Generalized Gauge Theories and Weinberg-Salam Model with Dirac-Kähler Fermions
Kawamoto, N; Umetsu, H; Kawamoto, Noboru; Tsukioka, Takuya; Umetsu, Hiroshi
2001-01-01
We extend previously proposed generalized gauge theory formulation of Chern-Simons type and topological Yang-Mills type actions into Yang-Mills type actions. We formulate gauge fields and Dirac-K\\"ahler matter fermions by all degrees of differential forms. The simplest version of the model which includes only zero and one form gauge fields accommodated with the graded Lie algebra of $SU(2|1)$ supergroup leads Weinberg-Salam model. Thus the Weinberg-Salam model formulated by noncommutative geometry is a particular example of the present formulation.
Energy Technology Data Exchange (ETDEWEB)
Sidhu, D.P.
1980-09-01
I discuss a left-right-symmetric model of weak and electromagnetic interactions which is consistent with the results of all weak-interaction experiments including observed parity violation in eN interactions. The model is essentially indistinguishable from the Weinberg-Salam (WS) model at low energies and differs from it significantly at high q/sup 2/. Of the two (Z/sub 1/,Z/sub 2/) neutral bosons of the model, MZ-italic/sub 1/approx. =M/sub Z/ of the WS model and MZ-italic/sub 2/approx. =2.5M/sub Z//sub 1/approx. =230 GeV. The prospects of distinguishing the two classes of models in e/sup +/e/sup -/ experiments at LEP and in pp and p-barp colliding-beam experiments at ISABELLE are also discussed.
Effective constraint potential in lattice Weinberg - Salam model
Polikarpov, M I
2011-01-01
We investigate lattice Weinberg - Salam model without fermions for the value of the Weinberg angle $\\theta_W \\sim 30^o$, and bare fine structure constant around $\\alpha \\sim 1/150$. We consider the value of the scalar self coupling corresponding to bare Higgs mass around 150 GeV. The effective constraint potential for the zero momentum scalar field is used in order to investigate phenomena existing in the vicinity of the phase transition between the physical Higgs phase and the unphysical symmetric phase of the lattice model. This is the region of the phase diagram, where the continuum physics is to be approached. We compare the above mentioned effective potential (calculated in selected gauges) with the effective potential for the value of the scalar field at a fixed space - time point. We also calculate the renormalized fine structure constant using the correlator of Polyakov lines and compare it with the one - loop perturbative estimate.
Effective Weinberg-Salam model from higher dimensions
Mac, A; Mielke, E W; Matos, T; Mac, Alfredo; Camacho, Abel; Mielke, Eckehard W; Matos, Tonatiuh
1996-01-01
We consider an 8--dimensional gravitational theory, which possesses a principle fiber bundle structure, with Lorentz--scalar fields coupled to the metric. One of them plays the role of a Higgs field and the other one that of a dilaton field. The effective cosmological constant is interpreted as a Higgs potential. The Yukawa couplings are introduce by hand. The extra dimensions constitute a SU(2)_{L} \\times U(1)_{Y} \\times SU(2)_{R} group manifold. Dirac fields are coupled to the potentials derived from the metric. As result, we obtain an effective four--dimensional theory which contains all couplings of a Weinberg--Salam--Glashow theory in a curved space-time. The masses of the gauge bosons and of the first two fermion families are given by the theory.
The fluctuational region on the phase diagram of lattice Weinberg - Salam model
Zubkov, M A
2009-01-01
The lattice Weinberg - Salam model without fermions is investigated numerically for the realistic choice of bare coupling constants correspondent to the value of the Weinberg angle $\\theta_W \\sim 30^o$, and the fine structure constant $\\alpha \\sim {1/100}$. On the phase diagram there exists the vicinity of the phase transition between the physical Higgs phase and the unphysical symmetric phase, where the fluctuations of the scalar field become strong. The classical Nambu monopole can be considered as an embryo of the unphysical symmetric phase within the physical phase. In the fluctuational region quantum Nambu monopoles are dense and, therefore, the perturbation expansion around trivial vacuum cannot be applied. The maximal value of the cutoff at the given values of coupling constants calculated using the lattices of sizes $8^3\\times 16$ and $12^3\\times 16$ is $\\Lambda_c \\sim 1.4 \\pm 0.2$ Tev.
MAP, MAC, and vortex-rings configurations in the Weinberg-Salam model
Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming
2015-11-01
We report on the presence of new axially symmetric monopoles, antimonopoles and vortex-rings solutions of the SU(2)×U(1) Weinberg-Salam model of electromagnetic and weak interactions. When the ϕ-winding number n = 1, and 2, the configurations are monopole-antimonopole pair (MAP) and monopole-antimonopole chain (MAC) with poles of alternating sign magnetic charge arranged along the z-axis. Vortex-rings start to appear from the MAP and MAC configurations when the winding number n = 3. The MAP configurations possess zero net magnetic charge whereas the MAC configurations possess net magnetic charge of 4 πn / e. In the MAP configurations, the monopole-antimonopole pair is bounded by the Z0 field flux string and there is an electromagnetic current loop encircling it. The monopole and antimonopole possess magnetic charges ± 4πn/e sin2θW respectively. In the MAC configurations there is no string connecting the monopole and the adjacent antimonopole and they possess magnetic charges ± 4 πn/e respectively. The MAC configurations possess infinite total energy and zero magnetic dipole moment whereas the MAP configurations which are actually sphalerons possess finite total energy and magnetic dipole moment. The configurations were investigated for varying values of Higgs self-coupling constant 0 ≤ λ ≤ 40 at Weinberg angle θW = π/4.
Sphaleron and sphaleron-antisphaleron pair of the Weinberg-Salam model
Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming
2015-04-01
In this paper we present the full solutions of the Weinberg-Salam equations of motion for (1) the sphaleron and (2) the sphaleron-antisphaleron pair using numerical methods. In the SU(2) field part of the theory, the solutions obtained are (1) the one monopole-antimonopole pair and (2) the two monopole-antimonopole pairs respectively while in the U(1) field part, the solutions are (1) a one current loop and (2) two current loops respectively. In these sphaleron and sphaleron-antisphaleron pair solutions, both the sphaleron and antisphaleron are monopole-antimonopole pair (MAP) lying along the z-axis with an electromagnetic current loop circulating around it. The monopole and antimonopole in the MAP is joined by a flux string of the neutral ℒ0 field. In these solutions, the Weinberg angle is not arbitrary but it takes the value of θW=π/4 . The magnetic charges of the monopole and antimonopole in each MAP is ±2/π e which is half the magnetic charge of a Cho-Maison monopole. Hence the MAP poles are half-monopoles. These new axially symmetric solutions possess finite energy and magnetic dipole moment and they are investigated for a range of Higgs field mass term 0 ≤ µ2 ≤ 40. Their total energies are found to increase almost linearly with µ, whereas the magnetic dipole moments decrease exponentially fast with µ.
Standard model with Higgs as gauge field on fourth homotopy group
Guo, H; Wu, K; Guo, Hanying; Li, Jianming; Wu, Ke
1994-01-01
Based upon a first principle, the generalized gauge principle, we construct a general model with G_L\\times G'_R \\times Z_2 gauge symmetry, where Z_2=\\pi_4(G_L) is the fourth homotopy group of the gauge group G_L, by means of the non-commutative differential geometry and reformulate the Weinberg-Salam model and the standard model with the Higgs field being a gauge field on the fourth homotopy group of their gauge groups. We show that in this approach not only the Higgs field is automatically introduced on the equal footing with ordinary Yang-Mills gauge potentials and there are no extra constraints among the parameters at the tree level but also it most importantly is stable against quantum correlation.
Gauge theory of phase and scale
PAW\\LOWSKI, Marek
1999-01-01
Old Weyl's the idea of scale recalibration freedom and Infeld's and van der Waerden's (IW) ideas concerning geometrical interpretation of natural spinor phase gauge symmetry are discussed in the context of modern models of fundamental particle interactions. It is argued that (IW) gauge symmetry can be naturaly identified with the U(1) symmetry of the Weinberg-Salam model. It is also argued that there are no serious reasons to reject Weyl's gauge theory from consid...
Magnetic field screening effect in electroweak model
Bakry, A; Zhang, P M; Zou, L P
2014-01-01
It is shown that in the Weinberg-Salam model a magnetic field screening effect for static magnetic solutions takes place. The origin of that phenomenon is conditioned by features of the electro-weak interaction, namely, there is mutual cancellation of Abelian magnetic fields created by the SU(2) gauge fields and Higgs boson. The effect implies monopole charge screening in finite energy system of monopoles and antimonopoles. We consider another manifestation of the screening effect which leads to an essential energy decrease of magnetic solutions. Applying variational method we have found a magnetic field configuration with a topological azimuthal magnetic flux which minimizes the energy functional and possesses a total energy of order 1 TeV. We suppose that corresponding magnetic bound state exists in the electroweak theory and can be detected in experiment.
Energy Technology Data Exchange (ETDEWEB)
Garaud, J.
2010-09-15
In this dissertation, we analyze in detail the properties of new string-like solutions of the bosonic sector of the electroweak theory. The new solutions are current carrying generalizations of embedded Abrikosov-Nielsen-Olesen vortices. We were also able to reproduce all previously known features of vortices in the electroweak theory. Generically vortices are current carrying. They are made of a compact conducting core of charged W bosons surrounded by a nonlinear superposition of Z and Higgs field. Far away from the core, the solution is described by purely electromagnetic Biot and Savart field. Solutions exist for generic parameter values including experimental values of the coupling constants. We show that the current whose typical scale is the billion of Amperes can be arbitrarily large. In the second part the linear stability with respect to generic perturbations is studied. The fluctuation spectrum is qualitatively investigated. When negative modes are detected, they are explicitly constructed and their dispersion relation is determined. Most of the unstable modes can be eliminated by imposing periodic boundary conditions along the vortex. However there remains a unique negative mode which is homogeneous. This mode can probably be eliminated by curvature effects if a small piece of vortex is bent into a loop, stabilized against contraction by the electric current. (author)
Gauge Model with Massive Gravitons
Institute of Scientific and Technical Information of China (English)
WU Ning
2003-01-01
Gauge theory of gravity is formulated based on principle of local gauge invariance. Because the model hasstrict local gravitational gauge symmetry, and gauge theory of gravity is a perturbatively renormalizable quantum model.However, in the original model, all gauge gravitons are massless. We want to ask whether there exist massive gravitonsin Nature. In this paper, we will propose a gauge model with massive gravitons. The mass term of gravitational gaugefield is introduced into the theory without violating the strict local gravitational gauge symmetry. Massive gravitons canbe considered to be possible origin of dark energy and dark matter in the Universe.
Non-String Pursuit towards Unified Model on the Lattice
Kawamoto, N
1999-01-01
Non-standard overview on the possible formulation towards a unified model on the lattice is presented. It is based on the generalized gauge theory which is formulated by differential forms and thus expected to fit in a simplicial manifold. We first review suggestive known results towards this direction. As a small step of concrete realization of the program, we propose a lattice Chern-Simons gravity theory which leads to the Chern-Simons gravity in the continuum limit via Ponzano-Regge model. We then summarize the quantization procedure of the generalized gauge theory and apply the formulation to the generalized topological Yang-Mills action with instanton gauge fixing. We find N=2 super Yang-Mills theory with Dirac-K{ä}hler fermions which are generated from ghosts via twisting mechanism. The Weinberg-Salam model is formulated by the generalized Yang-Mills action which includes Connes's non-commutative geometry formulation as a particular case. In the end a possible scenario to realize the program is propose...
Computer modeling of piezoresistive gauges
Energy Technology Data Exchange (ETDEWEB)
Nutt, G. L.; Hallquist, J. O.
1981-08-07
A computer model of a piezoresistive gauge subject to shock loading is developed. The time-dependent two-dimensional response of the gauge is calculated. The stress and strain components of the gauge are determined assuming elastic-plastic material properties. The model is compared with experiment for four cases. An ytterbium foil gauge in a PPMA medum subjected to a 0.5 Gp plane shock wave, where the gauge is presented to the shock with its flat surface both parallel and perpendicular to the front. A similar comparison is made for a manganin foil subjected to a 2.7 Gp shock. The signals are compared also with a calibration equation derived with the gauge and medium properties accounted for but with the assumption that the gauge is in stress equilibrium with the shocked medium.
Alternate Gauge Electroweak Model
Dalton, Bill
2010-01-01
We describe an alternate gauge electroweak model that permits neutrinos with mass, and at the same time explains why right-handed neutrinos do not appear in weak interactions. This is a local gauge theory involving a space [V ] of three scalar functions. The standard Lagrangian density for the Yang-Mills field part and Higgs doublet remain invariant. A ma jor change is made in the transformation and corresponding Lagrangian density parts involving the right-handed leptons. A picture involving two types of right-handed leptons emerges. A dichotomy of matter on the [V ] space corresponds to coupled and uncoupled right-handed Leptons. Here, we describe a covariant dipole-mode solution in which the neutral bosons A{\\mu} and Z{\\mu} produce precessions on [V ]. The W {\\pm} {\\mu} bosons provide nutations on [V ], and consequently, provide transitions between the coupled and uncoupled regions. To elucidate the [V ] space matter dichotomy, and to generate the boson masses, we also provide an alternate potential Lagran...
Gauging the Poisson sigma model
Zucchini, Roberto
2008-01-01
We show how to carry out the gauging of the Poisson sigma model in an AKSZ inspired formulation by coupling it to the a generalization of the Weil model worked out in ref. arXiv:0706.1289 [hep-th]. We call the resulting gauged field theory, Poisson--Weil sigma model. We study the BV cohomology of the model and show its relation to Hamiltonian basic and equivariant Poisson cohomology. As an application, we carry out the gauge fixing of the pure Weil model and of the Poisson--Weil model. In the first case, we obtain the 2--dimensional version of Donaldson--Witten topological gauge theory, describing the moduli space of flat connections on a closed surface. In the second case, we recover the gauged A topological sigma model worked out by Baptista describing the moduli space of solutions of the so--called vortex equations.
Mixing angles in SU(2)/sub L/ x U(1) gauge model
Energy Technology Data Exchange (ETDEWEB)
Nandi, S.; Tanaka, K.
1979-01-01
Exact expressions for the mixing parameters are obtained in terms of mass ratios in the standard Weinberg-Salam model with permutation symmetry S/sub 3/ for six quarks. The CP-violating phase is ignored, and there are no arbitrary parameters except for the quark masses. In the lowest order, the angles defined by Kobayashi-Maskawa are sin theta/sub 1/ = sin theta/sub c/ = (m/sub d//m/sub d/ + m/sub s/)/sup 1/2/, sin theta/sub 3/ = -sin theta/sub 3/ = -m/sup 2//sub s//m/sup 2//sub b/, and m/sub t/m/sub s/ greater than or equal to m/sub c/m/sub b/ = 7.2 GeV/sup 2/ or m/sub t/ greater than or equal to 24 GeV for m/sub s/ = 0.3 GeV.
Beyond the standard gauging: gauge symmetries of Dirac sigma models
Chatzistavrakidis, Athanasios; Deser, Andreas; Jonke, Larisa; Strobl, Thomas
2016-08-01
In this paper we study the general conditions that have to be met for a gauged extension of a two-dimensional bosonic σ-model to exist. In an inversion of the usual approach of identifying a global symmetry and then promoting it to a local one, we focus directly on the gauge symmetries of the theory. This allows for action functionals which are gauge invariant for rather general background fields in the sense that their invariance conditions are milder than the usual case. In particular, the vector fields that control the gauging need not be Killing. The relaxation of isometry for the background fields is controlled by two connections on a Lie algebroid L in which the gauge fields take values, in a generalization of the common Lie-algebraic picture. Here we show that these connections can always be determined when L is a Dirac structure in the H-twisted Courant algebroid. This also leads us to a derivation of the general form for the gauge symmetries of a wide class of two-dimensional topological field theories called Dirac σ-models, which interpolate between the G/G Wess-Zumino-Witten model and the (Wess-Zumino-term twisted) Poisson sigma model.
Beyond the standard gauging: gauge symmetries of Dirac Sigma Models
Chatzistavrakidis, Athanasios; Jonke, Larisa; Strobl, Thomas
2016-01-01
In this paper we study the general conditions that have to be met for a gauged extension of a two-dimensional bosonic sigma-model to exist. In an inversion of the usual approach of identifying a global symmetry and then promoting it to a local one, we focus directly on the gauge symmetries of the theory. This allows for action functionals which are gauge invariant for rather general background fields in the sense that their invariance conditions are milder than the usual case. In particular, the vector fields that control the gauging need not be Killing. The relaxation of isometry for the background fields is controlled by two connections on a Lie algebroid L in which the gauge fields take values, in a generalization of the common Lie-algebraic picture. Here we show that these connections can always be determined when L is a Dirac structure in the H-twisted Courant algebroid. This also leads us to a derivation of the general form for the gauge symmetries of a wide class of two-dimensional topological field th...
Lattice Gauge Theories and Spin Models
Mathur, Manu
2016-01-01
The Wegner $Z_2$ gauge theory-$Z_2$ Ising spin model duality in $(2+1)$ dimensions is revisited and derived through a series of canonical transformations. These $Z_2$ results are directly generalized to SU(N) lattice gauge theory in $(2+1)$ dimensions to obtain a dual SU(N) spin model in terms of the SU(N) magnetic fields and electric scalar potentials. The gauge-spin duality naturally leads to a new gauge invariant disorder operator for SU(N) lattice gauge theory. A variational ground state of the dual SU(2) spin model with only nearest neighbour interactions is constructed to analyze SU(2) lattice gauge theory.
Perturbative analysis of gauged matrix models
Dijkgraaf, Robbert; Gukov, Sergei; Kazakov, Vladimir A.; Vafa, Cumrun
2003-08-01
We analyze perturbative aspects of gauged matrix models, including those where classically the gauge symmetry is partially broken. Ghost fields play a crucial role in the Feynman rules for these vacua. We use this formalism to elucidate the fact that nonperturbative aspects of N=1 gauge theories can be computed systematically using perturbative techniques of matrix models, even if we do not possess an exact solution for the matrix model. As examples we show how the Seiberg-Witten solution for N=2 gauge theory, the Montonen-Olive modular invariance for N=1*, and the superpotential for the Leigh-Strassler deformation of N=4 can be systematically computed in perturbation theory of the matrix model or gauge theory (even though in some of these cases an exact answer can also be obtained by summing up planar diagrams of matrix models).
Perturbative Analysis of Gauged Matrix Models
Dijkgraaf, R; Kazakov, V A; Vafa, C; Dijkgraaf, Robbert; Gukov, Sergei; Kazakov, Vladimir A.; Vafa, Cumrun
2003-01-01
We analyze perturbative aspects of gauged matrix models, including those where classically the gauge symmetry is partially broken. Ghost fields play a crucial role in the Feynman rules for these vacua. We use this formalism to elucidate the fact that non-perturbative aspects of N=1 gauge theories can be computed systematically using perturbative techniques of matrix models, even if we do not possess an exact solution for the matrix model. As examples we show how the Seiberg-Witten solution for N=2 gauge theory, the Montonen-Olive modular invariance for N=1*, and the superpotential for the Leigh-Strassler deformation of N=4 can be systematically computed in perturbation theory of the matrix model/gauge theory (even though in some of these cases the exact answer can also be obtained by summing up planar diagrams of matrix models).
Lattice gauge theories and spin models
Mathur, Manu; Sreeraj, T. P.
2016-10-01
The Wegner Z2 gauge theory-Z2 Ising spin model duality in (2 +1 ) dimensions is revisited and derived through a series of canonical transformations. The Kramers-Wannier duality is similarly obtained. The Wegner Z2 gauge-spin duality is directly generalized to SU(N) lattice gauge theory in (2 +1 ) dimensions to obtain the SU(N) spin model in terms of the SU(N) magnetic fields and their conjugate SU(N) electric scalar potentials. The exact and complete solutions of the Z2, U(1), SU(N) Gauss law constraints in terms of the corresponding spin or dual potential operators are given. The gauge-spin duality naturally leads to a new gauge invariant magnetic disorder operator for SU(N) lattice gauge theory which produces a magnetic vortex on the plaquette. A variational ground state of the SU(2) spin model with nearest neighbor interactions is constructed to analyze SU(2) gauge theory.
Nonpertubative Solutions of Massless Gauged Thirring Model
Bufalo, R.; Casana, R.; Pimentel, B. M.
2010-11-01
We present a nonperturbative quantization of the two-dimensional massless gauged Thirring model by using the path-integral approach. First, we will study the constraint structure of model via the Dirac's formalism and by using the Faddeev-Senjanovic method we calculate the vacuum-vacuum transition amplitude in a Rξ-gauge, then we compute the Green's functions in a nonperturbative framework.
Gauge models in modified triplectic quantization
Geyer, B; Moshin, P Y; Geyer, Bodo; Lavrov, Petr M.; Moshin, Pavel Yu.
2001-01-01
We apply the modified triplectic formalism for quantizing several popular gauge models - non-abelian antisymmetric tensor field model, W2-gravity and two-dimensional gravity with dynamical torsion. The explicit solutions are obtained for the generating equations of the quantum action and the gauge-fixing functional. Using these solutions we construct the vacuum functional and obtain the corresponding transformations of the extended BRST symmetry.
Integrable Lattice Models From Gauge Theory
Witten, Edward
2016-01-01
These notes provide an introduction to recent work by Kevin Costello in which integrable lattice models of classical statistical mechanics in two dimensions are understood in terms of quantum gauge theory in four dimensions. This construction will be compared to the more familiar relationship between quantum knot invariants in three dimensions and Chern-Simons gauge theory. (Based on a Whittaker Colloquium at the University of Edinburgh and a lecture at Strings 2016 in Beijing.)
Magnetic monopoles and vortices in the standard model of electroweak interactions
Achúcarro, A
2000-01-01
These lectures start with an elementary introduction to the subject of magnetic monopoles which should be accesible from any physics background. In the Weinberg-Salam model of electroweak interactions, magnetic monopoles appear at the ends of a type of non-topological vortices called electroweak strings. These will also be discussed, as well as recent simulations of their formation during a phase transition which indicate that, in the (unphysical) range of parameters in which the strings are classically stable, they can form with a density comparable to topological vortices.
Standard model with partial gauge invariance
Chkareuli, J. L.; Kepuladze, Z.
2012-03-01
We argue that an exact gauge invariance may disable some generic features of the Standard Model which could otherwise manifest themselves at high energies. One of them might be related to the spontaneous Lorentz invariance violation (SLIV), which could provide an alternative dynamical approach to QED and Yang-Mills theories with photon and non-Abelian gauge fields appearing as massless Nambu-Goldstone bosons. To see some key features of the new physics expected we propose partial rather than exact gauge invariance in an extended SM framework. This principle applied, in some minimal form, to the weak hypercharge gauge field B μ and its interactions, leads to SLIV with B field components appearing as the massless Nambu-Goldstone modes, and provides a number of distinctive Lorentz breaking effects. Being naturally suppressed at low energies they may become detectable in high energy physics and astrophysics. Some of the most interesting SLIV processes are considered in significant detail.
A simple model of direct gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Zheng Sibo, E-mail: sibozheng.zju@gmail.com [Department of Physics, Chongqing University, Chongqing 401331 (China); Yu Yao [Department of Physics, Chongqing University, Chongqing 401331 (China)
2012-03-23
In the context of direct gauge mediation Wess-Zumino models are very attractive in supersymmetry model building. Besides the spontaneous supersymmetry and R-symmetry breaking, the problems of small gaugino mass as well as {mu} and B{mu} terms should be solved so as to achieve a viable model. In this Letter, we propose a simple model as an existence proof, in which all these subjects are realized simultaneously, with no need of fine tuning. This completion also implies that much of parameter space for direct gauge mediation can be directly explored at LHC.
Emergence of gauge invariance from Nambu models
Urrutia, L F
2016-01-01
In the framework of a hamiltonian nonperturbative approach we show that after demanding current conservation together with the Gauss constraints at some initial time in a nonabelian Nambu model, we recover the corresponding Yang-Mills theory. In this way, the spontaneous Lorentz symmetry breaking present in the Nambu model becomes unobservable and the Goldstone modes can be identified with the corresponding gauge bosons.
Gauged spinning models with deformed supersymmetry
Fedoruk, Sergey
2016-01-01
New models of the SU(2|1) supersymmetric mechanics based on gauging the systems with dynamical (1,4,3) and semi-dynamical (4,4,0) supermultiplets are presented. We propose a new version of SU(2|1) harmonic superspace approach which makes it possible to construct the Wess-Zumino term for interacting (4,4,0) multiplets. A new N=4 extension of d=1 Calogero-Moser multiparticle system is obtained by gauging the U(n) isometry of matrix SU(2|1) harmonic superfield model.
Noncommutative Gauge Theories: Model for Hodge theory
Upadhyay, Sudhaker
2013-01-01
The nilpotent BRST, anti-BRST, dual-BRST and anti-dual-BRST symmetry transformations are constructed in the context of noncommutative (NC) 1-form as well as 2-form gauge theories. The corresponding Noether's charges for these symmetries on the Moyal plane are shown to satisfy the same algebra as by the de Rham cohomological operators of differential geometry. The Hodge decomposition theorem on compact manifold is also studied. We show that noncommutative gauge theories are field theoretic models for Hodge theory.
Gauge invariant actions for string models
Energy Technology Data Exchange (ETDEWEB)
Banks, T.
1986-06-01
String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs.
Gauge-invariant massive BF models
Energy Technology Data Exchange (ETDEWEB)
Bizdadea, Constantin; Saliu, Solange-Odile [University of Craiova, Department of Physics, Craiova (Romania)
2016-02-15
Consistent interactions that can be added to a free, Abelian gauge theory comprising a BF model and a finite set of massless real scalar fields are constructed from the deformation of the solution to the master equation based on specific cohomological techniques. Under the hypotheses of analyticity in the coupling constant, Lorentz covariance, spacetime locality, and Poincare invariance, supplemented with the requirement of the preservation of the number of derivatives on each field with respect to the free theory, we see that the deformation procedure leads to two classes of gauge-invariant interacting theories with a mass term for the BF vector field A{sub μ} with U(1) gauge invariance. In order to derive this result we have not used the Higgs mechanism based on spontaneous symmetry breaking. (orig.)
Gauge-invariant massive BF models
Bizdadea, Constantin; Saliu, Solange-Odile
2016-02-01
Consistent interactions that can be added to a free, Abelian gauge theory comprising a BF model and a finite set of massless real scalar fields are constructed from the deformation of the solution to the master equation based on specific cohomological techniques. Under the hypotheses of analyticity in the coupling constant, Lorentz covariance, spacetime locality, and Poincaré invariance, supplemented with the requirement of the preservation of the number of derivatives on each field with respect to the free theory, we see that the deformation procedure leads to two classes of gauge-invariant interacting theories with a mass term for the BF vector field A_{μ } with U(1) gauge invariance. In order to derive this result we have not used the Higgs mechanism based on spontaneous symmetry breaking.
Gauge-invariant massive BF models
Bizdadea, Constantin
2015-01-01
Consistent interactions that can be added to a free, Abelian gauge theory comprising a BF model and a finite set of massless real scalar fields are constructed from the deformation of the solution to the master equation based on specific cohomological techniques. Under the hypotheses of analyticity in the coupling constant, Lorentz covariance, spacetime locality, Poincare invariance, supplemented with the requirement on the preservation of the number of derivatives on each field with respect to the free theory, we obtain that the deformation procedure leads to two classes of gauge-invariant interacting theories with a mass term for the BF vector field $A_{\\mu }$ with U(1) gauge invariance. In order to derive this result we have not used the Higgs mechanism based on spontaneous symmetry breaking.
Flavor Gauge Models Below the Fermi Scale
Energy Technology Data Exchange (ETDEWEB)
Babu, K. S. [Oklahoma State U.; Friedland, A. [SLAC; Machado, P. A.N. [Madrid, IFT; Mocioiu, I. [Penn State U.
2017-05-04
The mass and weak interaction eigenstates for the quarks of the third generation are very well aligned, an empirical fact for which the Standard Model offers no explanation. We explore the possibility that this alignment is due to an additional gauge symmetry in the third generation. Specifically, we construct and analyze an explicit, renormalizable model with a gauge boson, $X$, corresponding to the $B-L$ symmetry of the third family. Having a relatively light (in the MeV to multi-GeV range), flavor-nonuniversal gauge boson results in a variety of constraints from different sources. By systematically analyzing 20 different constraints, we identify the most sensitive probes: kaon, $D^+$ and Upsilon decays, $D-\\bar{D}^0$ mixing, atomic parity violation, and neutrino scattering and oscillations. For the new gauge coupling $g_X$ in the range $(10^{-2} - 10^{-4})$ the model is shown to be consistent with the data. Possible ways of testing the model in $b$ physics, top and $Z$ decays, direct collider production and neutrino oscillation experiments, where one can observe nonstandard matter effects, are outlined. The choice of leptons to carry the new force is ambiguous, resulting in additional phenomenological implications, such as non-universality in semileptonic bottom decays. The proposed framework provides interesting connections between neutrino oscillations, flavor and collider physics.
The Landscape of Free Fermionic Gauge Models
Moore, Douglas G.
A software framework is developed to systematically construct a particular class of weakly coupled free fermionic heterotic string models, dubbed gauge models. In their purest form, these models are maximally supersymmetric (N = 4), and thus only contain superpartners in their matter sector. This feature makes their system- atic construction particularly efficient, and they are thus useful in their simplicity. We first provide a brisk introduction to heterotic strings and the spin-structure construction of free fermionic models. Three systematic surveys are then presented, and we conjecture that these surveys are exhaustive modulo redundancies. Finally we present a collection of metaheuristic algorithms for searching the landscape for models with a user-specified spectrum of phenomenological properties, e.g. gauge group and number of spacetime supersymmetries. Such algorithms provide the groundwork for extended generic free fermionic surveys.
(1)-covariant gauge for the two-Higgs doublet model
Indian Academy of Sciences (India)
C G Honorato; J J Toscano
2009-12-01
A (1)-covariant gauge for the two-Higgs doublet model based on BRST (Becchi–Rouet–Stora–Tyutin) symmetry is introduced. This gauge allows one to remove a significant number of nonphysical vertices appearing in conventional linear gauges, which greatly simplifies the loop calculations, since the resultant theory satisfies QED-like Ward identities. The presence of four ghost interactions in these types of gauges and their connection with the BRST symmetry are stressed. The Feynman rules for those new vertices that arise in this gauge, as well as for those couplings already present in the linear gauge but that are modified by this gauge-fixing procedure, are presented.
Utilitarian Supersymmetric Gauge Model of Particle Interactions
Ma, Ernest
2010-01-01
A remarkable U(1) gauge extension of the supersymmetric standard model was proposed eight years ago. It is anomaly-free, has no mu term, and conserves baryon and lepton numbers automatically. The phenomenology of a specific version of this model is discussed. In particular, leptoquarks are predicted, with couplings to the heavy singlet neutrinos, the scalar partners of which may be components of dark matter. The Majorana neutrino mass matrix itself may have two zero subdeterminants.
Gauge Unification from Split Supersymmetric String Models
Kokorelis, Christos
2016-01-01
We discuss the unification of gauge coupling constants in non-supersymmetric open string vacua that possess the properties of Split Supersymmetry, namely the Standard Model with Higgsinos at low energies and where the Standard model spectrum is always accompanied by right handed neutrinos. These vacua achieve partial unification of two out of three (namely SU(3)$_c$, SU(2), U(1)) running gauge couplings, possess massive gauginos and light Higgsinos at low energies and also satisfy $sin^2\\theta_w (M_s) = 3/8$. These vacua are based on four dimensional orbifold $Z_3 \\times Z_3$ compactifications of string IIA orientifolds with D6-branes intersecting at angles, where the (four dimensional) chiral fermions of the Standard Model appear as opens strings streching between the intersections of seven dimensional objects the so called D6-branes.
Gauge theories and integrable lattice models
Witten, Edward
1989-08-01
Investigations of new knot polynomials discovered in the last few years have shown them to be intimately connected with soluble models of two dimensional lattice statistical mechanics. In this paper, these results, which in time may illuminate the whole question of why integrable lattice models exist, are reconsidered from the point of view of three dimensional gauge theory. Expectation values of Wilson lines in three dimensional Chern-Simons gauge theories can be computed by evaluating the partition functions of certain lattice models on finite graphs obtained by projecting the Wilson lines to the plane. The models in question — previously considered in both the knot theory and statistical mechanics — are IRF models in which the local Boltzmann weights are the matrix elements of braiding matrices in rational conformal field theories. These matrix elements, in turn, can be presented in three dimensional gauge theory in terms of the expectation value of a certain tetrahedral configuration of Wilson lines. This representation makes manifest a surprising symmetry of the braiding matrix elements in conformal field theory.
Gauge Mediation Models with Adjoint Messengers
Gogoladze, Ilia; Shafi, Qaisar; Un, Cem Salih
2016-01-01
We present a class of models in the framework of gauge mediation supersymmetry breaking where the messenger fields transform in the adjoint representation of the Standard Model gauge symmetry. To avoid unacceptably light right-handed sleptons in the spectrum we introduce a non-zero U(1)_B-L D-term. This leads to an additional contribution to the soft supersymmetry breaking mass terms which makes the right-handed slepton masses compatible with the current experimental bounds. We show that in this framework the observed 125 GeV Higgs boson mass can be accommodated with the sleptons accessible at the LHC, while the squarks and gluinos lie in the multi-TeV range. We also discuss the issue of the fine-tuning and show that the desired relic dark matter abundance can also be accommodated.
Non-abelian supercurrents and de Sitter ground state in electroweak theory
Chernodub, M N; Niemi, Antti J
2008-01-01
We show that all undesired gauge dependence in the Weinberg-Salam model can be eliminated by a mere change of variables, without any explicit gauge fixing. The change of variables introduces a separation between the isospin and the hypercharge. We then discuss various properties of the variables including the description of embedded topological defects, and an interpretation in terms of conformal geometry with the Higgs field as a dilaton.
Approximate Noether gauge symmetries of the Bardeen model
Energy Technology Data Exchange (ETDEWEB)
Camci, U. [Akdeniz University, Department of Physics, Faculty of Science, Antalya (Turkey)
2014-12-01
We investigate the approximate Noether gauge symmetries of the geodesic Lagrangian for the Bardeen spacetime model. This is accommodated by a set of new approximate Noether gauge symmetry relations for the perturbed geodesic Lagrangian in the spacetime. A detailed analysis of the spacetime of the Bardeen model up to third-order approximate Noether gauge symmetries is presented. (orig.)
Comparing the Rξ gauge and the unitary gauge for the standard model: An example
Wu, Tai Tsun; Wu, Sau Lan
2017-01-01
For gauge theory, the matrix element for any physical process is independent of the gauge used. However, since this is a formal statement, it does not guarantee this gauge independence in every case. An example is given here where, for a physical process in the standard model, the matrix elements calculated with two different gauge - the Rξ gauge and the unitary gauge - are explicitly verified to be different. This is accomplished by subtracting one matrix element from the other. This non-zero difference turns out to have a subtle origin. Two simple operators are found not to commute with each other: in one gauge these two operations are carried out in one order, while in the other gauge these same two operations are carried out in the opposite order. Because of this result, a series of question are raised such that the answers to these question may lead to a deeper understanding of the Yang-Mills non-Abelian gauge theory in general and the standard model in particular.
River Network Modeling Beyond Discharge at Gauges
David, C. H.; Famiglietti, J. S.; Salas, F. R.; Whiteaker, T. L.; Maidment, D. R.; Tolle, K.
2014-12-01
Over the past two decades, the estimation of water flow in river networks within hydro-meteorological models has mostly focused on simulations of natural processes and on their verification at available river gauges. Despite valuable existing skills in hydrologic modeling the accounting for anthropogenic actions in current models remains limited. The emerging availability of datasets containing measured dam outflows and reported irrigation withdrawals motivates their inclusion into simulations of flow in river networks. However, the development of advanced river network models accounting for such datasets of anthropogenic influences requires a detailed data model and a thorough handling of the various data types, sources and time scales. This contribution details the development of a consistent data model suitable for accounting some observations of anthropogenic modifications of the surface water cycle and presents the impact of such inclusion on simulations using the Routing Application for Parallel computatIon of Discharge (RAPID).
Noncommutative 6D Gauge Higgs Unification Models
Lopez-Dominguez, J C; Ramírez, C
2005-01-01
The influence of higher dimensions in noncommutative field theories is considered. For this purpose, we analize the bosonic sector of a recently proposed 6 dimensional SU(3) orbifold model for the electroweak interactions. The corresponding noncommutative theory is constructed by means of the Seiberg-Witten map in 6D. We find, in the corresponding 4D theory, couplings between the gauge and Higgs fields with interesting phenomenological implications and which are new with respect to other known 4D noncommutative formulations under the Seiberg-Witten map.
SUSY CP problem in gauge mediation model
Energy Technology Data Exchange (ETDEWEB)
Moroi, Takeo [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Yokozaki, Norimi, E-mail: yokozaki@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)
2011-07-27
SUSY CP problem in the gauge mediation supersymmetry breaking model is reconsidered. We pay particular attention to two sources of CP violating phases whose effects were not seriously studied before; one is the effect of the breaking of the GUT relation among the gaugino masses due to the field responsible for the GUT symmetry breaking, and the other is the supergravity effect on the supersymmetry breaking parameters, in particular, on the bi-linear supersymmetry breaking Higgs mass term. We show that both of them can induce too large electric dipole moments of electron, neutron, and so on, to be consistent with the experimental bounds.
Quiver gauge theories and integrable lattice models
Yagi, Junya
2015-01-01
We discuss connections between certain classes of supersymmetric quiver gauge theories and integrable lattice models from the point of view of topological quantum field theories (TQFTs). The relevant classes include 4d $\\mathcal{N} = 1$ theories known as brane box and brane tilling models, 3d $\\mathcal{N} = 2$ and 2d $\\mathcal{N} = (2,2)$ theories obtained from them by compactification, and 2d $\\mathcal{N} = (0,2)$ theories closely related to these theories. We argue that their supersymmetric indices carry structures of TQFTs equipped with line operators, and as a consequence, are equal to the partition functions of lattice models. The integrability of these models follows from the existence of extra dimension in the TQFTs, which emerges after the theories are embedded in M-theory. The Yang-Baxter equation expresses the invariance of supersymmetric indices under Seiberg duality and its lower-dimensional analogs.
Quiver gauge theories and integrable lattice models
Energy Technology Data Exchange (ETDEWEB)
Yagi, Junya [International School for Advanced Studies (SISSA),via Bonomea 265, 34136 Trieste (Italy); INFN - Sezione di Trieste,via Valerio 2, 34149 Trieste (Italy)
2015-10-09
We discuss connections between certain classes of supersymmetric quiver gauge theories and integrable lattice models from the point of view of topological quantum field theories (TQFTs). The relevant classes include 4d N=1 theories known as brane box and brane tilling models, 3d N=2 and 2d N=(2,2) theories obtained from them by compactification, and 2d N=(0,2) theories closely related to these theories. We argue that their supersymmetric indices carry structures of TQFTs equipped with line operators, and as a consequence, are equal to the partition functions of lattice models. The integrability of these models follows from the existence of extra dimension in the TQFTs, which emerges after the theories are embedded in M-theory. The Yang-Baxter equation expresses the invariance of supersymmetric indices under Seiberg duality and its lower-dimensional analogs.
Gauge Anomalies and Neutrino Seesaw Models
Neves Cebola, Luis Manuel
Despite the success of the Standard Model concerning theoretical predictions, there are several experimental results that cannot be explained and there are reasons to believe that there exists new physics beyond it. Neutrino oscillations, and hence their masses, are examples of this. Experimentally it is known that neutrinos masses are quite small, when compared to all Standard Model particle masses. Among the theoretical possibilities to explain these tiny masses, the seesaw mechanism is a simple and well-motivated framework. In its minimal version, heavy particles are introduced that decouple from the theory in the early universe. To build consistent theories, classical symmetries need to be preserved at quantum level, so that there are no anomalies. The cancellation of these anomalies leads to constraints in the parameters of the theory. One attractive solution is to realize the anomaly cancellation through the modication of the gauge symmetry. In this thesis we present a short review of some features of t...
Perturbative unification of gauge couplings in supersymmetric E6 models
Cho, Gi-Chol; Maru, Nobuhito; Yotsutani, Kaho
2016-07-01
We study gauge coupling unification in supersymmetric (SUSY) E6 models where an additional U(1)‧ gauge symmetry is broken near the TeV scale and a number of exotic matter fields from the 27 representations have O(TeV) mass. Solving the two-loop renormalization group equations (RGE) of gauge couplings and a kinetic mixing coupling between the U(1)‧ and U(1)Y gauge fields, we find that the gauge couplings fall into the non-perturbative regime below the grand unified theories (GUT) scale. We examine threshold corrections on the running of gauge couplings from both light and heavy ( ˜ GUT scale) particles and show constraints on the size of corrections to achieve the perturbative unification of gauge couplings.
Vortices in gauge models at finite density with vector condensates
Gorbar, E V; Miransky, V A; Jia, Junji
2006-01-01
There exists a class of gauge models incorporating a finite density of matter in which the Higgs mechanism is provided by condensates of gauge (or gauge and scalar) fields, i.e., there are vector condensates in this case. We describe vortex solutions in the simplest model in this class, the gauged $SU(2)\\times U(1)_Y$ $\\sigma$-model with the chemical potential for hypercharge $Y$, in which the gauge symmetry is completely broken. It is shown that there are three types of topologically stable vortices in the model, connected either with photon field or hypercharge gauge field, or with both of them. Explicit vortex solutions are numerically found and their energy per unit length are calculated. The relevance of these solutions for the gluonic phase in the dense two-flavor QCD is discussed.
Quantum gauge models without (classical) Higgs mechanism
Energy Technology Data Exchange (ETDEWEB)
Duetsch, Michael [Univ. Goettingen, Courant Research Center ' ' Higher order Structures in Mathematics' ' , Mathematisches Institut, Goettingen (Germany); Gracia-Bondia, Jose M. [Universidad de Zaragoza, Departamento de Fisica Teorica, Zaragoza (Spain); Scheck, Florian [Johannes Gutenberg-Universitaet, Institut fuer Physik, Theoretische Elementarteilchenphysik, Mainz (Germany); Varilly, Joseph C. [Universidad de Costa Rica, Escuela de Matematica, San Jose (Costa Rica)
2010-10-15
We examine the status of massive gauge theories, such as those usually obtained by spontaneous symmetry breakdown, from the viewpoint of causal (Epstein-Glaser) renormalization. The BRST formulation of gauge invariance in this framework, starting from canonical quantization of massive (as well as massless) vector bosons as fundamental entities, and proceeding perturbatively, allows one to rederive the reductive group symmetry of interactions, the need for scalar fields in gauge theory, and the covariant derivative. Thus the presence of higgs particles is understood without recourse to a Higgs(-Englert-Brout-Guralnik-Hagen-Kibble) mechanism. Along the way, we dispel doubts about the compatibility of causal gauge invariance with grand unified theories. (orig.)
Unification of SU(2)xU(1) Using a Generalized Covariant Derivative and U(3)
Chaves, M
1998-01-01
A generalization of the Yang-Mills covariant derivative, that uses both vector and scalar fields and transforms as a 4-vector contracted with Dirac matrices, is used to simplify and unify the Glashow-Weinberg-Salam model. Since SU(3) assigns the wrong hypercharge to the Higgs boson, it is necessary to use a special representation of U(3) to obtain all the correct quantum numbers. A surplus gauge scalar boson emerges in the process, but it uncouples from all other particles.
Flavour Dependent Gauged Radiative Neutrino Mass Model
Baek, Seungwon; Yagyu, Kei
2015-01-01
We propose a one-loop induced radiative neutrino mass model with anomaly free flavour dependent gauge symmetry: $\\mu$ minus $\\tau$ symmetry $U(1)_{\\mu-\\tau}$. A neutrino mass matrix satisfying current experimental data can be obtained by introducing a weak isospin singlet scalar boson that breaks $U(1)_{\\mu-\\tau}$ symmetry, an inert doublet scalar field, and three right-handed neutrinos in addition to the fields in the standard model. We find that a characteristic structure appears in the neutrino mass matrix: two-zero texture form which predicts three non-zero neutrino masses and three non-zero CP-phases which can be determined five well measured experimental inputs of two squared mass differences and three mixing angles. Furthermore, it is clarified that only the inverted mass hierarchy is allowed in our model. In a favored parameter set from the neutrino sector, the discrepancy in the muon anomalous magnetic moment between the experimental data and the the standard model prediction can be explained by the ...
Kaluza-Klein monopoles and gauged sigma-models
Bergshoeff, E; Janssen, B; Ortin, T; Alvarez-Gaumé, L.
1997-01-01
We propose an effective action for the eleven-dimensional (bosonic) Kaluza-Klein monopole solution. The construction of the action requires that the background fields admit an Abelian isometry group. The corresponding sigma-model is gauged with respect to this isometry. The gauged sigma-model is the
Kaluza-Klein Monopoles and Gauged Sigma Models
Bergshoeff, E.A.
1998-01-01
We review some aspects of branes. In particular, we discuss the worldvolume theory describing the dynamics of the Kaluza-Klein monopole which turns out to be a gauged sigma model. We also briefly review some recent applications of gauged sigma models to the worldvolume description of massive branes,
A model to localize gauge fields on thick branes
Chumbes, A E R; Hott, M B
2011-01-01
It is shown that the introduction of a suitable function in the higher dimensional gauge field action may be used in order to achieve gauge bosons localization on a thick brane. The model is constructed upon analogies to the effective coupling of neutral scalar field to electromagnetic field and to the Friedberg-Lee model for hadrons.
EW scale DM models with dark gauge symmetries
Ko, P
2016-01-01
In this talk, I describe a class of electroweak (EW) scale dark matter (DM) models where its stability or longevity are the results of underlying dark gauge symmetries: stable due to unbroken local dark gauge symmetry or topology, or long-lived due to the accidental global symmetry of dark gauge theories. Compared with the usual phenomenological dark matter models (including DM EFT or simplified DM models), DM models with local dark gauge symmetries include dark gauge bosons, dark Higgs bosons and sometimes excited dark matter. And dynamics among these fields are completely fixed by local gauge principle. The idea of singlet portals including the Higgs portal can thermalize these hidden sector dark matter very efficiently, so that these DM could be easily thermal DM. I also discuss the limitation of the usual DM effective field theory or simplified DM models without the full SM gauge symmetry, and emphasize the importance of the full SM gauge symmetry and renormalizability especially for collider searches for...
Unification of gauge couplings in radiative neutrino mass models
DEFF Research Database (Denmark)
Hagedorn, Claudia; Ohlsson, Tommy; Riad, Stella
2016-01-01
We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively...
Twisted gauge theories in 3D Walker-Wang models
Wang, Zitao
2016-01-01
Three dimensional gauge theories with a discrete gauge group can emerge from spin models as a gapped topological phase with fractional point excitations (gauge charge) and loop excitations (gauge flux). It is known that 3D gauge theories can be "twisted", in the sense that the gauge flux loops can have nontrivial braiding statistics among themselves and such twisted gauge theories are realized in models discovered by Dijkgraaf and Witten. A different framework to systematically construct three dimensional topological phases was proposed by Walker and Wang and a series of examples have been studied. Can the Walker Wang construction be used to realize the topological order in twisted gauge theories? This is not immediately clear because the Walker-Wang construction is based on a loop condensation picture while the Dijkgraaf-Witten theory is based on a membrane condensation picture. In this paper, we show that the answer to this question is Yes, by presenting an explicit construction of the Walker Wang models wh...
Gauge-Higgs Unification Models in Six Dimensions with S2/Z2 Extra Space and GUT Gauge Symmetry
Directory of Open Access Journals (Sweden)
Cheng-Wei Chiang
2012-01-01
Full Text Available We review gauge-Higgs unification models based on gauge theories defined on six-dimensional spacetime with S2/Z2 topology in the extra spatial dimensions. Nontrivial boundary conditions are imposed on the extra S2/Z2 space. This review considers two scenarios for constructing a four-dimensional theory from the six-dimensional model. One scheme utilizes the SO(12 gauge symmetry with a special symmetry condition imposed on the gauge field, whereas the other employs the E6 gauge symmetry without requiring the additional symmetry condition. Both models lead to a standard model-like gauge theory with the SU(3×SU(2L×U(1Y(×U(12 symmetry and SM fermions in four dimensions. The Higgs sector of the model is also analyzed. The electroweak symmetry breaking can be realized, and the weak gauge boson and Higgs boson masses are obtained.
Large field inflation models from higher-dimensional gauge theories
Furuuchi, Kazuyuki; Koyama, Yoji
2015-02-01
Motivated by the recent detection of B-mode polarization of CMB by BICEP2 which is possibly of primordial origin, we study large field inflation models which can be obtained from higher-dimensional gauge theories. The constraints from CMB observations on the gauge theory parameters are given, and their naturalness are discussed. Among the models analyzed, Dante's Inferno model turns out to be the most preferred model in this framework.
