WorldWideScience

Sample records for weightlessness

  1. Weightless environment simulation test; Mujuryo simulation shiken

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, K.; Yamamoto, T.; Kato, F. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1997-07-20

    Kawasaki Heavy Industries, Ltd., delivered a Weightless Environment Test System (WETS) to National Space Development Agency of Japan in 1994. This system creates a weightless environment similar to that in space by balancing gravity and buoyancy in the water, and is constituted of a large water tank, facilities to supply air and cooling water to space suits worn in the water, etc. In this report, a weightless environment simulation test and the facilities to supply air and cooling water are described. In the weightless environment simulation test, the astronaut to undergo tests and training wears a space suit quite similar to the suit worn on the orbit, and performs EVA/IVA (extravehicular activities/intravehicular activities) around a JEM (Japanese Experimental Module) mockup installed in the water verifying JEM design specifications, preparing manuals for operations on the orbit, or receives basic space-related drill and training. An EVA weightless environment simulation test No. 3 was accomplished with success in January, 1997, when the supply of breathing water and cooling water to the space suit, etc., were carried out with safety and reliability. 2 refs., 8 figs., 2 tabs.

  2. Physiological mechanisms of the effect of weightlessness on the body

    Science.gov (United States)

    Kasyan, I. I.; Kopanev, V. I.

    1975-01-01

    Experimental data show that physiological reactions observed under weightlessness conditions are caused by: (1) The direct effect of weightlessness, as a consequence of decrease (""disappearance'') of the weight of body tissues and organs; and (2) the mediated effect of weightlessness, as a result of changes in the functional state of the central nervous system and the cooperative work of the analyzers. The human body adopts to weightless conditions under the prolonged effects of it. In this case, four periods can be distinguished: The first period, a transitional process lasting from 1 to 24 hours; second period, initial adaptation to conditions of weightlessness and readjustment of all functional systems of the body; the third period, adaptation to the unusual mechanical conditions of the external environment, lasting from 3 to 8 days and more; and the fourth period, the stage of possible imbalance of the functions and the systems of some astronauts, as a result of the prolonged effect of weightlessness.

  3. 'Weightless' acrylic painting by Jack Kroehnke

    Science.gov (United States)

    1987-01-01

    'Weightless' acrylic painting by Jack Kroehnke depicts STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers participating in extravehicular activity (EVA) simulation in JSC Weightless Environment Training Facility (WETF) Bldg 29. In the payload bay (PLB) mockup, Hilmers, wearing extravehicular mobility unit (EMU), holds onto the mission-peculiar equipment support structure in foreground while SCUBA-equipped diver monitors activity overhead and camera operator records EVA procedures. Copyrighted art work for use by NASA.

  4. Reactions of animals and people under conditions of brief weightlessness

    Science.gov (United States)

    Kitayev-Smik, L. A.

    1975-01-01

    It has been shown that under brief weightlessness sensory reactions arise in a number of people, mainly those under these conditions for the first time, in the form of spatial and visual illusions, motor excitation, in which tonic and motor components can be distinguished, and vestibular-vegetative disturbances (nausea, vomiting, etc.). In repeated flights with creation of weightlessness, a decrease in the extent of expression and, then, disappearance of these reactions occurred in a significant majority of those studied. Experiments in weightlessness with the vision cut off and with the absence of vestibular functions in the subjects confirm the hypothesis that spatial conceptions of people in weightlessness depend on predominance of gravireceptor or visual afferent signals under these conditions.

  5. Mouse muscle LC-MSMS upon weightlessness

    Data.gov (United States)

    National Aeronautics and Space Administration — Upon weightlessness and microgravity deleterious effects on the neurosensory and neurovestibular systems haematological changes and deconditioning of musculoskeletal...

  6. Effect of weightlessness on mineral saturation of bone tissue

    Science.gov (United States)

    Krasnykh, I. G.

    1975-01-01

    X-ray photometry of bone density established dynamic changes in mineral saturation of bone tissues for Soyuz spacecraft and Salyut orbital station crews. Calcaneus optical bone densities in all crew members fell below initial values; an increase in spacecrew exposure time to weightlessness conditions also increased the degree of decalcification. Demineralization under weightlessness conditions took place at a higher rate than under hypodynamia.

  7. The human body and weightlessness operational effects, problems and countermeasures

    CERN Document Server

    Thornton, William

    2017-01-01

    This book focuses on all of the major problems associated with the absence of body weight in space, by analyzing effects, adaption, and re-adaptation upon returning to Earth, using sound scientific principles embedded in a historical context. Serious problems for space travelers range from Space Motion Sickness (SMS) to recently discovered ocular effects that may permanently impair vision. Fluid loss and shifts, spinal changes, and bone and muscle loss are also all results of weightlessness. Starting with a brief definition and history of weightlessness, the authors then address in detail each problem as well as the countermeasures aimed at alleviating them. In some cases, alternative hypotheses regarding what can and should be attempted are also presented. As plans for long-term missions to the Moon and Mars develop, it will be essential to find countermeasures to weightlessness that are effective for missions that could span years.

  8. Work/control stations in Space Station weightlessness

    Science.gov (United States)

    Willits, Charles

    1990-01-01

    An ergonomic integration of controls, displays, and associated interfaces with an operator, whose body geometry and dynamics may be altered by the state of weightlessness, is noted to rank in importance with the optimal positioning of controls relative to the layout and architecture of 'body-ported' work/control stations applicable to the NASA Space Station Freedom. A long-term solution to this complex design problem is envisioned to encompass the following features: multiple imaging, virtual optics, screen displays controlled by a keyboard ergonomically designed for weightlessness, cursor control, a CCTV camera, and a hand-controller featuring 'no-grip' vernier/tactile positioning. This controller frees all fingers for multiple-switch actuations, while retaining index/register determination with the hand controller. A single architectural point attachment/restraint may be used which requires no residual muscle tension in either brief or prolonged operation.

  9. Effect of 5E Teaching Model on Student Teachers' Understanding of Weightlessness

    Science.gov (United States)

    Tural, Guner; Akdeniz, Ali Riza; Alev, Nedim

    2010-01-01

    Weight is one of the basic concepts of physics. Its gravitational definition accommodates difficulties for students to understand the state of weightlessness. The aim of this study is to investigate the effect of materials based on 5E teaching model and related to weightlessness on science student teachers' learning. The sample of the study was 9…

  10. [Effect of aerospace weightlessness on cognitive functions and the relative dialectical analysis of Chinese medicine].

    Science.gov (United States)

    Dong, Li; Liu, Xin-Min; Wu, Li-Sha; Yang, Si-Jin; Wang, Qiong

    2014-03-01

    Aerospace medicine has paid more and more attention to abnormal changes of physiological functions induced by weightlessness and studies on their prevention during space flight. In this paper, the effect of space weightlessness on cognitive functions was introduced. We tried to analyze the correlation between the cognitive function changes and relevant Chinese medical syndromes, thus providing a potential available way to prevent and treat weightlessness induced cognitive deficit during space flight.

  11. Loading Configurations and Ground Reaction Forces During Treadmill Running in Weightlessness

    Science.gov (United States)

    DeWitt, John; Schaffner, Grant; Blazine, Kristi; Bentley, Jason; Laughlin, Mitzi; Loehr, James; Hagan, Donald

    2003-01-01

    Studies have shown losses in bone mineral density of 1-2% per month in critical weight bearing areas such as the proximal femur during long-term space flight (Grigoriev, 1998). The astronauts currently onboard the International Space Station (ISS) use a treadmill as an exercise countermeasure to bone loss that occurs as a result of prolonged exposure to weightlessness. A crewmember exercising on the treadmill is attached by a harness and loading device. Ground reaction forces are obtained through the loading device that pulls the crewn1ember towards the treadmill surface during locomotion. McCrory et al. (2002) found that the magnitude of the peak ground reaction force (pGRF) during horizontal suspension running, or simulated weightlessness, was directly related to the load applied to the subject. It is thought that strain magnitude and strain rate affects osteogenesis, and is a function of the magnitude and rate of change of the ground reaction force. While it is not known if a minimum stimulus exists for osteogenesis, it has been hypothesized that in order to replicate the bone formation occurring in normal gravity (1 G), the exercise in weightlessness should mimic the forces that occur on earth. Specifically, the pGRF obtained in weightlessness should be comparable to that achieved in 1 G.

  12. Potential benefits of maximal exercise just prior to return from weightlessness

    Science.gov (United States)

    Convertino, Victor A.

    1987-01-01

    The purpose of this study was to determine whether performance of a single maximal bout of exercise during weightlessness within hours of return to earth would enhance recovery of aerobic fitness and physical work capacities under a 1G environment. Ten healthy men were subjected to a 10-d bedrest period in the 6-deg headdown position. A graded maximal supine cycle ergometer test was performed before and at the end of bedrest to simulate exercise during weightlessness. Following 3 h of resumption of the upright posture, a second maximal exercise test was performed on a treadmill to measure work capacity under conditions of 1G. Compared to before bedrest, peak oxygen consumption, V(O2), decreased by 8.7 percent and peak heart rate (HR) increased by 5.6 percent in the supine cycle test at the end of bedrest. However, there were no significant changes in peak V(O2) and peak HR in the upright treadmill test following bedrest. These data suggest that one bout of maximal leg exercise prior to return from 10 d of weightlessness may be adequate to restore preflight aerobic fitness and physical work capacity.

  13. Physiological effects of weightlessness: countermeasure system development for a long-term Chinese manned spaceflight.

    Science.gov (United States)

    Wang, Linjie; Li, Zhili; Tan, Cheng; Liu, Shujuan; Zhang, Jianfeng; He, Siyang; Zou, Peng; Liu, Weibo; Li, Yinghui

    2018-04-25

    The Chinese space station will be built around 2020. As a national space laboratory, it will offer unique opportunities for studying the physiological effects of weightlessness and the efficacy of the countermeasures against such effects. In this paper, we described the development of countermeasure systems in the Chinese space program. To emphasize the need of the Chinese space program to implement its own program for developing countermeasures, we reviewed the literature on the negative physiological effects of weightlessness, the challenges of completing missions, the development of countermeasure devices, the establishment of countermeasure programs, and the efficacy of the countermeasure techniques in American and Russian manned spaceflights. In addition, a brief overview was provided on the Chinese research and development on countermeasures to discuss the current status and goals of the development of countermeasures against physiological problems associated with weightlessness.

  14. A universal multilingual weightless neural network tagger via quantitative linguistics.

    Science.gov (United States)

    Carneiro, Hugo C C; Pedreira, Carlos E; França, Felipe M G; Lima, Priscila M V

    2017-07-01

    In the last decade, given the availability of corpora in several distinct languages, research on multilingual part-of-speech tagging started to grow. Amongst the novelties there is mWANN-Tagger (multilingual weightless artificial neural network tagger), a weightless neural part-of-speech tagger capable of being used for mostly-suffix-oriented languages. The tagger was subjected to corpora in eight languages of quite distinct natures and had a remarkable accuracy with very low sample deviation in every one of them, indicating the robustness of weightless neural systems for part-of-speech tagging tasks. However, mWANN-Tagger needed to be tuned for every new corpus, since each one required a different parameter configuration. For mWANN-Tagger to be truly multilingual, it should be usable for any new language with no need of parameter tuning. This article proposes a study that aims to find a relation between the lexical diversity of a language and the parameter configuration that would produce the best performing mWANN-Tagger instance. Preliminary analyses suggested that a single parameter configuration may be applied to the eight aforementioned languages. The mWANN-Tagger instance produced by this configuration was as accurate as the language-dependent ones obtained through tuning. Afterwards, the weightless neural tagger was further subjected to new corpora in languages that range from very isolating to polysynthetic ones. The best performing instances of mWANN-Tagger are again the ones produced by the universal parameter configuration. Hence, mWANN-Tagger can be applied to new corpora with no need of parameter tuning, making it a universal multilingual part-of-speech tagger. Further experiments with Universal Dependencies treebanks reveal that mWANN-Tagger may be extended and that it has potential to outperform most state-of-the-art part-of-speech taggers if better word representations are provided. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Simulated Space Radiation and Weightlessness: Vascular-Bone Coupling Mechanisms to Preserve Skeletal Health

    Science.gov (United States)

    Globus, R. K.; Alwood, J.; Tahimic, C.; Schreurs, A.-S.; Shirazi-Fard, Y.; Terada, M.; Zaragoza, J.; Truong, T.; Bruns, K.; Castillo, A.; hide

    2018-01-01

    We examined experimentally the effects of radiation and/or simulated weightlessness by hindlimb unloading on bone and blood vessel function either after a short period or at a later time after transient exposures in adult male, C57Bl6J mice. In sum, recent findings from our studies show that in the short term, ionizing radiation and simulate weightlessness cause greater deficits in blood vessels when combined compared to either challenge alone. In the long term, heavy ion radiation, but not unloading, can lead to persistent, adverse consequences for bone and vessel function, possibly due to oxidative stress-related pathways.

  16. Thought Experiments in Teaching Free-Fall Weightlessness: A Critical Review and an Exploration of Mercury's Behavior in "Falling Elevator"

    Science.gov (United States)

    Balukovic, Jasmina; Slisko, Josip; Cruz, Adrián Corona

    2017-01-01

    Different "thought experiments" dominate teaching approaches to weightlessness, reducing students' opportunities for active physics learning, which should include observations, descriptions, explanations and predictions of real phenomena. Besides the controversy related to conceptual definitions of weight and weightlessness, we report…

  17. The importance of the 'weightless economy' and investment in intangible assets

    Directory of Open Access Journals (Sweden)

    Veselinović Branislav

    2015-01-01

    Full Text Available The economic landscape of the present and future is no longer shaped by tangible assets, but by intangible assets. Several decades ago, William Tenn wrote a science-fiction story in which aliens, as interstellar traders, claimed on their business cards to be 'dealers in intangibles'. Professor Danny Quah from London invented the term 'weightless economy', referring to economic activity whose value does not consist of physical products. In a weightless economy, success comes from knowing how to locate and combine specific pieces of information. The goal of this analysis is to provide an overview of possibilities and problems in valuation of intangible assets. In this qualitative and quantitative analysis, authors used comparation method, analysis and synthesis method, inductive and deductive method, and a local and international literature review.

  18. Weightlessness - A case history. [for Skylab 2 crewmen

    Science.gov (United States)

    Kerwin, J. P.

    1975-01-01

    A review of the average bodily systems functioning aboard Skylab II after 20 days of weightlessness is presented. Condition of eyes, ears, nose and throat, gastrointestinal tract, vestibular organs, cardiovascular system, musculoskeletal system, sleep, general appearance, skin, abdomen, and extremities is summarized. The general health of the crewmen is good, although there are some slight anomalies, such as weight loss, dry skin, nasal speech, and paresthesia of the soles of the feet.

  19. Distributed automatic control of technological processes in conditions of weightlessness

    Science.gov (United States)

    Kukhtenko, A. I.; Merkulov, V. I.; Samoylenko, Y. I.; Ladikov-Royev, Y. P.

    1986-01-01

    Some problems associated with the automatic control of liquid metal and plasma systems under conditions of weightlessness are examined, with particular reference to the problem of stability of liquid equilibrium configurations. The theoretical fundamentals of automatic control of processes in electrically conducting continuous media are outlined, and means of using electromagnetic fields for simulating technological processes in a space environment are discussed.

  20. Effects of weightlessness, gravity compensation and radiation on the flour beetle, Tribolium confusum

    International Nuclear Information System (INIS)

    Yang, C.H.; Silver, I.L.; Tobias, C.A.

    1975-10-01

    Tribolium confusum, the flour beetle; was chosen as a test organism for determination of possible synergistic effects of radiation and space environment in the inertial flight of Biosatellite-II. The organism subjected to weightlessness and radiation during the flight exhibited greater than expected wing abnormalities. However, a postflight vibration control experiment produced anomalous results, and some doubt remained with respect to assigning weightlessness as the sole cause of the increased wing abnormalities. Results are reported from experiments performed on the interaction of gravity compensation, radiation, and Tribolium development. It was found that gravity compensation together with heavy ion irradiation did not cause more wing abnormalities than those caused by radiation alone. However, radiation and gravity compensation plus high temperature did cause an increased percentage of wing abnormalities. Two possible reasons are discussed

  1. Otolith mass asymmetry: natural, and after weightlessness and hypergravity

    Science.gov (United States)

    Lychakov, Dmitri

    It is believed that otolith mass asymmetry (OA) can play an essential role in genesis of vestibular space disturbances in human subjects and fish. This review poster presents data on values and characters of OA in animals of various species and classes and on the effect of weightlessness and hypergravity on OA; the issue of the effect of OA on vestibular and auditory functions also is considered (Lychakov, Rebane, 2004, 2005; Lychakov et al., 2006, 2008). In symmetric vertebrates, OA was shown to be fluctuating, its coefficient chiχ ranges from - 0.2 to + 0.2 (±± 20%). It should be stressed that in the overwhelming majority of individuals absolute values of chiχ selection. Unlike symmetric vertebrates, labyrinths of many Pleuronectiformes have pronounced OA. Otoliths in the lower labyrinth, on average, are significantly heavier than those in the upper labyrinth. The organs of flatfish represent the only example when OA, being directional, seem to play an essential role in lateralized behavior and are suggested to be used in the spatial localization of the source of sound. The short-term weightlessness and relatively weak hypergravity (> 3g as well as some diseases and age-related changes can indirectly enhance OA and cause some functional disturbances. This work was partly supported by Russian grant RFFI 14-04-00601.

