Therefore, with the aim to improve the process of scientists' evaluation, we developed a new and potentially useful indicator of recent scientific output. The new metric scientist impact factor (SIF) was calculated as all citations of articles published in the two years following the publication year of the articles, divided by the overall number of articles published in that year. The metrics was then tested by analyzing data of the 40 top scientists of the local University. No correlation was found between SIF and H-index (r=0.15; P=0.367) or 2 years H-index (r=-0.01; P=0.933), whereas the H-index and 2 years H-index values were found to be highly correlated (r=0.57; Particles published in one year and the total number of citations to these articles in the two following years (r=0.62; Pscientists, wherein the SIF reflects the scientific output over the past two years thus increasing their chances to apply to and obtain competitive funding.

  14. The Impact of Scientist-Educator Collaborations: an early-career scientist's perspective

    Science.gov (United States)

    Roop, H. A.

    2017-12-01

    A decade ago, a forward-thinking faculty member exposed a group of aspiring scientists to the impacts and career benefits of working directly with K-12 students and educators. Ten years later, as one of those young scientists, it is clear that the relationships born out of this early experience can transform a researcher's impact and trajectory in science. Connections with programs like the NSF-funded PolarTREC program, the teacher-led Scientists in the Classroom effort, and through well-coordinated teacher training opportunities there are clear ways in which these partnerships can a) transform student learning; b) serve as a powerful and meaningful way to connect students to authentic research and researchers; and c) help researchers become more effective communicators by expanding their ability to connect their work to society. The distillation of science to K-12 students, with the expert eye of educators, makes scientists better at their work with tangible benefits to skills that matter in academia - securing funding, writing and communicating clearly and having high-value broader impacts. This invited abstract is submitted as part of this session's panel discussion and will explore in detail, with concrete examples, the mutual benefits of educator-scientist partnerships and how sustained engagement can transform the reach, connection and application of research science.

  15. Uncovering Scientist Stereotypes and Their Relationships with Student Race and Student Success in a Diverse, Community College Setting

    Science.gov (United States)

    Schinske, Jeffrey; Cardenas, Monica; Kaliangara, Jahana

    2015-01-01

    A number of studies have identified correlations between children’s stereotypes of scientists, their science identities, and interest or persistence in science, technology, engineering, and mathematics. Yet relatively few studies have examined scientist stereotypes among college students, and the literature regarding these issues in predominantly nonwhite and 2-yr college settings is especially sparse. We piloted an easy-to-analyze qualitative survey of scientist stereotypes in a biology class at a diverse, 2-yr, Asian American and Native American Pacific Islander–Serving Institution. We examined the reliability and validity of the survey, and characterized students’ comments with reference to previous research on stereotypes. Positive scientist stereotypes were relatively common in our sample, and negative stereotypes were rare. Negative stereotypes appeared to be concentrated within certain demographic groups. We found that students identifying nonstereotypical images of scientists at the start of class had higher rates of success in the course than their counterparts. Finally, evidence suggested many students lacked knowledge of actual scientists, such that they had few real-world reference points to inform their stereotypes of scientists. This study augments the scant literature regarding scientist stereotypes in diverse college settings and provides insights for future efforts to address stereotype threat and science identity. PMID:26338318

  16. Support for Synchrotron Access by Environmental Scientists

    International Nuclear Information System (INIS)

    Daly, Michael; Madden, Andrew; Palumbo, Anthony; Qafoku, N.

    2006-01-01

    To support ERSP-funded scientists in all aspects of synchrotron-based research at the Advanced Photon Source (APS). This support comes in one or more of the following forms: (1) writing proposals to the APS General User (GU) program, (2) providing time at MRCAT/EnviroCAT beamlines via the membership of the Molecular Environmental Science (MES) Group in MRCAT/EnviroCAT, (3) assistance in experimental design and sample preparation, (4) support at the beamline during the synchrotron experiment, (5) analysis and interpretation of the synchrotron data, and (6) integration of synchrotron experimental results into manuscripts

  17. Vector analysis for mathematicians, scientists and engineers

    CERN Document Server

    Simons, S

    1970-01-01

    Vector Analysis for Mathematicians, Scientists and Engineers, Second Edition, provides an understanding of the methods of vector algebra and calculus to the extent that the student will readily follow those works which make use of them, and further, will be able to employ them himself in his own branch of science. New concepts and methods introduced are illustrated by examples drawn from fields with which the student is familiar, and a large number of both worked and unworked exercises are provided. The book begins with an introduction to vectors, covering their representation, addition, geome

  18. Essential Java for Scientists and Engineers

    CERN Document Server

    Hahn, Brian D; Malan, Katherine M

    2003-01-01

    Essential Java serves as an introduction to the programming language, Java, for scientists and engineers, and can also be used by experienced programmers wishing to learn Java as an additional language. The book focuses on how Java, and object-oriented programming, can be used to solve science and engineering problems. Many examples are included from a number of different scientific and engineering areas, as well as from business and everyday life. Pre-written packages of code are provided to help in such areas as input/output, matrix manipulation and scientific graphing. Java source code and

  19. Space groups for solid state scientists

    CERN Document Server

    Glazer, Michael; Glazer, Alexander N

    2014-01-01

    This Second Edition provides solid state scientists, who are not necessarily experts in crystallography, with an understandable and comprehensive guide to the new International Tables for Crystallography. The basic ideas of symmetry, lattices, point groups, and space groups are explained in a clear and detailed manner. Notation is introduced in a step-by-step way so that the reader is supplied with the tools necessary to derive and apply space group information. Of particular interest in this second edition are the discussions of space groups application to such timely topics as high-te

  20. Web life: The Evil Mad Scientist Project

    Science.gov (United States)

    2009-04-01

    What is it? Have you ever tried to electrocute a hot dog? Wondered how to make a robot out of a toothbrush, watch battery and phone-pager motor? Seen a cantaloupe melon and thought, "Hmm, I could make this look like the Death Star from the original Star Wars films"? If you have not, but you would like to - preferably as soon as you can find a pager motor - then this is the site for you. The Evil Mad Scientist Project (EMSP) blog is packed full of ideas for unusual, silly and frequently physics-related creations that bring science out of the laboratory and into kitchens, backyards and tool sheds.

  1. Practical Statistics for Environmental and Biological Scientists

    CERN Document Server

    Townend, John

    2012-01-01

    All students and researchers in environmental and biological sciences require statistical methods at some stage of their work. Many have a preconception that statistics are difficult and unpleasant and find that the textbooks available are difficult to understand. Practical Statistics for Environmental and Biological Scientists provides a concise, user-friendly, non-technical introduction to statistics. The book covers planning and designing an experiment, how to analyse and present data, and the limitations and assumptions of each statistical method. The text does not refer to a specific comp

  2. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  3. Mathematics for natural scientists II advanced methods

    CERN Document Server

    Kantorovich, Lev

    2016-01-01

    This book covers the advanced mathematical techniques useful for physics and engineering students, presented in a form accessible to physics students, avoiding precise mathematical jargon and laborious proofs. Instead, all proofs are given in a simplified form that is clear and convincing for a physicist. Examples, where appropriate, are given from physics contexts. Both solved and unsolved problems are provided in each chapter. Mathematics for Natural Scientists II: Advanced Methods is the second of two volumes. It follows the first volume on Fundamentals and Basics.

  4. Institutional Awareness

    DEFF Research Database (Denmark)

    Ahlvik, Carina; Boxenbaum, Eva

    Drawing on dual-process theory and mindfulness research this article sets out to shed light on the conditions that need to be met to create “a reflexive shift in consciousness” argued to be a key foundational mechanism for agency in institutional theory. Although past research has identified...... in consciousness to emerge and argue for how the varying levels of mindfulness in the form of internal and external awareness may manifest as distinct responses to the institutional environment the actor is embedded in....

  5. On being a scientist in a rapidly changing world.

    Science.gov (United States)

    Mandel, I D

    1996-02-01

    The practice of biological science has changed dramatically since mid-century, reshaped not only by a rapid series of landmark discoveries, but also by governmental directives, institutional policies, and public attitudes. Until 1964, the major influences were the mentor, who provided direction and indoctrination into the culture of science, and in dentistry, the newly established NIDR, which fueled the research engine with an expanding research and training program. The 1965-74 period witnessed the advent of the Institutional Review Board, an increased social involvement of biological scientists, and a recognition of the need for biological and physical safeguards in the conduct of research. The most turbulent years were 1975-89, when there was a confluence of animal rights activism and regulation, growing concerns with scientific fraud and publication malpractice, and the stresses and strains (and opportunities) resulting from the rapid expansion of the academic-industrial complex. The current period is characterized by rapid pace, high volume, and an increased depth and breadth of knowledge-a major change in scale in the conduct of science. It is an exciting time but one in which ethical issues are multiplying. Attention must be paid.

  6. Economists, social scientists root for basic income in India | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2017-08-06

    Aug 6, 2017 ... Economists and social scientists made a strong pitch for reducing expenditures on ... Economists, social scientists root for basic income in India ... in terms of competing development priorities and limited availability of funds.

  7. The State of Young Scholars and Scientists in Africa | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... career decisions and research performance of young scientists in higher education, ... progression Researchers will examine the supporting and limiting factors. ... They will work with scientists, government agencies, and higher education ...

  8. European Institutions?

    NARCIS (Netherlands)

    Meacham, Darian

    2016-01-01

    The aim of this article is to sketch a phenomenological theory of political institutions and to apply it to some objections and questions raised by Pierre Manent about the project of the European Union and more specifically the question of “European Construction”, i.e. what is the aim of the

  9. Institution Morphisms

    Science.gov (United States)

    Goguen, Joseph; Rosu, Grigore; Norvig, Peter (Technical Monitor)

    2001-01-01

    Institutions formalize the intuitive notion of logical system, including both syntax and semantics. A surprising number of different notions of morphisim have been suggested for forming categories with institutions as objects, and a surprising variety of names have been proposed for them. One goal of this paper is to suggest a terminology that is both uniform and informative to replace the current rather chaotic nomenclature. Another goal is to investigate the properties and interrelations of these notions. Following brief expositions of indexed categories, twisted relations, and Kan extensions, we demonstrate and then exploit the duality between institution morphisms in the original sense of Goguen and Burstall, and the 'plain maps' of Meseguer, obtaining simple uniform proofs of completeness and cocompleteness for both resulting categories; because of this duality, we prefer the name 'comorphism' over 'plain map.' We next consider 'theoroidal' morphisms and comorphisims, which generalize signatures to theories, finding that the 'maps' of Meseguer are theoroidal comorphisms, while theoroidal morphisms are a new concept. We then introduce 'forward' and 'semi-natural' morphisms, and appendices discuss institutions for hidden algebra, universal algebra, partial equational logic, and a variant of order sorted algebra supporting partiality.

  10. Math for scientists refreshing the essentials

    CERN Document Server

    Maurits, Natasha

    2017-01-01

    Accessible and comprehensive, this guide is an indispensable tool for anyone in the sciences – new and established researchers, students and scientists – looking either to refresh their math skills or to prepare for the broad range of math, statistical and data-related challenges they are likely to encounter in their work or studies. In addition to helping scientists improve their knowledge of key mathematical concepts, this unique book will help readers: ·                     Read mathematical symbols ·                     Understand formulas, data or statistical information ·                     Determine medication equivalents ·                     Analyze neuroimaging  Mathematical concepts are presented alongside illustrative and useful real-world scien­tific examples and are further clarified through practical pen-and-paper exercises. Whether you are a student encountering high-level mathematics in your research or...

  11. Kristian Birkeland, The First Space Scientist

    Science.gov (United States)

    Egeland, A.; Burke, W. J.

    2005-05-01

    At the beginning of the 20th century Kristian Birkeland (1867-1917), a Norwegian scientist of insatiable curiosity, addressed questions that had vexed European scientists for centuries. Why do the northern lights appear overhead when the Earth's magnetic field is disturbed? How are magnetic storms connected to disturbances on the Sun? To answer these questions Birkeland interpreted his advance laboratory simulations and daring campaigns in the Arctic wilderness in the light of Maxwell's newly discovered laws of electricity and magnetism. Birkeland's ideas were dismissed for decades, only to be vindicated when satellites could fly above the Earth's atmosphere. Faced with the depleting stocks of Chilean saltpeter and the consequent prospect of mass starvation, Birkeland showed his practical side, inventing the first industrial scale method to extract nitrogen-based fertilizers from the air. Norsk Hydro, one of modern Norway's largest industries, stands as a living tribute to his genius. Hoping to demonstrate what we now call the solar wind, Birkeland moved to Egypt in 1913. Isolated from his friends by the Great War, Birkeland yearned to celebrate his 50th birthday in Norway. The only safe passage home, via the Far East, brought him to Tokyo where in the late spring of 1917 he passed away. Link: http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-10100-22-39144987-0,00.html?changeHeader=true

  12. Attitudes and norms affecting scientists' data reuse.

    Directory of Open Access Journals (Sweden)

    Renata Gonçalves Curty

    Full Text Available The value of sharing scientific research data is widely appreciated, but factors that hinder or prompt the reuse of data remain poorly understood. Using the Theory of Reasoned Action, we test the relationship between the beliefs and attitudes of scientists towards data reuse, and their self-reported data reuse behaviour. To do so, we used existing responses to selected questions from a worldwide survey of scientists developed and administered by the DataONE Usability and Assessment Working Group (thus practicing data reuse ourselves. Results show that the perceived efficacy and efficiency of data reuse are strong predictors of reuse behaviour, and that the perceived importance of data reuse corresponds to greater reuse. Expressed lack of trust in existing data and perceived norms against data reuse were not found to be major impediments for reuse contrary to our expectations. We found that reported use of models and remotely-sensed data was associated with greater reuse. The results suggest that data reuse would be encouraged and normalized by demonstration of its value. We offer some theoretical and practical suggestions that could help to legitimize investment and policies in favor of data sharing.

  13. A data model for environmental scientists

    Science.gov (United States)

    Kapeljushnik, O.; Beran, B.; Valentine, D.; van Ingen, C.; Zaslavsky, I.; Whitenack, T.

    2008-12-01

    Environmental science encompasses a wide range of disciplines from water chemistry to microbiology, ecology and atmospheric sciences. Studies often require working across disciplines which differ in their ways of describing and storing data such that it is not possible to devise a monolithic one-size-fits-all data solution. Based on our experiences with Consortium of the Universities for the Advancement of Hydrologic Science Inc. (CUAHSI) Observations Data Model, Berkeley Water Center FLUXNET carbon-climate work and by examining standards like EPA's Water Quality Exchange (WQX), we have developed a flexible data model that allows extensions without need to altering the schema such that scientists can define custom metadata elements to describe their data including observations, analysis methods as well as sensors and geographical features. The data model supports various types of observations including fixed point and moving sensors, bottled samples, rasters from remote sensors and models, and categorical descriptions (e.g. taxonomy) by employing user-defined-types when necessary. It leverages ADO .NET Entity Framework to provide the semantic data models for differing disciplines, while maintaining a common schema below the entity layer. This abstraction layer simplifies data retrieval and manipulation by hiding the logic and complexity of the relational schema from users thus allows programmers and scientists to deal directly with objects such as observations, sensors, watersheds, river reaches, channel cross-sections, laboratory analysis methods and samples as opposed to table joins, columns and rows.

  14. Anaxagoras and the Scientist/Laity Interaction

    Science.gov (United States)

    Woolf, N. J.

    The phenomenon that caused Anaxagoras to develop his model that explained the phases and eclipses of the Moon was a meteorite fall. The model was a turning point for science in explaining more than one phenomenon with a single model. It precipitated the growth of Greek astronomy and the first heliocentric theory. Anaxagoras was also the first scientist to get into trouble for a conflict between science and religion. Contrary to an impression from the title of this conference, scientific literature paid little attention to the meteorite fall phenomenon. Both scientists and the public mainly pay attention to models, and often to the extraneous irrelevant attachments of models, those by which it is placed in memory. Models are artistic creations that are culture dependent. Phenomena are our only solid link to the world of reality. The main issue of this paper is the problems that the individual has with models. The paper discusses the effect of Anaxagoras on scientific thought. It concludes by exploring three areas where relationship of science to society as Anaxagoras set it up, has left unresolved problems.

  15. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... eyesight is about five times sharper than a human’s. That means what you see clearly from five ... the NEI Website Manager . Department of Health and Human Services | The National Institutes of Health | USA.gov ...

  16. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... The Visual System Your Eyes’ Natural Defenses Eye Health and Safety First Aid Tips Healthy Vision Tips ... addressed to the NEI Website Manager . Department of Health and Human Services | The National Institutes of Health | ...

  17. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... maintained by the NEI Office of Science Communications, Public Liaison, and Education. Technical questions about this website can be addressed to the NEI Website Manager . Department of Health and Human Services | The National Institutes of Health | ...

  18. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Campus Mission Statement As part of the federal government’s National Institutes of Health (NIH), the National Eye ... Publications Catalog Photos and Images Spanish Language Information Grants and Funding Extramural Research Division of Extramural Science ...

  19. Innovation activity of scientists as a factor in the development of academic entrepreneurship in Russia

    Directory of Open Access Journals (Sweden)

    L. N. Babak

    2016-01-01

    Full Text Available The development of academic entrepreneurship as a way of transfer of innovation is an urgent task. One of the main factors in the development of academic entrepreneurship is innovation-oriented staff of higher education institutions. Insufficient attention of the scientific literature to importance of this factor is thwarting progress of various forms of academic entrepreneurship. In connection with this proposed study is aimed at determining the degree of scientific innovation activity influence on the development of academic entrepreneurship in Russia. Academic entrepreneurship in Russia has been chosen as the object of study. Analysis of the basic research in the field of academic entrepreneurship for the period of 2011-2016 years was used to achieve this goal. Analysis of publications was revealed that the innovative activity of the teaching staff of universities is a critical factor in the development of academic entrepreneurship. However, Russian scientists are characterized by low innovation activity, resulting in academic entrepreneurship in Russia is weak. The researchers suggest the following solutions to eliminate or minimize the effects of this problem: full awareness and moral training of the scientists involved in the innovation process of higher education institutions; profit payment; creating a psychological climate that will affect the scientific process of self-realization; continuous training of employees involved in the innovation process of higher education institutions; the creation of conditions that will contribute to the manifestation of creative activity of scientists; provide greater confidence to young scientists, graduate students and undergraduates; providing moral and material encouragement of initiatives, experimentation and creativity of scientific and pedagogical staff; the allocation of free time for scientists to research and search activities and others. The data obtained can be used by the guidance of

  20. Scientists and Faith Communities in Dialogue - Finding Common Ground to Care for our Common Home

    Science.gov (United States)

    Jablonski, L. M.

    2017-12-01

    World-wide, faith communities are a key place for education and outreach to the general adult population. The sacred responsibility to care for the earth, living sustainability and concern for the poor are nearly universal priorities across faith communities. Scientists and people of faith share in common experiences of awe and wonder and ethical roles as citizens. The majority of faith communities have statements on climate changes, environmental justice, and stewardship, and respond with education, action plans and advocacy. People of faith are increasingly seeking science expertise to better understand the science and best solutions to implement. Transformation of point of view often requires heart-felt motivation (domain of religion) as well as knowledge (science). Scientists can participate in alleviating environmental justice by providing data and education to communities. Expert testimony is a critical service. Pope Francis' environmental encyclical Laudato si, engaged diverse scientists in its writing and outreach. Francis invites our continued dialogue with people of faith and goodwill of all societal sectors and fields to achieve an integral ecology that integrates science, economics, and impacts on the poor. For scientists to be most effective in sharing expertise, and building understanding and trust in scientific findings, skill- building is needed in: communication, finding common ground, intercultural competency, working with diverse populations and religious literacy. Educational initiatives bridging scientists and faith-communities will be highlighted including within: the Ecological Society of America, American Assn for Advancement of Sustainability in Higher Education, faith-based & Environmental Justice networks, Nature centers, Higher Education (including Seminary) Initiatives and the Hanley Sustainability Institute, and interfaith religious organizations engaged with scientists. Bridge-building and ongoing partnerships of scientists, EJ

  1. Qualitative versus Quantitative Evaluation of Scientists' Impact: A Medical Toxicology Tale

    Directory of Open Access Journals (Sweden)

    Reza Afshari

    2014-12-01

    Full Text Available Evaluation of scientists working in a specific area of science is necessary, as they may strive for same limited resources, grants and academic promotions. One of the most common and accepted methods of assessing the performance and impact of a scientist is calculating the number of citations for their publications. However, such method suffer from certain shortcomings. It has become more and more obvious that evaluation of scientists should be qualitative in addition to quantitative. Moreover, the evaluation process should be pragmatic and reflective of the priorities of an institution, a country or an intended population. In this context, a scoring scale called "360-degree researcher evaluation score" is proposed in this paper. Accordingly, scientists are evaluated in 5 independent domains including (I science development, (II economic impact, (III policy impact, (IV societal impact and (V stewardship of research. This scale is designed for evaluation of impacts resulted from research activities and thus it excludes the educational programs done by a scientist. In general, it seems necessary that the evaluation process of a scientist’s impact moves from only scintometric indices to a combination of quantitative and qualitative indices.

  2. Climate Scientists In The Public Arena: Who's Got Our Backs? (Invited)

    Science.gov (United States)

    Mann, M. E.