Large field inflation models from higher-dimensional gauge theories
Energy Technology Data Exchange (ETDEWEB)
Furuuchi, Kazuyuki [Manipal Centre for Natural Sciences, Manipal University, Manipal, Karnataka 576104 (India); Koyama, Yoji [Department of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan R.O.C. (China)
2015-02-23
Motivated by the recent detection of B-mode polarization of CMB by BICEP2 which is possibly of primordial origin, we study large field inflation models which can be obtained from higher-dimensional gauge theories. The constraints from CMB observations on the gauge theory parameters are given, and their naturalness are discussed. Among the models analyzed, Dante’s Inferno model turns out to be the most preferred model in this framework.
2D Poisson sigma models with gauged vectorial supersymmetry
Bonezzi, Roberto; Sundell, Per; Torres-Gomez, Alexander
2015-08-01
In this note, we gauge the rigid vectorial supersymmetry of the two-dimensional Poisson sigma model presented in arXiv:1503.05625. We show that the consistency of the construction does not impose any further constraints on the differential Poisson algebra geometry than those required for the ungauged model. We conclude by proposing that the gauged model provides a first-quantized framework for higher spin gravity.
2D Poisson sigma models with gauged vectorial supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Bonezzi, Roberto [Dipartimento di Fisica ed Astronomia, Università di Bologna and INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Sundell, Per [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Torres-Gomez, Alexander [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile-UACh,Valdivia (Chile)
2015-08-12
In this note, we gauge the rigid vectorial supersymmetry of the two-dimensional Poisson sigma model presented in arXiv:1503.05625. We show that the consistency of the construction does not impose any further constraints on the differential Poisson algebra geometry than those required for the ungauged model. We conclude by proposing that the gauged model provides a first-quantized framework for higher spin gravity.
2D Poisson sigma models with gauged vectorial supersymmetry
2015-01-01
In this note, we gauge the rigid vectorial supersymmetry of the two-dimensional Poisson sigma model presented in arXiv:1503.05625. We show that the consistency of the construction does not impose any further constraints on the differential Poisson algebra geometry than those required for the ungauged model. We conclude by proposing that the gauged model provides a first-quantized framework for higher spin gravity.
2D Poisson Sigma Models with Gauged Vectorial Supersymmetry
Bonezzi, Roberto; Torres-Gomez, Alexander
2015-01-01
In this note, we gauge the rigid vectorial supersymmetry of the two-dimensional Poisson sigma model presented in arXiv:1503.05625. We show that the consistency of the construction does not impose any further constraints on the differential Poisson algebra geometry than those required for the ungauged model. We conclude by proposing that the gauged model provides a first-quantized framework for higher spin gravity.
A Mathematical Theory of the Gauged Linear Sigma Model
Fan, Huijun; Ruan, Yongbin
2015-01-01
We construct a rigorous mathematical theory of Witten's Gauged Linear Sigma Model (GLSM). Our theory applies to a wide range of examples, including many cases with non-Abelian gauge group. Both the Gromov-Witten theory of a Calabi-Yau complete intersection X and the Landau-Ginzburg dual (FJRW-theory) of X can be expressed as gauged linear sigma models. Furthermore, the Landau-Ginzburg/Calabi-Yau correspondence can be interpreted as a variation of the moment map or a deformation of GIT in the GLSM. This paper focuses primarily on the algebraic theory, while a companion article will treat the analytic theory.
A Model of Direct Gauge Mediation of Supersymmetry Breaking
Energy Technology Data Exchange (ETDEWEB)
Murayama, H. [Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)]|[Department of Physics, University of California, Berkeley, California 94720 (United States)
1997-07-01
We present the first phenomenologically viable model of gauge meditation of supersymmetry breaking without a messenger sector or gauge singlet fields. The standard model gauge groups couple directly to the sector which breaks supersymmetry dynamically. Despite the direct coupling, it can preserve perturbative gauge unification thanks to the inverted hierarchy mechanism. There is no dangerous negative contribution to m{sup 2}{sub {tilde q}} , m{sup 2}{sub {tilde l}} due to two-loop renormalization group equation. The potentially nonuniversal supergravity contribution to m{sup 2}{sub {tilde q}} and m{sup 2}{sub {tilde l}} can be suppressed enough. The model is completely chiral, and one does not need to forbid mass terms for the messenger fields by hand. Cosmology of the model is briefly discussed. {copyright} {ital 1997} {ital The American Physical Society}
Model to localize gauge and tensor fields on thick branes
Chumbes, A. E. R.; Hoff da Silva, J. M.; Hott, M. B.
2012-04-01
It is shown that the introduction of a suitable function in the higher-dimensional gauge field action may be used in order to achieve gauge bosons localization on a thick brane. The model is constructed upon analogies to the effective coupling of neutral scalar field to electromagnetic field and to the Friedberg-Lee model for hadrons. After that we move forward studying the localization of the Kalb-Ramond field via this procedure.
Constraints on gauge-Higgs unification models at the LHC
Kitazawa, Noriaki; Sakai, Yuki
2016-02-01
We examine the possibility of observing the Kaluza-Klein (KK) gluons in gauge-Higgs unification models at the LHC with the energy s=14 TeV. We consider a benchmark model with the gauge symmetry SU(3)C×SU(3)W in five-dimensional spacetime, where SU(3)C is the gauge symmetry of the strong interaction and SU(3)W is that for the electroweak interaction and a Higgs doublet field. It is natural in general to introduce SU(3)C gauge symmetry in five-dimensional spacetime as well as SU(3)W gauge symmetry in gauge-Higgs unification (GHU) models. Since the fifth dimension is compactified to S1/Z 2 orbifold, there are KK modes of gluons in low-energy effective theory in four-dimensional spacetime. We investigate the resonance contribution of the first KK gluon to dijet invariant mass distribution at the LHC, and provide signal-to-noise ratios in various cases of KK gluon masses and kinematical cuts. Although the results are given in a specific benchmark model, we discuss their application to general GHU models with KK gluons. GHU models can be verified or constrained through the physics of the strong interaction, though they are proposed to solve the naturalness problem in electroweak symmetry breaking.
Extended Nambu models: Their relation to gauge theories
Escobar, C. A.; Urrutia, L. F.
2017-05-01
Yang-Mills theories supplemented by an additional coordinate constraint, which is solved and substituted in the original Lagrangian, provide examples of the so-called Nambu models, in the case where such constraints arise from spontaneous Lorentz symmetry breaking. Some explicit calculations have shown that, after additional conditions are imposed, Nambu models are capable of reproducing the original gauge theories, thus making Lorentz violation unobservable and allowing the interpretation of the corresponding massless gauge bosons as the Goldstone bosons arising from the spontaneous symmetry breaking. A natural question posed by this approach in the realm of gauge theories is to determine under which conditions the recovery of an arbitrary gauge theory from the corresponding Nambu model, defined by a general constraint over the coordinates, becomes possible. We refer to these theories as extended Nambu models (ENM) and emphasize the fact that the defining coordinate constraint is not treated as a standard gauge fixing term. At this level, the mechanism for generating the constraint is irrelevant and the case of spontaneous Lorentz symmetry breaking is taken only as a motivation, which naturally bring this problem under consideration. Using a nonperturbative Hamiltonian analysis we prove that the ENM yields the original gauge theory after we demand current conservation for all time, together with the imposition of the Gauss laws constraints as initial conditions upon the dynamics of the ENM. The Nambu models yielding electrodynamics, Yang-Mills theories and linearized gravity are particular examples of our general approach.
Constraints on gauge-Higgs unification models at the LHC
Kitazawa, Noriaki
2015-01-01
We examine the possibility of observing the Kaluza-Klein gluons in gauge-Higgs unification models at the LHC with the energy sqrt{s}=14 TeV. We consider a benchmark model with the gauge symmetry SU(3)_C x SU(3)_W in five-dimensional space-time, where SU(3)_C is the gauge symmetry of the strong interaction and SU(3)_W is that for the electroweak interaction and a Higgs doublet field. It is natural in general to introduce SU(3)_C gauge symmetry in five-dimensional space-time as well as SU(3)_W gauge symmetry in gauge-Higgs unification models. Since the fifth dimension is compactified to S1/Z2 orbifold, there are Kaluza-Klein modes of gluons in low-energy effective theory in four-dimensional space-time. We investigate the resonance contribution of the first Kaluza-Klein gluon to dijet invariant mass distribution at the LHC, and provide signal-to-noise ratios in various cases of Kaluza-Klein gluon masses and kinematical cuts. Although the results are given in a specific benchmark model, we discuss their applicati...
Kitaev Lattice Models as a Hopf Algebra Gauge Theory
Meusburger, Catherine
2017-07-01
We prove that Kitaev's lattice model for a finite-dimensional semisimple Hopf algebra H is equivalent to the combinatorial quantisation of Chern-Simons theory for the Drinfeld double D( H). This shows that Kitaev models are a special case of the older and more general combinatorial models. This equivalence is an analogue of the relation between Turaev-Viro and Reshetikhin-Turaev TQFTs and relates them to the quantisation of moduli spaces of flat connections. We show that the topological invariants of the two models, the algebra of operators acting on the protected space of the Kitaev model and the quantum moduli algebra from the combinatorial quantisation formalism, are isomorphic. This is established in a gauge theoretical picture, in which both models appear as Hopf algebra valued lattice gauge theories. We first prove that the triangle operators of a Kitaev model form a module algebra over a Hopf algebra of gauge transformations and that this module algebra is isomorphic to the lattice algebra in the combinatorial formalism. Both algebras can be viewed as the algebra of functions on gauge fields in a Hopf algebra gauge theory. The isomorphism between them induces an algebra isomorphism between their subalgebras of invariants, which are interpreted as gauge invariant functions or observables. It also relates the curvatures in the two models, which are given as holonomies around the faces of the lattice. This yields an isomorphism between the subalgebras obtained by projecting out curvatures, which can be viewed as the algebras of functions on flat gauge fields and are the topological invariants of the two models.
Extended gauge models at e+e- colliders
Djouadi, Abdelhak
1995-01-01
We summarize the potential of high--energy \\ee linear colliders for discovering, and in case of discovery, for studying the signals of extended gauge models. We will mainly focus on the virtual signals of new neutral gauge bosons and on the production of new heavy leptons. [Invited talk given at the Workshop on Physics and Experiments with Linear Colliders, Morioka-Appi, Japan, September 8-12 1995.
Higgs Decays in Gauge Extensions of the Standard Model
Bunk, Don; Jain, Bithika
2013-01-01
We explore the phenomenology of virtual spin-1 contributions to the h to gamma gamma and h to Z gamma decay rates in gauge extensions of the standard model. We consider generic lorentz and gauge invariant vector self-interactions, which can have non-trivial structure after diagonalizing the quadratic part of the action. Such features are phenomenologically relevant in models where the electroweak gauge bosons mix with additional spin-1 fields, such as occurs in little higgs models, extra dimensional models, strongly coupled variants of electroweak symmetry breaking, and other gauge extensions of the standard model. In models where non-renormalizable operators mix field strengths of gauge groups, the one-loop higgs decay amplitudes can be logarithmically divergent, and we provide power counting for the size of the relevant counter-term. We provide an example calculation in a 4-site moose model that contains degrees of freedom that model the effects of vector and axial vector resonances arising from TeV scale s...
A holographic study of the gauged NJL model
Clemens, Will; Evans, Nick
2017-08-01
The Nambu Jona-Lasinio model of chiral symmetry breaking predicts a second order chiral phase transition. If the fermions in addition have non-abelian gauge interactions then the transition is expected to become a crossover as the NJL term enhances the IR chiral symmetry breaking of the gauge theory. We study this behaviour in the holographic Dynamic AdS/QCD description of a non-abelian gauge theory with the NJL interaction included using Witten's multi-trace prescription. We study the behaviour of the mesonic spectrum as a function of the NJL coupling and the ratio of the UV cut off scale to the dynamical scale of the gauge theory.
Unification of Gauge Couplings in Radiative Neutrino Mass Models
Hagedorn, Claudia; Riad, Stella; Schmidt, Michael A
2016-01-01
We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively. We study three different classes of neutrino mass models: (I) minimal ultraviolet completions of the dimension-7 $\\Delta L=2$ operators which generate neutrino masses at one- and/or two-loop level without and with dark matter candidates, (II) models with dark matter which lead to neutrino masses at one-loop level and (III) models with particles in the adjoint representation of $\\mathrm{SU}(3)$. In class (I), gauge couplings unify in a few models and adding dark matter amplifies the chances for unification. In class (II), about a quarter of the models admit gauge coupling unification. In class (III), none of the models leads to gauge coupling unification. Regarding the scale of unification, we find values between $10...
Cosmological Model Based on Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WU Ning
2005-01-01
A cosmological model based on gauge theory of gravity is proposed in this paper. Combining cosmological principle and field equation of gravitational gauge field, dynamical equations of the scale factor R(t) of our universe can be obtained. This set of equations has three different solutions. A prediction of the present model is that, if the energy density of the universe is not zero and the universe is expanding, the universe must be space-flat, the total energy density must be the critical density ρc of the universe. For space-flat case, this model gives the same solution as that of the Friedmann model. In other words, though they have different dynamics of gravitational interactions, general relativity and gauge theory of gravity give the same cosmological model.
A Model of Unified Gauge Interactions
Lindesay, James
2016-01-01
Linear spinor fields are a generalization of the Dirac field that have direct correspondence with the known physics of fermions, inherent causality properties in their most fundamental constructions, and positive mass eigenvalues for all particle types. The algebra of the generators for infinitesimal transformations of these fields directly constructs the Minkowski metric \\emph{within} the internal group space as a consequence of non-vanishing commutation relations between generators that carry space-time indexes. In addition, the generators have a fundamental matrix representation that includes Lorentz transformations within a group that unifies internal gauge symmetries generated by a set of hermitian generators for SU(3)$\\times$SU(2)$\\times$U(1), and nothing else. The construction of linearly independent internal SU(3) and SU(2) symmetry groups necessarily involves the mixing of three generations of the mass eigenstates labeling the (massive) representations of the linear spinor fields. The group algebra a...
A Simple Model of Low-scale Direct Gauge Mediation
Csáki, C; Terning, J; Cs\\'aki, Csaba; Shirman, Yuri; Terning, John
2007-01-01
We construct a calculable model of low-energy direct gauge mediation making use of the metastable supersymmetry breaking vacua recently discovered by Intriligator, Seiberg and Shih. The standard model gauge group is a subgroup of the global symmetries of the SUSY breaking sector and messengers play an essential role in dynamical SUSY breaking: they are composites of a confining gauge theory, and the holomorphic scalar messenger mass appears as a consequence of the confining dynamics. The SUSY breaking scale is around 100 TeV nevertheless the model is calculable. The minimal non-renormalizable coupling of the Higgs to the DSB sector leads in a simple way to a mu-term, while the B-term arises at two-loop order resulting in a moderately large tan beta. A novel feature of this class of models is that some particles from the dynamical SUSY breaking sector may be accessible at the LHC.
Ideal walking dynamics via a gauged NJL model
DEFF Research Database (Denmark)
Rantaharju, Jarno; Pica, Claudio; Sannino, Francesco
2017-01-01
According to the ideal walking technicolor paradigm, large mass anomalous dimensions arise in gauged Nambu-Jona-Lasinio (NJL) models when the four-fermion coupling is sufficiently strong to induce spontaneous symmetry breaking in an otherwise conformal gauge theory. We therefore study the SU(2......) gauged NJL model with two adjoint fermions using lattice simulations. The model is in an infrared conformal phase at small NJL coupling while it displays a chirally broken phase at large NJL couplings. In the infrared conformal phase, we find that the mass anomalous dimension varies with the NJL coupling......, reaching γm∼1 close to the chiral symmetry breaking transition, de facto making the present model the first explicit realization of the ideal walking scenario....
Gauge and Matter Condensates in Realistic String Models
Kalara, S; Pages, D N
1992-01-01
We examine the inter-relationship of the superpotential containing hidden and observable matter fields and the ensuing condensates in free fermionic string models. These gauge and matter condensates of the strongly interacting hidden gauge groups play a crucial role in the determination of the physical parameters of the observable sector. Supplementing the above information with the requirement of modular invariance, we find that a generic model with only trilinear superpotential allows for a degenerate (and sometimes pathological) set of vacua. This degeneracy may be lifted by higher order terms in the superpotential. We also point out some other subtle points that may arise in calculations of this nature. We exemplify our observations by computing explicitly the modular invariant gaugino and matter condensates in the flipped $SU(5)$ string model with hidden gauge group $SO(10)\\times SU(4)$.
Coulomb gauge model for hidden charm tetraquarks
Xie, W.; Mo, L. Q.; Wang, Ping; Cotanch, Stephen R.
2013-08-01
The spectrum of tetraquark states with hidden charm is studied within an effective Coulomb gauge Hamiltonian approach. Of the four independent color schemes, two are investigated, the (qcbar)1(cqbar)1 singlet-singlet (molecule) and the (qc)3(qbarcbar)3 triplet-triplet (diquark), for selected JPC states using a variational method. The predicted masses of triplet-triplet tetraquarks are roughly a GeV heavier than the singlet-singlet states. There is also an interesting flavor dependence with (qqbar)1 (ccbar1) states about half a GeV lighter than (qcbar)1(qbarc)1. The lightest 1++ and 1-- predictions are in agreement with the observed X (3872) and Y (4008) masses suggesting they are molecules with ωJ / ψ and ηhc, rather than D*Dbar* and DDbar, type structure, respectively. Similarly, the lightest isovector 1++ molecule, having a ρJ / ψ flavor composition, has mass near the recently observed charged Zc (3900) value. These flavor configurations are consistent with observed X, Y and Zc decays to ππJ / ψ.
Introduction to gauge theories and the Standard Model
de Wit, Bernard
1995-01-01
The conceptual basis of gauge theories is introduced to enable the construction of generic models.Spontaneous symmetry breaking is dicussed and its relevance for the renormalization of theories with massive vector field is explained. Subsequently a d standard model. When time permits we will address more practical questions that arise in the evaluation of quantum corrections.
Extended superconformal symmetry, Freudenthal triple systems and gauged WZW models
Günaydin, M
1995-01-01
We review the construction of extended ( N=2 and N=4 ) superconformal algebras over triple systems and the gauged WZW models invariant under them. The N=2 superconformal algebras (SCA) realized over Freudenthal triple systems (FTS) admit extension to ``maximal'' N=4 SCA's with SU(2)XSU(2)XU(1) symmetry. A detailed study of the construction and classification of N=2 and N=4 SCA's over Freudenthal triple systems is given. We conclude with a study and classification of gauged WZW models with N=4 superconformal symmetry.
Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo
2013-09-13
Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
Energy Technology Data Exchange (ETDEWEB)
Gasenzer, Thomas [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany); McLerran, Larry [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, China Central Normal University, Wuhan (China); Pawlowski, Jan M.; Sexty, Dénes [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany)
2014-10-15
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.
Quiver Approach to Massive Gauge Bosons Beyond the Standard Model
Frampton, Paul Howard
2013-01-01
We address the question of the possible existence of massive gauge bosons beyond the $W^{\\pm}$ and $Z^{0}$ of the standard model. Our intuitive and aesthetic approach is based on quiver theory. Examples thereof arise, for example, from compactification of the type IIB superstring on $AdS_5 \\times S_5/ Z_n$ orbifolds. We explore the quiver theory framework more generally than string theory. The practical question is what gauge bosons to look for at the upgraded LHC, in terms of color and electric charge, and of their couplings to quarks and leptons. Axigluons and bileptons are favored.
Non-isometric T-duality from gauged sigma models
Chatzistavrakidis, Athanasios
2016-01-01
Local symmetries is one of the most successful themes in modern theoretical physics. Although they are usually associated to Lie algebras, a gradual increase of interest in more general situations where local symmetries are associated to groupoids and algebroids has taken place in recent years. On the other hand, dualities is another persistently interesting theme in modern physics. One of the most prominent examples is provided by target space duality in string theory. The latter, Abelian or not, is usually associated to the presence of isometries, which is however a very restrictive assumption. In this contribution we discuss some recent advances located at the intersection of the above two themes. Focusing on bosonic string sigma models we discuss certain gauged versions where (a) the invariance conditions on the background fields are much milder than the isometric case and (b) the gauge symmetry is generically associated to a Lie algebroid instead of just a Lie algebra. Furthermore we utilize such gauged ...
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
Gasenzer, Thomas; Pawlowski, Jan M; Sexty, Dénes
2013-01-01
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appear in the gauge field which are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signalled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these r...
The Moduli Space in the Gauged Linear Sigma Model
Fan, Huijun; Ruan, Yongbin
2016-01-01
This is a survey article for the mathematical theory of Witten's Gauged Linear Sigma Model, as developed recently by the authors. Instead of developing the theory in the most general setting, in this paper we focus on the description of the moduli.
Saddle-point approach to the gauge Potts model
Energy Technology Data Exchange (ETDEWEB)
Camarata, C.; Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.
1984-07-02
The q-state gauge Potts model in d dimensions is studied via saddle-point techniques. Corrections to the mean-field results, due to gaussian fluctuations, are computed. Results for the free energy, the critical coupling and the latent heat are presented. The limit q->infinite is discussed.
Tensor renormalization group methods for spin and gauge models
Zou, Haiyuan
The analysis of the error of perturbative series by comparing it to the exact solution is an important tool to understand the non-perturbative physics of statistical models. For some toy models, a new method can be used to calculate higher order weak coupling expansion and modified perturbation theory can be constructed. However, it is nontrivial to generalize the new method to understand the critical behavior of high dimensional spin and gauge models. Actually, it is a big challenge in both high energy physics and condensed matter physics to develop accurate and efficient numerical algorithms to solve these problems. In this thesis, one systematic way named tensor renormalization group method is discussed. The applications of the method to several spin and gauge models on a lattice are investigated. theoretically, the new method allows one to write an exact representation of the partition function of models with local interactions. E.g. O(N) models, Z2 gauge models and U(1) gauge models. Practically, by using controllable approximations, results in both finite volume and the thermodynamic limit can be obtained. Another advantage of the new method is that it is insensitive to sign problems for models with complex coupling and chemical potential. Through the new approach, the Fisher's zeros of the 2D O(2) model in the complex coupling plane can be calculated and the finite size scaling of the results agrees well with the Kosterlitz-Thouless assumption. Applying the method to the O(2) model with a chemical potential, new phase diagram of the models can be obtained. The structure of the tensor language may provide a new tool to understand phase transition properties in general.
Gauge coupling unification in a classically scale invariant model
Haba, Naoyuki; Ishida, Hiroyuki; Takahashi, Ryo; Yamaguchi, Yuya
2016-02-01
There are a lot of works within a class of classically scale invariant model, which is motivated by solving the gauge hierarchy problem. In this context, the Higgs mass vanishes at the UV scale due to the classically scale invariance, and is generated via the Coleman-Weinberg mechanism. Since the mass generation should occur not so far from the electroweak scale, we extend the standard model only around the TeV scale. We construct a model which can achieve the gauge coupling unification at the UV scale. In the same way, the model can realize the vacuum stability, smallness of active neutrino masses, baryon asymmetry of the universe, and dark matter relic abundance. The model predicts the existence vector-like fermions charged under SU(3) C with masses lower than 1 TeV, and the SM singlet Majorana dark matter with mass lower than 2.6 TeV.
Exact blocking formulas for spin and gauge models
Liu, Yuzhi; Qin, M P; Unmuth-Yockey, J; Xiang, T; Xie, Z Y; Yu, J F; Zou, Haiyuan
2013-01-01
Using the example of the two-dimensional (2D) Ising model, we show that in contrast to what can be done in configuration space, the tensor renormalization group (TRG) formulation allows one to write exact, compact, and manifestly local blocking formulas and exact coarse grained expressions for the partition function. We argue that similar results should hold for most models studied by lattice gauge theorists. We provide exact blocking formulas for several 2D spin models (the O(2) and O(3) sigma models and the SU(2) principal chiral model) and for the 3D gauge theories with groups Z_2, U(1) and SU(2). We briefly discuss generalizations to other groups, higher dimensions and practical implementations.
Gauge coupling unification in a classically scale invariant model
Haba, Naoyuki; Takahashi, Ryo; Yamaguchi, Yuya
2015-01-01
There are a lot of works within a class of classically scale invariant model, which is motivated by solving the gauge hierarchy problem. In this context, the Higgs mass vanishes at the UV scale due to the classically scale invariance, and is generated via the Coleman-Weinberg mechanism. Since the mass generation should occur not so far from the electroweak scale, we extend the standard model only around the TeV scale. We construct a model which can achieve the gauge coupling unification at the UV scale. In the same way, the model can realize the vacuum stability, smallness of active neutrino masses, baryon asymmetry of the universe, and dark matter relic abundance. The model predicts the existence vector-like fermions charged under $SU(3)_C$ with masses lower than $1\\,{\\rm TeV}$, and the SM singlet Majorana dark matter with mass lower than $2.6\\,{\\rm TeV}$.
Unification of gauge, family, and flavor symmetries illustrated in gauged SU(12) models
Albright, Carl H.; Feger, Robert P.; Kephart, Thomas W.
2016-04-01
To explain quark and lepton masses and mixing angles, one has to extend the standard model, and the usual practice is to put the quarks and leptons into irreducible representations of discrete groups. We argue that discrete flavor symmetries (and their concomitant problems) can be avoided if we extend the gauge group. In the framework of SU(12) we give explicit examples of models having varying degrees of predictability obtained by scanning over groups and representations and identifying cases with operators contributing to mass and mixing matrices that need little fine-tuning of prefactors. Fitting with quark and lepton masses run to the GUT scale and known mixing angles allows us to make predictions for the neutrino masses and hierarchy, the octant of the atmospheric mixing angle, leptonic C P violation, Majorana phases, and the effective mass observed in neutrinoless double beta decay.
Unification of gauge, family, and flavor symmetries illustrated in gauged SU(12) models
Albright, Carl H; Kephart, Thomas W
2016-01-01
To explain quark and lepton masses and mixing angles, one has to extend the standard model, and the usual practice is to put the quarks and leptons into irreducible representations of discrete groups. We argue that discrete flavor symmetries (and their concomitant problems) can be avoided if we extend the gauge group. In the framework of SU(12) we give explicit examples of models having varying degrees of predictability obtained by scanning over groups and representations and identifying cases with operators contributing to mass and mixing matrices that need little fine- tuning of prefactors. Fitting with quark and lepton masses run to the GUT scale and known mixing angles allows us to make predictions for the neutrino masses and hierarchy, the octant of the atmospheric mixing angle, leptonic CP violation, Majorana phases, and the effective mass observed in neutrinoless double beta decay.
Compendium of models from a gauge U(1) framework
Ma, Ernest
2016-06-01
A gauge U(1) framework was established in 2002 to extend the supersymmetric Standard Model. It has many possible realizations. Whereas all have the necessary and sufficient ingredients to explain the possible 750 GeV diphoton excess, observed recently by the ATLAS and CMS Collaborations at the large hadron collider (LHC), they differ in other essential aspects. A compendium of such models is discussed.
Frustrated phase in the Z/sub 2/ gauge model
Energy Technology Data Exchange (ETDEWEB)
Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A. (La Plata Univ. Nacional (Argentina). Lab. de Fisica Teorica)
1982-12-11
Our purpose in this letter is to discuss the frustrated phase in the Z/sub 2/ gauge model in 2+1 dimensions. This study is based on a previously proposed real-space renormalization group realization and takes profit of the dual properties of the Ising-like models. In particular, we present results for the relevant critical functions and exponents obtained analytically and simultaneously with the corresponding ferromagnetic ones.
G2HDM : Gauged Two Higgs Doublet Model
Huang, Wei-Chih; Yuan, Tzu-Chiang
2015-01-01
A novel model embedding the two Higgs doublets in the popular two Higgs doublet models into a doublet of a non-abelian gauge group $SU(2)_H$ is presented. The Standard Model $SU(2)_L$ right-handed fermion singlets are paired up with new heavy fermions to form $SU(2)_H$ doublets, while $SU(2)_L$ left-handed fermion doublets are singlets under $SU(2)_H$. Distinctive features of this anomaly-free model are: (1) Electroweak symmetry breaking is induced from spontaneous symmetry breaking of $SU(2)_H$ via its triplet vacuum expectation value; (2) One of the Higgs doublet can be inert, with its neutral component being a dark matter candidate as protected by the $SU(2)_H$ gauge symmetry instead of a discrete $Z_2$ symmetry in the usual case; (3) Unlike Left-Right Symmetric Models, the complex gauge fields $(W_1^{\\prime}\\mp i W_2^{\\prime})$ (along with other complex scalar fields) associated with the $SU(2)_H$ do not carry electric charges, while the third component $W^{\\prime}_3$ can mix with the hypercharge $U(1)_Y$...
Matrix models, topological strings, and supersymmetric gauge theories
Dijkgraaf, Robbert; Vafa, Cumrun
2002-11-01
We show that B-model topological strings on local Calabi-Yau threefolds are large- N duals of matrix models, which in the planar limit naturally give rise to special geometry. These matrix models directly compute F-terms in an associated N=1 supersymmetric gauge theory, obtained by deforming N=2 theories by a superpotential term that can be directly identified with the potential of the matrix model. Moreover by tuning some of the parameters of the geometry in a double scaling limit we recover ( p, q) conformal minimal models coupled to 2d gravity, thereby relating non-critical string theories to type II superstrings on Calabi-Yau backgrounds.
Integrable Models, SUSY Gauge Theories, and String Theory
Nam, S
1996-01-01
We consider the close relation between duality in N=2 SUSY gauge theories and integrable models. Vario us integrable models ranging from Toda lattices, Calogero models, spinning tops, and spin chains are re lated to the quantum moduli space of vacua of N=2 SUSY gauge theories. In particular, SU(3) gauge t heories with two flavors of massless quarks in the fundamental representation can be related to the spec tral curve of the Goryachev-Chaplygin top, which is a Nahm's equation in disguise. This can be generaliz ed to the cases with massive quarks, and N_f = 0,1,2, where a system with seven dimensional phas e space has the relevant hyperelliptic curve appear in the Painlevé test. To understand the stringy o rigin of the integrability of these theories we obtain exact nonperturbative point particle limit of ty pe II string compactified on a Calabi-Yau manifold, which gives the hyperelliptic curve of SU(2) QCD w ith N_f =1 hypermultiplet.
Low-energy features of a 1-tev higgs sector
Appelquist, Thomas
1979-01-01
It seems very likely that the Higgs sector of a spontaneously broken gauge theory could be heavy (M = 1 TeV) and strongly interacting. By exploiting the intimate connection of such theories to nonlinear a models, it is possible to show under quite general conditions what sort of impact the heavy Higgs sector can have on low energy experiments (E << 1 TeV). In this talk, the techniques and results will be summar- ized for an SU(2) gauge theory, The analysis of the Weinberg-Salam and other realistic theories will appear in a forthcoming paper.
Gauged Baby Skyrme Model with Chern-Simons term
Samoilenka, A
2016-01-01
The properties of the multisoliton solutions of the (2+1)-dimensional Maxwell-Chern-Simons-Skyrme model are investigated numerically. Coupling to the Chern-Simons term allows for existence of the electrically charge solitons which may also carry magnetic fluxes. Two particular choices of the potential term is considered: (i) the weakly bounded potential and (ii) the double vacuum potential. In the absence of the gauge interaction in the former case the individual constituents of the multisoliton configuration are well separated, while in the latter case the rotational invariance of the configuration remains unbroken. It is shown that coupling of the planar multi-Skyrmions to the electric and magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, the energies, angular momenta, electric and magnetic fields of the configurations on the gauge coupling constant $g$, and the electric potential. It is found that, generically, ...
The Standard Model is Natural as Magnetic Gauge Theory
DEFF Research Database (Denmark)
Sannino, Francesco
2011-01-01
matter. The absence of scalars in the electric theory indicates that the associated magnetic theory is free from quadratic divergences. Our novel solution to the Standard Model hierarchy problem leads also to a new insight on the mystery of the observed number of fundamental fermion generations......We suggest that the Standard Model can be viewed as the magnetic dual of a gauge theory featuring only fermionic matter content. We show this by first introducing a Pati-Salam like extension of the Standard Model and then relating it to a possible dual electric theory featuring only fermionic...
Screening Masses of Hot SU(2) Gauge Theory from the 3D Adjoint Higgs Model
Karsch, Frithjof; Petreczky, P
1999-01-01
We study the Landau gauge propagators of the lattice SU(2) 3d adjoint Higgs model, considered as an effective theory of high temperature 4d SU(2) gauge theory. From the long distance behaviour of the propagators we extract the screening masses. It is shown that the pole masses extracted from the propagators agree well with the screening masses obtained recently in finite temperature SU(2) theory. The relation of the propagator masses to the masses extracted from gauge invariant correlators is also discussed. In so-called lambda gauges non-perturbative evidence is given for the gauge independence of pole masses within this class of gauges.
Classically conformal radiative neutrino model with gauged B - L symmetry
Okada, Hiroshi; Orikasa, Yuta
2016-09-01
We propose a classically conformal model in a minimal radiative seesaw, in which we employ a gauged B - L symmetry in the standard model that is essential in order to work the Coleman-Weinberg mechanism well that induces the B - L symmetry breaking. As a result, nonzero Majorana mass term and electroweak symmetry breaking simultaneously occur. In this framework, we show a benchmark point to satisfy several theoretical and experimental constraints. Here theoretical constraints represent inert conditions and Coleman-Weinberg condition. Experimental bounds come from lepton flavor violations (especially μ → eγ), the current bound on the Z‧ mass at the CERN Large Hadron Collider, and neutrino oscillations.
Trigiante, Mario
2016-01-01
We give a general review of extended supergravities and their gauging using the duality-covariant embedding tensor formalism. Although the focus is on four-dimensional theories, an overview of the gauging procedure and the related tensor hierarchy in the higher-dimensional models is given. The relation of gauged supergravities to flux compactifications is discussed and examples are worked out in detail.
Trigiante, Mario
2017-03-01
We give a general review of extended supergravities and their gauging using the duality-covariant embedding tensor formalism. Although the focus is on four-dimensional theories, an overview of the gauging procedure and the related tensor hierarchy in the higher-dimensional models is given. The relation of gauged supergravities to flux compactifications is discussed and examples are worked out in detail.
Gauge Potts model with generalized action: A Monte Carlo analysis
Energy Technology Data Exchange (ETDEWEB)
Fanchiotti, H.; Canal, C.A.G.; Sciutto, S.J.
1985-08-15
Results of a Monte Carlo calculation on the q-state gauge Potts model in d dimensions with a generalized action involving planar 1 x 1, plaquette, and 2 x 1, fenetre, loop interactions are reported. For d = 3 and q = 2, first- and second-order phase transitions are detected. The phase diagram for q = 3 presents only first-order phase transitions. For d = 2, a comparison with analytical results is made. Here also, the behavior of the numerical simulation in the vicinity of a second-order transition is analyzed.
Matrix Models, Topological Strings, and Supersymmetric Gauge Theories
Dijkgraaf, R; Dijkgraaf, Robbert; Vafa, Cumrun
2002-01-01
We show that B-model topological strings on local Calabi-Yau threefolds are large N duals of matrix models, which in the planar limit naturally give rise to special geometry. These matrix models directly compute F-terms in an associated N=1 supersymmetric gauge theory, obtained by deforming N=2 theories by a superpotential term that can be directly identified with the potential of the matrix model. Moreover by tuning some of the parameters of the geometry in a double scaling limit we recover (p,q) conformal minimal models coupled to 2d gravity, thereby relating non-critical string theories to type II superstrings on Calabi-Yau backgrounds.
Matrix models, topological strings, and supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, Robbert E-mail: rhd@science.uva.nl; Vafa, Cumrun
2002-11-11
We show that B-model topological strings on local Calabi-Yau threefolds are large-N duals of matrix models, which in the planar limit naturally give rise to special geometry. These matrix models directly compute F-terms in an associated N=1 supersymmetric gauge theory, obtained by deforming N=2 theories by a superpotential term that can be directly identified with the potential of the matrix model. Moreover by tuning some of the parameters of the geometry in a double scaling limit we recover (p,q) conformal minimal models coupled to 2d gravity, thereby relating non-critical string theories to type II superstrings on Calabi-Yau backgrounds.
Gauge Boson Mass Without a Higgs Field A Simple Model
Nicholson, A F; Nicholson, Angus F.; Kennedy, Dallas C.
1997-01-01
A simple, anomaly-free chiral gauge theory can be perturbatively quantized and renormalized in such a way as to generate fermion and gauge boson masses. This development exploits certain freedoms inherent in choosing the unperturbed Lagrangian and in the renormalization procedure. Apart from its intrinsic interest, such a mechanism might be employed in electroweak gauge theory to generate fermion and gauge boson masses without a Higgs sector.
Standard model-like D-brane models and gauge couplings
Energy Technology Data Exchange (ETDEWEB)
Hamada, Yuta [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Kobayashi, Tatsuo [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan); Uemura, Shohei, E-mail: uemura@gauge.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)
2015-08-15
We systematically search intersecting D-brane models, which just realize the Standard Model chiral matter contents and gauge symmetry. We construct new classes of non-supersymmetric Standard Model-like models. We also study the gauge coupling constants of these models. The tree level gauge coupling is a function of the compactification moduli, the string scale, the string coupling and the winding numbers of D-branes. By tuning them, we examine whether the models can explain the experimental values of gauge couplings. As a result, we find that the string scale should be greater than 10{sup 14–15} GeV if the compactification scale and the string scale are of the same order.
Stability Analysis of The Twisted Superconducting Semilocal Strings
Garaud, Julien
2007-01-01
We study the stability properties of the twisted vortex solutions in the semilocal Abelian Higgs model with a global $\\mathbf{SU}(2)$ invariance. This model can be viewed as the Weinberg-Salam theory in the limit where the non-Abelian gauge field decouples, or as a two component Ginzburg-Landau theory. The twisted vortices are characterized by a constant global current ${\\cal I}$, and for ${\\cal I}\\to 0$ they reduce to the semilocal strings, that is to the Abrikosov-Nielsen-Olesen vortices embedded into the semilocal model. Solutions with ${\\cal I}\
Muon-Electron Conversion in a Family Gauge Boson Model
Koide, Yoshio
2016-01-01
We study the $\\mu$-$e$ conversion in muonic atoms via an exchange of family gauge boson (FGB) $A_{2}^{\\ 1}$ in a $U(3)$ FGB model. Within the class of FGB model, we consider three types of family-number assignments for quarks. We evaluate the $\\mu$-$e$ conversion rate for various target nuclei, and find that next generation $\\mu$-$e$ conversion search experiments can cover entire energy scale of the model for all of types of the quark family-number assignments. We show that the conversion rate in the model is so sensitive to up- and down-quark mixing matrices, $U^{u}$ and $U^{d}$, where the CKM matrix is given by $V_\\text{CKM} = U^{u\\dagger} U^d$. Precise measurements of conversion rates for various target nuclei can identify not only the types of quark family-number assignments, but also each quark mixing matrix individually.
Muon-electron conversion in a family gauge boson model
Koide, Yoshio; Yamanaka, Masato
2016-11-01
We study the μ-e conversion in muonic atoms via an exchange of family gauge boson (FGB) A21 in a U (3) FGB model. Within the class of FGB model, we consider three types of family-number assignments for quarks. We evaluate the μ-e conversion rate for various target nuclei, and find that next generation μ-e conversion search experiments can cover entire energy scale of the model for all of types of the quark family-number assignments. We show that the conversion rate in the model is so sensitive to up- and down-quark mixing matrices, Uu and Ud, where the CKM matrix is given by VCKM =Uu†Ud. Precise measurements of conversion rates for various target nuclei can identify not only the types of quark family-number assignments, but also each quark mixing matrix individually.
Gauge invariants, correlators and holography in bosonic and fermionic tensor models
de Mello Koch, Robert; Gossman, David; Tribelhorn, Laila
2017-09-01
Motivated by the close connection of tensor models to the SYK model, we use representation theory to construct the complete set of gauge invariant observables for bosonic and fermionic tensor models. Correlation functions of the gauge invariant operators in the free theory are computed exactly. The gauge invariant operators close a ring. The structure constants of the ring are described explicitly. Finally, we construct a collective field theory description of the bosonic tensor model.
Van Enter, A C D
2003-01-01
We consider various sufficiently nonlinear sigma models for nematic ordering of RP^{N-1} type and of lattice gauge type with continous symmetries. We rigorously show that they exhibit a first-order transition in the temperature. The result holds in dimension 2 or more for the RP{N-1} models and in dimension 3 or more for the lattice gauge models. In the two-dimensional case our results clarify and solve a recent controversy about the possibilty of such transitions. For lattice gauge models our methods provide the first prof of a first-order transition in a model with a continous gauge symmetry.
Gauge invariance and radiative corrections in an extra dimensional model
Novales-Sánchez, H
2011-01-01
The gauge structure of the four dimensional effective theory originated in a pure five dimensional Yang-Mills theory compactified on the orbifold $S^1/Z_2$, is discussed on the basis of the BRST symmetry. If gauge parameters propagate in the bulk, the excited Kaluza-Klein (KK) modes are gauge fields and the four dimensional theory is gauge invariant only if the compactification is carried out by using curvatures as fundamental objects. The four dimensional theory is governed by two types of gauge transformations, one determined by the KK zero modes of the gauge parameters and the other by the excited ones. Within this context, a gauge-fixing procedure to quantize the KK modes that is covariant under the first type of gauge transformations is shown and the ghost sector induced by the gauge-fixing functions is presented. If the gauge parameters are confined to the usual four dimensional space-time, the known result in the literature is reproduced with some minor variants, although it is emphasized that the exci...
A Democratic Gauge Model for Dark/Visible Matter Symmetry
Oliveira, O; Hussein, M S; de Paula, W; Frederico, T
2011-01-01
We develop a model for visible matter-dark matter interaction based on the exchange of a weakly interacting massive gauge boson called herein the WIMG. Our model hinges on the assumption that all known particles in the visible matter have their counterparts in the dark matter. We postulate six families of particles five of which are dark. This leads to the unavoidable postulation of six parallel worlds, the visible one and five invisible worlds. We give arguments on particle decays and lifetimes that set a limit on the mass of the WIMG, the gray boson responsible for the very meager communication among these worlds. The 5:1 ratio of dark to visible matter is taken for granted.
Matrix models, noncommutative gauge theory and emergent gravity
Energy Technology Data Exchange (ETDEWEB)
Steinacker, Harold [Fakultaet fuer Physik, Universitaet Wien (Austria)
2009-07-01
Matrix Models of Yang-Mills type are studied with focus on the effective geometry. It is shown that SU(n) gauge fields and matter on general 4-dimensional noncommutative branes couple to an effective metric, leading to emergent gravity. The effective metric is reminiscent of the open string metric, and depends on the dynamical Poisson structure. Covariant equations of motion are derived, which are protected from quantum corrections due to an underlying Noether theorem. The quantization is discussed qualitatively, which singles out the IKKT model as a candidate for a quantum theory of gravity coupled to matter. UV/IR mixing plays a central role. A mechanism for avoiding the cosmological constant problem is exhibited.
Yukawa Unification and Sparticle Spectroscopy in Gauge Mediation Models
Gogoladze, Ilia; Shafi, Qaisar; Un, Cem Salih
2015-01-01
We explore the implications of t-b-tau (and b-tau) Yukawa coupling unification condition on the fundamental parameter space and sparticle spectroscopy in the minimal gauge mediated supersymmetry breaking (mGMSB) model. We find that this scenario prefers values of the CP-odd Higgs mass m_A > 1 TeV, with all colored sparticle masses above 3 TeV. These predictions will be hard to test at LHC13 but they may be testable at HE-LHC 33 TeV or a 100 TeV collider. Both t-b-tau and b-tau Yukawa coupling unifications prefer a relatively light gravitino with mass < 30 eV, which makes it a candidate hot dark matter particle. However, it cannot account for more than 15 % of the observed dark matter density.
Neutrino Anomalies in Gauge Mediated Model with Trilinear R violation
Joshipura, A S; Vempati, S K; Joshipura, Anjan S.; Vaidya, Rishikesh D.; Vempati, Sudhir K.
2002-01-01
The structure of neutrino masses and mixing resulting from trilinear $R$ violating interactions is studied in the presence of the gauge mediated supersymmetry breaking. Neutrino masses arise in this model at tree level through the RG-induced vacuum expectation values of the sneutrinos and also through direct contribution at 1-loop. The relative importance of these contributions is determined by the values of the strong and weak coupling constants. In case of purely $\\lambda'$ couplings, the tree contribution dominates over the 1-loop diagram. In this case, one simultaneously obtains atmospheric neutrino oscillations and quasi-vacuum oscillations of the solar neutrinos if all the $\\l'$ couplings are assumed to be of similar magnitudes. If R parity violation arises from the trilinear $\\l$ couplings, then the loop induced contribution dominates over the tree level. One cannot simultaneously explain the solar and atmospheric deficit in this case if all the $\\l$ couplings are of similar magnitude. This however bec...
Lattice gauge theory of three dimensional Thirring model
Kim, S; Kim, Seyong; Kim, Yoonbai
1999-01-01
Three dimensional Thirring model with N four-component Dirac fermions, reformulated as a lattice gauge theory, is studied by computer simulation. According to an 8^{3} data and preliminary 16^3 data, chiral symmetry is found to be spontaneously broken for N=2,\\;4 and 6. N=2 data exhibits long tail of the non-vanishing chiral condensate into weak coupling region, and N=6 case shows phase separation between the strong coupling region and the weak coupling region. Although the comparison between 8^3 data and 16^3 data shows large finite volume effects, an existence of the critical fermion flavor number N_{{\\rm cr}} (2
Gauge-invariant extensions of the Proca model in a noncommutative space-time
Abreu, Everton M C; Fernandes, Rafael L; Mendes, Albert C R
2016-01-01
The gauge invariance analysis of theories described in noncommutative (NC) space-times can lead us to interesting results since noncommutativity is one of the possible paths to investigate quantum effects in classical theories such as general relativity, for example. This theoretical possibility has motivated us to analyze the gauge invariance of the NC version of the Proca model, which is a second-class system, in Dirac's classification, since its classical formulation (commutative space-time) has its gauge invariance broken thanks to the mass term. To obtain such gauge invariant model, we have used the gauge unfixing method to construct a first-class NC version of the Proca model. We have also questioned if the gauge symmetries of NC theories, are affected necessarily or not by the NC parameter. In this way, we have calculated its respective symmetries in a standard way via Poisson brackets.
Gauge-invariant extensions of the Proca model in a noncommutative space-time
Abreu, Everton M. C.; Neto, Jorge Ananias; Fernandes, Rafael L.; Mendes, Albert C. R.
2016-09-01
The gauge invariance analysis of theories described in noncommutative (NC) space-times can lead us to interesting results since noncommutativity is one of the possible paths to investigate quantum effects in classical theories such as general relativity, for example. This theoretical possibility has motivated us to analyze the gauge invariance of the NC version of the Proca model, which is a second-class system, in Dirac’s classification, since its classical formulation (commutative space-time) has its gauge invariance broken thanks to the mass term. To obtain such gauge invariant model, we have used the gauge unfixing method to construct a first-class NC version of the Proca model. We have also questioned if the gauge symmetries of NC theories are affected necessarily or not by the NC parameter. In this way, we have calculated its respective symmetries in a standard way via Poisson brackets.
The electroweak phase transition in models with gauge singlets
Energy Technology Data Exchange (ETDEWEB)
Ahriche, A.
2007-04-18
A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition {omega}(T{sub c})/T{sub c} >or similar 1, where {omega} = (v{sup 2} + (x - x{sub 0}){sup 2}){sup (}1)/(2) and x(x{sub 0}) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v{sub c}/T{sub c} >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)
Sterile particles from the flavor gauge model of masses
Smetana, Adam
2013-04-01
Our motivation is to study a dynamics which has the ambition to underlie models of the electroweak symmetry breaking via the condensation of known fermions. The right-handed neutrinos and the seesaw mechanism are necessary ingredients for viability of this scenario. The existence of right-handed neutrinos follows from theoretical consistence of a model based on dynamical flavor gauge symmetry breaking. The model is defined by a particular flavor representation setting of electroweakly charged fermions. Only finite number of versions of the model exists. They differ by the number and the flavor structure of the right-handed neutrino sector. We choose for inspection one of them, the non-minimal version with right-handed neutrinos in one sextet and four anti-triplet flavor representations. We show that a Majorana pairing of the sextet right-handed neutrinos is responsible for the flavor symmetry breaking and for the seesaw pattern of the neutrino mass matrix. The dynamically generated neutrino mass matrix spontaneously breaks the lepton number and the chiral sterility symmetry of the right-handed neutrino sector. As a result, a spectrum of majorons, neutrino composites, manifests. We study main characteristics of both massive sterile neutrinos and majorons.
Lorentz Invariant CPT Violating Effects for a Class of Gauge-invariant Nonlocal Thirring Models
Patra, Pinaki
2013-01-01
CPT violation and Lorentz invariance can coexist in the framework of non-local field theory. Local gauge-invariance may not hold for the few non-local interaction terms. However, the gauge-invariance for the non-local interaction term can be formulated by the inclusion of Swinger non-integrable phase factor. In this article we have proposed a class of CPT violating Lorentz invariant Nonlocal Gauge-invariant models which can be termed as non-local gauge-invariant Thirring models. The inclusion of non-locality will modify the current conservation laws. Also, the possible particle antiparticle mass-splitting in this respect is discussed.