  2. Inertial torque during reaching directly impacts grip-force adaptation to weightless objects.

    Science.gov (United States)

    Giard, T; Crevecoeur, F; McIntyre, J; Thonnard, J-L; Lefèvre, P

    2015-11-01

    A hallmark of movement control expressed by healthy humans is the ability to gradually improve motor performance through learning. In the context of object manipulation, previous work has shown that the presence of a torque load has a direct impact on grip-force control, characterized by a significantly slower grip-force adjustment across lifting movements. The origin of this slower adaptation rate remains unclear. On the one hand, information about tangential constraints during stationary holding may be difficult to extract in the presence of a torque. On the other hand, inertial torque experienced during movement may also potentially disrupt the grip-force adjustments, as the dynamical constraints clearly differ from the situation when no torque load is present. To address the influence of inertial torque loads, we instructed healthy adults to perform visually guided reaching movements in weightlessness while holding an unbalanced object relative to the grip axis. Weightlessness offered the possibility to remove gravitational constraints and isolate the effect of movement-related feedback on grip force adjustments. Grip-force adaptation rates were compared with a control group who manipulated a balanced object without any torque load and also in weightlessness. Our results clearly show that grip-force adaptation in the presence of a torque load is significantly slower, which suggests that the presence of torque loads experienced during movement may alter our internal estimates of how much force is required to hold an unbalanced object stable. This observation may explain why grasping objects around the expected location of the center of mass is such an important component of planning and control of manipulation tasks.

  3. Endoscopic surgery in weightlessness: the investigation of basic principles for surgery in space

    Science.gov (United States)

    Campbell, M. R.; Kirkpatrick, A. W.; Billica, R. D.; Johnston, S. L.; Jennings, R.; Short, D.; Hamilton, D.; Dulchavsky, S. A.

    2001-01-01

    BACKGROUND: Performing a surgical procedure in weightlessness, also called 0-gravity (0-g), has been shown to be no more difficult than in a 1-g environment if the requirements for the restraint of the patient, operator, surgical hardware, are observed. The performance of laparoscopic and thorascopic procedures in weightlessness, if feasible, would offer several advantages over the performance of an open operation. Concerns about the feasibility of performing minimally invasive procedures in weightlessness have included impaired visualization from the absence of gravitational retraction of the bowel (laparoscopy) or thoracic organs (thoracoscopy) as well as obstruction and interference from floating debris such as blood, pus, and irrigation fluid. The purpose of this study was to determine the feasibility of performing laparoscopic and thorascopic procedures and the degree of impaired surgical endoscopic visualization in weightlessness. METHODS: From 1993 to 2000, laparoscopic and thorascopic procedures were performed on 10 anesthetized adult pigs weighing approximately 50 kg in the National Aeronautics and Space Administration (NASA) Microgravity Program using a modified KC-135 airplane. The parabolic simulation system for advanced life support was used in this project, and 20 to 40 parabolas were used for laparoscopic or thorascopic investigation, each containing approximately 30 s of 0-g alternating with 2-g pullouts. The animal model was restrained in the supine position on a floor-level Crew Medical Restraint System, and the abdominal cavity was insufflated with carbon dioxide. The intraabdominal and intrathoracic anatomy was visualized in the 1-g, 0-g, and 2-g periods of parabolic flight. Bleeding was created in the animals, and the behavior of the blood in the abdominal and thoracic cavities was observed. In the thoracic cavity, gas insufflation and mechanical retraction was used at times unilaterally to decrease pulmonary ventilation enough to increase the

  4. Delineating the Impact of Weightlessness on Human Physiology Using Computational Models

    Science.gov (United States)

    Kassemi, Mohammad

    2015-01-01

    Microgravity environment has profound effects on several important human physiological systems. The impact of weightlessness is usually indirect as mediated by changes in the biological fluid flow and transport and alterations in the deformation and stress fields of the compliant tissues. In this context, Fluid-Structural and Fluid-Solid Interaction models provide a valuable tool in delineating the physical origins of the physiological changes so that systematic countermeasures can be devised to reduce their adverse effects. In this presentation, impact of gravity on three human physiological systems will be considered. The first case involves prediction of cardiac shape change and altered stress distributions in weightlessness. The second, presents a fluid-structural-interaction (FSI) analysis and assessment of the vestibular system and explores the reasons behind the unexpected microgravity caloric stimulation test results performed aboard the Skylab. The last case investigates renal stone development in microgravity and the possible impact of re-entry into partial gravity on the development and transport of nucleating, growing, and agglomerating renal calculi in the nephron. Finally, the need for model validation and verification and application of the FSI models to assess the effects of Artificial Gravity (AG) are also briefly discussed.

  5. Physiological responses of women to simulated weightlessness: A review of the first female bed-rest study

    Science.gov (United States)

    Sandler, H.; Winter, D. L.

    1978-01-01

    Subjects were exposed to centrifugation, to lower body negative pressure (LBNP), and to exericse stress both before and after bed rest. Areas studied were centrifugation tolerance, fluid electrolyte changes and hematology, tolerance to LBNP, physical working capacity, biochemistries, blood fibrinolytic activity, female metabolic and hormonal responses, circadian alterations, and gynecology. Results were compared with the responses observed in similarly bed-rested male subjects. The bed-rested females showed deconditioning responses similar to those of the males, although with some differences. Results indicate that women are capable of coping with exposure to weightlessness and, moreover, that they may be more sensitive subjects for evaluating countermeasures to weightlessness and developing criteria for assessing applicants for shuttle voyages.

  6. A "Bony" Proposition: Pathways Mediating Responses to Simulated Weightlessness and Radiation

    Science.gov (United States)

    Tahimic, Candice; Globus, Ruth

    2016-01-01

    There is evidence that weightlessness and radiation, two elements of the spaceflight environment, can lead to detrimental changes in human musculoskeletal tissue, including bone loss and muscle atrophy. This bone loss is thought to be brought about by the increased activity of bone-resorbing osteoclasts and functional changes in bone-forming osteoblasts, cells that give rise to mature osteocytes. My current area of research focuses on understanding the mechanistic basis for the responses of bone to the spaceflight environment using earth-based animal and cellular models. The overarching goal is to identify molecular targets to prevent bone loss in space exploration and earth-based scenarios of radiotherapy, accidental radiation exposure and reduced mobility. In this talk, I will highlight two signaling pathways that potentially play a role in the response of bone to spaceflight-like conditions. Firstly, I will discuss the role of insulin-like growth factor 1 (IGF1) signaling as it pertains to the recovery of bone from simulated weightlessness (rodent hindlimb unloading model). Secondly, I will share recent findings from our study that aims to understand the emerging role of autophagy in maintaining the balance between bone formation and resorption (bone homeostasis) as well as normal skeletal structure.

  7. Does the centre of mass remain stable during complex human postural equilibrium tasks in weightlessness?

    Science.gov (United States)

    Stapley, Paul; Pozzo, Thierry

    In normal gravity conditions the execution of voluntary movement involves the displacement of body segments as well as the maintenance of a stable reference value for equilibrium control. It has been suggested that centre of mass (CM) projection within the supporting base (BS) is the stabilised reference for voluntary action, and is conserved in weightlessness. The purpose of this study was to determine if the CM is stabilised during whole body reaching movements executed in weightlessness. The reaching task was conducted by two cosmonauts aboard the Russian orbital station MIR, during the Franco-Russian mission ALTAIR, 1993. Movements of reflective markers were recorded using a videocamera, successive images being reconstructed by computer every 40ms. The position of the CM, ankle joint torques and shank and thigh angles were computed for each subject pre- in- and post-flight using a 7-link mathematical model. Results showed that both cosmonauts adopted a backward leaning posture prior to reaching movements. Inflight, the CM was displaced throughout values in the horizontal axis three times those of pre-flight measures. In addition, ankle dorsi flexor torques inflight increased to values double those of pre- and post-flight tests. This study concluded that CM displacements do not remain stable during complex postural equilibrium tasks executed in weightlessness. Furthermore, in the absence of gravity, subjects changed their strategy for producing ankle torque during spaceflight from a forward to a backward leaning posture.

  8. Bion 11 Spaceflight Project: Effect of Weightlessness on Single Muscle Fiber Function in Rhesus Monkeys

    Science.gov (United States)

    Fitts, Robert H.; Romatowski, Janell G.; Widrick, Jeffrey J.; DeLaCruz, Lourdes

    1999-01-01

    Although it is well known that microgravity induces considerable limb muscle atrophy, little is known about how weightlessness alters cell function. In this study, we investigated how weightlessness altered the functional properties of single fast and slow striated muscle fibers. Physiological studies were carried out to test the hypothesis that microgravity causes fiber atrophy, a decreased peak force (Newtons), tension (Newtons/cross-sectional area) and power, an elevated peak rate of tension development (dp/dt), and an increased maximal shortening velocity (V(sub o)) in the slow type I fiber, while changes in the fast-twitch fiber are restricted to atrophy and a reduced peak force. For each fiber, we determined the peak force (P(sub o)), V(sub o), dp/dt, the force-velocity relationship, peak power, the power-force relationship, the force-pCa relationship, and fiber stiffness. Biochemical studies were carried out to assess the effects of weightlessness on the enzyme and substrate profile of the fast- and slow-twitch fibers. We predicted that microgravity would increase resting muscle glycogen and glycolytic metabolism in the slow fiber type, while the fast-twitch fiber enzyme profile would be unaltered. The increased muscle glycogen would in part result from an elevated hexokinase and glycogen synthase. The enzymes selected for study represent markers for mitochondrial function (citrate synthase and 0-hydroxyacyl-CoA dehydrogenase), glycolysis (Phosphofructokinase and lactate dehydrogenase), and fatty acid transport (Carnitine acetyl transferase). The substrates analyzed will include glycogen, lactate, adenosine triphosphate, and phosphocreatine.

  9. Analysis of relationship among visual evoked potential, oscillatory potential and visual acuity under stimulated weightlessness

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    2013-05-01

    Full Text Available AIM: To observe the influence of head-down tilt simulated weightlessness on visual evoked potential(VEP, oscillatory potentials(OPsand visual acuity, and analyse the relationship among them. METHODS: Head-down tilt for -6° was adopted in 14 healthy volunteers. Distant visual acuity, near visual acuity, VEP and OPs were recorded before, two days and five days after trial. The record procedure of OPs followed the ISCEV standard for full-field clinical electroretinography(2008 update. RESULTS: Significant differences were detected in the amplitude of P100 waves and ∑OPs among various time points(P<0.05. But no relationship was observed among VEP, OPs and visual acuity. CONCLUSION: Head-down tilt simulated weightlessness induce the rearrange of blood of the whole body including eyes, which can make the change of visual electrophysiology but not visual acuity.

  10. Effects of simulated weightlessness on the kinase activity of MEK1 induced by bone morphogenetic protein-2 in rat osteosarcoma cells

    Science.gov (United States)

    Zhang, S.; Wang, B.; Cao, X. S.; Yang, Z.

    Objective The mRNA expression of alpha 1 chain of type I collagen COL-I alpha 1 in rat osteosarcoma ROS17 2 8 cells induced by bone morphogenetic protein-2 BMP-2 was reduced under simulated microgravity The protein kinase MEK1 of MAPK signal pathway plays an important role in the expression of COL-I alpha 1 mRNA The purpose of this study is to investigate the effects of simulated weightlessness on the activity of MEK1 induced by BMP-2 in ROS17 2 8 cells Methods ROS17 2 8 cells were cultured in 1G control and rotating clinostat simulated weightlessness for 24 h 48 h and 72 h BMP-2 500 ng ml was added into the medium 1 h before the culture ended There was a control group in which ROS17 2 8 cells were cultured in 1G condition without BMP-2 Then the total protein of cells was extracted and the expression of phosphated-ERK1 2 p-ERK1 2 protein was detected by means of Western Blotting to show the kinase activity of MEK1 Results There were no significant differences in the expression of total ERK1 2 among all groups The expression of p-ERK1 2 was unconspicuous in the control group without BMP-2 but increased significantly when BMP-2 was added P 0 01 The level of p-ERK1 2 in simulated weightlessness group was much more lower than that in 1G group in every time point P 0 01 The expression of p-ERK1 2 gradually decreased along with the time of weightlessness simulation P 0 01 Conclusions The kinase activity of MEK1 induced by BMP-2 in rat osteosarcoma cells was reduced under simulated weightlessness

  11. Effect of simulated weightlessness on the expression of Cbfα1 induced by fluid shear stress in MG-63 osteosarcoma cells.

    Science.gov (United States)

    Yang, Z.; Zhang, S.; Wang, B.; Sun, X. Q.

    Objective The role of mechanical load in the functional regulation of osteoblasts becomes an emphasis in osseous biomechanical researches recently This study was aim to explore the effect of flow shear stress on the expression of Cbf alpha 1 in human osteosarcoma cells and to survey its functional alteration in simulated weightlessness Method After cultured for 72 h in two different gravitational environments i e 1G terrestrial gravitational condition and simulated weightlessness condition human osteosarcoma cells MG-63 were treated with 0 5 Pa or 1 5 Pa fluid shear stress FSS in a flow chamber for 15 30 60 min respectively The total RNA in cells was isolated Transcription PCR analysis was made to examine the gene expression of Cbf alpha 1 And the total protein of cells was extracted and the expression of Cbf alpha 1 protein was detected by means of Western Blotting Results MG-63 cultured in 1G condition reacted to FSS treatment with an enhanced expression of Cbf alpha 1 Compared with no FSS control group Cbf alpha 1 mRNA and protein expression increased significantly at 30 and 60 min with the treatment of FSS P 0 01 And there was remarkable difference on the Cbf alpha 1 mRNA and protein expression between the treatments of 0 5 Pa and 1 5 Pa FSS at 30 min or 60 min P 0 01 As to the osteoblasts cultured in simulated weightlessness by using clinostat the expression of Cbf alpha 1 was significantly different between 1G and simulated weightlessness conditions at each test time P 0 05 Compared with no FSS

  12. Otolith tilt-translation reinterpretation following prolonged weightlessness - Implications for preflight training

    Science.gov (United States)

    Parker, D. E.; Reschke, M. F.; Arrott, A. P.; Homick, J. L.; Lichtenberg, B. K.

    1985-01-01

    Observations with three astronauts yielded two major findings. First, perceived self-motion during sinusoidal roll differed immediately postflight from preflight. Between 70 and 150 min after landing, roll was perceived primarily as linear translation. Secondly, more horizontal eye movement was elicited by roll simulation immediately postflight relative to both preflight and later postflight observations. These results support an 'otolith tilt-translation reinterpretation' hypothesis, which has clear implications for understanding astronaut reports of space motion sickness during the early period of orbital flight. A proposal for 'prophylactic adaptation training' which may provide preflight adaptation to weightlessness, derives from this reearch.

  13. Changes of brain response induced by simulated weightlessness

    Science.gov (United States)

    Wei, Jinhe; Yan, Gongdong; Guan, Zhiqiang

    The characteristics change of brain response was studied during 15° head-down tilt (HDT) comparing with 45° head-up tilt (HUT). The brain responses evaluated included the EEG power spectra change at rest and during mental arithmetic, and the event-related potentials (ERPs) of somatosensory, selective attention and mental arithmetic activities. The prominent feature of brain response change during HDT revealed that the brain function was inhibited to some extent. Such inhibition included that the significant increment of "40Hz" activity during HUT arithmetic almost disappeared during HDT arithmetic, and that the positive-potential effect induced by HDT presented in all kinds of ERPs measured, but the slow negative wave reflecting mental arithmetic and memory process was elongated. These data suggest that the brain function be affected profoundly by the simulated weightlessness, therefore, the brain function change during space flight should be studied systematically.