    2010-12-01

    Climate scientists have an important role to play in informing the public discourse on human-caused climate change. Our scientific expertise provides us a unique, informed perspective, and despite recent high profile attacks against climate science, the public still affords climate scientists the greatest trust to deliver an honest, unbiased assessment of the potential threats posed by climate changes. Yet, as with all areas of science where powerful special interests perceive themselves as threatened by the findings of science, scientists enter the public fray at our peril. Our efforts to communicate the science are opposed by a well-funded, highly organized disinformation effort that aims to confuse the public about the nature of our scientific understanding. In recent years, the disinformation campaign has demonstrated a willingness to attack individual, climate scientists as a means of achieving a broader end: discrediting climate science itself. These attacks are rarely fought in legitimate scientific circles such as the peer-reviewed scientific literature or other scholarly venues, but rather through rhetorical efforts delivered by nonscientists, using ideologically aligned media outlets, special interest groups, and politicians. Scientists are massively out-funded and outmanned in this battle, and will lose if leading scientific institutions and organizations remain on the sidelines. I will discuss this dilemma, drawing upon my own experiences in the public arena of climate change.

  3. On genies and bottles: scientists' moral responsibility and dangerous technology R&D.

    Science.gov (United States)

    Koepsell, David

    2010-03-01

    The age-old maxim of scientists whose work has resulted in deadly or dangerous technologies is: scientists are not to blame, but rather technologists and politicians must be morally culpable for the uses of science. As new technologies threaten not just populations but species and biospheres, scientists should reassess their moral culpability when researching fields whose impact may be catastrophic. Looking at real-world examples such as smallpox research and the Australian "mousepox trick", and considering fictional or future technologies like Kurt Vonnegut's "ice-nine" from Cat's Cradle, and the "grey goo" scenario in nanotechnology, this paper suggests how ethical principles developed in biomedicine can be adjusted for science in general. An "extended moral horizon" may require looking not just to the effects of research on individual human subjects, but also to effects on humanity as a whole. Moreover, a crude utilitarian calculus can help scientists make moral decisions about which technologies to pursue and disseminate when catastrophes may result. Finally, institutions should be devised to teach these moral principles to scientists, and require moral education for future funding.

  4. Sustaining Scientist-Community Partnerships that are Just, Equitable, and Trustworthy

    Science.gov (United States)

    Sheats, N.

    2016-12-01

    Communities of color, indigenous people, and low income communities throughout the United States are on the front lines of environmental and health impacts from polluting sources, and yet don't fully benefit from public policies that are intended to reduce or prevent those impacts. Many of the challenges faced by environmental justice communities can and should be addressed, in part, through science-based public policies. Community-relevant scientific information and equal access to this information is needed to protect people from public health and environmental hazards. Too often, however, the scientific community has failed to work collaboratively with environmental justice communities. This session will explore the challenges and opportunities faced by environmental justice advocates and scientists in working with one another. This talk will share findings from a recently-held forum, specifically discussing a formal set of principles and best practices for community-scientist partnerships to guide future collaborations between scientists and communities. When community members and scientists collaborate, they bring together unique strengths and types of knowledge that can help address our most pressing challenges, inform decision making, and develop solutions that benefit all people. The speaker will address institutional and historic barriers that hinder such collaboration, potential pitfalls to avoid, and share how institutional systems of scientific research can incorporate equity analyses into their work to ensure solutions that are truly effective.

  5. Fire Modeling Institute 2011 Annual Report

    Science.gov (United States)

    Robin J. Innes

    2012-01-01

    The Fire Modeling Institute (FMI), a part of the Rocky Mountain Research Station, Fire, Fuel, and Smoke Science Program, provides a bridge between scientists and managers. The mission of FMI is to bring the best available science and technology developed throughout the research community to bear on fire-related management issues across the nation. Resource management...

  6. 7 CFR 91.18 - Financial interest of a scientist.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Financial interest of a scientist. 91.18 Section 91.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... SERVICES AND GENERAL INFORMATION Laboratory Service § 91.18 Financial interest of a scientist. No scientist...

  7. Pathways for impact: scientists' different perspectives on agricultural innovation

    NARCIS (Netherlands)

    Röling, N.G.

    2009-01-01

    This paper takes the viewpoint of a social scientist and looks at agricultural scientists' pathways for science impact. Awareness of these pathways is increasingly becoming part and parcel of the professionalism of the agricultural scientist, now that the pressure is on to mobilize smallholders and

  8. The United Nuclear Research Institute

    International Nuclear Information System (INIS)

    Kiss, D.

    1978-01-01

    The UNRI, the only common institute of the socialist countries was founded in 1956 in Dubna. The scientists of small countries have the opportunity to take part in fundamental research with very expensive devices which are usually not available for them. There are six research laboratories and one department in the UNRI namely: the theoretical physical laboratory; the laboratory of high energies - there is a synchrophasotron of 1a GeV there; the laboratory of nuclear problems - there is a synchrocyclotron of 680 MeV there; the laboratory of nuclear reactions with the cyclotron U-300 which can accelerate heavy ions; the neutronphysical laboratory with the impulse reactor IBM-30; the laboratory of computation and automatization with two big computers; the department of new acceleration methods. The main results obtained by Hungarian scientist in Dubna are described. (V.N.)

  9. APECS: A Network for Polar Early Career Scientist Professional Development

    Science.gov (United States)

    Enderlin, E. M.

    2014-12-01

    The Association of Polar Early Career Researchers (APECS) is an international and interdisciplinary organization for undergraduate and graduate students, postdoctoral researchers, early faculty members, educators and others with interests in the polar regions, alpine regions and the wider Cryosphere. APECS is a scientific, non-profit organization with free individual membership that aims to stimulate research collaborations and develop effective future leaders in polar research, education, and outreach. APECS grew out of the 4th International Polar Year (2007-08), which emphasized the need to stimulate and nurture the next generation of scientists in order to improve the understanding and communication of the polar regions and its global connections. The APECS organizational structure includes a Council and an elected Executive Committee that are supported by a Directorate. These positions are open to all individual members through a democratic process. The APECS Directorate is funded by the Norwegian Research Council, the University of Tromsø and the Norwegian Polar Institute and is hosted by the University of Tromsø. Early career scientists benefit from a range of activities hosted/organized by APECS. Every year, numerous activities are run with partner organizations and in conjunction with major polar conferences and meetings. In-person and online panels and workshops focus on a range of topics, from developing field skills to applying for a job after graduate school. Career development webinars are hosted each fall and topical research webinars are hosted throughout the year and archived online (http://www.apecs.is). The APECS website also contains abundant information on polar news, upcoming conferences and meetings, and job postings for early career scientists. To better respond to members' needs, APECS has national/regional committees that are linked to the international overarching organization. Many of these committees organize regional meetings or

  10. Tools You Can Use! E/PO Resources for Scientists and Faculty to Use and Contribute To: EarthSpace and the NASA SMD Scientist Speaker’s Bureau

    Science.gov (United States)

    Buxner, Sanlyn; Shupla, C.; CoBabe-Ammann, E.; Dalton, H.; Shipp, S.

    2013-10-01

    The Planetary Science Education and Public Outreach (E/PO) Forum has helped to create two tools that are designed to help scientists and higher-education science faculty make stronger connections with their audiences: EarthSpace, an education clearinghouse for the undergraduate classroom; and NASA SMD Scientist Speaker’s Bureau, an online portal to help bring science - and scientists - to the public. Are you looking for Earth and space science higher education resources and materials? Come explore EarthSpace, a searchable database of undergraduate classroom materials for faculty teaching Earth and space sciences at both the introductory and upper division levels! In addition to classroom materials, EarthSpace provides news and information about educational research, best practices, and funding opportunities. All materials submitted to EarthSpace are peer reviewed, ensuring that the quality of the EarthSpace materials is high and also providing important feedback to authors. Your submission is a reviewed publication! Learn more, search for resources, join the listserv, sign up to review materials, and submit your own at http://www.lpi.usra.edu/earthspace. Join the new NASA SMD Scientist Speaker’s Bureau, an online portal to connect scientists interested in getting involved in E/PO projects (e.g., giving public talks, classroom visits, and virtual connections) with audiences! The Scientist Speaker’s Bureau helps educators and institutions connect with NASA scientists who are interested in giving presentations, based upon the topic, logistics, and audience. The information input into the database will be used to help match scientists (you!) with the requests being placed by educators. All Earth and space scientists funded by NASA - and/or engaged in active research using NASA’s science - are invited to become part of the Scientist Speaker’s Bureau. Submit your information into the short form at http://www.lpi.usra.edu/education/speaker.

  11. Preparing Scientists to be Community Partners

    Science.gov (United States)

    Pandya, R. E.

    2012-12-01

    Many students, especially students from historically under-represented communities, leave science majors or avoid choosing them because scientific careers do not offer enough opportunity to contribute to their communities. Citizen science, or public participation in scientific research, may address these challenges. At its most collaborative, it means inviting communities to partner in every step of the scientific process from defining the research question to applying the results to community priorities. In addition to attracting and retaining students, this level of community engagement will help diversify science, ensure the use and usability of our science, help buttress public support of science, and encourage the application of scientific results to policy. It also offers opportunities to tackle scientific questions that can't be accomplished in other way and it is demonstrably effective at helping people learn scientific concepts and methods. In order to learn how to prepare scientists for this kind of intensive community collaboration, we examined several case studies, including a project on disease and public health in Africa and the professionally evaluated experience of two summer interns in Southern Louisiana. In these and other cases, we learned that scientific expertise in a discipline has to be accompanied by a reservoir of humility and respect for other ways of knowing, the ability to work collaboratively with a broad range of disciplines and people, patience and enough career stability to allow that patience, and a willingness to adapt research to a broader set of scientific and non-scientific priorities. To help students achieve this, we found that direct instruction in participatory methods, mentoring by community members and scientists with participatory experience, in-depth training on scientific ethics and communication, explicit articulation of the goal of working with communities, and ample opportunity for personal reflection were essential

  12. Institutional obligation

    International Nuclear Information System (INIS)

    Rowan, S.S.; Berwager, S.D.

    1988-01-01

    The institutional obligation is to act to meet primary responsibilities in the face of risks. There are risks involved in taking action, both of a quantifiable and unquantifiable nature. This paper explores weighing the risks, choosing approaches that balance primary obligations with broader ones, and presenting ethical philosophies upon which policies and strategies are based. Federal government organizations and utilities--and Bonneville Power Administration qualifies as both--have a variety of responsibilities to the public they serve. The common responsibility is that of service; for Bonneville the primary responsibility is to serve the energy related needs. It is this primary institutional obligation, as it relates to other responsibilities--and the resulting strategy for handling indoor air quality in Bonneville's new homes program--that this paper examines

  13. Engaging Scientists in NASA Education and Public Outreach: Tools for Scientist Engagement

    Science.gov (United States)

    Buxner, Sanlyn; Meinke, B. K.; Hsu, B.; Shupla, C.; Grier, J. A.; E/PO Community, SMD

    2014-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present tools and resources to support astronomers’ engagement in E/PO efforts. Among the tools designed specifically for scientists are a series of one-page E/PO-engagement Tips and Tricks guides, a sampler of electromagnetic-spectrum-related activities, and NASA SMD Scientist Speaker’s Bureau (http://www.lpi.usra.edu/education/speaker). Scientists can also locate resources for interacting with diverse audiences through a number of online clearinghouses, including: NASA Wavelength, a digital collection of peer-reviewed Earth and space science resources for educators of all levels (http://nasawavelength.org), and EarthSpace (http://www.lpi.usra.edu/earthspace), a community website where faculty can find and share teaching resources for the undergraduate Earth and space sciences classroom. Learn more about the opportunities to become involved in E/PO and to share your science with students, educators, and the general public at http://smdepo.org.

  14. Mathematics for natural scientists fundamentals and basics

    CERN Document Server

    Kantorovich, Lev

    2016-01-01

    This book, the first in a two part series, covers a course of mathematics tailored specifically for physics, engineering and chemistry students at the undergraduate level. It is unique in that it begins with logical concepts of mathematics first encountered at A-level and covers them in thorough detail, filling in the gaps in students' knowledge and reasoning. Then the book aids the leap between A-level and university-level mathematics, with complete proofs provided throughout and all complex mathematical concepts and techniques presented in a clear and transparent manner. Numerous examples and problems (with answers) are given for each section and, where appropriate, mathematical concepts are illustrated in a physics context. This text gives an invaluable foundation to students and a comprehensive aid to lecturers. Mathematics for Natural Scientists: Fundamentals and Basics is the first of two volumes. Advanced topics and their applications in physics are covered in the second volume.

  15. LAB building a home for scientists

    CERN Document Server

    Fishman, Mark C

    2017-01-01

    Laboratories are both monasteries and space stations, redolent of the great ideas of generations past and of technologies to propel the future. Yet standard lab design has changed only little over recent years. Here Mark Fishman describes how to build labs as homes for scientists, to accommodate not just their fancy tools, but also their personalities. This richly illustrated book explores the roles of labs through history, from the alchemists of the Middle Ages to the chemists of the 19th and 20th centuries, and to the geneticists and structural biologists of today, and then turns to the special features of the laboratories Fishman helped to design in Cambridge, Shanghai, and Basel. Anyone who works in, or plans to build a lab, will enjoy this book, which will encourage them to think about how this special environment drives or impedes their important work.

  16. Moments in the Life of a Scientist

    Science.gov (United States)

    Rossi, Bruno

    1990-08-01

    Bruno Rossi has long been an influential figure in diverse areas of physics and in this volume he presents a fascinating account of his life and work as an experimental physicist. He discusses his scientific contributions, from experiments that played a major role in establishing the nature and properties of cosmic rays to those establishing the existence of a solar wind and others that laid the foundations of X-ray astronomy. Rossi provides close insight into his actual experiences as a scientist and the motivations that gave direction to his research, and he recounts the beginning of very significant stages in high energy physics and space research. He writes evocatively of the many places where he worked--of Florence, Arcetri, Padua, and Venice, of the mountains of Colorado and the deserts of New Mexico. His narrative also provides insight into the life of a Jewish family in fascist Italy. The text is accompanied by photographs taken throughout Rossi's career.

  17. Nicholson Medal Lecture: Scientists and Totalitarian Societies

    Science.gov (United States)

    Fang, Li-Zhi

    1997-04-01

    In order to call for support for his policy in China from the scientific community outside of China, Li Peng, China's premier today and at the time of Tiananmen massacre in 1989, published an editorial of ``Science" magazine (July 5, 1996) titled ``Why China needs science ... and partners." This editorial brought a serious problem, which is originally faced by scientists in a totalitarian society, upon the scientific community in free societies outside. It is well known that the current attitude of the Chinese government toward science is what it was during the years of Mao and the Soviet Union: science is limited to provide instruments useful to the rulers, but any degree of freedom, such as to challenge ideas, required by science to change the totalitarian regime itself, is suppressed. Thus, the problem facing us is: how to help your colleagues and promote science in a totalitarian society, without becoming a partner of the injustices of that regime.

  18. Microgravity sciences application visiting scientist program

    Science.gov (United States)

    Glicksman, Martin; Vanalstine, James

    1995-01-01

    Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.

  19. Ozone Gardens for the Citizen Scientist

    Science.gov (United States)

    Pippin, Margaret; Reilly, Gay; Rodjom, Abbey; Malick, Emily

    2016-01-01

    NASA Langley partnered with the Virginia Living Museum and two schools to create ozone bio-indicator gardens for citizen scientists of all ages. The garden at the Marshall Learning Center is part of a community vegetable garden designed to teach young children where food comes from and pollution in their area, since most of the children have asthma. The Mt. Carmel garden is located at a K-8 school. Different ozone sensitive and ozone tolerant species are growing and being monitored for leaf injury. In addition, CairClip ozone monitors were placed in the gardens and data are compared to ozone levels at the NASA Langley Chemistry and Physics Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, VA. Leaf observations and plant measurements are made two to three times a week throughout the growing season.

  20. Quark Matter 2017: Young Scientist Support

    Energy Technology Data Exchange (ETDEWEB)

    Evdokimov, Olga [University of Illinois at Chicago

    2017-07-31

    Quark Matter conference series are amongst the major scientific events for the Relativistic Heavy Ion community. With over 30 year long history, the meetings are held about every 1½ years to showcase the progress made in theoretical and experimental studies of nuclear matter under extreme conditions. The 26th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions (Quark Matter 2017) was held at the Hyatt Regency Hotel in downtown Chicago from Sunday, February 5th through Saturday, February 11th, 2017. The conference featured about 180 plenary and parallel presentations of the most significant recent results in the field, a poster session for additional presentations, and an evening public lecture. Following the tradition of previous Quark Matter meetings, the first day of the conference was dedicated entirely to a special program for young scientists (graduate students and postdoctoral researchers). This grant will provided financial support for 235 young physicists facilitating their attendance of the conference.

  1. Strategic career planning for physician-scientists.

    Science.gov (United States)

    Shimaoka, Motomu

    2015-05-01

    Building a successful professional career in the physician-scientist realm is rewarding but challenging, especially in the dynamic and competitive environment of today's modern society. This educational review aims to provide readers with five important career development lessons drawn from the business and social science literatures. Lessons 1-3 describe career strategy, with a focus on promoting one's strengths while minimizing fixing one's weaknesses (Lesson 1); effective time management in the pursuit of long-term goals (Lesson 2); and the intellectual flexibility to abandon/modify previously made decisions while embracing emerging opportunities (Lesson 3). Lesson 4 explains how to maximize the alternative benefits of English-language fluency (i.e., functions such as signaling and cognition-enhancing capabilities). Finally, Lesson 5 discusses how to enjoy happiness and stay motivated in a harsh, zero-sum game society.

  2. Linear functional analysis for scientists and engineers

    CERN Document Server

    Limaye, Balmohan V

    2016-01-01

    This book provides a concise and meticulous introduction to functional analysis. Since the topic draws heavily on the interplay between the algebraic structure of a linear space and the distance structure of a metric space, functional analysis is increasingly gaining the attention of not only mathematicians but also scientists and engineers. The purpose of the text is to present the basic aspects of functional analysis to this varied audience, keeping in mind the considerations of applicability. A novelty of this book is the inclusion of a result by Zabreiko, which states that every countably subadditive seminorm on a Banach space is continuous. Several major theorems in functional analysis are easy consequences of this result. The entire book can be used as a textbook for an introductory course in functional analysis without having to make any specific selection from the topics presented here. Basic notions in the setting of a metric space are defined in terms of sequences. These include total boundedness, c...

  3. Modern physics for scientists and engineers

    CERN Document Server

    Morrison, John C

    2015-01-01

    The second edition of Modern Physics for Scientists and Engineers is intended for a first course in modern physics. Beginning with a brief and focused account of the historical events leading to the formulation of modern quantum theory, later chapters delve into the underlying physics. Streamlined content, chapters on semiconductors, Dirac equation and quantum field theory, as well as a robust pedagogy and ancillary package, including an accompanying website with computer applets, assist students in learning the essential material. The applets provide a realistic description of the energy levels and wave functions of electrons in atoms and crystals. The Hartree-Fock and ABINIT applets are valuable tools for studying the properties of atoms and semiconductors.

  4. Ivan Yakovych Gorbachevsky – Scientist, Patriot, Citizen

    Directory of Open Access Journals (Sweden)

    V. M. Danilova

    2014-10-01

    Full Text Available The article presents the facts about life and research activity of Ivan Ya. Gorbachevsky (1854-1942, the prominent scientist, Ukrainian by origin, doctor of medical sciences, professor, dean of the medical faculty and the rector of Charles University in Prague, member of the health board of the Czech Kingdom, a member of the Supreme Council of Health of Austria-Hungary in Vienna, a lifelong member of the House of Lords of the Austrian Parliament, first health minister of Austria-Hungary, rector of the Ukrainian Free University in Prague, professor of chemistry at the Padebradsk Economic Academy and the Ukrainian Pedagogical Dragomanov University, AUAS member in 1925, member of the Shevchenko Scientific Society. His research works were devoted to digestion of proteins, public and food hygiene. He was the first who synthesized uric acid (1882 and discovered xanthine oxidase (1889.

  5. Climate Change: On Scientists and Advocacy

    Science.gov (United States)

    Schmidt, Gavin A.

    2014-01-01

    Last year, I asked a crowd of a few hundred geoscientists from around the world what positions related to climate science and policy they would be comfortable publicly advocating. I presented a list of recommendations that included increased research funding, greater resources for education, and specific emission reduction technologies. In almost every case, a majority of the audience felt comfortable arguing for them. The only clear exceptions were related to geo-engineering research and nuclear power. I had queried the researchers because the relationship between science and advocacy is marked by many assumptions and little clarity. This despite the fact that the basic question of how scientists can be responsible advocates on issues related to their expertise has been discussed for decades most notably in the case of climate change by the late Stephen Schneider.

  6. Business planning for scientists and engineers

    Energy Technology Data Exchange (ETDEWEB)

    Servo, J.C.; Hauler, P.D.