Gauge Independent Reduction of a Solvable Model with Gribov-Like Ambiguity
Banerjee, R
1996-01-01
We present a gauge independent Lagrangian method of abstracting the reduced space of a solvable model with Gribov-like ambiguity, recently proposed by Friedberg, Lee, Pang and Ren. The reduced space is found to agree with the explicit solutions obtained by these authors. Complications related to gauge fixing are analysed. The Gribov ambiguity manifests by a nonuniqueness in the canonical transformations mapping the hamiltonian in the afflicted gauge with that obtained gauge independently. The operator ordering problem in this gauge is investigated and a prescription is suggested so that the results coincide with the usual hamiltonian formalism using the Schrödinger representation. Finally, a Dirac analysis of the model is elaborated. In this treatment it is shown how the existence of a nontrivial canonical set in the ambiguity-ridden gauge yields the connection with the previous hamiltonian formalism.
A Confining Model for Charmonium and New Gauge Invariant Field Equations
Hsu, Jong-Ping
2014-01-01
We discuss a confining model for charmonium in which the attractive force are derived from a new type of gauge field equation with a generalized $SU_3$ gauge symmetry. The new gauge transformations involve non-integrable phase factors with vector gauge functions $\\om^a_{\\mu}(x)$. These transformations reduce to the usual $SU_3$ gauge transformations in the special case $\\om^a_\\mu(x) = \\p_\\mu \\xi^a(x)$. Such a generalized gauge symmetry leads to the fourth-order equations for new gauge fields and to the linear confining potentials. The fourth-order field equation implies that the corresponding massless gauge boson has non-definite energy. However, the new gauge boson is permanently confined in a quark system by the linear potential. We use the empirical potentials of the Cornell group for charmonium to obtain the coupling strength $f^2/(4\\pi) \\approx 0.19$ for the strong interaction. Such a confining model of quark dynamics could be compatible with perturbation. The model can be applied to other quark-antiquar...
Atomic quantum simulation of a three-dimensional U(1) gauge-Higgs model
Kuno, Yoshihito; Sakane, Shinya; Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo
2016-12-01
In this paper, we study theoretically atomic quantum simulations of a U(1) gauge-Higgs model on a three-dimensional (3D) spatial lattice by using an extended Bose-Hubbard model with intersite repulsions on a 3D optical lattice. Here, the phase and density fluctuations of the boson variable on each site of the optical lattice describe the vector potential and the electric field on each link of the gauge-model lattice, respectively. The target gauge model is different from the standard Wilson-type U(1) gauge-Higgs model because it has plaquette and Higgs interactions with asymmetric couplings in the space-time directions. Nevertheless, the corresponding quantum simulation is still important as it provides us with a platform to study unexplored time-dependent phenomena characteristic of each phase in the general gauge-Higgs models. To determine the phase diagram of the gauge-Higgs model at zero temperature, we perform Monte Carlo simulations of the corresponding 3+1-dimensional U(1) gauge-Higgs model, and obtain the confinement and Higgs phases. To investigate the dynamical properties of the gauge-Higgs model, we apply the Gross-Pitaevskii equations to the extended Bose-Hubbard model. We simulate the time evolution of an electric flux that initially is put on a straight line connecting two external point charges. We also calculate the potential energy between this pair of charges and obtain the string tension in the confinement phase. Finally, we propose a feasible experimental setup for the atomic simulations of this quantum gauge-Higgs model on the 3D optical lattice. These results may serve as theoretical guides for future experiments.
Precipitation is a key control on watershed hydrologic modelling output, with errors in rainfall propagating through subsequent stages of water quantity and quality analysis. Most watershed models incorporate precipitation data from rain gauges; higher-resolution data sources are...
Precipitation is a key control on watershed hydrologic modelling output, with errors in rainfall propagating through subsequent stages of water quantity and quality analysis. Most watershed models incorporate precipitation data from rain gauges; higher-resolution data sources are...
A toy model for weak interaction based on condensed gauge bosons
Kohyama, Hiroaki
2016-01-01
We construct a toy model for weak interaction based on the assumption that gauge bosons form condensates. We then discuss the model predictions calculated from the effective Feynman rules which are derived through computing the effective action.
Strong Coupling Limits and Quantum Isomorphisms of the Gauged Thirring Model
Bufalo, R.; Casana, R.; Pimentel, B. M.
We have studied the quantum equivalence in the respective strong coupling limits of the bidimensional gauged Thirring model with both Schwinger and Thirring models. It is achieved following a nonperturbative quantization of the gauged Thirring model into the path-integral approach. First, we have established the constraint structure via the Dirac's formalism for constrained systems and defined the correct vacuum-vacuum transition amplitude by using the Faddeev-Senjanovic method. Next, we have computed exactly the relevant Green's functions and shown the Ward-Takahashi identities. Afterwards, we have established the quantum isomorphisms between gauged Thirring model and both Schwinger and Thirring models by analyzing the respective Green's functions in the strong coupling limits, respectively. A special attention is necessary to establish the quantum isomorphism between the gauged Thirring model and the Thirring model.
A Gauge Mediation Model of Dynamical Supersymmetry Breaking without Color Instability
Nomura, Y; Yanagida, T; Nomura, Yasunori
1998-01-01
We construct a gauge mediation model of dynamical supersymmetry breaking (DSB) based on a vector-like gauge theory, in which there is a unique color-preserving true vacuum. The DSB scale $\\Lambda$ turns out to be as high as $\\Lambda \\simeq 10^{8-9} GeV$, since the transmission of the DSB effects to the standard model sector is completed through much higher loops. This model is perfectly natural and phenomenologically consistent. We also stress that the dangerous D-term problem for the messenger U(1)_m is automatically solved by a charge conjugation symmetry in the vector-like gauge theory.
Anomaly-free U(1) gauge symmetries in neutrino seesaw flavor models
Cebola, Luis M; Felipe, Ricardo Gonzalez
2013-01-01
Adding right-handed neutrino singlets and/or fermion triplets to the particle content of the Standard Model allows for the implementation of the seesaw mechanism to give mass to neutrinos and, simultaneously, for the construction of anomaly-free gauge group extensions of the theory. We consider Abelian extensions based on an extra U(1)_X gauge symmetry, where X is an arbitrary linear combination of the baryon number B and the individual lepton numbers L_{e,mu,tau}. By requiring cancellation of gauge anomalies, we perform a detailed analysis in order to identify the charge assignments under the new gauge symmetry that lead to neutrino phenomenology compatible with current experiments. In particular, we study how the new symmetry can constrain the flavor structure of the Majorana neutrino mass matrix, leading to two-zero textures with a minimal extra fermion and scalar content. The possibility of distinguishing different gauge symmetries and seesaw realizations at colliders is also briefly discussed.
LanHEP - a package for automatic generation of Feynman rules in gauge models
Semenov, A Yu
1996-01-01
We consider the general problem of derivation of the Feynman rules for the matrix elements in momentum representation from the given Lagrangian in coordinate space invariant under the transformation of some gauge group. LanHEP package presented in this paper allows to define in a convenient way the gauge model Lagrangian in canonical form and then to generate automatically the Feynman rules that can be used in the following calculation of the physical processes by means of CompHEP package. The detailed description of LanHEP commands is given and several examples of LanHEP applications (QED, QCD, Standard Model in the t'Hooft-Feynman gauge) are presented.
Lalak, Zygmunt; Olszewski, Paweł
2016-01-01
We explicitly show perturbative gauge fixing independence of the tunneling rate to a stable radiatively induced vacuum in the abelian Higgs model. We work with a class of $R_\\xi$ gauges in the presence of both dimensionless and dimensionful gauge fixing parameters. We show that Nielsen identities survive the inclusion of higher order oparators and compute the tunnelling rate to the vacua modified by the nonrenormalisable operators in a gauge invariant manner. We also discuss implications of this method for the complete Standard Model.
Atomic quantum simulation of a three-dimensional U(1) gauge-Higgs model
Kuno, Yoshihito; Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo
2016-01-01
In this paper, we study atomic quantum simulations of a U(1) gauge-Higgs model on a three-dimensional (3D) spatial lattice. We start from an extended 3D Bose-Hubbard model with nearest-neighbor repulsions and show that it can simulate a U(1) gauge-Higgs model with next nearest-neighbor Higgs couplings. Here the phase of the boson variable on each site of the optical lattice describes the vector potential on each link of the gauge-model lattice. To determine the phase diagram of the gauge-Higgs model at a zero temperature, we perform Monte-Carlo simulations of the corresponding 3+1-dimensional U(1) gauge-Higgs model, and obtain the three phases, i.e., the confinement, Coulomb and Higgs phases. To investigate the dynamical properties of the gauge-Higgs model, we apply the Gross-Pitaevskii equations to the extended Bose-Hubbard model. We simulate the time-evolution of an electric flux initially put on a straight line connecting two external point charges. We also calculate the potential energy between this pair ...
Perturbative analysis of the Schwinger model (QED{sub 2}) for gauge non-invariant regularizations
Energy Technology Data Exchange (ETDEWEB)
Sifuentes, Rodolsfo Casana; Silva Neto, Marcelo Barbosa da; Dias, Sebastiao Alves [Centro Brasileiro de Pesquisas Fisicas , CBPF, Rio de Janeiro, RJ (Brazil). Dept. de Teorias de Campos e Particulas
1997-12-31
In this article we consider the Schwinger model for gauge non-invariant regularization and study the perturbative behaviour of some relevant correlation functions. (author) 6 refs.; e-mail: casana, silvanet, tiao at cbpfsu1.cat.cbpf.br
Gauge Coupling Beta Functions in the Standard Model to Three Loops
Mihaila, Luminita N; Steinhauser, Matthias
2012-01-01
In this paper we compute the three-loop corrections to the beta functions of the three gauge couplings in the Standard Model of particle physics using the minimal subtraction scheme and taking into account Yukawa and Higgs self couplings.
A Note on Dimer Models and D-brane Gauge Theories
Agarwal, Prarit; Sarkar, Tapobrata
2008-01-01
The connection between quiver gauge theories and dimer models has been well studied. It is known that the matter fields of the quiver gauge theories can be represented using the perfect matchings of the dimer model. We conjecture that the perfect matchings give information about the charge matrix of the quiver gauge theory. Further, we perform explicit computations on some aspects of partial resolutions of toric singularities using dimer models. We analyse these with graph theory techniques, using the perfect matchings of orbifolds of the form $\\BC^3/\\Gamma$, where the orbifolding group $\\Gamma$ may be noncyclic. Using these, we study the construction of the superpotential of gauge theories living on D-branes which probe these singularities, including the case where one or more adjoint fields are present upon partial resolution. Applying a combination of open and closed string techniques to dimer models, we also study some aspects of their symmetries.
Non-linear Rsub(xi) gauge condition for the electroweak SU(2) x U(1) model
Energy Technology Data Exchange (ETDEWEB)
Gavela, M.B.; Girardi, G.; Malleville, C.; Sorba, P. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules)
1981-12-21
A non-linear Rsub(zeta) gauge condition is presented and explicitly developed in the framework of the SU(2) x U(1) gauge model. We give the corresponding Feynman rules, which are simpler than in Rsub(xi) gauges, because couplings involving unphysical Higgs and gauge bosons disappear or simplify. The Faddeev-Popov sector is more elegant, the ghosts coupling to neutral gauge bosons like in scalar electrodynamics. Finally, as a practical example, the transition Higgs ..-->.. ..gamma gamma.. is considered and compared with the usual calculation in linear gauges.
Hamiltonian Analysis of Gauged $CP^{1}$ Model, the Hopf term, and fractional spin
Chakraborty, B
1998-01-01
Recently it was shown by Cho and Kimm that the gauged $CP^1$ model, obtained by gauging the global $SU(2)$ group and adding a corresponding Chern-Simons term, has got its own soliton. These solitons are somewhat distinct from those of pure $CP^1$ model as they cannot always be characterised by $\\pi_2(CP^1)=Z$. In this paper, we first carry out a detailed Hamiltonian analysis of this gauged $CP^1$ model. This reveals that the model has only $SU(2)$ as the gauge invariance, rather than $SU(2) \\times U(1)$. The $U(1)$ gauge invariance of the original (ungauged) $CP^1$ model is actually contained in the $SU(2)$ group itself. Then we couple the Hopf term associated to these solitons and again carry out its Hamiltonian analysis. The symplectic structures, along with the structures of the constraints of these two models (with or without Hopf term) are found to be essentially the same. The model with a Hopf term is shown to have fractional spin which, when computed in the radiation gauge, is found to depend not only ...
The gauging of two-dimensional bosonic sigma models on world-sheets with defects
Gawedzki, Krzysztof; Waldorf, Konrad
2013-01-01
We extend our analysis of the gauging of rigid symmetries in bosonic two-dimensional sigma models with Wess-Zumino terms in the action to the case of world-sheets with defects. A structure that permits a non-anomalous coupling of such sigma models to world-sheet gauge fields of arbitrary topology is analysed, together with obstructions to its existence, and the classification of its inequivalent choices.
A consistent hamiltonian treatment of the Thirring-Wess and Schwinger model in the covariant gauge
Martinovič, L'ubomír
2014-06-01
We present a unified hamiltonian treatment of the massless Schwinger model in the Landau gauge and of its non-gauge counterpart-the Thirring-Wess (TW) model. The operator solution of the Dirac equation has the same structure in the both models and identifies free fields as the true dynamical degrees of freedom. The coupled boson field equations (Maxwell and Proca, respectively) can also be solved exactly. The Hamiltonan in Fock representation is derived for the TW model and its diagonalization via a Bogoliubov transformation is suggested. The axial anomaly is derived in both models directly from the operator solution using a hermitian version of the point-splitting regularization. A subtlety of the residual gauge freedom in the covariant gauge is shown to modify the usual definition of the "gauge-invariant" currents. The consequence is that the axial anomaly and the boson mass generation are restricted to the zero-mode sector only. Finally, we discuss quantization of the unphysical gauge-field components in terms of ghost modes in an indefinite-metric space and sketch the next steps within the finite-volume treatment necessary to fully reveal physical content of the model in our hamiltonian formulation.
Pollock, Michael; Colli, Matteo; Stagnaro, Mattia; Lanza, Luca; Quinn, Paul; Dutton, Mark; O'Donnell, Greg; Wilkinson, Mark; Black, Andrew; O'Connell, Enda
2016-04-01
Accurate rainfall measurement is a fundamental requirement in a broad range of applications including flood risk and water resource management. The most widely used method of measuring rainfall is the rain gauge, which is often also considered to be the most accurate. In the context of hydrological modelling, measurements from rain gauges are interpolated to produce an areal representation, which forms an important input to drive hydrological models and calibrate rainfall radars. In each stage of this process another layer of uncertainty is introduced. The initial measurement errors are propagated through the chain, compounding the overall uncertainty. This study looks at the fundamental source of error, in the rainfall measurement itself; and specifically addresses the largest of these, the systematic 'wind-induced' error. Snowfall is outside the scope. The shape of a precipitation gauge significantly affects its collection efficiency (CE), with respect to a reference measurement. This is due to the airflow around the gauge, which causes a deflection in the trajectories of the raindrops near the gauge orifice. Computational Fluid-Dynamic (CFD) simulations are used to evaluate the time-averaged airflows realized around the EML ARG100, EML SBS500 and EML Kalyx-RG rain gauges, when impacted by wind. These gauges have a similar aerodynamic profile - a shape comparable to that of a champagne flute - and they are used globally. The funnel diameter of each gauge, respectively, is 252mm, 254mm and 127mm. The SBS500 is used by the UK Met Office and the Scottish Environmental Protection Agency. Terms of comparison are provided by the results obtained for standard rain gauge shapes manufactured by Casella and OTT which, respectively, have a uniform and a tapered cylindrical shape. The simulations were executed for five different wind speeds; 2, 5, 7, 10 and 18 ms-1. Results indicate that aerodynamic gauges have a different impact on the time-averaged airflow patterns
Magnetic structures and Z_2 vortices in a non-Abelian gauge model
Cabra, Daniel; Schaposnik, Fidel A
2015-01-01
The magnetic order of the triangular lattice with antiferromagnetic interactions is described by an SO(3) field and allows for the presence of Z2 magnetic vortices as defects. In this work we show how these Z2 vortices can be fitted into a local SU(2) gauge theory. We propose simple Ansatzes for vortex configurations and calculate their energies using well-known results of the Abelian gauge model. We comment on how Dzyaloshinskii-Moriya interactions could be derived from a non-Abelian gauge theory and speculate on their effect on non trivial configurations.
Propagators of hot SU(2) gauge theory from 3d adjoint Higgs model
Karsch, Frithjof
2000-01-01
We study propagators of the lattice 3d adjoint Higgs model, considered as an effective theory of 4d SU(2) gauge theory at high temperature. The propagators are calculated in so-called lambda-gauges. From the long distance behaviour of the propagators we extract the screening masses. It is shown that the pole masses extracted from the propagators agree well with the screening masses obtained recently in finite temperature SU(2) theory. The gauge dependence of the screening masses is also discussed.
Matrix models from localization of five-dimensional supersymmetric noncommutative U(1) gauge theory
Lee, Bum-Hoon; Yang, Hyun Seok
2016-01-01
We study localization of five-dimensional supersymmetric $U(1)$ gauge theory on $\\mathbb{S}^3 \\times \\mathbb{R}_{\\theta}^{2}$ where $\\mathbb{R}_{\\theta}^{2}$ is a noncommutative (NC) plane. The theory can be isomorphically mapped to three-dimensional supersymmetric $U(N \\to \\infty)$ gauge theory on $\\mathbb{S}^3$ using the matrix representation on a separable Hilbert space on which NC fields linearly act. Therefore the NC space $\\mathbb{R}_{\\theta}^{2}$ allows for a flexible path to derive matrix models via localization from a higher-dimensional supersymmetric NC $U(1)$ gauge theory. The result shows a rich duality between NC $U(1)$ gauge theories and large $N$ matrix models in various dimensions.
Non-Perturbative Self-Consistent Model in SU(N Gauge Field Theory
Directory of Open Access Journals (Sweden)
Koshelkin A.V.
2012-06-01
Full Text Available Non-perturbative quasi-classical model in a gauge theory with the Yang-Mills (YM field is developed. The self-consistent solutions of the Dirac equation in the SU(N gauge field, which is in the eikonal approximation, and the Yang-Mills (YM equations containing the external fermion current are solved. It shown that the developed model has the self-consistent solutions of the Dirac and Yang-Mills equations at N ≥ 3. In this way, the solutions take place provided that the fermion and gauge fields exist simultaneously, so that the fermion current completely compensates the current generated by the gauge field due to self-interaction of it.
Quantum groups as generalized gauge symmetries in WZNW models. Part II. The quantized model
Hadjiivanov, L.; Furlan, P.
2017-07-01
This is the second part of a paper dealing with the "internal" (gauge) symmetry of the Wess-Zumino-Novikov-Witten (WZNW) model on a compact Lie group G. It contains a systematic exposition, for G = SU( n), of the canonical quantization based on the study of the classical model (performed in the first part) following the quantum group symmetric approach first advocated by L.D. Faddeev and collaborators. The internal symmetry of the quantized model is carried by the chiral WZNW zero modes satisfying quadratic exchange relations and an n-linear determinant condition. For generic values of the deformation parameter the Fock representation of the zero modes' algebra gives rise to a model space of U q ( sl( n)). The relevant root of unity case is studied in detail for n = 2 when a "restricted" (finite dimensional) quotient quantum group is shown to appear in a natural way. The module structure of the zero modes' Fock space provides a specific duality with the solutions of the Knizhnik-Zamolodchikov equation for the four point functions of primary fields suggesting the existence of an extended state space of logarithmic CFT type. Combining left and right zero modes (i.e., returning to the 2 D model), the rational CFT structure shows up in a setting reminiscent to covariant quantization of gauge theories in which the restricted quantum group plays the role of a generalized gauge symmetry.
Hofmann, Ralf; Hofmann, Ralf; Keil, Mathias Th.
2002-01-01
Based on thermal equilibrium between the vacuum and its relevant excitations a model for cosmic inflation is presented. Due to a vacuum dominating, U(1) gauged inflaton field an inflationary regime can be reached without explicitly imposing slow-roll conditions. Thereby, nontrivial euclidean BPS saturation of the inflaton bans gravity from the field equations and masquerades the gauge symmetry as a $Z_{N+1}$ symmetry at the point where thermal equilibrium breaks down. Solving the vacuum dynamics of the gauge field in the inflaton background in the spirit of a Born-Oppenheimer approximation, a temperature dependent cosmological constant $\\La=\\La(T)$ is obtained. The $T$ dependence of $\\La$ competes with the black body radiation of the (massive) gauge field during cosmic expansion. This leads to (initial condition independent) inflation at some critical value of the inflaton amplitude. The model allows for a closed, noncollapsing universe with Planckian initial density, and hence it resolves the flatness proble...
The spectrum of Bogomol'nyi solitons in gauged linear $\\sigma$ models
Schroers, B J
1996-01-01
Gauged linear sigma models with C^m-valued scalar fields and gauge group U(1)^d, d \\leq m, have soliton solutions of Bogomol'nyi type if a suitably chosen potential for the scalar fields is also included in the Lagrangian. Here such models are studied on (2+1)-dimensional Minkowski space. If the dynamics of the gauge fields is governed by a Maxwell term the appropriate potential is a sum of generalised Higgs potentials known as Fayet-Iliopoulos D-terms. Many interesting topological solitons of Bogomol'nyi type arise in models of this kind, including various types of vortices (e.g. Nielsen-Olesen semilocal and superconducting vortices) as well as, in certain limits, textures (e.g. CP^(m-1) textures and gauged CP^(m-1) textures). This is explained and general results about the spectrum of topological defects both for broken and partially broken gauge symmetry are proven. When the dynamics of the gauge fields is governed by a Chern-Simons term instead of a Maxwell term a different scalar potential is required fo...
Evaluation of the value of radar QPE data and rain gauge data for hydrological modeling
DEFF Research Database (Denmark)
He, Xin; Sonnenborg, Torben Obel; Refsgaard, Jens Christian
2013-01-01
Weather radar-based quantitative precipitation estimation (QPE) is in principle superior to the areal precipitation estimated by using rain gauge data only, and therefore has become increasingly popular in applications such as hydrological modeling. The present study investigates the potential...... rainfall and subsequently the simulated hydrological responses. A headwater catchment located in western Denmark is chosen as the study site. Two hydrological models are built using the MIKE SHE code, where they have identical model structures expect for the rainfall forcing: one model is based on rain...... gauge interpolated rainfall, while the other is based on radar QPE which is a combination of both radar and rain gauge information. The two hydrological models are inversely calibrated and then validated against field observations. The model results show that the improvement introduced by using radar...
Hamiltonian analysis of gauged $CP^1$ model, with or without Hopf term, and fractional spin
Chakraborty, B
1997-01-01
Recently it has been shown by Cho and Kimm that the gauged $CP^1$ model, obtained by gauging the global SU(2) group of $CP^1$ model and adding a corresponding Chern-Simons term, has got its own soliton. These solitons are somewhat distinct from those of pure $CP^1$ model, as they cannot always be characterised by $\\pi_2(CP^1)=Z$. In this paper, we first carry out the Hamiltonian analysis of this gauged $CP^1$ model. Then we couple the Hopf term, associated to these solitons and again carry out its Hamiltonian analysis. The symplectic structures, along with the structures of the constraints, of these two models (with or without Hopf term) are found to be essentially the same. The model with Hopf term, is then shown to have fractional spin, which however depends not only on the soliton number $N$ but also on the nonabelian charge.
Noncommutative gauge theories on {R}_{\\uplambda}^3 : perturbatively finite models
Géré, Antoine; Jurić, Tajron; Wallet, Jean-Christophe
2015-12-01
We show that natural noncommutative gauge theory models on {R}_{\\uplambda}^3 can accommodate gauge invariant harmonic terms, thanks to the existence of a relationship between the center of {R}_{\\uplambda}^3 and the components of the gauge invariant 1-form canonical connection. This latter object shows up naturally within the present noncommutative differential calculus. Restricting ourselves to positive actions with covariant coordinates as field variables, a suitable gauge-fixing leads to a family of matrix models with quartic interactions and kinetic operators with compact resolvent. Their perturbative behavior is then studied. We first compute the 2-point and 4-point functions at the one-loop order within a subfamily of these matrix models for which the interactions have a symmetric form. We find that the corresponding contributions are finite. We then extend this result to arbitrary order. We find that the amplitudes of the ribbon diagrams for the models of this subfamily are finite to all orders in perturbation. This result extends finally to any of the models of the whole family of matrix models obtained from the above gauge-fixing. The origin of this result is discussed. Finally, the existence of a particular model related to integrable hierarchies is indicated, for which the partition function is expressible as a product of ratios of determinants.
Noncommutative gauge theories on ℝ{sub λ}{sup 3}: perturbatively finite models
Energy Technology Data Exchange (ETDEWEB)
Géré, Antoine [Dipartimento di Matematica, Università di Genova,Via Dodecaneso, 35, I-16146 Genova (Italy); Jurić, Tajron [Ruđer Bošković Institute, Theoretical Physics Division,Bijenička c.54, HR-10002 Zagreb (Croatia); Wallet, Jean-Christophe [Laboratoire de Physique Théorique, CNRS, University Paris-Sud, University Paris-Saclay,Bât. 210, 91405 Orsay (France)
2015-12-09
We show that natural noncommutative gauge theory models on ℝ{sub λ}{sup 3} can accommodate gauge invariant harmonic terms, thanks to the existence of a relationship between the center of ℝ{sub λ}{sup 3} and the components of the gauge invariant 1-form canonical connection. This latter object shows up naturally within the present noncommutative differential calculus. Restricting ourselves to positive actions with covariant coordinates as field variables, a suitable gauge-fixing leads to a family of matrix models with quartic interactions and kinetic operators with compact resolvent. Their perturbative behavior is then studied. We first compute the 2-point and 4-point functions at the one-loop order within a subfamily of these matrix models for which the interactions have a symmetric form. We find that the corresponding contributions are finite. We then extend this result to arbitrary order. We find that the amplitudes of the ribbon diagrams for the models of this subfamily are finite to all orders in perturbation. This result extends finally to any of the models of the whole family of matrix models obtained from the above gauge-fixing. The origin of this result is discussed. Finally, the existence of a particular model related to integrable hierarchies is indicated, for which the partition function is expressible as a product of ratios of determinants.
Extended Hamiltonian Formalism of the Pure Space-Like Axial Gauge Schwinger Model II
Nakawaki, Y; Nakawaki, Yuji; Cartor, Gary Mc
2004-01-01
Canonical methods are not sufficient to properly quantize space-like axial gauges. In this paper, we obtain guiding principles which allow the construction of an extended Hamiltonian formalism for pure space-like axial gauge fields. To do so, we clarify the general role residual gauge fields play in the space-like axial gauge Schwinger model. In all the calculations we fix the gauge using a rule, $n{\\cdot}A=0$, where $n$ is a space-like constant vector and we refer to its direction as $x_-$. Then, to begin with, we construct a formulation in which the quantization surface is space-like but not parallel to the direction of $n$. The quantization surface has a parameter which allows us to rotate it, but when we do so we keep the direction of the gauge field fixed. In that formulation we can use canonical methods. We bosonize the model to simplify the investigation. We find that the antiderivative, $({\\partial}_-)^{-1}$, is ill-defined whatever quantization coordinates we use as long as the direction of $n$ is sp...
Extended Hamiltonian Formalism of the Pure Space-Like Axial Gauge Schwinger Model. II
Nakawaki, Y.; McCartor, G.
2004-06-01
Canonical methods are not sufficient to properly quantize space-like axial gauges. In this paper, we obtain guiding principles that allow for the construction of an extended Hamiltonian formalism for pure space-like axial gauge fields. To do so, we clarify the general role that residual gauge fields play in the space-like axial gauge Schwinger model. In all the calculations, we fix the gauge using the rule n•A=0, where n is a space-like constant vector, and we refer to its direction as x-. Then, to begin with, we construct a formulation in which the quantization surface is space-like but not parallel to the direction of n. The quantization surface has a parameter that allows us to rotate it, but when we do so, we keep the gauge fixing direction fixed. In that formulation, we can use canonical methods. We bosonize the model to simplify the investigation. We find that the inverse differentiation, (∂-)-1, is ill-defined whatever quantization coordinates we use, as long as the direction of n is space-like. We find that the physical part of the dipole ghost field includes infrared divergences. However, we also find that if we introduce residual gauge fields in such a way that the dipole ghost field satisfies the canonical commutation relations, then the residual gauge fields are determined so as to regularize the infrared divergences contained in the physical part. The propagators then take the form prescribed by Mandelstam and Leibbrandt. We make use of these properties to develop guiding principles that allow us to construct consistent operator solutions in the pure space-like case, in which the quantization surface is parallel to the direction of n, and canonical methods do not suffice.
Gauged Two Higgs Doublet Model confronts the LHC 750 GeV diphoton anomaly
Huang, Wei-Chih; Tsai, Yue-Lin Sming; Yuan, Tzu-Chiang
2016-08-01
In light of the recent 750 GeV diphoton anomaly observed at the LHC, we study the possibility of accommodating the deviation from the standard model prediction based on the recently proposed Gauged Two Higgs Doublet Model. The model embeds two Higgs doublets into a doublet of a non-abelian gauge group SU(2)H, while the standard model SU(2)L right-handed fermion singlets are paired up with new heavy fermions to form SU(2)H doublets, and SU(2)L left-handed fermion doublets are singlets under SU(2)H. An SU(2)H scalar doublet, which provides masses to the new heavy fermions as well as the SU(2)H gauge bosons, can be produced via gluon fusion and subsequently decays into two photons with the new fermions circulating the triangle loops to account for the deviation from the standard model prediction.
Gauged Two Higgs Doublet Model confronts the LHC 750 GeV diphoton anomaly
Directory of Open Access Journals (Sweden)
Wei-Chih Huang
2016-08-01
Full Text Available In light of the recent 750 GeV diphoton anomaly observed at the LHC, we study the possibility of accommodating the deviation from the standard model prediction based on the recently proposed Gauged Two Higgs Doublet Model. The model embeds two Higgs doublets into a doublet of a non-abelian gauge group SU(2H, while the standard model SU(2L right-handed fermion singlets are paired up with new heavy fermions to form SU(2H doublets, and SU(2L left-handed fermion doublets are singlets under SU(2H. An SU(2H scalar doublet, which provides masses to the new heavy fermions as well as the SU(2H gauge bosons, can be produced via gluon fusion and subsequently decays into two photons with the new fermions circulating the triangle loops to account for the deviation from the standard model prediction.
O (θ ) Feynman rules for quadrilinear gauge boson couplings in the noncommutative standard model
Sajadi, Seyed Shams; Boroun, G. R.
2017-02-01
We examine the electroweak gauge sector of the noncommutative standard model and, in particular, obtain the O (θ ) Feynman rules for all quadrilinear gauge boson couplings. Surprisingly, an electroweak-chromodynamics mixing appears in the gauge sector of the noncommutative standard model, where the photon as well as the neutral weak boson is coupled directly to three gluons. The phenomenological perspectives of the model in W-W+→Z Z scattering are studied and it is shown that there is a characteristic oscillatory behavior in azimuthal distribution of scattering cross sections that can be interpreted as a direct signal of the noncommutative standard model. Assuming the integrated luminosity 100 fb-1, the number of W-W+→Z Z subprocesses are estimated for some values of noncommutative scale ΛNC at different center of mass energies and the results are compared with predictions of the standard model.
Dual of 3-dimensional pure SU(2) Lattice Gauge Theory and the Ponzano-Regge Model
Anishetty, R; Sharatchandra, H S; Mathur, M; Anishetty, Ramesh; Cheluvaraja, Srinath; Mathur, Manu
1993-01-01
By carrying out character expansion and integration over all link variables, the partition function of 3-dimensional pure SU(2) lattice gauge theory is rewritten in terms of 6j symbols. The result is Ponzano-Regge model of 3-dimensional gravity with a term that explicitly breaks general coordinate invariance. Conversely, we show that dual of Ponzano-Regge model is an SU(2) lattice gauge theory where all plaquette variables are constrained to the identity matrix and therefore the model needs no further regularization. Our techniques are applicable to other models with non-abelian symmetries in any dimension and provide duality transform for the partition function.
A Generalized Yang-Mills Model and Dynamical Breaking of Gauge Symmetry
Institute of Scientific and Technical Information of China (English)
WANG Dian-Fu; SONG He-Shan
2005-01-01
A generalized Yang-Mills model, which contains, besides the vector part Vμ, also a scalar part S, is constructed and the dynamical breaking of gauge symmetry in the model is also discussed. It is shown, in terms of Nambu-Jona-Lasinio (NJL) mechanism, that the gauge symmetry breaking can be realized dynamically in the generalized Yang-Mills model. The combination of the generalized Yang-Mills model and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.
Quantum groups as generalized gauge symmetries in WZNW models. Part I. The classical model
Hadjiivanov, L.; Furlan, P.
2017-07-01
Wess-Zumino-Novikov-Witten (WZNW) models over compact Lie groups G constitute the best studied class of (two dimensional, 2 D) rational conformal field theories (RCFTs). A WZNW chiral state space is a finite direct sum of integrable representations of the corresponding affine (current) algebra, and the correlation functions of primary fields are monodromy invariant combinations of left times right sector conformal blocks solving the Knizhnik-Zamolodchikov equation. However, even in this very well understood case of 2 D RCFT, the "internal" (gauge) symmetry that governs the ensuing fusion rules remains unclear. On the other hand, the canonical approach to the classical chiral WZNW theory developed by Faddeev, Alekseev, Shatashvili, Gawedzki and Falceto reveals its Poisson-Lie symmetry. After a covariant quantization, the latter gives rise to an associated quantum group symmetry which naturally requires an extension of the state space. This paper contains a review of earlier work on the subject with a special emphasis, in the case G = SU( n), on the emerging chiral "WZNW zero modes" which provide an adequate algebraic description of the internal symmetry structure of the model. Combining further left and right zero modes, one obtains a specific dynamical quantum group, the structure of its Fock representation resembling the axiomatic approach to gauge theories in which a "restricted" quantum group plays the role of a generalized gauge symmetry.
Tracing the Gauge Origin of Yukawa and Higgs Parameters Beyond the Standard Model
Díaz-Cruz, J L
2004-01-01
We discuss possible realizations of the hypothesis that all the fundamental interactions of the elementary particles should be of gauge type, including the Yukawa and Higgs ones. In the minimal SUSY extension of the standard model, where the quartic Higgs couplings are ``gauged'' through the D-terms, it is also possible to generate radiatively the Yukawa matrices for the light generations, thus expressing them as functions of gauge couplings. The program can also be applied to the SUSY LR model, where the possibility to induce radiatively the mixing angles, can help to make viable the parity solution to the strong CP problem. The superpotential of the model still includes some non-gauge couplings, namely, the Yukawa for the third generation and the trilinear terms involving the Higgs bi-doublet and two pairs of doublets. Additional progress to relate these parameters to gauge couplings, can be made by embedding the LR model within a SUSY model SU(4)_WxU(1)_{B-L} in five dimensions, where the Higgs bi-doublet ...
Supersymmetry breaking and gauge mediation in models with a generic superpotential
Energy Technology Data Exchange (ETDEWEB)
Kitano, Ryuichiro [Theoretical Division T-2, Los Alamos National Laboratory, NM 87545 (United States); Ookouchi, Yutaka [Perimeter Institute for Theoretical Physics, ON N2L2Y5 (Canada)], E-mail: yokochi@perimeterinstitute.ca
2009-05-04
We present a general scheme for finding or creating a metastable vacuum in supersymmetric theories. By using the formalism, we show that there is a parameter region where a metastable vacuum exists in the Wess-Zumino model coupled to messenger fields. This model serves as a perturbative renormalizable model of direct gauge mediation.
One-loop structure of the U(1) gauge model on the truncated Heisenberg space
Burić, Maja; Nenadović, Luka; Prekrat, Dragan
2016-12-01
We calculate divergent one-loop corrections to the propagators of the U(1) gauge theory on the truncated Heisenberg space, which is one of the extensions of the Grosse-Wulkenhaar model. The model is purely geometric, based on the Yang-Mills action; the corresponding gauge-fixed theory is BRST invariant. We quantize perturbatively and, along with the usual wave-function and mass renormalizations, we find divergent nonlocal terms of the Box ^{-1} and Box ^{-2} type. We discuss the meaning of these terms and possible improvements of the model.
One-loop structure of the U(1) gauge model on the truncated Heisenberg space
Burić, Maja; Prekrat, Dragan
2016-01-01
We calculate divergent one-loop corrections to the propagators of the U(1) gauge theory on the truncated Heisenberg space, which is one of the extensions of the Grosse-Wulkenhaar model. The model is purely geometric, based on the Yang-Mills action; the corresponding gauge-fixed theory is BRST invariant. We quantize perturbatively and, along with the usual wave-function and mass renormalizations, we find divergent nonlocal terms of the $\\Box^{-1}$ and $\\Box^{-2}$ type. We discuss the meaning of these terms and possible improvements of the model.
Topological self-dual configurations in a Lorentz-violating gauged O(3) sigma model
Casana, R; Ferreira, M M
2015-01-01
We have studied the existence of topological BPS or self-dual configurations in a Lorentz-violating gauged O(3) nonlinear sigma model, where CPT-even Lorentz-violating (LV) terms were introduced in both the gauge and {\\sigma}-field sectors. Such as it happens in the usual gauged {\\sigma}-model, purely magnetic self-dual configurations are allowed, maintaining some qualitative features of the standard ones. In a more involved configuration, Lorentz-violation provides new self-dual magnetic solutions carrying electric field but null total electric charge. In both cases, the total energy of the self-dual configurations turns out proportional to the topological charge of the model and to the LV parameters introduced in the {\\sigma}-sector. It is shown that the LV terms yield magnetic flux reversion as well.
Topological self-dual configurations in a Lorentz-violating gauged O (3 ) sigma model
Casana, R.; Farias, C. F.; Ferreira, M. M.
2015-12-01
We have studied the existence of topological Bogomol'nyi-Prasad-Sommerfield or self-dual configurations in a Lorentz-violating gauged O (3 ) nonlinear sigma model, where C P T -even Lorentz-violating (LV) terms were introduced in both the gauge and σ -field sectors. As happens in the usual gauged σ model, purely magnetic self-dual configurations are allowed, maintaining some qualitative features of the standard ones. In a more involved configuration, Lorentz violation provides new self-dual magnetic solutions carrying an electric field but a null total electric charge. In both cases, the total energy of the self-dual configurations turns out to be proportional to the topological charge of the model and to the LV parameters introduced in the σ sector. It is shown that the LV terms yield magnetic flux reversion as well.
Decorated tensor network renormalization for lattice gauge theories and spin foam models
Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian
2016-05-01
Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.
Gauged Two Higgs Doublet Model confronts the LHC 750 GeV di-photon anomaly
Huang, Wei-Chih; Yuan, Tzu-Chiang
2015-01-01
In light of the recent 750 GeV di-photon anomaly observed at the LHC, we check the possibility of accommodating the deviation from the Standard Model~(SM) prediction based on the Gauged Two Higgs Doublet Model, which has been proposed lately. The model embeds two Higgs doublets into a doublet of a non-abelian gauge group $SU(2)_H$, while the SM $SU(2)_L$ right-handed fermion singlets are paired up with new heavy fermions to form $SU(2)_H$ doublets, and $SU(2)_L$ left-handed fermion doublets are singlets under $SU(2)_H$. An $SU(2)_H$ scalar doublet, which provides a mass to the new heavy fermions as well as the $SU(2)_H$ gauge bosons, can be produced via gluon fusion and subsequently decays into two photons with the help of the new fermions to account for the deviation from the SM prediction.
G/G gauged WZW-matter model, Bethe Ansatz for q-boson model and Commutative Frobenius algebra
Energy Technology Data Exchange (ETDEWEB)
Okuda, Satoshi [Department of Physics, Rikkyo University,Toshima, Tokyo 171-8501 (Japan); Yoshida, Yutaka [High Energy Accelerator Research Organization (KEK),Tsukuba, Ibaraki 305-0801 (Japan)
2014-03-03
We investigate the correspondence between two dimensional topological gauge theories and quantum integrable systems discovered by Moore, Nekrasov, Shatashvili. This correspondence means that the hidden quantum integrable structure exists in the topological gauge theories. We showed the correspondence between the G/G gauged WZW model and the phase model in JHEP 11 (2012) 146 (arXiv:1209.3800). In this paper, we study a one-parameter deformation for this correspondence and show that the G/G gauged WZW model coupled to additional matters corresponds to the q-boson model. Furthermore, we investigate this correspondence from the viewpoint of the commutative Frobenius algebra, the axiom of the two dimensional topological quantum field theory.
On torsion-free vacuum solutions of the model of de Sitter gauge theory of gravity
Institute of Scientific and Technical Information of China (English)
2008-01-01
It is shown that all vacuum solutions of Einstein field equation with a positive cosmological constant are the solutions of a model of dS gauge theory of gravity.Therefore,the model is expected to pass the observational tests on the scale of solar systems and explain the indirect evidence of gravitational wave from the binary pulsars PSR1913+16.
Fine-tuning problem in renormalized perturbation theory: Spontaneously-broken gauge models
Energy Technology Data Exchange (ETDEWEB)
Foda, O.E. (Purdue Univ., Lafayette, IN (USA). Dept. of Physics)
1983-04-28
We study the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a model with spontaneously-broken gauge symmetries. We confirm previous results indicating that if the model is renormalized using BPHZ, then the tree-level hierarchy is not upset by the radiative corrections. Consequently, no fine-tuning of the initial parameters is required to maintain it, in contrast to the result obtained using Dimensional Renormalization. This verifies the conclusion that the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.
Hasenfratz, Anna
2010-01-01
Strongly coupled gauge systems with many fermions are important in many phenomenological models. I use the 2-lattice matching Monte Carlo renormalization group method to study the fixed point structure and critical indexes of SU(3) gauge models with 8 and 12 flavors of fundamental fermions. With an improved renormalization group block transformation I am able to connect the perturbative and confining regimes of the N_f=8 flavor system, thus verifying its QCD-like nature. With N_f=12 flavors the data favor the existence of an infrared fixed point and conformal phase, though the results are also consistent with very slow walking. I measure the anomalous mass dimension in both systems at several gauge couplings and find that they are barely different from the free field value.
DeGrand, Thomas; Golterman, Maarten; Jay, William I.; Neil, Ethan T.; Shamir, Yigal; Svetitsky, Benjamin
2016-09-01
We develop methods to calculate the electroweak gauge boson contribution to the effective Higgs potential in the context of composite Higgs models, using lattice gauge theory. The calculation is analogous to that of the electromagnetic mass splitting of the pion multiplet in QCD. We discuss technical details of carrying out this calculation, including modeling of the momentum and fermion-mass dependence of the underlying current-current correlation function, direct integration of the correlation function over momentum, and fits based on the minimal-hadron approximation. We show results of a numerical study using valence overlap fermions, carried out in an SU(4) gauge theory with two flavors of Dirac fermions in the two-index antisymmetric representation.
Decorated tensor network renormalization for lattice gauge theories and spin foam models
Dittrich, Bianca; Steinhaus, Sebastian
2014-01-01
Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. Using this novel information encoded in the decoration might eventually lead to new methods incorporating both analytical and numerical techniques.
Explaining muon magnetic moment and AMS-02 positron excess in a gauged horizontal symmetric model
Tomar, Gaurav
2015-01-01
We extended the standard model with a fourth generation of fermions to explain the discrepancy in the muon magnetic moment and to describe the positron excess observed by AMS-02 experiment. We introduce a gauged $SU(2)_{HV}$ horizontal symmetry between the muon and the 4th generation lepton families and identified the 4th generation right-handed neutrino as the dark matter with mass $\\sim 700$ GeV. The dark matter annihilates through $SU(2)_{HV}$ gauge boson into final states $(\\mu^+ \\mu^-)$ and $(\
Gauge-Independent Scales Related to the Standard Model Vacuum Instability
Espinosa, Jose R.; Konstandin, Thomas; Riotto, Antonio
2016-01-01
The measured (central) values of the Higgs and top quark masses indicate that the Standard Model (SM) effective potential develops an instability at high field values. The scale of this instability, determined as the Higgs field value at which the potential drops below the electroweak minimum, is about $10^{11}$ GeV. However, such a scale is unphysical as it is not gauge-invariant and suffers from a gauge-fixing uncertainty of up to two orders of magnitude. Subjecting our system, the SM, to several probes of the instability (adding higher order operators to the potential; letting the vacuum decay through critical bubbles; heating up the system to very high temperature; inflating it) and asking in each case physical questions, we are able to provide several gauge-invariant scales related with the Higgs potential instability.
Koma, Y; Ilgenfritz, E M; Suzuki, T; Polikarpov, M I
2003-01-01
The structure of the flux-tube profile in Abelian-projected (AP) SU(2) gauge theory in the maximally Abelian gauge is studied. The connection between the AP flux tube and the classical flux-tube solution of the U(1) dual Abelian Higgs (DAH) model is clarified in terms of the path-integral duality transformation. This connection suggests that the electric photon and the magnetic monopole parts of the Abelian Wilson loop can act as separate sources creating the Coulombic and the solenoidal electric field inside a flux tube. The conjecture is confirmed by a lattice simulation which shows that the AP flux tube is composed of these two contributions.
Koma, Y.; Koma, M.; Ilgenfritz, E.-M.; Suzuki, T.; Polikarpov, M. I.
2003-11-01
The structure of the flux-tube profile in Abelian-projected (AP) SU(2) gauge theory in the maximally Abelian gauge is studied. The connection between the AP flux tube and the classical flux-tube solution of the U(1) dual Abelian Higgs model is clarified in terms of the path-integral duality transformation. This connection suggests that the electric photon and the magnetic monopole parts of the Abelian Wilson loop can act as separate sources creating the Coulombic and the solenoidal electric field inside a flux tube. The conjecture is confirmed by a lattice simulation which shows that the AP flux tube is composed of these two contributions.
Discrete Gauge Groups in F-theory Models on Genus-One Fibered Calabi-Yau 4-folds without Section
Kimura, Yusuke
2016-01-01
We compute the discrete gauge groups in F-theory models on genus-one fibered Calabi-Yau 4-folds without a section to the fibration. In general, discrete gauge group arises in genus-one fibration $Y$ without a section. The Tate-Shafarevich group of the Jacobian $J(Y)$ is identified with the discrete gauge group. An $n$-section of a genus-one fibration gives rise to the discrete gauge group $\\mathbb{Z}_n$. We deduce the discrete gauge group by computing a smallest multisection of a genus-one fibration without a section. The discrete gauge groups $\\mathbb{Z}_2$, $\\mathbb{Z}_3$ and $\\mathbb{Z}_4$ appear in our models. We also investigate the Mordell-Weil group of the Jacobian of a genus-one fibration without a section.
Cold-atom quantum simulation of U(1) lattice gauge-Higgs model
Kasamatsu, Kenichi; Kuno, Yoshihito; Takahashi, Yoshiro; Ichinose, Ikuo; Matsui, Tetsuo
2015-03-01
We discuss the possible methods to construct a quantum simulator of the U(1) lattice gauge-Higgs model using cold atoms in an optical lattice. These methods require no severe fine tunings of parameters of atomic-interactions in contrast with the other previous literature. We propose some realistic experimental setups to realize the atomic quantum simulator of the U(1) lattice gauge-Higgs model in a two-dimensional optical lattice. Our target gauge-Higgs model has a nontrivial phase structure, i.e., existence of the phase boundary between confinement and Higgs phases, and this phase boundary is to be observed by cold-atom experiments. As a reference to such experiments, we make numerical simulations of the time-dependent Gross-Pitaevskii equation and observe the real-time dynamics of the atomic simulators. Clarification of the dynamics of this gauge-Higgs model sheds some lights upon various unsolved problems including the inflation process of the early universe.
Application of the Faddeev-Jackiw formalism to the gauged WZW model
Paschalis, J E; Paschalis, J E; Porfyriadis, P I
1995-01-01
The two-flavor Wess-Zumino model coupled to electromagnetism is treated as a constraint system using the Faddeev-Jackiw method. Expanding into series of powers of the pion fields and keeping terms up to second and third order we obtain Coulomb- gauge Lagrangeans containing non-local terms.
Hamiltonian reduction of the U$_{EM}$(1) gauged three flavour WZW model
Paschalis, J E
1995-01-01
The three-flavour Wess-Zumino model coupled to electromagnetism is treated as a constraint system using the Faddeev-Jackiw method. Expanding into series of powers of the Goldstone boson fields and keeping terms up to second and third order we obtain Coulomb-gauge hamiltonian densities.
Provable first-order transitions for nonlinear vector and gauge models with continuous symmetries
Enter, Aernout C.D. van; Shlosman, Senya B.