  14. Effect of Constraint Loading on the Lower Limb Muscle Forces in Weightless Treadmill Exercise

    Directory of Open Access Journals (Sweden)

    Ning Guo

    2018-01-01

    Full Text Available Long exposure to the microgravity will lead to muscle atrophy and bone loss. Treadmill exercise could mitigate the musculoskeletal decline. But muscle atrophy remains inevitable. The constraint loading applied on astronauts could affect the muscle force and its atrophy severity. However, the quantitative correlation between constraint loading mode and muscle forces remains unclear. This study aimed to characterize the influence of constraint loading mode on the lower limb muscle forces in weightless treadmill exercise. The muscle forces in the full gait cycle were calculated with the inverse dynamic model of human musculoskeletal system. The calculated muscle forces at gravity were validated with the EMG data. Muscle forces increased at weightlessness compared with those at the earth’s gravity. The increasing percentage from high to low is as follows: biceps femoris, gastrocnemius, soleus, vastus, and rectus femoris, which was in agreement with the muscle atrophy observed in astronauts. The constraint loading mode had an impact on the muscle forces in treadmill exercise and thus could be manipulated to enhance the effect of the muscle training in spaceflight. The findings could provide biomechanical basis for the optimization of treadmill constraint system and training program and improve the countermeasure efficiency in spaceflight.

  15. Cardiovascular, renal, electrolyte, and hormonal changes in man during gravitational stress, weightlessness, and simulated weightlessness: Lower body positive pressure applied by the antigravity suit. Thesis - Oslo Univ.

    Science.gov (United States)

    Kravik, Stein E.

    1989-01-01

    Because of their erect posture, humans are more vulnerable to gravitational changes than any other animal. During standing or walking man must constantly use his antigravity muscles and his two columns, his legs, to balance against the force of gravity. At the same time, blood is surging downward to the dependent portions of the body, draining blood away from the brain and heart, and requiring a series of complex cardiovascular adjustments to maintain the human in a bipedal position. It was not until 12 April 1961, when Yuri Gagarin became the first human being to orbit Earth, that we could confirm man's ability to maintain vital functions in space -- at least for 90 min. Nevertheless, man's adaptation to weightlessness entails the deconditioning of various organs in the body. Muscles atrophy, and calcium loss leads to loss of bone strength as the demands on the musculoskeletal system are almost nonexistent in weightlessness. Because of the lack of hydrostatic pressures in space, blood rushes to the upper portions of the body, initiating a complex series of cardioregulatory responses. Deconditioning during spaceflight, however, first becomes a potentially serious problem in humans returning to Earth, when the cardiovascular system, muscles and bones are suddenly exposed to the demanding counterforce of gravity -- weight. One of the main purposes of our studies was to test the feasibility of using Lower Body Positive Pressure, applied with an antigravity suit, as a new and alternative technique to bed rest and water immersion for studying cardioregulatory, renal, electrolyte, and hormonal changes in humans. The results suggest that Lower Body Positive Pressure can be used as an analog of microgravity-induced physiological responses in humans.

  16. Weightless Environment Training Facility (WETF) materials coating evaluation, volume 1

    Science.gov (United States)

    1995-01-01

    The Weightless Environment Training Facility Material Coating Evaluation project has included preparing, coating, testing, and evaluating 800 test panels of three differing substrates. Ten selected coating systems were evaluated in six separate exposure environments and subject to three tests for physical properties. Substrate materials were identified, the manner of surface preparation described, and exposure environments defined. Exposure environments included immersion exposure, cyclic exposure, and field exposure. Cyclic exposures, specifically QUV-Weatherometer and the KTA Envirotest were found to be the most agressive of the environments included in the study when all three evaluation criteria are considered. This was found to result primarily from chalking of the coatings under ultraviolet (UV) light exposure. Volumes 2 and 3 hold the 5 appendices to this report.

  17. Weightless experiments to probe universality of fluid critical behavior

    Science.gov (United States)

    Lecoutre, C.; Guillaument, R.; Marre, S.; Garrabos, Y.; Beysens, D.; Hahn, I.

    2015-06-01

    Near the critical point of fluids, critical opalescence results in light attenuation, or turbidity increase, that can be used to probe the universality of critical behavior. Turbidity measurements in SF6 under weightlessness conditions on board the International Space Station are performed to appraise such behavior in terms of both temperature and density distances from the critical point. Data are obtained in a temperature range, far (1 K) from and extremely close (a few μ K ) to the phase transition, unattainable from previous experiments on Earth. Data are analyzed with renormalization-group matching classical-to-critical crossover models of the universal equation of state. It results that the data in the unexplored region, which is a minute deviant from the critical density value, still show adverse effects for testing the true asymptotic nature of the critical point phenomena.

  18. Human Cardiovascular Adaptation to Weightlessness

    Science.gov (United States)

    Norsk, Peter

    2011-01-01

    Entering weightlessness (0 G) induces immediately a shift of blood and fluid from the lower to the upper parts of the body inducing expansion of the cardiac chambers (Bungo et al. 1986; Charles & Lathers 1991; Videbaek & Norsk 1997). For many years the effects of sudden 0 G on central venous pressure (CVP) was discussed, and it puzzled researchers that CVP compared to the 1-G supine position decreased during the initial hours of spaceflight, when at the same time left atrial diameter increased (Buckey et al. 1996). By measuring esophageal pressure as an estimate of inter-pleural pressure, it was later shown that this pressure decreases more than CVP does during 0 G induced by parabolic flights (Videbaek & Norsk 1997). Thus, transmural CVP is increased, which distends the cardiac chambers. This unique lung-heart interaction whereby 1) inter-pleural pressure decreases and 2) central blood volume is expanded is unique for 0 G. Because transmural CVP is increased, stroke volume increases according to the law of Frank-Starling leading to an increase in cardiac output, which is maintained increased during months of 0 G in space to levels of some 25% above that of the 1-G seated position (Norsk unpublished). Simultaneously, sympathetic nervous activity is at the level of the upright 1-G posture, which is difficult to explain based on the high stroke volume and decreased blood pressure and systemic vascular resistance. This paradox should be explored and the mechanisms revealed, because it might have implications for estimating the cardiovascular risk of travelling in space.

  19. Using Weightless Neural Networks for Vergence Control in an Artificial Vision System

    Directory of Open Access Journals (Sweden)

    Karin S. Komati

    2003-01-01

    Full Text Available This paper presents a methodology we have developed and used to implement an artificial binocular vision system capable of emulating the vergence of eye movements. This methodology involves using weightless neural networks (WNNs as building blocks of artificial vision systems. Using the proposed methodology, we have designed several architectures of WNN-based artificial vision systems, in which images captured by virtual cameras are used for controlling the position of the ‘foveae’ of these cameras (high-resolution region of the images captured. Our best architecture is able to control the foveae vergence movements with average error of only 3.58 image pixels, which is equivalent to an angular error of approximately 0.629°.

  20. Simulated weightlessness and synbiotic diet effects on rat bone mechanical strength

    Science.gov (United States)

    Sarper, Hüseyin; Blanton, Cynthia; DePalma, Jude; Melnykov, Igor V.; Gabaldón, Annette M.

    2014-10-01

    This paper reports results on exposure to simulated weightlessness that leads to a rapid decrease in bone mineral density known as spaceflight osteopenia by evaluating the effectiveness of dietary supplementation with synbiotics to counteract the effects of skeletal unloading. Forty adult male rats were studied under four different conditions in a 2 × 2 factorial design with main effects of diet (synbiotic and control) and weight condition (unloaded and control). Hindlimb unloading was performed at all times for 14 days followed by 14 days of recovery (reambulation). The synbiotic diet contained probiotic strains Lactobacillus acidophilus and Lactococcus lactis lactis and prebiotic fructooligosaccharide. This paper also reports on the development of a desktop three-point bending device to measure the mechanical strength of bones from rats subjected to simulated weightlessness. The importance of quantifying bone resistance to breakage is critical when examining the effectiveness of interventions against osteopenia resulting from skeletal unloading, such as astronauts experience, disuse or disease. Mechanical strength indices provide information beyond measures of bone density and microarchitecture that enhance the overall assessment of a treatment's potency. In this study we used a newly constructed three-point bending device to measure the mechanical strength of femur and tibia bones from hindlimb-unloaded rats fed an experimental synbiotic diet enriched with probiotics and fermentable fiber. Two calculated outputs for each sample were Young's modulus of elasticity and fracture stress. Bone major elements (calcium, magnesium, and phosphorous) were quantified using ICP-MS analysis. Hindlimb unloading was associated with a significant loss of strength in the femur, and with significant reductions in major bone elements. The synbiotic diet did not protect against these unloading effects. Tibia strength and major elements were not reduced by hindlimb unloading, as was

  1. Developmental, nutritional and hormonal anomalies of weightlessness-grown wheat

    Science.gov (United States)

    Carman, J. G.; Hole, P.; Salisbury, F. B.; Bingham, G. E.

    2015-07-01

    The behavior of water in weightlessness, as occurs in orbiting spacecraft, presents multiple challenges for plant growth. Soils remain saturated, impeding aeration, and leaf surfaces remain wet, impeding gas exchange. Herein we report developmental and biochemical anomalies of "Super Dwarf" wheat (Triticum aestivum L.) grown aboard Space Station Mir during the 1996-97 "Greenhouse 2" experiment. Leaves of Mir-grown wheat were hyperhydric, senesced precociously and accumulated aromatic and branched-chain amino acids typical of tissues experiencing oxidative stress. The highest levels of stress-specific amino acids occurred in precociously-senescing leaves. Our results suggest that the leaf ventilation system of the Svet Greenhouse failed to remove sufficient boundary layer water, thus leading to poor gas exchange and onset of oxidative stress. As oxidative stress in plants has been observed in recent space-flight experiments, we recommend that percentage water content in apoplast free-spaces of leaves be used to evaluate leaf ventilation effectiveness. Mir-grown plants also tillered excessively. Crowns and culms of these plants contained low levels of abscisic acid but high levels of cytokinins. High ethylene levels may have suppressed abscisic acid synthesis, thus permitting cytokinins to accumulate and tillering to occur.

  2. Weightlessness and Cardiac Rhythm Disorders: Current Knowledge from Space Flight and Bed-Rest Studies

    International Nuclear Information System (INIS)

    Caiani, Enrico G.; Martin-Yebra, Alba; Landreani, Federica; Bolea, Juan; Laguna, Pablo; Vaïda, Pierre

    2016-01-01

    Isolated episodes of heart rhythm disorders have been reported during 40 years of space flight, triggering research to evaluate the risk of developing life-threatening arrhythmias induced by prolonged exposure to weightlessness. In fact, these events could compromise astronaut performance during exploratory missions, as well as pose at risk the astronaut health, due to limited options of care on board the International Space Station. Starting from original observations, this mini review will explore the latest research in this field, considering results obtained both during space flight and on Earth, the latter by simulating long-term exposure to microgravity by head-down bed rest maneuver in order to elicit cardiovascular deconditioning on normal volunteers.

  3. Weightlessness and Cardiac Rhythm Disorders: Current Knowledge from Space Flight and Bed-Rest Studies

    Energy Technology Data Exchange (ETDEWEB)

    Caiani, Enrico G. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan (Italy); Martin-Yebra, Alba [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan (Italy); Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza (Spain); Landreani, Federica [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan (Italy); Bolea, Juan; Laguna, Pablo [Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza (Spain); Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Zaragoza (Spain); Vaïda, Pierre, E-mail: enrico.caiani@polimi.it [École Nationale Supérieure de Cognitique, Institut Polytechnique de Bordeaux, Université de Bordeaux, Bordeaux (France)

    2016-08-23

    Isolated episodes of heart rhythm disorders have been reported during 40 years of space flight, triggering research to evaluate the risk of developing life-threatening arrhythmias induced by prolonged exposure to weightlessness. In fact, these events could compromise astronaut performance during exploratory missions, as well as pose at risk the astronaut health, due to limited options of care on board the International Space Station. Starting from original observations, this mini review will explore the latest research in this field, considering results obtained both during space flight and on Earth, the latter by simulating long-term exposure to microgravity by head-down bed rest maneuver in order to elicit cardiovascular deconditioning on normal volunteers.

  4. Cell proliferation, cell shape, and microtubule and cellulose microfibril organization of tobacco BY-2 cells are not altered by exposure to near weightlessness in space

    NARCIS (Netherlands)

    Sieberer, B.; Kieft, H.; Franssen-Verheijen, M.A.W.; Emons, A.M.C.; Vos, J.W.

    2009-01-01

    The microtubule cytoskeleton and the cell wall both play key roles in plant cell growth and division, determining the plant’s final stature. At near weightlessness, tubulin polymerizes into microtubules in vitro, but these microtubules do not self-organize in the ordered patterns observed at 1g.

  5. Study of histopathological and molecular changes of rat kidney under simulated weightlessness and resistance training protective effect.

    Directory of Open Access Journals (Sweden)

    Ye Ding

    Full Text Available To explore the effects of long-term weightlessness on the renal tissue, we used the two months tail suspension model to simulate microgravity and investigated the simulated microgravity on the renal morphological damages and related molecular mechanisms. The microscopic examination of tissue structure and ultrastructure was carried out for histopathological changes of renal tissue morphology. The immunohistochemistry, real-time PCR and Western blot were performed to explore the molecular mechanisms associated the observations. Hematoxylin and eosin (HE staining showed severe pathological kidney lesions including glomerular atrophy, degeneration and necrosis of renal tubular epithelial cells in two months tail-suspended rats. Ultrastructural studies of the renal tubular epithelial cells demonstrated that basal laminas of renal tubules were rough and incrassate with mitochondria swelling and vacuolation. Cell apoptosis in kidney monitored by the expression of Bax/Bcl-2 and caspase-3 accompanied these pathological damages caused by long-term microgravity. Analysis of the HSP70 protein expression illustrated that overexpression of HSP70 might play a crucial role in inducing those pathological damages. Glucose regulated protein 78 (GRP78, one of the endoplasmic reticulum (ER chaperones, was up-regulated significantly in the kidney of tail suspension rat, which implied that ER-stress was associated with apoptosis. Furthermore, CHOP and caspase-12 pathways were activated in ER-stress induced apoptosis. Resistance training not only reduced kidney cell apoptosis and expression of HSP70 protein, it also can attenuate the kidney impairment imposed by weightlessness. The appropriate optimization might be needed for the long term application for space exploration.

  6. Study of Histopathological and Molecular Changes of Rat Kidney under Simulated Weightlessness and Resistance Training Protective Effect

    Science.gov (United States)

    Li, Zhili; Tian, Jijing; Abdelalim, Saed; Du, Fang; She, Ruiping; Wang, Desheng; Tan, Cheng; Wang, Huijuan; Chen, Wenjuan; Lv, Dongqiang; Chang, Lingling

    2011-01-01

    To explore the effects of long-term weightlessness on the renal tissue, we used the two months tail suspension model to simulate microgravity and investigated the simulated microgravity on the renal morphological damages and related molecular mechanisms. The microscopic examination of tissue structure and ultrastructure was carried out for histopathological changes of renal tissue morphology. The immunohistochemistry, real-time PCR and Western blot were performed to explore the molecular mechanisms associated the observations. Hematoxylin and eosin (HE) staining showed severe pathological kidney lesions including glomerular atrophy, degeneration and necrosis of renal tubular epithelial cells in two months tail-suspended rats. Ultrastructural studies of the renal tubular epithelial cells demonstrated that basal laminas of renal tubules were rough and incrassate with mitochondria swelling and vacuolation. Cell apoptosis in kidney monitored by the expression of Bax/Bcl-2 and caspase-3 accompanied these pathological damages caused by long-term microgravity. Analysis of the HSP70 protein expression illustrated that overexpression of HSP70 might play a crucial role in inducing those pathological damages. Glucose regulated protein 78 (GRP78), one of the endoplasmic reticulum (ER) chaperones, was up-regulated significantly in the kidney of tail suspension rat, which implied that ER-stress was associated with apoptosis. Furthermore, CHOP and caspase-12 pathways were activated in ER-stress induced apoptosis. Resistance training not only reduced kidney cell apoptosis and expression of HSP70 protein, it also can attenuate the kidney impairment imposed by weightlessness. The appropriate optimization might be needed for the long term application for space exploration. PMID:21625440

  7. Skylab experiments. Volume 3: Materials science. [Skylab experiments on metallurgy, crystal growth, semiconductors, and combustion physics in weightless environment for high school level education

    Science.gov (United States)

    1973-01-01

    The materials science and technology investigation conducted on the Skylab vehicle are discussed. The thirteen experiments that support these investigations have been planned to evaluate the effect of a weightless environment on melting and resolidification of a variety of metals and semiconductor crystals, and on combustion of solid flammable materials. A glossary of terms which define the space activities and a bibliography of related data are presented.