    1992-03-01

    Business Planning for Scientists and Engineers is a combination text/workbook intended for use by individuals and firms having received Phase II SBIR funding (Small Business Innovation Research). It is used to best advantage in combination with other aspects of the Commercialization Assistance Project developed by Dawnbreaker for the US Department of Energy. Although there are many books on the market which indicate the desired contents of a business plan, there are none which clearly indicate how to find the needed information. This book focuses on the how of business planning: how to find the needed information; how to keep yourself honest about the market potential; how to develop the plan; how to sell and use the plan.

  7. The Maturation of a Scientist: An Autobiography.

    Science.gov (United States)

    Roizman, Bernard

    2015-11-01

    I was shaped by World War II, years of near starvation as a war refugee, postwar chaos, life in several countries, and relative affluence in later life. The truth is that as I was growing up I wanted to be a writer. My aspirations came to an end when, in order to speed up my graduation from college, I took courses in microbiology. It was my second love at first sight-that of my wife preceded it. I view science as an opportunity to discover the designs in the mosaics of life. What initiates my search of discovery is an observation that makes no sense unless there exists a novel design. Once the design is revealed there is little interest in filling all the gaps. I was fortunate to understand that what lasts are not the scientific reports but rather the generations of scientists whose education I may have influenced.

  8. Quantum Genetic Algorithms for Computer Scientists

    Directory of Open Access Journals (Sweden)

    Rafael Lahoz-Beltra

    2016-10-01

    Full Text Available Genetic algorithms (GAs are a class of evolutionary algorithms inspired by Darwinian natural selection. They are popular heuristic optimisation methods based on simulated genetic mechanisms, i.e., mutation, crossover, etc. and population dynamical processes such as reproduction, selection, etc. Over the last decade, the possibility to emulate a quantum computer (a computer using quantum-mechanical phenomena to perform operations on data has led to a new class of GAs known as “Quantum Genetic Algorithms” (QGAs. In this review, we present a discussion, future potential, pros and cons of this new class of GAs. The review will be oriented towards computer scientists interested in QGAs “avoiding” the possible difficulties of quantum-mechanical phenomena.

  9. TUDOR LUPAŞCU – A BRILLIANT SCIENTIST AND SKILFULL MANAGER

    Directory of Open Access Journals (Sweden)

    Gheorghe Duca

    2010-06-01

    Full Text Available The Moldovan chemical community has recently honoured Professor Tudor LUPAŞCU on the occasion of his 60’s anniversary. Known as brilliant scientist and skilful manager, Professor LUPASCU is now the director of the Institute of Chemistry and one of the founders of the “Chemistry Journal of Moldova”, being the Managing Editor from the very beginning of its activity.

  10. Physician-scientist: Attitude of Graduates of Clinical Medicine Graduate Schools

    Directory of Open Access Journals (Sweden)

    Ken N. Kuo

    2008-07-01

    Conclusion: The physician-scientist has a unique ability to bridge the gap between bench/laboratory and bedside. In a changing socioeconomic climate as well as cultural evolution in medical practice, external pressures are unavoidable. The support of research from institutions or government is very important, as are financial resources, space and equipment. For those physicians who are going into research, a special training of strict methodology in research will obviously become necessary.

  11. Hans Viertler: professor, cientista, gestor e amigo Hans Viertler: professor, scientist, manager and friend

    Directory of Open Access Journals (Sweden)

    Jailson B. de Andrade

    2010-01-01

    Full Text Available Hans Viertler, a visionary, an example of institutional commitment, a great scientist, excellent and dedicated teacher, highly respected as a professional and admired for his leadership, wisdom, generosity, good humor, professional capacity, and balance. A life dedicated to the consolidation of Chemistry in Brazil, the teaching chemistry, the IQ-USP, the Brazilian Chemical Society (SBQ and the CRQ-fourth region. Hans, a friend with a heart bigger than himself!

  12. Communicating Ecology Through Art: What Scientists Think

    Directory of Open Access Journals (Sweden)

    David J. Curtis

    2012-06-01

    Full Text Available Many environmental issues facing society demand considerable public investment to reverse. However, this investment will only arise if the general community is supportive, and community support is only likely if the issues are widely understood. Scientists often find it difficult to communicate with the general public. The role of the visual and performing arts is often overlooked in this regard, yet the arts have long communicated issues, influenced and educated people, and challenged dominant paradigms. To assess the response of professional ecologists to the role of the arts in communicating science, a series of constructed performances and exhibitions was integrated into the program of a national ecological conference over five days. At the conclusion of the conference, responses were sought from the assembled scientists and research students toward using the arts for expanding audiences to ecological science. Over half the delegates said that elements of the arts program provided a conducive atmosphere for receiving information, encouraged them to reflect on alternative ways to communicate science, and persuaded them that the arts have a role in helping people understand complex scientific concepts. A sizeable minority of delegates (24% said they would consider incorporating the arts in their extension or outreach efforts. Incorporating music, theatre, and dance into a scientific conference can have many effects on participants and audiences. The arts can synthesize and convey complex scientific information, promote new ways of looking at issues, touch people's emotions, and create a celebratory atmosphere, as was evident in this case study. In like manner, the visual and performing arts should be harnessed to help extend the increasingly unpalatable and urgent messages of global climate change science to a lay audience worldwide.

  13. An example of woman scientist in France

    Science.gov (United States)

    Cazenave, A.

    2002-12-01

    Although the presence of women in sciences has been increasing in the past few decades in Europe, it remains incredibly low at the top levels. Recent statistics from the European Commission indicate that now women represent 50 per cent of first degree students in many countries. However, the proportion of women at each stage of the scientific career decreases almost linearly, reaching less than 10 per cent at the highest level jobs. From my own experience, I don't think that this results from sexism nor discrimination. Rather, I think that this is a result of complex cultural factors making women subconsciously persuaded that top level jobs are destined to male scientists only. Many women scientists drop the idea of playing a role at high-level research, considering it is a way of exerting power (a matter reserved to men). Others give up the possibility of combining childcare and high level commitments in research. And too many (married women) still find only natural to sacrifice their own scientific ambitions to the benefit of their spouse's career. In this poster, I briefly present my personal experience. I chose to prioritize scientific productivity and expertise versus hierarchical responsibilities. Besides I tried to keep a satisfactory balance between family demand and research involvement. This was indeed facilitated by the French system, which provides substantial support to women's work (nurseries, recreation centers during school holidays, etc.). To my point of view, the most promising way of increasing the number of women at top levels in research is through education and mentality evolution

  14. Building the Next Generation of Earth Scientists: the Deep Carbon Observatory Early Career Scientist Workshops

    Science.gov (United States)

    Pratt, K.; Fellowes, J.; Giovannelli, D.; Stagno, V.

    2016-12-01

    Building a network of collaborators and colleagues is a key professional development activity for early career scientists (ECS) dealing with a challenging job market. At large conferences, young scientists often focus on interacting with senior researchers, competing for a small number of positions in leading laboratories. However, building a strong, international network amongst their peers in related disciplines is often as valuable in the long run. The Deep Carbon Observatory (DCO) began funding a series of workshops in 2014 designed to connect early career researchers within its extensive network of multidisciplinary scientists. The workshops, by design, are by and for early career scientists, thus removing any element of competition and focusing on peer-to-peer networking, collaboration, and creativity. The successful workshops, organized by committees of early career deep carbon scientists, have nucleated a lively community of like-minded individuals from around the world. Indeed, the organizers themselves often benefit greatly from the leadership experience of pulling together an international workshop on budget and on deadline. We have found that a combination of presentations from all participants in classroom sessions, professional development training such as communication and data management, and field-based relationship building and networking is a recipe for success. Small groups within the DCO ECS network have formed; publishing papers together, forging new research directions, and planning novel and ambitious field campaigns. Many DCO ECS also have come together to convene sessions at major international conferences, including the AGU Fall Meeting. Most of all, there is a broad sense of camaraderie and accessibility within the DCO ECS Community, providing the foundation for a career in the new, international, and interdisciplinary field of deep carbon science.

  15. One Model for Scientist Involvement in K-12 Education: Teachers Experiencing Antarctica and the Arctic Program

    Science.gov (United States)

    Meese, D.; Shipp, S. S.; Porter, M.; Bruccoli, A.

    2002-12-01

    Scientists involved in the NSF-funded Teachers Experiencing Antarctica and the Arctic (TEA) Program integrate a K-12 science teacher into their polar field project. Objectives of the program include: having the science teacher immersed in the experience of research; 2) through the teacher, leveraging the research experience to better inform teaching practices; and 3) sharing the experience with the broader educational and general community. The scientist - or qualified team member - stays involved with the teacher throughout the program as a mentor. Preparation of the teacher involves a week-long orientation presented by the TEA Program, and a two week pre-expedition visit at the scientist's institution. Orientation acquaints teachers with program expectations, logistical information, and an overview of polar science. While at the scientist's institution, the teacher meets the team, prepares for the field, and strengthens content knowledge. In the field, the teacher is a team member and educational liaison, responding to questions from students and colleagues by e-mail, and posting electronic journals describing the research experience. Upon return, the teachers work closely with colleagues to bring the experience of research into classrooms through creation of activities, design of longer-term student investigations, and presentations at scientific, educational, and community meetings. Interaction with the scientific team continues with a visit by the scientist to the teacher's classrooms, collaboration on presentations at scientific meetings, and consultation on classroom activities. In some cases, the teacher may participate in future expeditions. The involvement by scientists in mentor relationships, such as those of the TEA Program, is critical to improving science education. Many teachers of science have not had the opportunity to participate in field research, which offers valuable first-hand experience about the nature of science, as well as about specific

  16. Data Publication: A Partnership between Scientists, Data Managers and Librarians

    Science.gov (United States)

    Raymond, L.; Chandler, C.; Lowry, R.; Urban, E.; Moncoiffe, G.; Pissierssens, P.; Norton, C.; Miller, H.

    2012-04-01

    Current literature on the topic of data publication suggests that success is best achieved when there is a partnership between scientists, data managers, and librarians. The Marine Biological Laboratory/Woods Hole Oceanographic Institution (MBLWHOI) Library and the Biological and Chemical Oceanography Data Management Office (BCO-DMO) have developed tools and processes to automate the ingestion of metadata from BCO-DMO for deposit with datasets into the Institutional Repository (IR) Woods Hole Open Access Server (WHOAS). The system also incorporates functionality for BCO-DMO to request a Digital Object Identifier (DOI) from the Library. This partnership allows the Library to work with a trusted data repository to ensure high quality data while the data repository utilizes library services and is assured of a permanent archive of the copy of the data extracted from the repository database. The assignment of persistent identifiers enables accurate data citation. The Library can assign a DOI to appropriate datasets deposited in WHOAS. A primary activity is working with authors to deposit datasets associated with published articles. The DOI would ideally be assigned before submission and be included in the published paper so readers can link directly to the dataset, but DOIs are also being assigned to datasets related to articles after publication. WHOAS metadata records link the article to the datasets and the datasets to the article. The assignment of DOIs has enabled another important collaboration with Elsevier, publisher of educational and professional science journals. Elsevier can now link from articles in the Science Direct database to the datasets available from WHOAS that are related to that article. The data associated with the article are freely available from WHOAS and accompanied by a Dublin Core metadata record. In addition, the Library has worked with researchers to deposit datasets in WHOAS that are not appropriate for national, international, or domain

  17. A Tale of Two scientists and their Involvement in Education & Outreach

    Science.gov (United States)

    McDonnell, J.

    2004-12-01

    Many scientists, when faced with developing an education and outreach plan for their research proposals, are unclear on what kinds of impacts they can have on broader non scientist audiences. Many scientists feel their only options are to develop a website or invite a teacher to get involved in their sampling or research cruises. Scientists, who are constrained by time and resources, are not aware of the range of education and outreach options available to them and of the great value their involvement can bring to the public. In an recent survey at the National Science Foundation sponsored ORION conference (January 2004), respondents stated that the greatest public benefits to having scientists involved in public education are (1) that they can present the benefits and relevance of research (26%), (2) focus awareness on environmental issues (26%), (3) serve as models for teachers and motivators for children (25%) and (4) increase public understanding, awareness and appreciation of science (about 22%). As a member of the Mid-Atlantic Center for Ocean Sciences Education Excellence (MACOSEE), the Institute of Marine & Coastal Sciences (IMCS) at Rutgers University is dedicated to helping scientists and educators realize the benefits of working together to advance ocean discovery and make known the vital role of the ocean in our lives. A website called "Scientist Connection" (www.macosee.net) was developed to help busy scientists choose a role in education and outreach that will make the most of their talent and time. The goal of the web site is to help scientists produce a worthwhile education project that complements and enriches their research. In this session, the author will present two case studies that demonstrate very different but effective approaches to scientist's involvement in education and outreach projects. In the first case, we will chronicle how a team of biologists and oceanographers in the Rutgers University, Coastal Ocean Observation Laboratory (or

  18. Institutional ethnography

    DEFF Research Database (Denmark)

    Lund, Rebecca; Tienari, Janne

    2016-01-01

    The study of M&As is dominated by positivist and functionalist world views and the use of quantitative methods. Although extant research also uses qualitative and mixed methods, it can be criticized for viewing its subject matter through an abstract and external lens. The researcher is placed in ......, and point to some of the problems in M&A studies identified through this lens. Finally, we argue why institutional ethnography, in comparison with other methods of inquiry, is particularly fruitful in the study of mergers and acquisitions....

  19. Why and how I became a scientist

    Indian Academy of Sciences (India)

    Lawrence

    In school, mathematics and science were my favourite sub- jects and it was my ... days the atmosphere in the Bose institute was quite informal. My child got used ... working place although it was at one end of the teaching labora- tory. In 1967, I ...

  20. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... is maintained by the NEI Office of Science Communications, Public Liaison, and Education. Technical questions about this website can be addressed to the NEI Website Manager . Department of Health and Human Services | The National Institutes of Health | USA.gov ...

  1. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... website is maintained by the NEI Office of Science Communications, Public Liaison, and Education. Technical questions about this website can be addressed to the NEI Website Manager . Department of Health and Human Services | The National Institutes of Health | USA.gov NIH…Turning Discovery Into Health ®

  2. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... visual function, preservation of sight, and the special health problems and requirements of the blind.” News & Events Events ... maintained by the NEI Office of Science Communications, Public Liaison, and Education. ... of Health and Human Services | The National Institutes of Health | ...

  3. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Us Visiting the NIH Campus Mission Statement As part of the federal government’s National Institutes of Health ( ... You Know? An eagle’s eyesight is about five times sharper than a human’s. That means what you ...

  4. Scientist Spotlight Homework Assignments Shift Students’ Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class

    Science.gov (United States)

    Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments (“Scientist Spotlights”) that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. PMID:27587856

  5. Drought Information Supported by Citizen Scientists (DISCS)

    Science.gov (United States)

    Molthan, A.; Maskey, M.; Hain, C.; Meyer, P.; Nair, U. S.; Handyside, C. T.; White, K.; Amin, M.

    2017-12-01

    Each year, drought impacts various regions of the United States on time scales of weeks, months, seasons, or years, which in turn leads to a need to document these impacts and inform key decisions on land management, use of water resources, and disaster response. Mapping impacts allows decision-makers to understand potential damage to agriculture and loss of production, to communicate and document drought impacts on crop yields, and to inform water management decisions. Current efforts to collect this information includes parsing of media reports, collaborations with local extension offices, and partnerships with the National Weather Service cooperative observer network. As part of a NASA Citizen Science for Earth Systems proposal award, a research and applications team from Marshall Space Flight Center, the University of Alabama in Huntsville, and collaborators within the NWS have developed a prototype smartphone application focused on the collection of citizen science observations of crop health and drought impacts, along with development of innovative low-cost soil moisture sensors to supplement subjective assessments of local soil moisture conditions. Observations provided by citizen scientists include crop type and health, phase of growth, soil moisture conditions, irrigation status, along with an optional photo and comment to provide visual confirmation and other details. In exchange for their participation, users of the app also have access to unique land surface modeling data sets produced at MSFC such as the NASA Land Information System soil moisture and climatology/percentile products from the Short-term Prediction Research and Transition (SPoRT) Center, assessments of vegetation health and stress from NASA and NOAA remote sensing platforms (e.g. MODIS/VIIRS), outputs from a crop stress model developed at the University of Alabama in Huntsville, recent rainfall estimates from the NOAA/NWS network of ground-based weather radars, and other observations made

  6. Expanding Horizons Teachers and Scientists Collabortaing

    Science.gov (United States)

    Teres, A.

    2017-12-01

    As a participant in PolarTrec, I joined the crew of NASA's Operation IceBridge in Greenland for the month of April 2017. As an active member of the team I learned the ins and outs of field research, and I learned about the work done by Operation IceBridge. As a result of participating in this project, I grew as a teacher and a scientist. I took my experiences and shared them with my classroom through stories, pictures, videos, and my lesson plans. By seeing the Artic through my experiences the class became enraptured by the subject matter. I was no longer talking about a distant or abstract place instead I was talking about an experience. This enabled my students to take an active part in the discussion and to feel like the cryosphere was part of their life too. Not only did I learn about the science but I leaned about logistics of field research. I reached out to my community and local communications outlets before and after my trip to Greenland to familiarize whomever I could connect with about my experience. I contacted a local news station and they did an interview with me about my trip. I emailed a local newspaper about my trip and was interviewed before I left and after I returned. Due to the newscast, I was contacted by my college sorority and was interviewed for the sorority's national newsletter which is distributed throughout the United States. Each connection helped to spread the word. I'm continuing to spread the word by volunteering to present my experience to schools throughout Broward County in Florida. I've already connected with teachers and schools to set up my presentation in the calendar. Having these types of experiences is critical for teachers to continue their growth within the scientific field and education. Effective teachers are those not constrained by the walls of their classroom. Having the opportunity to work with scientists and do research in the field has expanded my horizons. The people I met I am still in contact with and I am

  7. Institute news

    Science.gov (United States)

    1999-11-01

    Joining the team A new member of staff has recently joined the Institute of Physics Education Department (Schools and Colleges) team. (Dr) Steven Chapman will have managerial responsibility for physics education issues in the 11 - 16 age range, particularly on the policy side. He will work closely with Mary Wood, who spends much of her time out and about doing the practical things to support physics education pre-16. Catherine Wilson will be spending more of her time working to support the Post-16 Physics Initiative but retains overall responsibility for the department. Steven graduated in Physics and Astronomy and then went on to do his doctorate at Sussex University. He stayed in the research field for a while, including a period at NPL. Then, having decided to train as a teacher, he taught for the last five years, most recently at a brand new school in Sutton where he was Head of Physics. Physics update Dates for `Physics Update' courses in 2000, intended for practising science teachers, are as follows: 1 - 3 April: Malvern College 9 - 10 June: Stirling University 8 - 10 July: York University 8 - 10 December: Oxford University The deadline for applications for the course to be held on 11 - 13 December 1999 at the School of Physics, Exeter University, is 12 November, so any late enquiries should be sent to Leila Solomon at The Institute of Physics, 76 Portland Place, London W1N 3DH (tel: 020 7470 4821) right away. Name that teacher! Late nominations are still welcome for the Teachers of Physics/Teachers of Primary Science awards for the year 2000. Closing date for nominations is `the last week in November'. Further details can be obtained from Catherine Wilson or Barbara Hill in the Institute's Education Department. Forward and back! The Education Group's one-day meeting on 13 November is accepting bookings until almost the last minute, so don't delay your application! The day is entitled `Post-16 physics: Looking forward, learning from the past' and it aims to

  8. Using partnerships with scientists to enhance teacher capacity to address the NGSS

    Science.gov (United States)

    Pavelsky, T.; Haine, D. B.; Drostin, M.

    2013-12-01

    Increasingly, scientists are seeking outreach experts to assist with the education and outreach components of their research grants. These experts have the skills and expertise to assist with translating scientific research into lessons and activities that are aligned to the Next Generation Science Standards (NGSS) as well as state standards, are STEM-focused and that address the realities of the K-12 science classroom. Since 2007, the Institute for the Environment (IE) at the University of North Carolina at Chapel Hill has been conducting teacher professional development and high school student science enrichment programs to promote climate literacy. Partnering with scientists to deepen content knowledge and promote engagement with technology and real data has been a successful strategy for cultivating increased climate literacy among teachers and students. In this session, we will share strategies for effectively engaging scientists in K-12 educational activities by providing specific examples of the various ways in which scientists can be integrated into programming and their research translated into relevant classroom activities. Engaging scientists and translating their research into classroom activities is an approach that becomes even more relevant with the advent of the NGSS. The NGSS's Disciplinary Core Ideas (DCIs) that encompass climate literacy can be addressed by partnering with scientists to provide teachers with current content knowledge and technological tools needed to promote integration of relevant science and engineering practices and cross-cutting themes. Here we highlight a successful partnership in which IE science educators collaborated with with a faculty member to develop a lesson for North Carolina teachers introducing them to new research on satellite remote sensing of the water cycle, while also promoting student engagement with local data. The resulting lesson was featured during a two-day, IE-led teacher workshop for 21 North Carolina

  9. Educating the surgeon-scientist: A qualitative study evaluating challenges and barriers toward becoming an academically successful surgeon.