2005-01-01
We consider various sufficiently nonlinear vector models of ferromagnets, of nematic liquid crystals and of nonlinear lattice gauge theories with continuous symmetries. We show, employing the method of Reflection Positivity and Chessboard Estimates, that they all exhibit first-order transitions in t
Noncommutative gauge theories on $\\mathbb{R}^3_\\lambda$: Perturbatively finite models
Géré, Antoine; Wallet, Jean-Christophe
2015-01-01
We show that natural noncommutative gauge theory models on $\\mathbb{R}^3_\\lambda$ can accommodate gauge invariant harmonic terms, thanks to the existence of a relationship between the center of $\\mathbb{R}^3_\\lambda$ and the components of the gauge invariant 1-form canonical connection. This latter object shows up naturally within the present noncommutative differential calculus. Restricting ourselves to positive actions with covariant coordinates as field variables, a suitable gauge-fixing leads to a family of matrix models with quartic interactions and kinetic operators with compact resolvent. Their perturbative behavior is then studied. We first compute the 2-point and 4-point functions at the one-loop order within a subfamily of these matrix models for which the interactions have a symmetric form. We find that the corresponding contributions are finite. We then extend this result to arbitrary order. We find that the amplitudes of the ribbon diagrams for the models of this subfamily are finite to all order...
Linear moose model with pairs of degenerate gauge boson triplets
Casalbuoni, Roberto; Coradeschi, Francesco; de Curtis, Stefania; Dominici, Daniele
2008-05-01
The possibility of a strongly interacting electroweak symmetry breaking sector, as opposed to the weakly interacting light Higgs of the standard model, is not yet ruled out by experiments. In this paper we make an extensive study of a deconstructed model (or “moose” model) providing an effective description of such a strong symmetry breaking sector, and show its compatibility with experimental data for a wide portion of the model parameter space. The model is a direct generalization of the previously proposed D-BESS model.
Inflation from the Finite Scale Gauged Nambu-Jona-Lasinio Model
Inagaki, Tomohiro; Sakamoto, Hiroki
2016-01-01
The possibility to construct an inflationary universe scenario for the finite-scale gauged Nambu-Jona-Lasinio model is investigated. This model can be described by the Higgs-Yukawa type interaction model with the corresponding compositeness scale. Therefore, the one-loop Higgs-Yukawa effective potential is used with the compositeness condition for the study of inflationary dynamics. We evaluate the fluctuations in the cosmic microwave background for the model with a finite compositeness scale in the slow-roll approximation. We find the remarkable dependence on the gauge group and the number of fermion flavors. It is also proved that the model has similar behavior with the $\\phi^{4n}$ chaotic inflation and the Starobinsky model at the flat and steep limits, respectively. It is demonstrated that realistic inflation consistent with Planck data is possible for a range of theory parameters.
Implications of unitarity and gauge invariance for simplified dark matter models
Energy Technology Data Exchange (ETDEWEB)
Kahlhoefer, Felix; Schmidt-Hoberg, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schwetz, Thomas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Kernphysik; Vogl, Stefan [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Kernphysik; Stockholm Univ. (Sweden). Dept. of Physics
2015-10-15
We show that simplified models used to describe the interactions of dark matter with Standard Model particles do not in general respect gauge invariance and that perturbative unitarity may be violated in large regions of the parameter space. The modifications necessary to cure these inconsistencies may imply a much richer phenomenology and lead to stringent constraints on the model. We illustrate these observations by considering the simplified model of a fermionic dark matter particle and a vector mediator. Imposing gauge invariance then leads to strong constraints from dilepton resonance searches and electroweak precision tests. Furthermore, the new states required to restore perturbative unitarity can mix with Standard Model states and mediate interactions between the dark and the visible sector, leading to new experimental signatures such as invisible Higgs decays. The resulting constraints are typically stronger than the 'classic' constraints on DM simplified models such as monojet searches and make it difficult to avoid thermal overproduction of dark matter.
Implications of unitarity and gauge invariance for simplified dark matter models
Kahlhoefer, Felix; Schwetz, Thomas; Vogl, Stefan
2015-01-01
We show that simplified models used to describe the interactions of dark matter with Standard Model particles do not in general respect gauge invariance and that perturbative unitarity may be violated in large regions of the parameter space. The modifications necessary to cure these inconsistencies may imply a much richer phenomenology and lead to stringent constraints on the model. We illustrate these observations by considering the simplified model of a fermionic dark matter particle and a vector mediator. Imposing gauge invariance then leads to strong constraints from dilepton resonance searches and electroweak precision tests. Furthermore, the new states required to restore perturbative unitarity can mix with Standard Model states and mediate interactions between the dark and the visible sector, leading to new experimental signatures such as invisible Higgs decays. The resulting constraints are typically stronger than the 'classic' constraints on DM simplified models such as monojet searches and make it d...
2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement
Energy Technology Data Exchange (ETDEWEB)
Anber, Mohamed M.; Poppitz, Erich; /Toronto U.; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.
2012-08-16
We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.
On the unitarity of gauged non-compact world-sheet supersymmetric WZNW models
Bjornsson, Jonas
2008-01-01
In this paper we generalize our investigation of the unitarity of non-compact WZNW models connected to hermitian symmetric spaces to the N=1 world-sheet supersymmetric extension of these models. We will prove that these models are unitary in a BRST approach for antidominant highest weight representations if, and only if, the level and weights of the gauged subalgebra are integers. We will find new critical string theories in 7 and 9 space-time dimensions.
On supermatrix models, Poisson geometry, and noncommutative supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Klimčík, Ctirad [Aix Marseille Université, CNRS, Centrale Marseille I2M, UMR 7373, 13453 Marseille (France)
2015-12-15
We construct a new supermatrix model which represents a manifestly supersymmetric noncommutative regularisation of the UOSp(2|1) supersymmetric Schwinger model on the supersphere. Our construction is much simpler than those already existing in the literature and it was found by using Poisson geometry in a substantial way.
From integrable models to gauge theories Festschrift Matinyan (Sergei G)
Gurzadyan, V G
2002-01-01
This collection of twenty articles in honor of the noted physicist and mentor Sergei Matinyan focuses on topics that are of fundamental importance to high-energy physics, field theory and cosmology. The topics range from integrable quantum field theories, three-dimensional Ising models, parton models and tests of the Standard Model, to black holes in loop quantum gravity, the cosmological constant and magnetic fields in cosmology. A pedagogical essay by Lev Okun concentrates on the problem of fundamental units. The articles have been written by well-known experts and are addressed to graduate
T-duality without isometry via extended gauge symmetries of 2D sigma models
Energy Technology Data Exchange (ETDEWEB)
Chatzistavrakidis, Athanasios [Institut für Theoretische Physik, Leibniz Universität Hannover,Appelstraße 2, 30167 Hannover (Germany); Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Deser, Andreas [Institut für Theoretische Physik, Leibniz Universität Hannover,Appelstraße 2, 30167 Hannover (Germany); Jonke, Larisa [Division of Theoretical Physics, Rudjer Boković Institute,Bijenika 54, 10000 Zagreb (Croatia)
2016-01-26
Target space duality is one of the most profound properties of string theory. However it customarily requires that the background fields satisfy certain invariance conditions in order to perform it consistently; for instance the vector fields along the directions that T-duality is performed have to generate isometries. In the present paper we examine in detail the possibility to perform T-duality along non-isometric directions. In particular, based on a recent work of Kotov and Strobl, we study gauged 2D sigma models where gauge invariance for an extended set of gauge transformations imposes weaker constraints than in the standard case, notably the corresponding vector fields are not Killing. This formulation enables us to follow a procedure analogous to the derivation of the Buscher rules and obtain two dual models, by integrating out once the Lagrange multipliers and once the gauge fields. We show that this construction indeed works in non-trivial cases by examining an explicit class of examples based on step 2 nilmanifolds.
Bufalo, Rodrigo; Pimentel, Bruto Max
2010-01-01
We have performed a nonperturbative quantization of the two-dimensional gauged Thirring model by using the path-integral approach. First, we have studied the constraint structure via the Dirac's formalism for constrained systems and by using the Faddeev-Senjanovic method we have calculated the vacuum--vacuum transition amplitude, then have computed the correlation functions in a nonperturbative framework, and the Ward-Takahashi identities of model as well. Afterwards, we have established at quantum level the isomorphisms between gauged Thirring model with the Schwinger and Thirring models by analyzing the respective Green's functions in the strong limit of the coupling constants $g $ and $e$, respectively. A special attention is necessary to perform the quantum analysis in the limit $e\\rightarrow \\infty $.
A de-gauging approach to physics beyond the Standard Model
Xiong, Chi
2016-01-01
By studying the t-J model for superconductivity, the Pati-Salam model and the Haplon model for particle unifications, we extract their common feature which is the spin-charge separation of fermions. This becomes a de-gauging process for charged fermions by considering them as bound states of a neutral fermion and charged or neutral bosons. We present a few examples including the weak-charge-spin separation for the leptons in the Standard Model. Some fundamental fermions can be obtained by continuing this de-gauging process for different kinds of charges. Finally the binding forces of the bound states might be provided by interactions related to spacetime symmetries such as supersymmetry.
Maximally Generalized Yang-Mills Model and Dynamical Breaking of Gauge Symmetry
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A maximally generalized Yang-Mills model, which contains, besides the vector part Vμ, also an axial-vector part Aμ, a scalar part S, a pseudoscalar part P, and a tensor part Tμv, is constructed and the dynamical breaking of gauge symmetry in the model is also discussed. It is shown, in terms of the Nambu-Jona-Lasinio mechanism, that the gauge symmetry breaking can be realized dynamically in the maximally generalized Yang-Mills model. The combination of the maximally generalized Yang-Mills model and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.
keV sterile neutrino Dark Matter in gauge extensions of the Standard Model
Bezrukov, F; Lindner, M
2009-01-01
It is known, that a keV scale sterile neutrino is a good Warm Dark Matter (WDM) candidate. We study how this possibility could be realised in the context of gauge extensions of the Standard Model (SM). The naive expectation leads to large thermal overproduction of sterile neutrinos in this setup. However, we find that it is possible to use out-of-equilibrium decay of the other right-handed neutrinos of the model to dilute the present density of the keV sterile neutrinos and achieve the observed DM density. We present the universal requirements that should be satisfied by the gauge extensions of the SM, containing right-handed neutrinos, to be viable models of WDM, and provide a simple example in the context of the Left-Right symmetric model.
Dual pairs of gauged linear sigma models and derived equivalences of Calabi-Yau threefolds
Gerhardus, Andreas; Jockers, Hans
2017-04-01
In this work we study the phase structure of skew symplectic sigma models, which are a certain class of two-dimensional N =(2 , 2) non-Abelian gauged linear sigma models. At low energies some of them flow to non-linear sigma models with Calabi-Yau target spaces, which emerge from non-Abelian strong coupling dynamics. The observed phase structure results in a non-trivial duality proposal among skew symplectic sigma models and connects non-complete intersection Calabi-Yau threefolds-that are non-birational among another-in a common quantum Kähler moduli space. As a consequence we find non-trivial identifications of spectra of topological B-branes, which from a modern algebraic geometry perspective imply derived equivalences among Calabi-Yau varieties. To further support our proposals, we calculate the two sphere partition function of skew symplectic sigma models to determine geometric invariants, which confirm the anticipated Calabi-Yau threefold phases. We show that the two sphere partition functions of a pair of dual skew symplectic sigma models agree in a non-trivial fashion. To carry out these calculations, we develop a systematic approach to study higher-dimensional Mellin-Barnes type integrals. In particular, these techniques admit the evaluation of two sphere partition functions for gauged linear sigma models with higher rank gauge groups, but are applicable in other contexts as well.
Long range order in gauge theories. Deformed QCD as a toy model
Thomas, Evan
2012-01-01
We study a number of different ingredients, related to long range order observed in lattice QCD simulations, using a simple "deformed QCD" model. This model is a weakly coupled gauge theory, which however has all the relevant crucial elements allowing us to study difficult and nontrivial questions which are known to be present in real strongly coupled QCD. Essentially, we want to understand the physics of long range order in form of coherent low dimensional vacuum configurations observed in Monte Carlo lattice simulations.
Thimble regularization at work for Gauge Theories: from toy models onwards
Di Renzo, F
2015-01-01
A final goal for thimble regularization of lattice field theories is the application to lattice QCD and the study of its phase diagram. Gauge theories pose a number of conceptual and algorithmic problems, some of which can be addressed even in the framework of toy models. We report on our progresses in this field, starting in particular from first successes in the study of one link models.
Canonical quantization of a two-dimensional model with anomalous breaking of gauge invariance
Girotti, Horacio Oscar; Rothe, Heinz J.; Rothe, Klaus D.
1986-01-01
We investigate in detail the operator quantum dynamics of a two-dimensional model exhibiting anomalous breaking of gauge invariance. The equal-time algebra is systematically obtained by using the Dirac-bracket formalism for constrained systems. For certain values of the regularization parameter the system is shown to undergo drastic changes. For the value of the parameter corresponding to the chiral Schwinger model no operator solutions are found to exist.
New scotogenic model of neutrino mass with U(1){sub D} gauge interaction
Energy Technology Data Exchange (ETDEWEB)
Ma, Ernest [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Picek, Ivica; Radovčić, Branimir [Department of Physics, Faculty of Science, University of Zagreb, P.O.B. 331, HR-10002 Zagreb (Croatia)
2013-11-04
We propose a new realization of the one-loop radiative model of neutrino mass generated by dark matter (scotogenic), where the particles in the loop have an additional U(1){sub D} gauge symmetry, which may be exact or broken to Z{sub 2}. This model is relevant to a number of astrophysical observations, including AMS-02 and the dark-matter distribution in dwarf galactic halos.
New Scotogenic Model of Neutrino Mass with $U(1)_D$ Gauge Interaction
Ma, Ernest; Radovcic, Branimir
2013-01-01
We propose a new realization of the one-loop radiative model of neutrino mass generated by dark matter (scotogenic), where the particles in the loop have an additional $U(1)_D$ gauge symmetry, which may be exact or broken to $Z_2$. This model is relevant to a number of astrophysical observations, including AMS-02 and the dark matter distribution in dwarf galactic halos.
On Tachyons in Generic Orbifolds of $\\BC^r$ and Gauged Linear Sigma Models
Sarkar, Tapobrata
2006-01-01
We study some aspects of Gauged Linear Sigma Models corresponding to orbifold singularities of the form $\\BC^r/\\Gamma$, for $r=2,3$ and $\\Gamma = \\BZ_n$ and $\\BZ_n\\times \\BZ_m$. These orbifolds might be tachyonic in general. We compute expressions for the multi parameter sigma model Lagrangians for these orbifolds, in terms of their toric geometry data. Using this, we analyze some aspects of the phases of generic orbifolds of $\\BC^r$.
A new Supersymmetric $SU(3)_L \\otimes U(1)_X$ gauge model
Díaz, R A; Rodríguez, José Alberto; Diaz, Rodolfo A.
2003-01-01
We present a new supersymmetric version of the $SU(3) \\otimes U(1)$ gauge model using a more economic content of particles. The model has a smaller set of free parameters than other possibilities considered before. The MSSM can be seen as an effective theory of this larger symmetry. We find that the upper bound of the ligthest CP-even Higgs boson can be moved up to 140 GeV.
de Wild Propitius, M.D.F.; Bais, F.A.
1999-01-01
In these lectures, we present a self-contained treatment of planar gauge theories broken down to some finite residual gauge group $H$ via the Higgs mechanism. The main focus is on the discrete $H$ gauge theory describing the long distance physics of such a model. The spectrum features global $H$ cha
Modeling and strain gauging of eddy current repulsion deicing systems
Smith, Samuel O.
1993-01-01
Work described in this paper confirms and extends work done by Zumwalt, et al., on a variety of in-flight deicing systems that use eddy current repulsion for repelling ice. Two such systems are known as electro-impulse deicing (EIDI) and the eddy current repulsion deicing strip (EDS). Mathematical models for these systems are discussed for their capabilities and limitations. The author duplicates a particular model of the EDS. Theoretical voltage, current, and force results are compared directly to experimental results. Dynamic strain measurements results are presented for the EDS system. Dynamic strain measurements near EDS or EIDI coils are complicated by the high magnetic fields in the vicinity of the coils. High magnetic fields induce false voltage signals out of the gages.
Compactification of gauge models and the effective potential
Energy Technology Data Exchange (ETDEWEB)
Shtykov, N.N. (Leningrad State University, Leningrad (SU))
1989-07-01
The one-loop potential for bosons and massive fermions in an Abelian model is obtained on the {ital M}{sup 2}{times}{ital S1}{times}{ital S1} manifold. Stability of the total potential against arbitrary homogeneous deformations of {ital S}{sup 1}{times}{ital S1} is studied. It is shown that attraction or repulsion depends on the relations connecting the radii of the spheres, the fermion masses, and the coupling constant.
Alvarez, Gustavo; Kniehl, Bernd A; Kondrashuk, Igor; Parra-Ferrada, Ivan
2016-01-01
We consider a simple model for QCD dynamics in which DGLAP integro-differential equation may be solved analytically. This is a gauge model which possesses dominant evolution of gauge boson (gluon) distribution and in which the gauge coupling does not run. This may be ${\\cal N} =4$ supersymmetric gauge theory with softly broken supersymmetry, other finite supersymmetric gauge theory with lower level of supersymmetry, or topological Chern-Simons field theories. We maintain only one term in the splitting function of unintegrated gluon distribution and solve DGLAP analytically for this simplified splitting function. The solution is found by use of the Cauchy integral formula. The solution restricts form of the unintegrated gluon distribution as function of transfer momentum and of Bjorken $x$. Then we consider an almost realistic splitting function of unintegrated gluon distribution as an input to DGLAP equation and solve it by the same method which we have developed to solve DGLAP equation for the toy-model. We ...
Enhanced diphoton signal of the Higgs boson and the muon g-2 in gauge mediation models
Energy Technology Data Exchange (ETDEWEB)
Sato, Ryosuke; Tobioka, Kohsaku [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583 (Japan); Yokozaki, Norimi, E-mail: yokozaki@hep-th.phys.s.u-tokyo.ac.jp [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583 (Japan)
2012-10-02
We study the diphoton signal of the Higgs boson in gauge mediated supersymmetry breaking models, which can explain both the Higgs boson mass of around 125 GeV and the result of the muon g-2 experiment. We consider two possible extensions of gauge mediation models: inclusion of vector-like matters, and a mixing between a messenger and the up-type Higgs. The large left-right mixing of staus is induced in both scenarios, resulting in the enhanced diphoton signal. We include a constraint from a charge breaking minimum, which is severe for the large left-right mixing of staus. The branching fraction of h{yields}{gamma}{gamma} can be about 20-30% larger than that of the Standard Model Higgs boson, in the region of parameter space where the Higgs boson mass of around 125 GeV and the muon g-2 are explained.
Gauged Sigma Models from 2 + 1 Dimensions and the Issue of Unitarity
Abouelsaood, A.; Pope, C. N.; Sezgin, E.; Shen, X.
As a Lagrangian realization of the Goddard-Kent-Olive G/H coset construction, Castellani, D'Auria and Levi recently proposed a gauged Wess-Zumino-Witten model in which the topological term is a difference of Chern-Simons forms. We show that their Lagrangian is actually an ungauged Wess-Zumino-Witten model plus a gauge field coupled linearly to an H-current, thus describing non-abelian chiral bosons with a linear constraint. We carry out the Dirac quantization procedure and show that the Hamiltonian is of the current-current form with indefinite signature, thus signaling instability. We also clarify the relationship of this model with that of Moore and Seiberg, which does provide an anomaly-free formulation of the GKO coset construction.
Quasi-Topological Gauged Sigma Models, The Geometric Langlands Program, And Knots
Tan, Meng-Chwan
2011-01-01
We construct and study a closed, two-dimensional, quasi-topological (0,2) gauged sigma model with target space a smooth G-manifold, where G is any compact and connected Lie group. When the target space is a flag manifold of simple G, and the gauge group is a Cartan subgroup thereof, the perturbative model describes, purely physically, the recently formulated mathematical theory of "Twisted Chiral Differential Operators". This paves the way, via a generalized T-duality, for a natural physical interpretation of the geometric Langlands correspondence for simply-connected, simple, complex Lie groups. In particular, the Hecke eigensheaves and Hecke operators can be described in terms of the correlation functions of certain operators that underlie the infinite-dimensional chiral algebra of the flag manifold model. Nevertheless, nonperturbative worldsheet twisted-instantons can, in some situations, trivialize the chiral algebra completely. This leads to a spontaneous breaking of supersymmetry whilst implying certain...
Kuno, Yoshihito; Kasamatsu, Kenichi; Takahashi, Yoshiro; Ichinose, Ikuo; Matsui, Tetsuo
2015-06-01
Lattice gauge theory has provided a crucial non-perturbative method in studying canonical models in high-energy physics such as quantum chromodynamics. Among other models of lattice gauge theory, the lattice gauge-Higgs model is a quite important one because it describes a wide variety of phenomena/models related to the Anderson-Higgs mechanism, such as superconductivity, the standard model of particle physics, and the inflation process of the early Universe. In this paper, we first show that atomic description of the lattice gauge model allows us to explore real-time dynamics of the gauge variables by using the Gross-Pitaevskii equations. Numerical simulations of the time development of an electric flux reveal some interesting characteristics of the dynamic aspect of the model and determine its phase diagram. Next, to realize a quantum simulator of the U(1) lattice gauge-Higgs model on an optical lattice filled by cold atoms, we propose two feasible methods: (i) Wannier states in the excited bands and (ii) dipolar atoms in a multilayer optical lattice. We pay attention to the constraint of Gauss's law and avoid nonlocal gauge interactions.
Generalized Potts-Models and their Relevance for Gauge Theories
Directory of Open Access Journals (Sweden)
Andreas Wipf
2007-01-01
Full Text Available We study the Polyakov loop dynamics originating from finite-temperature Yang-Mills theory. The effective actions contain center-symmetric terms involving powers of the Polyakov loop, each with its own coupling. For a subclass with two couplings we perform a detailed analysis of the statistical mechanics involved. To this end we employ a modified mean field approximation and Monte Carlo simulations based on a novel cluster algorithm. We find excellent agreement of both approaches. The phase diagram exhibits both first and second order transitions between symmetric, ferromagnetic and antiferromagnetic phases with phase boundaries merging at three tricritical points. The critical exponents ν and γ at the continuous transition between symmetric and antiferromagnetic phases are the same as for the 3-state spin Potts model.
Quantum Gauge General Relativity
Institute of Scientific and Technical Information of China (English)
WU Ning
2004-01-01
Based on gauge principle, a new model on quantum gravity is proposed in the frame work of quantum gauge theory of gravity. The model has local gravitational gauge symmetry, and the field equation of the gravitational gauge field is just the famous Einstein's field equation. Because of this reason, this model is called quantum gauge general relativity, which is the consistent unification of quantum theory and general relativity. The model proposed in this paper is a perturbatively renormalizable quantum gravity, which is one of the most important advantage of the quantum gauge general relativity proposed in this paper. Another important advantage of the quantum gauge general relativity is that it can explain both classical tests of gravity and quantum effects of gravitational interactions, such as gravitational phase effects found in COW experiments and gravitational shielding effects found in Podkletnov experiments.
Sourrouille, Lucas
2015-11-01
We consider a generalization of non-relativistic Schrödinger-Higgs Lagrangian by introducing a nonstandard kinetic term. We show that this model is Galilean invariant, we construct the conserved charges associated to the symmetries and realize the algebra of the Galilean group. In addition, we study the model in the presence of a gauge field. We also show that the gauged model is Galilean invariant. Finally, we explore relations between the twin models and their solutions.
Muon g -2 in gauge mediated supersymmetry breaking models with adjoint messengers
Gogoladze, Ilia; Ün, Cem Salih
2017-02-01
We explored the sparticle mass spectrum in light of the muon g -2 anomaly and the little hierarchy problem in a class of the gauge mediated supersymmetry breaking model. Here, the messenger fields transform in the adjoint representation of the Standard Model gauge symmetry. To avoid unacceptably light right-handed slepton masses, the Standard Model is supplemented by the additional U (1 )B-L gauge symmetry. A nonzero U (1 )B-L D term makes the right-handed slepton masses compatible with the current experimental bounds. We show that in the framework of Λ3muon g -2 anomaly and the observed 125 GeV Higgs boson mass can be simultaneously accommodated. The slepton masses in this case are predicted to lie in the few hundred GeV range, which can be tested at the LHC. Despite the heavy colored sparticle spectrum, the little hierarchy problem in this model can be ameliorated, and the electroweak fine-tuning parameter can be as low as 10 or so.
Directory of Open Access Journals (Sweden)
J. T. dall'Amico
2012-03-01
Full Text Available For the validation of coarse resolution soil moisture products from missions such as the Soil Moisture and Ocean Salinity (SMOS mission, hydrological modelling of soil moisture is an important tool. The spatial distribution of precipitation is among the most crucial input data for such models. Thus, reliable time series of precipitation fields are required, but these often need to be interpolated from data delivered by scarcely distributed gauge station networks. In this study, a commercial precipitation product derived by Meteomedia AG from merging radar and gauge data is introduced as a novel means of adding the promising area-distributed information given by a radar network to the more accurate, but point-like measurements from a gauge station network. This precipitation product is first validated against an independent gauge station network. Further, the novel precipitation product is assimilated into the hydrological land surface model PROMET for the Upper Danube Catchment in southern Germany, one of the major SMOS calibration and validation sites in Europe. The modelled soil moisture fields are compared to those obtained when the operational interpolation from gauge station data is used to force the model. The results suggest that the assimilation of the novel precipitation product can lead to deviations of modelled soil moisture in the order of 0.15 m^{3} m^{−3} on small spatial (∼1 km^{2} and short temporal resolutions (∼1 day. As expected, after spatial aggregation to the coarser grid on which SMOS data are delivered (~195 km^{2}, these differences are reduced to the order of 0.04 m^{3} m^{−3}, which is the accuracy benchmark for SMOS. The results of both model runs are compared to brightness temperatures measured by the airborne L-band radiometer EMIRAD during the SMOS Validation Campaign 2010. Both comparisons yield equally good correlations, confirming the model's ability to
Two-Connection Renormalization and Nonholonomic Gauge Models of Einstein Gravity
Vacaru, Sergiu I
2009-01-01
A new framework to perturbative quantum gravity is proposed following the geometry of nonholonomic distributions on (pseudo) Riemannian manifolds. There are considered such distributions and adapted connections, also completely defined by a metric structure, when gravitational models with infinite many couplings reduce to two-loop renormalizable effective actions. We use a key result from our partner work arXiv: 0902.0911 that the classical Einstein gravity theory can be reformulated equivalently as a nonholonomic gauge model in the bundle of affine/ de Sitter frames on pseudo-Riemannian spacetime. It is proven that (for a class of nonholonomic constraints and splitting of the Levi-Civita connection into a "renormalizable" distinguished connection, on a base background manifold, and a gauge like distorsion tensor, in total space) a nonholonomic differential renormalization procedure for quantum gravitational fields can be elaborated. Calculation labor is reduced to one- and two-loop levels and renormalization...
T-duality transformation of gauged linear sigma model with F-term
Directory of Open Access Journals (Sweden)
Tetsuji Kimura
2014-10-01
Full Text Available We develop the duality transformation rules in two-dimensional theories in the superfield formalism. Even if the chiral superfield which we dualize involves an F-term, we can dualize it by virtue of the property of chiral superfields. We apply the duality transformation rule of the neutral chiral superfield to the N=(4,4 gauged linear sigma model for five-branes. We also investigate the duality transformation rule of the charged chiral superfield in the N=(4,4 gauged linear sigma model for the A1-type ALE space. In both cases we obtain the dual Lagrangians in the superfield formalism. In the low energy limit we find that their duality transformations are interpreted as T-duality transformations consistent with the Buscher rule.
Standard model from a gauge theory in ten dimensions via CSDR
Energy Technology Data Exchange (ETDEWEB)
Farakos, K.; Kapetanakis, D.; Koutsoumbas, G.; Zoupanos, G.
1988-09-01
We present a gauge theory in ten dimensions based on the gauge group E/sub 8/ which is dimensionally reduced, according to the coset space dimensional reduction (CSDR) scheme, to the standard model SU/sub 3c/xSU/sub 2L/xU/sub 1/, which breaks further to SU/sub 3c/xU/sub 1em/. We use the coset space Sp/sub 4//(SU/sub 2/xU/sub 1/)xZ/sub 2/. The model gives similar predictions for sin /sup 2/theta/sub w/ and proton decay as the minimal SU/sub 5/ GUT. Natural choices of parameters suggest that the Higgs masses are as predicted by the Coleman-Weinberg radiative mechanism.
Fuks, Benjamin; Herrmann, Björn; Klasen, Michael
2009-03-01
We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large "collider-friendly" regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied.
Fuks, B; Klasen, M
2008-01-01
We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large "collider-friendly" regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied.
Energy Technology Data Exchange (ETDEWEB)
Fuks, Benjamin [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79106 Freiburg im Breisgau (Germany); Herrmann, Bjoern [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier/CNRS-IN2P3/INPG, 53 Avenue des Martyrs, F-38026 Grenoble (France); Klasen, Michael [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier/CNRS-IN2P3/INPG, 53 Avenue des Martyrs, F-38026 Grenoble (France)], E-mail: klasen@lpsc.in2p3.fr
2009-03-21
We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large 'collider-friendly' regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied.
T-duality Transformation of Gauged Linear Sigma Model with F-term
Kimura, Tetsuji
2014-01-01
We develop the duality transformation rules in two-dimensional theories in the superfield formalism. Even if the chiral superfield which we dualize is involved in F-term, we can convert the F-term to D-terms by virtue of the property of chiral superfields. We apply the duality transformation rule of the neutral chiral superfield to the ${\\cal N}=(4,4)$ gauged linear sigma model for five-branes. We also investigate the duality transformation rule of the charged chiral superfield in the ${\\cal N} = (4,4)$ gauged linear sigma model for the $A_1$-type ALE space. In both cases we obtain the dual Lagrangians in the superfield formalism. In the low energy limit we find that their duality transformations are interpreted as the T-duality transformations consistent with the Buscher rule.
Ponzano-Regge model revisited: I. Gauge fixing, observables and interacting spinning particles
Energy Technology Data Exchange (ETDEWEB)
Freidel, Laurent [Perimeter Institute for Theoretical Physics, 35 King street North, Waterloo N2J 2G9, Ontario (Canada); Louapre, David [Laboratoire de Physique, UMR 5672 du CNRS, Ecole Normale Superieure de Lyon, 46 allee d' ltalie, 69364 Lyon Cedex 07 (France)
2004-12-21
We show how to properly gauge fix all the symmetries of the Ponzano-Regge model for 3D quantum gravity. This amounts to doing explicit finite computations for transition amplitudes. We give the construction of the transition amplitudes in the presence of interacting quantum spinning particles. We introduce a notion of operators whose expectation value gives rise to either gauge fixing, introduction of time, or insertion of particles, according to the choice. We give the link between the spin foam quantization and the Hamiltonian quantization. We finally show the link between the Ponzano-Regge model and the quantization of Chern-Simons theory based on the double quantum group of SU(2)
Atomki anomaly and dark matter in a radiative seesaw model with gauged $B-L$ symmetry
Seto, Osamu
2016-01-01
Motivated by recently reported anomalies in a decay of an excited state of beryllium by the Atomki collaboration, we study a radiative seesaw model with gauged $B-L$ symmetry and a $Z_2$ parity. Assuming that the anomalies originate from the decay of the $B-L$ gauge boson followed by the nuclear decay, the mass of the lightest right-handed neutrino or the dark matter candidate can be determined below $10$ GeV. We show that for this mass range, the model can explain the anomalies in the beryllium decay and the relic dark matter abundance consistent with neutrino masses. We also predict its spin-independent cross section in direct detection experiments for this mass range.
Institute of Scientific and Technical Information of China (English)
WANG Xue-Lei; ZENG Qing-Guo; JIN Zhen-Lan; LIU Su-Zhen
2008-01-01
With the high energy and luminosity, the planned ILC has the considerable capability to probe the new heavy particles predicted by the new physics models. In this paper, we study the potential to discover the lightest new gauge boson BH of the Littlest Higgs model via the processes e+e- →γ(Z)BH at the ILC. The results show that the production rates of these two processes are large enough to detect BH in a wide range of the parameter spaces, specially for the process e+e- →γBH. Furthermore, there exist some decay modes for BH which can provide the typical signal and clean backgrounds. Therefore, the new gauge boson BH should be observable via these production processes with the running of the ILC if it exist.
Two species of vortices in massive gauged non-linear sigma models
Energy Technology Data Exchange (ETDEWEB)
Alonso-Izquierdo, A. [Departamento de Matemática Aplicada, Universidad de Salamanca,Facultad de Ciencias Agrarias y Ambientales, Av. Filiberto Villalobos 119, E-37008 Salamanca (Spain); Fuertes, W. García [Departamento de Física, Universidad de Oviedo, Facultad de Ciencias, Calle Calvo Sotelo s/n, E-33007 Oviedo (Spain); Guilarte, J. Mateos [Departamento de Física Fundamental, Universidad de Salamanca, Facultad de Ciencias, Plaza de la Merced, E-37008 Salamanca (Spain)
2015-02-23
Non-linear sigma models with scalar fields taking values on ℂℙ{sup n} complex manifolds are addressed. In the simplest n=1 case, where the target manifold is the S{sup 2} sphere, we describe the scalar fields by means of stereographic maps. In this case when the U(1) symmetry is gauged and Maxwell and mass terms are allowed, the model accommodates stable self-dual vortices of two kinds with different energies per unit length and where the Higgs field winds at the cores around the two opposite poles of the sphere. Allowing for dielectric functions in the magnetic field, similar and richer self-dual vortices of different species in the south and north charts can be found by slightly modifying the potential. Two different situations are envisaged: either the vacuum orbit lies on a parallel in the sphere, or one pole and the same parallel form the vacuum orbit. Besides the self-dual vortices of two species, there exist BPS domain walls in the second case. Replacing the Maxwell contribution of the gauge field to the action by the second Chern-Simons secondary class, only possible in (2+1)-dimensional Minkowski space-time, new BPS topological defects of two species appear. Namely, both BPS vortices and domain ribbons in the south and the north charts exist because the vacuum orbit consits of the two poles and one parallel. Formulation of the gauged ℂℙ{sup 2} model in a reference chart shows a self-dual structure such that BPS semi-local vortices exist. The transition functions to the second or third charts break the U(1)×SU(2) semi-local symmetry, but there is still room for standard self-dual vortices of the second species. The same structures encompassing N complex scalar fields are easily generalized to gauged ℂℙ{sup N} models.
Mihaila, Luminita N; Steinhauser, Matthias
2012-01-01
We compute the beta functions for the three gauge couplings of the Standard Model in the minimal subtraction scheme to three loops. We take into account contributions from all sectors of the Standard Model. The calculation is performed using both Lorenz gauge in the unbroken phase of the Standard Model and background field gauge in the spontaneously broken phase. Furthermore, we describe in detail the treatment of $\\gamma_5$ and present the automated setup which we use for the calculation of the Feynman diagrams. It starts with the generation of the Feynman rules and leads to the bare result for the Green's function of a given process.
Wang, Wei; Lu, Hui; Yang, Dawen; Sothea, Khem; Jiao, Yang; Gao, Bin; Peng, Xueting; Pang, Zhiguo
2016-01-01
The Mekong River is the most important river in Southeast Asia. It has increasingly suffered from water-related problems due to economic development, population growth and climate change in the surrounding areas. In this study, we built a distributed Geomorphology-Based Hydrological Model (GBHM) of the Mekong River using remote sensing data and other publicly available data. Two numerical experiments were conducted using different rainfall data sets as model inputs. The data sets included rain gauge data from the Mekong River Commission (MRC) and remote sensing rainfall data from the Tropic Rainfall Measurement Mission (TRMM 3B42V7). Model calibration and validation were conducted for the two rainfall data sets. Compared to the observed discharge, both the gauge simulation and TRMM simulation performed well during the calibration period (1998-2001). However, the performance of the gauge simulation was worse than that of the TRMM simulation during the validation period (2002-2012). The TRMM simulation is more stable and reliable at different scales. Moreover, the calibration period was changed to 2, 4, and 8 years to test the impact of the calibration period length on the two simulations. The results suggest that longer calibration periods improved the GBHM performance during validation periods. In addition, the TRMM simulation is more stable and less sensitive to the calibration period length than is the gauge simulation. Further analysis reveals that the uneven distribution of rain gauges makes the input rainfall data less representative and more heterogeneous, worsening the simulation performance. Our results indicate that remotely sensed rainfall data may be more suitable for driving distributed hydrologic models, especially in basins with poor data quality or limited gauge availability.
Directory of Open Access Journals (Sweden)
Pedro Romano-Aportela
2011-01-01
Full Text Available Se analizan las interacciones electromagnéticas y nucleares débiles utilizando el principio fundamental de simetría en espacios abstractos denominados teoría de campos de Yang-Mills, también conocidos como campos de norma (gauge fields y el mecanismo de Higgs. Los campos de norma actúan como mediadores de las interacciones, cuyo alcance está determinado de manera directa por la masa. Por este motivo los campos de norma se unen al mecanismo de Higgs que genera masa a los portadores de las interacciones, manteniendo la teoría invariante bajo una transformación de norma. Esto se logra a través de un rompimiento espontaneo de simetría para finalmente aplicar esta metodología con la finalidad de unificar las teorías de las interacciones considerando el modelo estándar de Weinberg-Salam.The electromagnetic and weak nuclear interactions are analyzed using the fundamental principle of symmetry in abstract spaces named theory of Yang-Mills fields, also known as gauge fields, and Higgs's mechanism. Gauge fields are mediators of interactions, whose scope is determined directly by the mass. For this reason, gauge fields are joined with the Higgs mechanism that generates mass to the interaction carriers, maintaining the invariant theory under a gauge transformation. This is achieved through spontaneous symmetry breaking to finally applying this methodology in order to unify the theories of interactions considering the Weinberg-Salam standard model.
Gauge propagator and physical consistency of the CPT-even part of the standard model extension
Casana, Rodolfo; Ferreira, Manoel M., Jr.; Gomes, Adalto R.; Pinheiro, Paulo R. D.
2009-12-01
In this work, we explicitly evaluate the gauge propagator of the Maxwell theory supplemented by the CPT-even term of the standard model extension. First, we specialize our evaluation for the parity-odd sector of the tensor Wμνρσ, using a parametrization that retains only the three nonbirefringent coefficients. From the poles of the propagator, it is shown that physical modes of this electrodynamics are stable, noncausal and unitary. In the sequel, we carry out the parity-even gauge propagator using a parametrization that allows to work with only the isotropic nonbirefringent element. In this case, we show that the physical modes of the parity-even sector of the tensor W are causal, stable and unitary for a limited range of the isotropic coefficient.
Avoiding an Empty Universe in RS I Models and Large-N Gauge Theories
Kaplan, J; Toro, N; Kaplan, Jared; Schuster, Philip C.; Toro, Natalia
2006-01-01
Many proposed solutions to the hierarchy problem rely on dimensional transmutation in asymptotically free gauge theories, and these theories often have dual descriptions in terms of a warped extra dimension. Gravitational calculations show that the confining phase transition in Randall-Sundrum models is first-order and parametrically slower than the rate expected in large-N gauge theories. This is dangerous because it leads to an empty universe problem. We argue that this rate suppression arises from approximate conformal symmetry. Though this empty universe problem cannot be solved by using the radion for low-scale inflation, we argue that if the radion potential is asymptotically free, another instanton for the RS phase transition can proceed as $e^{-N^2}$. We also discuss the existence of light magnetic monopoles ($\\sim 100$ TeV) as a possible signature of such a phase transition.
Superfield approach to Jackiw-Pi model of 3D massive non-Abelian gauge theory
Gupta, S; Malik, R P
2011-01-01
In the known literature, only the Becchi-Rouet-Stora-Tyutin (BRST) symmetries are known for the Jackiw-Pi model of three (2 + 1)-dimensional (3D) massive non-Abelian gauge theory. We derive the full set of off-shell nilpotent (s_{(a)b}^2 = 0) and absolutely anticommuting (s_b s_{ab} + s_{ab} s_b = 0) (anti-)BRST transformations s_{(a)b} corresponding to the usual Yang-Mills gauge transformations of this model by exploiting the "augmented" superfield formalism where the horizontality condition and gauge invariant restrictions blend together in a meaningful manner. This superfield formalism leads to the derivation of (anti-)BRST invariant Curci-Ferrari restriction which plays a key role in the proof of absolute anticommutativity of s_{(a)b}. A novel feature of our present investigation is the derivation of (anti-)BRST transformations for the auxiliary field $\\rho$ from our superfield formalism which is neither generated by the (anti-)BRST charges nor obtained from the requirements of nilpotency and/or absolute ...
Mixed Mediation of Supersymmetry Breaking in Models with Anomalous U(1) Gauge Symmetry
Energy Technology Data Exchange (ETDEWEB)
Choi, Kiwoon, E-mail: kchoi@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)
2010-11-01
There can be various built-in sources of supersymmetry breaking in models with anomalous U(1) gauge symmetry, e.g. the U(1) D-term, the F-components of the modulus superfield required for the Green-Schwarz anomaly cancellation mechanism and the chiral matter superfields required to cancel the Fayet-Iliopoulos term, and finally the supergravity auxiliary component which can be parameterized by the F-component of chiral compensator. The relative strength between these supersymmetry breaking sources depends crucially on the characteristics of D-flat direction and also on how the D-flat direction is stabilized at a vacuum with nearly vanishing cosmological constant. We examine the possible pattern of the mediation of supersymmetry breaking in models with anomalous U(1) gauge symmetry, and find that various different mixed mediation scenarios can be realized, including the mirage mediation which corresponds to a mixed modulus-anomaly mediation, D-term domination giving a split sparticle spectrum, and also a mixed gauge-D-term mediation scenario.
Anomaly-free discrete gauge symmetries in Froggatt-Nielsen models
Energy Technology Data Exchange (ETDEWEB)
Luhn, C.
2006-05-15
Discrete symmetries (DS) can forbid dangerous B- and L-violating operators in the supersymmetric Lagrangian. Due to the violation of global DSs by quantum gravity effects, the introduced DS should be a remnant of a spontaneously broken local gauge symmetry. Demanding anomaly freedom of the high-energy gauge theory, we determine all family-independent anomaly-free Z{sub N} symmetries which are consistent with the trilinear MSSM superpotential terms in Part I. We find one outstanding Z{sub 6} symmetry, proton hexality P{sub 6}, which prohibits all B- and L-violating operators up to dimension five, except for the Majorana neutrino mass terms LH{sub u}LH{sub u}. In Part II, we combine the idea that a DS should have a gauge origin with the scenario of Froggatt and Nielsen (FN). We construct concise U(1){sub X} FN models in which the Z{sub 3} symmetry baryon triality, B{sub 3}, arises from U(1){sub X} breaking. We choose this specific DGS because it allows for R-parity violating interactions; thus neutrino masses can be explained without introducing right-handed neutrinos. We find six phenomenologically viable B{sub 3}-conserving FN models. (orig.)
Gauge coupling unification in gauge-Higgs grand unification
Yamatsu, Naoki
2016-04-01
We discuss renormalization group equations for gauge coupling constants in gauge-Higgs grand unification on five-dimensional Randall-Sundrum warped space. We show that all four-dimensional Standard Model gauge coupling constants are asymptotically free and are effectively unified in SO(11) gauge-Higgs grand unified theories on 5D Randall-Sundrum warped space.
Planar version of the CPT-even gauge sector of the standard model extension
Energy Technology Data Exchange (ETDEWEB)
Ferreira Junior, Manoel M.; Casana, Rodolfo; Gomes, Adalto Rodrigues; Carvalho, Eduardo S. [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Dept. de Fisica
2011-07-01
The CPT-even abelian gauge sector of the Standard Model Extension is represented by the Maxwell term supplemented by (K{sub F} ){sub {mu}}{nu}{rho}{sigma} F{sup {mu}}{nu} F{sup {rho}}{sigma}, where the Lorentz-violating background tensor, (K{sub F} ){sub {mu}}{nu}{rho}{sigma}, possesses the symmetries of the Riemann tensor and a double null trace, which renders nineteen independent components. From these ones, ten components yield birefringence while nine are nonbirefringent ones. In the present work, we examine the planar version of this theory, obtained by means of a typical dimensional reduction procedure to (1 + 2) dimensions. We obtain a kind of planar scalar electrodynamics, which is composed of a gauge sector containing six Lorentz-violating coefficients, a scalar field endowed with a noncanonical kinetic term, and a coupling term that links the scalar and gauge sectors. The dispersion relation is exactly determined, revealing that the six parameters related to the pure electromagnetic sector do not yield birefringence at any order. In this model, the birefringence may appear only as a second order effect associated with the coupling tensor linking the gauge and scalar sectors.The equations of motion are written and solved in the stationary regime. The Lorentz-violating parameters do not alter the asymptotic behavior of the fields but induce an angular dependence not observed in the Maxwell planar theory. The energy-momentum tensor was evaluated as well, revealing that the theory presents energy stability. (author)
Gauge model with Ising vacancies: Multicritical behavior of self-avoiding surfaces
Maritan, A.; Seno, F.; Stella, A. L.
1991-08-01
A openZ2 gauge model with n-component-vector degrees of freedom on a dodecahedral lattice is coupled to an Ising system on the dual lattice. The statistics of interacting self-avoiding surfaces (SAS) is obtained in the n-->0 limit. At the percolative critical point an exact identification of the SAS critical behavior with that of Ising cluster hulls holds. This condition corresponds to a multicritical point for SAS, in universality class different from that of branched polymers. The model allows application of standard statistical methods to SAS. A mean-field calculation gives a phase diagram remarkably consistent with the above results.
Associated Production of Scalars and New Gauge Bosons from a Little Higgs Model at the LHC
Institute of Scientific and Technical Information of China (English)
YUE Chong-Xing; ZHANG Nan; DING Li; ZHU Shi-Hai; WANG Li-Hong
2008-01-01
The littlest Higgs model with T-parity(LHT model)predicts the existence of the T-odd scalars(φ±,φ0,and φp).We consider the production of these new particles associated with T-odd gauge bosons at the Large Hadron Collider(LHC).It is found that the partonic process qq-′→φ+BH can generate a number of the characteristic signal events with a charged lepton and large missing energy at the LHC.
On tachyons in generic orbifolds of C{sup r} and gauged linear sigma models
Energy Technology Data Exchange (ETDEWEB)
Sarkar, Tapobrata [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)
2007-02-15
We study some aspects of Gauged Linear Sigma Models corresponding to orbifold singularities of the form C{sup r}/{gamma}, for r = 2,3 and {gamma} = Z{sub n} and Z{sub n} x Z{sub m}. These orbifolds might be tachyonic in general. We compute expressions for the multi parameter sigma model Lagrangians for these orbifolds, in terms of their toric geometry data. Using this, we analyze some aspects of the phases of generic orbifolds of C{sup r}.
Correlation and specific heat of U(1) and SU(2) lattice gauge models
Nauenberg, M
1981-01-01
Describes some recent work on Monte Carlo simulations of U(1) and SU (2) lattice gauge models. The authors have primarily been interested in the correlations between Wilson plaquettes in order to study the nature of the transition between the strong and weak coupling regimes. Since lattice gauge models confine static charges in the strong coupling limit, it is expected that U(1) models in four dimensions exhibit a phase transition to a weak coupling Coulomb phase, corresponding to QED. For SU(2) models the lore is that there does not exist any phase transition. In this case confinement is also a property of the continuum limit which corresponds to QCD. While the existence of a phase transition in the U(1) model can be demonstrated rigorously, virtually nothing is known theoretically about the order of this transition. For the SU(2) model there is some evidence in support of a single confining phase based on strong coupling expansions, and on Monte Carlo calculations. (8 refs).
Proton Stability, Gauge Coupling Unification and a Light $Z^\\prime$ in Heterotic-string Models
Faraggi, Alon E
2013-01-01
We explore the phenomenological viability of a light $Z^\\prime$ in heterotic-string models, whose existence has been motivated by proton stability arguments. A class of quasi-realistic string models that produce such a viable $Z^\\prime$ are the Left-Right Symmetric (LRS) heterotic-string models in the free fermionic formulation. A key feature of these models is that the matter charges under $U(1)_{Z^\\prime}$ do not admit an $E_6$ embedding. The light $Z^\\prime$ in the LRS heterotic-string models forbids baryon number violating operators, while allowing lepton number violating operators, hence suppressing proton decay yet allowing for sufficiently small neutrino masses via a seesaw mechanism. We show that the constraints imposed by the gauge coupling data and heterotic-string coupling unification nullify the viability of a light $Z^\\prime$ in these models. We further argue that agreement with the gauge coupling data necessitates that the $U(1)_{Z^\\prime}$ charges admit an $E_6$ embedding. We discuss how viable...