  8. Separation of gaseous hydrogen from a water-hydrogen mixture in a fuel cell power system operating in a weightless environment

    Science.gov (United States)

    Romanowski, William E. (Inventor); Suljak, George T. (Inventor)

    1989-01-01

    A fuel cell power system for use in a weightless environment, such as in space, includes a device for removing water from a water-hydrogen mixture condensed from the exhaust from the fuel cell power section of the system. Water is removed from the mixture in a centrifugal separator, and is fed into a holding, pressure operated water discharge valve via a Pitot tube. Entrained nondissolved hydrogen is removed from the Pitot tube by a bleed orifice in the Pitot tube before the water reaches the water discharge valve. Water discharged from the valve thus has a substantially reduced hydrogen content.

  9. 太空实验引出对“引力重力失重”问题的探讨%Discussion on "Gravitation Gravity Weightlessness "Question Caused by Space Experiment

    Institute of Scientific and Technical Information of China (English)

    蒋华; 周智良

    2014-01-01

    This article started from some problem s cause by space experiment in the Tiangong 1 ,com paring the gravity on the earth's surface and outer space by means of strict calculation , the "gravity , gravity and weightlessness" are analyzed in depth and anatomy ,especially the "weightlessness" and the so called "out of earth's gravity" .%通过“天宫一号”太空实验引发的问题,经过严格的计算,对比了地球表面和外太空物体所受重力,对“引力、重力、失重”进行了深度分析和解剖,特别对“太空失重”有更深入的解读,对所谓“脱离地球引力”有更深入的探讨。

  10. Morphology and Molecular Mechanisms of Hepatic Injury in Rats under Simulated Weightlessness and the Protective Effects of Resistance Training.

    Directory of Open Access Journals (Sweden)

    Fang Du

    Full Text Available This study investigated the effects of long-term simulated weightlessness on liver morphology, enzymes, glycogen, and apoptosis related proteins by using two-month rat-tail suspension model (TS, and liver injury improvement by rat-tail suspension with resistance training model (TS&RT. Microscopically the livers of TS rats showed massive granular degeneration, chronic inflammation, and portal fibrosis. Mitochondrial and endoplasmic reticulum swelling and loss of membrane integrity were observed by transmission electron microscopy (TEM. The similar, but milder, morphological changes were observed in the livers of TS&RT rats. Serum biochemistry analysis revealed that the levels of alanine aminotransferase (ALT and aspartate aminotransferase (AST were significantly higher (p<0.05 in TS rats than in controls. The levels of ALT and AST in TS&RT rats were slightly lower than in RT rats, but they were insignificantly higher than in controls. However, both TS and TS&RT rats had significantly lower levels (p<0.05 of serum glucose and hepatic glycogen than in controls. Immunohistochemistry demonstrated that the expressions of Bax, Bcl-2, and active caspase-3 were higher in TS rats than in TS&RT and control rats. Real-time polymerase chain reaction (real-time PCR showed that TS rats had higher mRNA levels (P < 0.05 of glucose-regulated protein 78 (GRP78 and caspase-12 transcription than in control rats; whereas mRNA expressions of C/EBP homologous protein (CHOP and c-Jun N-terminal kinase (JNK were slightly higher in TS rats. TS&RT rats showed no significant differences of above 4 mRNAs compared with the control group. Our results demonstrated that long-term weightlessness caused hepatic injury, and may trigger hepatic apoptosis. Resistance training slightly improved hepatic damage.

  11. Morphology and Molecular Mechanisms of Hepatic Injury in Rats under Simulated Weightlessness and the Protective Effects of Resistance Training

    Science.gov (United States)

    Zou, Jun; Li, Zhili; Tian, Jijing; She, Ruiping; Wang, Desheng; Wang, Huijuan; Lv, Dongqiang; Chang, Lingling

    2015-01-01

    This study investigated the effects of long-term simulated weightlessness on liver morphology, enzymes, glycogen, and apoptosis related proteins by using two-month rat-tail suspension model (TS), and liver injury improvement by rat-tail suspension with resistance training model (TS&RT). Microscopically the livers of TS rats showed massive granular degeneration, chronic inflammation, and portal fibrosis. Mitochondrial and endoplasmic reticulum swelling and loss of membrane integrity were observed by transmission electron microscopy (TEM). The similar, but milder, morphological changes were observed in the livers of TS&RT rats. Serum biochemistry analysis revealed that the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly higher (ptraining slightly improved hepatic damage. PMID:26000905

  12. Logistic Risk Model for the Unique Effects of Inherent Aerobic Capacity on (+)G(sub z) Tolerance Before and After Simulated Weightlessness

    Science.gov (United States)

    Ludwig, David A.; Convertino, Victor A.; Goldwater, Danielle J.; Sandler, Harold

    1987-01-01

    Small sample size (n less than 1O) and inappropriate analysis of multivariate data have hindered previous attempts to describe which physiologic and demographic variables are most important in determining how long humans can tolerate acceleration. Data from previous centrifuge studies conducted at NASA/Ames Research Center, utilizing a 7-14 d bed rest protocol to simulate weightlessness, were included in the current investigation. After review, data on 25 women and 22 men were available for analysis. Study variables included gender, age, weight, height, percent body fat, resting heart rate, mean arterial pressure, Vo(sub 2)max and plasma volume. Since the dependent variable was time to greyout (failure), two contemporary biostatistical modeling procedures (proportional hazard and logistic discriminant function) were used to estimate risk, given a particular subject's profile. After adjusting for pro-bed-rest tolerance time, none of the profile variables remained in the risk equation for post-bed-rest tolerance greyout. However, prior to bed rest, risk of greyout could be predicted with 91% accuracy. All of the profile variables except weight, MAP, and those related to inherent aerobic capacity (Vo(sub 2)max, percent body fat, resting heart rate) entered the risk equation for pro-bed-rest greyout. A cross-validation using 24 new subjects indicated a very stable model for risk prediction, accurate within 5% of the original equation. The result for the inherent fitness variables is significant in that a consensus as to whether an increased aerobic capacity is beneficial or detrimental has not been satisfactorily established. We conclude that tolerance to +Gz acceleration before and after simulated weightlessness is independent of inherent aerobic fitness.

  13. Automatic disease diagnosis using optimised weightless neural networks for low-power wearable devices.

    Science.gov (United States)

    Cheruku, Ramalingaswamy; Edla, Damodar Reddy; Kuppili, Venkatanareshbabu; Dharavath, Ramesh; Beechu, Nareshkumar Reddy

    2017-08-01

    Low-power wearable devices for disease diagnosis are used at anytime and anywhere. These are non-invasive and pain-free for the better quality of life. However, these devices are resource constrained in terms of memory and processing capability. Memory constraint allows these devices to store a limited number of patterns and processing constraint provides delayed response. It is a challenging task to design a robust classification system under above constraints with high accuracy. In this Letter, to resolve this problem, a novel architecture for weightless neural networks (WNNs) has been proposed. It uses variable sized random access memories to optimise the memory usage and a modified binary TRIE data structure for reducing the test time. In addition, a bio-inspired-based genetic algorithm has been employed to improve the accuracy. The proposed architecture is experimented on various disease datasets using its software and hardware realisations. The experimental results prove that the proposed architecture achieves better performance in terms of accuracy, memory saving and test time as compared to standard WNNs. It also outperforms in terms of accuracy as compared to conventional neural network-based classifiers. The proposed architecture is a powerful part of most of the low-power wearable devices for the solution of memory, accuracy and time issues.

  14. Effects of Zoledronate and Mechanical Loading during Simulated Weightlessness on Bone Structure and Mechanical Properties

    Science.gov (United States)

    Scott, R. T.; Nalavadi, M. O.; Shirazi-Fard, Y.; Castillo, A. B.; Alwood, J. S.

    2016-01-01

    Space flight modulates bone remodeling to favor bone resorption. Current countermeasures include an anti-resorptive drug class, bisphosphonates (BP), and high-force loading regimens. Does the combination of anti-resorptives and high-force exercise during weightlessness have negative effects on the mechanical and structural properties of bone? In this study, we implemented an integrated model to mimic mechanical strain of exercise via cyclical loading (CL) in mice treated with the BP Zoledronate (ZOL) combined with hindlimb unloading (HU). Our working hypothesis is that CL combined with ZOL in the HU model induces additive structural and mechanical changes. Thirty-two C57BL6 mice (male,16 weeks old, n8group) were exposed to 3 weeks of either HU or normal ambulation (NA). Cohorts of mice received one subcutaneous injection of ZOL (45gkg), or saline vehicle, prior to experiment. The right tibia was axially loaded in vivo, 60xday to 9N in compression, repeated 3xweek during HU. During the application of compression, secant stiffness (SEC), a linear estimate of slope of the force displacement curve from rest (0.5N) to max load (9.0N), was calculated for each cycle once per week. Ex vivo CT was conducted on all subjects. For ex vivo mechanical properties, non-CL left femurs underwent 3-point bending. In the proximal tibial metaphysis, HU decreased, CL increased, and ZOL increased the cancellous bone volume to total volume ratio by -26, +21, and +33, respectively. Similar trends held for trabecular thickness and number. Ex vivo left femur mechanical properties revealed HU decreased stiffness (-37),and ZOL mitigated the HU stiffness losses (+78). Data on the ex vivo Ultimate Force followed similar trends. After 3 weeks, HU decreased in vivo SEC (-16). The combination of CL+HU appeared additive in bone structure and mechanical properties. However, when HU + CL + ZOL were combined, ZOL had no additional effect (p0.05) on in vivo SEC. Structural data followed this trend with

  15. Benefits of a Single-Person Spacecraft for Weightless Operations

    Science.gov (United States)

    Griffin, Brand Norman

    2012-01-01

    Historically, less than 20 percent of crew time related to extravehicular activity (EVA) is spent on productive external work. For planetary operations space suits are still the logical choice; however for safe and rapid access to the weightless environment, spacecraft offer compelling advantages. FlexCraft, a concept for a single-person spacecraft, enables any-time access to space for short or long excursions by different astronauts. For the International Space Station (ISS), going outside is time-consuming, requiring pre-breathing, donning a fitted space suit, and pumping down an airlock. For each ISS EVA this is between 12.5 and 16 hours. FlexCraft provides immediate access to space because it operates with the same cabin atmosphere as its host. Furthermore, compared to the space suit pure oxygen environment, a mixed gas atmosphere lowers the fire risk and allows use of conventional materials and systems. For getting to the worksite, integral propulsion replaces hand-over-hand translation or having another crew member operate the robotic arm. This means less physical exertion and more time at the work site. Possibly more important, in case of an emergency, FlexCraft can return from the most distant point on ISS in less than a minute. The one-size-fits-all FlexCraft means no on-orbit inventory of parts or crew time required to fit all astronauts. With a shirtsleeve cockpit, conventional displays and controls are used, there is no suit trauma and because the work is not strenuous, no rest days are required. Furthermore, there is no need to collect hand tools because manipulators are equipped with force multiplying end-effectors that can deliver the precise torque for the job. FlexCraft is an efficient solution for asteroid exploration allowing all crew to use one vehicle with no risk of contamination. And, because FlexCraft is a vehicle, its design offers better radiation and micro-meteoroid protection than space suits.

  16. Anesthesia and critical-care delivery in weightlessness: A challenge for research in parabolic flight analogue space surgery studies

    Science.gov (United States)

    Ball, Chad G.; Keaney, Marilyn A.; Chun, Rosaleen; Groleau, Michelle; Tyssen, Michelle; Keyte, Jennifer; Broderick, Timothy J.; Kirkpatrick, Andrew W.

    2010-03-01

    BackgroundMultiple nations are actively pursuing manned exploration of space beyond low-earth orbit. The responsibility to improve surgical care for spaceflight is substantial. Although the use of parabolic flight as a terrestrial analogue to study surgery in weightlessness (0 g) is well described, minimal data is available to guide the appropriate delivery of anesthesia. After studying anesthetized pigs in a 0 g parabolic flight environment, our group developed a comprehensive protocol describing prolonged anesthesia in a parabolic flight analogue space surgery study (PFASSS). Novel challenges included a physically remote vivarium, prolonged (>10 h) anesthetic requirements, and the provision of veterinary operating room/intensive care unit (ICU) equivalency on-board an aircraft with physical dimensions of ethical approval, multiple ground laboratory sessions were conducted with combinations of anesthetic, pre-medication, and induction protocols on Yorkshire-cross specific pathogen-free (SPF) pigs. Several constant rate infusion (CRI) intravenous anesthetic combinations were tested. In each regimen, opioids were administered to ensure analgesia. Ventilation was supported mechanically with blended gradients of oxygen. The best performing terrestrial 1 g regime was flight tested in parabolic flight for its effectiveness in sustaining optimal and prolonged anesthesia, analgesia, and maintaining hemodynamic stability. Each flight day, a fully anesthetized, ventilated, and surgically instrumented pig was transported to the Flight Research Laboratory (FRL) in a temperature-controlled animal ambulance. A modular on-board surgical/ICU suite with appropriate anesthesia/ICU and surgical support capabilities was employed. ResultsThe mean duration of anesthesia (per flight day) was 10.28 h over four consecutive days. A barbiturate and ketamine-based CRI anesthetic regimen supplemented with narcotic analgesia by bolus administration offered the greatest prolonged hemodynamic

  17. Modeling of Cardiovascular Response to Weightlessness

    Science.gov (United States)

    Sharp, M. Keith

    1999-01-01

    It was the hypothesis of this Project that the Simple lack of hydrostatic pressure in microgravity generates several purely physical reactions that underlie and may explain, in part, the cardiovascular response to weightlessness. For instance, hydrostatic pressure within the ventricles of the heart may improve cardiac performance by promoting expansion of ventricular volume during diastole. The lack of hydrostatic pressure in microgravity might, therefore, reduce diastolic filling and cardiac performance. The change in transmural pressure is possible due to the difference in hydrostatic pressure gradients between the blood inside the ventricle and the lung tissue surrounding the ventricle due to their different densities. On the other hand, hydrostatic pressure within the vasculature may reduce cardiac inlet pressures because of the typical location of the heart above the hydrostatic indifference level (the level at which pressure remains constant throughout changes in gravity). Additional physical responses of the body to changing gravitational conditions may influence cardiovascular performance. For instance, fluid shifts from the lower body to the thorax in microgravity may serve to increase central venous pressure (CVP) and boost cardiac output (CO). The concurrent release of gravitational force on the rib cage may tend to increase chest girth and decrease pedcardial pressure, augmenting ventricular filling. The lack of gravity on pulmonary tissue may allow an upward shifting of lung mass, causing a further decrease in pericardial pressure and increased CO. Additional effects include diuresis early in the flight, interstitial fluid shifts, gradual spinal extension and movement of abdominal mass, and redistribution of circulatory impedance because of venous distention in the upper body and the collapse of veins in the lower body. In this project, the cardiovascular responses to changes in intraventricular hydrostatic pressure, in intravascular hydrostatic

  18. External Load Affects Ground Reaction Force Parameters Non-uniformly during Running in Weightlessness

    Science.gov (United States)

    DeWitt, John; Schaffner, Grant; Laughlin, Mitzi; Loehr, James; Hagan, R. Donald

    2004-01-01

    Long-term exposure to microgravity induces detrimefits to the musculcskdetal system (Schneider et al., 1995; LeBlanc et al., 2000). Treadmill exercise is used onboard the International Space Station as an exercise countermeasure to musculoskeletal deconditioning due to spaceflight. During locomotive exercise in weightlessness (0G), crewmembers wear a harness attached to an external loading mechanism (EL). The EL pulls the crewmember toward the treadmill, and provides resistive load during the impact and propulsive phases of gait. The resulting forces may be important in stimulating bone maintenance (Turner, 1998). The EL can be applied via a bungee and carabineer clip configuration attached to the harness and can be manipulated to create varying amounts of load levels during exercise. Ground-based research performed using a vertically mounted treadmill found that peak ground reaction forces (GRF) during running at an EL of less than one body weight (BW) are less than those that occur during running in normal gravity (1G) (Davis et al., 1996). However, it is not known how the GRF are affected by the EL in a true OG environment. Locomotion while suspended may result in biomechanics that differ from free running. The purpose of this investigation was to determine how EL affects peak impact force, peak propulsive force, loading rate, and impulse of the GRF during running in 0G. It was hypothesized that increasing EL would result in increases in each GRF parameter.