    Science.gov (United States)

    Kodadek, Lisa M; Kapadia, Muneera R; Changoor, Navin R; Dunn, Kelli Bullard; Are, Chandrakanth; Greenberg, Jacob A; Minter, Rebecca M; Pawlik, Timothy M; Haider, Adil H

    2016-12-01

    The advancement of surgical science relies on educating new generations of surgeon-scientists. Career development awards (K Awards) from the National Institutes of Health, often considered a marker of early academic success, are one way physician-scientists may foster skills through a mentored research experience. This study aimed to develop a conceptual framework to understand institutional support and other factors leading to a K Award. A national, qualitative study was conducted with academic surgeons. Participants included 15 K Awardees and 12 surgery department Chairs. Purposive sampling ensured a diverse range of experiences. Semistructured, in-depth telephone interviews were conducted. Interviews were audio recorded and transcribed verbatim, and 2 reviewers analyzed the transcripts using Grounded Theory methodology. Participants described individual and institutional factors contributing to success. K Awardees cited personal factors such as perseverance and team leadership skills. Chairs described the K Awardee as an institutional "investment" requiring protected time for research, financial support, and mentorship. Both K Awardees and Chairs identified a number of challenges unique to the surgeon-scientist, including financial strains and competing clinical demands. Institutional support for surgeons pursuing K Awards is a complex investment with significant initial costs to the department. Chairs act as stewards of institutional resources and support those surgeon-scientists most likely to be successful. Although the K Award pathway is one way to develop surgeon-scientists, financial burdens and challenges may limit its usefulness. These findings, however, may better prepare young surgeons to develop career plans and identify new mechanisms for academic productivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Young Earth System Scientists (YESS) Community

    Science.gov (United States)

    Reed, K. A.; Langendijk, G.; Bahar, F.; Huang-Lachmann, J. T.; Osman, M.; Mirsafa, M.; Sonntag, S.

    2017-12-01

    The Young Earth System Scientists (YESS) community is compiled of early career researchers (including students) coming from a range of scientific backgrounds, spanning both natural and social sciences. YESS unifies young researchers in an influential network to give them a collective voice and leverage within the geosciences community, while supporting career development. The YESS community has used its powerful network to provide a unified perspective on the future of Earth system science (Rauser et al. 2017), to be involved in the organization of international conferences, and to engage with existing international structures that coordinate science. Since its founding in Germany in 2010, the YESS community has grown extensively across the globe, with currently almost 1000 members from over 80 countries, and has become truly interdisciplinary. Recently, the organization has carried elections for Regional Representatives and the Executive Committee as part of its self-sustained governance structure. YESS is ready to continue pioneering crucial areas of research which provide solutions to benefit society for the long-term advancement of Earth system science.

  11. Collaboration and Gender Equity among Academic Scientists

    Directory of Open Access Journals (Sweden)

    Joya Misra

    2017-03-01

    Full Text Available Universities were established as hierarchical bureaucracies that reward individual attainment in evaluating success. Yet collaboration is crucial both to 21st century science and, we argue, to advancing equity for women academic scientists. We draw from research on gender equity and on collaboration in higher education, and report on data collected on one campus. Sixteen focus group meetings were held with 85 faculty members from STEM departments, separated by faculty rank and gender (i.e., assistant professor men, full professor women. Participants were asked structured questions about the role of collaboration in research, career development, and departmental decision-making. Inductive analyses of focus group data led to the development of a theoretical model in which resources, recognition, and relationships create conditions under which collaboration is likely to produce more gender equitable outcomes for STEM faculty. Ensuring women faculty have equal access to resources is central to safeguarding their success; relationships, including mutual mentoring, inclusion and collegiality, facilitate women’s careers in academia; and recognition of collaborative work bolsters women’s professional advancement. We further propose that gender equity will be stronger in STEM where resources, relationships, and recognition intersect—having multiplicative rather than additive effects.

  12. The first scientist Anaximander and his legacy

    CERN Document Server

    Rovelli, Carlo

    2011-01-01

    Carlo Rovelli, a leading theoretical physicist, uses the figure of Anaximander as the starting point for an examination of scientific thinking itself: its limits, its strengths, its benefits to humankind, and its controversial relationship with religion. Anaximander, the sixth-century BC Greek philosopher, is often called the first scientist because he was the first to explain that order in the world was due to natural forces, not supernatural ones. He is the first person known to rnunderstand that the Earth floats in space; to believe that the sun, the moon, and the stars rotate around it--seven centuries before Ptolemy; to argue that all animals came from the sea and evolved; and to posit that universal laws rncontrol all change in the world. Anaximander taught Pythagoras, who would build on Anaximander's scientific theories by applying mathematical laws to natural phenomena. rnrnIn the award-winning Anaximander and the Birth of Scientific Thought, Rovelli restores Anaximander to his place in the history of...

  13. Citizen scientist lepidopterists exposed to potential carcinogens.

    Science.gov (United States)

    Vainio, Petri J; Vahlberg, Tero; Liesivuori, Jyrki

    2016-05-01

    Lepidopterists use substantial volumes of solvents, such as chloroform, 1,1,2,2-tetrachloroethane and xylene, in their traps when collecting faunistic and phenological data. A majority of them are citizen scientists and thus in part not identified by occupational healthcare as being at risk due to solvent handling. We surveyed the extent of solvent use, the frequency and extent of potential exposure and the safety precautions taken in trapping and catch handling by Finnish lepidopterists. Chloroform and 1,1,2,2-tetrachloroethane were the most frequently used anaesthetics. Potential for exposure prevailed during trap maintenance and exploration and catch sorting. Adequate protection against vapours or spills was worn by 17% during trap exploration. Subjects completed a median of 100 trap explorations per season. Dermal or mucosal spills were recorded at a median rate of one spill per ten (chloroform) to 20 (1,1,2,2-tetrachloroethane and xylene) trap explorations. Median annual cumulative durations of 8 and 20 h of exposure to chloroform and 1,1,2,2-tetrachloroethane at levels above odour detection threshold were reported. Subjective adverse findings possibly related solvents had been noticed by 24 (9.8%) lepidopterists. All the events had been mild to moderate. No factor predicting unsafe procedures or adverse reactions was recorded despite thorough statistical testing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Stephen C. Woods: a precocious scientist.

    Science.gov (United States)

    Smith, Gerard P

    2011-04-18

    To investigate the early scientific development of Steve Woods, I reviewed his research during the first decade after he received his doctoral degree in 1970. The main parts of his research program were conditioned insulin secretion and hypoglycemia, Pavlovian conditioning of insulin secretion before a scheduled access to food, and basal insulin as a negative-feedback signal from fat mass to the brain. These topics were pursued with experimental ingenuity; the resulting publications were interesting, clear, and rhetorically effective. Although the theoretical framework for his experiments with insulin was homeostatic, by the end of the decade he suggested that classic negative-feedback homeostasis needed to be revised to include learning acquired by lifestyle. Thus, Woods functioned as a mature scientist from the beginning of his research-he was very precocious. This precocity also characterized his teaching and mentoring as recalled by two of his students during that time, Joseph Vasselli and Paul Kulkosky. The most unusual and exemplary aspect of his precocity is that the outstanding performance of his first decade was maintained during the subsequent 30years. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Scientists' views about attribution of global warming.

    Science.gov (United States)

    Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo

    2014-08-19

    Results are presented from a survey held among 1868 scientists studying various aspects of climate change, including physical climate, climate impacts, and mitigation. The survey was unique in its size, broadness and level of detail. Consistent with other research, we found that, as the level of expertise in climate science grew, so too did the level of agreement on anthropogenic causation. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), explicitly agreed with anthropogenic greenhouse gases (GHGs) being the dominant driver of recent global warming. The respondents' quantitative estimate of the GHG contribution appeared to strongly depend on their judgment or knowledge of the cooling effect of aerosols. The phrasing of the IPCC attribution statement in its fourth assessment report (AR4)-providing a lower limit for the isolated GHG contribution-may have led to an underestimation of the GHG influence on recent warming. The phrasing was improved in AR5. We also report on the respondents' views on other factors contributing to global warming; of these Land Use and Land Cover Change (LULCC) was considered the most important. Respondents who characterized human influence on climate as insignificant, reported having had the most frequent media coverage regarding their views on climate change.

  16. Scientists present their design for Einstein Telescope

    CERN Multimedia

    ASPERA Press Release

    2011-01-01

    Plans shape up for a revolutionary new observatory that will explore black holes and the Big Bang. This detector will ‘see’ the Universe in gravitational waves.   A new era in astronomy will come a step closer when scientists from across Europe present their design study today for an advanced observatory capable of making precision measurements of gravitational waves – minute ripples in the fabric of spacetime – predicted to emanate from cosmic catastrophes such as merging black holes and collapsing stars and supernovae. It also offers the potential to probe the earliest moments of the Universe just after the Big Bang, which are currently inaccessible. The Einstein Observatory (ET) is a so-called third-generation gravitational-wave (GW) detector, which will be 100 times more sensitive than current instruments. Like the first two generations of GW detectors, it is based on the measurement of tiny changes (far less than the size of an atomic nucleus) in the le...

  17. Institutional Infrastructure for Broader Impacts Engagement - Showcasing Effective Strategies and Approaches from a Large Research Institute

    Science.gov (United States)

    Gold, A. U.; Sullivan, S. B.; Smith, L. K.; Lynds, S. E.

    2014-12-01

    The need for robust scientific and especially climate literacy is increasing. Funding agencies mandate that scientists make their findings and data publically available. Ideally, this mandate is achieved by scientists and educators working together to translate research findings into common knowledge. The Cooperative Institute for Research in Environmental Sciences (CIRES) is the largest research institute at the University of Colorado and home institute to over 500 scientists. CIRES provides an effective organizational infrastructure to support its scientists in broadening their research impact. Education specialists provide the necessary experience, connections, logistical support, and evaluation expertise to develop and conduct impactful education and outreach efforts. Outreach efforts are tailored to the project needs and the scientists' interests. They span from deep engagement efforts with a high time commitment by the scientist thus a high dosage to short presentations by the scientists that reach many people without stimulating a deep engagement and have therefore a low dosage. We use three examples of current successful programs to showcase these different engagement levels and report on their impact: i) deep transformative and time-intensive engagement through a Research Experience for Community College students program, ii) direct engagement during a teacher professional development workshop centered around a newly developed curriculum bringing authentic climate data into secondary classrooms, iii) short-time engagement through a virtual panel discussion about the state of recent climate science topics, the recordings of which were repurposed in a Massive Open Online Course (MOOC). In this presentation, we discuss the challenges and opportunities of broader impacts work. We discuss successful strategies that we developed, stress the importance of robust impact evaluation, and summarize different avenues of funding outreach efforts.

  18. Relative contributions of individual, institutional and system factors ...

    African Journals Online (AJOL)

    This study investigated the relative contributions of individual, institutional and system factors to utilisation of Research4Life databases by scientists in the National Agricultural Research Institutes (NARIs) in Nigeria. The study adopted the descriptive survey research design of the correlational type. Simple and stratified ...

  19. Research Institute for Technical Careers

    Science.gov (United States)

    Glenn, Ronald L.

    1996-01-01

    The NASA research grant to Wilberforce University enabled us to establish the Research Institute for Technical Careers (RITC) in order to improve the teaching of science and engineering at Wilberforce. The major components of the research grant are infrastructure development, establishment of the Wilberforce Intensive Summer Experience (WISE), and Joint Research Collaborations with NASA Scientists. (A) Infrastructure Development. The NASA grant has enabled us to improve the standard of our chemistry laboratory and establish the electronics, design, and robotics laboratories. These laboratories have significantly improved the level of instruction at Wilberforce University. (B) Wilberforce Intensive Summer Experience (WISE). The WISE program is a science and engineering bridge program for prefreshman students. It is an intensive academic experience designed to strengthen students' knowledge in mathematics, science, engineering, computing skills, and writing. (C) Joint Collaboration. Another feature of the grant is research collaborations between NASA Scientists and Wilberforce University Scientists. These collaborations have enabled our faculty and students to conduct research at NASA Lewis during the summer and publish research findings in various journals and scientific proceedings.

  20. Non-natives: 141 scientists object

    Czech Academy of Sciences Publication Activity Database

    Jarošík, Vojtěch; Pergl, Jan; Pyšek, Petr

    2011-01-01

    Roč. 475, č. 7354 (2011), s. 36 ISSN 0028-0836 Institutional research plan: CEZ:AV0Z60050516 Keywords : biological invasions * origin * management Subject RIV: EF - Botanics Impact factor: 36.280, year: 2011 http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=33&SID=S2aeo696hCiJNp8II5I&page=1&doc=1

  1. Environmental Cost of Electric Power, A Scientists' Institute for Public Information Workbook.

    Science.gov (United States)

    Abrahamson, Dean E.

    Analyzed are the environmental and health hazards associated with different forms of power production: nuclear power plants, fossil fuel plants, and hydroelectric plants. Data are given relating to chemical pollution, thermal pollution, radioactive hazards and geological and geographical effects. Problems of setting standards, and criteria which…

  2. The physician-scientists: rare species in Africa.

    Science.gov (United States)

    Adefuye, Anthonio Oladele; Adeola, Henry Ademola; Bezuidenhout, Johan

    2018-01-01

    There is paucity of physician-scientists in Africa, resulting in overt dependence of clinical practice on research findings from advanced "first world" countries. Physician-scientists include individuals with a medical degree alone or combined with other advanced degrees (e.g. MD/MBChB and PhD) with a career path in biomedical/ translational and patient-oriented/evaluative science research. The paucity of clinically trained research scientists in Africa could result in dire consequences as exemplified in the recent Ebola virus epidemic in West Africa, where shortage of skilled clinical scientists, played a major role in disease progression and mortality. Here we contextualise the role of physician-scientist in health care management, highlight factors limiting the training of physician-scientist in Africa and proffer implementable recommendations to address these factors.

  3. Scientists' Prioritization of Communication Objectives for Public Engagement.

    Directory of Open Access Journals (Sweden)

    Anthony Dudo

    Full Text Available Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists' report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public's trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences.

  4. Association of Polar Early Career Scientists Promotes Professional Skills

    Science.gov (United States)

    Pope, Allen; Fugmann, Gerlis; Kruse, Frigga

    2014-06-01

    As a partner organization of AGU, the Association of Polar Early Career Scientists (APECS; http://www.apecs.is) fully supports the views expressed in Wendy Gordon's Forum article "Developing Scientists' `Soft' Skills" (Eos, 95(6), 55, doi:10.1002/2014EO060003). Her recognition that beyond research skills, people skills and professional training are crucial to the success of any early-career scientist is encouraging.

  5. Political Institutions and Their Historical Dynamics

    Science.gov (United States)

    Sandberg, Mikael; Lundberg, Per

    2012-01-01

    Traditionally, political scientists define political institutions deductively. This approach may prevent from discovery of existing institutions beyond the definitions. Here, a principal component analysis was used for an inductive extraction of dimensions in Polity IV data on the political institutions of all nations in the world the last two centuries. Three dimensions of institutions were revealed: core institutions of democracy, oligarchy, and despotism. We show that, historically and on a world scale, the dominance of the core institutions of despotism has first been replaced by a dominance of the core institutions of oligarchy, which in turn is now being followed by an increasing dominance by the core institutions of democracy. Nations do not take steps from despotic, to oligarchic and then to democratic institutions, however. Rather, nations hosting the core democracy institutions have succeeded in historically avoiding both the core institutions of despotism and those of oligarchy. On the other hand, some nations have not been influenced by any of these dimensions, while new institutional combinations are increasingly influencing others. We show that the extracted institutional dimensions do not correspond to the Polity scores for autocracy, “anocracy” and democracy, suggesting that changes in regime types occur at one level, while institutional dynamics work on another. Political regime types in that sense seem “canalized”, i.e., underlying institutional architectures can and do vary, but to a considerable extent independently of regime types and their transitions. The inductive approach adds to the deductive regime type studies in that it produces results in line with modern studies of cultural evolution and memetic institutionalism in which institutions are the units of observation, not the nations that acts as host for them. PMID:23056219

  6. Message from the ISCB: 2015 ISCB Accomplishment by a Senior Scientist Award: Cyrus Chothia.

    Science.gov (United States)

    Fogg, Christiana N; Kovats, Diane E

    2015-07-01

    The International Society for Computational Biology (ISCB; http://www.iscb.org) honors a senior scientist annually for his or her outstanding achievements with the ISCB Accomplishment by a Senior Scientist Award. This award recognizes a leader in the field of computational biology for his or her significant contributions to the community through research, service and education. Cyrus Chothia, an emeritus scientist at the Medical Research Council Laboratory of Molecular Biology and emeritus fellow of Wolfson College at Cambridge University, England, is the 2015 ISCB Accomplishment by a Senior Scientist Award winner.Chothia was selected by the Awards Committee, which is chaired by Dr Bonnie Berger of the Massachusetts Institute of Technology. He will receive his award and deliver a keynote presentation at 2015 Intelligent Systems for Molecular Biology/European Conference on Computational Biology in Dublin, Ireland, in July 2015. dkovats@iscb.org. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Working Alongside Scientists. Impacts on Primary Teacher Beliefs and Knowledge About Science and Science Education

    Science.gov (United States)

    Anderson, Dayle; Moeed, Azra

    2017-05-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the impact on teacher beliefs about science and science education of a programme where 26 New Zealand primary (elementary) teachers worked fulltime for 6 months alongside scientists, experiencing the nature of work in scientific research institutes. During the 6 months, teachers were supported, through a series of targeted professional development days, to make connections between their experiences working with scientists, the curriculum and the classroom. Data for the study consisted of mid- and end-of-programme written teacher reports and open-ended questionnaires collected at three points, prior to and following 6 months with the science host and after 6 to 12 months back in school. A shift in many teachers' beliefs was observed after the 6 months of working with scientists in combination with curriculum development days; for many, these changes were sustained 6 to 12 months after returning to school. Beliefs about the aims of science education became more closely aligned with the New Zealand curriculum and its goal of developing science for citizenship. Responses show greater appreciation of the value of scientific ways of thinking, deeper understanding about the nature of scientists' work and the ways in which science and society influence each other.

  8. Hidden concerns of sharing research data by low/middle-income country scientists.

    Science.gov (United States)

    Bezuidenhout, Louise; Chakauya, Ereck

    2018-01-01

    There has considerable interest in bringing low/middle-income countries (LMIC) scientists into discussions on Open Data - both as contributors and users. The establishment of in situ data sharing practices within LMIC research institutions is vital for the development of an Open Data landscape in the Global South. Nonetheless, many LMICs have significant challenges - resource provision, research support and extra-laboratory infrastructures. These low-resourced environments shape data sharing activities, but are rarely examined within Open Data discourse. In particular, little attention is given to how these research environments shape scientists' perceptions of data sharing (dis)incentives. This paper expands on these issues of incentivizing data sharing, using data from a quantitative survey disseminated to life scientists in 13 countries in sub-Saharan Africa. This interrogated not only perceptions of data sharing amongst LMIC scientists, but also how these are connected to the research environments and daily challenges experienced by them. The paper offers a series of analysis around commonly cited (dis)incentives such as data sharing as a means of improving research visibility; sharing and funding; and online connectivity. It identifies key areas that the Open Data community need to consider if true openness in research is to be established in the Global South.

  9. Communicating astronomy with the public for scientists

    Science.gov (United States)

    Girola, R.

    2015-03-01

    This article intends to convey the improvement regarding the knowledge exchange in the astronomical field through an improvement in the quality of professional communication between researchers, teachers and the like whose job is to broadcast astronomical concepts. It has been a couple of years since the difficulty of communicating astronomical concepts decreased due to institutional projects, schools and education systems. Inside the education system, the need to include astronomy as an innovative element in curricula has become obvious. Outside, an informal public interested in astronomy became greater in number and began to be fostered by different organizations which spread their astronomical knowledge via workshops and demonstrations.

  10. The formation of scientists and technicians at the 'Centre d'Etudes Nucleaires' at Saclay

    International Nuclear Information System (INIS)

    Debiesse, J.

    1958-01-01

    The considerable needs in research workers and scientists which are asked by the nuclear energy obliged the Commissariat a l'Energie atomique to deal with a particular effort to increase the quantitative and qualitative formation of scientists. Most various ways have been used. 1- A National Institute of Nuclear Sciences and Nuclear Techniques was created, by a joint decree of the Prime Minister and the Minister for National Education (june 18, 1957). This Institute of Higher Teaching (250 students) indulges in the following matters: atomic engineering, quantum mechanics, theory and technic of particle accelerators, special metallurgy, radiobiology, thermic and mechanics of fluids. 2- An associated centre of the 'Conservatoire National des Arts et Metiers' was created (200 students) for technical assistants, drawers, etc. 3- In contribution with both electronic industry and Ministry of Work, the Centre d'Etudes Nucleaires contributes to an accelerated formation of technical assistants into Professional Centres. Conclusion: Training of scientists and research workers is one of the most important activities of the Centre d'Etudes Nucleaires de Saclay. Without losing its technical efficiency, it has supplied and varied means adapted to the various purposes that we shall reach. (author) [fr

  11. [Almost an autobiography: a study of social scientists in health based on the Lattes Curriculum].