Hidden Gauged U(1) Model: Unifying Scotogenic Neutrino and Flavor Dark Matter
Yu, Jiang-Hao
2016-01-01
In both scotogenic neutrino and flavor dark matter models, the dark sector communicates with the standard model fermions via Yukawa portal couplings. We propose an economic scenario that scotogenic neutrino and flavored mediator share the same inert Higgs doublet and all are charged under a hidden gauged $U(1)$ symmetry. The dark Z2 symmetry in dark sector is regarded as the remnant of this hidden $U(1)$ symmetry breaking. In particular, we investigate a dark $U(1)_D$ (and also a $U(1)_{B-L}$) model which unifies scotogenic neutrino and top-flavored mediator. In this model dark tops and dark neutrinos are the standard model fermion partners, and the dark matter could be inert Higgs or the lightest dark neutrino. This model has rich collider signatures on dark tops, inert Higgs and Z' gauge boson, etc. Moreover, the scalar associated to the $U(1)_D$ (and also $U(1)_{B-L}$) symmetry breaking could explain the 750 GeV diphoton excess reported by ATLAS and CMS recently.
Infrared fixed point of the 12-fermion SU(3) gauge model based on 2-lattice MCRG matching
Hasenfratz, Anna
2011-01-01
I investigate an SU(3) gauge model with 12 fundamental fermions. The physically interesting region of this strongly coupled system can be influenced by an ultraviolet fixed point due to lattice artifacts. I suggest to use a gauge action with an additional negative adjoint plaquette term that lessens this problem. I also introduce a new analysis method for the 2-lattice matching Monte Carlo renormalization group technique that significantly reduces finite volume effects. The combination of these two improvements allows me to measure the bare step scaling function in a region of the gauge coupling where it is clearly negative, indicating a positive renormalization group $\\beta$ function and infrared conformality.
Testing gauge-Yukawa-unified models by M{sub t}
Energy Technology Data Exchange (ETDEWEB)
Kubo, J. [Kanazawa Univ. (Japan). Coll. of Liberal Arts; Mondragon, M. [Institut fuer Theoretische Physik, Philosophenweg 16, D-69120 Heidelberg (Germany); Olechowski, M. [INFN Sezione di Torino and Dipartamento di Fisica Teorica, Universita di Torino, Via P. Giuria 1, 10125 Turin (Italy); Zoupanos, G. [Max-Planck-Institut fuer Physik, Werner-Heisenberg-Institut, D-80805 Munich (Germany)
1996-11-11
Gauge-Yukawa unification (GYU) relates the gauge and Yukawa couplings, thereby going beyond the usual GUTs, and it is assumed that the GYU in the third fermion generation implies that its Yukawa couplings are of the same order as the unified gauge coupling at the GUT scale. We re-examine carefully the recent observation that the top-bottom mass hierarchy can be explained to a certain extent in supersymmetric GYU models. It is found that there are equiv-top-mass lines in the boundary conditions of the Yukawa couplings so that two different GYU models on the same line can not be distinguished by the top mass M{sub t} alone. If they are on different lines, they could be distinguished by M{sub t} in principle, provided that the predicted M{sub t}`s are well below the infrared value M{sub t}(IR). We find that the ratio M{sub t} (IR)/sin {beta} depends on tan {beta} for large tan {beta} and the lowest value of M{sub t}(IR) is {proportional_to}188 GeV. We focus our attention on the existing SU(5) GYU models, which are obtained by requiring finiteness and reduction of couplings. They, respectively, predict M{sub t}= (183+{delta}{sup MSSM} M{sub t}{+-}5) GeV and (181+{delta}{sup MSSM} M{sub t}{+-}3) GeV, where {delta}{sup MSSM} M{sub t} stands for the MSSM threshold correction and is {proportional_to}-2 GeV for the case that all the MSSM superpartners have the same mass M{sub SUSY} with {mu}{sub H}/M{sub SUSY} <<1. (orig.).
Reshetnyak, A. A.; Moshin, P. Yu.
2017-03-01
A review of the finite field-dependent Becchi-Rouet-Stora-Tyutin (BRST) and BRST-antiBRST transformations is presented. Exact rules for calculating the Jacobian of the corresponding change of variables in the partition function are given. Infrared peculiarities under Rξ-gauges in the Yang-Mills theory and the Standard Model are examined in a gauge-invariant way with an appropriate horizon functional and unaffected N = 1, 2 BRST symmetries.
The a-theorem for the four-dimensional gauged vector model
Schnitzer, Howard J
2014-01-01
The discussion of renormalization group flows in four-dimensional conformal field theories has recently focused on the a-anomaly. It has recently been shown that there is a monotonic decreasing function which interpolates between the ultraviolet and infrared fixed points such that \\Delta a = a_UV - a_IR > 0. The analysis has been extended to weakly relevant and marginal deformations, though there are few explicit examples involving interacting theories. In this paper we examine the a-theorem in the context of the gauged vector model which couples the usual vector model to the Banks-Zaks model. We consider the model to leading order in the 1/N expansion, all orders in the coupling constant \\lambda, and to second order in g^2. The model has both an IR and UV fixed point, and satisfies \\Delta a > 0.
Automatic Gauge Control in Rolling Process Based on Multiple Smith Predictor Models
Directory of Open Access Journals (Sweden)
Jiangyun Li
2014-01-01
Full Text Available Automatic rolling process is a high-speed system which always requires high-speed control and communication capabilities. Meanwhile, it is also a typical complex electromechanical system; distributed control has become the mainstream of computer control system for rolling mill. Generally, the control system adopts the 2-level control structure—basic automation (Level 1 and process control (Level 2—to achieve the automatic gauge control. In Level 1, there is always a certain distance between the roll gap of each stand and the thickness testing point, leading to the time delay of gauge control. Smith predictor is a method to cope with time-delay system, but the practical feedback control based on traditional Smith predictor cannot get the ideal control result, because the time delay is hard to be measured precisely and in some situations it may vary in a certain range. In this paper, based on adaptive Smith predictor, we employ multiple models to cover the uncertainties of time delay. The optimal model will be selected by the proposed switch mechanism. Simulations show that the proposed multiple Smith model method exhibits excellent performance in improving the control result even for system with jumping time delay.
Installation and operation manual on sea level gauge (Model: NIO_Ghana_2004)
Digital Repository Service at National Institute of Oceanography (India)
Joseph, A; Pereira, A; VijayKumar, K.; Prabhudesai, S.; Methar, A; Dias, M.
NIO sea level gauge is a pressure-based gauge that operates on 12 volts battery. The pressure-sensing element used in this gauge is a piezo-resistive programmable semiconductor transducer that provides pressure samples in RS-485 format...
Energy Technology Data Exchange (ETDEWEB)
Durand, J.D.
1996-10-07
The standard model relies on many non theoretical parameters and on their precise determination. One of them, the Weinberg angle, is connected to the electroweak interaction. This work deals with its measurement through the estimation of the forward-backward asymmetry A{sup bb}-bar{sub FB} and/or A{sup cc}-bar{sub FB}. After a brief introduction, the author gives the theoretical background of the gauge symmetries, the Glashow-Weinberg-Salam (GWS) model and the e{sup +}e{sup -} annihilation process. The asymmetry measurements were performed at the LEP (CERN). A description of the DELPHI experiments and detection devices is given. The reliability of the identification of the leptons, pions and muons is discussed and the particle selection performed. The results are finally presented as well as a detailed study of the related systematic errors, using the b tagging algorithm. (N.T.). 70 refs.
Fermion Family Generation, Mass and Charge Hierarchies from 10D Matter-Gauge Models
Energy Technology Data Exchange (ETDEWEB)
Rojas, M. [DEX, Universidade Federal de Lavras, MG (Brazil); Andrade, M.A. de [Universidade do Estado do Rio de Janeiro, RJ (Brazil); Coletto, L.P. [CEFET-RJ UnED-Petropolis, RJ (Brazil); Matheus-Valle, J.L. [DF-ICE, Universidade Federal de Juiz de Fora, MG (Brazil); Assis, L.P.G. De; Helayel-Neto, J.A. [CBPF-LAFEX, Rio de Janeiro, RJ (Brazil)
2013-07-01
Full text: The aim of this work is to study massless and source less field theories in higher dimensions, particularly in D=5+5 and D=1+9, can lead to an interpretation of massive Majorana and Dirac spinors in D=1+3. From higher dimension gauge field formulation we do verify the behavior of the remained dimension to the mass and the sources in D=1+3. By adopting suitable representations of the Dirac matrices in higher dimensions as the vector fields, we pursue the investigation of which higher dimensional space-times and which mass-shell relation concerning massless Dirac equations in higher dimensions may induce massive spinors and gauge fields in D=1+3. Starting off from Majorana-Weyl massless spinors written in the Weyl representation for the Dirac matrices, we remark some peculiar facts, as a duality type of symmetry in the decomposition of space-time that yields two families of equivalent D=1+4 or D=2+3 massive spinors, with symmetric disjoint sets of space-time coordinates. These symmetries yield to the degeneracy of the mass spectrum of the lower space-time spinor model. We explore a matrix representation of the spinor fields and the relation to their decomposition/reduction. So, the proposal in our approach might allow to understand the origin of a fourth, or higher, generation of fermionic particles in lower dimensions. Furthermore, the decomposition of the higher space-time as we advocate here yields a pattern of mass and charge generation for the families of reduced fermionic particles. The mass and charge hierarchies present in the particle spectrum is traced back to the D=5+5 reduced-form Abelian and non-Abelian gauge field coupling. (author)
Gauge-invariant implementation of the Abelian Higgs model on optical lattices
Bazavov, Alexei; Tsai, Shan-Wen; Unmuth-Yockey, Judah; Zhang, Jin
2015-01-01
We present a gauge-invariant effective action for the Abelian Higgs model (scalar electrodynamics) with a chemical potential $\\mu$ on a 1+1 dimensional lattice. This formulation provides an expansion in the hopping parameter $\\kappa$ which we test with Monte Carlo simulations for a broad range of the inverse gauge coupling $\\beta_{pl}$ and small values of the scalar self-coupling $\\lambda$. In the opposite limit of infinitely large $\\lambda$, the partition function can be written as a traced product of local tensors which allows us to write exact blocking formulas. Their numerical implementation requires truncations but there is no sign problem for arbitrary values of $\\mu$. We show that the time continuum limit of the blocked transfer matrix can be obtained numerically and, in the limit of infinite $\\beta_{pl}$ and with a spin-1 truncation, the small volume energy spectrum is identical to the low energy spectrum of a two-species Bose-Hubbard model in the limit of large onsite repulsion. We extend this proced...
Xu, H.
2012-04-01
Hydrological models are important tools for flood forecasting, for the assessment of water resources under current and a changing climate. However, the accuracy of hydrological models is limited by many factors, of which, the most important one is perhaps the errors in the input data. For the lumped and semi-distributed hydrological models, the main input is the estimated areal precipitation, and the quality of which is very much dependent on the spatial distribution and density of rain gauges. Many researches have been reported on the development, calibration and validation of hydrological models, however, the influence of the precipitation gauges density and network distribution on the modeling results has received much less attention. One of the reasons for the limited study of this important issue is it needs a catchment with sufficient size, wide diversity of topography and climate, and dense raingauges with long and good quality data. In this study, a famous and widely used hydrological model, the Xinanjiang Model was applied to Xiangjiang River basin to examine the influence of rain gauges' density and distribution on the performance of the model in simulating the streamflow and other water balance components, like actual evapotranspiration and soil moisture content. The Xiangjiang River basin, one of the most important economic belts in Hunan Province, China and the primary inflow basin of Dongting Lake - China's second largest freshwater lake, has dense rain gauge network with long and high quality data. To perform the study, 18 different input data scenarios representing different density and distribution situations are used as input to the Xinanjiang model. The influences of different input scenarios on the modeling results as measured by Nash-Sutcliffe coefficient, relative bias, and peak errors are compared, and guidance for optimal planning of rain gauges is proposed. Keywords: Xinanjiang Model; Xiangjiang River basin; precipitation gauges network
Generalized Higher Gauge Theory
Ritter, Patricia; Schmidt, Lennart
2015-01-01
We study a generalization of higher gauge theory which makes use of generalized geometry and seems to be closely related to double field theory. The local kinematical data of this theory is captured by morphisms of graded manifolds between the canonical exact Courant Lie 2-algebroid $TM\\oplus T^*M$ over some manifold $M$ and a semistrict gauge Lie 2-algebra. We discuss generalized curvatures and their infinitesimal gauge transformations. Finite gauge transformation as well as global kinematical data are then obtained from principal 2-bundles over 2-spaces. As dynamical principle, we consider first the canonical Chern-Simons action for such a gauge theory. We then show that a previously proposed 3-Lie algebra model for the six-dimensional (2,0) theory is very naturally interpreted as a generalized higher gauge theory.
Weatherall, James Owen
2015-01-01
I consider two usages of the expression "gauge theory". On one, a gauge theory is a theory with excess structure; on the other, a gauge theory is any theory appropriately related to classical electromagnetism. I make precise one sense in which one formulation of electromagnetism, the paradigmatic gauge theory on both usages, may be understood to have excess structure, and then argue that gauge theories on the second usage, including Yang-Mills theory and general relativity, do not generally have excess structure in this sense.
Gauge coupling and fermion mass relations in low string scale brane models
Energy Technology Data Exchange (ETDEWEB)
Gioutsos, D.V.; Leontaris, G.K.; Rizos, J. [Ioannina University, Theoretical Physics Division, Ioannina (Greece)
2006-01-01
We analyze the gauge coupling evolution in brane inspired models with U(3) x U(2) x U(1){sup N} symmetry at the string scale. We restrict our work to the case of brane configurations with two and three abelian factors (N=2,3) and where only one Higgs doublet is coupled to down quarks and leptons and only one to the up quarks. We find that the correct hypercharge assignment of the standard model particles is reproduced for six viable models distinguished by different brane configurations. We investigate the third generation fermion mass relations and find that the correct low energy m{sub b}/m{sub {tau}} ratio can be obtained for b-{tau} Yukawa coupling equality at a string scale as low as M{sub S}{proportional_to}10{sup 3} TeV. (orig.)
Thimble regularization at work besides toy models: from Random Matrix Theory to Gauge Theories
Eruzzi, G
2015-01-01
Thimble regularization as a solution to the sign problem has been successfully put at work for a few toy models. Given the non trivial nature of the method (also from the algorithmic point of view) it is compelling to provide evidence that it works for realistic models. A Chiral Random Matrix theory has been studied in detail. The known analytical solution shows that the model is non-trivial as for the sign problem (in particular, phase quenched results can be very far away from the exact solution). This study gave us the chance to address a couple of key issues: how many thimbles contribute to the solution of a realistic problem? Can one devise algorithms which are robust as for staying on the correct manifold? The obvious step forward consists of applications to gauge theories.
Lepton-flavour violation in a Pati-Salam model with gauged flavour symmetry
Feldmann, Thorsten; Moch, Paul
2016-01-01
Combining Pati-Salam (PS) and flavour symmetries in a renormalisable setup, we devise a scenario which produces realistic masses for the charged leptons. Flavour-symmetry breaking scalar fields in the adjoint representations of the PS gauge group are responsible for generating different flavour structures for up- and down-type quarks as well as for leptons. The model is characterised by new heavy fermions which mix with the Standard Model quarks and leptons. In particular, the partners for the third fermion generation induce sizeable sources of flavour violation. Focusing on the charged-lepton sector, we scrutinise the model with respect to its implications for lepton-flavour violating processes such as $\\mu \\rightarrow e\\gamma$, $\\mu\\rightarrow 3e$ and muon conversion in nuclei.
Self-dual configurations in Abelian Higgs models with k-generalized gauge field dynamics
Casana, R.; Cavalcante, A.; da Hora, E.
2016-12-01
We have shown the existence of self-dual solutions in new Maxwell-Higgs scenarios where the gauge field possesses a k-generalized dynamic, i.e., the kinetic term of gauge field is a highly nonlinear function of F μν F μν . We have implemented our proposal by means of a k-generalized model displaying the spontaneous symmetry breaking phenomenon. We implement consistently the Bogomol'nyi-Prasad-Sommerfield formalism providing highly nonlinear self-dual equations whose solutions are electrically neutral possessing total energy proportional to the magnetic flux. Among the infinite set of possible configurations, we have found families of k-generalized models whose self-dual equations have a form mathematically similar to the ones arising in the Maxwell-Higgs or Chern-Simons-Higgs models. Furthermore, we have verified that our proposal also supports infinite twinlike models with | ϕ|4-potential or | ϕ|6-potential. With the aim to show explicitly that the BPS equations are able to provide well-behaved configurations, we have considered a test model in order to study axially symmetric vortices. By depending of the self-dual potential, we have shown that the k-generalized model is able to produce solutions that for long distances have a exponential decay (as Abrikosov-Nielsen-Olesen vortices) or have a power-law decay (characterizing delocalized vortices). In all cases, we observe that the generalization modifies the vortex core size, the magnetic field amplitude and the bosonic masses but the total energy remains proportional to the quantized magnetic flux.
Self-dual configurations in Abelian Higgs models with k-generalized gauge field dynamics
Energy Technology Data Exchange (ETDEWEB)
Casana, R.; Cavalcante, A. [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Hora, E. da [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Coordenadoria Interdisciplinar de Ciência e Tecnologia, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil)
2016-12-14
We have shown the existence of self-dual solutions in new Maxwell-Higgs scenarios where the gauge field possesses a k-generalized dynamic, i.e., the kinetic term of gauge field is a highly nonlinear function of F{sub μν}F{sup μν}. We have implemented our proposal by means of a k-generalized model displaying the spontaneous symmetry breaking phenomenon. We implement consistently the Bogomol’nyi-Prasad-Sommerfield formalism providing highly nonlinear self-dual equations whose solutions are electrically neutral possessing total energy proportional to the magnetic flux. Among the infinite set of possible configurations, we have found families of k-generalized models whose self-dual equations have a form mathematically similar to the ones arising in the Maxwell-Higgs or Chern-Simons-Higgs models. Furthermore, we have verified that our proposal also supports infinite twinlike models with |ϕ|{sup 4}-potential or |ϕ|{sup 6}-potential. With the aim to show explicitly that the BPS equations are able to provide well-behaved configurations, we have considered a test model in order to study axially symmetric vortices. By depending of the self-dual potential, we have shown that the k-generalized model is able to produce solutions that for long distances have a exponential decay (as Abrikosov-Nielsen-Olesen vortices) or have a power-law decay (characterizing delocalized vortices). In all cases, we observe that the generalization modifies the vortex core size, the magnetic field amplitude and the bosonic masses but the total energy remains proportional to the quantized magnetic flux.
Topological first-order vortices in a gauged CP(2 model
Directory of Open Access Journals (Sweden)
R. Casana
2017-05-01
Full Text Available We study time-independent radially symmetric first-order solitons in a CP(2 model interacting with an Abelian gauge field whose dynamics is controlled by the usual Maxwell term. In this sense, we develop a consistent first-order framework verifying the existence of a well-defined lower bound for the corresponding energy. We saturate such a lower bound by focusing on those solutions satisfying a particular set of coupled first-order differential equations. We solve these equations numerically using appropriate boundary conditions giving rise to regular structures possessing finite-energy. We also comment the main features these configurations exhibit. Moreover, we highlight that, despite the different solutions we consider for an auxiliary function β(r labeling the model (therefore splitting our investigation in two a priori distinct branches, all resulting scenarios engender the very same phenomenology, being physically equivalent.
Topological first-order vortices in a gauged CP(2) model
Casana, R.; Dias, M. L.; da Hora, E.
2017-05-01
We study time-independent radially symmetric first-order solitons in a CP (2) model interacting with an Abelian gauge field whose dynamics is controlled by the usual Maxwell term. In this sense, we develop a consistent first-order framework verifying the existence of a well-defined lower bound for the corresponding energy. We saturate such a lower bound by focusing on those solutions satisfying a particular set of coupled first-order differential equations. We solve these equations numerically using appropriate boundary conditions giving rise to regular structures possessing finite-energy. We also comment the main features these configurations exhibit. Moreover, we highlight that, despite the different solutions we consider for an auxiliary function β (r) labeling the model (therefore splitting our investigation in two a priori distinct branches), all resulting scenarios engender the very same phenomenology, being physically equivalent.
On Second Order Gauge Invariant Perturbations in Multi-Field Inflationary Models
Rigopoulos, G I
2002-01-01
In a recent letter [1] Acquaviva et. al presented results from a second order calculation for a single field inflationary model. In this paper we elaborate on their approach. We present equations for the second order superhorizon perturbations of a generic multi field model. We utilise a change of coordinates in field space - first presented in [2] and given a more geometrical flavour here - to separate isocurvature and adiabatic perturbations and construct gauge invariant variables related to them to second order. Explicit relations are given for two scalar fields on a flat field manifold although the results can be generalised to curved field manifolds and an arbitrary number of fields. This is an outline of a possible procedure to study nonlinear and nongaussian effects during multifield inflation. For a more detailed discussion we refer to a future publication [12].
Classically conformal radiative neutrino model with gauged B−L symmetry
Directory of Open Access Journals (Sweden)
Hiroshi Okada
2016-09-01
Full Text Available We propose a classically conformal model in a minimal radiative seesaw, in which we employ a gauged B−L symmetry in the standard model that is essential in order to work the Coleman–Weinberg mechanism well that induces the B−L symmetry breaking. As a result, nonzero Majorana mass term and electroweak symmetry breaking simultaneously occur. In this framework, we show a benchmark point to satisfy several theoretical and experimental constraints. Here theoretical constraints represent inert conditions and Coleman–Weinberg condition. Experimental bounds come from lepton flavor violations (especially μ→eγ, the current bound on the Z′ mass at the CERN Large Hadron Collider, and neutrino oscillations.
Ferrighi, Lara; Marchesan, Domenico; Ruud, Kenneth; Frediani, Luca; Coriani, Sonia
2005-11-01
We present an implementation of the polarizable continuum model in its integral equation formulation for the calculation of the magnetizabilities of solvated molecules. The gauge-origin independence of the calculated magnetizabilities and the fast basis set convergence are ensured through the use of London atomic orbitals. Our implementation can use Hartree-Fock and multiconfigurational self-consistent-field (MCSCF) wave functions as well as density-functional theory including hybrid functionals such as B3LYP. We present the results of dielectric continuum effects on water and pyridine using MCSCF wave functions, as well as dielectric medium effects on the magnetizability of the aromatic amino acids as a model for how a surrounding protein environment affects the magnetizability of these molecules. It is demonstrated that the dielectric medium effects on the magnetizability anisotropies of the aromatic amino acids may be substantial, being as large as 25% in the case of tyrosine.
Consistency in Regularizations of the Gauged NJL Model at One Loop Level
Battistel, O A
1999-01-01
In this work we revisit questions recently raised in the literature associated to relevant but divergent amplitudes in the gauged NJL model. The questions raised involve ambiguities and symmetry violations which concern the model's predictive power at one loop level. Our study shows by means of an alternative prescription to handle divergent amplitudes, that it is possible to obtain unambiguous and symmetry preserving amplitudes. The procedure adopted makes use solely of {\\it general} properties of an eventual regulator, thus avoiding an explicit form. We find, after a thorough analysis of the problem that there are well established conditions to be fulfiled by any consistent regularization prescription in order to avoid the problems of concern at one loop level.
Reconciling Muon g-2, 125 GeV Higgs and Dark Matter in Gauge Mediation Models
Gogoladze, Ilia; Un, Cem Salih
2015-01-01
We present a class of models in the framework of gauge mediation supersymmetry breaking where the standard model is supplemented by additional U(1) symmetry which acts only on the third generation fermions. The messenger fields carry non-trivial U(1) charge and are vector-like particles under this symmetry. This leads to additional contribution to the soft supersymmetry breaking mass terms for the third generation squarks and sleptons. In this framework we show that the muon g-2 anomaly, the observed 125 GeV Higgs boson mass and the detected relic dark matter abundance (gravitino in our case) can be simultaneously accommodated. The resolution of the muon g-2 anomaly, in particular, yields the result that the first two generation squark masses, as well the gluino mass, should be <~ 2.5 TeV, which will be tested at LHC14.
Energy Technology Data Exchange (ETDEWEB)
Bartholomew, M. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-01-01
To improve the quantitative description of precipitation processes in climate models, the Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed rain gauges located near disdrometers (DISD and VDIS data streams). This handbook deals specifically with the rain gauges that make the observations for the RAIN data stream. Other precipitation observations are made by the surface meteorology instrument suite (i.e., MET data stream).
Energy Technology Data Exchange (ETDEWEB)
Alvarez, Gustavo [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Concepcion Univ. (Chile). Dept. de Fisica; Cvetic, Gorazd [Univ. Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kondrashuk, Igor [Univ. del Bio-Bio, Chillan (Chile). Grupo de Matematica Aplicada; Univ. del Bio-Bio, Chillan (Chile). Grupo de Fisica de Altas Energias; Parra-Ferrada, Ivan [Talca Univ. (Chile). Inst. de Matematica y Fisica
2016-11-15
We consider a simple model for QCD dynamics in which DGLAP integro-differential equation may be solved analytically. This is a gauge model which possesses dominant evolution of gauge boson (gluon) distribution and in which the gauge coupling does not run. This may be N=4 supersymmetric gauge theory with softly broken supersymmetry, other finite supersymmetric gauge theory with lower level of supersymmetry, or topological Chern-Simons field theories. We maintain only one term in the splitting function of unintegrated gluon distribution and solve DGLAP analytically for this simplified splitting function. The solution is found by use of the Cauchy integral formula. The solution restricts form of the unintegrated gluon distribution as function of transfer momentum and of Bjorken x. Then we consider an almost realistic splitting function of unintegrated gluon distribution as an input to DGLAP equation and solve it by the same method which we have developed to solve DGLAP equation for the toy-model. We study a result obtained for the realistic gluon distribution and find a singular Bessel-like behaviour in the vicinity of the point x=0 and a smooth behaviour in the vicinity of the point x=1.
Non-linear supersymmetric {sigma}-models and their gauging in the Atiyah-Ward space-time
Energy Technology Data Exchange (ETDEWEB)
Carvalho, M.; Vilar, L.C.Q.; Helayel-Neto, J.A.
1995-10-01
We present a supersymmetric non-linear {sigma}-model built up in the N 1 superspace of Atiyah-ward space-time. A manifold of the Kaehler type comes out that is restricted by a a particular decomposition of the Kaehler potential. The gauging of the {sigma}-model isometries is also accomplished in superspace. (author). 20 refs.
Gauge-meter model building based on the effect of elastic deformation of rolls in a plate mill
Institute of Scientific and Technical Information of China (English)
Xianlei Hu; Zhaodong Wang; Zhong Zhao; Xianghua Liu; Guodong Wang
2007-01-01
The calculation error of the gauge-meter model will affect the gap setting precision and the self-learn precision of rolling force. The precision of the gauge-meter model is strongly influenced by plate width, working roll radius, backup roll radius, working roll crown, backup roll crown, and rolling force. The influence rules are hard to get by measuring. Taking a conventional 4-h plate mill as the research subject, these influences were transferred into the calculation of roll deflection and flattening deformation. To calculate these deformations, the theory of the influence function method was adopted. By modifying the traditional gauge-meter model, a novel model of the effect of roll elastic deformation on the gap setting was built by data fitting. By this model, it was convenient to analyze the variation caused by the rolling condition. Combining the elastic deformation model of rolls with the kiss-rolls method, a gauge-meter model was put forward for plate thickness prediction. The prediction precision of thickness was greatly improved by the new gaugemeter model.
Konisi, G; Mäki, Z; Nakahara, M
1999-01-01
The left-right symmetric model (LRSM) with gauge group $SU(2)_{L} \\times SU(2)_{R} \\times U(1)_{B-L}$ is reconstructed from the geometric formulation of gauge theory in $M_4 \\times Z_2 \\times Z_2$ where $M_4$ is the four-dimensional Minkowski space and $Z_2 \\times Z_2$ the discrete space with four points. The geometrical structure of this model becomes clearer compared with other works based on noncommutative geometry. As a result, the Yukawa coupling terms and the Higgs potential are derived in more restricted forms than in the standard LRSM.
Cirafici, M.; Sinkovics, A.; Szabo, R.J.
2009-01-01
We study the relation between Donaldson–Thomas theory of Calabi–Yau threefolds and a six-dimensional topological Yang–Mills theory. Our main example is the topological U(N) gauge theory on flat space in its Coulomb branch. To evaluate its partition function we use equivariant localization techniques
Phenomenology of the SU(3)_C \\otimes SU(2)_L \\otimes SU(3)_R \\otimes U(1)_X gauge model
Dong, P V; Loi, D V; Nhuan, N T; Ngan, N T K
2016-01-01
We study the left-right asymmetric model based on SU(3)_C\\otimes SU(2)_L \\otimes SU(3)_R\\otimes U(1)_X gauge group, which improves the theoretical and phenomenological aspects of the known left-right symmetric model. This new gauge symmetry yields that the fermion generation number is three, and the tree-level flavor-changing neutral currents arise in both gauge and scalar sectors. Also, it can provide the observed neutrino masses as well as dark matter automatically. Further, we investigate the mass spectrum of the gauge and scalar fields. All the gauge interactions of the fermions and scalars are derived. We examine the tree-level contributions of the new neutral vector, Z'_R, and new neutral scalar, H_2, to flavor-violating neutral meson mixings, say K-\\bar{K}, B_d-\\bar{B}_d, and B_s-\\bar{B}_s, which strongly constrain the new physics scale as well as the elements of the right-handed quark mixing matrices. The bounds for the new physics scale are in agreement with those coming from the \\rho-parameter as we...
Field-theoretic methods in strongly-coupled models of general gauge mediation
Fortin, Jean-François; Stergiou, Andreas
2013-08-01
An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current-current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry breaking arises both from a hidden sector and dynamically. Our results suggest that strongly-coupled models of supersymmetry breaking are naturally split.
Phases and geometry of the N=1 A_2 quiver gauge theory and matrix models
Casero, R; Casero, Roberto; Trincherini, Enrico
2003-01-01
We study the phases and geometry of the N=1 A_2 quiver gauge theory using matrix models and a generalized Konishi anomaly. We consider the theory both in the Coulomb and Higgs phases. Solving the anomaly equations, we find that a meromorphic one-form sigma(z)dz is naturally defined on the curve Sigma associated to the theory. Using the Dijkgraaf-Vafa conjecture, we evaluate the effective low-energy superpotential and demonstrate that its equations of motion can be translated into a geometric property of Sigma: sigma(z)dz has integer periods around all compact cycles. This ensures that there exists on Sigma a meromorphic function whose logarithm sigma(z)dz is the differential. We argue that the surface determined by this function is the N=2 Seiberg-Witten curve of the theory.
Field-theoretic methods in strongly-coupled models of general gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Fortin, Jean-François, E-mail: jean-francois.fortin@cern.ch [Theory Division, Department of Physics, CERN, CH-1211 Geneva 23 (Switzerland); Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305 (United States); Stergiou, Andreas, E-mail: stergiou@physics.ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States)
2013-08-01
An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current–current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry breaking arises both from a hidden sector and dynamically. Our results suggest that strongly-coupled models of supersymmetry breaking are naturally split.
Existence of Dyons in Minimally Gauged Skyrme Model via Constrained Minimization
Gao, Zhifeng
2011-01-01
We prove the existence of electrically and magnetically charged particlelike static solutions, known as dyons, in the minimally gauged Skyrme model developed by Brihaye, Hartmann, and Tchrakian. The solutions are spherically symmetric, depend on two continuous parameters, and carry unit monopole and magnetic charges but continuous Skyrme charge and non-quantized electric charge induced from the 't Hooft electromagnetism. The problem amounts to obtaining a finite-energy critical point of an indefinite action functional, arising from the presence of electricity and the Minkowski spacetime signature. The difficulty with the absence of the Higgs field is overcome by achieving suitable strong convergence and obtaining uniform decay estimates at singular boundary points so that the negative sector of the action functional becomes tractable.
Dark Energy and Dark Matter in a Model of an Axion Coupled to a Non-Abelian Gauge Field
Alexander, Stephon; Froehlich, Juerg
2016-01-01
We study cosmological field configurations (solutions) in a model in which the pseudo-scalar phase of a complex field couples to the Pontryagin density of a massive non-abelian gauge field, in analogy to how the Peccei-Quinn axion field couples to the $SU(3)$-color gauge field of QCD. Assuming that the self-interaction potential of the complex scalar field has the typical {\\it Mexican hat} form, we find that the radial fluctuations of this field can act as {\\it Dark Matter}, while its phase may give rise to tracking {\\it Dark Energy}. In our model, Dark-Energy domination will, however, not continue for ever. A new component of dark matter, namely the one originating from the gauge field, will dominate in the future.
A $SU(3)_{c} x SU(2)_{L} x U(1)_{\\gamma} x U(1)_{H}$ gauge model of flavor
Mira, J M; Restrepo, D A; Mira, Jesus M.; Nardi, Enrico; Restrepo, Diego A.
2000-01-01
A non anomalous horizontal $U(1)_H$ gauge symmetry can be responsible for the fermion mass hierarchies of the minimal supersymmetric standard model. Imposing the consistency conditions for the absence of gauge anomalies, gauge invariance and supersymmetry solve in an elegant way some serious phenomenological problems: 1) unification of leptons and down-type quarks Yukawa couplings is allowed at most for two generations. 2) The $\\mu$ term is necessarily somewhat below the supersymmetry breaking scale. 3) The determinant of the quark mass matrix vanishes, solving in a simple way the strong CP problem. 4) The superpotential has accidental B and L symmetries, and R-parity is automatically conserved. 5) A suitable horizontal charge assignment explains the observed pattern of fermion masses and mixing angles. The prediction $m_{up}=0$ provides the possibility of an unambiguous test of the model at low energy.
Noncontractible hyperloops in gauge models with Higgs fields in the fundamental representation
Burzlaff, Jürgen
1984-11-01
We study finite-energy configurations in SO( N) gauge theories with Higgs fields in the fundamental representation. For all winding numbers, noncontractible hyperloops are constructed. The corresponding energy density is spherically symmetric, and the configuration with maximal energy on each hyperloop can be determined. Noncontractible hyperloops with an arbitrary winding number for SU(2) gauge theory are also given.
Noncontractible hyperloops in gauge models with Higgs fields in the fundamental representation
Energy Technology Data Exchange (ETDEWEB)
Burzlaff, J. (Dublin Inst. for Advanced Studies (Ireland). School of Theoretical Physics)
1984-11-01
We study finite-energy configurations in SO(N) gauge theories with Higgs fields in the fundamental representation. For all winding numbers, noncontractible hyperloops are constructed. The corresponding energy density is spherically symmetric, and the configuration with maximal energy on each hyperloop can be determined. Noncontractible hyperloops with an arbitrary winding number for SU(2) gauge theory are also given.
Runoff prediction in a poorly gauged basin using isotope-calibrated models
Yamanaka, Tsutomu; Ma, Wenchao
2017-01-01
Predictions in ungauged basins have been a major challenge in hydrologic sciences, and there is still much work needed to achieve robust and reliable predictions for such basins. Here, we propose and test a novel approach for predicting runoff from poorly gauged basins using a minimum complex model calibrated with isotope data alone (i.e., without observed discharge data). The model is composed of two water-stores (soil water and groundwater) and considers their connectivity to runoff in terms of both water and isotope budgets. In a meso-scale basin in which riverbed deformations frequently occur, making automatic observation of river discharge difficult, we measured hydrogen and oxygen isotope composition (δ2H and δ18O) of precipitation and river water twice-weekly for one year. Runoff predicted by the model agreed well with that observed monthly or bimonthly. Monte Carlo simulation revealed a strong coherence between model performance in isotope simulation and runoff prediction, demonstrating that the use of isotopes as dynamic proxies of calibration targets helps reliably constrain model parameters. Our results indicate that this approach can serve as a powerful tool for prediction of runoff hydrographs, particularly for basins in which the stage-discharge relationship is highly variable.
A robust approach to battery fuel gauging, part I: Real time model identification
Balasingam, B.; Avvari, G. V.; Pattipati, B.; Pattipati, K. R.; Bar-Shalom, Y.
2014-12-01
In this paper, the first of a series of papers on battery fuel gauge (BFG), we present a real time parameter estimation strategy for robust state of charge (SOC) tracking. The proposed parameter estimation scheme has the following novel features: it models hysteresis as an error in the open circuit voltage (OCV) and employs a combination of real time, linear parameter estimation and SOC tracking technique to compensate for it. This obviates the need for modeling of hysteresis as a function of SOC and load current. We identify the presence of correlated noise that has been so far ignored in the literature and use it to enhance the accuracy of model identification. As a departure from the conventional "one model fits all" strategy, we identify four different equivalent models of the battery that represent four modes of typical battery operation and develop the framework for seamless SOC tracking by switching. The proposed parameter approach enables a robust initialization/re-initialization strategy for continuous operation of the BFG. The performance of the online parameter estimation scheme was first evaluated through simulated data. Then, the proposed algorithm was validated using hardware-in-the-loop (HIL) data collected from commercially available Li-ion batteries.
Babu, K S
2015-01-01
We present a minimal renormalizable non-supersymmetric SO(10) grand unified model with a symmetry breaking sector consisting of Higgs fields in the 54_H + 126_H + 10_H representations. This model admits a single intermediate scale associated with Pati-Salam symmetry along with a discrete parity. Spontaneous symmetry breaking, the unification of gauge couplings and proton lifetime estimates are studied in detail in this framework. Including threshold corrections self-consistently, obtained from a full analysis of the Higgs potential, we show that the model is compatible with the current experimental bound on proton lifetime. The model generally predicts an upper bound of few times 10^{35} yrs for proton lifetime, which is not too far from the present Super-Kamiokande limit of \\tau_p \\gtrsim 1.29 \\times 10^{34} yrs. With the help of a Pecci-Quinn symmetry and the resulting axion, the model provides a suitable dark matter candidate while also solving the strong CP problem. The intermediate scale, M_I \\approx (10...
Ansari, S. M.; Farquharson, C. G.; MacLachlan, S. P.
2017-07-01
In this paper, a new finite-element solution to the potential formulation of the geophysical electromagnetic (EM) problem that explicitly implements the Coulomb gauge, and that accurately computes the potentials and hence inductive and galvanic components, is proposed. The modelling scheme is based on using unstructured tetrahedral meshes for domain subdivision, which enables both realistic Earth models of complex geometries to be considered and efficient spatially variable refinement of the mesh to be done. For the finite-element discretization edge and nodal elements are used for approximating the vector and scalar potentials respectively. The issue of non-unique, incorrect potentials from the numerical solution of the usual incomplete-gauged potential system is demonstrated for a benchmark model from the literature that uses an electric-type EM source, through investigating the interface continuity conditions for both the normal and tangential components of the potential vectors, and by showing inconsistent results obtained from iterative and direct linear equation solvers. By explicitly introducing the Coulomb gauge condition as an extra equation, and by augmenting the Helmholtz equation with the gradient of a Lagrange multiplier, an explicitly gauged system for the potential formulation is formed. The solution to the discretized form of this system is validated for the above-mentioned example and for another classic example that uses a magnetic EM source. In order to stabilize the iterative solution of the gauged system, a block diagonal pre-conditioning scheme that is based upon the Schur complement of the potential system is used. For all examples, both the iterative and direct solvers produce the same responses for the potentials, demonstrating the uniqueness of the numerical solution for the potentials and fixing the problems with the interface conditions between cells observed for the incomplete-gauged system. These solutions of the gauged system also
Nishiyama, M.; Igawa, H.; Kasai, T.; Watanabe, N.
2014-05-01
In this paper, we describe characteristics of distributed strain sensing based on a Delayed Transmission/Reflection Ratiometric Reflectometry (DTR3) scheme with a long-gauge Fiber Bragg Grating (FBG), which is attractive to dynamic structural deformation monitoring such as a helicopter blade and an airplane wing. The DTR3 interrogator using the longgauge FBG has capability of detecting distributed strain with 50 cm spatial resolution in 100 Hz sampling rate. We evaluated distributed strain sensing characteristics of the long-gauge FBG attached on a 5.5 m helicopter blade model in static tests and free vibration dynamic tests.
Dark Energy and Dark Matter in a Model of an Axion Coupled to a Non-Abelian Gauge Field
Alexander, Stephon; Brandenberger, Robert; Froehlich, Juerg
2016-01-01
We study cosmological field configurations (solutions) in a model in which the pseudo-scalar phase of a complex field couples to the Pontryagin density of a massive non-abelian gauge field, in analogy to how the Peccei-Quinn axion field couples to the $SU(3)$-color gauge field of QCD. Assuming that the self-interaction potential of the complex scalar field has the typical {\\it Mexican hat} form, we find that the radial fluctuations of this field can act as {\\it Dark Matter}, while its phase m...
Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models
Abe, Tomohiro; Hisano, Junji; Kitahara, Teppei; Tobioka, Kohsaku
2014-01-01
We calculate all gauge invariant Barr-Zee type contributions to fermionic electric dipole moments (EDMs) in the two-Higgs doublet models (2HDM) with softly broken Z 2 symmetry. We start by studying the tensor structure of h → VV ′ part in the Barr-Zee diagrams, and we calculate the effective couplings in a gauge invariant way by using the pinch technique. Then we calculate all Barr-Zee diagrams relevant for electron and neutron EDMs. We make bounds on the parameter space in type-I, type-II, t...
Toda Theories, Matrix Models, Topological Strings, and N=2 Gauge Systems
Dijkgraaf, Robbert
2009-01-01
We consider the topological string partition function, including the Nekrasov deformation, for type IIB geometries with an A_{n-1} singularity over a Riemann surface. These models realize the N=2 SU(n) superconformal gauge systems recently studied by Gaiotto and collaborators. Employing large N dualities we show why the partition function of topological strings in these backgrounds is captured by the chiral blocks of A_{n-1} Toda systems and derive the dictionary recently proposed by Alday, Gaiotto and Tachikawa. For the case of genus zero Riemann surfaces, we show how these systems can also be realized by Penner-like matrix models with logarithmic potentials. The Seiberg-Witten curve can be understood as the spectral curve of these matrix models which arises holographically at large N. In this context the Nekrasov deformation maps to the beta-ensemble of generalized matrix models, that in turn maps to the Toda system with general background charge. We also point out the notion of a double holography for this...
Comparing Tensor Renormalization Group and Monte Carlo calculations for spin and gauge models
Meurice, Yannick; Liu, Yuzhi; Xiang, Tao; Xie, Zhiyuan; Yu, Ji-Feng; Unmuth-Yockey, Judah; Zou, Haiyuan
2013-01-01
We show that the Tensor Renormalization Group (TRG) method can be applied to O(N) spin models, principal chiral models and pure gauge theories (Z2, U(1) and SU(2)) on (hyper) cubic lattices. We explain that contrarily to some common belief, it is very difficult to write compact formulas expressing the blockspinning of lattice models. We show that in contrast to other approaches, the TRG formulation allows us to write exact blocking formulas with numerically controllable truncations. The basic reason is that the TRG blocking separates neatly the degrees of freedom inside the block and which are integrated over, from those kept to communicate with the neighboring blocks. We argue that the TRG is a method that can handle large volumes, which is crucial to approach quasi-conformal systems. The method can also get rid of some sign problems. We discuss recent results regarding the critical properties of the 2D O(2) nonlinear sigma model with complex beta and chemical potential. As some of these results appeared in ...
The complete Faddeev-Jackiw treatment of the $U_{EM}(1)$ gauged SU(2) WZW model
Paschalis, J E
1996-01-01
The two flavour, four dimensional WZW model coupled to electromagnetism, is treated as a constraint system in the context of the Faddeev-Jackiw approach. No approximation is made. Detailed exposition of the calculations is given. Solution of the constraints followed by proper Darboux's transformations leads to an unconstrained Coulomb-gauge Lagrangian density.
Study of the $ar{D}$N Interaction in a QCD Coulomb Gauge Quark Model
Directory of Open Access Journals (Sweden)
Vizcarra V.E.
2010-04-01
Full Text Available We study the $ar{D}$N interaction at low energies with a quark model inspired in the QCD Hamiltonian in Coulomb gauge. The model Hamiltonian incorporates a conﬁning Coulomb potential extracted from a self-consistent quasiparticle method for the gluon degrees of freedom, and transverse-gluon hyperﬁne interaction consistent with a ﬁnite gluon propagator in the infrared. Initially a constituent-quark mass function is obtained by solving a gap equation and baryon and meson bound-states are obtained in Fock space using a variational calculation. Next, having obtained the constituent-quark masses and the hadron waves functions, an eﬀective meson-nucleon interaction is derived from a quark-interchange mechanism. This leads to a short range mesonbaryon interaction and to describe long-distance physics vector- and scalar-meson exchanges described by eﬀective Lagrangians are incorporated. The derived eﬀective $ar{D}$N potential is used in a Lippmann-Schwinger equation to obtain phase shifts. The results are compared with a recent similar calculation using the nonrelativistic quark model.
N=(4,4) Gauged Linear Sigma Models for Defect Five-branes
Kimura, Tetsuji
2015-01-01
We study two-dimensional ${\\cal N}=(4,4)$ gauged linear sigma model (GLSM). Its low energy effective theory is a nonlinear sigma model whose target space gives rise to a configuration of five-branes in string theory. In this article we focus on sigma models for NS5-branes, KK5-branes and an exotic $5^2_2$-brane. In particular, we carefully analyze the GLSM for an exotic $5^2_2$-brane whose background configuration is multi-valued. The exotic $5^2_2$-brane is a concrete example of nongeometric configuration in string theory. We find that the exotic feature originates from the string winding coordinate in a very clear way. In order to complete this analysis, we propose a duality transformation formula which converts an ${\\cal N}=(2,2)$ chiral superfield in F-term to a twisted chiral superfield coupled to an unconstrained complex superfield. This article is a short review based on arXiv:1304.4061 in collaboration with Shin Sasaki.
SU(2) Gauge Theory with Two Fundamental Flavours: a Minimal Template for Model Building
Arthur, Rudy; Hansen, Martin; Hietanen, Ari; Pica, Claudio; Sannino, Francesco
2016-01-01
We investigate the continuum spectrum of the SU(2) gauge theory with $N_f=2$ flavours of fermions in the fundamental representation. This model provides a minimal template which is ideal for a wide class of Standard Model extensions featuring novel strong dynamics that range from composite (Goldstone) Higgs theories to several intriguing types of dark matter candidates, such as the SIMPs. We improve our previous lattice analysis [1] by adding more data at light quark masses, at two additional lattice spacings, by determining the lattice cutoff via a Wilson flow measure of the $w_0$ parameter, and by measuring the relevant renormalisation constants non-perturbatively in the RI'-MOM scheme. Our results for the lightest isovector states in the vector and axial channels, in units of the pseudoscalar decay constant, are $m_V/F_{\\rm{PS}}\\sim 13.1(2.2)$ and $m_A/F_{\\rm{PS}}\\sim 14.5(3.6)$ (combining statistical and systematic errors). In the context of the composite (Goldstone) Higgs models, our result for the spin-...
Ohno, T; Ichinose, I; Matsui, T; Ohno, Takuya; Arakawa, Gaku; Ichinose, Ikuo; Matsui, Tetsuo
2004-01-01
We study the phase structure of the random-plaquette Z_2 lattice gauge model in three dimensions. In this model, the "gauge coupling" for each plaquette is a quenched random variable that takes the value \\beta with the probability 1-p and -\\beta with the probability p. This model is relevant for the recently proposed quantum memory of toric code. The parameter p is the concentration of the plaquettes with "wrong-sign" couplings -\\beta, and interpreted as the error probability per qubit in quantum code. In the gauge system with p=0, i.e., with the uniform gauge couplings \\beta, it is known that there exists a second-order phase transition at a certain critical "temperature", T(\\equiv \\beta^{-1}) = T_c =1.31, which separates an ordered(Higgs) phase at TT_c. As p increases, the critical temperature T_c(p) decreases. In the p-T plane, the curve T_c(p) intersects with the Nishimori line T_{N}(p) at the certain point (p_c, T_{N}(p_c)). The value p_c is just the accuracy threshold for a fault-tolerant quantum memory...
Visible and hidden sectors in a model with Maxwell and Chern-Simons gauge dynamics
Ireson, Edwin; Schaposnik, Fidel A.; Tallarita, Gianni
2016-11-01
We study a U(1) × U(1) gauge theory discussing its vortex solutions and supersymmetric extension. In our set-up, the dynamics of one of two Abelian gauge fields is governed by a Maxwell term, the other by a Chern-Simons term. The two sectors interact via a BF gauge field mixing and a Higgs portal term that connects the two complex scalars. We also consider the supersymmetric version of this system which allows to find for the bosonic sector BPS equations in which an additional real scalar field enters into play. We study numerically the field equations finding vortex solutions with both magnetic flux and electric charge.
Modified Coulomb and Lorenz gauges in the modeling of low- frequency electromagnetic processes
Kalinin, A. V.; Tiukhtina, A. A.; Lavrova, S. R.