  19. The different effects of high intensity interval training and moderate intensity interval training for weightlessness countermeasures

    Science.gov (United States)

    Wang, Lin-Jie; Cheng, Tan; Zhi-Li, Li; Hui-juan, Wang; Wen-juan, Chen; Jianfeng, Zhang; Desheng, Wang; Dongbin, Niu; Qi, Zhao; Chengjia, Yang; Yanqing, Wang

    High intensity interval training (HIIT) has been demonstrated to improve performance in a relatively short training period. But the difference between high intensity interval training and moderate intensity interval training (MIIT) in simulated weightlessness still has not been well studied. This study sought to characterize the difference between 6 weeks high intensity interval training and moderate intensity interval training under reduced weight (RW) gait training device and zero-gravity locomotion system (ZLS). Twenty-three subjects (14M/4F, 32.5±4.5 years) volunteered to participate. They were divided into three groups, that were MITT (alternating 2 min at 40% VO _{2} peak and 2 min at 60% VO _{2} peak for 30min, five days per week) RW group (n=8), HITT (alternating 2 min at 40% VO _{2} peak and 2 min at 90% VO _{2} peak for 30min, three days per week) RW group (n=8) and HITT ZLS group (n=7). The Z-axis load used in RW group was 80% body weight (BW) and in ZLS was 100% BW. Cardiopulmonary function was measured before, after 4-week training and after 6-week training. Isokinetic knee extension-flexion test at 60(°) deg/s and 180(°) deg/s were performed before and after the 6-week training, and isometric knee extension-flexion test at 180(°) deg/s was also examined at the same time. It was found that the VO _{2} peaks, metabolic equivalent (MET), Speedmax and respiratory exchange ratio (RER) were significantly increased after 4 and 6-week training in all three groups and no significant group difference were detected. The peak torque at 60(°) deg/s for right knee flexion were significantly increased after 6 week-training in all three groups, and only in HITT RW group the total power at 60(°) deg/s for right knee flexion enhanced. The total power and average power at 60(°) deg/s for right knee extension decreased significantly after 6-week training in all three groups. The peak torque at 60(°) deg/s for right knee extension in MIIT RW group was

  20. Impacts of Simulated Weightlessness by Dry Immersion on Optic Nerve Sheath Diameter and Cerebral Autoregulation

    Directory of Open Access Journals (Sweden)

    Marc Kermorgant

    2017-10-01

    Full Text Available Dry immersion (DI is used to simulate weightlessness. We investigated in healthy volunteers if DI induces changes in ONSD, as a surrogate marker of intracranial pressure (ICP and how these changes could affect cerebral autoregulation (CA. Changes in ICP were indirectly measured by changes in optic nerve sheath diameter (ONSD. 12 healthy male volunteers underwent 3 days of DI. ONSD was indirectly assessed by ocular ultrasonography. Cerebral blood flow velocity (CBFV of the middle cerebral artery was gauged using transcranial Doppler ultrasonography. CA was evaluated by two methods: (1 transfer function analysis was calculated to determine the relationship between mean CBFV and mean arterial blood pressure (ABP and (2 correlation index Mxa between mean CBFV and mean ABP.ONSD increased significantly during the first day, the third day and the first day of recovery of DI (P < 0.001.DI induced a reduction in Mxa index (P < 0.001 and an elevation in phase shift in low frequency bandwidth (P < 0.05. After DI, Mxa and coherence were strongly correlated with ONSD (P < 0.05 but not before DI. These results indicate that 3 days of DI induces significant changes in ONSD most likely reflecting an increase in ICP. CA was improved but also negatively correlated with ONSD suggesting that a persistent elevation ICP favors poor CA recovery after simulated microgravity.

  1. Biomedical research on the International Space Station postural and manipulation problems of the human upper limb in weightlessness

    Science.gov (United States)

    Neri, Gianluca; Zolesi, Valfredo

    2000-01-01

    Accumulated evidence, based on information gathered on space flight missions and ground based models involving both humans and animals, clearly suggests that exposure to states of microgravity conditions for varying duration induces certain physiological changes; they involve cardiovascular deconditioning, balance disorders, bone weakening, muscle hypertrophy, disturbed sleep patterns and depressed immune responses. The effects of the microgravity on the astronauts' movement and attitude have been studied during different space missions, increasing the knowledge of the human physiology in weightlessness. The purpose of the research addressed in the present paper is to understand and to assess the performances of the upper limb, especially during grasp. Objects of the research are the physiological changes related to the long-term duration spaceflight environment. Specifically, the changes concerning the upper limb are investigated, with particular regard to the performances of the hand in zero-g environments. This research presents also effects on the Earth, improving the studies on a number of pathological states, on the health care and the rehabilitation. In this perspective, a set of experiments are proposed, aimed at the evaluation of the effects of the zero-g environments on neurophysiology of grasping movements, fatigue assessment, precision grip. .

  2. Origins and Early History of Underwater Neutral Buoyancy Simulation of Weightlessness for EVA Procedures Development and Training. Part 2; Winnowing and Regrowth

    Science.gov (United States)

    Charles, John B.

    2013-01-01

    The technique of neutral buoyancy during water immersion was applied to a variety of questions pertaining to human performance factors in the early years of the space age. It was independently initiated by numerous aerospace contractors at nearly the same time, but specific applications depended on the problems that the developers were trying to solve. Those problems dealt primarily with human restraint and maneuverability and were often generic across extravehicular activity (EVA) and intravehicular activity (IVA) worksites. The same groups often also considered fractional gravity as well as weightless settings and experimented with ballasting to achieve lunar and Mars-equivalent loads as part of their on-going research and development. Dr. John Charles reviewed the association of those tasks with contemporary perceptions of the direction of NASA's future space exploration activities and with Air Force assessments of the military value of man in space.

  3. Role of cardiac volume receptors in the control of ADH release during acute simulated weightlessness in man

    Science.gov (United States)

    Convertino, V. A.; Benjamin, B. A.; Keil, L. C.; Sandler, H.

    1984-01-01

    Hemodynamic responses and antidiuretic hormone (ADH) were measured during body position changes, designed to induce central blood volume shifts in ten cardiac and one heart-lung transplant recipients, to assess the contribution of cardiac volume receptors in the control of ADH release during the initial acute phase of exposure to weightlessness. Each subject underwent 15 min of a sitting-control period (C) followed by 30 min of 6 deg headdown tilt (T) and 30 min of resumed sitting (S). Venous blood samples and cardiac dimensions were taken at 0 and 15 min of C; 5, 15, and 30 min of T; and 5, 15, and 30 min of S. Blood samples were analyzed for hematocrit, plasma osmolality, plasma renin activity (PRA), and ADH. Heart rate and blood pressure were recorded every two min. Plasma osmolality was not altered by posture changes. Mean left ventricular end-diastolic volume increased (P less than 0.05) from 90 ml in C to 106 ml in T and returned to 87 ml in S. Plasma ADH was reduced by 20 percent (P less than 0.05) with T, and returned to control levels with S. These responses were similar in six normal cardiac-innervated control subjects. These data may suggest that cardiac volume receptors are not the primary mechanism for the control of ADH release during acute central volume shifts in man.

  4. The effect of the configuration and the interior design of a virtual weightless space station on human spatial orientation

    Science.gov (United States)

    Aoki, Hirofumi; Ohno, Ryuzo; Yamaguchi, Takao

    2005-05-01

    In a virtual weightless environment, subjects' orientation skills were studied to examine what kind of cognitive errors people make when they moved through the interior space of virtual space stations and what kind of visual information effectively decreases those errors. Subjects wearing a head-mounted display moved from one end to the other end in space station-like routes constructed of rectangular and cubical modules, and did Pointing and Modeling tasks. In Experiment 1, configurations of the routes were changed with such variables as the number of bends, the number of embedding planes, and the number of planes with respect to the body posture. The results indicated that spatial orientation ability was relevant to the variables and that orientational errors were explained by two causes. One of these was that the place, the direction, and the sequence of turns were incorrect. The other was that subjects did not recognize the rotation of the frame of reference, especially when they turned in pitch direction rather than in yaw. In Experiment 2, the effect of the interior design was examined by testing three design settings. Wall colors that showed the allocentric frame of reference and the different interior design of vertical and horizontal modules were effective; however, there was a limit to the effectiveness in complicated configurations.

  5. The effect of the configuration and the interior design of a virtual weightless space station on human spatial orientation.

    Science.gov (United States)

    Aoki, Hirofumi; Ohno, Ryuzo; Yamaguchi, Takao

    2005-01-01

    In a virtual weightless environment, subjects' orientation skills were studied to examine what kind of cognitive errors people make when they moved through the interior space of virtual space stations and what kind of visual information effectively decreases those errors. Subjects wearing a head-mounted display moved from one end to the other end in space station-like routes constructed of rectangular and cubical modules, and did Pointing and Modeling tasks. In Experiment 1, configurations of the routes were changed with such variables as the number of bends, the number of embedding planes, and the number of planes with respect to the body posture. The results indicated that spatial orientation ability was relevant to the variables and that orientational errors were explained by two causes. One of these was that the place, the direction, and the sequence of turns were incorrect. The other was that subjects did not recognize the rotation of the frame of reference, especially when they turned in pitch direction rather than in yaw. In Experiment 2, the effect of the interior design was examined by testing three design settings. Wall colors that showed the allocentric frame of reference and the different interior design of vertical and horizontal modules were effective; however, there was a limit to the effectiveness in complicated configurations. c2005 Published by Elsevier Ltd.

  6. Intake of Fish and Omega-3 (N-3) Fatty Acid: Effect on Humans during Actual and Simulated Weightlessness

    Science.gov (United States)

    Smith, Scott M.; Mehta, Satish K.; Pierson, Duane L.; Zwart, Sara R.

    2009-01-01

    Space flight has many negative effects on human physiology, including bone and muscle loss. These are some of the systems on which intakes of fish and n-3 fatty acids have positive effects. These effects are likely to occur through inhibition of inflammatory cytokines (such as TNFalpha) and thus inhibition of downstream NF-KB activation. We documented this effect in a 3D cell culture model, where NF-KB activation in osteoclasts was inhibited by eicosapentaenoic acid, an n-3 fatty acid. We have extended these studies and report here (a) NF-KB expression in peripheral blood mononuclear cells of Space Shuttle crews on 2-wk missions, (b) the effects of n-3 fatty acid intake after 60 d of bed rest (a weightlessness analog), and (c) the effects of fish intake in astronauts after 4 to 6 mo on the International Space Station. After Shuttle flights of 2 wk, NFKB p65 expression at landing was increased (P less than 0.001). After 60 d of bed rest, higher intake of n-3 fatty acids was associated with less N-telopeptide excretion (Pearson r = -0.62, P less than 0.05). Higher consumption of fish during flight was associated with higher bone mineral density (Pearson r = -0.46, P less than 0.05). Together with our earlier findings, these data provide mechanistic cellular and preliminary human evidence of the potential for n-3 fatty acids to counteract bone loss associated with spaceflight. This study was supported by the NASA Human Research Program.

  7. How absolute EIT reflects the dependence of unilateral lung aeration on hyper-gravity and weightlessness?

    Science.gov (United States)

    Hahn, G; Just, A; Hellige, G; Dittmar, J; Quintel, M

    2013-09-01

    We studied the influence of three gravity levels (0, 1 and 1.8 g) on unilateral lung aeration in a left lateral position by the application of absolute electrical impedance tomography. The electrical resistivity of the lung tissue was considered to be a meaningful indicator for lung aeration since changes in resistivity have already been validated in other studies to be proportional to changes in lung volume. Twenty-two healthy volunteers were studied during parabolic flights with three phases of different gravity, each lasting ∼20-22 s. Spontaneous breathing at normal tidal volume VT and at increased VT was performed. During transition to hyper-gravity mean expiratory resistivities (±SD in Ωm) increased at normal VT in the upper (right) lung from 7.6 ± 1.5 to 8.0 ± 1.7 and decreased from 5.8 ± 1.2 to 5.7 ± 1.2 in the lower (left) lung. Inspiratory resistivity values are 8.3 ± 1.6 to 8.8 ± 1.8 (right) and 6.3 ± 1.3 to 6.0 ± 1.3 (left). At increased VT, the changes in resistivities at end-expiration were 7.7 ± 1.5 to 8.0 ± 1.7 (right) and 5.8 ± 1.2 to 5.7 ± 1.2 (left). Corresponding end-inspiratory values are 9.9 ± 1.9 to 10.0 ± 2.0 (right) and 8.6 ± 2.1 to 7.9 ± 2.0 (left). During weightlessness, the distortion in the lungs disappeared and both lungs showed a nearly identical aeration, which was between the levels displayed at normal gravity. The small increase in resistivity for the upper lung during transition to hyper-gravity from 1 to 1.8 g at increased VT suggests that the degressive part of the pressure-volume curve has already been reached at end-inspiration. The results for a left lateral position are in agreement with West's lung model which has been introduced for cranio-caudal gravity dependence in the lungs.

  8. How absolute EIT reflects the dependence of unilateral lung aeration on hyper-gravity and weightlessness?

    International Nuclear Information System (INIS)

    Hahn, G; Just, A; Hellige, G; Dittmar, J; Quintel, M

    2013-01-01

    We studied the influence of three gravity levels (0, 1 and 1.8 g) on unilateral lung aeration in a left lateral position by the application of absolute electrical impedance tomography. The electrical resistivity of the lung tissue was considered to be a meaningful indicator for lung aeration since changes in resistivity have already been validated in other studies to be proportional to changes in lung volume. Twenty-two healthy volunteers were studied during parabolic flights with three phases of different gravity, each lasting ∼20–22 s. Spontaneous breathing at normal tidal volume V T and at increased V T was performed. During transition to hyper-gravity mean expiratory resistivities (±SD in Ωm) increased at normal V T in the upper (right) lung from 7.6 ± 1.5 to 8.0 ± 1.7 and decreased from 5.8 ± 1.2 to 5.7 ± 1.2 in the lower (left) lung. Inspiratory resistivity values are 8.3 ± 1.6 to 8.8 ± 1.8 (right) and 6.3 ± 1.3 to 6.0 ± 1.3 (left). At increased V T , the changes in resistivities at end-expiration were 7.7 ± 1.5 to 8.0 ± 1.7 (right) and 5.8 ± 1.2 to 5.7 ± 1.2 (left). Corresponding end-inspiratory values are 9.9 ± 1.9 to 10.0 ± 2.0 (right) and 8.6 ± 2.1 to 7.9 ± 2.0 (left). During weightlessness, the distortion in the lungs disappeared and both lungs showed a nearly identical aeration, which was between the levels displayed at normal gravity. The small increase in resistivity for the upper lung during transition to hyper-gravity from 1 to 1.8 g at increased V T suggests that the degressive part of the pressure–volume curve has already been reached at end-inspiration. The results for a left lateral position are in agreement with West's lung model which has been introduced for cranio-caudal gravity dependence in the lungs. (paper)

  9. Intake of Fish and Omega-3 (n-3) Fatty Acids: Effect on Humans During Actual and Simulated Weightlessness

    Science.gov (United States)

    Smith, S. M.; Pierson, D. L.; Mehta, S. K.; Zwart, S. R.

    2011-01-01

    Space flight has many negative effects on human physiology, including bone and muscle loss. Bone and muscle are two systems that are positively affected by dietary intake of fish and n-3 fatty acids. The mechanism is likely to be related to inhibition by n-3 fatty acids of inflammatory cytokines (such as TNF) and thus inhibition of downstream NF-kB activation. We have documented this effect in a 3-dimensional cell culture model, where NF-kB activation in osteoclasts was inhibited by eicosapentaenoic acid, an n-3 fatty acid. We have also indentified that NF-kB activation in peripheral blood mononuclear cells of Space Shuttle crews. We found that after Shuttle flights of 2 wk, expression of the protein p65 (evidence of NF-kB activation) was increased at landing (P less than 0.001). When evaluating the effects of n-3 fatty acid intake on bone breakdown after 60 d of bed rest (a weightlessness analog). We found that after 60 d of bed rest, greater intake of n-3 fatty acids was associated with less N-telopeptide excretion (Pearson r = -0.62, P less than 0.05). We also evaluated the relationship of fish intake and bone loss in astronauts after 4 to 6 mo missions on the International Space Station. Higher consumption of fish during flight was associated with higher bone mineral density (Pearson r = 0.46, P less than 0.05). Together, these findings provide evidence of the cellular mechanism by which n-3 fatty acids can inhibit bone loss, and preliminary human evidence of the potential for n-3 fatty acids to counteract bone loss associated with space flight. This study was supported by the NASA Human Research Program.

  10. Six-Degree Head-Down Tilt Bed Rest: Forty Years of Development as a Physiological Analog for Weightlessness

    Science.gov (United States)

    Smith, Jeffrey D.; Cromwell, Ronita L.; Kundrot, Craig E.; Charles, John B.