    Science.gov (United States)

    do Nascimento, Juliana Luporini; Nunes, Everardo Duarte

    2014-04-01

    Among the various ways of adopting the biographical approach, we used the curriculum vitaes (CVs) of Brazilian researchers who work as social scientists in health as our research material. These CVs are part of the Lattes Platform of CNPq - the National Council for Scientific and Technological Development, which includes Research and Institutional Directories. We analyzed 238 CVs for this study. The CVs contain, among other things, the following information: professional qualifications, activities and projects, academic production, participation in panels for the evaluation of theses and dissertations, research centers and laboratories and a summarized autobiography. In this work there is a brief review of the importance of autobiography for the social sciences, emphasizing the CV as a form of "autobiographical practice." We highlight some results, such as it being a group consisting predominantly of women, graduates in social sciences, anthropology, sociology or political science, with postgraduate degrees. The highest concentration of social scientists is located in Brazil's southern and southeastern regions. In some institutions the main activities of social scientists are as teachers and researchers with great thematic diversity in research.

  12. Maximizing the potential of scientists in Japan: promoting equal participation for women scientists through leadership development.

    Science.gov (United States)

    Homma, Miwako Kato; Motohashi, Reiko; Ohtsubo, Hisako

    2013-07-01

    In order to examine the current status of gender equality in academic societies in Japan, we inquired about the number of women involved in leadership activities at society conferences and annual meetings, as these activities are critical in shaping scientific careers. Our findings show a clear bias against female scientists, and a need to raise consciousness and awareness in order to move closer to equality for future generations. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  13. Scientists vs. Vesuvius: limits of volcanology

    Science.gov (United States)

    Carlino, Stefano; Somma, Renato

    2014-05-01

    Recently, Italian newspapers reported the statements of Japanese and American volcanologists which declared the high hazard related to the future occurrence of catastrophic eruption at Vesuvius. Is this a reliable picture from scientific point of view? The evaluation of volcanic hazard is based on a general statistical law for which the chances of an eruptive event increase when energy decreases. This law is constructed on the basis of empirical data. Thus, the possibility that a plinian-like eruption occurs, for each volcano, is rare and further reduced for worst-case scenario. However, empirical data are not supported by a robust scientific theory, experimentally verifiable through an exact forecast of a long-term eruption, both in time limits and in energy. Today, the lack of paradigms able to predict in a deterministic way such a complex phenomena, limit the field of the scientists that cannot go further evaluations of a purely probabilistic nature. From this point of view volcanology cannot be considered an hard quantitative Science. The declaration according to which Vesuvius, sooner or later, will produce a catastrophic eruption, yet apparently obvious if we consider the very high degree of urbanization, is not supported by any experimentally verifiable theory. Therefore, the statement according to which Vesuvius next eruptive event will be catastrophic is false. In probabilistic terms, it is actually the least possible scenario. Recognizing the cognitive limits in this research field means to encourage research itself towards the determination of more solid paradigms, in order to get more exact forecasts about such complex phenomena. The scientific compromise of defining risk scenarios, rather than deterministic evaluations about future eruptive events, precisely reflects the limits of research that have to be contemplated even by Civil Protection. Having considered these limits, every risk scenario, even the most conservative, will be ineffective in

  14. Science as a Matter of Honour: How Accused Scientists Deal with Scientific Fraud in Japan.

    Science.gov (United States)

    Pellegrini, Pablo A

    2017-06-26

    Practices related to research misconduct seem to have been multiplied in recent years. Many cases of scientific fraud have been exposed publicly, and journals and academic institutions have deployed different measures worldwide in this regard. However, the influence of specific social and cultural environments on scientific fraud may vary from society to society. This article analyzes how scientists in Japan deal with accusations of scientific fraud. For such a purpose, a series of scientific fraud cases that took place in Japan has been reconstructed through diverse sources. Thus, by analyzing those cases, the social basis of scientific fraud and the most relevant aspects of Japanese cultural values and traditions, as well as the concept of honour which is deeply involved in the way Japanese scientists react when they are accused of and publicly exposed in scientific fraud situations is examined.

  15. Conference report: Bioanalysis highlights from the 2012 American Association of Pharmaceutical Scientists National Biotechnology Conference.

    Science.gov (United States)

    Crisino, Rebecca M; Geist, Brian; Li, Jian

    2012-09-01

    The American Association of Pharmaceutical Scientists (AAPS) is an international forum for the exchange of knowledge among scientists to enhance their contributions to drug development. The annual National Biotechnology Conference, organized by the AAPS on 21-23 May 2012 in San Diego, CA, USA, brings together experts from various disciplines representing private industry, academia and governing institutions dedicated toward advancing the scientific and technological progress related to discovery, development and manufacture of medical biotechnology products. Over 300 scientific poster presentations and approximately 50 oral presentation and discussion sessions examined a breadth of topics pertaining to biotechnology drug development, such as the advancement of vaccines and biosimilars, emerging and innovative technologies, nonclinical and clinical bioanalysis, and regulatory updates. This conference report highlights the existing challenges with ligand-binding assays, emerging challenges, innovative integration of various technology platforms and applicable regulatory considerations as they relate to immunogenicity and pharmacokinetic bioanalytical assessments.

  16. Teacher Candidates' Perceptions of Scientists: Images and Attributes

    Science.gov (United States)

    McCarthy, Deborah

    2015-01-01

    The masculine image of scientists as elderly men wearing white coats and glasses, working alone in the laboratory has been documented since the 1950s. Because it is important that teacher candidates have a scientifically literate image of scientists due to the impact they have on their future students, this investigation is salient. This study…

  17. Scientist-Image Stereotypes: The Relationships among Their Indicators

    Science.gov (United States)

    Karaçam, Sedat

    2016-01-01

    The aim of this study is to examine primary school students' scientist-image stereotypes by considering the relationships among indicators. A total of 877 students attending Grades 6 and 7 in Düzce, Turkey participated in this study. The Draw-A-Scientist Test (DAST) was implemented during the 2013-2014 academic year to determine students' images…

  18. The Voice of Women Scientists in EU Research Policy (abstract)

    Science.gov (United States)

    Šatkovskienė, Dalia

    2009-04-01

    The European Platform of Women Scientists (www.epws.org) is an umbrella organization bringing together networks of women scientists and organisations committed to gender equality in research in all disciplines all over Europe and the countries associated to the European Union's Framework Programmes for Research and Technological Development. The goals of EPWS and its activities are presented.

  19. Continuous professional training of medical laboratory scientists in ...

    African Journals Online (AJOL)

    Background. Training and re-training of healthcare workers is pivotal to improved service delivery. Objective. To determine the proportion of practising medical laboratory scientists with in-service training in Benin City, Nigeria and areas covered by these programmes. Methods. Medical laboratory scientists from Benin City ...

  20. NREL Scientists Model Methane-Eating Bacteria | News | NREL

    Science.gov (United States)

    Scientists Model Methane-Eating Bacteria News Release: NREL Scientists Model Methane-Eating Bacteria February 13, 2018 Nature is full of surprises - not to mention solutions. A research team ) recently explored the possibilities provided by the natural world by researching how the bacteria

  1. The Use of Internet by Academic Scientists in Modibbo Adama ...

    African Journals Online (AJOL)

    The internet is an important tool for communication and retrieval of information. This study examined the use of internet in communication and retrieval of information by scientists in Modibbo Adama University of Technology, Yola.The survey method was used for the study. A total of 95 scientists in the school of pure and ...

  2. Thinking like a scientist: innateness as a case study.

    Science.gov (United States)

    Knobe, Joshua; Samuels, Richard

    2013-01-01

    The concept of innateness appears in systematic research within cognitive science, but it also appears in less systematic modes of thought that long predate the scientific study of the mind. The present studies therefore explore the relationship between the properly scientific uses of this concept and its role in ordinary folk understanding. Studies 1-4 examined the judgments of people with no specific training in cognitive science. Results showed (a) that judgments about whether a trait was innate were not affected by whether or not the trait was learned, but (b) such judgments were impacted by moral considerations. Study 5 looked at the judgments of both non-scientists and scientists, in conditions that encouraged either thinking about individual cases or thinking about certain general principles. In the case-based condition, both non-scientists and scientists showed an impact of moral considerations but little impact of learning. In the principled condition, both non-scientists and scientists showed an impact of learning but little impact of moral considerations. These results suggest that both non-scientists and scientists are drawn to a conception of innateness that differs from the one at work in contemporary scientific research but that they are also both capable of 'filtering out' their initial intuitions and using a more scientific approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Who believes in the storybook image of the scientist?

    NARCIS (Netherlands)

    Veldkamp, C.L S; Hartgerink, C.H.J.; van Assen, M.A.L.M.; Wicherts, J.M.

    2017-01-01

    Do lay people and scientists themselves recognize that scientists are human and therefore prone to human fallibilities such as error, bias, and even dishonesty? In a series of three experimental studies and one correlational study (total N = 3,278) we found that the 'storybook image of the

  4. "Star Wars" on Campus: Scientists Debate the Wisdom of SDI.

    Science.gov (United States)

    Rosenblatt, Jean

    1987-01-01

    President Reagan's Strategic Defense Initiative is opposed by many university scientists, but government officials have no problem placing research contracts. Specific arrangements and personal opinions are cited, and the text of the Star Wars Petition signed by 6,500 faculty and graduate student scientists is included. (MSE)

  5. The immoral landscape? Scientists are associated with violations of morality

    NARCIS (Netherlands)

    Rutjens, B.T.; Heine, S.J.

    2016-01-01

    Do people think that scientists are bad people? Although surveys find that science is a highly respected profession, a growing discourse has emerged regarding how science is often judged negatively. We report ten studies (N = 2328) that investigated morality judgments of scientists and compared

  6. Who Believes in the Storybook Image of the Scientist?

    NARCIS (Netherlands)

    Veldkamp, Coosje L S; Hartgerink, Chris H J; van Assen, Marcel A.L.M.; Wicherts, Jelte M.

    2017-01-01

    Do lay people and scientists themselves recognize that scientists are human and therefore prone to human fallibilities such as error, bias, and even dishonesty? In a series of three experimental studies and one correlational study (total N = 3,278) we found that the “storybook image of the

  7. Representations of scientists in high school biology textbooks.

    NARCIS (Netherlands)

    Eijck, van M.W.; Roth, W.-M.

    2007-01-01

    ABSTRACT: High school students’ images of scientists are reported as being stereotypic and narrow. We investigated in this study the potential of science textbooks to mediate the emergence of such images. We selected evidence for how ten noted scientists are represented in four widely used high

  8. Attitudes and working conditions of ICES advisory scientists

    DEFF Research Database (Denmark)

    Hegland, Troels Jacob; Wilson, Douglas Clyde

    2009-01-01

    give a fuller picture. One important task is to compare the experience of fisheries scientists who are more involved in the advice generation system with that of their colleagues who are less involved. Most of the tables draw comparisons between scientists who work for different kinds of employers...

  9. Relations between scientists and government: the case of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Katz, J E

    1982-05-01

    This article discusses the role and influence of the scientific communities in less-developed countries (LDC) on national high-technology policy by examining the particular case of nuclear energy. This area has been largely overlooked by other literature on LDC's scientific development. Based on an examination of scientific involvement in nuclear energy policy in selected countries, it becomes clear that the influence of scientists can range from making cardinal decisions about programs to simply legitimating or implementing decisions made by political or bureaucratic leaders. Within governmental structures, there are opportunities for scientists to incrementally shape technology policies, despite the fact that the magnitude of this influence is circumscribed by domestic considerations, not only of physical resources, but also intangibles such as national prestige and security. While a scientist can on rare occasion seize opportunities to dramatically restructure a nation's scientific or nuclear program, the overwhelming majority of scientists never exercise any such power. But even in day-to-day operations of government scientists can exert subtle influence, not only on nuclear energy programs, but also in an indirect way on the fabric of a nation's culture. Despite this significant impact, in any direct contest between the scientist and the politician, the scientist inevitably loses. In conclusion, scientists seem much more aware of their limitations rather than their potential to influence national technology policy, and tend to act in accord with priorities and goals as defined by their nation-state. 18 references.

  10. U.S. Directory of Marine Scientists 1982

    Science.gov (United States)

    1982-01-01

    Processes & Engineering. MACLEAN, SHARON A, Fishery Biologist. FINKELSTEIN, KENNETH, Coastal Geologist. Zooplankton; Crustacea. Sedimentology; Stratigraphy... SHARON T, Aszt Scientist. Pasadena, CA 91109 Taxonomy and Systematics; Zooplankton. HOWEY, TERRY W, Scientist. CHELTON, DUDLEY BOYD, JR, Senior...Oceanography. Monterey, CA 93940 Optics; Descriptive Physical Oceanography, Instrumentation Engineering. BOURKE , ROBERT H, Assoc Professor of VON SCHWIND

  11. Of Science and Scientists an Anthology of Anecdotes

    Science.gov (United States)

    Kothare, A. N.

    Although a lot is available in the form of biographies and writings of scientists, very little information is found on what made them not only great discoverers but humane too, blessed with humour, humility and humanism. This book helps to convey this very aspect of scientists who while being involved in their unique adventure are like us, the lesser mortals.

  12. The Media: The Image of the Scientist is Bad

    Science.gov (United States)

    Maugh, Thomas H., II

    1978-01-01

    Many individuals are concerned with the erroneous image of science and scientists that is given to the public by the media. To improve the situation, it is suggested that individuals and organizations protest to movie studios and networks when inaccuracies appear and when scientists are portrayed in a denigrating manner. (Author/MA)

  13. Overcoming the obstacles: Life stories of scientists with learning disabilities

    Science.gov (United States)

    Force, Crista Marie

    Scientific discovery is at the heart of solving many of the problems facing contemporary society. Scientists are retiring at rates that exceed the numbers of new scientists. Unfortunately, scientific careers still appear to be outside the reach of most individuals with learning disabilities. The purpose of this research was to better understand the methods by which successful learning disabled scientists have overcome the barriers and challenges associated with their learning disabilities in their preparation and performance as scientists. This narrative inquiry involved the researcher writing the life stories of four scientists. These life stories were generated from extensive interviews in which each of the scientists recounted their life histories. The researcher used narrative analysis to "make sense" of these learning disabled scientists' life stories. The narrative analysis required the researcher to identify and describe emergent themes characterizing each scientist's life. A cross-case analysis was then performed to uncover commonalities and differences in the lives of these four individuals. Results of the cross-case analysis revealed that all four scientists had a passion for science that emerged at an early age, which, with strong drive and determination, drove these individuals to succeed in spite of the many obstacles arising from their learning disabilities. The analysis also revealed that these scientists chose careers based on their strengths; they actively sought mentors to guide them in their preparation as scientists; and they developed coping techniques to overcome difficulties and succeed. The cross-case analysis also revealed differences in the degree to which each scientist accepted his or her learning disability. While some demonstrated inferior feelings about their successes as scientists, still other individuals revealed feelings of having superior abilities in areas such as visualization and working with people. These individuals revealed

  14. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class.

    Science.gov (United States)

    Schinske, Jeffrey N; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. © 2016 J. N. Schinske et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Managing scientists leadership strategies in research and development

    CERN Document Server

    Sapienza, Alice M

    1995-01-01

    Managing Scientists Leadership Strategies in Research and Development Alice M. Sapienza "I found ...this book to be exciting ...Speaking as someone who has spent 30 years grappling with these issues, I certainly would be a customer." -Robert I. Taber, PhD Senior Vice President of Research & Development Synaptic Pharmaceutical Corporation In today's climate of enormous scientific and technologic competition, it is more crucial than ever that scientists involved in research and development be managed well. Often trained as individual researchers, scientists can find integration into teams difficult. Managers, from both scientific and nonscientific backgrounds, who are responsible for these teams frequently find effective team building a long and challenging process. Managing Scientists offers strategies for fostering communication and collaboration among scientists. It shows how to build cohesive, productive, and focused teams to succeed in the competitive research and development marketplace. This book wil...

  16. British scientists and the Manhattan Project: the Los Alamos years

    International Nuclear Information System (INIS)

    Szasz, F.M.

    1992-01-01

    This is a study of the British scientific mission to Los Alamos, New Mexico, from 1943 to 1947, and the impact it had on the early history of the atomic age. In the years following the Manhattan Project and the production of the world's first atomic explosion in 1945, the British contribution to the Project was played down or completely ignored leaving the impression that all the atomic scientists had been American. However, the two dozen or so British scientists contributed crucially to the development of the atomic bomb. First, the initial research and reports of British scientists convinced American scientists that an atomic weapons could be constructed before the likely end of hostilities. Secondly their contribution insured the bomb was available in the shortest possible time. Also, because these scientists became involved in post-war politics and in post-war development of nuclear power, they also helped forge the nuclear boundaries of the mid-twentieth century. (UK)

  17. The Dilemma of Scientists in the Nuclear Age

    International Nuclear Information System (INIS)

    Broda, E.

    1982-01-01

    Scientists have made possible the nuclear arms race. The cases of some of the individual scientists are discussed. Most scientists on military work were and are not only justifying their work, but they are enjoying their lives. A general strike of the military scientists against the arms race is an illusion. A pragmatic approach to the problem is need. In any case it is imperative that concerned scientists concentrate on the struggle against the threat of nuclear war. They must interact with the people at large, especially the people in the mass organizations, and help them to judge the situation and to evolve suitable countermeasures. A few words are said about the possibility of world government. (author)

  18. Author Disambiguation in PubMed: Evidence on the Precision and Recall of Author-ity among NIH-Funded Scientists.

    Science.gov (United States)

    Lerchenmueller, Marc J; Sorenson, Olav

    2016-01-01

    We examined the usefulness (precision) and completeness (recall) of the Author-ity author disambiguation for PubMed articles by associating articles with scientists funded by the National Institutes of Health (NIH). In doing so, we exploited established unique identifiers-Principal Investigator (PI) IDs-that the NIH assigns to funded scientists. Analyzing a set of 36,987 NIH scientists who received their first R01 grant between 1985 and 2009, we identified 355,921 articles appearing in PubMed that would allow us to evaluate the precision and recall of the Author-ity disambiguation. We found that Author-ity identified the NIH scientists with 99.51% precision across the articles. It had a corresponding recall of 99.64%. Precision and recall, moreover, appeared stable across common and uncommon last names, across ethnic backgrounds, and across levels of scientist productivity.

  19. Uncovering Scientist Stereotypes and Their Relationships with Student Race and Student Success in a Diverse, Community College Setting.

    Science.gov (United States)

    Schinske, Jeffrey; Cardenas, Monica; Kaliangara, Jahana

    2015-01-01

    A number of studies have identified correlations between children's stereotypes of scientists, their science identities, and interest or persistence in science, technology, engineering, and mathematics. Yet relatively few studies have examined scientist stereotypes among college students, and the literature regarding these issues in predominantly nonwhite and 2-yr college settings is especially sparse. We piloted an easy-to-analyze qualitative survey of scientist stereotypes in a biology class at a diverse, 2-yr, Asian American and Native American Pacific Islander-Serving Institution. We examined the reliability and validity of the survey, and characterized students' comments with reference to previous research on stereotypes. Positive scientist stereotypes were relatively common in our sample, and negative stereotypes were rare. Negative stereotypes appeared to be concentrated within certain demographic groups. We found that students identifying nonstereotypical images of scientists at the start of class had higher rates of success in the course than their counterparts. Finally, evidence suggested many students lacked knowledge of actual scientists, such that they had few real-world reference points to inform their stereotypes of scientists. This study augments the scant literature regarding scientist stereotypes in diverse college settings and provides insights for future efforts to address stereotype threat and science identity. © 2015 J. Schinske et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Young engineers and scientists - a mentorship program emphasizing space education

    Science.gov (United States)

    Boice, Daniel; Asbell, Elaine; Reiff, Patricia

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. The first component of YES is an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. Afterwards, students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  1. Engaging Students in Space Research: Young Engineers and Scientists 2008

    Science.gov (United States)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2008-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of an intensive three-week summer workshop held at SwRI and a collegial mentorship where students complete individual research projects under the guidance of their professional mentors during the academic year. During the summer workshop, students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  2. Development and Field Test of the Modified Draw-a-Scientist Test and the Draw-a-Scientist Rubric

    Science.gov (United States)

    Farland-Smith, Donna

    2012-01-01

    Even long before children are able to verbalize which careers may be interesting to them, they collect and store ideas about scientists. For these reasons, asking children to draw a scientist has become an accepted method to provide a glimpse into how children represent and identify with those in the science fields. Years later, these…

  3. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class

    Science.gov (United States)

    Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical…

  4. Reciprocal Engagement Between a Scientist and Visual Displays

    Science.gov (United States)

    Nolasco, Michelle Maria

    In this study the focus of investigation was the reciprocal engagement between a professional scientist and the visual displays with which he interacted. Visual displays are considered inextricable from everyday scientific endeavors and their interpretation requires a "back-and-forthness" between the viewers and the objects being viewed. The query that drove this study was: How does a scientist engage with visual displays during the explanation of his understanding of extremely small biological objects? The conceptual framework was based in embodiment where the scientist's talk, gesture, and body position were observed and microanalyzed. The data consisted of open-ended interviews that positioned the scientist to interact with visual displays when he explained the structure and function of different sub-cellular features. Upon microanalyzing the scientist's talk, gesture, and body position during his interactions with two different visual displays, four themes were uncovered: Naming, Layering, Categorizing, and Scaling . Naming occurred when the scientist added markings to a pre-existing, hand-drawn visual display. The markings had meaning as stand-alone label and iconic symbols. Also, the markings transformed the pre-existing visual display, which resulted in its function as a new visual object. Layering occurred when the scientist gestured over images so that his gestures aligned with one or more of the image's features, but did not touch the actual visual display. Categorizing occurred when the scientist used contrasting categories, e.g. straight vs. not straight, to explain his understanding about different characteristics that the small biological objects held. Scaling occurred when the scientist used gesture to resize an image's features so that they fit his bodily scale. Three main points were drawn from this study. First, the scientist employed a variety of embodied strategies—coordinated talk, gesture, and body position—when he explained the structure

  5. Improving adolescent and young adult health - training the next generation of physician scientists in transdisciplinary research.