2016-11-01
The boundary value problem for the quasistationary magnetic approximation of the time-harmonic Maxwell equations in inhomogeneous media is studied. The considered problem is reduced to the variational problem of determining vector magnetic and scalar electric potentials. The special gauges are discussed, that generalize the Coulomb and Lorenz gauges and allow to formulate the problems of the independent definitions of the vector magnetic potential. The correctness of the problems are established under general conditions on the coefficients. The relation between solutions of the problems with different gauges is studied. The equivalence of the problems for potentials to the original boundary value problem is proved.
Visible and hidden sectors in a model with Maxwell and Chern-Simons gauge dynamics
Ireson, Edwin; Tallarita, Gianni
2016-01-01
We study a $U(1) \\times U(1)$ gauge theory discussing its vortex solutions and supersymmetric extension. In our set-upon the dynamics of one of two Abelian gauge fields is governed by a Maxwell term, the other by a Chern-Simons term. The two sectors via a BF gauge field mixing and a Higgs portal term that connects the two complex scalars. We also consider the supersymmetric version of this system which allows to find for the bosonic sector BPS equations in which an additional real scalar field enters into play. We study numerically the field equations finding vortex solutions with both magnetic flux and electric charge.
Z sup 0 -boson contribution in anomalous electron momenta in plane-wave electromagnetic field
Klimenko, E Y
2002-01-01
The Z sup 0 -boson contribution to the mass of electron moving in plane-wave field is considered. The dependence of the Z sup 0 -boson contribution to electron anomalous magnetic momentum and anomalous electric momentum on the external field parameters is studied within the frames of the Weinberg-Salam-Glashow standard model
Metastable vacuum decay and θ dependence in gauge theory. Deformed QCD as a toy model
Directory of Open Access Journals (Sweden)
Amit Bhoonah
2015-01-01
Full Text Available We study a number of different ingredients related to the θ dependence, metastable excited vacuum states and other related subjects using a simplified version of QCD, the so-called “deformed QCD”. This model is a weakly coupled gauge theory, which, however, preserves all the relevant essential elements allowing us to study hard and nontrivial features which are known to be present in real strongly coupled QCD. Our main focus in this work is to test the ideas related to the metastable vacuum states (which are known to be present in strongly coupled QCD in large N limit in a theoretically controllable manner using the “deformed QCD” as a toy model. We explicitly show how the metastable states emerge in the system, why their lifetime is large, and why these metastable states must be present in the system for the self-consistency of the entire picture of the QCD vacuum. We also speculate on possible relevance of the metastable vacuum states in explanation of the violation of local P and CP symmetries in heavy ion collisions.
Gauge-coupling unification and the minimal SUSY model a fourth generation below the top?
Gunion, J F; Pois, H; Douglas W McKay
1994-01-01
\\centerline{\\bf Abstract} We explore the possibility of a fourth generation in the gauge-coupling-unified, minimal supersymmetric (MSSM) framework. We find that a sequential fourth generation (with a heavy neutrino \
Bazavov, Alexei; Tsai, Shan-Wen; Unmuth-Yockey, Judah; Zhang, Jin
2015-01-01
We present a gauge-invariant effective action for the Abelian-Higgs model in 1+1 dimensions. It is constructed by integrating out the gauge field and then using the hopping parameter expansion. The latter is tested with Monte Carlo simulations for small values of the scalar self-coupling. In the opposite limit, at infinitely large self-coupling, the Higgs mode is frozen and the partition function can be written in terms of local tensors and the tensor renormalization group blocking can be applied. The numerical implementation requires truncations and the time continuum limit of the blocked transfer matrix can be obtained numerically. At zero gauge coupling and with a spin-1 truncation, the small volume energy spectrum is identical to the low energy spectrum of a two-species Bose-Hubbard model in the limit of large onsite repulsion. The procedure is extended to finite gauge coupling and we derive a spin-1 approximation of the Hamiltonian which involves terms corresponding to transitions among the two species i...
Definition of Magnetic Monopole Numbers for SU(N) Lattice Gauge-Higgs Models
Hollands, S
2001-01-01
A geometric definition for a magnetic charge of Abelian monopoles in SU(N) lattice gauge theories with Higgs fields is presented. The corresponding local monopole number defined for almost all field configurations does not require gauge fixing and is stable against small perturbations. Its topological content is that of a 3-cochain. A detailed prescription for calculating the local monopole number is worked out. Our method generalizes a magnetic charge definition previously invented by Phillips and Stone for SU(2).
Remarks on Vortex-like Solutions in Topologically Massive Planar Abelian Gauge Models
Colatto, L P; Hott, M B; Moura-Melo, W A; Moura-Melo, Winder A.
2003-01-01
We study vortex-like configurations in planar Abelian gauge models that include a Chern-Simons term. In pure Chern-Simons Electrodynamics, for instance, such objects appear as point-like magnetic vortices. Then, although giving rise to finite flux, they yield divergent magnetic energy. As it is well-known, such a scenario is deeply changed whenever Higgs mechanism takes place and local symmetry is spontaneously broken down. Now, soliton-like configurations carry finite energy, as well. On the other hand, even in the simpler, say, Maxwell-Chern-Simons framework, the dynamical (Maxwell) term is shown to modify the point-like structure of the pure Chern-Simons vortices. Indeed, we have seen that the magnetic field naturally acquires a smooth behavior (quite similar to the Nielsen-Olensen solution in (3+1) dimensions), providing finite magnetic flux and energy for this sort of vortex. It is also identified a ``magnetic symmetry'' between a point-like charge and an azytmuthal-type current: namely, these configurat...
Localization of twisted N=(0,2) gauged linear sigma models in two dimensions
Energy Technology Data Exchange (ETDEWEB)
Closset, Cyril [Simons Center for Geometry and Physics, State University of New York, Stony Brook, NY 11794 (United States); Gu, Wei [Department of Physics MC 0435, Virginia Tech, 850 West Campus Drive, Blacksburg, VA 24061 (United States); Jia, Bei [Theory Group, Physics Department, University of Texas, Austin, TX 78612 (United States); Sharpe, Eric [Department of Physics MC 0435, Virginia Tech, 850 West Campus Drive, Blacksburg, VA 24061 (United States)
2016-03-14
We study two-dimensional N=(0,2) supersymmetric gauged linear sigma models (GLSMs) using supersymmetric localization. We consider N=(0,2) theories with an R-symmetry, which can always be defined on curved space by a pseudo-topological twist while preserving one of the two supercharges of flat space. For GLSMs which are deformations of N=(2,2) GLSMs and retain a Coulomb branch, we consider the A/2-twist and compute the genus-zero correlation functions of certain pseudo-chiral operators, which generalize the simplest twisted chiral ring operators away from the N=(2,2) locus. These correlation functions can be written in terms of a certain residue operation on the Coulomb branch, generalizing the Jeffrey-Kirwan residue prescription relevant for the N=(2,2) locus. For abelian GLSMs, we reproduce existing results with new formulas that render the quantum sheaf cohomology relations and other properties manifest. For non-abelian GLSMs, our methods lead to new results. As an example, we briefly discuss the quantum sheaf cohomology of the Grassmannian manifold.
Ko, P; Park, Myeonghun; Yokoya, Hiroshi
2016-01-01
The general strategy for dark matter (DM) searches at colliders currently relies on simplified models. In this paper, we propose a new $t$-channel UV-complete simplified model that improves the existing simplified DM models in two important respects: (i) we impose the full SM gauge symmetry including the fact that the left-handed and the right-handed fermions have two independent mediators with two independent couplings, and (ii) we include the renormalization group evolution when we derive the effective Lagrangian for DM-nucleon scattering from the underlying UV complete models by integrating out the $t$-channel mediators. The first improvement will introduce a few more new parameters compared with the existing simplified DM models. In this study we look at the effect this broader set of free parameters has on direct detection and the mono-$X$ + MET ($X$=jet,$W,Z$) signatures at 13 TeV LHC while maintaining gauge invariance of the simplified model under the full SM gauge group. We find that the direct detect...
Alvarez, Pedro D; Rodríguez, Eduardo; Salgado-Rebolledo, Patricio; Zanelli, Jorge
2015-01-01
A Chern--Simons system in $2+1$ dimensions invariant under local Lorentz rotations, $SU(2)$ gauge transformations, and local $\\mathcal{N}=2$ supersymmetry transformations is proposed. The field content is that of $(2+1)$-gravity plus an $SU(2)$ gauge field, a spin-1/2 fermion charged with respect to $SU(2)$ and a trivial free abelian gauge field. A peculiarity of the model is the absence of gravitini, although it includes gravity and supersymmetry. Likewise, no gauginos are present. All the parameters involved in the system are either protected by gauge invariance or emerge as integration constants. An effective mass and effective cosmological constant emerge by spontaneus breaking of local scaling invariance. The vacuum sector is defined by configurations with locally flat Lorentz and $SU(2)$ connections sporting nontrivial global charges. Three-dimensional Lorentz-flat geometries are spacetimes of locally constant negative --or zero--, Riemann curvature, which include Minkowski space, AdS$_3$, BTZ black hol...
Frampton, Paul H
2008-01-01
This third edition on the classic Gauge Field Theories is an ideal reference for researchers starting work with the Large Hadron Collider and the future International Linear Collider. This latest title continues to offer an up to date reference containing revised chapters on electroweak interactions and model building including a completely new chapter on conformality. Within this essential reference logical organization of the material on gauge invariance, quantization, and renormalization is also discussed providing necessary reading for Cosmologists and Particle Astrophysicists
Applications to cosmological models of a complex scalar field coupled to a U(1) vector gauge field
Alves, D S M; Alves, Daniele S. M.; Kremer, Gilberto M.
2004-01-01
We consider the Abelian model of a complex scalar field coupled to a gauge field within the framework of General Relativity and search for cosmological solutions. For this purpose we assume a homogeneous, isotropic and uncharged Universe and a homogeneous scalar field. This model may be inserted in several contexts in which the scalar field might act as inflaton or quintessence, whereas the gauge field might play the role of radiation or dark matter, for instance. Particularly, we propose two such models: (i) in the first, the inflaton field decays to massive vector bosons that we regard as dark-matter; (ii) in the second, due to its coupling to radiation the scalar field is displaced from its ground state and drives an accelerated expansion of the Universe, playing the role of quintessence. We observe that the equations are quite simplified and easier to be solved if we assume a roughly monochromatic radiation spectrum.
Gauge Mediation with Gauge Messengers in SU(5)
Matos, Luis
2010-01-01
The inclusion of gauge messengers in models of gauge mediation allows for more general predictions that those described by the framework of general gauge mediation. Motivated by this, we explore some models of gauge mediation with gauge messengers in SU(5) GUTs. In most previous attempts of building viable models where gauge messengers play a role in determining the soft terms, squark and/or slepton masses turned out to be tachyonic. The objective of this paper is to address this problem and propose two possible solutions, one of which has a natural realization in the solution of the doublet-triplet problem. Another interesting result is that in these models the association of SUSY breaking with the breaking of the GUT group provides a simple mechanism that can explain why $SU(5)\\rightarrow SU(3)\\times SU(2) \\times U(1)$ is preferred over other symmetry breaking patterns.
DEFF Research Database (Denmark)
Sørup, Hjalte Jomo Danielsen; Madsen, Henrik; Arnbjerg-Nielsen, Karsten
2011-01-01
A very fine temporal and volumetric resolution precipitation time series is modeled using Markov models. Both 1st and 2nd order Markov models as well as seasonal and diurnal models are investigated and evaluated using likelihood based techniques. The 2nd order Markov model is found to be insignif...
Digital lattice gauge theories
Zohar, Erez; Reznik, Benni; Cirac, J Ignacio
2016-01-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with $2+1$ dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a $\\mathbb{Z}_{3}$ lattice gauge theory with dynamical fermionic matter in $2+1$ dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms...
Energy Technology Data Exchange (ETDEWEB)
Bais, F.A.; Barnes, K.J.; Forgacs, P.; Zoupanos, G.
1986-01-27
By dimensional reduction of pure gauge theories (with gauge group G) over a compact coset space S/R, one obtains four-dimensional theories where scalar fields and a symmetry breaking potential appear naturally. We present a complete analysis (including the fermion sector) of all unified models with simple G which are spontaneously broken to SU/sub 3/xU/sub 1/, and which can be obtained by this technique with the added restriction that S is contained in G. Such models only exist when G is an exceptional group; however, the surviving fermions do not have the correct quantum numbers. The paper also provides an exhaustive list of SU/sub 3/ embeddings in the exceptional groups. (orig.).
Cohomological gauge theory, quiver matrix models and Donaldson-Thomas theory
Energy Technology Data Exchange (ETDEWEB)
Cirafici, Michele [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)], E-mail: m.cirafici@uu.nl; Sinkovics, Annamaria [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)], E-mail: a.sinkovics@damtp.cam.ac.uk; Szabo, Richard J. [Department of Mathematics, Heriot-Watt University and Maxwell Institute for Mathematical Sciences, Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS (United Kingdom)], E-mail: r.j.szabo@ma.hw.ac.uk
2009-03-11
We study the relation between Donaldson-Thomas theory of Calabi-Yau threefolds and a six-dimensional topological Yang-Mills theory. Our main example is the topological U(N) gauge theory on flat space in its Coulomb branch. To evaluate its partition function we use equivariant localization techniques on its noncommutative deformation. As a result the gauge theory localizes on noncommutative instantons which can be classified in terms of N-coloured three-dimensional Young diagrams. We give to these noncommutative instantons a geometrical description in terms of certain stable framed coherent sheaves on projective space by using a higher-dimensional generalization of the ADHM formalism. From this formalism we construct a topological matrix quantum mechanics which computes an index of BPS states and provides an alternative approach to the six-dimensional gauge theory.
Muthusamy, Manoranjan; Schellart, Alma; Tait, Simon; Heuvelink, Gerard B. M.
2017-02-01
In this study we develop a method to estimate the spatially averaged rainfall intensity together with associated level of uncertainty using geostatistical upscaling. Rainfall data collected from a cluster of eight paired rain gauges in a 400 m × 200 m urban catchment are used in combination with spatial stochastic simulation to obtain optimal predictions of the spatially averaged rainfall intensity at any point in time within the urban catchment. The uncertainty in the prediction of catchment average rainfall intensity is obtained for multiple combinations of intensity ranges and temporal averaging intervals. The two main challenges addressed in this study are scarcity of rainfall measurement locations and non-normality of rainfall data, both of which need to be considered when adopting a geostatistical approach. Scarcity of measurement points is dealt with by pooling sample variograms of repeated rainfall measurements with similar characteristics. Normality of rainfall data is achieved through the use of normal score transformation. Geostatistical models in the form of variograms are derived for transformed rainfall intensity. Next spatial stochastic simulation which is robust to nonlinear data transformation is applied to produce realisations of rainfall fields. These realisations in transformed space are first back-transformed and next spatially aggregated to derive a random sample of the spatially averaged rainfall intensity. Results show that the prediction uncertainty comes mainly from two sources: spatial variability of rainfall and measurement error. At smaller temporal averaging intervals both these effects are high, resulting in a relatively high uncertainty in prediction. With longer temporal averaging intervals the uncertainty becomes lower due to stronger spatial correlation of rainfall data and relatively smaller measurement error. Results also show that the measurement error increases with decreasing rainfall intensity resulting in a higher
Grady, Michael
2011-01-01
SU(2) lattice gauge theory is extended to a larger coupling space where the coupling parameter for horizontal (spacelike) plaquettes, $\\beta_H$, differs from that for vertical (Euclidean timelike) plaquettes, $\\beta_V$. When $\\beta_H \\rightarrow \\infty$ the system, when in Coulomb Gauge, splits into multiple independent 3-d O(4) Heisenberg models on spacelike hyperlayers. Through consideration of the robustness of the Heisenberg model phase transition to small perturbations, and illustrated by Monte Carlo simulations, it is shown that the ferromagnetic phase transition in this model persists for $\\beta_H < \\infty$. Once it has entered the phase-plane it must continue to another edge due to its symmetry-breaking nature, and therefore must necessarily cross the $\\beta_V = \\beta_H$ line at a finite value. Indeed, a higher-order SU(2) phase transition is found at $\\beta = 3.18 \\pm 0.08$, from a finite-size scaling analysis of the Coulomb gauge magnetization from Monte Carlo simulations, which also yields criti...
Real gauge singlet scalar extension of the Standard Model: A possible candidate for cold dark matter
Indian Academy of Sciences (India)
Anirban Biswas; Debasish Majumdar
2013-03-01
The simplest extension of Standard Model (SM) is considered in which a real SM gauge singlet scalar with an additional discrete symmetry $Z_{2}$ is introduced to SM. This additional scalar can be a viable candidate of cold dark matter (CDM) since the stability of is achieved by the application of $Z_{2}$ symmetry on . Considering as a possible candidate of CDM, Boltzmann’s equation is solved to find the freeze-out temperature and relic density of for Higgs mass 120 GeV in the scalar mass range 5 GeV to 1 TeV. As HHSS coupling 2 appearing in Lagrangian depends upon the value of scalar mass $m_{S}$ and Higgs mass $m_{h}$, the $m_{S}$ − 2 parameter space has been constrained by using the Wilkinson microwave anisotropy probe (WMAP) limit on the relic density of DM in the Universe and the results of recent ongoing DM direct search experiments, namely CDMS-II, CoGeNT, DAMA, EDELWEISS-II, XENON-10 and XENON-100. From such analyses, two distinct mass regions are found (a lower and higher mass domain) for such a DM candidate that satisfy both the WMAP limit and the experimental results considered here. The possible differential direct detection rates and annual variation of total detection rates have been estimated for this scalar DM candidate for two detector materials, namely Ge and Xe. Finally, the -ray flux has been calculated from the galactic centre due to annihilation of two 130 GeV scalar DM into two monoenergetic -rays.
Maleknejad, A; Soda, J
2012-01-01
The isotropy and homogeneity of the cosmic microwave background (CMB) favors "scalar driven" early Universe inflationary models. Non-scalar fields, and in particular gauge fields, are on the other hand commonplace in all high energy particle physics models proposed to be at work at the upper bound on energy scale of inflation set by the current CMB observations. In this review we consider the role and consequences, theoretical and observational, that gauge fields can have during inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main class of models with gauge fields in the background, models which show violation of cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of the...
Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models
Abe, Tomohiro; Kitahara, Teppei; Tobioka, Kohsaku
2014-01-01
We calculate all gauge invariant Barr-Zee type contributions to fermionic electric dipole moments (EDMs) in the two-Higgs doublet models (2HDM) with softly broken Z2 symmetry. We start by studying the tensor structure of h to VV' part in the Barr-Zee diagrams, and we calculate the effective couplings in gauge invariant way using the pinch technique. Then we calculate all Barr-Zee diagrams relevant for electron and neutron EDMs. We make bounds on the parameter space in type-I, type-II, type-X, and type-Y 2HDMs. The electron and neutron EDMs are complementary to each other in discrimination of the 2HDMs. Type-II and type-X 2HDMs are strongly constrained by recent ACME experiment's result, and future experiments of electron and neutron EDMs may search O(10) TeV physics.
Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models
Energy Technology Data Exchange (ETDEWEB)
Abe, Tomohiro [Theory Group, KEK,1-1 Oho, Tsukuba, 305-0801 (Japan); Hisano, Junji [Department of Physics, Nagoya University,Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI),University of Tokyo,5-1-5 Kashiwanoha, Kashiwa, 277-8583 (Japan); Kitahara, Teppei [Department of Physics, University of Tokyo,7-3-1 Hongo, Bunkyo-ku, 113-0033 (Japan); Tobioka, Kohsaku [Kavli Institute for the Physics and Mathematics of the Universe (WPI),University of Tokyo,5-1-5 Kashiwanoha, Kashiwa, 277-8583 (Japan); Department of Physics, University of Tokyo,7-3-1 Hongo, Bunkyo-ku, 113-0033 (Japan)
2014-01-20
We calculate all gauge invariant Barr-Zee type contributions to fermionic electric dipole moments (EDMs) in the two-Higgs doublet models (2HDM) with softly broken Z{sub 2} symmetry. We start by studying the tensor structure of h→VV′ part in the Barr-Zee diagrams, and we calculate the effective couplings in a gauge invariant way by using the pinch technique. Then we calculate all Barr-Zee diagrams relevant for electron and neutron EDMs. We make bounds on the parameter space in type-I, type-II, type-X, and type-Y 2HDMs. The electron and neutron EDMs are complementary to each other in discrimination of the 2HDMs. Type-II and type-X 2HDMs are strongly constrained by recent ACME experiment’s result, and future experiments of electron and neutron EDMs may search O(10) TeV physics.
Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models
Abe, Tomohiro; Hisano, Junji; Kitahara, Teppei; Tobioka, Kohsaku
2014-01-01
We calculate all gauge invariant Barr-Zee type contributions to fermionic electric dipole moments (EDMs) in the two-Higgs doublet models (2HDM) with softly broken Z 2 symmetry. We start by studying the tensor structure of h → VV ' part in the Barr-Zee diagrams, and we calculate the effective couplings in a gauge invariant way by using the pinch technique. Then we calculate all Barr-Zee diagrams relevant for electron and neutron EDMs. We make bounds on the parameter space in type-I, type-II, type-X, and type-Y 2HDMs. The electron and neutron EDMs are complementary to each other in discrimination of the 2HDMs. Type-II and type-X 2HDMs are strongly constrained by recent ACME experiment's result, and future experiments of electron and neutron EDMs may search (10) TeV physics.
Gauge-fixing approach to lattice chiral gauge theories
Bock, W; Shamir, Y; Bock, Wolfgang; Golterman, Maarten F.L.; Shamir, Yigal
1998-01-01
We review the status of our recent work on the gauge-fixing approach to lattice chiral gauge theories. New numerical results in the reduced version of a model with a U(1) gauge symmetry are presented which strongly indicate that the factorization of the correlation functions of the left-handed neutral and right-handed charged fermion fields, which we established before in perturbation theory, holds also nonperturbatively.
Energy Technology Data Exchange (ETDEWEB)
Benini, Francesco; /Princeton U.; Dymarsky, Anatoly; /Stanford U., ITP; Franco, Sebastian; /Santa Barbara, KITP; Kachru, Shamit; Simic, Dusan; /Stanford U., ITP /SLAC; Verlinde, Herman; /Princeton, Inst. Advanced Study
2009-06-19
We discuss gravitational backgrounds where supersymmetry is broken at the end of a warped throat, and the SUSY-breaking is transmitted to the Standard Model via gauginos which live in (part of) the bulk of the throat geometry. We find that the leading effect arises from splittings of certain 'messenger mesons,' which are adjoint KK-modes of the D-branes supporting the Standard Model gauge group. This picture is a gravity dual of a strongly coupled field theory where SUSY is broken in a hidden sector and transmitted to the Standard Model via a relative of semi-direct gauge mediation.
Digital Repository Service at National Institute of Oceanography (India)
Joseph, A.; Mehra, P.; Desai, R.G.P.; Dotse, J.; Odammetey, J.T.; Nkebi, E.K.; VijayKumar, K.; Prabhudesai, S.
Quality-control of bottom pressure based sea level gauge has been effected using a statistically derived simple linear model constructed from a set of bottom pressures and concurrent tide-staff measurements. The study reveals that the crucial factor...
Oliveira, O; Hussein, M S; de Paula, W; Frederico, T
2015-01-01
We propose a mirror model for ordinary and dark matter that assumes a new SU(3) gauge group of transformations, as a natural extension of the Standard Model (SM). A close study of big bang nucleosynthesis, baryon asymmetries, cosmic microwave background bounds, galaxy dynamics, together with the Standard Model assumptions, help us to set a limit on the mass and width of the new gauge boson. The cross section for the elastic scattering of a dark proton by an ordinary proton is estimated and compare to the WIMP--nucleon experimental upper bounds. It is observed that all experimental bounds for the various cross sections can be accommodated consistently within the gauge model. We also suggest a way for direct detection of the new gauge boson via one example of a SM forbidden process: $e^+ + p \\rightarrow \\mu^+ + X$, where $X = \\Lambda$ or $\\Lambda_c$.
Kuno, Yoshihito; Sakane, Shinya; Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo
2016-01-01
In this paper, we study atomic quantum simulations of $(1+1)$-dimensional($(1+1)$D) U(1) gauge-Higgs models (GHMs) defined on a lattice. We explain how U(1) lattice GHMs appear from an extended Bose-Hubbard model (EBHM) describing ultra-cold atoms with a nearest neighbor repulsion in a 1D optical lattice. We first study a phase diagram of the 1D EBHM at low fillings by means of a quantum Monte-Carlo(MC) simulation. Next, we study the EBHM at large fillings and also GHMs by the MC simulations in the path-integral formalism and show that there are four phases, i.e., the Higgs phase(superfluid), the confinement phase (Mott insulator), and phases corresponding to the density wave and the supersolid. With the obtained phase diagrams, we investigate the relationship between the two models. Finally, we study real-time dynamic of an electric flux in the GHMs by the Gross-Pitaevskii equations and the truncated Wigner approximation.
Thermally favourable gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Dalianis, Ioannis, E-mail: Ioannis.Dalianis@fuw.edu.p [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoza 69, Warsaw (Poland); Lalak, Zygmunt, E-mail: Zygmunt.Lalak@fuw.edu.p [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoza 69, Warsaw (Poland)
2011-03-14
We discuss the thermal evolution of the spurion and messenger fields of ordinary gauge mediation models taking into account the Standard Model degrees of freedom. It is shown that for thermalized messengers the metastable susy breaking vacuum becomes thermally selected provided that the susy breaking sector is sufficiently weakly coupled to messengers or to any other observable field.
Moyotl, A; Toscano, J J; Tututi, E S
2013-01-01
Low-energy Lorentz-invariant quantities could receive contributions from a fundamental theory producing small Lorentz-violating effects. Within the Lorentz-violating extension of quantum electrodynamics, we investigate, perturbatively, the contributions to the one-loop ffgamma vertex from the CPT-violating axial coupling of a vector background field to fermions. We find that the resulting vertex function has a larger set of Lorentz structures than the one characterizing the usual, Lorentz invariant, parametrization of the ffgamma vertex. We prove gauge invariance of the resulting one-loop expression through a set of gauge invariant nonrenormalizable operators introducing new-physics effects at the first and second orders in Lorentz violation, and which generate tree-level contributions to the ffgamma vertex. Whereas loop contributions involving parameters that violate Lorentz invariance at the first order are CPT-odd, those arising at the second order are CPT-even, so that contributions to low-energy physics ...
Gauge propagator and physical consistency of the CPT-even part of the Standard Model Extension
Casana, Rodolfo; Gomes, Adalto R; Pinheiro, Paulo R D
2009-01-01
In this work, we explicitly evaluate the gauge propagator of the Maxwell theory supplemented by the CPT-even term of the SME. We begin evaluating the propagator of the parity-odd sector as $4\\times 4$ matrix using a parametrization that retains only three parity-odd coefficients. Starting from the poles of the propagator, it is shown that this electrodynamics is stable, non-causal and unitary. In the sequel, we carry out the parity-even gauge propagator as $4\\times 4$ matrix working with only the isotropic non-birefringent element. In this case, we show that the parity-even sector of the tensor $W$ is causal, stable and unitary.
BPS black holes in a non-homogeneous deformation of the stu model of N=2, D=4 gauged supergravity
Energy Technology Data Exchange (ETDEWEB)
Klemm, Dietmar [Dipartimento di Fisica, Università di Milano, and INFN - Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Marrani, Alessio [Centro Studi e Ricerche ‘Enrico Fermi’, Via Panisperna 89A, I-00184 Roma (Italy); Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova, and INFN - Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Petri, Nicolò; Santoli, Camilla [Dipartimento di Fisica, Università di Milano, and INFN - Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy)
2015-09-29
We consider a deformation of the well-known stu model of N=2, D=4 supergravity, characterized by a non-homogeneous special Kähler manifold, and by the smallest electric-magnetic duality Lie algebra consistent with its upliftability to five dimensions. We explicitly solve the BPS attractor equations and construct static supersymmetric black holes with radial symmetry, in the context of U(1) dyonic Fayet-Iliopoulos gauging, focussing on axion-free solutions. Due to non-homogeneity of the scalar manifold, the model evades the analysis recently given in the literature. The relevant physical properties of the resulting black hole solution are discussed.
Hasenfratz, Anna
2012-02-10
I investigate an SU(3) gauge model with 12 fundamental fermions. The physically interesting region of this strongly coupled system can be influenced by an ultraviolet fixed point due to lattice artifacts. I suggest to use a gauge action with an additional negative adjoint plaquette term that lessens this problem. I also introduce a new analysis method for the 2-lattice matching Monte Carlo renormalization group technique that significantly reduces finite volume effects. The combination of these two improvements allows me to measure the bare step scaling function in a region of the gauge coupling where it is clearly negative, indicating a positive renormalization group β function and infrared conformality.
Self-dual solitons in a $CPT$-odd and Lorentz-violating gauged $O(3)$ sigma model
Casana, R; Ferreira, M M; Lazar, G
2016-01-01
We have performed a complete study of self-dual configurations in a $CPT$-odd and Lorentz-violating gauged $O(3)$ nonlinear sigma model. We have consistently implemented the Bogomol'nyi-Prasad-Sommerfield (BPS) formalism and obtained the correspondent differential first-order equations describing electrically charged self-dual configurations. The total energy and magnetic flux of the vortices, besides being proportional to the winding number, also depend explicitly on the Lorentz-violating coefficients belonging to the sigma sector. The total electrical charge is proportional to the magnetic flux such as it occurs in Chern-Simons models. The Lorentz violation in the sigma sector allows one to interpolate between Lorentz-violating versions of some sigma models: the gauged $O(3)$ sigma model and the Maxwell-Chern-Simons $O(3)$ sigma model. The Lorentz violation enhances the amplitude of the magnetic field and BPS energy density near the origin, augmenting the deviation in relation to the solutions deprived of L...
Self-dual solitons in a C P T -odd and Lorentz-violating gauged O (3 ) sigma model
Casana, R.; Farias, C. F.; Ferreira, M. M.; Lazar, G.
2016-09-01
We have performed a complete study of self-dual configurations in a C P T -odd and Lorentz-violating gauged O (3 ) nonlinear sigma model. We have consistently implemented the Bogomol'nyi-Prasad-Sommerfield (BPS) formalism and obtained the correspondent differential first-order equations describing electrically charged self-dual configurations. The total energy and magnetic flux of the vortices, besides being proportional to the winding number, also depend explicitly on the Lorentz-violating coefficients belonging to the sigma sector. The total electrical charge is proportional to the magnetic flux such as it occurs in Chern-Simons models. The Lorentz violation in the sigma sector allows one to interpolate between Lorentz-violating versions of some sigma models: the gauged O (3 ) sigma model and the Maxwell-Chern-Simons O (3 ) sigma model. The Lorentz violation enhances the amplitude of the magnetic field and BPS energy density near the origin, augmenting the deviation in relation to the solutions deprived of Lorentz violation.
Chakraborty, B
1999-01-01
We couple the Hopf term to the relativistic $CP^1$ model and carry out the Hamiltonian analysis at the classical level. The symplectic structure of the model given by the set of Dirac Brackets among the phase space variables is found to be the same as that of the pure $CP^1$ model. This symplectic structure is shown to be inherited from the global SU(2) invariant $S^3$ model, and undergoes no modification upon gauging the U(1) subgroup, except the appearance of an additional first class constraint generating U(1) gauge transformation. We then address the question of fractional spin as imparted by the Hopf term at the classical level. For that we construct the expression of angular momentum through both symmetric energy-momentum tensor as well as through Noether's prescription. Both the expressions agree for the model indicating no fractional spin is imparted by this term at the classical level-a result which is at variance with what has been claimed in the literature. We provide an argument to explain the dis...
Satellite altimetry and hydrologic modeling of poorly-gauged tropical watershed
Sulistioadi, Yohanes Budi
proves that satellite altimetry provides a good alternative or the only means in some regions to measure the water level of medium-sized river (200--800 m width) and small lake (extent less than 1000 km 2) in Southeast Asia humid tropic with reasonable accuracy. In addition, the procedure to choose retracked Envisat altimetry water level heights via identification or selection of over water waveform shapes is reliable; therefore this study concluded that the use of waveform shape selection procedure should be a standard measure in determining qualified range measurements especially over small rivers and lakes. This study also found that Ice-1 is not necessarily the best retracker as reported by previous studies, among the four standard waveform retracking algorithms for Envisat altimetry observing hydrologic bodies. The second study modeled the response of the poorly-gauged watershed in the Southeast Asia's humid tropic through the application of Hydrologic Engineering Center -- Hydrologic Modeling System (HEC-HMS). The performance evaluation of HEC-HMS discharge estimation confirms a good match between the simulated discharges with the observed ones. As the result of precipitation data analysis, this study found that Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) is the preferred input forcing for the model, given the thorough evaluation of its relationship with field-measured precipitation data prior to its use as primary climatic forcing. This research also proposes a novel approach to process the TRMM precipitation estimation spatially through Thiessen polygon and area average hybrid method, which model the spatial distribution of TRMM data to match the spatial location of field meteorological stations. Through a simultaneous validation that compares the water level anomaly transformed from HEC-HMS simulated discharge and satellite altimetry measurement, this study found that satellite altimetry measures water level anomaly
Energy Technology Data Exchange (ETDEWEB)
Ashfaque, J. [University of Liverpool, Department of Mathematical Sciences, Liverpool (United Kingdom); Delle Rose, L. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Faraggi, A.E. [Rutherford Appleton Laboratory, Department of Particle Physics, Chilton, Didcot (United Kingdom); Marzo, C. [Universita del Salento, Dipartimento di Matematica e Fisica ' ' Ennio De Giorgi' ' , Lecce (Italy); INFN, Lecce (Italy)
2016-10-15
A di-photon excess at the LHC can be explained as a Standard Model singlet that is produced and decays by heavy vector-like colour triplets and electroweak doublets in one-loop diagrams. The characteristics of the required spectrum are well motivated in heterotic-string constructions that allow for a light Z{sup '}. Anomaly cancellation of the U(1){sub Z'} symmetry requires the existence of the Standard Model singlet and vector-like states in the vicinity of the U(1){sub Z'} breaking scale. In this paper we show that the agreement with the gauge coupling data at one-loop is identical to the case of the Minimal Supersymmetric Standard Model, owing to cancellations between the additional states. We further show that effects arising from heavy thresholds may push the supersymmetric spectrum beyond the reach of the LHC, while maintaining the agreement with the gauge coupling data. We show that the string-inspired model can indeed produce an observable signal and discuss the feasibility of obtaining viable scalar mass spectrum. (orig.)
Ashfaque, J; Faraggi, A E; Marzo, C
2016-01-01
The di-photon excess observed at the LHC can be explained as a Standard Model singlet that is produced and decays by heavy vector-like colour triplets and electroweak doublets in one-loop diagrams. The characteristics of the required spectrum are well motivated in heterotic-string constructions that allow for a light $Z^\\prime$. Anomaly cancellation of the $U(1)_{Z^\\prime}$ symmetry requires the existence of the Standard Model singlet and vector-like states in the vicinity of the $U(1)_{Z^\\prime}$ breaking scale. In this paper we show that the agreement with the gauge coupling data at one-loop is identical to the case of the Minimal Supersymmetric Standard Model, owing to cancellations between the additional states. We further show that effects arising from heavy thresholds may push the supersymmetric spectrum beyond the reach of the LHC, while maintaining the agreement with the gauge coupling data. We show that the string inspired model can indeed account for the observed signal and discuss the feasibility o...
Hdeib, Rouya; Abdallah, Chadi; Moussa, Roger; Colin, Francois
2017-04-01
Developing flood inundation maps of defined exceedance probabilities is required to provide information on the flood hazard and the associated risk. A methodology has been developed to model flood inundation in poorly gauged basins, where reliable information on the hydrological characteristics of floods are uncertain and partially captured by the traditional rain-gauge networks. Flood inundation is performed through coupling a hydrological rainfall-runoff (RR) model (HEC-HMS) with a hydraulic model (HEC-RAS). The RR model is calibrated against the January 2013 flood event in the Awali River basin, Lebanon (300 km2), whose flood peak discharge was estimated by post-event measurements. The resulting flows of the RR model are defined as boundary conditions of the hydraulic model, which is run to generate the corresponding water surface profiles and calibrated against 20 post-event surveyed cross sections after the January-2013 flood event. An uncertainty analysis is performed to assess the results of the models. Consequently, the coupled flood inundation model is simulated with design storms and flood inundation maps are generated of defined exceedance probabilities. The peak discharges estimated by the simulated RR model were in close agreement with the results from different empirical and statistical methods. This methodology can be extended to other poorly gauged basins facing common stage-gauge failure or characterized by floods with a stage exceeding the gauge measurement level, or higher than that defined by the rating curve.
Gauged U(1) Lμ -Lτ model in light of muon g - 2 anomaly, neutrino mass and dark matter phenomenology
Patra, Sudhanwa; Rao, Soumya; Sahoo, Nirakar; Sahu, Narendra
2017-04-01
Gauged U(1) Lμ -Lτ model has been advocated for a long time in light of muon g - 2 anomaly, which is a more than 3σ discrepancy between the experimental measurement and the standard model prediction. We augment this model with three right-handed neutrinos (Ne ,Nμ ,Nτ) and a vector-like singlet fermion (χ) to explain simultaneously the non-zero neutrino masses and dark matter content of the Universe, while satisfying the anomalous muon g - 2 constraints. We find that the model suffers stringent constraints from the simultaneous explanation of neutrino trident production and muon g - 2 anomaly. In a large region of the parameter space, where contribution to muon g - 2 anomaly comes partially and yet not ruled out by neutrino trident production, the model can explain the positron excess, observed at PAMELA, Fermi-LAT and AMS-02 through dark matter annihilation, while satisfying the relic density and direct detection limits.
Inflationary models with a flat potential enforced by non-abelian discrete gauge symmetries
Stewart, E D
2001-01-01
Non-abelian discrete gauge symmetries can provide the inflaton with a flatpotential even when one takes into account gravitational strength effects. Thediscreteness of the symmetries also provide special field values whereinflation can end via a hybrid type mechanism. An interesting feature of thismethod is that it can naturally lead to extremely flat potentials and so, inprinciple, to inflation at unusually low energy scales. Two examples ofeffective field theories with this mechanism are given, one with a hybrid exitand one with a mutated hybrid exit. They include an explicit example in whichthe single field consistency condition is violated.
Yasmin, Safia; Rahaman, Anisur
2016-12-01
A (1+1) dimensional model where vector and axial vector interaction get mixed up with different weight is considered with a generalized masslike term for gauge field. Through Poincaré algebra it has been made confirm that only a Lorentz covariant masslike term leads to a physically sensible theory as long as the number of constraints in the phase space is two. With that admissible masslike term, phase space structure of this model with proper identification of physical canonical pair has been determined using Diracs' scheme of quantization of constrained system. The bosonized version of the model remains gauge non-invariant to start with. Therefore, with the inclusion of appropriate Wess-Zumino term it is made gauge symmetric. An alternative quantization has been carried out over this gauge symmetric version to determine the phase space structure in this situation. To establish that the Wess-Zumino fields allocates themselves in the un-physical sector of the theory an attempts has been made to get back the usual theory from the gauge symmetric theory of the extended phase-space without hampering any physical principle. It has been found that the role of gauge fixing is crucial for this transmutation.
Mangiarotti, L
1998-01-01
This book presents in a unified way modern geometric methods in analytical mechanics based on the application of fibre bundles, jet manifold formalism and the related concept of connection. Non-relativistic mechanics is seen as a particular field theory over a one-dimensional base. In fact, the concept of connection is the major link throughout the book. In the gauge scheme of mechanics, connections appear as reference frames, dynamic equations, and in Lagrangian and Hamiltonian formalisms. Inertial forces, energy conservation laws and other phenomena related to reference frames are analyzed;
NLO+NLL limits on W' and Z' gauge boson masses in general extensions of the Standard Model
Ježo, Tomáš; Klasen, Michael; Lamprea, David R.; Lyonnet, Florian; Schienbein, Ingo
2014-12-01
QCD resummation predictions for the production of charged ( W ') and neutral ( Z ') heavy gauge bosons decaying leptonically are presented. The results of our resummation code at next-to-leading order and next-to-leading logarithmic (NLO+NLL) accuracy are compared to Monte Carlo predictions obtained with PYTHIA at leading order (LO) supplemented with parton showers (PS) and FEWZ at NLO and next-to-next-to-leading order (NNLO) for the p T -differential and total cross sections in the Sequential Standard Model (SSM) and general SU(2)×SU(2)×U(1) models. The LO+PS Monte Carlo and NNLO fixed-order predictions are shown to agree approximately with those at NLO+NLL at small and intermediate p T , respectively, and the importance of resummation for total cross sections is shown to increase with the gauge boson mass. The theoretical uncertainties are estimated by variations of the renormalisation/factorisation scales and of the parton densities, the former being significantly reduced by the resummation procedure. New limits at NLO+NLL on W ' and Z ' boson masses are obtained by reinterpreting the latest ATLAS and CMS results in general extensions of the Standard Model.
Enhanced gauge symmetry in 6D F-theory models and tuned elliptic Calabi-Yau threefolds
Johnson, Samuel B
2016-01-01
We systematically analyze the local combinations of gauge groups and matter that can arise in 6D F-theory models over a fixed base. We compare the low-energy constraints of anomaly cancellation to explicit F-theory constructions using Weierstrass and Tate forms, and identify some new local structures in the "swampland' of 6D supergravity and SCFT models that appear consistent from low-energy considerations but do not have F-theory realizations. In particular, we classify and carry out a local analysis of all enhancements of the irreducible gauge and matter contributions from "non-Higgsable clusters," and on isolated curves and pairs of intersecting rational curves of arbitrary self-intersection. Such enhancements correspond physically to unHiggsings, and mathematically to tunings of the Weierstrass model of an elliptic CY threefold. We determine the shift in Hodge numbers of the elliptic threefold associated with each enhancement. We also consider local tunings on curves that have higher genus or intersect mu...
Parameter space of general gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Rajaraman, Arvind [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: arajaram@uci.edu; Shirman, Yuri [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: yshirman@uci.edu; Smidt, Joseph [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: jsmidt@uci.edu; Yu, Felix [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: felixy@uci.edu
2009-07-27
We study a subspace of General Gauge Mediation (GGM) models which generalize models of gauge mediation. We find superpartner spectra that are markedly different from those of typical gauge and gaugino mediation scenarios. While typical gauge mediation predictions of either a neutralino or stau next-to-lightest supersymmetric particle (NLSP) are easily reproducible with the GGM parameters, chargino and sneutrino NLSPs are generic for many reasonable choices of GGM parameters.
Ho, Fei-Hung
2011-01-01
The Poincar\\'e gauge theory of gravity has a metric compatible connection with independent dynamics that is reflected in the torsion and curvature. The theory allows two good propagating spin-0 modes. Dynamical investigations using a simple expanding cosmological model found that the oscillation of the 0$^+$ mode could account for an accelerating expansion similar to that presently observed. The model has been extended to include a $0^{-}$ mode and more recently cross parity couplings. We investigate the dynamics of this model in a situation which is simple, non-trivial, and yet may give physically interesting results that might be observable. We consider homogeneous cosmologies, more specifically, isotropic Bianchi class A models. We find an effective Lagrangian for our dynamical system, a system of first order equations, and present some typical dynamical evolution.
Furuuchi, Kazuyuki
2015-01-01
We continue our investigation of large field inflation models obtained from higher-dimensional gauge theories, initiated in our previous study \\cite{Furuuchi:2014cwa}. We focus on Dante's Inferno model which was the most preferred model in our previous analysis. We point out the relevance of the IR obstruction to UV completion, which constrains the form of the potential of the massive vector field, under the current observational upper bound on the tensor to scalar ratio. We also show that in simple examples of the potential arising from DBI action of D5- and NS5- brane that inflation occurs in the field range which is within the convergence radius of the Taylor expansion. This is in contrast to the well known examples of axion monodromy inflation. The difference arises from the very essence of Dante's Inferno model that the effective inflaton potential is stretched in the inflaton field direction compared with the potential for the original field.
Phenomenology of the S U (3 )C⊗S U (2 )L⊗S U (3 )R⊗U (1 )X gauge model
Dong, P. V.; Huong, D. T.; Loi, D. V.; Nhuan, N. T.; Ngan, N. T. K.
2017-04-01
We study the left-right asymmetric model based on the S U (3 )C⊗S U (2 )L⊗S U (3 )R⊗U (1 )X gauge group, which improves the theoretical and phenomenological aspects of the known left-right symmetric model. This new gauge symmetry yields that the fermion generation number is 3, and the tree-level flavor-changing neutral currents arise in both gauge and scalar sectors. Also, it can provide the observed neutrino masses, as well as dark matter, automatically. Further, we investigate the mass spectrum of the gauge and scalar fields. All the gauge interactions of the fermions and scalars are derived. We examine the tree-level contributions of the new neutral vector, ZR', and new neutral scalar, H2, to flavor-violating neutral meson mixings, say K -K ¯, Bd-B¯d, and Bs-B¯s, which strongly constrain the new physics scale as well as the elements of the right-handed quark mixing matrices. The bounds for the new physics scale are in agreement with those coming from the ρ -parameter, as well as the mixing parameters between W , Z bosons and new gauge bosons.
New Mechanism for Mass Generation of Gauge Field
Institute of Scientific and Technical Information of China (English)
WUNing
2001-01-01
A new mechanism for mass generation of gauge field is discussed in this paper.By introducing two sets of gauge fields and making the variations of these two sets of gauge fields compensated each other under local gauge transformations,the mass term of gauge fields is introduced into the Lagrangian without violating the local gauge symmetry of the Lagrangian.This model is a renormalizable quantum model.
New Mechanism for Mass Generation of Gauge Field
Institute of Scientific and Technical Information of China (English)
WU Ning
2001-01-01
A new mechanism for mass generation of gauge field is discussed in this paper. By introducing two sets of gauge fields and making the variations of these two sets of gauge fields compensated each other under local gauge transformations, the mass term of gauge fields is introduced into the Lagrangian without violating the local gauge symmetry of the Lagrangian. This model is a renormalizable quantum model.
NLO+NLL limits on W' and Z' gauge boson masses in general extensions of the Standard Model
Jezo, T; Lamprea, D R; Lyonnet, F; Schienbein, I
2014-01-01
QCD resummation predictions for the production of charged (W') and neutral (Z') heavy gauge bosons decaying leptonically are presented. The results of our resummation code at next-to-leading order and next-to-leading logarithmic (NLO+NLL) accuracy are compared to Monte Carlo predictions obtained with PYTHIA at leading order (LO) supplemented with parton showers (PS) and FEWZ at NLO and next-to-next-to-leading order (NNLO) for the $p_T$-differential and total cross sections in the Sequential Standard Model (SSM) and general SU(2)xSU(2)xU(1) models. The LO+PS Monte Carlo and NNLO fixed-order predictions are shown to agree approximately with those at NLO+NLL at small and intermediate $p_T$, respectively, and the importance of resummation for total cross sections is shown to increase with the gauge boson mass. The theoretical uncertainties are estimated by variations of the renormalisation/factorisation scales and of the parton densities, the former being significantly reduced by the resummation procedure. New li...
Production of the new gauge boson BH via e-γ collision in the littlest Higgs model
Institute of Scientific and Technical Information of China (English)
WANG Xue-Lei; JIN Zhen-Lan; ZENG Qing-Guo
2008-01-01
The lightest new gauge boson BH with mass of hundreds GeV is predicted in the littlest Higgs model. BH should be accessible in the planned ILC and the observation of such particle can strongly support the littlest Higgs model. The realization of γγ and e-γ collisions would open a wider window to probe BH. Inthis paper, we study the new gauge boson BH production processes e-γ→ e-γBH and e-γ→e-ZBH at the ILC. Our results show that the production cross section of the process e-γ→ e-ZBH is less than 0.1 fb in most parameter spaces allowed by the electroweak precision data while the cross section of the process e-γ→ e-γBH can be over one fb in the favorable parameter spaces. With the high luminosity, the enough typical signals could be produced via e-γ→ e-γBH. Because the final electron and photon beams can be easily identified and the signal can be easily distinguished from the backgrounds produced by Z and H decaying, e-γ→e-γBH is a promising process to probe BH.
D-branes in a Big Bang/Big Crunch Universe: Nappi-Witten Gauged WZW Model
Hikida, Y; Panigrahi, K L; Hikida, Yasuaki; Nayak, Rashmi R.; Panigrahi, Kamal L.
2005-01-01
We study D-branes in the Nappi-Witten model, which is a gauged WZW model based on (SL(2,R) x SU(2)) / (U(1) x U(1)). The model describes a four dimensional space-time consisting of cosmological regions with big bang/big crunch singularities and static regions with closed time-like curves. The aim of this paper is to investigate by D-brane probes whether there are pathologies associated with the cosmological singularities and the closed time-like curves. We first classify D-branes in a group theoretical way, and then examine DBI actions for effective theories on the D-branes. In particular, we show that D-brane metric from the DBI action does not include singularities, and wave functions on the D-branes are well behaved even in the presence of closed time-like curves.