    2011-01-01

    Early on, bed rest was recognized as a method for inducing many of the physiological changes experienced by spaceflight. Head-down tilt (HDT) bed rest was first introduced as an analog for spaceflight by a Soviet team led by Genin and Kakurin. Their study was performed in 1970 (at -4 degrees) and lasted for 30 days; results were reported in the Russian Journal of Space Biology (Kosmicheskaya Biol. 1972; 6(4): 26-28 & 45-109). The goal was to test physiological countermeasures for cosmonauts who would soon begin month-long missions to the Salyut space station. HDT was chosen to produce a similar sensation of blood flow to the head reported by Soyuz cosmonauts. Over the next decade, other tilt angles were studied and comparisons with spaceflight were made, showing that HDT greater than 4 degrees was superior to horizontal bed rest for modeling acute physiological changes observed in space; but, at higher angles, subjects experienced greater discomfort without clearly improving the physiological comparison to spaceflight. A joint study performed by US and Soviet investigators, in 1979, set the goal of standardization of baseline conditions and chose 6-degrees HDT. This effectively established 6-degree HDT bed rest as the internationally-preferred analog for weightlessness and, since 1990, nearly all further studies have been conducted at 6-degrees HDT. A thorough literature review (1970-2010) revealed 534 primary scientific journal articles which reported results from using HDT as a physiological analog for spaceflight. These studies have ranged from as little as 10 minutes to the longest duration of 370 days. Long-term studies lasting four weeks or more have resulted in over 170 primary research articles. Today, the 6-degree HDT model provides a consistent, thoroughly-tested, ground-based analog for spaceflight and allows the proper scientific controls for rigorous testing of physiological countermeasures; however, all models have their strengths and limits. The 6

  11. Impact of a high magnetic field on the orientation of gravitactic unicellular organisms--a critical consideration about the application of magnetic fields to mimic functional weightlessness.

    Science.gov (United States)

    Hemmersbach, Ruth; Simon, Anja; Waßer, Kai; Hauslage, Jens; Christianen, Peter C M; Albers, Peter W; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf

    2014-03-01

    The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity.

  12. Weightless Materials Science

    Science.gov (United States)

    Curtis, Jeremy

    2012-01-01

    Gravity affects everything we do. Only in very recent years have we been able to carry out experiments in orbit around the Earth and see for the first time how things behave in its absence. This has allowed us to understand fundamental processes better and to design new materials using this knowledge. (Contains 6 figures.)

  13. More Life-Science Experiments For Spacelab

    Science.gov (United States)

    Savage, P. D., Jr.; Dalton, B.; Hogan, R.; Leon, H.

    1991-01-01

    Report describes experiments done as part of Spacelab Life Sciences 2 mission (SLS-2). Research planned on cardiovascular, vestibular, metabolic, and thermal responses of animals in weightlessness. Expected to shed light on effects of prolonged weightlessness on humans.

  14. Space Gerontology

    Science.gov (United States)

    Miquel, J. (Editor); Economos, A. C. (Editor)

    1982-01-01

    Presentations are given which address the effects of space flght on the older person, the parallels between the physiological responses to weightlessness and the aging process, and experimental possibilities afforded by the weightless environment to fundamental research in gerontology and geriatrics.

  15. Aerospace gerontology

    Science.gov (United States)

    Comfort, A.

    1982-01-01

    The relevancy of gerontology and geriatrics to the discipline of aerospace medicine is examined. It is noted that since the shuttle program gives the facility to fly passengers, including specially qualified older persons, it is essential to examine response to acceleration, weightlessness, and re-entry over the whole adult lifespan, not only its second quartile. The physiological responses of the older person to weightlessness and the return to Earth gravity are reviewed. The importance of the use of the weightless environment to solve critical problems in the fields of fundamental gerontology and geriatrics is also stressed.

  16. Renal and sympathoadrenal responses in space

    DEFF Research Database (Denmark)

    Christensen, N J; Drummer, C; Norsk, P

    2001-01-01

    According to a classic hypothesis, weightlessness should promote the renal excretion rate of sodium and water and lead to a fluid- and electrolyte-depleted state. This hypothesis is based on experiments in which weightlessness has been simulated in humans by head-down bed rest and water immersion...

  17. Vasorelaxation in space

    DEFF Research Database (Denmark)

    Norsk, Peter; Damgaard, Morten; Petersen, Lonnie Grove

    2005-01-01

    leads to a prompt increase in cardiac output and to systemic vasodilatation and that these effects persist for at least a week of weightlessness in space. Cardiac output and mean arterial pressure were measured in 8 healthy humans during acute 20-s periods of weightlessness in parabolic airplane flights...

  18. The paradox of systemic vasodilatation and sympathetic nervous stimulation in space

    DEFF Research Database (Denmark)

    Norsk, Peter; Christensen, Niels Juel

    2009-01-01

    decreased by 5mmHg. This is in accordance with observations that very acute weightlessness during parabolic airplane flights and a week of weightlessness in space leads to a decrease in systemic vascular resistance. That the arterial resistance vessels are dilated in space is in contrast to the augmented...

  19. Teaching Science. A Weighty Gravity Lesson.

    Science.gov (United States)

    Leyden, Michael B.

    1996-01-01

    Describes an activity that uses a candle, a scale, and an elevator to demonstrate the concept of weightlessness in space, showing that astronauts are not truly weightless. Activity includes an exploration phase, a concept introduction phase, and a concept application phase. Provides guidelines and safety measures for conducting the activity. (JW)

  20. Human homeostasis in the space environment: A systems synthesis approach

    Science.gov (United States)

    Economos, A. C.

    1982-01-01

    The features of homeostatic changes which occur during adaptation to the weightless state are examined and the possible mechanisms underlying the responses are explored. Cardiac output, negative fluid balance, body weight, bone calcium, and muscle atrophy are discussed. Some testable hypotheses concerning possible effects on homeostasis that long-term exposure to weightlessness might cause are proposed.

  1. Gravitational Effects on Brain and Behavior

    Science.gov (United States)

    Young, Laurence R.

    1991-01-01

    Visual, vestibular, tactile, proprioceptive, and perhaps auditory clues are combined with knowledge of commanded voluntary movement to produce a single, usually consistent, perception of spatial orientation. The recent Spacelab flights have provided especially valuable observations on the effects of weightlessness and space flight. The response of the otolith organs to weightlessness and readapting to Earth's gravitation is described. Reference frames for orientation are briefly discussed.

  2. Biological role of gravity: Hypotheses and results of experiments on ``Cosmos'' biosatellites

    Science.gov (United States)

    Alpatov, Alexey M.; Antipov, Vsevolod V.; Tairbekov, Murad G.

    In order to reveal the biological significance of gravity, microgravity effects have been studied at the cellular, organism and population levels. The following questions arise. Do any gravity - dependent processes exist in a cell? Is cell adaptation to weightlessness possible; if so, what role may cytoskeleton, the genetic apparatus play in it? What are the consequences of the lack of convection in weightlessness for the performance of morphogenesis? Do the integral characteristics of living beings change in weightlessness? Is there any change in ``biological capacity'' of space, its resistance to expansion of life? What are the direction and intensity of microgravity action as a factor of natural selection, the driving force of evolution? These problems are discussed from a theoretical point of view, and in the light of results obtained in experiments flown aboard biosatellites ``Cosmos''.

  3. Senator Jake Garn on the KC-135

    Science.gov (United States)

    1985-01-01

    Senator Jake Garn appears to be springing from a trampoline in this scene, taken during a brief period of weightlessness provided by a parabola flown by the KC-135. Jeff Bingham, an aide to the senator, floats freely nearby (25616); Sen. Garn and Jeff Bingham prepare to ease from a partially anchored position to a totally free flying mode during a brief weightless session (25617); Sen. Garn gets an initial 'feel' of weightlessness as his feet float freely while he anchors himself with his hands. Seated nearby is his aide Bingham (25618); Sen. Garn (background) shares some of the ceiling space of the KC-135 with Bingham (25619); Sen. Garn (foreground) takes a seat behind the KC-135's crew in the forward cabin. Roger Zweig and Joseph S. Algranti, pilot and co-pilot, are partially visible in the background (25620).

  4. Investigations on biosatellites of the Cosmos series

    International Nuclear Information System (INIS)

    Ilin, E.A.

    1983-01-01

    The results of biological experiments conducted on specialized Soviet satellite missions from 1970 through 1979 are summarized. The primary areas of investigation included the effects of weightlessness and/or artificial gravity (1G) on the growth, development, and function of different organisms and tissues and on the radiosensitivity of rats. The experimental design is explained, stressing the importance of ground controls in satellite mockups and immediate postflight evaluation. The structural and functional changes which occur in rats during weightlessness are discussed and shown to be both reversible upon return to earth gravity and avoidable by centrifuge-induced artificial gravity. The negative effects observed in the artificial-gravity experiments are attributed to the small radius of the centrifuges used. No significant effects of weightlessness on radiosensitivity, intracellular processes, or overall embryogenesis were found, but (as expected) plant-cell shape and the embryonic growth of plant roots were affected. 42 references

  5. The respiratory system under weightlessness

    Science.gov (United States)

    Paiva, M.; Engel, L. A.; Hughes, J. M. B.; Guy, H. J.; Prisk, G. K.; West, J. B.

    1987-01-01

    Studies of pulmonary functions at rest to be studied on Spacelab mission D-2 are introduced. Gravity dependence of the distribution of ventilation (single breath washout, multibreath washout-washin); chest wall shape and motion; and the vascular compartment (lung blood flow, capillary volume, liquid content, diffusive capacity) are discussed.

  6. The Effect of Hindlimb Suspension on the Reproductive System of Young Male Rats

    Science.gov (United States)

    Tou, Janet; Grindeland, R.; Baer, L.; Guran, G.; Fung, C.; Wade, C.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Colonization of space requires the ability to reproduce in reduced gravity. Following spaceflight, astronauts and male rats exhibit decreased testosterone (T). This has important implications as T effects the testes and accessory sex glands. To our knowledge no studies have examined the effects of spaceflight on accessory sex glands. Due to the rarity of spaceflight opportunities, ground models have been used to simulate weightlessness. The objective of this study was to determine the effect of long-term (21 d) weightlessness on the reproductive system of male rats. Weightlessness was simulated using the Morey-Holton hindlimb suspension (HLS) model. Age 10 week old, male Sprague-Dawley rats weighing (209.0 +9.7g) were randomly assigned (n=10/group) to either HLS or ambulatory control. In HLS rats, testes mass was 33% lower (pmale rats. This discrepancy may have been due to the age of animal and timing of sampling. T levels vary dramatically during testes development as well as within normal diurnal cycles. In young HLS rats, testes weight was reduced but not plasma T. Subsequently there was no effect on accessory sex glands. However, this may not be the case in older rats. More studies using standardized methods are needed to gain a better understanding of male reproduction function and capability in weightlessness. Funding provided by NASA.

  7. Effects of chronic acceleration on body composition

    Science.gov (United States)

    Pitts, G. C.

    1982-01-01

    Studies of the centrifugation of adult rats showed an unexpected decrease in the mass of fat-free muscle and bone, in spite of the added load induced by centrifugation. It is suggested that the lower but constant fat-free body mass was probably regulated during centrifugation. Rats placed in weightless conditions for 18.5 days gave indirect but strong evidence that the muscle had increased in mass. Other changes in the rats placed in weightless conditions included a smaller fraction of skeletal mineral, a smaller fraction of water in the total fat-free body, and a net shift of fluid from skin to viscera. Adult rats centrifuged throughout the post-weaning growth period exhibited smaller masses of bone and central nervous system (probably attributable to slower growth of the total body), and a larger mass of skin than controls at 1 G. Efforts at simulating the effects of weightlessness or centrifugation on the body composition of rats by regimens at terrestrial gravity were inconclusive.

  8. Analysis of magnetic gradients to study gravitropism.

    Science.gov (United States)

    Hasenstein, Karl H; John, Susan; Scherp, Peter; Povinelli, Daniel; Mopper, Susan

    2013-01-01

    Gravitropism typically is generated by dense particles that respond to gravity. Experimental stimulation by high-gradient magnetic fields provides a new approach to selectively manipulate the gravisensing system. The movement of corn, wheat, and potato starch grains in suspension was examined with videomicroscopy during parabolic flights that generated 20 to 25 s of weightlessness. During weightlessness, a magnetic gradient was generated by inserting a wedge into a uniform, external magnetic field that caused repulsion of starch grains. The resultant velocity of movement was compared with the velocity of sedimentation under 1 g conditions. The high-gradient magnetic fields repelled the starch grains and generated a force of at least 0.6 g. Different wedge shapes significantly affected starch velocity and directionality of movement. Magnetic gradients are able to move diamagnetic compounds under weightless or microgravity conditions and serve as directional stimulus during seed germination in low-gravity environments. Further work can determine whether gravity sensing is based on force or contact between amyloplasts and statocyte membrane system.

  9. Revised hypothesis and future perspectives

    DEFF Research Database (Denmark)

    Norsk, P; Drummer, C; Christensen, N J

    2001-01-01

    Results from space have been unexpected and not predictable from the results of ground-based simulations. Therefore, the concept of how weightlessness and gravity modulates the regulation of body fluids must be revised and a new simulation model developed. The main questions to ask in the future...... are the following: Does weightlessness induce a diuresis and natriuresis during the initial hours of space flight leading to an extracellular and intravascular fluid volume deficit? Can sodium in excess be stored in a hitherto unknown way, particularly during space flight? Why are fluid and sodium retaining systems...

  10. Cardiovascular and fluid volume control in humans in space

    DEFF Research Database (Denmark)

    Norsk, Peter

    2005-01-01

    on this complex interaction, because it is the only way to completely abolish the effects of gravity over longer periods. Results from space have been unexpected, because astronauts exhibit a fluid and sodium retaining state with activation of the sympathetic nervous system, which subjects during simulations...... by head-down bed rest do not. Therefore, the concept as to how weightlessness affects the cardiovascular system and modulates regulation of body fluids should be revised and new simulation models developed. Knowledge as to how gravity and weightlessness modulate integrated fluid volume control...

  11. Computer simulation of preflight blood volume reduction as a countermeasure to fluid shifts in space flight

    Science.gov (United States)

    Simanonok, K. E.; Srinivasan, R.; Charles, J. B.

    1992-01-01

    Fluid shifts in weightlessness may cause a central volume expansion, activating reflexes to reduce the blood volume. Computer simulation was used to test the hypothesis that preadaptation of the blood volume prior to exposure to weightlessness could counteract the central volume expansion due to fluid shifts and thereby attenuate the circulatory and renal responses resulting in large losses of fluid from body water compartments. The Guyton Model of Fluid, Electrolyte, and Circulatory Regulation was modified to simulate the six degree head down tilt that is frequently use as an experimental analog of weightlessness in bedrest studies. Simulation results show that preadaptation of the blood volume by a procedure resembling a blood donation immediately before head down bedrest is beneficial in damping the physiologic responses to fluid shifts and reducing body fluid losses. After ten hours of head down tilt, blood volume after preadaptation is higher than control for 20 to 30 days of bedrest. Preadaptation also produces potentially beneficial higher extracellular volume and total body water for 20 to 30 days of bedrest.

  12. Antigravity Suits For Studies Of Weightlessness

    Science.gov (United States)

    Kravik, Stein E.; Greenleaf, John

    1992-01-01

    Report presents results of research on use of "antigravity" suit, one applying positive pressure to lower body to simulate some effects of microgravity. Research suggests lower-body positive pressure is alternative to bed rest or immersion in water in terrestrial studies of cardioregulatory, renal, electrolyte, and hormonal changes induced in humans by microgravity.

  13. How Can "Weightless" Astronauts Be Weighed?

    Science.gov (United States)

    Carnicer, Jesus; Reyes, Francisco; Guisasola, Jenaro

    2012-01-01

    In introductory physics courses, within the context of studying Newton's laws, it is common to consider the problem of a body's "weight" when it is in free fall. The solution shows that the "weight" is zero and this leads to a discussion of the concept of weight. There are permanent free-fall situations such as astronauts in a spacecraft orbiting…

  14. The Role of Visual Cues in Microgravity Spatial Orientation

    Science.gov (United States)

    Oman, Charles M.; Howard, Ian P.; Smith, Theodore; Beall, Andrew C.; Natapoff, Alan; Zacher, James E.; Jenkin, Heather L.

    2003-01-01

    In weightlessness, astronauts must rely on vision to remain spatially oriented. Although gravitational down cues are missing, most astronauts maintain a subjective vertical -a subjective sense of which way is up. This is evidenced by anecdotal reports of crewmembers feeling upside down (inversion illusions) or feeling that a floor has become a ceiling and vice versa (visual reorientation illusions). Instability in the subjective vertical direction can trigger disorientation and space motion sickness. On Neurolab, a virtual environment display system was used to conduct five interrelated experiments, which quantified: (a) how the direction of each person's subjective vertical depends on the orientation of the surrounding visual environment, (b) whether rolling the virtual visual environment produces stronger illusions of circular self-motion (circular vection) and more visual reorientation illusions than on Earth, (c) whether a virtual scene moving past the subject produces a stronger linear self-motion illusion (linear vection), and (d) whether deliberate manipulation of the subjective vertical changes a crewmember's interpretation of shading or the ability to recognize objects. None of the crew's subjective vertical indications became more independent of environmental cues in weightlessness. Three who were either strongly dependent on or independent of stationary visual cues in preflight tests remained so inflight. One other became more visually dependent inflight, but recovered postflight. Susceptibility to illusions of circular self-motion increased in flight. The time to the onset of linear self-motion illusions decreased and the illusion magnitude significantly increased for most subjects while free floating in weightlessness. These decreased toward one-G levels when the subject 'stood up' in weightlessness by wearing constant force springs. For several subjects, changing the relative direction of the subjective vertical in weightlessness-either by body

  15. [Remodeling simulation of human femur under bed rest and spaceflight circumstances based on three dimensional finite element analysis].