    Science.gov (United States)

    Emans, S Jean; Austin, S Bryn; Goodman, Elizabeth; Orr, Donald P; Freeman, Robert; Stoff, David; Litt, Iris F; Schuster, Mark A; Haggerty, Robert; Granger, Robert; Irwin, Charles E

    2010-02-01

    To address the critical shortage of physician scientists in the field of adolescent medicine, a conference of academic leaders and representatives from foundations, National Institutes of Health, Maternal and Child Health Bureau, and the American Board of Pediatrics was convened to discuss training in transdisciplinary research, facilitators and barriers of successful career trajectories, models of training, and mentorship. The following eight recommendations were made to improve training and career development: incorporate more teaching and mentoring on adolescent health research in medical schools; explore opportunities and electives to enhance clinical and research training of residents in adolescent health; broaden educational goals for Adolescent Medicine fellowship research training and develop an intensive transdisciplinary research track; redesign the career pathway for the development of faculty physician scientists transitioning from fellowship to faculty positions; expand formal collaborations between Leadership Education in Adolescent Health/other Adolescent Medicine Fellowship Programs and federal, foundation, and institutional programs; develop research forums at national meetings and opportunities for critical feedback and mentoring across programs; educate Institutional Review Boards about special requirements for high quality adolescent health research; and address the trainee and faculty career development issues specific to women and minorities to enhance opportunities for academic success. Copyright 2010 Society for Adolescent Medicine. All rights reserved.

  6. To Boldly Go: Practical Career Advice for Young Scientists

    Science.gov (United States)

    Fiske, P.

    1998-05-01

    Young scientists in nearly every field are finding the job market of the 1990's a confusing and frustrating place. Ph.D. supply is far larger than that needed to fill entry-level positions in "traditional" research careers. More new Ph.D. and Master's degree holders are considering a wider range of careers in and out of science, but feel ill-prepared and uninformed about their options. Some feel their Ph.D. training has led them to a dead-end. I present a thorough and practical overview to the process of career planning and job hunting in the 1990's, from the perspective of a young scientist. I cover specific steps that young scientists can take to broaden their horizons, strengthen their skills, and present their best face to potential employers. An important part of this is the realization that most young scientists possess a range of valuable "transferable skills" that are highly sought after by employers in and out of science. I will summarize the specifics of job hunting in the 90's, including informational interviewing, building your network, developing a compelling CV and resume, cover letters, interviewing, based on my book "To Boldly Go: A Practical Career Guide for Scientists". I will also identify other resources available for young scientists. Finally, I will highlight individual stories of Ph.D.-trained scientists who have found exciting and fulfilling careers outside the "traditional" world of academia.

  7. Scientists as role models in space science outreach

    Science.gov (United States)

    Alexander, D.

    The direct participation of scientists significantly enhances the impact of any E/PO effort. This is particularly true when the scientists come from minority or traditionally under-represented groups and, consequently, become role models for a large number of students while presenting positive counter-examples to the usual stereotypes. In this paper I will discuss the impact of scientists as role models through the successful implementation of a set of space physics games and activities, called Solar Week. Targetted at middle-school girls, the key feature of Solar Week is the "Ask a Scientist" section enabling direct interaction between participating students and volunteer scientists. All of the contributing scientists are women, serving as experts in their field and providing role models to whom the students can relate. Solar Week has completed four sessions with a total of some 140 edcuators and 12,000+ students in over 28 states and 9 countries. A major success of the Solar Week program has been the ability of the students to learn more about the scientists as people, through online biographies, and to discuss a variety of topics ranging from science, to careers and common hobbies.

  8. Scientists' perspectives on consent in the context of biobanking research.

    Science.gov (United States)

    Master, Zubin; Campo-Engelstein, Lisa; Caulfield, Timothy

    2015-05-01

    Most bioethics studies have focused on capturing the views of patients and the general public on research ethics issues related to informed consent for biobanking and only a handful of studies have examined the perceptions of scientists. Capturing the opinions of scientists is important because they are intimately involved with biobanks as collectors and users of samples and health information. In this study, we performed interviews with scientists followed by qualitative analysis to capture the diversity of perspectives on informed consent. We found that the majority of scientists in our study reported their preference for a general consent approach although they do not believe there to be a consensus on consent type. Despite their overall desire for a general consent model, many reported several concerns including donors needing some form of assurance that nothing unethical will be done with their samples and information. Finally, scientists reported mixed opinions about incorporating exclusion clauses in informed consent as a means of limiting some types of contentious research as a mechanism to assure donors that their samples and information are being handled appropriately. This study is one of the first to capture the views of scientists on informed consent in biobanking. Future studies should attempt to generalize findings on the perspectives of different scientists on informed consent for biobanking.

  9. Mentors, networks, and resources for early career female atmospheric scientists

    Science.gov (United States)

    Hallar, A. G.; Avallone, L. M.; Edwards, L. M.; Thiry, H.; Ascent

    2011-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT is a multi-faceted approach to retaining these junior scientists through the challenges in their research and teaching career paths. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory - Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. An external evaluation of the three workshop cohorts concludes that the workshops have been successful in establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  10. Scientist's Perceptions of Uncertainty During Discussions of Global Climate

    Science.gov (United States)

    Romanello, S.; Fortner, R.; Dervin, B.

    2003-04-01

    This research examines the nature of disagreements between natural and social scientists during discussions of global climate change. In particular, it explores whether the disagreements between natural and social scientists are related to the ontological, epistemological, or methodological nature of the uncertainty of global climate change during these discussions. A purposeful sample of 30 natural and social scientists recognized as experts in global climate change by the United States Global Change Research Program (USGCRP) and National Academies Committee on Global Change were interviewed to elicit their perceptions of disagreements during their three most troublesome discussions on global climate change. A mixed-method (qualitative plus quantitative research) approach with three independent variables was used to explore nature of uncertainty as a mediating variable in the relationships between academic training, level of sureness, level of knowledge, and position on global climate change, and the nature of disagreements and bridging strategies of natural and social scientists (Patton, 1997; Frechtling et al., 1997). This dissertation posits that it is the differences in the nature of uncertainty communicated by natural and social scientists and not sureness, knowledge, and position on global climate change that causes disagreements between the groups. By describing the nature of disagreements between natural and social scientists and illuminating bridging techniques scientists use during these disagreements, it is hoped that information collected from this research will create a better dialogue between the scientists studying global climate change by providing communication strategies which will allow those versed in one particular area to speak to non-experts whether they be other scientists, media officials, or the public. These tangible strategies can then be used by government agencies to create better communications and education plans, which can

  11. VLBA Scientists Study Birth of Sunlike Stars

    Science.gov (United States)

    1999-06-01

    Three teams of scientists have used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to learn tantalizing new details about how Sun-like stars are formed. Young stars, still growing by drawing in nearby gas, also spew some of that material back into their surroundings, like impatient infants that eat too quickly. The VLBA observations are giving astronomers new insights on both processes -- the accretion of material by the new stars and the outflows of material from them. "For the first time, we're actually seeing what happens right down next to the star in these young systems," said Mark Claussen, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Claussen and other researchers announced their findings at the American Astronomical Society's meeting in Chicago. Material attracted by a young star's gravitational pull forms a flat, orbiting disk, called an accretion disk, in which the material circles closer and closer to the star until finally drawn into it. At the same time, material is ejected in "jets" speeding from the poles of the accretion disk. "The VLBA is showing us the first images of the region close to the star where the material in these jets is accelerated and formed into the `beams' of the jet," Claussen said. "We don't understand the details of these processes well," Claussen said. "These VLBA research projects are beginning to help unravel the mysteries of how stars like the Sun form." The teams are observing clumps of water vapor that naturally amplify radio emissions to see details smaller than the orbit of Mercury in young stellar systems as well as track gas motions. The clumps of gas are called masers, and amplify radio emission in much the same way that a laser amplifies light emission. "These images are just fantastic," said Al Wootten of NRAO in Charlottesville, VA. The maser clumps or "spots," emitting radio waves at a specific wavelength, can be tracked as they move over time. In addition

  12. Congressman-scientist looks at nuclear energy

    International Nuclear Information System (INIS)

    McCormack, M.

    1976-01-01

    Rep. McCormack aired his views on energy in general and nuclear energy's role in the energy mix of the U.S., stating that this is not an academic debate because the nation is in mortal danger. He further states, our national security, the stability of our economic systems, even our political institutions may well depend upon our ability to develop responsible energy policies and implement rational programs to carry them into effect. It is no exaggeration to say that members of organized labor can play a decisive role in initiating and supporting positive action programs and make the difference between success and catastrophe for our nation during the balance of the century. This is true for all union members and all unions, from the officers of the International to the individuals at the local level.'' Rep. McCormack is known as a nuclear energy advocate, but he also supports solar energy development, geothermal energy, electric cars, ground transportation, conservation, fission programs, and the breeder program. After reviewing the facts that energy demands will increase and the restraints being imposed resulting in long lead times for all energy sources, the author concludes that nuclear energy is needed. He announced that ERDA will soon tell its options and programs for safety disposing of nuclear wastes--that of converting the wastes to a solid glass. A summary of some voting records in Congress on various energy programs was given and Rep. McCormack said that support in Congress on programs that he deemed necessary has been difficult to muster

  13. Academic and non-academic career options for marine scientists. - Support measures for early career scientists offered at MARUM - Center for Marine Environmental Sciences, University of Bremen, Germany

    Science.gov (United States)

    Hebbeln, Dierk; Klose, Christina

    2015-04-01

    partner institutions. Alumni are invited regularly for presentations and informal communication. Feedback shows that early career scientists especially benefit from the experiences shared by their former colleagues since the latter are perceived to have gone through the same education.

  14. The Current Situation of Female Scientists in Argentina

    Science.gov (United States)

    Llois, Ana María; Dawson, Silvina Ponce

    2009-04-01

    We report the changes that have taken place recently regarding the situation of female scientists in Argentina. We comment on the rules for maternity leave that have been passed recently for research scholars doing their PhDs and on the number of women scientists that occupy decision making-positions in science. We also present some evidence that seems to indicate that, among young scientists, women are more willing to occupy leadership positions and that the Argentinean society is more accepting of this new role.

  15. The subjectivity of scientists and the Bayesian approach

    CERN Document Server

    Press, James S

    2001-01-01

    Comparing and contrasting the reality of subjectivity in the work of history's great scientists and the modern Bayesian approach to statistical analysisScientists and researchers are taught to analyze their data from an objective point of view, allowing the data to speak for themselves rather than assigning them meaning based on expectations or opinions. But scientists have never behaved fully objectively. Throughout history, some of our greatest scientific minds have relied on intuition, hunches, and personal beliefs to make sense of empirical data-and these subjective influences have often a

  16. AGU Pathfinder: Career and Professional Development Resources for Earth and Space Scientists

    Science.gov (United States)

    Harwell, D. E.; Asher, P. M.; Hankin, E. R.; Janick, N. G.; Marasco, L.

    2017-12-01

    The American Geophysical Union (AGU) is committed to inspiring and educating present and future generations of diverse, innovative, and creative Earth and space scientists. To meet our commitment, AGU provides career and educational resources, webinars, mentoring, and support for students and professionals at each level of development to reduce barriers to achievement and to promote professional advancement. AGU is also working with other organizations and educational institutions to collaborate on projects benefiting the greater geoscience community. The presentation will include an overview of current Pathfinder efforts, collaborative efforts, and an appeal for additional partnerships.

  17. Policies to increase the social value of science and the scientist satisfaction. An exploratory survey among Harvard bioscientists.

    Science.gov (United States)

    Ballabeni, Andrea; Boggio, Andrea; Hemenway, David

    2014-01-01

    Basic research in the biomedical field generates both knowledge that has a value per se regardless of its possible practical outcome and knowledge that has the potential to produce more practical benefits. Policies can increase the benefit potential to society of basic biomedical research by offering various kinds of incentives to basic researchers. In this paper we argue that soft incentives or "nudges" are particularly promising. However, to be well designed, these incentives must take into account the motivations, goals and views of the basic scientists. In the paper we present the results of an investigation that involved more than 300 scientists at Harvard Medical School and affiliated institutes. The results of this study suggest that some soft incentives could be valuable tools to increase the transformative value of fundamental investigations without affecting the spirit of the basic research and scientists' work satisfaction. After discussing the findings, we discuss a few examples of nudges for basic researchers in the biomedical fields.

  18. 2005 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Stephan E.

    2005-11-15

    The Pacific Northwest National Laboratory (PNNL) hosted its second annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2005. During this period, sixteen PNNL scientists hosted fourteen young scientists from eleven different universities. Of the fourteen participants, twelve were graduate students; one was a postdoctoral fellow; and one was a university faculty member.

  19. 76 FR 37133 - Eunice Kennedy Shriver National Institute of Child Health & Human Development; Notice of Closed...

    Science.gov (United States)

    2011-06-24

    ... Institute of Child Health and Human Development Special Emphasis Group; Rehabilitation Medicine Scientist... National Institute of Child Health & Human Development; Notice of Closed Meeting Pursuant to section 10(d... Kennedy Shriver National Institute of Child Health and Human Development, NIH, 6100 Executive Blvd., Room...

  20. 1997 Atmospheric Chemistry Colloquium for Emerging Senior Scientists

    Energy Technology Data Exchange (ETDEWEB)

    Paul H. Wine

    1998-11-23

    DOE's Atmospheric Chemistry Program is providing partial funding for the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS) and FY 1997 Gordon Research Conference in Atmospheric Chemistry

  1. Science fiction by scientists an anthology of short stories

    CERN Document Server

    2017-01-01

    This anthology contains fourteen intriguing short stories by active research scientists and other writers trained in science. Science is at the heart of real science fiction, which is more than just westerns with ray guns or fantasy with spaceships. The people who do science and love science best are scientists. Scientists like Isaac Asimov, Arthur C. Clarke, and Fred Hoyle wrote some of the legendary tales of golden age science fiction. Today there is a new generation of scientists writing science fiction informed with the expertise of their fields, from astrophysics to computer science, biochemistry to rocket science, quantum physics to genetics, speculating about what is possible in our universe. Here lies the sense of wonder only science can deliver. All the stories in this volume are supplemented by afterwords commenting on the science underlying each story.

  2. Professor Atta invited to attend WSIS as `eminent scientist'

    CERN Multimedia

    2003-01-01

    Ministry of Science and Technology Prof. Atta-ur-Rahman has been nominated as an "eminent scientist" to attend the roundtables during "World Summit on the Information Society (WSIS)" on December 12 (1 paragraph).

  3. Original Research Challenges facing young African scientists in ...

    African Journals Online (AJOL)

    This study aimed at identifying the challenges that young African scientists face in their career development. Methods ... The research profile of Africans is relatively new, and the .... outside the country because it will support my original ideas.”.

  4. Meet EPA Scientist Marie O'Shea, Ph.D.

    Science.gov (United States)

    EPA Scientist Dr. Marie O'Shea is Region 2's Liaison to the Agency's Office of Research and Development (ORD). Marie has a background in research on urban watershed management, focused on characterizing and controlling nutrients in stormwater runoff.

  5. 1HE SCIENTISTS WILL SAVE 1HE WORLD: Environment Education ...

    African Journals Online (AJOL)

    Environment Education in An Alienated Society. Jaap Kuiper ... all: is it the input from science and scientists that will deliver the goods .... that the development of school curricula for. Zimbabwe was ..... In the case of informal or adult education,.

  6. Expedition Earth and Beyond: Student Scientist Guidebook. Model Research Investigation

    Science.gov (United States)

    Graff, Paige Valderrama

    2009-01-01

    The Expedition Earth and Beyond Student Scientist Guidebook is designed to help student researchers model the process of science and conduct a research investigation. The Table of Contents listed outlines the steps included in this guidebook

  7. Photo Animation Brings Scientists Back to Life in the Classroom

    Directory of Open Access Journals (Sweden)

    Lara K. Goudsouzian

    2017-05-01

    Full Text Available In biology textbooks and in lecture slides, it is customary to describe the significance of a historical scientific experiment alongside a still photograph of the scientist who performed the work.  This method communicates information about the scientists' works, but can be a dry method to describe an exciting and dynamic historical individual.  I have developed a method to animate still photographs and engravings of historical scientists and narrate them in the first person.  This method is rapid, inexpensive, and does not require more than average technical ability.  The animated historical scientists directly address the students to educate them about their own personal lives, struggles, and achievements.

  8. Facilitating ethical reflection among scientists using the ethical matrix

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Forsberg, Ellen-Marie; Gamborg, Christian

    2011-01-01

    Several studies have indicated that scientists are likely to have an outlook on both facts and values that are different to that of lay people in important ways. This is one significant reason it is currently believed that in order for scientists to exercise a reliable ethical reflection about...... their research it is necessary for them to engage in dialogue with other stakeholders. This paper reports on an exercise to encourage a group of scientists to reflect on ethical issues without the presence of external stakeholders. It reports on the use of a reflection process with scientists working in the area...... of animal disease genomics (mainly drawn from the EADGENE EC Network of Excellence). This reflection process was facilitated by using an ethical engagement framework, a modified version of the Ethical Matrix. As judged by two criteria, a qualitative assessment of the outcomes and the participants' own...

  9. Assessing the Job Satisfaction of Research Scientists: A Comparative Analysis.

    Science.gov (United States)

    Tuttle, Waneta C.; And Others

    1987-01-01

    The variables and management strategies influencing the job satisfaction of research scientists are examined. Emphasis is on defining satisfaction within the job context and the implications for managing the context to enhance satisfaction. (MSE)

  10. Science Educational Outreach Programs That Benefit Students and Scientists.

    Directory of Open Access Journals (Sweden)

    Greg Clark

    2016-02-01

    Full Text Available Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  11. Social responsibility of scientists. Report on working group ten

    International Nuclear Information System (INIS)

    1999-01-01

    Three topics were discussed: the impact of Science and technology on the fate of mankind, the role of scientists in a nuclear age, and the establishment of an international Ethics Commission. Conclusions and recommendations are given to the Pugwash Conference

  12. CASE STUDY: China — Bridging the Gap between Scientists and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-01-05

    Jan 5, 2011 ... CASE STUDY: China — Bridging the Gap between Scientists and ... the right inputs of water, fertilizer, and pesticides to maximize yields. ... Some are rare and unique to the area, such as black wax maize and mountain lily.

  13. Best practices in bioinformatics training for life scientists.

    KAUST Repository

    Via, Allegra; Blicher, Thomas; Bongcam-Rudloff, Erik; Brazas, Michelle D; Brooksbank, Cath; Budd, Aidan; De Las Rivas, Javier; Dreyer, Jacqueline; Fernandes, Pedro L; van Gelder, Celia; Jacob, Joachim; Jimenez, Rafael C; Loveland, Jane; Moran, Federico; Mulder, Nicola; Nyrö nen, Tommi; Rother, Kristian; Schneider, Maria Victoria; Attwood, Teresa K

    2013-01-01

    concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource

  14. Challenges for African sports scientists: Bridging the gap between ...

    African Journals Online (AJOL)

    Challenges for African sports scientists: Bridging the gap between theory and practice. ... physiology, nutrition, psychology and biomechanics to mention just a few. ... These are: (1) The need to develop strategies to study the uniqueness of ...

  15. Meet EPA Scientist Jeff Szabo, Ph.D.

    Science.gov (United States)

    EPA scientist Jeff Szabo, Ph.D., has worked for the EPA’s National Homeland Security Research Center since 2005. He conducts and manages water security research projects at EPA’s Test and Evaluation facility.

  16. Can a Diary Encourage Others to be Citizen Scientists?

    Directory of Open Access Journals (Sweden)

    Jerry H. Kavouras

    2015-08-01

    Full Text Available Review of: Diary of a Citizen Scientist Chasing Tiger Beetles and Other New Ways of Engaging the World; Sharman Apt Russell; (2014. Oregon State University Press, Corvallis, OR. 222 pages.

  17. Scientists seek to explain how Big Bang let us live

    CERN Multimedia

    Hawke, N

    2000-01-01

    Scientists at CERN have opened an antimatter factory, the Antiproton Decelerator. They hope to discover why, in the Big Bang, the amount of matter and antimatter produced was not equal, so allowing the universe to exist at all (1 page).

  18. Italian scientists fear impact of cabinet reshuffle on reforms

    CERN Multimedia

    Abbott, A

    1998-01-01

    Scientists are nervous about the choice of Ortensio Zecchino for minister for research and universities in the new coalition government, mainly because the Italien Space, Energy and Environment agencies and CNR have not yet been formally approved (1 page).