CP Phases of Neutrino Mixing in a Supersymmetric B-L Gauge Model with T_7 Lepton Flavor Symmetry
Ishimori, Hajime; Ma, Ernest
2012-01-01
In a recently proposed renormalizable model of neutrino mixing using the non-Abelian discrete symmetry T_7 in the context of a supersymmetric extension of the Standard Model with gauged U(1)_{B-L}, a correlation was obtained between \\theta_{13} and \\theta_{23} in the case where all parameters are real. Here we consider all parameters to be complex, thus allowing for one Dirac CP phase \\delta_{CP} and two Majorana CP phases \\alpha_{1,2}. We find a slight modification to this correlation as a function of \\delta_{CP}. For a given set of input values of \\Delta m^2_{21}, \\Delta m^2_{32}, \\theta_{12}, and \\theta_{13}, we obtain \\sin^2 2 \\theta_{23} and m_{ee} (the effective Majorana neutrino mass in neutrinoless double beta decay) as functions of \\tan \\delta_{CP}. We find that the structure of this model always yields small |\\tan \\delta_{CP}|.
Field-theoretic Methods in Strongly-Coupled Models of General Gauge Mediation
Fortin, Jean-Francois
2013-01-01
An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current-current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry-breaking arises both from a hidden sector and dynamically.
DEFF Research Database (Denmark)
Milzow, Christian; Krogh, Pernille Engelbredt; Bauer-Gottwein, Peter
2011-01-01
The availability of data is a major challenge for hydrological modelling in large parts of the world. Remote sensing data can be exploited to improve models of ungauged or poorly gauged catchments. In this study we combine three datasets for calibration of a rainfall-runoff model of the poorly...
Enhanced gauge symmetry in 6D F-theory models and tuned elliptic Calabi-Yau threefolds
Energy Technology Data Exchange (ETDEWEB)
Johnson, Samuel B.; Taylor, Washington [Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA (United States)
2016-08-15
We systematically analyze the local combinations of gauge groups and matter that can arise in 6D F-theory models over a fixed base. We compare the low-energy constraints of anomaly cancellation to explicit F-theory constructions using Weierstrass and Tate forms, and identify some new local structures in the ''swampland'' of 6D supergravity and SCFT models that appear consistent from low-energy considerations but do not have known F-theory realizations. In particular, we classify and carry out a local analysis of all enhancements of the irreducible gauge and matter contributions from ''non-Higgsable clusters,'' and on isolated curves and pairs of intersecting rational curves of arbitrary self-intersection. Such enhancements correspond physically to unHiggsings, and mathematically to tunings of the Weierstrass model of an elliptic CY threefold. We determine the shift in Hodge numbers of the elliptic threefold associated with each enhancement. We also consider local tunings on curves that have higher genus or intersect multiple other curves, codimension two tunings that give transitions in the F-theory matter content, tunings of abelian factors in the gauge group, and generalizations of the ''E{sub 8}'' rule to include tunings and curves of self-intersection zero. These tools can be combined into an algorithm that in principle enables a finite and systematic classification of all elliptic CY threefolds and corresponding 6D F-theory SUGRA models over a given compact base (modulo some technical caveats in various special circumstances), and are also relevant to the classification of 6D SCFT's. To illustrate the utility of these results, we identify some large example classes of known CY threefolds in the Kreuzer-Skarke database as Weierstrass models over complex surface bases with specific simple tunings, and we survey the range of tunings possible over one specific base. (copyright 2016 WILEY-VCH Verlag
Electroweak Vortices and Gauge Equivalence
MacDowell, Samuel W.; Törnkvist, Ola
Vortex configurations in the electroweak gauge theory are investigated. Two gauge-inequivalent solutions of the field equations, the Z and W vortices, have previously been found. They correspond to embeddings of the Abelian Nielsen-Olesen vortex solution into a U(1) subgroup of SU(2)×U(1). It is shown here that any electroweak vortex solution can be mapped into a solution of the same energy with a vanishing upper component of the Higgs field. The correspondence is a gauge equivalence for all vortex solutions except those for which the winding numbers of the upper and lower Higgs components add to zero. This class of solutions, which includes the W vortex, corresponds to a singular solution in the one-component gauge. The results, combined with numerical investigations, provide an argument against the existence of other vortex solutions in the gauge-Higgs sector of the Standard Model.
Theorems for Asymptotic Safety of Gauge Theories
Bond, Andrew D
2016-01-01
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasized. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated.
Renormalizable Quantum Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WU Ning
2002-01-01
The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton's theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein's general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.
Theorems for asymptotic safety of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Bond, Andrew D.; Litim, Daniel F. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)
2017-06-15
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated. (orig.)
Zhang, Sun
2015-01-01
In this paper, based on the works of Capozziello et al., we have studied the Noether symmetry approach in the cosmological model with scalar and gauge fields proposed recently by Soda et al. The correct Noether symmetries and related Lie algebra are given according to the minisuperspace quantum cosmological model. The Wheeler-De Witt (WDW) equation is presented after quantization and the classical trajectories are then obtained in the semi-classical limit. The oscillating features of the wave function in the cosmic evolution recover the so-called Hartle criterion, and the selection rule in minisuperspace quantum cosmology is strengthened. Then we have realized now the proposition that Noether symmetries select classical universes.
García Fernández, Guillermo; Guerrero Rojas, Jesús; Llanes-Estrada, Felipe J.
2017-02-01
The gauge symmetry of the Standard Model is SU(3)c × SU(2)L × U(1)Y for unknown reasons. One aspect that can be addressed is the low dimensionality of all its subgroups. Why not much larger groups like SU (7), or for that matter, SP (38) or E7? We observe that fermions charged under large groups acquire much bigger dynamical masses, all things being equal at a high e.g. GUT scale, than ordinary quarks. Should such multicharged fermions exist, they are too heavy to be observed today and have either decayed early on (if they couple to the rest of the Standard Model) or become reliquial dark matter (if they don't). The result follows from strong antiscreening of the running coupling for those larger groups (with an appropriately small number of flavors) together with scaling properties of the Dyson-Schwinger equation for the fermion mass.
Embedding cosmological inflation, axion dark matter and seesaw mechanism in a 3-3-1 gauge model
Ferreira, J. G.; de S. Pires, C. A.; Rodrigues, J. G.; Rodrigues da Silva, P. S.
2017-08-01
The Peccei-Quinn symmetry is an intrinsic global symmetry of the 3-3-1 gauge models. Its spontaneous breaking mechanism engendering an invisible KSVZ-like axion links the 3-3-1 models with new physics at ∼1010 GeV scale. The axion that results from this mechanism is an interesting candidate for the dark matter of the universe, while its real partner may drive inflation if radiative corrections are taken into account. This is obtained by connecting the type I seesaw mechanism with the spontaneous breaking of the Peccei-Quinn symmetry. In the end of the day we have a scenario providing a common answer to the strong-CP problem, inflation, dark matter and neutrino mass.
Embedding cosmological inflation, axion dark matter and seesaw mechanism in a 3-3-1 gauge model
Directory of Open Access Journals (Sweden)
J.G. Ferreira, Jr.
2017-08-01
Full Text Available The Peccei–Quinn symmetry is an intrinsic global symmetry of the 3-3-1 gauge models. Its spontaneous breaking mechanism engendering an invisible KSVZ-like axion links the 3-3-1 models with new physics at ∼1010 GeV scale. The axion that results from this mechanism is an interesting candidate for the dark matter of the universe, while its real partner may drive inflation if radiative corrections are taken into account. This is obtained by connecting the type I seesaw mechanism with the spontaneous breaking of the Peccei–Quinn symmetry. In the end of the day we have a scenario providing a common answer to the strong-CP problem, inflation, dark matter and neutrino mass.
One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative p^{-2} U(1 Gauge Model
Directory of Open Access Journals (Sweden)
Daniel N. Blaschke
2010-05-01
Full Text Available This paper carries forward a series of articles describing our enterprise to construct a gauge equivalent for the θ-deformed non-commutative p^{-2} model originally introduced by Gurau et al. [Comm. Math. Phys. 287 (2009, 275-290]. It is shown that breaking terms of the form used by Vilar et al. [J. Phys. A: Math. Theor. 43 (2010, 135401, 13 pages] and ourselves [Eur. Phys. J. C: Part. Fields 62 (2009, 433-443] to localize the BRST covariant operator (D^2θ^2D^2^{-1} lead to difficulties concerning renormalization. The reason is that this dimensionless operator is invariant with respect to any symmetry of the model, and can be inserted to arbitrary power. In the present article we discuss explicit one-loop calculations, and analyze the mechanism the mentioned problems originate from.
Directory of Open Access Journals (Sweden)
S. Stisen
2012-11-01
Full Text Available Precipitation gauge catch correction is often given very little attention in hydrological modelling compared to model parameter calibration. This is critical because significant precipitation biases often make the calibration exercise pointless, especially when supposedly physically-based models are in play. This study addresses the general importance of appropriate precipitation catch correction through a detailed modelling exercise. An existing precipitation gauge catch correction method addressing solid and liquid precipitation is applied, both as national mean monthly correction factors based on a historic 30 yr record and as gridded daily correction factors based on local daily observations of wind speed and temperature. The two methods, named the historic mean monthly (HMM and the time–space variable (TSV correction, resulted in different winter precipitation rates for the period 1990–2010. The resulting precipitation datasets were evaluated through the comprehensive Danish National Water Resources model (DK-Model, revealing major differences in both model performance and optimised model parameter sets. Simulated stream discharge is improved significantly when introducing the TSV correction, whereas the simulated hydraulic heads and multi-annual water balances performed similarly due to recalibration adjusting model parameters to compensate for input biases. The resulting optimised model parameters are much more physically plausible for the model based on the TSV correction of precipitation. A proxy-basin test where calibrated DK-Model parameters were transferred to another region without site specific calibration showed better performance for parameter values based on the TSV correction. Similarly, the performances of the TSV correction method were superior when considering two single years with a much dryer and a much wetter winter, respectively, as compared to the winters in the calibration period (differential split-sample tests
Gauging without Initial Symmetry
Kotov, Alexei
2016-01-01
The gauge principle is at the heart of a good part of fundamental physics: Starting with a group G of so-called rigid symmetries of a functional defined over space-time Sigma, the original functional is extended appropriately by additional Lie(G)-valued 1-form gauge fields so as to lift the symmetry to Maps(Sigma,G). Physically relevant quantities are then to be obtained as the quotient of the solutions to the Euler-Lagrange equations by these gauge symmetries. In this article we show that one can construct a gauge theory for a standard sigma model in arbitrary space-time dimensions where the target metric is not invariant with respect to any rigid symmetry group, but satisfies a much weaker condition: It is sufficient to find a collection of vector fields v_a on the target M satisfying the extended Killing equation v_{a(i;j)}=0 for some connection acting on the index a. For regular foliations this is equivalent to merely requiring the distribution orthogonal to the leaves to be invariant with respect to leaf...
Digital lattice gauge theories
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
Dynamical Messengers for Gauge Mediation
Energy Technology Data Exchange (ETDEWEB)
Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.
2011-08-17
We construct models of indirect gauge mediation where the dynamics responsible for breaking supersymmetry simultaneously generates a weakly coupled subsector of messengers. This provides a microscopic realization of messenger gauge mediation where the messenger and hidden sector fields are unified into a single sector. The UV theory is SQCD with massless and massive quarks plus singlets, and at low energies it flows to a weakly coupled quiver gauge theory. One node provides the primary source of supersymmetry breaking, which is then transmitted to the node giving rise to the messenger fields. These models break R-symmetry spontaneously, produce realistic gaugino and sfermion masses, and give a heavy gravitino.
Gauge Mediation in String Theory
Kawano, Teruhiko; Ooguri, Hirosi; Ookouchi, Yutaka
2007-01-01
We show that a large class of phenomenologically viable models for gauge mediation of supersymmetry breaking based on meta-stable vacua can be realized in local Calabi–Yau compactifications of string theory.
Energy-Momentum and Gauge Conservation Laws
Giachetta, G; Sardanashvily, G
1999-01-01
We treat energy-momentum conservation laws as particular gauge conservation laws when generators of gauge transformations are horizontal vector fields on fibre bundles. In particular, the generators of general covariant transformations are the canonical horizontal prolongations of vector fields on a world manifold. This is the case of the energy-momentum conservation laws in gravitation theories. We find that, in main gravitational models, the corresponding energy-momentum flows reduce to the generalized Komar superpotential. We show that the superpotential form of a conserved flow is the common property of gauge conservation laws if generators of gauge transformations depend on derivatives of gauge parameters. At the same time, dependence of conserved flows on gauge parameters make gauge conservation laws form-invariant under gauge transformations.
Phases and geometry of the N = 1 A{sub 2} quiver gauge theory and matrix models
Energy Technology Data Exchange (ETDEWEB)
Casero, Roberto [Dipartimento di Fisica, Universita di Milano - Bicocca, Piazza della Scienza, 3 - 20126 Milan (Italy)]. E-mail: Roberto.Casero@mib.infn.it; Trincherini, Enrico [Dipartimento di Fisica, Universita di Milano - Bicocca, Piazza della Scienza, 3 - 20126 Milan (Italy)
2003-09-01
We study the phases and geometry of the N = 1 A2 quiver gauge theory using matrix models and a generalized Konishi anomaly. We consider the theory both in the Coulomb and Higgs phases. Solving the anomaly equations, we find that a meromorphic one-form {sigma} (z)dz is naturally defined on the curve {sigma} associated to the theory. Using the Dijkgraaf-Vafa conjecture, we evaluate the effective low-energy superpotential and demonstrate that its equations of motion can be translated into a geometric property of {sigma} : {sigma} (z)dz has integer periods around all compact cycles. This ensures that there exists on {sigma} a meromorphic function whose logarithm {sigma} (z)dz is the differential. We argue that the surface determined by this function is the N = 2 Seiberg-Witten curve of the theory. (author)
DEFF Research Database (Denmark)
Borup, Morten; Grum, Morten; Linde, Jens Jørgen
2016-01-01
, well defined, 64 ha urban catchment, for nine overflow generating rain events. The dynamically adjusted radar data perform best when the aggregation period is as small as 10–20 min, in which case it performs much better than static adjusted radar data and data from rain gauges situated 2–3 km away.......Numerous studies have shown that radar rainfall estimates need to be adjusted against rain gauge measurements in order to be useful for hydrological modelling. In the current study we investigate if adjustment can improve radar rainfall estimates to the point where they can be used for modelling...... overflows from urban drainage systems, and we furthermore investigate the importance of the aggregation period of the adjustment scheme. This is done by continuously adjusting X-band radar data based on the previous 5–30 min of rain data recorded by multiple rain gauges and propagating the rainfall...
Energy Technology Data Exchange (ETDEWEB)
Allanach, B.C. [University of Cambridge, Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Cambridge (United Kingdom); Badziak, Marcin [University of Warsaw, Institute of Theoretical Physics, Faculty of Physics, Warsaw (Poland); University of California, Department of Physics, Berkeley, CA (United States); University of California, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Cottin, Giovanna [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); Desai, Nishita [Institut fuer Theoretische Physik, Heidelberg (Germany); Hugonie, Cyril [LUPM, UMR 5299, CNRS, Universite de Montpellier, Montpellier (France); Ziegler, Robert [Sorbonne Universites, UPMC Univ Paris 06, UMR 7589, LPTHE, Paris (France); CNRS, UMR 7589, LPTHE, Paris (France)
2016-09-15
We study the LHC phenomenology of the next-to-minimal model of gauge-mediated supersymmetry breaking, both for Run I and Run II. The Higgs phenomenology of the model is consistent with observations: a 125 GeV standard model-like Higgs which mixes with singlet-like state of mass around 90 GeV that provides a 2σ excess at LEP II. The model possesses regions of parameter space where a longer-lived lightest neutralino decays in the detector into a gravitino and a b-jet pair or a tau pair resulting in potential displaced vertex signatures. We investigate current bounds on sparticle masses and the discovery potential of the model, both via conventional searches and via searches for displaced vertices. The searches based on promptly decaying sparticles currently give a lower limit on the gluino mass 1080 GeV and could be sensitive up to 1900 GeV with 100 fb{sup -1}, whereas the current displaced vertex searches cannot probe this model due to b-quarks in the final state. We show how the displaced vertex cuts might be relaxed in order to improve signal efficiency, while simultaneously applied prompt cuts reduce background, resulting in a much better sensitivity than either strategy alone and motivating a fully fledged experimental study. (orig.)
Allanach, B C; Cottin, Giovanna; Desai, Nishita; Hugonie, Cyril; Ziegler, Robert
2016-01-01
We study the LHC phenomenology of the next-to-minimal model of gauge-mediated supersymmetry breaking (NMGMSB), both for Run I and Run II. The Higgs phenomenology of the model is consistent with observations: a 125 GeV Standard Model-like Higgs which mixes with singlet-like state of mass around 90 GeV that provides a 2$\\sigma$ excess at LEP II. The model possesses regions of parameter space where a longer-lived lightest neutralino decays in the detector into a gravitino and a $b-$jet pair or a tau pair. We investigate current lower bounds on sparticle masses and the discovery potential of the model, both via conventional sparticle searches and via searches for displaced vertices. The strongest bound from searches for promptly decaying sparticles yields a lower limit on the gluino mass of 1080 GeV. An analysis of 100 fb$^{-1}$ from Run II, on the other hand, is expected to be sensitive up to 1900 GeV. The displaced vertex searches from Run I suffer from a very low signal efficiency, mainly due to the presence o...
Energy Technology Data Exchange (ETDEWEB)
Heeck, Julian
2013-04-15
Augmenting the Standard Model by three right-handed neutrinos allows for an anomaly-free gauge group extension G{sub max}=U(1){sub B−L}×U(1){sub L{sub e−L{sub μ}}}×U(1){sub L{sub μ−L{sub τ}}}. Simple U(1) subgroups of G{sub max} can be used to impose structure on the righthanded neutrino mass matrix, which then propagates to the active neutrino mass matrix via the seesaw mechanism. We show how this framework can be used to gauge the approximate lepton-number symmetries behind the normal, inverted, and quasidegenerate neutrino mass spectrum, and also how to generate texture-zeros and vanishing minors in the neutrino mass matrix, leading to testable relations among mixing parameters.
Energy Technology Data Exchange (ETDEWEB)
Furuuchi, Kazuyuki [Manipal Centre for Natural Sciences, Manipal University,Manipal, Karnataka 576104 (India); Koyama, Yoji [National Center for Theoretical Sciences, National Tsing-Hua University,Hsinchu 30013, Taiwan R.O.C. (China)
2016-06-21
We continue our investigation of large field inflation models obtained from higher-dimensional gauge theories, initiated in our previous study http://dx.doi.org/10.1088/1475-7516/2015/02/031. We focus on Dante’s Inferno model which was the most preferred model in our previous analysis. We point out the relevance of the IR obstruction to UV completion, which constrains the form of the potential of the massive vector field, under the current observational upper bound on the tensor to scalar ratio. We also show that in simple examples of the potential arising from DBI action of a D5-brane and that of an NS5-brane that the inflation takes place in the field range which is within the convergence radius of the Taylor expansion. This is in contrast to the well known examples of axion monodromy inflation where inflaton takes place outside the convergence radius of the Taylor expansion. This difference arises from the very essence of Dante’s Inferno model that the effective inflaton potential is stretched in the inflaton field direction compared with the potential for the original field.
Furuuchi, Kazuyuki; Koyama, Yoji
2016-06-01
We continue our investigation of large field inflation models obtained from higher-dimensional gauge theories, initiated in our previous study [1]. We focus on Dante's Inferno model which was the most preferred model in our previous analysis. We point out the relevance of the IR obstruction to UV completion, which constrains the form of the potential of the massive vector field, under the current observational upper bound on the tensor to scalar ratio. We also show that in simple examples of the potential arising from DBI action of a D5-brane and that of an NS5-brane that the inflation takes place in the field range which is within the convergence radius of the Taylor expansion. This is in contrast to the well known examples of axion monodromy inflation where inflaton takes place outside the convergence radius of the Taylor expansion. This difference arises from the very essence of Dante's Inferno model that the effective inflaton potential is stretched in the inflaton field direction compared with the potential for the original field.
Agarwal, Shilpi; Pradhan, Anirudh
2010-01-01
The present study deals with a spatially homogeneous and anisotropic Bianchi-II cosmological models representing massive strings in normal gauge for Lyra's manifold by applying the variation law for generalized Hubble's parameter that yields a constant value of deceleration parameter. The variation law for Hubble's parameter generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential form. Using these two forms, Einstein's modified field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The energy-momentum tensor for such string as formulated by Letelier (1983) is used to construct massive string cosmological models for which we assume that the expansion ($\\theta$) in the model is proportional to the component $\\sigma^{1}_{~1}$ of the shear tensor $\\sigma^{j}_{i}$. This condition leads to $A = (BC)^{m}$, where A, B and C are the metric coefficients and m is proportionality cons...
Optical Rain Gauge Instrument Handbook
Energy Technology Data Exchange (ETDEWEB)
Bartholomew, Mary Jane [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-04-01
To improve the quantitative description of precipitation processes in climate models, the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility deploys several types of rain gauges (MET, RAIN, and optical rain gauge [ORG] datastreams) as well as disdrometers (DISD and VDIS datastreams) at the Southern Great Plains (SGP) Site. This handbook deals specifically with the independent analog ORG (i.e., the ORG datastream).
Directory of Open Access Journals (Sweden)
S. Stisen
2012-03-01
Full Text Available An existing rain gauge catch correction method addressing solid and liquid precipitation was applied both as monthly mean correction factors based on a 30 yr climatology (standard correction and as daily correction factors based on daily observations of wind speed and temperature (dynamic correction. The two methods resulted in different winter precipitation rates for the period 1990–2010. The resulting precipitation data sets were evaluated through the comprehensive Danish National Water Resources model (DK-Model revealing major differences in both model performance and optimized model parameter sets. Simulated stream discharge is improved significantly when introducing a dynamic precipitation correction, whereas the simulated hydraulic heads and multi-annual water balances performed similarly due to recalibration adjusting model parameters to compensate for input biases. The resulting optimized model parameters are much more physically plausible for the model based on dynamic correction of precipitation. A proxy-basin test where calibrated DK-Model parameters were transferred to another region without site specific calibration showed better performance for parameter values based on the dynamic correction. Similarly, the performances of the dynamic correction method were superior when considering two single years with a much dryer and a much wetter winter, respectively, as compared to the winters in the calibration period (differential split-sample tests. We conclude that dynamic precipitation correction should be carried out for studies requiring a sound dynamic description of hydrological processes and it is of particular importance when using hydrological models to make predictions for future climates when the snow/rain composition will differ from the past climate. This conclusion is expected to be applicable for mid to high latitudes especially in coastal climates where winter precipitation type (solid/liquid fluctuate significantly
A linear moose model with pairs of degenerate gauge boson triplets
Casalbuoni, R; De Curtis, S; Dominici, D
2007-01-01
The possibility of the existence of a strongly interacting electroweak symmetry breaking sector, as opposed to the weakly interacting light Higgs of the Standard Model, is not yet ruled out by experiments. In this paper we make an extensive study of a deconstructed model (or ``moose'' model) providing a possible effective description of such a strong symmetry breaking sector, and show its compatibility with experimental data for a wide portion of the model parameters space. The model is a direct generalization of the previously proposed D-BESS model.
Energy Technology Data Exchange (ETDEWEB)
Bernardos, P. [Universidad de Cantabria, Departamento de Matematica Aplicada y Ciencias de la Computacion, 39005, Santander (Spain); Fomenko, V.N. [St Petersburg University for Railway Engineering, Department of Mathematics, 190031, St Petersburg (Russian Federation); Marcos, S.; Niembro, R. [Universidad de Cantabria, Departamento de Fisica Moderna, 39005, Santander (Spain); Lopez-Quelle, M. [Universidad de Cantabria, Departamento de Fisica Aplicada, 39005, Santander (Spain); Savushkin, L.N. [St Petersburg University for Telecommunications, Department of Physics, 191186, St Petersburg (Russian Federation)
2001-02-01
An effective nuclear model describing {omega}-, {rho}- and axial-mesons as gauge fields is applied to nuclear matter in the relativistic Hartree-Fock approximation. The isoscalar two-pion exchange is simulated by a scalar field s similar to that used in the conventional relativistic mean-field approach. Two more scalar fields are essential ingredients of the present treatment: the {sigma}-field, the chiral partner of the pion, and the {sigma}-field, the Higgs field for the {omega}-meson. Two versions of the model are used depending on whether the {sigma}-field is considered as a dynamical variable or 'frozen', by taking its mass as infinite. The model contains four free parameters in the first case and three in the second one which are fitted to the nuclear matter saturation conditions. The nucleon and meson effective masses, compressibility modulus and symmetry energy are calculated. The results prove the reliability of the Dirac-Hartree-Fock approach within the linear realization of the chiral symmetry. (author)
Yasmin, Safia
2016-01-01
A $(1+1)$ dimensional model where vector and axial vector interaction get mixed up with different weight is considered with a generalized masslike term for gauge field. Through Poincar\\'e algebra it has been made confirm that only a Lorentz covariant masslike term leads to a physically sensible theory as long as the number of constraints in the phase space is two. With that admissible masslike term, phase space structure of this model with proper identification of physical canonical pair has been determined using Diracs' scheme of quantization of constrained system. The bosonized version of the model remains gauge non-invariant to start with. Therefore, with the inclusion of appropriate Wess-Zumino term it is made gauge symmetric. An alternative quantization has been carried out over this gauge symmetric version to determine the phase space structure in this situation. To establish that the Wess-Zumino fields allocates themselves in the un-physical sector of the theory an attempts has been made to get back th...
Khan, Saki
2016-06-01
We present a minimal renormalizable non-supersymmetric S O(10) grand unified model with a symmetry breaking sector consisting of Higgs fields in the 54H + 126H + 10H representations. This model admits a single intermediate scale associated with Pati-Salam symmetry along with a discrete parity. Spontaneous symmetry breaking, the unification of gauge couplings and proton lifetime estimates are studied in detail in this framework. Including threshold corrections self-consistently, obtained from a full analysis of the Higgs potential, we show that the model is compatible with the current experimental bound on proton lifetime. The model generally predicts an upper bound of few times 1035 yrs for proton lifetime, which is not too far from the present Super-Kamiokande limit of τp ≳ 1.29 × 1034 yrs. With the help of a Pecci-Quinn symmetry and the resulting axion, the model provides a suitable dark matter candidate while also solving the strong CP problem. The intermediate scale, MI ≈ (1013 - 1014) GeV which is also the B - L scale, is of the right order for the right-handed neutrino mass which enables a successful description of light neutrino masses and oscillations. The Yukawa sector of the model consists of only two matrices in family space and leads to a predictive scenario for quark and lepton masses and mixings. The branching ratios for proton decay are calculable with the leading modes being p → e+π0 and p →v ¯π+ . Even though the model predicts no new physics within the reach of LHC, the next generation proton decay detectors and axion search experiments have the capability to pass verdict on this minimal scenario.
Gauge theory and little gauge theory
Koizumi, Kozo
2016-01-01
The gauge theory is the most important type of the field theory, in which the interactions of the elementary particles are described by the exchange of the gauge bosons.In this article, the gauge theory is reexamined as geometry of the vector space, and a new concept of "little gauge theory" is introduced. A key peculiarity of the little gauge theory is that the theory is able to give a restriction for form of the connection field. Based on the little gauge theory, Cartan geometry, a charged boson and the Dirac fermion field theory are investigated. In particular, the Dirac fermion field theory leads to an extension of Sogami's covariant derivative. And it is interpreted that Higgs bosons are included in new fields introduced in this article.
Energy Technology Data Exchange (ETDEWEB)
Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahn, Sungsoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of); Shin, Jinwoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of)
2017-05-25
Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used to resolve the issue in practice, where meanfield (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we prove that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments, on complete GMs of relatively small size and on large GM (up-to 300 variables) confirm that the newly proposed algorithms outperform and generalize MF and BP.
Supersymmetry breaking and gauge mediation in models with a generic superpotential
Energy Technology Data Exchange (ETDEWEB)
Kitano, Ryuichiro [Los Alamos National Laboratory; Ookouchi, Yutaka [CANADA
2008-01-01
In this note, we present a transparent scheme for finding or creating a (meta)stable vacuum in general supersymmetric models. We derive general conditions for having a supersymmetry breaking vacuum by connecting different models by a coordinate transformation, which is an application of the method used in [16]. In particular, we find that there can be a metastable supersymmetry breaking vacuum in models with the canonical Kahler potential and a generic superpotential. For example, the Wess-Zumino model coupled to the messenger fields possesses a metastable vacuum if coefficients of the superpotential terms satisfy certain inequalities.
Mckim, Stephen A.
2016-01-01
This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within plus or minus 3 degrees Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2 to 2.5 C lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.
Searches for new neutral gauge boson at the Tevatron and LHC in the left-right twin Higgs model
Institute of Scientific and Technical Information of China (English)
LIU YaoBei; ZHANG WenQing; YAN LeiBing
2012-01-01
In the framework of the left-right twin Higgs (LRTH) model,we study the possibilities to detect the new Z' boson at the Tevatron and LHC.First,using p(p) collision data collected by the DO and CDF Ⅱ detectors,we find that the LRTH Z' boson is excluded with masses below 940 GeV.Then we search for signatures of the Z' boson at the LHC from the analysis of some distributions for p(p) →/μ+μ- + X,such as the number of events,the differential cross section of the dimuon invariant mass,the distributions of the transverse momentum and the forward-backward charge asymmetry.We do our calculation for two typical values of the LHC center of mass energy (7 and 14 TeV).The numerical results show that,by applying convenient cuts on some of the observables,the dimuon invariant mass and final particle PΤ distributions can reveal the presence of the heavy neutral gauge boson Z' contribution in the LRTH model.
Scalar-torsion mode in a cosmological model of the Poincaré gauge theory of gravity
Energy Technology Data Exchange (ETDEWEB)
Tseng, Huan-Hsin; Lee, Chung-Chi; Geng, Chao-Qiang, E-mail: d943335@oz.nthu.edu.tw, E-mail: g9522545@oz.nthu.edu.tw, E-mail: geng@phys.nthu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu, 300 Taiwan (China)
2012-11-01
We investigate the scalar-torsion mode in a cosmological model of the Poincaré gauge theory of gravity. We treat the geometric effect of torsion as an effective quantity, which behaves like dark energy, and study the effective equation of state (EoS) of the model. We concentrate on two cases with the constant curvature solution and positive kinetic energy, respectively. In the former, we find that the torsion EoS has different values in the various stages of the universe. In particular, it behaves like the radiation (matter) EoS of w{sub r} = 1/3 (w{sub m} = 0) in the radiation (matter) dominant epoch, while in the late time the torsion density is supportive for the accelerating universe. In the latter, our numerical analysis shows that in general the EoS has an asymptotic behavior in the high redshift regime, while it could cross the phantom divide line in the low redshift regime.
Palcu, A
2006-01-01
The unjustly neglected method of exactly solving generalized electro-weak models - with an original spontaneous symmetry breaking mechanism based on the gauge group $SU(n)_{L}\\otimes U(1)_{Y}$ - is applied here to a particular class of chiral 3-3-1 models. This procedure enables us - without resorting to any approximation - to express the boson mass spectrum and charges of the particles involved therein as a straightforward consequence of both a proper parametrisation of the Higgs sector and a new generalized Weinberg transformation. We prove that the resulted values can be accommodated to the experimental ones just by tuning a sole parameter. Furthermore, if we take into consideration both left-handed and right-handed components of neutrino (included in a lepton triplet along with their corresponding left-handed charged partner) then we are in position to propose an original method for neutrino to aquire a very small but non-zero mass without spoiling the previous achieved results in the exact solution of th...
Gauged WZW-type theories and the all-loop anisotropic non-Abelian Thirring model
Sfetsos, Konstadinos
2014-01-01
We study what we call the all-loop anisotropic bosonized Thirring sigma model. This interpolates between the WZW model and the non-Abelian T-dual of the principal chiral model for a simple group. It has an invariance involving the inversion of the matrix parametrizing the coupling constants. We compute the general renormalization group flow equations which assume a remarkably simple form and derive its properties. For symmetric couplings, they consistently truncate to previous results in the literature. One of the examples we provide gives rise to a first order system of differential equations interpolating between the Lagrange and the Darboux-Halphen integrable systems.
Analogy between the standard gauge model of the basic forces and ...
African Journals Online (AJOL)
... Dirac equation for the normal hydrogen atom in conventional quantum mechanics), ... model) which are based on conventional Einstein's special relativity theory, ... with potential application to development and production of clean fuels from ...
BRST analysis of the gauged SU(2) WZW model and Darboux's transformations
Paschalis, J E
1996-01-01
The four dimensional SU(2) WZW model coupled to elecromagnetism is treated as a constraint system in the context of the BFV approach. We show that the Darboux's transformations which are used to diagonalize the canonical one-form in the Faddeev-Jackiw formalism, transform the fields of the model into BRST invariant ones. The same analysis is also carried out in the case of spinor electrodynamics.
Gauge coupling unification with extra Higgs doublets
Energy Technology Data Exchange (ETDEWEB)
Harada, Junpei [Research Center for Higher Education, Health Sciences University of Hokkaido (Japan)
2016-06-15
Gauge coupling unification is studied within the framework where there are extra Higgs doublets and E{sub 6} exotic fields. Supersymmetric models and nonsupersymmetric models are investigated, and a catalog of models with gauge coupling unification is presented. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Energy Technology Data Exchange (ETDEWEB)
B. A. Kashiwa; W. B. VanderHeyden
2000-12-01
A formalism for developing multiphase turbulence models is introduced by analogy to the phenomenological method used for single-phase turbulence. A sample model developed using the formalism is given in detail. The procedure begins with ensemble averaging of the exact conservation equations, with closure accomplished by using a combination of analytical and experimental results from the literature. The resulting model is applicable to a wide range of common multiphase flows including gas-solid, liquid-solid and gas-liquid (bubbly) flows. The model is positioned for ready extension to three-phase turbulence, or for use in two-phase turbulence in which one phase is accounted for in multiple size classes, representing polydispersivity. The formalism is expected to suggest directions toward a more fundamentally based theory, similar to the way that early work in single-phase turbulence has led to the spectral theory. The approach is unique in that a portion of the total energy decay rate is ascribed to each phase, as is dictated by the exact averaged equations, and results in a transport equation for energy decay rate associated with each phase. What follows is a straightforward definition of a turbulent viscosity for each phase, and accounts for the effect of exchange of fluctuational energy among phases on the turbulent shear viscosity. The model also accounts for the effect of slip momentum transfer among the phases on the production of turbulence kinetic energy and on the tensor character of the Reynolds stress. Collisional effects, when appropriate, are included by superposition. The model reduces to a standard form in limit of a single, pure material, and is expected to do a credible job of describing multiphase turbulent flows in a wide variety of regimes using a single set of coefficients.
LHT model and Higgs boson production in association with a weak gauge boson at the LHC
Institute of Scientific and Technical Information of China (English)
LIU Wei; YUE Chong-Xing; SU Xue-Song; WANG Yong-Zhi
2010-01-01
Considering the process pp→VH+X(V=W or Z)is a significant channel for searching for a light Higgs boson,we calculate the contributions of the littlest Higgs model with T-parity(called LHT model)to its production cross section.We find that,in most of the parameter space,the value of the relative correction parameter R is very small.However,with reasonable values of the free parameters,its value can be significantly larger.
LHC physics of extra gauge bosons in the 4D Composite Higgs Model
Directory of Open Access Journals (Sweden)
Barducci D.
2013-11-01
Full Text Available We study the phenomenology of both the Neutral Current (NC and Charged Current (CC Drell-Yan (DY processes at the Large Hadron Collider (LHC within a 4 Dimensional realization of a Composite Higgs model with partial compositness by estimating the integrated and differential event rates and taking into account the possible impact of the extra fermions present in the spectrum. We show that, in certain regions of the parameters space, the multiple neutral resonances present in the model can be distinguishable and experimentally accessible in the invariant or transverse mass distributions.
Nieto, Carlos M.; Rodríguez, Yeinzon
2016-06-01
Gauge-flation model at zeroth-order in cosmological perturbation theory offers an interesting scenario for realizing inflation within a particle physics context, allowing us to investigate interesting possible connections between inflation and the subsequent evolution of the Universe. Difficulties, however, arise at the perturbative level, thus motivating a modification of the original model. In order to agree with the latest Planck observations, we modify the model such that the new dynamics can produce a relation between the spectral index ns and the tensor-to-scalar ratio r allowed by the data. By including an identical mass term for each of the fields of the system, we find interesting dynamics leading to slow-roll inflation of the right length. The presence of the mass term has the potential to modify the ns versus r relation so as to agree with the data. As a first step, we study the model at zeroth-order in cosmological perturbation theory, finding the conditions required for slow-roll inflation and the number of e-foldings of inflation. Numerical solutions are used to explore the impact of the mass term. We conclude that the massive version of gauge-flation offers a viable inflationary model.
Final state interactions at the threshold of Higgs boson pair production
Zhang, Zhentao
2015-01-01
We study the effect of final state interactions at the threshold of Higgs boson pair production in the Glashow-Weinberg-Salam model. We consider three major processes of the pair production in the model: lepton pair annihilation, ZZ fusion, and WW fusion. We find that the corrections caused by the effect for these processes are markedly different. According to our results, the effect can cause non-negligible corrections to the cross sections for lepton pair annihilation and small corrections ...
Digital Repository Service at National Institute of Oceanography (India)
Srinivas, K.; Das, V.K.; DineshKumar, P.K.
on the west coast have shown minimum RMSEs for the corresponding coasts for all the three models, while Bhavnagar on west coast has shown very high RMSE values. The EWMA technique (which yields forecast with a lead time of only one month) gave the lowest root...
Undetected Higgs decays and neutrino masses in gauge mediated, lepton number violating models
Banks, Tom; Fortin, Jean-François
2008-01-01
We discuss SUSY models in which renormalizable lepton number violating couplings hide the decay of the Higgs through h -> \\chi_1^0 + \\chi_1^0 followed by \\chi_1^0 -> \\tau + 2 jets or \\chi_1^0 -> \
3D CMM strain-gauge triggering probe error characteristics modeling using fuzzy logic
DEFF Research Database (Denmark)
Achiche, Sofiane; Wozniak, A; Fan, Zhun;
2008-01-01
The error values of CMMs depends on the probing direction; hence its spatial variation is a key part of the probe inaccuracy. This paper presents genetically-generated fuzzy knowledge bases (FKBs) to model the spatial error characteristics of a CMM module-changing probe. Two automatically generat...
3D CMM Strain-Gauge Triggering Probe Error Characteristics Modeling
DEFF Research Database (Denmark)
Achiche, Sofiane; Wozniak, Adam; Fan, Zhun;
2008-01-01
The error values of CMMs depends on the probing direction; hence its spatial variation is a key part of the probe inaccuracy. This paper presents genetically-generated fuzzy knowledge bases (FKBs) to model the spatial error characteristics of a CMM module-changing probe. Two automatically generat...
Brauer, Claudia; Overeem, Aart; Uijlenhoet, Remko
2015-04-01
Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution. We investigated the effect of differences in rainfall estimates on discharge simulations in a lowland catchment by forcing a novel rainfall-runoff model (WALRUS) with rainfall data from gauges, radars and microwave links. The hydrological model used for this analysis is the recently developed Wageningen Lowland Runoff Simulator (WALRUS). WALRUS is a rainfall-runoff model accounting for hydrological processes relevant to areas with shallow groundwater (e.g. groundwater-surface water feedback). Here, we used WALRUS for case studies in the Hupsel Brook catchment. We used two automatic rain gauges with hourly resolution, located inside the catchment (the base run) and 30 km northeast. Operational (real-time) and climatological (gauge-adjusted) C-band radar products and country-wide rainfall maps derived from microwave link data from a cellular telecommunication network were also used. Discharges simulated with these different inputs were compared to observations. Traditionally, the precipitation research community places emphasis on quantifying spatial errors and uncertainty, but for hydrological applications, temporal errors and uncertainty should be quantified as well. Its memory makes the hydrologic system sensitive to missed or badly timed rainfall events, but also emphasizes the effect of a bias in rainfall estimates. Systematic underestimation of rainfall by the uncorrected operational radar product leads to very dry model states and an increasing underestimation of discharge. Using the rain gauge 30 km northeast of the catchment yields good results for climatological studies, but not for forecasting individual floods. Simulating discharge using the maps derived from microwave link data and the gauge-adjusted radar product yields good results for both events and climatological studies. This indicates that these products can be
Institute of Scientific and Technical Information of China (English)
HU Li-Yun; LIU Yao-Bei; FAN Hong-Yi; WANG Xue-Lei; HAN Hong-Mei; CAO Yong-Hua
2008-01-01
The twin Higgs mechanism has recently been proposed to solve the little hierarchy problem. In the context of the left-right twin Higgs (LRTH) model, we discuss single production of the new charged gauge boson W-H, which is predicted by the left-right twin Higgs model, in association with top quark at the CERN Large Hadron Collider (LHC). It is found that, for a typical nonzero value of mass mixing parameter M = 150 GeV in the LRTH model, the production cross section is in the range of 3 × 10-2 ～ 6.07 × 103fb at the LHC. As long as the W-H is not too heavy, the possible signatures of the heavy charged gauge boson might be detected at the LHC experiments.
Twisted Six Dimensional Gauge Theories on Tori, Matrix Models,and Integrable Systems
Ganguli, S N; Gill, J A; Ganguli, Surya; Ganor, Ori J.; Gill, James A.
2004-01-01
We use the Dijkgraaf-Vafa technique to study massive vacua of 6D SU(N) SYM theories on tori with R-symmetry twists. One finds a matrix model living on the compactification torus with a genus-2 spectral curve whose Jacobian is closely related to a twisted four torus T in which the Seiberg-Witten curves of the theory are embedded. We also analyze R-symmetry twists in a bundle with nontrivial first Chern class which yields intrinsically 6D SUSY breaking and a novel matrix integral in which eigenvalues float in a sea of background charge. Next we analyze the underlying integrable system of the theory, whose phase space we show to be a system of N-1 points on T. We write down an explicit set of Poisson commuting Hamiltonians for this system for arbitrary N and use them to prove that equilbrium configurations with respect to all Hamiltonians correspond to points in moduli space where the Seiberg-Witten curve maximally degenerates to genus 2, thereby recovering the matrix model spectral curve. We also write down a c...
Gauge engineering and propagators
Maas, Axel
2016-01-01
Beyond perturbation theory gauge-fixing becomes more involved due to the Gribov-Singer ambiguity: The appearance of additional gauge copies requires to define a procedure how to handle them. For the case of Landau gauge the structure and properties of these additional gauge copies will be investigated. Based on these properties gauge conditions are constructed to account for these gauge copies. The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.
Gauge engineering and propagators
Maas, Axel
2017-03-01
Beyond perturbation theory gauge-fixing becomes more involved due to the Gribov-Singer ambiguity: The appearance of additional gauge copies requires to define a procedure how to handle them. For the case of Landau gauge the structure and properties of these additional gauge copies will be investigated. Based on these properties gauge conditions are constructed to account for these gauge copies. The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.
Mourre, Baptiste; de Mey, Pierre; Ménard, Yves; Lyard, Florent; Le Provost, Christian
2006-12-01
We evaluate in this paper the ability of several altimeter systems, considered separately as well as together with tide gauges, to control the time evolution of a barotropic model of the North Sea shelf. This evaluation is performed in the framework of the particular model errors due to uncertainties in bathymetry. An Ensemble Kalman Filter (EnKF) data assimilation approach is adopted, and observing-systems simulation experiments (OSSEs) are carried out using ensemble spread statistics. The skill criterion for the comparison of observing networks is, therefore, not based on the misfit between two simulations, as done in classic twin experiments, but on the reduction of ensemble variance occurring as a consequence of the assimilation. Future altimeter systems, such as the Wide Swath Ocean Altimeter (WSOA) and satellite constellations, are considered in this work. A single WSOA exhibits, for instance, similar performance as two-nadir satellites in terms of sea-level correction, and is better than three satellites in terms of model velocity control. Generally speaking, the temporal resolution of observations is shown to be of major importance for controlling the model error in these experiments. This result is clearly related to the focus adopted in this study on the specific high-frequency response of the ocean to meteorological forcing. Altimeter systems lack adequate temporal sampling for properly correcting the major part of model error in this context, whereas tide gauges, which provide a much finer time resolution, lead to better global statistical performance. When looking into further detail, tide gauges and altimetry are demonstrated to exhibit an interesting complementary character over the whole shelf, as tide gauge networks make it possible to properly control model error in a ˜100-km coastal band, while high-resolution altimeter systems are more efficient farther from the coast.
Borup, Morten; Grum, Morten; Linde, Jens Jørgen; Mikkelsen, Peter Steen
2016-08-01
Numerous studies have shown that radar rainfall estimates need to be adjusted against rain gauge measurements in order to be useful for hydrological modelling. In the current study we investigate if adjustment can improve radar rainfall estimates to the point where they can be used for modelling overflows from urban drainage systems, and we furthermore investigate the importance of the aggregation period of the adjustment scheme. This is done by continuously adjusting X-band radar data based on the previous 5-30 min of rain data recorded by multiple rain gauges and propagating the rainfall estimates through a hydraulic urban drainage model. The model is built entirely from physical data, without any calibration, to avoid bias towards any specific type of rainfall estimate. The performance is assessed by comparing measured and modelled water levels at a weir downstream of a highly impermeable, well defined, 64 ha urban catchment, for nine overflow generating rain events. The dynamically adjusted radar data perform best when the aggregation period is as small as 10-20 min, in which case it performs much better than static adjusted radar data and data from rain gauges situated 2-3 km away.
Wang, X; Liu, Y; Liu, S; Yang, H; Wang, Xuelei; Chen, Jihong; Liu, Yaobei; Liu, Suzhen; Yang, Hua
2006-01-01
The littlest Higgs model is the most economical little Higgs model. The observation of the new gauge bosons predicted by the littlest Higgs model could serve as a robust signature of the model. The ILC, with the high energy and luminosity, can open an ideal window to probe these new gauge bosons, specially, the lightest $B_H$. In the framework of the littlest Higgs model, we study a gauge boson $B_{H}$ production process $\\gamma\\gamma\\to W^{+}W^{-}B_H$. The study shows that the cross section of the process can vary in a wide range($10^{-1}-10^1$ fb) in most parameter spaces preferred by the electroweak precision data. The high c.m. energy(For example, $\\sqrt{s}=1500$ GeV) can obviously enhance the cross section to the level of tens fb. For the favorable parameter spaces, the sufficient typical events could be assumed at the ILC. Therefore, our study about the process $\\gamma\\gamma\\to W^{+}W^{-}B_H$ could provide a useful theoretical instruction for probing $B_H$ experimentally at ILC. Furthermore, such proces...
Deden, H; Baruzzi, V; Beuselinck, R; Bloch, M; Clayton, E F; Cundy, Donald C; Davis, C L; Deutschmann, Martin; Emans, H; Figiel, J; Fritze, P; Geich-Gimbel, C; Grant, A; Grässler, Herbert; Grossmann, P; Haidt, D; Hartmann, R; Hasert, F J; Hulth, P O; Keller, A; Kocher, D J; Kokott, T P; McGow, R; Miller, D B; Morfin, J; Morrison, Douglas Robert Ogston; Mulvey, J H; Myatt, G; Nellen, B; Pagiola, E; Pape, L; Pech, R; Perkins, Donald Hill; Peterson, V; Peyrou, Charles; Pons, R; Porth, Paul; Powell, K J; Radojicic, D; Renton, P B; Sacquin, Yu; Saitta, B; Schmid, P; Schulte, R; Schultze, K; Scott, W G; Seyfert, H; Stenger, V; Tallini, B; Vignaud, D; Wachsmuth, H W; Wernhard, Karl-Ludwig
1979-01-01
An analysis is presented of the distribution of hadronic energy in neutrino and antineutrino neutral current interactions occurring in BEBC, filled with a neon-hydrogen mixture and exposed to the CERN-SPS narrow-band neutrino beam. This shows that the contributions by scalar or pseudo-scalar forms of the interaction are consistent with zero and pure V, A and V+A are excluded; there is good agreement with the Weinberg-Salam model. (10 refs).
Thermal Cook-off of an HMX Based Explosive: Pressure Gauge Experiments and Modeling
Energy Technology Data Exchange (ETDEWEB)
Urtiew, P A; Forbes, J W; Tarver, C M; Garcia, F; Greenwood, D W; Vandersall, K S
2002-04-02
Safety issues related to thermal cook-off are important for handling and storing explosive devices. Violence of event as a function of confinement is important for prediction of collateral events. There are major issues, which require an understanding of the following events: (1) transit to detonation of a pressure wave from a cook-off event, (2) sensitivity of HMX based explosives changes with thermally induced phase transitions and (3) the potential danger of neighboring explosive devices being affected by a cook-off reaction. Results of cook-off events of known size, confinement and thermal history allows for development and/or calibrating computer models for calculating events that are difficult to measure experimentally.