    Science.gov (United States)

    Yang, Wenting; Wang, Dongmei; Lei, Zhoujixin; Wang, Chunhui; Chen, Shanguang

    2017-12-01

    Astronauts who are exposed to weightless environment in long-term spaceflight might encounter bone density and mass loss for the mechanical stimulus is smaller than normal value. This study built a three dimensional model of human femur to simulate the remodeling process of human femur during bed rest experiment based on finite element analysis (FEA). The remodeling parameters of this finite element model was validated after comparing experimental and numerical results. Then, the remodeling process of human femur in weightless environment was simulated, and the remodeling function of time was derived. The loading magnitude and loading cycle on human femur during weightless environment were increased to simulate the exercise against bone loss. Simulation results showed that increasing loading magnitude is more effective in diminishing bone loss than increasing loading cycles, which demonstrated that exercise of certain intensity could help resist bone loss during long-term spaceflight. At the end, this study simulated the bone recovery process after spaceflight. It was found that the bone absorption rate is larger than bone formation rate. We advise that astronauts should take exercise during spaceflight to resist bone loss.

  16. NASA's Zero-g aircraft operations

    Science.gov (United States)

    Williams, R. K.

    1988-01-01

    NASA's Zero-g aircraft, operated by the Johnson Space Center, provides the unique weightless or zero-g environment of space flight for hardware development and test and astronaut training purposes. The program, which began in 1959, uses a slightly modified Boeing KC-135A aircraft, flying a parabolic trajectory, to produce weightless periods of 20 to 25 seconds. The program has supported the Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz and Shuttle programs as well as a number of unmanned space operations. Typical experiments for flight in the aircraft have included materials processing experiments, welding, fluid manipulation, cryogenics, propellant tankage, satellite deployment dynamics, planetary sciences research, crew training with weightless indoctrination, space suits, tethers, etc., and medical studies including vestibular research. The facility is available to microgravity research organizations on a cost-reimbursable basis, providing a large, hands-on test area for diagnostic and support equipment for the Principal Investigators and providing an iterative-type design approach to microgravity experiment development. The facility allows concepts to be proven and baseline experimentation to be accomplished relatively inexpensively prior to committing to the large expense of a space flight.

  17. Monitoring Microbes in the Spacecraft Environment by Mass Spectrometry of Ribosomal RNA, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The unique stresses in the spacecraft environment including isolation, containment, weightlessness, increased radiation exposure, and enhanced microbial...

  18. Creating a Lunar EVA Work Envelope

    Science.gov (United States)

    Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David

    2009-01-01

    A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.

  19. The influence of the calibration standard and the chemical composition of the water samples residue in the counting efficiency of proportional detectors for gross alpha and beta counting. Application on the radiologic control of the IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Santos, Cecilia Martins

    2003-01-01

    In this work the efficiency calibration curves of thin-window and low background gas-flow proportional counters were determined for calibration standards with different energies and different absorber thicknesses. For the gross alpha counting we have used 241 Am and natural uranium standards and for the gross beta counting we have used 90 Sr/ 90 Y and 137 Cs standards in residue thicknesses ranging from 0 to approximately 18 mg/cm 2 . These sample thicknesses were increased with a previously determined salted solution prepared simulating the chemical composition of the underground water of IPEN The counting efficiency for alpha emitters ranged from 0,273 +- 0,038 for a weightless residue to only 0,015 +- 0,002 in a planchet containing 15 mg/cm 2 of residue for 241 Am standard. For natural uranium standard the efficiency ranged from 0,322 +- 0,030 for a weightless residue to 0,023 +- 0,003 in a planchet containing 14,5 mg/cm 2 of residue. The counting efficiency for beta emitters ranged from 0,430 +- 0,036 for a weightless residue to 0,247 +- 0,020 in a planchet containing 17 mg/cm 2 of residue for 137 Cs standard. For 90 Sr/ 90 Y standard the efficiency ranged from 0,489 +- 0,041 for a weightless residue to 0,323 +- 0,026 in a planchet containing 18 mg/cm 2 of residue. Results make evident the counting efficiency variation with the alpha or beta emitters energies and the thickness of the water samples residue. So, the calibration standard, the thickness and the chemical composition of the residue must always be considered in the gross alpha and beta radioactivity determination in water samples. (author)

  20. Gravity effects on reproduction, development, and aging

    Science.gov (United States)

    Miquel, Jaime; Souza, Kenneth A.

    1991-01-01

    The effects of various levels of gravity force (obtained by rotation in clinostats or by centrifugation) and the near-weightlessness condition aboard orbiting spacecraft on the fertilization, embryonic development, maturation, and aging of animals are examined. Results obtained from the American and Soviet spaceborne biology experiments are presented including those on mammals, amphibians, fish, birds, invertebrates, and protozoa. Theoretical issues related to the effect of gravity on various physiological systems are discused together with the future research goals concerning human life in space. It is noted that life in space (after adaptation to near-weightlessness) might be significantly prolonged due to a reduction in metabolic rate and a concomitant decrease in oxygen radical reactions.

  1. Synchronous absolute EIT in three thoracic planes at different gravity levels

    International Nuclear Information System (INIS)

    Hahn, G; Just, A; Dittmar, J; Fromm, K H; Quintel, M

    2013-01-01

    The validity of absolute Electrical Impedance Tomography (a-EIT) for assessment of local lung volume has been investigated far less than the well evaluated ventilation monitoring by functional EIT (f-EIT). To achieve progress in a-EIT we investigated 10 healthy volunteers in an upright sitting position by using a-EIT at normal gravity (1 g), weightlessness (0 g) and approx. double gravity (1.8 g) during parabolic flight manoeuvres. Lung resistivity in three thoracic planes was determined by a-EIT using a multiple-plane synchronised Goe-MF II EIT system. Tomograms of resistivity at end-expiration in normal spontaneous breathing were reconstructed by a modified SIRT algorithm. Local lung resistivity was determined separately for both lungs. The respective resistivity values at 1 g and 1.8 g before and after weightlessness show an almost reversible behaviour along the sequence of gravity changes with a tendency to be lower after occurrence of weightlessness. The results reveal not only the expected varying resistivity of lung tissue in cranio-caudal direction but also a clear difference in these cranio-caudal stratifications of local lung volume between the left and right lung. The resolution and stability of absolute EIT seem to be valid and expressive for future investigations of unilateral lung volume under different physiological and pathological conditions.

  2. Simulator Facility for Attitude Control and Energy Storage of Spacecraft

    National Research Council Canada - National Science Library

    Tsiotras, Panagiotis

    2002-01-01

    This report concerns a designed and built experimental facility that will allow the conduction of experiments for validating advanced attitude control algorithms for spacecraft in a weightless environment...

  3. Zero Gravity Research Facility (Zero-G)

    Data.gov (United States)

    Federal Laboratory Consortium — The Zero Gravity Research Facility (Zero-G) provides a near weightless or microgravity environment for a duration of 5.18 seconds. This is accomplished by allowing...

  4. Behavior of fluids in a weightless environment

    Science.gov (United States)

    Fester, D. A.; Eberhardt, R. N.; Tegart, J. R.

    1977-01-01

    Fluid behavior in a low-g environment is controlled primarily by surface tension forces. Certain fluid and system characteristics determine the magnitude of these forces for both a free liquid surface and liquid in contact with a solid. These characteristics, including surface tension, wettability or contact angle, system geometry, and the relationships governing their interaction, are discussed. Various aspects of fluid behavior in a low-g environment are then presented. This includes the formation of static interface shapes, oscillation and rotation of drops, coalescence, the formation of foams, tendency for cavitation, and diffusion in liquids which were observed during the Skylab fluid mechanics science demonstrations. Liquid reorientation and capillary pumping to establish equilibrium configurations for various system geometries, observed during various free-fall (drop-tower) low-g tests, are also presented. Several passive low-g fluid storage and transfer systems are discussed. These systems use surface tension forces to control the liquid/vapor interface and provide gas-free liquid transfer and liquid-free vapor venting.

  5. Astronaut Robert L. Crippen prepares for underwater training session

    Science.gov (United States)

    1983-01-01

    Astronaut Robert L. Crippen, STS-7 crew commander, adjusts his extravehicular mobility unit's (EMU) gloves prior to donning his helmet for a training session in the weightless environment test facility (WETF).

  6. Unique life sciences research facilities at NASA Ames Research Center

    Science.gov (United States)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  7. Geometry and gravity influences on strength capability

    Science.gov (United States)

    Poliner, Jeffrey; Wilmington, Robert P.; Klute, Glenn K.

    1994-01-01

    Strength, defined as the capability of an individual to produce an external force, is one of the most important determining characteristics of human performance. Knowledge of strength capabilities of a group of individuals can be applied to designing equipment and workplaces, planning procedures and tasks, and training individuals. In the manned space program, with the high risk and cost associated with spaceflight, information pertaining to human performance is important to ensuring mission success and safety. Knowledge of individual's strength capabilities in weightlessness is of interest within many areas of NASA, including workplace design, tool development, and mission planning. The weightless environment of space places the human body in a completely different context. Astronauts perform a variety of manual tasks while in orbit. Their ability to perform these tasks is partly determined by their strength capability as demanded by that particular task. Thus, an important step in task planning, development, and evaluation is to determine the ability of the humans performing it. This can be accomplished by utilizing quantitative techniques to develop a database of human strength capabilities in weightlessness. Furthermore, if strength characteristics are known, equipment and tools can be built to optimize the operators' performance. This study examined strength in performing a simple task, specifically, using a tool to apply a torque to a fixture.

  8. Effect of space flight factors on the homeostasis of the human

    Directory of Open Access Journals (Sweden)

    С.Т. Поліщук

    2006-04-01

    Full Text Available  The influence of the flight duration, state of weightlessness and ionizing radiation on human organism at the time of being the spaceship abroad of the Earth geomagnetic field is considered.

  9. KC-135 Operations Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The KC-135 Low-G Flight Research aircraft (a predecessor of the Boeing 707) is used to fly parabolas to create 20-25 seconds of weightlessness so that the astronauts...

  10. Development of an EVA systems cost model. Volume 3: EVA systems cost model

    Science.gov (United States)

    1975-01-01

    The EVA systems cost model presented is based on proposed EVA equipment for the space shuttle program. General information on EVA crewman requirements in a weightless environment and an EVA capabilities overview are provided.

  11. Hematology and biochemical findings of Spacelab 1 flight

    Science.gov (United States)

    Leach, Carolyn S.; Chen, J. P.; Crosby, W.; Johnson, P. C.; Lange, R. D.; Larkin, E.; Tavassoli, M.

    1988-01-01

    The changes in erythropoiesis in astronauts caused by weightlessness was experimentally studied during the Spacelab 1 flight. Immediately after landing showed a mean decrease of 9,3 percent in the four astronauts. Neither hyperoxia nor an increase in blood phosphate caused the decrease. Red cell survival time and iron incorporation postflight were not significantly different from their preflight levels. Serum haptoglobin did not decrease, indicating that intravascular hemolysis was not a major cause of red cell mass change. An increase in serum ferritin after the second day of flight may have been caused by red cell breakdown early in flight. The space flight-induced decrease in red cell mass may result from a failure of erythropoesis to replace cells destroyed by the spleen soon after weightlessness is attained.

  12. JSC Human Life Sciences Project

    Science.gov (United States)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication includes articles entitled: (1) E029 - Magnetic Resonance Imaging after Exposure to Microgravity; (2) E030 - Extended Studies of Pulmonary Function in Weightlessness; (3) E074 - Direct Measurement of the Initial Bone Response to Spaceflight in Humans; (4) E401 - The Effects of Microgravity on Skeletal Muscle Contractile Properties; (5) E407 - Effects of Microgravity on the Biochemical and Bioenergetic Characteristics of Human Skeletal Muscle; (6) E410 - Torso Rotation Experiment; (7) E920 - Effect of Weightlessness on Human Single Muscle Fiber Function; (8) E948 - Human Sleep, Circadian Rhythms and Performance in Space; (9) E963 - Microgravity Effects on Standardized Cognitive Performance Measures; and (10) E971 - Measurement of Energy Expenditures During Spaceflight Using the Doubly Labeled Water Method

  13. Ground-facilities at the DLR Institute of Aerospace Medicine for preparation of flight experiments

    Science.gov (United States)

    Hemmersbach, Ruth; Hendrik Anken, Ralf; Hauslage, Jens; von der Wiesche, Melanie; Baerwalde, Sven; Schuber, Marianne

    In order to investigate the influence of altered gravity on biological systems and to identify gravisensitive processes, various experimental platforms have been developed, which are useful to simulate weightlessness or are able to produce hypergravity. At the Institute of Aerospace Medicine, DLR Cologne, a broad spectrum of applications is offered to scientists: clinostats with one rotation axis and variable rotation speeds for cultivation of small objects (including aquatic organisms) in simulated weightlessness conditions, for online microscopic observations and for online kinetic measurements. Own research concentrates on comparative studies with other kinds of methods to simulate weightlessness, also available at the institute: Rotating Wall Vessel (RWV) for aquatic studies, Random Positioning Machine (RPM; manufactured by Dutch Space, Leiden, The Netherlands). Correspondingly, various centrifuge devices are available to study different test objects under hypergravity conditions -such as NIZEMI, a slow rotating centrifuge microscope, and MUSIC, a multi-sample centrifuge. Mainly for experiments with human test subjects (artificial gravity), but also for biological systems or for testing various kinds of (flight-) hardware, the SAHC, a short arm human centrifuge -loaned by ESA -was installed in Cologne and completes our experimental scenario. Furthermore, due to our specific tasks such as providing laboratories during the German Parabolic Flight Experiments starting from Cologne and being the Facility Responsible Center for BIOLAB, a science rack in the Columbus module aboard the ISS, scientists have the possibility for an optimal preparation of their flight experiments.

  14. Neurovestibular and sensorimotor studies in space and Earth benefits.

    Science.gov (United States)

    Clément, Gilles; Reschke, Millard; Wood, Scott

    2005-08-01

    This review summarizes what has been learned from studies of human neurovestibular system in weightless conditions, including balance and locomotion, gaze control, vestibular-autonomic function and spatial orientation, and gives some examples of the potential Earth benefits of this research. Results show that when astronauts and cosmonauts return from space flight both the peripheral and central neural processes are physiologically and functionally altered. There are clear distinctions between the virtually immediate adaptive compensations to weightlessness and those that require longer periods of time to adapt. However, little is known to date about the adaptation of sensory-motor functions to long-duration space missions in weightlessness and to the transitions between various reduced gravitational levels, such as on the Moon and Mars. Results from neurovestibular research in space have substantially enhanced our understanding of the mechanisms and characteristics of postural, gaze, and spatial orientation deficits, analogous to clinical cases of labyrinthine-defective function. Also, space neurosciences research has participated in the development and application of significant new technologies, such as video recording and processing of three-dimensional eye movements and posture, hardware for the unencumbered measurement of head and body movement, and procedures for investigating otolith function on Earth. In particular, devices such as centrifugation or off-vertical axis rotation could enhance clinical neurological testing because it provides linear acceleration which specifically stimulates the otolith organs in a frequency range close to natural head and body movement.

  15. Astronauts and cosmonauts during emergency bailout training session

    Science.gov (United States)

    1994-01-01

    Using small life rafts, several cosmonauts and astronauts participating in joint Russia - United States space missions take part in an emergency bailout training session in the JSC Weightless Environment Training Facility (WETF) 25-feet-deep pool. In the

  16. Motor imagery: Lessons learned in movement science might be applicable for spaceflight

    Directory of Open Access Journals (Sweden)

    Otmar eBock

    2015-05-01

    Full Text Available Before participating in a space mission, astronauts undergo parabolic-flight and underwater training to facilitate their subsequent adaptation to weightlessness. Unfortunately, similar training methods can’t be used to prepare re-adaptation to planetary gravity. Here, we propose a quick, simple and inexpensive approach that could be used to prepare astronauts both for the absence and for the renewed presence of gravity. This approach is based on motor imagery (MI, a process in which actions are produced in working memory without any overt output. Training protocols based on MI have repeatedly been shown to modify brain circuitry and to improve motor performance in healthy young adults, healthy seniors and stroke victims, and are routinely used to optimize performance of elite athletes. We propose to use similar protocols preflight, to prepare for weightlessness, and late inflight, to prepare for landing.