  19. Teaching today's young scientists fuels the science of tomorrow

    CERN Multimedia

    2006-01-01

    "Learning should be a voyage of discovery. Teachers at the Xplora Science Teachers conference shared their novel approaches to motivating students to treat science as an exciting exploration - and become the new generation of scientists Europe needs." (1½ page)

  20. Scientists confirm delay in testing new CERN particle accelerator

    CERN Multimedia

    2007-01-01

    "Scientists seeking to uncover the secrets of the universe will have to wait a little longer after the CERN laboratory inswitzerland on Monday confirmed a delay in tests of a massive new particle accelerator." (1 page)

  1. Concluding remarks: The scientist that lived three times

    International Nuclear Information System (INIS)

    Maiani, L.

    2014-01-01

    The highlights of the conference: The Legacy of Bruno Pontecorvo: the Man and the Scientist, held in Roma, Universita' 'La Sapienza', 11-12 September, 2013, are summarized and illustrated.

  2. Fundamentals of patenting and licensing for scientists and engineers

    National Research Council Canada - National Science Library

    Ma, M. Y. (Matthew Y.)

    2009-01-01

    ... ...28 3.2 Types of Patents...28 3.3 Patent Dates ...29 viiviii Fundamentals of Patenting and Licensing for Scientists and Engineers 3.4 Eligibility of Priority Date ...30 3.5 Patentability ...32...

  3. Expediency of Study of the Scientists' Biographies in Physics Course

    Directory of Open Access Journals (Sweden)

    Igor Korsun

    2017-04-01

    Full Text Available The aim of this article is a justification of the expediency of study of the scientists' biographies in physics course. Study of the biographic materials is one of the ways of motivation of learning and development of morality, humanity, internationalism. The selection criteria of biographic material have been allocated and method of study of the scientists' biographies has been described. Biographical data, scientific achievements and character traits are the components of “scientist's image”. Results proved that the use of the biographic materials raises the level of emotional component of learners' cognitive activity in physics teaching. Method of study of the scientists' biographies can be used in teaching of other school subjects.

  4. A Word to the Wise: Advice for Scientists Engaged in Collaborative Adaptive Management

    Science.gov (United States)

    Hopkinson, Peter; Huber, Ann; Saah, David S.; Battles, John J.

    2017-05-01

    Collaborative adaptive management is a process for making decisions about the environment in the face of uncertainty and conflict. Scientists have a central role to play in these decisions. However, while scientists are well trained to reduce uncertainty by discovering new knowledge, most lack experience with the means to mitigate conflict in contested situations. To address this gap, we drew from our efforts coordinating a large collaborative adaptive management effort, the Sierra Nevada Adaptive Management Project, to offer advice to our fellow environmental scientists. Key challenges posed by collaborative adaptive management include the confusion caused by multiple institutional cultures, the need to provide information at management-relevant scales, frequent turnover in participants, fluctuations in enthusiasm among key constituencies, and diverse definitions of success among partners. Effective strategies included a dedication to consistency, a commitment to transparency, the willingness to communicate frequently via multiple forums, and the capacity for flexibility. Collaborative adaptive management represents a promising, new model for scientific engagement with the public. Learning the lessons of effective collaboration in environmental management is an essential task to achieve the shared goal of a sustainable future.

  5. VII International Symposium and Young Scientists School “Modern Problems of Laser Physics”

    International Nuclear Information System (INIS)

    2017-01-01

    General Information This volume of the Journal is devoted to the VII International Symposium and Young Scientists School “Modern Problems of Laser Physics” (MPLP-2016). I was held in Novosibirsk Akademgorodok, Russia, 22–28 August 2016. Akademgorodok is the well-known Siberian Scientific Centre of Russian Academy of Sciences (RAS). It was founded in 1957. Since that time it is the place of many international scientific meetings, because it reflects the unique and fruitful symbiosis of many research institutions and Novosibirsk State University at one territory. Since the first MPLP meeting in 1995 the Symposium usually gathers scientists from many countries, carrying out their investigations at the forefront of laser physics, quantum metrology and high-resolution spectroscopy, physics of ultracold atoms, molecules and ions, atom optics, ultrafast phenomena and attoscience, quantum optics and information, nonlinear optics and applications of laser radiation from THz to UV radiation ranges in medicine, geophysics, chemistry and microbiology. Traditionally the Symposium is the place where scientists can discuss new trends in modern laser physics, generate new ideas as well as initiate further collaborations. (paper)

  6. Developing Earth and Space Scientists for the Future

    Science.gov (United States)

    Manduca, Cathryn A.; Cifuentes, Inés

    2007-09-01

    As the world's largest organization of Earth and space scientists, AGU safeguards the future of pioneering research by ensuring that ``the number and diversity of Earth and space scientists continue to grow through the flow of young talent into the field'' (AGU Strategic Plan 2008, Goal IV). Achieving this goal is the focus of the AGU Committee on Education and Human Resources (CEHR), one of the Union's three outreach committees.

  7. A systematic identification and analysis of scientists on Twitter

    Science.gov (United States)

    Ke, Qing; Ahn, Yong-Yeol; Sugimoto, Cassidy R.

    2017-01-01

    Metrics derived from Twitter and other social media—often referred to as altmetrics—are increasingly used to estimate the broader social impacts of scholarship. Such efforts, however, may produce highly misleading results, as the entities that participate in conversations about science on these platforms are largely unknown. For instance, if altmetric activities are generated mainly by scientists, does it really capture broader social impacts of science? Here we present a systematic approach to identifying and analyzing scientists on Twitter. Our method can identify scientists across many disciplines, without relying on external bibliographic data, and be easily adapted to identify other stakeholder groups in science. We investigate the demographics, sharing behaviors, and interconnectivity of the identified scientists. We find that Twitter has been employed by scholars across the disciplinary spectrum, with an over-representation of social and computer and information scientists; under-representation of mathematical, physical, and life scientists; and a better representation of women compared to scholarly publishing. Analysis of the sharing of URLs reveals a distinct imprint of scholarly sites, yet only a small fraction of shared URLs are science-related. We find an assortative mixing with respect to disciplines in the networks between scientists, suggesting the maintenance of disciplinary walls in social media. Our work contributes to the literature both methodologically and conceptually—we provide new methods for disambiguating and identifying particular actors on social media and describing the behaviors of scientists, thus providing foundational information for the construction and use of indicators on the basis of social media metrics. PMID:28399145

  8. A systematic identification and analysis of scientists on Twitter.

    Directory of Open Access Journals (Sweden)

    Qing Ke

    Full Text Available Metrics derived from Twitter and other social media-often referred to as altmetrics-are increasingly used to estimate the broader social impacts of scholarship. Such efforts, however, may produce highly misleading results, as the entities that participate in conversations about science on these platforms are largely unknown. For instance, if altmetric activities are generated mainly by scientists, does it really capture broader social impacts of science? Here we present a systematic approach to identifying and analyzing scientists on Twitter. Our method can identify scientists across many disciplines, without relying on external bibliographic data, and be easily adapted to identify other stakeholder groups in science. We investigate the demographics, sharing behaviors, and interconnectivity of the identified scientists. We find that Twitter has been employed by scholars across the disciplinary spectrum, with an over-representation of social and computer and information scientists; under-representation of mathematical, physical, and life scientists; and a better representation of women compared to scholarly publishing. Analysis of the sharing of URLs reveals a distinct imprint of scholarly sites, yet only a small fraction of shared URLs are science-related. We find an assortative mixing with respect to disciplines in the networks between scientists, suggesting the maintenance of disciplinary walls in social media. Our work contributes to the literature both methodologically and conceptually-we provide new methods for disambiguating and identifying particular actors on social media and describing the behaviors of scientists, thus providing foundational information for the construction and use of indicators on the basis of social media metrics.

  9. Immigration & Ideas: What Did Russian Scientists 'Bring' to the US?

    OpenAIRE

    Ganguli, Ina

    2014-01-01

    This paper examines how high-skilled immigrants contribute to knowledge diffusion using a rich dataset of Russian scientists and US citations to Soviet-era publications. Analysis of a panel of US cities and scientific fields shows that citations to Soviet-era work increased significantly with the arrival of immigrants. A difference-in-differences analysis with matched paper-pairs also shows that after Russian scientists moved to the US, citations to their Soviet-era papers increased relative ...

  10. To Be or Not to Be... a Scientist?

    OpenAIRE

    Chevalier, Arnaud

    2012-01-01

    Policy makers generally advocate that to remain competitive countries need to train more scientists. Employers regularly complain of qualified scientist shortages blaming the higher wages in other occupations for luring graduates out of scientific occupations. Using a survey of recent British graduates from Higher Education we report that fewer than 50% of science graduates work in a scientific occupation three years after graduation. The wage premium observed for science graduates stems from...

  11. To be or not to be... a scientist?

    OpenAIRE

    Chevalier, Arnaud

    2012-01-01

    Policy makers generally advocate that to remain competitive countries need to train more scientists. Employers regularly complain of qualified scientist shortages blaming the higher wages in other occupations for luring graduates out of scientific occupations. Using a survey of recent British graduates from Higher Education we report that fewer than 50% of science graduates work in a scientific occupation three years after graduation. The wage premium observed for science graduates stems from...

  12. Science experiences of citizen scientists in entomology research

    Science.gov (United States)

    Lynch, Louise I.

    Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and

  13. SECONDARY SCHOOL STUDENTS' PERCEPTIONS AND ATTITUDES ABOUT SCIENTISTS

    OpenAIRE

    Muhammed Doğukan Balçın; Ayşegül Ergün

    2018-01-01

    This research was carried out to determine secondary school students’ perceptions and attitudes towards scientists. The study group consists of 53 fifth and sixth grade students receiving education in a state secondary school in Turkey. Convergent parallel design among mixed research methods was used during the research. Research data were collected using “Questionnaire on attitudes towards scientists” and “Draw A Scientist (DAS)” forms. Descriptive and inferential statistical methods and con...

  14. Gap between science and media revisited: scientists as public communicators.

    Science.gov (United States)

    Peters, Hans Peter

    2013-08-20

    The present article presents an up-to-date account of the current media relations of scientists, based on a comprehensive analysis of relevant surveys. The evidence suggests that most scientists consider visibility in the media important and responding to journalists a professional duty--an attitude that is reinforced by universities and other science organizations. Scientific communities continue to regulate media contacts with their members by certain norms that compete with the motivating and regulating influences of public information departments. Most scientists assume a two-arena model with a gap between the arenas of internal scientific and public communication. They want to meet the public in the public arena, not in the arena of internal scientific communication. Despite obvious changes in science and in the media system, the orientations of scientists toward the media, as well as the patterns of interaction with journalists, have their roots in the early 1980s. Although there is more influence on public communication from the science organizations and more emphasis on strategic considerations today, the available data do not indicate abrupt changes in communication practices or in the relevant beliefs and attitudes of scientists in the past 30 y. Changes in the science-media interface may be expected from the ongoing structural transformation of the public communication system. However, as yet, there is little evidence of an erosion of the dominant orientation toward the public and public communication within the younger generation of scientists.

  15. Challenges in translational research: the views of addiction scientists.

    Science.gov (United States)

    Ostergren, Jenny E; Hammer, Rachel R; Dingel, Molly J; Koenig, Barbara A; McCormick, Jennifer B

    2014-01-01

    To explore scientists' perspectives on the challenges and pressures of translating research findings into clinical practice and public health policy. We conducted semi-structured interviews with a purposive sample of 20 leading scientists engaged in genetic research on addiction. We asked participants for their views on how their own research translates, how genetic research addresses addiction as a public health problem and how it may affect the public's view of addiction. Most scientists described a direct translational route for their research, positing that their research will have significant societal benefits, leading to advances in treatment and novel prevention strategies. However, scientists also pointed to the inherent pressures they feel to quickly translate their research findings into actual clinical or public health use. They stressed the importance of allowing the scientific process to play out, voicing ambivalence about the recent push to speed translation. High expectations have been raised that biomedical science will lead to new prevention and treatment modalities, exerting pressure on scientists. Our data suggest that scientists feel caught in the push for immediate applications. This overemphasis on rapid translation can lead to technologies and applications being rushed into use without critical evaluation of ethical, policy, and social implications, and without balancing their value compared to public health policies and interventions currently in place.

  16. Scientists in an alternative vision of a globalized world

    Science.gov (United States)

    Erzan, Ayse

    2008-03-01

    Why should ``increasing the visibility of scientists in emergent countries'' be of interest? Can increasing the relevance and connectedness of scientific output, both to technological applications at home and cutting edge basic research abroad contribute to the general welfare in such countries? For this to happen, governments, inter-governmental and non-governmental organizations must provide incentives for the local industry to help fund and actively engage in the creation of new technologies, rather than settling for the solution of well understood engineering problems under the rubric of collaboration between scientists and industry. However, the trajectory of the highly industrialized countries cannot be retraced. Globalization facilitates closer interaction and collaboration between scientists but also deepens the contrasts between the center and the periphery, both world wide and within national borders; as it is understood today, it can lead to the redundancy of local technology oriented research, as the idea of a ``local industry'' is rapidly made obsolete. Scientists from all over the world are sucked into the vortex as both the economic and the cultural world increasingly revolve around a single axis. The challenge is to redefine our terms of reference under these rapidly changing boundary conditions and help bring human needs, human security and human happiness to the fore in elaborating and forging alternative visions of a globalized world. Both natural scientists and social scientists will be indispensable in such an endeavor.

  17. Gap between science and media revisited: Scientists as public communicators

    Science.gov (United States)

    Peters, Hans Peter

    2013-01-01

    The present article presents an up-to-date account of the current media relations of scientists, based on a comprehensive analysis of relevant surveys. The evidence suggests that most scientists consider visibility in the media important and responding to journalists a professional duty—an attitude that is reinforced by universities and other science organizations. Scientific communities continue to regulate media contacts with their members by certain norms that compete with the motivating and regulating influences of public information departments. Most scientists assume a two-arena model with a gap between the arenas of internal scientific and public communication. They want to meet the public in the public arena, not in the arena of internal scientific communication. Despite obvious changes in science and in the media system, the orientations of scientists toward the media, as well as the patterns of interaction with journalists, have their roots in the early 1980s. Although there is more influence on public communication from the science organizations and more emphasis on strategic considerations today, the available data do not indicate abrupt changes in communication practices or in the relevant beliefs and attitudes of scientists in the past 30 y. Changes in the science–media interface may be expected from the ongoing structural transformation of the public communication system. However, as yet, there is little evidence of an erosion of the dominant orientation toward the public and public communication within the younger generation of scientists. PMID:23940312

  18. The Immoral Landscape? Scientists Are Associated with Violations of Morality.

    Science.gov (United States)

    Rutjens, Bastiaan T; Heine, Steven J

    2016-01-01

    Do people think that scientists are bad people? Although surveys find that science is a highly respected profession, a growing discourse has emerged regarding how science is often judged negatively. We report ten studies (N = 2328) that investigated morality judgments of scientists and compared those with judgments of various control groups, including atheists. A persistent intuitive association between scientists and disturbing immoral conduct emerged for violations of the binding moral foundations, particularly when this pertained to violations of purity. However, there was no association in the context of the individualizing moral foundations related to fairness and care. Other evidence found that scientists were perceived as similar to others in their concerns with the individualizing moral foundations of fairness and care, yet as departing for all of the binding foundations of loyalty, authority, and purity. Furthermore, participants stereotyped scientists particularly as robot-like and lacking emotions, as well as valuing knowledge over morality and being potentially dangerous. The observed intuitive immorality associations are partially due to these explicit stereotypes but do not correlate with any perceived atheism. We conclude that scientists are perceived not as inherently immoral, but as capable of immoral conduct.

  19. The Immoral Landscape? Scientists Are Associated with Violations of Morality.

    Directory of Open Access Journals (Sweden)

    Bastiaan T Rutjens

    Full Text Available Do people think that scientists are bad people? Although surveys find that science is a highly respected profession, a growing discourse has emerged regarding how science is often judged negatively. We report ten studies (N = 2328 that investigated morality judgments of scientists and compared those with judgments of various control groups, including atheists. A persistent intuitive association between scientists and disturbing immoral conduct emerged for violations of the binding moral foundations, particularly when this pertained to violations of purity. However, there was no association in the context of the individualizing moral foundations related to fairness and care. Other evidence found that scientists were perceived as similar to others in their concerns with the individualizing moral foundations of fairness and care, yet as departing for all of the binding foundations of loyalty, authority, and purity. Furthermore, participants stereotyped scientists particularly as robot-like and lacking emotions, as well as valuing knowledge over morality and being potentially dangerous. The observed intuitive immorality associations are partially due to these explicit stereotypes but do not correlate with any perceived atheism. We conclude that scientists are perceived not as inherently immoral, but as capable of immoral conduct.

  20. Finding Meaningful Roles for Scientists in science Education Reform

    Science.gov (United States)

    Evans, Brenda

    Successful efforts to achieve reform in science education require the active and purposeful engagement of professional scientists. Working as partners with teachers, school administrators, science educators, parents, and other stakeholders, scientists can make important contributions to the improvement of science teaching and learning in pre-college classrooms. The world of a practicing university, corporate, or government scientist may seem far removed from that of students in an elementary classroom. However, the science knowledge and understanding of all future scientists and scientifically literate citizens begin with their introduction to scientific concepts and phenomena in childhood and the early grades. Science education is the responsibility of the entire scientific community and is not solely the responsibility of teachers and other professional educators. Scientists can serve many roles in science education reform including the following: (1) Science Content Resource, (2) Career Role Model, (3) Interpreter of Science (4) Validator for the Importance of Learning Science and Mathematics, (5) Champion of Real World Connections and Value of Science, (6) Experience and Access to Funding Sources, (7) Link for Community and Business Support, (8) Political Supporter. Special programs have been developed to assist scientists and engineers to be effective partners and advocates of science education reform. We will discuss the rationale, organization, and results of some of these partnership development programs.

  1. PREFACE: FAIRNESS 2013: FAIR NExt generation of ScientistS 2013

    Science.gov (United States)

    Petersen, Hannah; Destefanis, Marco; Galatyuk, Tetyana; Montes, Fernando; Nicmorus, Diana; Ratti, Claudia; Tolos, Laura; Vogel, Sascha

    2014-04-01

    FAIRNESS 2013 was the second edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on 16-21 September 2013 in Berlin, Germany. The topics of the workshop cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permanent position to present their work, to foster active informal discussions and build up of networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in box to stimulate discussions. Since the physics program of FAIR is very broad, this is reflected in the wide range of topics covered at the Conference: Physics of hot and dense nuclear matter, QCD phase transitions and critical point Nuclear structure, astrophysics and reactions Hadron spectroscopy, Hadrons in matter and Hypernuclei Special emphasis is put on the experiments CBM, HADES, PANDA, NuSTAR, as well as NICA and the RHIC low beam energy scan New developments in atomic and plasma physics For all of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2013 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of

  2. Perspective: Entering uncharted waters: navigating the transition from trainee to career for the nonphysician clinician-scientist.

    Science.gov (United States)

    MacDonald, Shannon E; Sharpe, Heather M; Shikako-Thomas, Keiko; Larsen, Bodil; MacKay, Lyndsay

    2013-01-01

    The transition from trainee to career clinician-scientist can be a stressful and challenging time, particularly for those entering the less established role of nonphysician clinician-scientist. These individuals are typically PhD-prepared clinicians in the allied health professions, who have either a formal or informal joint appointment between a clinical institution and an academic or research institution. The often poorly defined boundaries and expectations of these developing roles can pose additional challenges for the trainee-to-career transition.It is important for these trainees to consider what they want and need in a position in order to be successful, productive, and fulfilled in both their professional and personal lives. It is also critical for potential employers, whether academic or clinical (or a combination of both), to be fully aware of the supports and tools necessary to recruit and retain new nonphysician clinician-scientists. Issues of relevance to the trainee and the employer include finding and negotiating a position; the importance of mentorship; the value of effective time management, particularly managing clinical and academic time commitments; and achieving work-life balance. Attention to these issues, by both the trainee and those in a position to hire them, will facilitate a smooth transition to the nonphysician clinician-scientist role and ultimately contribute to individual and organizational success.

  3. Like on Different Planets? Lebanese Social Scientists in Their Scientific Communities

    Directory of Open Access Journals (Sweden)

    Jonathan Kriener

    2015-05-01

    Full Text Available Social sciences and humanities at Arab universities are often described as suffering from a lack of academic freedom. However, institutional autonomy and the individual academic’s opportunities and constraints seem to differ considerably among Arab institutions and individuals conducting social sciences and humanities under different configurations of local, regional and international influences from the state, the market and the civil society. One problem evident from existing research literature about Arab social sciences is the comparably weak networking capacity of its academic publishing and library systems. It suggests over-dependence upon international systems, a lack of direct communication amongst local and regional scientific communities, and intellectual bigotry. This article sheds light on the question how Arab institutions and individuals cope with this particular trait of their academic system. It focuses on correlations between institutional and individual autonomy as measured by the modes of decision making and funding, and between an institution’s autonomy and its interconnectedness as measured by its library services and by references in the dissertations of its faculty. Data stem from interviews with faculty, surveys among students, and visits to libraries of two different universities in Lebanon, which are analyzed in comparison. Moreover, several networking initiatives are characterized by which social scientists in the region tackle this problem. With private initiative, they seem to recover regional coherence based on Arab language and experience and international quality standards to an extent that governmental and inter-governmental institutions never remotely succeeded to establish by ways of their cultural policies.