Singularity-free model of electrically charged fermionic particles and gauged Q-balls
Dzhunushaliev, Vladimir; Zloshchastiev, Konstantin G
2016-01-01
We propose a model of an electrically charged fermion as a regular localized solution of electromagnetic and spinor fields interacting with a physical vacuum, which is phenomenologically described as a logarithmic superfluid. We analytically study the asymptotic behavior of the solution, thus numerically obtaining its form. The solution has physically plausible properties, such as finite size, self-energy, total charge and mass. In the case of spherical symmetry, its electric field obeys the Coulomb asymptotics at large distances from its core. It is shown that the observable rest mass of the fermion arises as a result of interaction of the fields with the physical vacuum. The spinor and scalar field components of the solution decay exponentially outside the core; therefore they can be regarded as internal degrees of freedom which can only be probed at sufficiently large scales of energy and momentum. Apart from conventional Fermi particles, our solution can find applications in a theory of exotic localized o...
Gribov horizon beyond the Landau gauge
Lavrov, Peter M.; Lechtenfeld, Olaf
2013-10-01
Gribov and Zwanziger proposed a modification of Yang-Mills theory in order to cure the Gribov copy problem. We employ field-dependent BRST transformations to generalize the Gribov-Zwanziger model from the Landau gauge to general Rξ gauges. The Gribov horizon functional is presented in explicit form, in both the non-local and local variants. Finally, we show how to reach any given gauge from the Landau one.
Gribov horizon beyond the Landau gauge
Energy Technology Data Exchange (ETDEWEB)
Lavrov, Peter M., E-mail: lavrov@tspu.edu.ru [Tomsk State Pedagogical University, Kievskaya St. 60, 634061 Tomsk (Russian Federation); Lechtenfeld, Olaf, E-mail: lechtenf@itp.uni-hannover.de [Institut für Theoretische Physik and Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstrasse 2, 30167 Hannover (Germany)
2013-10-01
Gribov and Zwanziger proposed a modification of Yang–Mills theory in order to cure the Gribov copy problem. We employ field-dependent BRST transformations to generalize the Gribov–Zwanziger model from the Landau gauge to general R{sub ξ} gauges. The Gribov horizon functional is presented in explicit form, in both the non-local and local variants. Finally, we show how to reach any given gauge from the Landau one.
Gribov horizon beyond the Landau gauge
Lavrov, Peter M
2013-01-01
Gribov and Zwanziger proposed a modification of Yang-Mills theory in order to cure the Gribov copy problem. We employ field-dependent BRST transformations to generalize the Gribov-Zwanziger model from the Landau gauge to general R_xi gauges. The Gribov horizon functional is presented in explicit form, in both the non-local and local variants. Finally, we show how to reach any given gauge from the Landau one.
Hadronic form factor models and spectroscopy within the gauge/gravity correspondence
Energy Technology Data Exchange (ETDEWEB)
de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC
2012-03-20
We show that the nonperturbative light-front dynamics of relativistic hadronic bound states has a dual semiclassical gravity description on a higher dimensional warped AdS space in the limit of zero quark masses. This mapping of AdS gravity theory to the boundary quantum field theory, quantized at fixed light-front time, allows one to establish a precise relation between holographic wave functions in AdS space and the light-front wavefunctions describing the internal structure of hadrons. The resulting AdS/QCD model gives a remarkably good accounting of the spectrum, elastic and transition form factors of the light-quark hadrons in terms of one parameter, the QCD gap scale. The light-front holographic approach described here thus provides a frame-independent first approximation to the light-front Hamiltonian problem for QCD. This article is based on lectures at the Niccolo Cabeo International School of Hadronic Physics, Ferrara, Italy, May 2011.
Dilatonic dyon-like black hole solutions in the model with two Abelian gauge fields
Energy Technology Data Exchange (ETDEWEB)
Abishev, M.E. [Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Gravitation and Cosmology, RUDN University, Moscow (Russian Federation); Boshkayev, K.A. [Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Ivashchuk, V.D. [Center for Gravitation and Fundamental Metrology, VNIIMS, Moscow (Russian Federation); Institute of Gravitation and Cosmology, RUDN University, Moscow (Russian Federation)
2017-03-15
Dilatonic black hole dyon-like solutions in the gravitational 4d model with a scalar field, two 2-forms, two dilatonic coupling constants λ{sub i} ≠ 0, i = 1,2, obeying λ{sub 1} ≠ -λ{sub 2} and the sign parameter ε = ±1 for scalar field kinetic term are considered. Here ε = -1 corresponds to a ghost scalar field. These solutions are defined up to solutions of two master equations for two moduli functions, when λ{sup 2}{sub i} ≠ 1/2 for ε = -1. Some physical parameters of the solutions are obtained: gravitational mass, scalar charge, Hawking temperature, black hole area entropy and parametrized post-Newtonian (PPN) parameters β and γ. The PPN parameters do not depend on the couplings λ{sub i} and ε. A set of bounds on the gravitational mass and scalar charge are found by using a certain conjecture on the parameters of solutions, when 1 + 2λ{sub i}{sup 2} ε > 0, i = 1,2. (orig.)
El Kenawy, Ahmed M.
2015-05-15
Many arid and semi-arid regions have sparse precipitation observing networks, which limits the capacity for detailed hydrological modelling, water resources management and flood forecasting efforts. The objective of this work is to evaluate the utility of relatively high-spatial resolution rainfall products to reproduce observed multi-decadal rainfall characteristics such as climatologies, anomalies and trends over Saudi Arabia. Our study compares the statistical characteristics of rainfall from 53 observatories over the reference period 1965-2005, with rainfall data from six widely used gauge-based products, including APHRODITE, GPCC, PRINCETON, UDEL, CRU and PREC/L. In addition, the performance of three global climate models (GCMs), including CCSM4, EC-EARTH and MRI-I-CGCM3, integrated as part of the Fifth Coupled Model Intercomparison Project (CMIP5), was also evaluated. Results indicate that the gauge-based products were generally skillful in reproducing rainfall characteristics in Saudi Arabia. In most cases, the gauge-based products were also able to capture the annual cycle, anomalies and climatologies of observed data, although significant inter-product variability was observed, depending on the assessment metric being used. In comparison, the GCM-based products generally exhibited poor performance, with larger biases and very weak correlations, particularly during the summertime. Importantly, all products generally failed to reproduce the observed long-term seasonal and annual trends in the region, particularly during the dry seasons (summer and autumn). Overall, this work suggests that selected gauge-based products with daily (APHRODITE and PRINCETON) and monthly (GPCC and CRU) resolutions show superior performance relative to other products, implying that they may be the most appropriate data source from which multi-decadal variations of rainfall can be investigated at the regional scale over Saudi Arabia. Discriminating these skillful products is
Interacting Gauge-Fluid system
Banerjee, Rabin; Mitra, Arpan Krishna
2016-01-01
A gauge-fluid relativistic model where a non-isentropic fluid is coupled to a dynamical Maxwell ($U(1)$) gauge field, has been studied. We have examined in detail the structures of energy momentum tensor, derived from two definitions, {\\it{ie.}} the canonical (Noether) one and the symmetric one. In the conventional equal-time formalism, we have shown that the generators of the spacetime transformations obtained from these two definitions agree, modulo the Gauss constraint. This equivalence in the physical sector has been achieved only because of the dynamical nature of the gauge fields. Subsequently we have explicitly demonstrated the validity of the Schwinger condition. A detailed analysis of the model in lightcone formalism has also been done where several interesting features are revealed.
Transport properties of cascading gauge theories
Buchel, A
2005-01-01
Cascading gauge theories of Klebanov et.al. provide a model within a framework of gauge theory/string theory duality for a four dimensional non-conformal gauge theory with a spontaneously generated mass scale. Using the dual supergravity description we study sound wave propagation in strongly coupled cascading gauge theory plasma. We analytically compute the speed of sound and the bulk viscosity of cascading gauge theory plasma at a temperature much larger than the strong coupling scale of the theory. The sound wave dispersion relation is obtained from the hydrodynamic pole in the stress-energy tensor two-point correlation function. The speed of sound extracted from the pole of the correlation function agrees with its value computed in [hep-th/0506002] using the equation of state. We find that the bulk viscosity of the hot cascading gauge theory plasma is non-zero at the leading order in the deviation from conformality.
Gauge coupling unification in six dimensions
Energy Technology Data Exchange (ETDEWEB)
Lee, H.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Physics
2006-11-15
We compute the one-loop gauge couplings in six-dimensional non-Abelian gauge theories on the T{sup 2}/Z{sub 2} orbifold with general GUT breaking boundary conditions. For concreteness, we apply the obtained general formulae to the gauge coupling running in a 6D SO(10) orbifold GUT where the GUT group is broken down to the standard model gauge group up to an extra U(1). We find that the one-loop corrections depend on the parity matrices encoding the orbifold boundary conditions as well as the volume and shape moduli of extra dimensions. When the U(1) is broken by the VEV of bulk singlets, the accompanying extra color triplets also affect the unification of the gauge couplings. In this case, the B-L breaking scale is closely linked to the compactification scales for maintaining a success of the gauge coupling unification. (orig.)
A Nonperturbative Regulator for Chiral Gauge Theories
Grabowska, Dorota M
2015-01-01
We propose a nonperturbative gauge invariant regulator for $d$-dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in $d+1$ dimensions with quantum gauge fields that reside on one $d$-dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local $d$-dimensional interpretation if and only if the chiral fermion representation is anomaly free. A physical realization of this construction leads to mirror fermions in the Standard Model with soft form factors for gauge fields and gravity. These mirror particles could evade detection except by sensitive probes at extremely low energy, and yet still affect vacuum topology, and could gravitate differently than conventional matter.
Lattice Chiral Fermions Through Gauge Fixing
Bock, W; Shamir, Y; Bock, Wolfgang; Golterman, Maarten; Shamir, Yigal
1998-01-01
We study a concrete lattice regularization of a U(1) chiral gauge theory. We use Wilson fermions, and include a Lorentz gauge-fixing term and a gauge-boson mass counterterm. For a reduced version of the model, in which the gauge fields are constrained to the trivial orbit, we show that there are no species doublers, and that the fermion spectrum contains only the desired states in the continuum limit, namely charged left-handed (LH) fermions and neutral right-handed (RH) fermions.
Focus point supersymmetry in extended gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Ding, Ran [School of Physics, Nankai University,Tianjin 300071 (China); Li, Tianjun [State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics (KITPC),Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Electronics, University of Electronic Science and Technology of China,Chengdu 610054 (China); Staub, Florian [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn,Nußallee 12, 53115 Bonn (Germany); Zhu, Bin [School of Physics, Nankai University,Tianjin 300071 (China)
2014-03-27
We propose a small extension of the minimal gauge mediation through the combination of extended gauge mediation and conformal sequestering. We show that the focus point supersymmetry can be realized naturally, and the fine tuning is significantly reduced compared to the minimal gauge mediation and extended gauge mediation without focus point. The Higgs boson mass is around 125 GeV, the gauginos remain light, and the gluino is likely to be detected at the next run of the LHC. However, the multi-TeV squarks is out of the reach of the LHC. The numerical calculation for fine-tuning shows that this model remains natural.
Reducible gauge theories in very special relativity
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Department of Physics, Indian Institute of Technology Kanpur, 208016, Kanpur (India)
2015-12-14
In this paper we analyze the tensor field (reducible gauge) theories in the context of very special relativity (VSR). Particularly, we study the VSR gauge symmetry as well as VSR BRST symmetry of Kalb–Ramond and Abelian 3-form fields involving a fixed null vector. We observe that the Kalb–Ramond and Abelian 3-form fields and corresponding ghosts get masses in the VSR framework. The effective action in VSR-type axial gauge is greatly simplified compared with the VSR-type Lorenz gauge. Further, we quantize these models using a Batalin–Vilkovisy (BV) formulation in VSR.
Reducible gauge theories in very special relativity
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India)
2015-12-15
In this paper we analyze the tensor field (reducible gauge) theories in the context of very special relativity (VSR). Particularly, we study the VSR gauge symmetry as well as VSR BRST symmetry of Kalb-Ramond and Abelian 3-form fields involving a fixed null vector. We observe that the Kalb-Ramond and Abelian 3-form fields and corresponding ghosts get masses in the VSR framework. The effective action in VSR-type axial gauge is greatly simplified compared with the VSR-type Lorenz gauge. Further, we quantize these models using a Batalin-Vilkovisy (BV) formulation in VSR. (orig.)
Exact formulas in noncommutative gauge theories
Wallet, Jean-Christophe
2016-01-01
The noncommutative space $\\mathbb{R}^3_\\lambda$, a deformation of $\\mathbb{R}^3$, supports a $3$-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of $\\mathbb{R}^3_\\lambda$. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.
DEFF Research Database (Denmark)
2016-01-01
The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....
Alonso, R.; Gavela, M.B.; Grinstein, B.; Merlo, L.; Quilez, P.
2016-12-22
The gauging of the lepton flavour group is considered in the Standard Model context and in its extension with three right-handed neutrinos. The anomaly cancellation conditions lead to a Seesaw mechanism as underlying dynamics for all leptons; requiring in addition a phenomenologically viable setup leads to Majorana masses for the neutral sector: the type I Seesaw Lagrangian in the Standard Model case and the inverse Seesaw in the extended model. Within the minimal extension of the scalar sector, the Yukawa couplings are promoted to scalar fields in the bifundamental of the flavour group. The resulting low-energy Yukawa couplings are proportional to inverse powers of the vacuum expectation values of those scalars; the protection against flavour changing neutral currents differs from that of Minimal Flavor Violation. In all cases, the $\\mu-\\tau$ flavour sector exhibits rich and promising phenomenological signals.
The evolution of gauge couplings and the Weinberg angle in 5 dimensions for an SU(3) gauge group
Khojali, Mohammed Omer; Deandrea, Aldo
2016-01-01
We test in a simplified 5-dimensional model with SU(3) gauge symmetry, the evolution equations of the gauge couplings of a model containing bulk fields, gauge fields and one pair of fermions. In this model we assume that the fermion doublet and two singlet fields are located at fixed points of the extra-dimension compactified on an $S^{1}/Z_{2}$ orbifold. The gauge coupling evolution is derived at one-loop in 5-dimensions, for the gauge group $G = SU(3)$, and used to test the impact on lower energy observables, in particular the Weinberg angle. The gauge bosons and the Higgs field arise from the gauge bosons in 5 dimensions, as in a gauge-Higgs model. The model is used as a testing ground as it is not a complete and realistic model for the electroweak interactions.
Borah, Debasish; Dasgupta, Arnab; Dey, Ujjal Kumar; Patra, Sudhanwa; Tomar, Gaurav
2017-09-01
We consider a simple extension of the minimal left-right symmetric model (LRSM) in order to explain the PeV neutrino events seen at the IceCube experiment from a heavy decaying dark matter. The dark matter sector is composed of two fermions: one at PeV scale and the other at TeV scale such that the heavier one can decay into the lighter one and two neutrinos. The gauge annihilation cross sections of PeV dark matter are not large enough to generate its relic abundance within the observed limit. We include a pair of real scalar triplets Ω L,R which can bring the thermally overproduced PeV dark matter abundance into the observed range through late time decay and consequent entropy release thereby providing a consistent way to obtain the correct relic abundance without violating the unitarity bound on dark matter mass. Another scalar field, a bitriplet under left-right gauge group is added to assist the heavier dark matter decay. The presence of an approximate global U(1) X symmetry can naturally explain the origin of tiny couplings required for long-lived nature of these decaying particles. We also show, how such an extended LRSM can be incorporated within a non-supersymmetric SO(10) model where the gauge coupling unification at a very high scale naturally accommodate a PeV scale intermediate symmetry, required to explain the PeV events at IceCube.
Stream Gauges and Satellite Measurements
Alsdorf, D. E.
2010-12-01
Satellite measurements should not be viewed as a replacement for stream gauges. However, occasionally it is suggested that because satellite-based measurements can provide river discharge, a motivation for satellite approaches is an increasing lack of stream gauges. This is an argument for more stream gauges, but not necessarily for satellite measurements. Rather, in-situ and spaceborne methods of estimating discharge are complementary. Stream gauges provide frequent measurements at one point in the river reach whereas satellites have the potential to measure throughout all reaches but at orbital repeat intervals of days to weeks. The Surface Water and Ocean Topography satellite mission (SWOT) is an opportunity to further develop these complements. The motivation for SWOT, and indeed for any satellite based method of estimating discharge, should not be as a replacement for stream gauges. Scientific and application uses should motivate the measurements. For example, understanding floods with their dynamic water surfaces are best sampled from remote platforms that provide water surface elevations throughout the floodwave. As another example, today’s water and energy balance models are giving outputs at increasing spatial resolution and are making use of water surface elevations throughout the modeled basin. These models require a similar resolution in the calibrating and validating observations. We should also be aware of practical limitations. In addition to providing spatially distributed hydrodynamic measurements on rivers, SWOT will be able to measure storage changes in the estimated 30 million lakes in the world that are larger than a hectare. Knowing the storage changes in these lakes is especially important in certain regions such as the Arctic but gauging even a small fraction of these is impractical. Another motivator for satellite methods is that even in the presence of stream gauges, discharge data is not always well shared throughout all countries
An introduction to gauge theories
Cabibbo, Nicola; Benhar, Omar
2017-01-01
Written by three of the world's leading experts on particle physics and the standard model, including an award-winning former director general of CERN, this book provides a completely up-to-date account of gauge theories. Starting from Feynman’s path integrals, Feynman rules are derived, gauge fixing and Faddeev-Popov ghosts are discussed, and renormalization group equations are derived. Several important applications to quantum electrodynamics and quantum chromodynamics (QCD) are discussed, including the one-loop derivation of asymptotic freedom for QCD.
Dynamics of gauge field inflation
Energy Technology Data Exchange (ETDEWEB)
Alexander, Stephon; Jyoti, Dhrubo [Center for Cosmic Origins and Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (Pitt-PACC), 420 Allen Hall, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Marcianò, Antonino [Center for Field Theory and Particle Physics & Department of Physics, Fudan University, 220 Handan Road, Shanghai (China)
2015-05-05
We analyze the existence and stability of dynamical attractor solutions for cosmological inflation driven by the coupling between fermions and a gauge field. Assuming a spatially homogeneous and isotropic gauge field and fermion current, the interacting fermion equation of motion reduces to that of a free fermion up to a phase shift. Consistency of the model is ensured via the Stückelberg mechanism. We prove the existence of exactly one stable solution, and demonstrate the stability numerically. Inflation arises without fine tuning, and does not require postulating any effective potential or non-standard coupling.
Gauge Theories of Vector Particles
Glashow, S. L.; Gell-Mann, M.
1961-04-24
The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.
Institute of Scientific and Technical Information of China (English)
HAN Guijun; LI Wei; HE Zhongjie; LIU Kexiu; MA Jirui
2006-01-01
In order to obtain an accurate tide description in the China Seas, the 2-dimensional nonlinear numerical Princeton Ocean Model (POM) is employed to incorporate in situ tidal measurements both from tide gauges and TOPEX/POSEIDON (T/P) derived datasets by means of the variational adjoint approach in such a way that unknown internal model parameters, bottom topography, friction coefficients and open boundary conditions, for example, are adjusted during the process. The numerical model is used as a forward model. After the along-track T/P data are processed, two classical methods, i.e. harmonic and response analysis, are implemented to estimate the tide from such datasets with a domain covering the model area extending from 0° to 41°N in latitude and from 99°E to 142°E in longitude. And the results of these two methods are compared and interpreted. The numerical simulation is performed for 16 major constituents. In the data assimilation experiments, three types of unknown parameters (water depth, bottom friction and tidal open boundary conditions in the model equations) are chosen as control variables. Among the various types of data assimilation experiments, the calibration of water depth brings the most promising results. By comparing the results with selected tide gauge data, the average absolute errors are decreased from 7.9 cm to 6.8 cm for amplitude and from 13.0° to 9.0° for phase with respect to the semidiurnal tide M2 constituent, which is the largest tidal constituent in the model area. After the data assimilation experiment is performed, the comparison between model results and tide gauge observation for water levels shows that the RMS errors decrease by 9 cm for a total of 14 stations, mostly selected along the coast of Mainland China, when a one-month period is considered, and the correlation coefficients improve for most tidal stations among these stations.
Testing gauge-invariant perturbation theory
Törek, Pascal
2016-01-01
Gauge-invariant perturbation theory for theories with a Brout-Englert-Higgs effect, as developed by Fr\\"ohlich, Morchio and Strocchi, starts out from physical, exactly gauge-invariant quantities as initial and final states. These are composite operators, and can thus be considered as bound states. In case of the standard model, this reduces almost entirely to conventional perturbation theory. This explains the success of conventional perturbation theory for the standard model. However, this is due to the special structure of the standard model, and it is not guaranteed to be the case for other theories. Here, we review gauge-invariant perturbation theory. Especially, we show how it can be applied and that it is little more complicated than conventional perturbation theory, and that it is often possible to utilize existing results of conventional perturbation theory. Finally, we present tests of the predictions of gauge-invariant perturbation theory, using lattice gauge theory, in three different settings. In ...
Neutrino assisted gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyung Do; Mo, Doh Young; Seo, Min-Seok [Seoul National University, Department of Physics and Astronomy and Center for Theoretical Physics, Seoul (Korea, Republic of)
2013-06-15
Recent observation shows that the Higgs mass is at around 125 GeV while the prediction of the minimal supersymmetric standard model is below 120 GeV for stop mass lighter than 2 TeV unless the top squark has a maximal mixing. We consider the right-handed neutrino supermultiplets as messengers in addition to the usual gauge mediation to obtain sizeable trilinear soft parameters A{sub t} needed for the maximal stop mixing. Neutrino messengers can explain the observed Higgs mass for stop mass around 1 TeV. Neutrino assistance can also generate charged lepton flavor violation including {mu}{yields}e {gamma} as a possible signature of the neutrino messengers. We consider the S{sub 4} discrete flavor model and show the relation of the charged lepton flavor violation, {theta} {sub 13} of neutrino oscillation and the muon's g-2. (orig.)
Levi, T; Levi, Thomas s.; Gleiser, Marcelo
2002-01-01
We present a new model for a non-topological soliton (NTS) that contains fermions, scalar particles and a gauge field. Using a variational approach, we estimate the energy of the localized configuration, showing that it can be the lowest energy state of the system for a wide range of parameters.
Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.
2013-07-01
The isotropy and homogeneity of the cosmic microwave background (CMB) favors “scalar driven” early Universe inflationary models. However, gauge fields and other non-scalar fields are far more common at all energy scales, in particular at high energies seemingly relevant to inflation models. Hence, in this review we consider the role and consequences, theoretical and observational, that gauge fields can have during the inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main classes of models with gauge fields in the background, models which show violation of the cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of these models on the CMB and/or the primordial cosmic magnetic fields. Our discussions will be mainly focused on the inflation period, with only a brief discussion on the post inflationary (p)reheating era. Large field models: The initial value of the inflaton field is large, generically super-Planckian, and it rolls slowly down toward the potential minimum at smaller φ values. For instance, chaotic inflation is one of the representative models of this class. The typical potential of large-field models has a monomial form as V(φ)=V0φn. A simple analysis using the dynamical equations reveals that for number of e-folds Ne larger than 60, we require super-Planckian initial field values,5φ0>3M. For these models typically ɛ˜η˜Ne-1. Small field models: Inflaton field is initially small and slowly evolves toward the potential minimum at larger φ values. The small field models are characterized by the following potential V(φ)=V0(1-(), which corresponds to a Taylor expansion about the origin, but more realistic
Probing New Gauge Boson Z‧ from the Left-Right Twin Higgs Model at High-Energy e+e- Colliders
Liu, Yao-Bei; Du, Lin-Lin; Chang, Qin
The left-right twin Higgs (LRTH) model predicts the existence of the new neutral gauge boson Z‧. In this paper, we calculate the contributions of this new particle to the processes e+e-→l+l-, bbar b and cbar c and study the possibility of detecting this new particle via these processes in the future high-energy linear e+e- collider (LC) experiments with √ {s}=500 GeV and £int = 340 fb-1, both for unpolarized and polarized beams. We find that the new gauge boson Z‧ is most sensitive to the process e+e--> cbar {c} with suitably polarized beams. As long as MZ‧ ≤ 1.9 TeV, the absolute value of the relative correction parameter is larger than 5%. We calculate the forward-backward asymmetries for the process e+e--> fbar {f}, the results show that the possible signals of Z‧ might be detected via measuring the deviations of AFB from its SM prediction for √ {s}˜= MZ'. Bounds on Z‧ masses are also estimated within 95% confidence level. From our analysis, we conclude that the new gauge boson is most sensitive to the process F>e+e^--> cbar c and its virtual effects are most easy to be observed via this process in the future LC experiments.
Gauge symmetry from decoupling
Energy Technology Data Exchange (ETDEWEB)
Wetterich, C., E-mail: c.wetterich@thphys.uni-heidelberg.de
2017-02-15
Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
Gauge symmetry from decoupling
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-02-01
Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
Gauge symmetry from decoupling
Wetterich, C.
2017-02-01
Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang-Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
YZ-111型压阻真空计的研制%Development of Model YZ-111 Piezo-Resistive Vacuum Gauge
Institute of Scientific and Technical Information of China (English)
马志兵
2013-01-01
A novel type of the piezo-resistive vacuum gauge, model YZ-111, was developed based on the pressure diffusion silicon sensor. The newly-developed low vacuum gauge consists of a US-made piezo-resistive pressure sensor, a signal processing unit, an A/D data acquisition unit, and a microprocessor with a central processing unit, a keyboard, and a display unit.The output signal of the sensor is properly processed before data acquisition,data analysis, and real time display. The original work involved the temperature compensation to the measured pressure to enhance the precision. The measured data with the piezo-resistive vacuum gauge were compared and calibrated with the results evaluated with a conventional, high precision vacuum gauge.The test results live up to the expectation.%介绍了一种基于扩散硅传感器的低真空测量仪表YZ-111型压阻真空计.仪表由传感器单元、信号调理单元、A/D采集单元、中央处理单元、按键和显示单元等组成.该仪器采用进口扩散硅压阻式传感器.信号被调理后由高精度数字采集系统采集、分析,直接输出数字信号.配以温度补偿技术,保证它的高精度.通过用高精度真空计校准,并与之比较,其测量结果达到预期.
Neutrino jets from high-mass WR gauge bosons in TeV-scale left-right symmetric models
Mitra, Manimala; Ruiz, Richard; Scott, Darren J.; Spannowsky, Michael
2016-11-01
We reexamine the discovery potential at hadron colliders of high-mass right-handed (RH) gauge bosons WR—an inherent ingredient of left-right symmetric models (LRSM). We focus on the regime where the WR is very heavy compared to the heavy Majorana neutrino N , and we investigate an alternative signature for WR→N decays. The produced neutrinos are highly boosted in this mass regime. Subsequently, their decays via off-shell WR bosons to jets, i.e., N →ℓ±jj, are highly collimated, forming a single neutrino jet (jN). The final-state collider signature is then ℓ±jN, instead of the widely studied ℓ±ℓ±j j . Present search strategies are not sensitive to this hierarchical mass regime due to the breakdown of the collider signature definition. We take into account QCD corrections beyond next-to-leading order (NLO) that are important for high-mass Drell-Yan processes at the 13 TeV Large Hadron Collider (LHC). For the first time, we evaluate WR production at NLO with threshold resummation at next-to-next-to-leading logarithm (NNLL) matched to the threshold-improved parton distributions. With these improvements, we find that a WR of mass MWR=3 (4 )[5 ] TeV and mass ratio of (mN/MWR)<0.1 can be discovered with a 5 - 6 σ statistical significance at 13 TeV after 10 (100 )[2000 ] fb-1 of data. Extending the analysis to the hypothetical 100 TeV Very Large Hadron Collider (VLHC), 5 σ can be obtained for WR masses up to MW R=15 (30 ) with approximately 100 fb-1 (10 ab-1 ). Conversely, with 0.9 (10 )[150 ] fb-1 of 13 TeV data, MWR<3 (4 )[5 ] TeV and (mN/MWR)<0.1 can be excluded at 95% C.L.; with 100 fb-1 (2.5 ab-1 ) of 100 TeV data, MW R<22 (33 ) TeV can be excluded.
Supergravity from Gauge Theory
Berkowitz, Evan
2016-01-01
Gauge/gravity duality is the conjecture that string theories have dual descriptions as gauge theories. Weakly-coupled gravity is dual to strongly-coupled gauge theories, ideal for lattice calculations. I will show precision lattice calculations that confirm large-N continuum D0-brane quantum mechanics correctly reproduces the leading-order supergravity prediction for a black hole's internal energy---the first leading-order test of the duality---and constrains stringy corrections.
Low energy gauge unification theory
Li Tian Jun
2002-01-01
Because of the problems arising from the fermion unification in the traditional Grand Unified Theory and the mass hierarchy between the 4-dimensional Planck scale and weak scale, we suggest the low energy gauge unification theory with low high-dimensional Planck scale. We discuss the non-supersymmetric SU(5) model on M sup 4 xS sup 1 /Z sub 2 xS sup 1 /Z sub 2 and the supersymmetric SU(5) model on M sup 4 xS sup 1 /(Z sub 2 xZ sub 2 ')xS sup 1 /(Z sub 2 xZ sub 2 ')xS sup 1 /(Z sub 2 xZ sub 2 '). The SU(5) gauge symmetry is broken by the orbifold projection for the zero modes, and the gauge unification is accelerated due to the SU(5) asymmetric light KK states. In our models, we forbid the proton decay, still keep the charge quantization, and automatically solve the fermion mass problem. We also comment on the anomaly cancellation and other possible scenarios for low energy gauge unification.
Discrete gauge groups in F-theory models on genus-one fibered Calabi-Yau 4-folds without section
Kimura, Yusuke
2017-04-01
We determine the discrete gauge symmetries that arise in F-theory compactifications on examples of genus-one fibered Calabi-Yau 4-folds without a section. We construct genus-one fibered Calabi-Yau 4-folds using Fano manifolds, cyclic 3-fold covers of Fano 4-folds, and Segre embeddings of products of projective spaces. Discrete ℤ 5, ℤ 4, ℤ 3 and ℤ 2 symmetries arise in these constructions. We introduce a general method to obtain multisections for several constructions of genus-one fibered Calabi-Yau manifolds. The pullbacks of hyperplane classes under certain projections represent multisections to these genus-one fibrations. We determine the degrees of these multisections by computing the intersection numbers with fiber classes. As a result, we deduce the discrete gauge symmetries that arise in F-theory compactifications. This method applies to various Calabi-Yau genus-one fibrations.
Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges
Directory of Open Access Journals (Sweden)
Nanshu Lu
2013-07-01
Full Text Available Strain gauges are widely applied to measure mechanical deformation of structures and specimens. While metallic foil gauges usually have a gauge factor slightly over 2, single crystalline silicon demonstrates intrinsic gauge factors as high as 200. Although silicon is an intrinsically stiff and brittle material, flexible and even stretchable strain gauges have been achieved by integrating thin silicon strips on soft and deformable polymer substrates. To achieve a fundamental understanding of the large variance in gauge factor and stretchability of reported flexible/stretchable silicon-on-polymer strain gauges, finite element and analytically models are established to reveal the effects of the length of the silicon strip, and the thickness and modulus of the polymer substrate. Analytical results for two limiting cases, i.e., infinitely thick substrate and infinitely long strip, have found good agreement with FEM results. We have discovered that strains in silicon resistor can vary by orders of magnitude with different substrate materials whereas strip length or substrate thickness only affects the strain level mildly. While the average strain in silicon reflects the gauge factor, the maximum strain in silicon governs the stretchability of the system. The tradeoff between gauge factor and stretchability of silicon-on-polymer strain gauges has been proposed and discussed.
Can Family Gauge Bosons Be Visible by Terrestrial Experiments?
Koide, Yoshio
2015-01-01
It is investigated whether observations of family gauge bosons by terrestrial experiments are possible or not. We propose an extended version of Sumino's family gauge boson model based on U(3) family symmetry. Then, we can expect the lowest family gauge boson $A_1^1$ with $M \\sim 4.3$ TeV.
Symplectic gauge fields and dark matter
Asorey, J; Garcia-Alvarez, D
2015-01-01
The dynamics of symplectic gauge fields provides a consistent framework for fundamental interactions based on spin three gauge fields. One remarkable property is that symplectic gauge fields only have minimal couplings with gravitational fields and not with any other field of the Standard Model. Interactions with ordinary matter and radiation can only arise from radiative corrections. In spite of the gauge nature of symplectic fields they acquire a mass by the Coleman-Weinberg mechanism which generates Higgs-like mass terms where the gravitational field is playing the role of a Higgs field. Massive symplectic gauge fields weakly interacting with ordinary matter are natural candidates for the dark matter component of the Universe.
Symplectic gauge fields and dark matter
Asorey, J.; Asorey, M.; García-Álvarez, D.
2015-11-01
The dynamics of symplectic gauge fields provides a consistent framework for fundamental interactions based on spin-3 gauge fields. One remarkable property is that symplectic gauge fields only have minimal couplings with gravitational fields and not with any other field of the Standard Model. Interactions with ordinary matter and radiation can only arise from radiative corrections. In spite of the gauge nature of symplectic fields they acquire a mass by the Coleman-Weinberg mechanism which generates Higgs-like mass terms where the gravitational field is playing the role of a Higgs field. Massive symplectic gauge fields weakly interacting with ordinary matter are natural candidates for the dark matter component of the Universe.
Electrically tunable artificial gauge potential for polaritons
Lim, Hyang-Tag; Togan, Emre; Kroner, Martin; Miguel-Sanchez, Javier; Imamoğlu, Atac
2017-01-01
Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tunable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurements of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton–polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons. PMID:28230047
Narayanan, Rajamani
2008-01-01
Wilson loops in large N gauge theory exhibit a weak to strong coupling transition as the loop is dilated. A multiplicative matrix model captures the universal behavior associated with this transition. A universal scaling function is obtained in a double scaling limit. Numerical studies show that both large N QCD in three dimensions and the SU(N) principal chiral model in two dimensions are in the same universality class.
Alonso-Izquierdo, Alberto
2016-01-01
In this paper zero modes of fluctuation are dissected around the two species of BPS vortices existing in the critical Higgs phase, where the scalar and vector meson masses are equal, of a gauged $\\mathbb{U}(1)$ nonlinear $\\mathbb{CP}^1$-model. If $2\\pi n$, $n\\in \\mathbb{Z}$, is the quantized magnetic flux of the two species of BPS vortex solutions, $2n$ linearly independent vortex zero modes for each species are found and described. The existence of two species of moduli spaces of dimension $2n$ of these stringy topological defects is thus locally shown.
Gauge fixing and BRST formalism in non-Abelian gauge theories
Ghiotti, Marco; Williams, A G
2007-01-01
In this Thesis we present a comprehensive study of perturbative and non-perturbative non-Abelian gauge theories in the light of gauge-fixing procedures, focusing our attention on the BRST formalism in Yang-Mills theory. We propose first a model to re-write the Faddeev-Popov quantisation method in terms of group-theoretical techniques and then we give a possible way to solve the no-go theorem of Neuberger for lattice Yang-Mills theory with double BRST symmetry. In the final part we present a study of the Batalin-Vilkovisky quantisation method for non-linear gauges in non-Abelian gauge theories.
Stability of the effective potential of the gauge-less top-Higgs model in curved spacetime
Energy Technology Data Exchange (ETDEWEB)
Czerwińska, Olga; Lalak, Zygmunt; Nakonieczny, Łukasz [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warszawa (Poland)
2015-11-30
We investigate stability of the Higgs effective potential in curved spacetime. To this end, we consider the gauge-less top-Higgs sector with an additional scalar field. Explicit form of the terms proportional to the squares of the Ricci scalar, the Ricci tensor and the Riemann tensor that arise at the one-loop level in the effective action has been determined. We have investigated the influence of these terms on the stability of the scalar effective potential. The result depends on background geometry. In general, the potential becomes modified both in the region of the electroweak minimum and in the region of large field strength.
Probing the Lightest New Gauge Boson BH in the Littlest Higgs Model via Processes γγ→f(-f)BH at ILC
Institute of Scientific and Technical Information of China (English)
HAN Yin-Lu; WANG Xue-Lei; GUO Hai-Rui; LIU Su-Zhen; ZHANG Yue; ZENG Qing-Guo; ZHANG Jing-Shang; JIN Zhen-Lan
2008-01-01
The neutral gauge boson BH with the mass of hundreds GeV is the lightest particle predicted by the littlest Higgs (LH) model, and such particle should be the first signal of the LH model at the planed ILC if it exists indeed. In this paper, we study some processes of the BH production associated with the fermion pair at the ILC, i.e., γγ→ffSH.The studies show that the most promising processes to detect BH among γγ→ffBH are γγ→l'+ l'- BH (l' = e, μ),and they can produce the sufficient signals in most parameter space preferred by the electroweak precision data at the ILC. On the other hand, the signal produced via the certain BH decay modes is typical and such signal can be easily identified from the SM background. Therefore, BH, the lightest gauge boson in the LH model, would be detectable at the photon eollider realized at the ILC.
Patra, Sudhanwa; Sahoo, Nirakar; Sahu, Narendra
2016-01-01
Gauged $U(1)_{L_\\mu - L_\\tau}$ model has been advocated for a long time in light of muon $g-2$ anomaly, which is a more than $3\\sigma$ discrepancy between the experimental measurement and the standard model prediction. We augment this model with three right-handed neutrinos $(N_e, N_\\mu, N_\\tau)$ and a vector-like singlet fermion $(\\chi)$ to explain simultaneously the non-zero neutrino mass and dark matter content of the Universe, while satisfying anomalous muon $g-2$ constraints. It is shown that in a large parameter space of this model we can explain positron excess, observed at PAMELA, Fermi-LAT and AMS-02, through dark matter annihilation, while satisfying the relic density and direct detection constraints.
Duality as a gauge symmetry and topology change
Giveon, Amit
1993-01-01
Duality groups as (spontaneously broken) gauge symmetries for toroidal backgrounds, and their role in ($\\infty$-dimensional) underlying string gauge algebras are reviewed. For curved backgrounds, it is shown that there is a duality in the moduli space of WZNW sigma-models, that can be interpreted as a broken gauge symmetry. In particular, this duality relates the backgrounds corresponding to axially gauged abelian cosets $G/U(1)_a$, to vectorially gauged abelian cosets, $G/U(1)_v$. Finally, topology change in the moduli space of WZNW sigma-models is discussed.
Nieto, Carlos M
2016-01-01
The appealing properties of the Gauge-flation model at zeroth order in cosmological perturbation theory constitute a step ahead at cementing inflation on solid particle physics foundations; this, in turn, allows us to have an interesting connection between inflation and the physics of the subsequent evolution of the Universe. However, there are issues at the perturbative level which suggest a modification to the original model. As we want to be in agreement with the latest observations of Planck, we modify the model such that the new dynamics could produce a relation between the spectral index $n_{s}$ and the tensor-to-scalar ratio $r$ in agreement with the allowed parameter window. By including an identical mass term for each of the fields composing the system, we find an interesting dynamics among all the terms in the Lagrangian such that a successful inflationary period is still reproduced. It would indeed be the mass term the responsible for the expected successful modification of the $n_{s}$ vs. $r$ rela...
Unification of Non-Abelian SU(N) Gauge Theory and Gravitational Gauge Theory
Institute of Scientific and Technical Information of China (English)
WU Ning
2002-01-01
In this paper, a general theory on unification of non-Abelian SU(N) gauge interactions and gravitationalinteractions is discussed. SU(N) gauge interactions and gravitational interactions are formulated on the similar basisand are unified in a semi-direct product group GSU(N). Based on this model, we can discuss unification of fundamentalinteractions of Nature.
Von Smekal, L; Sternbeck, A; Williams, A G
2007-01-01
We propose a modified lattice Landau gauge based on stereographically projecting the link variables on the circle S^1 -> R for compact U(1) or the 3-sphere S^3 -> R^3 for SU(2) before imposing the Landau gauge condition. This can reduce the number of Gribov copies exponentially and solves the Gribov problem in compact U(1) where it is a lattice artifact. Applied to the maximal Abelian subgroup this might be just enough to avoid the perfect cancellation amongst the Gribov copies in a lattice BRST formulation for SU(N), and thus to avoid the Neuberger 0/0 problem. The continuum limit of the Landau gauge remains unchanged.
General treatment of the non-linear Rsub(Xi) gauge condition
Energy Technology Data Exchange (ETDEWEB)
Girardi, G.; Malleville, C.; Sorba, P. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules)
1982-11-04
It is shown that the non-linear Rsub(xi) gauge condition already introduced for the standard SU(2)xU(1) model can be generalized for any gauge model with the same type of simplification, namely the suppression of any coupling of the form: (massless gauge boson)x(massive gauge boson)x(unphysical Higgs).
Mandal, Sanjoy; Mitra, Manimala; Sinha, Nita
2017-08-01
We analyze the lepton number violating (LNV) meson decays that arise in a TeV scale left-right symmetry model. The right-handed Majorana neutrino N along with the right-handed or Standard Model gauge bosons mediate the meson decays and provide a resonant enhancement of the rates if the mass of N (MN) lies in the range ˜(100 MeV - 5 GeV ) . Using the expected upper limits on the number of events for the LNV decay modes M1+→ℓ+ℓ+ π- (M1=B,D,Ds, K ), we derive constraints plausible on the mass of the right handed charged gauge boson by future searches at the ongoing NA62 and LHCb experiments at CERN, the upcoming Belle II at SuperKEK, as well as at the proposed future experiments, SHiP and FCC-ee. These bounds are complimentary to the limits from the same-sign dilepton search at the Large Hadron Collider (LHC). The very high intensity of charmed mesons expected to be produced at SHiP will result in a far more stringent bound, MW R>18.4 TeV (corresponding to MN=1.46 GeV ), than the other existing bounds from collider and neutrinoless double beta decay searches.
Gauge strata and particle generations
Mendes, R V
2000-01-01
Phenomenological evidence suggests the existence of non-trivial background fields in the QCD vacuum. On the other hand SU(3) gauge theory possessses three different classes of both non-generic and non-trivial strata that may be used as classical backgrounds. It is suggested that this three-fold multiplicity of non-trivial vacua may be related to the existence of particle generations, which would then find an explanation in the framework of the standard model.
Neutrinos and electromagnetic gauge invariance
Energy Technology Data Exchange (ETDEWEB)
Pisano, F.; Silva-Sobrinho, J.A. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Tonasse, M.D. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica
1996-02-01
It is discussed a recently proposed connection among electromagnetic gauge invariance U(1){sub em} and the nature of the neutrino mass terms in the framework of SU(3){sub C} x G{sub W} x U(1){sub N}, G{sub W} SU(3){sub L}, extensions of the Standard Model. The impossibility of that connection, also in the case G{sub W} = SU(4){sub L}, is demonstrated. (author). 7 refs.
Softly Broken Supersymmetric Gauge Theories through Compactifications
Takenaga, K
1998-01-01
Effects of boundary conditions of fields for compactified space directions on the supersymmetric gauge theories are discussed. For general and possible boundary conditions the supersymmetry is explicitly broken to yield universal soft supersymmetry breaking terms, and the gauge symmetry of the theory can also be broken through the dynamics of non-integrable phases, depending on number and the representation under the gauge group of matters. The 4-dimensional supersymmetric QCD is studied as a toy model when one of the space coordinates is compactified on $S^1$.
Domain wall solutions with Abelian gauge fields
Rozowsky, J S; Wali, K C
2004-01-01
We study kink (domain wall) solutions in a model consisting of two complex scalar fields coupled to two independent Abelian gauge fields in a Lagrangian that has $U(1)\\times U(1)$ gauge plus $\\mathbb{Z}_2$ discrete symmetry. We find consistent solutions such that while the U(1) symmetries of the fields are preserved while in their respective vacua, they are broken on the domain wall. The gauge field solutions show that the domain wall is sandwiched between domains with constant magnetic fields.
Pucheu, M. L.; Romero, C.; Bellini, M.; Madriz Aguilar, José Edgar
2016-09-01
We investigate gauge invariant scalar fluctuations of the metric during inflation in a nonperturbative formalism in the framework of a recently formulated scalar-tensor theory of gravity, in which the geometry of space-time is that of a Weyl integrable manifold. We show that in this scenario the Weyl scalar field can play the role of the inflaton field. As an application of the theory, we examine the case of a power-law inflation. In this case, the quasi-scale invariance of the spectrum for scalar fluctuations of the metric is achieved for determined values of the parameter ω of the scalar-tensor theory. We stress the fact that in our formalism the physical inflaton field has a purely geometrical origin.
Aidas, Kestutis; Kongsted, Jacob; Nielsen, Christian B.; Mikkelsen, Kurt V.; Christiansen, Ove; Ruud, Kenneth
2007-07-01
The theory of a hybrid quantum mechanics/molecular mechanics (QM/MM) approach for gauge-origin independent calculations of the molecular magnetizability using Hartree-Fock or Density Functional Theory is presented. The method is applied to liquid water using configurations generated from classical Molecular Dynamics simulation to calculate the statistical averaged magnetizability. Based on a comparison with experimental data, treating only one water molecule quantum mechanically appears to be insufficient, while a quantum mechanical treatment of also the first solvation shell leads to good agreement between theory and experiment. This indicates that the gas-to-liquid phase shift for the molecular magnetizability is to a large extent of non-electrostatic nature.
Chung, Daniel J H
2016-01-01
We reformulate gauge theories in analogy with the vierbein formalism of general relativity. More specifically, we reformulate gauge theories such that their gauge dynamical degrees of freedom are local fields that transform linearly under the dual representation of the charged matter field. These local fields, which naively have the interpretation of non-local operators similar to Wilson lines, satisfy constraint equations. A set of basis tensor fields are used to solve these constraint equations, and their field theory is constructed. A new local symmetry in terms of the basis tensor fields is used to make this field theory local and maintain a Hamiltonian that is bounded from below. The field theory of the basis tensor fields is what we call the basis tensor gauge theory.
Maas, Axel
2012-01-01
QCD can be formulated using any gauge group. One particular interesting choice is to replace SU(3) by the exceptional group G2. Conceptually, this group is the simplest group with a trivial center. It thus permits to study the conjectured relevance of center degrees of freedom for QCD. Practically, since all its representation are real, it is possible to perform lattice simulations for this theory also at finite baryon densities. It is thus an excellent environment to test methods and to investigate general properties of gauge theories at finite densities. We review the status of our understanding of gauge theories with the gauge group G2, including Yang-Mills theory, Yang-Mills-Higgs theory, and QCD both in the vacuum and in the phase diagram.
National Aeronautics and Space Administration — Cog-Gauge is a portable hand-held game that can be used by astronauts and crew members during space exploration missions to assess their cognitive workload...
Healey, Richard
Those looking for holism in contemporary physics have focused their attention primarily on quantum entanglement. But some gauge theories arguably also manifest the related phenomenon of nonseparability. While the argument is strong for the classical gauge theory describing electromagnetic interactions with quantum "particles", it fails in the case of general relativity even though that theory may also be formulated in terms of a connection on a principal fiber bundle. Anandan has highlighted the key difference in his analysis of a supposed gravitational analog to the Aharonov-Bohm effect. By contrast with electromagnetism in the original Aharonov-Bohm effect, gravitation is separable and exhibits no novel holism in this case. Whether the nonseparability of classical gauge theories of nongravitational interactions is associated with holism depends on what counts as the relevant part-whole relation. Loop representations of quantized gauge theories of nongravitational interactions suggest that these conclusions about holism and nonseparability may extend also to quantum theories of the associated fields.
A New Fate of a Warped 5D FLRW Model with a U(1) Scalar Gauge Field
Slagter, Reinoud Jan; Pan, Supriya
2016-09-01
If we live on the weak brane with zero effective cosmological constant in a warped 5D bulk spacetime, gravitational waves and brane fluctuations can be generated by a part of the 5D Weyl tensor and carries information of the gravitational field outside the brane. We consider on a cylindrical symmetric warped FLRW background a U(1) self-gravitating scalar field coupled to a gauge field without bulk matter. It turns out that brane fluctuations can be formed dynamically, due to the modified energy-momentum tensor components of the scalar-gauge field ("cosmic string"). As a result, we find that the late-time behavior could significantly deviate from the standard evolution of the universe. The effect is triggered by the time-dependent warpfactor with two branches of the form ± 1/√{τ r}√{(c_1e^{√{2τ } t}+c_2e^{-√{2τ } t})(c_3e^{√{2τ } r}+c_4e^{-√{2τ } r})} ( with τ , c_i constants) and the modified brane equations comparable with a dark energy effect. This is a brane-world mechanism, not present in standard 4D FLRW, where the large disturbances are rapidly damped as the expansion proceed. Because gravity can propagate in the bulk, the cosmic string can build up a huge angle deficit (or mass per unit length) by the warpfactor and can induce massive KK-modes felt on the brane. Disturbances in the spatial components of the stress-energy tensor cause cylindrical symmetric waves, amplified due to the presence of the bulk space and warpfactor. They could survive the natural damping due to the expansion of the universe. It turns out that one of the metric components becomes singular at the moment the warp factor develops an extremum. This behavior could have influence on the possibility of a transition from acceleration to deceleration or vice versa.
Viscous conformal gauge theories
DEFF Research Database (Denmark)
Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.
2017-01-01
We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....