  4. FZR Institute of Radiochemistry. Annual report 1991

    International Nuclear Information System (INIS)

    Bernhard, G.

    1992-04-01

    The Research Center Rossendorf Inc. was founded on 1 January 1992 as an Institute of the Blue List. It is financed in equal shares by the Free State of Saxony and the Federal Republic of Germany. The Research Center Rossendorf (FZR) carries out its scientific work in five institutes: Institute of Ion Beam Physics and Materials Research; Institute of Nuclear and Hadronic Physics; Institute of Safety Research; Institute of Bioanorganic and Radiopharmaceutical Chemistry; Institute of Radiochemistry. The presentation of the Institute of Radiochemistry is to be considered a description of working tasks from today's angle. In the course of the formation process up to the end of the year specifications and partly also substantial changes will have to be considered. Although the Research Center Rossendorf has been recently founded, its plans are based of course on the scientific experiences of its staff. The said experiences form the basis for the status report on the lines of work. The last part compiles abridged versions of individual results achieved in 1991, documenting for specialists the work done by the groups of scientists. (orig./BBR) [de

  5. Bridging the Gap Between Scientists and Classrooms: Scientist Engagement in the Expedition Earth and Beyond Program

    Science.gov (United States)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Teachers in today s classrooms need to find creative ways to connect students with science, technology, engineering, mathematics (STEM) experts. These STEM experts can serve as role models and help students think about potential future STEM careers. They can also help reinforce academic knowledge and skills. The cost of transportation restricts teachers ability to take students on field trips exposing them to outside experts and unique learning environments. Additionally, arranging to bring in guest speakers to the classroom seems to happen infrequently, especially in schools in rural areas. The Expedition Earth and Beyond (EEAB) Program [1], facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate Education Program at the NASA Johnson Space Center has created a way to enable teachers to connect their students with STEM experts virtually. These virtual connections not only help engage students with role models, but are also designed to help teachers address concepts and content standards they are required to teach. Through EEAB, scientists are able to actively engage with students across the nation in multiple ways. They can work with student teams as mentors, participate in virtual student team science presentations, or connect with students through Classroom Connection Distance Learning (DL) Events.

  6. Science and Exploration in the Classroom & Beyond: An Interdisciplinary STEAM Curriculum Developed by SSERVI Educators & Scientists

    Science.gov (United States)

    Becker, Tracy M.; Runyon, Cassandra; Cynthia, Hall; Britt, Daniel; Tracy Becker

    2017-10-01

    Through NASA’s Solar System Exploration Research Virtual Institute (SSERVI), the Center for Lunar and Asteroid Surface Science (CLASS) and the SSERVI Evolution and Environment of Exploration Destinations (SEEED) nodes have developed an interdisciplinary formal and informal hands-on curriculum to bring the excitement of space exploration directly to the students.With a focus on exploring asteroids, this 5-year effort has infused art with traditional STEM practices (creating STEAM) and provides teachers with learning materials to incorporate art, social studies, English language arts, and other courses into the lesson plans. The formal curricula being developed follows Next Generation Standards and incorporates effective and engaging pedagogical strategies, such as problem-based learning (PBL), design thinking, and document based questions, using authentic data and articles, some of which are produced by the SSERVI scientists. From the materials developed for the formal education component, we have built up a collection of informal activities of varying lengths (minutes to weeks-long programs) to be used by museums, girl and boy scouts, science camps, etc.The curricula are being developed by formal and informal educators, artists, storytellers, and scientists. The continual feedback between the educators, artists, and scientists enables the program to evolve and mature such that the material will be accessible to the students without losing scientific merit. Online components will allow students to interact with SSERVI scientists and will ultimately infuse ongoing, exciting research into the student’s lessons.Our Education & Public Engagement (EPE) program makes a strong effort to make educational material accessible to all learners, including those with visual or hearing impairments. Specific activities have been included or independently developed to give all students an opportunity to experience the excitement of the universe.

  7. The Future of Basic Science in Academic Surgery: Identifying Barriers to Success for Surgeon-scientists.

    Science.gov (United States)

    Keswani, Sundeep G; Moles, Chad M; Morowitz, Michael; Zeh, Herbert; Kuo, John S; Levine, Matthew H; Cheng, Lily S; Hackam, David J; Ahuja, Nita; Goldstein, Allan M

    2017-06-01

    The aim of this study was to examine the challenges confronting surgeons performing basic science research in today's academic surgery environment. Multiple studies have identified challenges confronting surgeon-scientists and impacting their ability to be successful. Although these threats have been known for decades, the downward trend in the number of successful surgeon-scientists continues. Clinical demands, funding challenges, and other factors play important roles, but a rigorous analysis of academic surgeons and their experiences regarding these issues has not previously been performed. An online survey was distributed to 2504 members of the Association for Academic Surgery and Society of University Surgeons to determine factors impacting success. Survey results were subjected to statistical analyses. We also reviewed publicly available data regarding funding from the National Institutes of Health (NIH). NIH data revealed a 27% decline in the proportion of NIH funding to surgical departments relative to total NIH funding from 2007 to 2014. A total of 1033 (41%) members responded to our survey, making this the largest survey of academic surgeons to date. Surgeons most often cited the following factors as major impediments to pursuing basic investigation: pressure to be clinically productive, excessive administrative responsibilities, difficulty obtaining extramural funding, and desire for work-life balance. Surprisingly, a majority (68%) did not believe surgeons can be successful basic scientists in today's environment, including departmental leadership. We have identified important barriers that confront academic surgeons pursuing basic research and a perception that success in basic science may no longer be achievable. These barriers need to be addressed to ensure the continued development of future surgeon-scientists.

  8. Rising to the challenge: Training the next generation of clinician scientists for South Africa

    Directory of Open Access Journals (Sweden)

    B Kramer

    2015-12-01

    Full Text Available Background. A shortage of clinician scientists globally, particularly in the developing world, including Africa and South Africa (SA, is well known and was recently highlighted in a consensus report by the Academy of Science of South Africa. There is a need to find innovative ways to develop and advance clinician scientists in SA. Objective. To provide opportunities for young clinicians to develop research skills through enrolling for a PhD. Method. To address this need in SA, we developed an innovative programme over 2 years in collaboration with the Carnegie Corporation of New York to support and train young specialist clinicians in research as the next generation of clinician scientists, through a full-time PhD programme. Results. Since initiation of the programme in March 2011, 16 such specialists have been enrolled at intervals in the Fellowship programme, 5 have qualified with PhDs, while a further 3 are expected to qualify shortly. Publications and presentations at congresses have been recorded as well as grant applications. Discussion. Although the programme is seen as an important initial step in addressing the shortage of clinician scientists, its dependence on donor funding and the lack of a secure career path for clinicians wishing to spend more of their career in research pose problems for the programme’s sustainability. It is hoped that the positive outcomes of this experience will initiate further programmes of this kind at academic institutions and attract the attention of funders and universities in order to sustain and enlarge this initiative.

  9. Young Engineers & Scientists (YES) - Engaging Teachers in Space Research

    Science.gov (United States)

    Boice, D. C.; Reiff, P. H.

    2011-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio. It provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences, information sciences, and engineering. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, C++ programming, the Internet, careers, science ethics, social impact of technology, and other topics; and select their individual research project with their mentor (SwRI staff member) to be completed during the academic year; and 2) A collegial mentorship where students complete individual research projects under the guidance of their mentors and teachers during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past nineteen (19) years. A total of 258 students have completed or are currently enrolled in YES. Of these students, 38% are females and 57% are ethnic minorities, reflecting the local diversity of the San Antonio area. All YES graduates have entered college, several work or have worked for SwRI, two businesses have formed, and three scientific publications have resulted. Sixteen (16) teacher participants have attended the YES workshop and have developed classroom materials based on their experiences in research at SwRI in the past three (3) years. In recognition of its excellence, YES received the Celebrate Success in 1996 and the Outstanding Campus Partner-of-the-Year Award in 2005, both from Northside Independent School District (San Antonio

  10. Taking the Scientist's Perspective. The Nonfiction Narrative Engages Episodic Memory to Enhance Students' Understanding of Scientists and Their Practices

    Science.gov (United States)

    Larison, Karen D.

    2018-03-01

    The Next Generation Science Standards (NGSS Lead States 2013) mandates that schools provide students an understanding of the skills and knowledge that scientists use to engage in scientific practices. In this article, I argue that one of the best ways to accomplish this goal is to have students take the perspective of the scientist by reading nonfiction narratives written by scientists and science writers. I explore the anthropological and neurological evidence that suggests that perspective-taking is an essential component in the learning process. It has been shown that by around age 4, the human child begins to be able to take the perspective of others—a process that neuroscientists have shown engages episodic memory, a memory type that some neurocognitive scientists believe is central in organizing human cognition. Neuroscientists have shown that the brain regions in which episodic memory resides undergo pronounced anatomical changes during adolescence, suggesting that perspective-taking assumes an even greater role in cognition during adolescence and young adulthood. Moreover, I argue that the practice of science itself is narrative in nature. With each new observation and experiment, the scientist is acting to reveal an emerging story. It is the story-like nature of science that motivates the scientist to push onward with new experiments and new observations. It is also the story-like nature of the practice of science that can potentially engage the student. The classroom studies that I review here confirm the power of the narrative in increasing students' understanding of science.

  11. Taking the Scientist's Perspective - The Nonfiction Narrative Engages Episodic Memory to Enhance Students' Understanding of Scientists and Their Practices

    Science.gov (United States)

    Larison, Karen D.

    2018-03-01

    The Next Generation Science Standards (NGSS Lead States 2013) mandates that schools provide students an understanding of the skills and knowledge that scientists use to engage in scientific practices. In this article, I argue that one of the best ways to accomplish this goal is to have students take the perspective of the scientist by reading nonfiction narratives written by scientists and science writers. I explore the anthropological and neurological evidence that suggests that perspective-taking is an essential component in the learning process. It has been shown that by around age 4, the human child begins to be able to take the perspective of others—a process that neuroscientists have shown engages episodic memory, a memory type that some neurocognitive scientists believe is central in organizing human cognition. Neuroscientists have shown that the brain regions in which episodic memory resides undergo pronounced anatomical changes during adolescence, suggesting that perspective-taking assumes an even greater role in cognition during adolescence and young adulthood. Moreover, I argue that the practice of science itself is narrative in nature. With each new observation and experiment, the scientist is acting to reveal an emerging story. It is the story-like nature of science that motivates the scientist to push onward with new experiments and new observations. It is also the story-like nature of the practice of science that can potentially engage the student. The classroom studies that I review here confirm the power of the narrative in increasing students' understanding of science.

  12. Increasing both the public health potential of basic research and the scientist satisfaction. An international survey of bio-scientists.

    Science.gov (United States)

    Sorrentino, Carmen; Boggio, Andrea; Confalonieri, Stefano; Hemenway, David; Scita, Giorgio; Ballabeni, Andrea

    2016-01-01

    Basic scientific research generates knowledge that has intrinsic value which is independent of future applications. Basic research may also lead to practical benefits, such as a new drug or diagnostic method. Building on our previous study of basic biomedical and biological researchers at Harvard, we present findings from a new survey of similar scientists from three countries. The goal of this study was to design policies to enhance both the public health potential and the work satisfaction and test scientists' attitudes towards these factors. The present survey asked about the scientists' motivations, goals and perspectives along with their attitudes concerning  policies designed to increase both the practical (i.e. public health) benefits of basic research as well as their own personal satisfaction. Close to 900 basic investigators responded to the survey; results corroborate the main findings from the previous survey of Harvard scientists. In addition, we find that most bioscientists disfavor present policies that require a discussion of the public health potential of their proposals in grants but generally favor softer policies aimed at increasing the quality of work and the potential practical benefits of basic research. In particular, bioscientists are generally supportive of those policies entailing the organization of more meetings between scientists and the general public, the organization of more academic discussion about the role of scientists in the society, and the implementation of a "basic bibliography" for each new approved drug.

  13. Scientists and Educators: Joining Forces to Enhance Ocean Science Literacy

    Science.gov (United States)

    Keener-Chavis, P.

    2004-12-01

    The need for scientists to work with educators to enhance the general public's understanding of science has been addressed for years in reports like Science for All Americans (1990), NSF in a Changing World (1995), Turning to the Sea: America's Ocean Future (1999), Discovering the Earth's Final Frontier, A U.S. Strategy for Ocean Exploration (2000), and most recently, the U.S. Commission on Ocean Policy Report (2004). As reported in The National Science Foundation's Center for Ocean Science Education Excellence (COSEE) Workshop Report (2000), "The Ocean Sciences community did not answer (this) call, even though their discovery that the ocean was a more critical driving force in the natural environment than previously thought possessed great educational significance." It has been further acknowledged that "rapid and extensive improvement of science education is unlikely to occur until it becomes clear to scientists that they have an obligation to become involved in elementary- and secondary-level science (The Role of Scientists in the Professional Development of Science Teachers, National Research Council, 1996.) This presentation will focus on teachers' perceptions of how scientists conduct research, scientists' perceptions of how teachers should teach, and some misconceptions between the two groups. Criteria for high-quality professional development for teachers working with scientists will also be presented, along with a brief overview of the National Oceanic and Atmospheric Administration's Ocean Exploration program efforts to bring teachers and ocean scientists together to further ocean science literacy at the national level through recommendations put forth in the U.S. Commission on Ocean Policy Report (2004).

  14. Increasing retention of early career female atmospheric scientists

    Science.gov (United States)

    Edwards, L. M.; Hallar, A. G.; Avallone, L. M.; Thiry, H.

    2010-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT uses a multi-faceted approach to provide junior scientists with tools that will help them meet the challenges in their research and teaching career paths and will promote their retention in the field. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful and prepared to fill vacancies created by the “baby boomer” retirees. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory, Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. Post-workshop reunion events are held at national scientific meetings to maintain connectivity among each year’s participants, and for collaborating among participants of all workshops held to date. Evaluations of the two workshop cohorts thus far conclude that the workshops have been successful in achieving the goals of establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  15. Gender Disparities in Faculty Rank: Factors that Affect Advancement of Women Scientists at Academic Medical Centers

    Directory of Open Access Journals (Sweden)

    Cristina M. López

    2018-04-01

    Full Text Available While a significant portion of women within academic science are employed within medical schools, women faculty in these academic medical centers are disproportionately represented in lower faculty ranks. The medical school setting is a critical case for both understanding and advancing women in basic sciences. This study highlights the findings from focus groups conducted with women faculty across Assistant, Associate, and Full Professor ranks (n = 35 in which they discussed barriers and facilitators for advancement of women basic scientists at an academic medical center. Qualitative analysis demonstrated several emergent themes that affect women’s advancement, including gendered expectation norms (e.g., good citizenship, volunteerism, work-life balance, mentorship/sponsorship, adoption of a team science approach, tenure process milestones, soft money research infrastructure, institution specific policies (or lack thereof, and operating within an MD-biased culture. These findings are compared with the extant literature of women scientists in STEM institutions. Factors that emerged from these focus groups highlight the need for evidence-based interventions in the often overlooked STEM arena of academic medical centers.

  16. Producing knowledge about racial differences: tracing scientists' use of "race" and "ethnicity" from grants to articles.

    Science.gov (United States)

    Friedman, Asia; Lee, Catherine

    2013-01-01

    The research and publication practices by which scientists produce biomedical knowledge about race and ethnicity remain largely unexamined, and most of the existing research looks at the knowledge production process at a single point in time. In light of this, we specifically focus on the questions of whether and in what ways researchers' discussions of race and ethnicity change over the course of the research process by comparing grant proposals to published articles. Using content analysis, we investigated the use of race and ethnicity in 72 grants funded by the National Cancer Institute of the National Institutes of Health between 1990 and 1999 and 144 matched articles published between 1996 and 2010, tracing the production of biomedical knowledge from study design to published findings. This is also the first study to look at whether the NIH Inclusion Mandate, which went into effect in June of 1994, changed the way investigators research and write about racial and ethnic differences. In following this knowledge production process, we explore how scientists "deliver" on their research proposal goals. In addition, we provide insight into whether and how state policies directed at guiding research practices can shape output. © 2013 American Society of Law, Medicine & Ethics, Inc.

  17. A gender gap in the next generation of physician-scientists: medical student interest and participation in research.

    Science.gov (United States)

    Guelich, Jill M; Singer, Burton H; Castro, Marcia C; Rosenberg, Leon E

    2002-11-01

    For 2 decades, the number of physician-scientists has not kept pace with the overall growth of the medical research community. Concomitantly, the number of women entering medical schools has increased markedly. We have explored the effect of the changing gender composition of medical schools on the present and future pipeline of young physician-scientists. We analyzed data obtained from the Association of American Medical Colleges, the National Institutes of Health, and the Howard Hughes Medical Institute pertaining to the expressed research intentions or research participation of male and female medical students in the United States. A statistically significant decline in the percentage of matriculating and graduating medical students--both men and women-who expressed strong research career intentions occurred during the decade between 1987 and 1997. Moreover, matriculating and graduating women were significantly less likely than men to indicate strong research career intentions. Each of these trends has been observed for medical schools overall and for research-intensive ones. Cohort data obtained by tracking individuals from matriculation to graduation revealed that women who expressed strong research career intentions upon matriculation were more likely than men to decrease their research career intentions during medical school. Medical student participation in research supported the gender gap identified by assessing research intentions. Female medical student participation in the Medical Scientist Training Program and the Howard Hughes Medical Institute/National Institutes of Health-sponsored Cloisters Program has increased but lags far behind the growth in the female population in medical schools. Three worrisome trends in the research career intentions and participation of the nation's medical students (a decade-long decline for both men and women, a large and persistent gender gap, and a negative effect of the medical school experience for women) presage a

  18. The proposed EROSpace institute, a national center operated by space grant universities

    Science.gov (United States)

    Smith, Paul L.; Swiden, LaDell R.; Waltz, Frederick A.

    1993-01-01

    The "EROSpace Institute" is a proposed visiting scientist program in associated with the U.S. Geological Survey's EROS Data Center (EDC). The Institute would be operated by a consortium of universities, possible drawn from NASA's Space Grant College and Fellowship Program consortia and the group of 17 capability-enhancement consortia, or perhaps from consortia though out the nation with a topical interest in remote sensing. The National Center for Atmospheric Research or the Goddard Institute for Space Studies provide models for the structure of such an institute. The objectives of the Institute are to provide ready access to the body of data housed at the EDC and to increase the cadre of knowledgeable and trained scientists able to deal with the increasing volume of remote sensing data to become available from the Earth Observing System. The Institute would have a staff of about 100 scientists at any one time, about half permanent staff, and half visiting scientists. The latter would include graduate and undergraduate students, as well as faculty on temporary visits, summer fellowships, or sabbatical leaves. The Institute would provide office and computing facilities, as well as Internet linkages to the home institutions so that scientists could continue to participate in the program from their home base.

  19. Teacher Enhancement Institute

    Science.gov (United States)

    Marshall-Bradley, Tina

    1994-01-01

    /Mathematics model school has been established. Teachers selected for this project represented school systems where income levels are extremely low, and students served tend not to receive innovative instruction in mathematics and science and their use of technology is limited. The Teacher Enhancement Institute contained several features, that when combined, allowed for a unique experience. Some of these features included local teachers, administrators and school board members as presenters, instruction and use of technology every day, tours of select features of the research facility, briefings by NASA/LaRC scientists, engineers and researchers as well as individuals from the Continuous Electron Beam Accelerator Facility (CEBAF). Another unique feature of this program is to have participants convene on three separate occasions throughout the academic year to discuss strategies for information dissemination and implementation results. Teachers' attitudes towards the use of technology, their ability to develop lessons using technology and their ability to develop lessons using information obtained through TEI were assessed using instruments developed by TEI summer faculty members. Data from these instruments were analyzed and reported in a final report submitted to the director of the Office of Education.

  20. The Next Generation of Scientists: Examining the Experiences of Graduate Students in Network-Level Social-Ecological Science

    Directory of Open Access Journals (Sweden)

    Michele Romolini

    2013-09-01

    Full Text Available By integrating the research and resources of hundreds of scientists from dozens of institutions, network-level science is fast becoming one scientific model of choice to address complex problems. In the pursuit to confront pressing environmental issues such as climate change, many scientists, practitioners, policy makers, and institutions are promoting network-level research that integrates the social and ecological sciences. To understand how this scientific trend is unfolding among rising scientists, we examined how graduate students experienced one such emergent social-ecological research initiative, Integrated Science for Society and Environment, within the large-scale, geographically distributed Long Term Ecological Research (LTER Network. Through workshops, surveys, and interviews, we found that graduate students faced challenges in how they conceptualized and practiced social-ecological research within the LTER Network. We have presented these conceptual challenges at three scales: the individual/project, the LTER site, and the LTER Network. The level of student engagement with and knowledge of the LTER Network was varied, and students faced different institutional, cultural, and logistic barriers to practicing social-ecological research. These types of challenges are unlikely to be unique to LTER graduate students; thus, our findings are relevant to other scientific networks implementing new social-ecological research initiatives.