  17. Motor imagery: lessons learned in movement science might be applicable for spaceflight

    Science.gov (United States)

    Bock, Otmar; Schott, Nadja; Papaxanthis, Charalambos

    2015-01-01

    Before participating in a space mission, astronauts undergo parabolic-flight and underwater training to facilitate their subsequent adaptation to weightlessness. Unfortunately, similar training methods can’t be used to prepare re-adaptation to planetary gravity. Here, we propose a quick, simple and inexpensive approach that could be used to prepare astronauts both for the absence and for the renewed presence of gravity. This approach is based on motor imagery (MI), a process in which actions are produced in working memory without any overt output. Training protocols based on MI have repeatedly been shown to modify brain circuitry and to improve motor performance in healthy young adults, healthy seniors and stroke victims, and are routinely used to optimize performance of elite athletes. We propose to use similar protocols preflight, to prepare for weightlessness, and late inflight, to prepare for landing. PMID:26042004

  18. Artificial gravity: head movements during short-radius centrifugation

    NARCIS (Netherlands)

    Young, L. R.; Hecht, H.; Lyne, L. E.; Sienko, K. H.; Cheung, C. C.; Kavelaars, J.

    2001-01-01

    Short-radius centrifugation is a potential countermeasure to long-term weightlessness. Unfortunately, head movements in a rotating environment induce serious discomfort, non-compensatory vestibulo-ocular reflexes, and subjective illusions of body tilt. In two experiments we investigated the effects

  19. Vestibular adaption to an altered gravitational environment : Consequences for spatial orientation

    NARCIS (Netherlands)

    Nooij, S.A.E.

    2008-01-01

    Earth's gravity is an omnipresent factor in human life and provides a strong reference for spatial orientation. Changes in the prevailing gravity level, like the transition to weightlessness during space flight, affect spatial orientation and require adaptation of many physiological processes

  20. Orientation illusions and heart-rate changes during short-radius centrifugation

    NARCIS (Netherlands)

    Hecht, H.; Kavelaars, J.; Cheung, C. C.; Young, L. R.

    2001-01-01

    Intermittent short-radius centrifugation is a promising countermeasure against the adverse effects of prolonged weightlessness. To assess the feasibility of this countermeasure, we need to understand the disturbing sensory effects that accompany some movements carried out during rotation. We tested

  1. Underwater EVA training in the WETF with astronaut Robert L. Stewart

    Science.gov (United States)

    1983-01-01

    Underwater extravehicular activity (EVA) training in the weightless environment training facility (WETF) with astronaut Robert L. Stewart. Stewart is simulating a planned EVA using the mobile foot restraint device and a one-G version of the Canadian-built remote manipulator system.

  2. Biomechanics of the Treadmill Locomotion on the International Space Station

    Science.gov (United States)

    DeWitt, John; Cromwell, R. L.; Ploutz-Snyder, L. L.

    2014-01-01

    Exercise prescriptions completed by International Space Station (ISS) crewmembers are typically based upon evidence obtained during ground-based investigations, with the assumption that the results of long-term training in weightlessness will be similar to that attained in normal gravity. Coupled with this supposition are the assumptions that exercise motions and external loading are also similar between gravitational environments. Normal control of locomotion is dependent upon learning patterns of muscular activation and requires continual monitoring of internal and external sensory input [1]. Internal sensory input includes signals that may be dependent on or independent of gravity. Bernstein hypothesized that movement strategy planning and execution must include the consideration of segmental weights and inertia [2]. Studies of arm movements in microgravity showed that individuals tend to make errors but that compensation strategies result in adaptations, suggesting that control mechanisms must include peripheral information [3-5]. To date, however, there have been no studies examining a gross motor activity such as running in weightlessness other than using microgravity analogs [6-8]. The objective of this evaluation was to collect biomechanical data from crewmembers during treadmill exercise before and during flight. The goal was to determine locomotive biomechanics similarities and differences between normal and weightless environments. The data will be used to optimize future exercise prescriptions. This project addresses the Critical Path Roadmap risks 1 (Accelerated Bone Loss and Fracture Risk) and 11 (Reduced Muscle Mass, Strength, and Endurance). Data were collected from 7 crewmembers before flight and during their ISS missions. Before launch, crewmembers performed a single data collection session at the NASA Johnson Space Center. Three-dimensional motion capture data were collected for 30 s at speeds ranging from 1.5 to 9.5 mph in 0.5 mph increments

  3. Influences of Vestibular System on Sympathetic Nervous System. Implications for countermeasures.

    Science.gov (United States)

    Denise, Pr Pierre

    As gravity is a direct and permanent stress on body fluids, muscles and bones, it is not surpris-ing that weightlessness has important effects on cardiovascular and musculo-skeletal systems. However, these harmful effects do not totally result from the removal of the direct stress of gravity on these organs, but are also partially and indirectly mediated by the vestibular sys-tem. Besides its well known crucial role in spatial orientation and postural equilibrium, it is now clear that the vestibular system is also involved in the regulation of other important physi-ological systems: respiratory and cardiovascular systems, circadian regulation, food intake and even bone mineralization. The neuroanatomical substrate for these vestibular-mediated reg-ulations is still poorly defined, but there is much evidence that vestibular system has strong impacts not only on brainstem autonomic centers but on many hypothalamic nuclei as well. As autonomic nervous system controls almost all body organs, bringing into play the vestibular system by hypergravity or microgravity could virtually affects all major physiological func-tions. There is experimental evidence that weightlessness as well as vestibular lesion induce sympathetic activation thus participating in space related physiological alterations. The fact that some effects of weightlessness on biological systems are mediated by the vestibular system has an important implication for using artificial gravity as a countermeasure: artificial gravity should load not only bones and the cardiovascular system but the vestibular system as well. In short-arm centrifuges, the g load at the head level is low because the head is near the axis of rotation. If the vestibular system is involved in cardiovascular deconditioning and bone loss during weightlessness, it would be more effective to significantly stimulate it and thus it would be necessary to place the head off-axis. Moreover, as the otolithic organs are non longer stimu-lated in

  4. The SCD - Stem Cell Differentiation ESA project: preparatory work for the spaceflight mission

    NARCIS (Netherlands)

    Versari, S.; Barenghi, L.; van Loon, J.; Bradamante, S.

    2016-01-01

    Due to spaceflight, astronauts experience serious, weightlessness-induced bone loss because of an unbalanced process of bone remodeling that involves bone marrow mesenchymal stem cells (BMSCs), as well as osteoblasts, osteocytes, and osteoclasts. The effects of microgravity on osteo-cells have been

  5. Astronaut Bonnie Dunbar watches crewmates during training

    Science.gov (United States)

    1994-01-01

    Astronaut Bonnie J. Dunbar, STS-71 mission specialist, smiles as she watches a crew mate (out of frame) make a simulated parachute landing in nearby water. The action came as part of an emergency bailout training session in the JSC Weightless Environment

  6. Effect of electron beam on quality and physiological metabolism of blueberry

    International Nuclear Information System (INIS)

    Zhou Huijuan; Ye Zhengwen; Zhang Xueying; Su Mingshen; Du Jihong; Zhang Minqian

    2013-01-01

    In order to explore safe, simple and effective storage technology, experiment was conducted with 'ai li ao te' blueberry for studying the effect of electron beam on quality and physiological metabolism. Fruit was stored at temperature of (1 ± 0.5)℃, with RH of 80% ∼ 85%, and treated with electron beam of 0.5, 1, 1.5, 2, 3 kGy. The results showed that the proper dose of electron beam could decline the bad fruit rate and weightlessness, restrain respiration intensity, alleviate the decline of soluble solids, acid and Vc content. Meanwhile it did not have significant negative effects on pulp colour. All these showed that electron beam of 1 kGy treatment could keep the best storage quality of blueberry, keep the sound berry and weightlessness rate at > 90% and < 10% respectively, prolong the effective storage time from 30d to 60d. (authors)

  7. Fungi in space--literature survey on fungi used for space research.

    Science.gov (United States)

    Kern, V D; Hock, B

    1993-09-01

    A complete review of the scientific literature on experiments involving fungi in space is presented. This review begins with balloon experiments around 1935 which carried fungal spores, rocket experiments in the 1950's and 60's, satellite and moon expeditions, long-time orbit experiments and Spacelab missions in the 1980's and 90's. All these missions were aimed at examining the influence of cosmic radiation and weightlessness on genetic, physiological, and morphogenetic processes. During the 2nd German Spacelab mission (D-2, April/May 1993), the experiment FUNGI provided the facilities to cultivate higher basidiomycetes over a period of 10 d in orbit, document gravimorphogenesis and chemically fix fruiting bodies under weightlessness for subsequent ultrastructural analysis. This review shows the necessity of space travel for research on the graviperception of higher fungi and demonstrates the novelty of the experiment FUNGI performed within the framework of the D-2 mission.

  8. Regulation of body fluid and salt homeostasis--from observations in space to new concepts on Earth.

    Science.gov (United States)

    Gerzer, R; Heer, M

    2005-08-01

    The present manuscript summarizes recent discoveries that were made by studying salt and fluid homeostasis in weightlessness. These data indicate that 1. atrial natriuretic peptide appears not to play an important role in natriuresis in physiology, 2. the distribution of body fluids appears to be tightly coupled with hunger and thirst regulation, 3. intrathoracic pressure may be an important co-regulator of body fluid homeostasis, 4. a so far unknown low-affinity, high capacity osmotically inactive sodium storage mechanism appears to be present in humans that is acting through sodium/hydrogen exchange on glycosaminoglycans and might explain the pathophysiology, e.g., of salt sensitive hypertension. The surprising and unexpected data underline that weightlessness is an excellent tool to investigate the physiology of our human body: If we knew it, we should be able to predict changes that occur when gravity is absent. But, as data from space demonstrate, we do not.

  9. Aboard the Space Shuttle.

    Science.gov (United States)

    Steinberg, Florence S.

    This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…

  10. Event-related EEG changes preceding saccadic eye movements before and after dry immersion.

    Science.gov (United States)

    Tomilovskaya, E S; Kirenskaya, A V; Novototski-Vlasov, V Yu; Kozlovskaya, I B

    2004-07-01

    Objectives of this work were to quantify antisaccade characteristics, presaccadic slow negative EEG-potentials, and event-related EEG frequency band power (theta, alpha1, alpha2, beta1, beta2 and beta3) changes (ERD) in healthy volunteers before and after 6-day simulated weightlessness (dry immersion).

  11. Ground-based research on vestibular adaptation to g-level transitions

    NARCIS (Netherlands)

    Groen, Eric L.; Nooij, Suzanne A E; Bos, Jelte E.

    2008-01-01

    At TNO research is ongoing on neuro-vestibular adaptation to altered G-levels. It is well-known that during the first days in weightlessness 50-80% of all astronauts suffer from the Space Adaptation Syndrome (SAS), which involves space motion sickness, spatial disorientation and motion illusions.

  12. Human tolerance to space flight

    Science.gov (United States)

    Huntoon, C. L.

    1989-01-01

    Medical studies of astronauts and cosmonauts before, during, and after space missions have identified several effects of weightlessness and other factors that influence the ability of humans to tolerate space flight. Weightlessness effects include space motion sickness, cardiovascular abnormalities, reduction in immune system function, loss of red blood cells, loss of bone mass, and muscle atrophy. Extravehicular activity (EVA) increases the likelihood that decompression sickness may occur. Radiation also gives reason for concern about health of crewmembers, and psychological factors are important on long-term flights. Countermeasures that have been used include sensory preadaptation, prebreathing and use of various air mixtures for EVA, loading with water and electrolytes, exercise, use of pharmacological agents and special diets, and psychological support. It appears that humans can tolerate and recover satisfactorily from at least one year of space flight, but a number of conditions must be further ameliorated before long-duration missions can be considered routine.

  13. The Rise and Fall of Dyna-Soar: A History of Air Force Hypersonic R&D, 1944--1963.

    Science.gov (United States)

    1995-08-01

    providing a means of noting the reaction of mice and small primates to weightlessness; establishing the adequacy of the capsule recovery techniques; and...Year 1962, p. 7-8. 299 Arguments such as these, advanced at a time when the Soviet Union monopolized manned orbital flight, won adherents among top

  14. Bringing Gravity to Space

    Science.gov (United States)

    Norsk, P.; Shelhamer, M.

    2016-01-01

    This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.

  15. The effects of space flight on some rat liver enzymes regulating carbohydrate and lipid metabolism

    Science.gov (United States)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

    We have examined, in the livers of rats carried aboard the Cosmos 936 biosatellite, the activities of about 30 enzymes concerned with carbohydrate and lipid metabolism. In addition to the enzyme studies, the levels of glycogen and of the individual fatty acids in hepatic lipids were determined. Livers from flight and ground control rats at recovery (R0) and 25 days after recovery (R25) were used for these analyses. For all parameters measured, the most meaningful comparisons are those made between flight stationary (FS) and flight centrifuged (FC) animals at R0. When these two groups of flight rats were compared at R0, statistically significant decreases in the activity levels of glycogen phosphorylase, α-glycerol phosphate acyl transferase, diglyceride acyl transferase, aconitase and 6-phosphogluconate dehydrogenase and an increase in the palmitoyl CoA desaturase were noted in the weightless group (FS). The significance of these findings was strengthened by the fact that all enzyme activities showing alterations at R0 returned to normal 25 days postflight. When liver glycogen and total fatty acids of the two sets of flight animals were determined, significant differences that could be attributed to reduced gravity were observed. The weightless group (FS) at R0 contained, on the average, more than twice the amount of glycogen than did the centrifuged controls (FC) and a remarkable shift in the ratio of palmitate to palmitoleate was noted. These metabolic alterations, both in enzyme levels and in hepatic constituents, appear to be characteristic of the weightless condition. Our data seem to justify the conclusion that centrifugation during flight is equivalent to terrestrial gravity.

  16. A Person Stands on a Balance in an Elevator: What Happens When the Elevator Starts to Fall?

    Science.gov (United States)

    Balukovic, Jasmina; Slisko, Josip; Cruz, Adrián Corona

    2018-01-01

    Physics textbook authors commonly introduce the concept of weightlessness (apparent or real) through a "thought experiment" in which a person weighs herself or himself in an elevator. When the elevator falls freely, the spring balance should show zero weight. There is an unresolved controversy about how this "zero reading"…

  17. Effect of spaceflight on the subcutaneous venoarteriolar reflex in the human lower leg

    DEFF Research Database (Denmark)

    Gabrielsen, Anders; Norsk, Peter

    2007-01-01

    by gravity, we tested the hypothesis that long-term weightlessness would attenuate it. The reduction in subcutaneous blood flow was measured by the (133)Xe washout technique just proximal to the ankle joint in dependent lower legs of eight supine astronauts, where the knee joint was passively bent by 90...

  18. The perception of verticality in lunar and Martian gravity conditions

    NARCIS (Netherlands)

    Winkel, K.N. de; Clément, G.; Groen, E.L.; Werkhoven, P.J.

    2012-01-01

    Although the mechanisms of neural adaptation to weightlessness and re-adaptation to Earth-gravity have received a lot of attention since the first human space flight, there is as yet little knowledge about how spatial orientation is affected by partial gravity, such as lunar gravity of 0.16. g or

  19. Astronaut Curtis L. Brown, Jr., pilot, works with his life raft during emergency bailout training

    Science.gov (United States)

    1996-01-01

    STS-77 TRAINING VIEW --- Astronaut Curtis L. Brown, Jr., pilot, works with his life raft during emergency bailout training for crew members in the Johnson Space Centers (JSC) Weightless Environment Training Facility (WET-F). Brown will join five other astronauts for nine days aboard the Space Shuttle Endeavour next month.

  20. Effect of Weightlessness on Neutrophils and Lymphocytes of Rats

    Directory of Open Access Journals (Sweden)

    Khusi Muhammad Saqib, Zia-ur-Rahman1 and Saeed Ahmad Nagra2

    2012-01-01

    Full Text Available In the present study, two hundreds and forty healthy albino young (n=120 and old (n=120 rats were used during winter and summer season. Rats were divided into four groups in each season i.e. young and old, consisting of male (n=30 and female (n=30 in each age category. In each age  sex matched rats, three subgroups were made and have been given the name as cage control (CC group, horizontal restrained group (HR and head down suspended (HDS group. For winter season, the room temperature of experimental period ranged from 20 to 23°C and for summer season, the experimental room temperature ranged from 30 to 33°C. A 12 hours light/12 hours dark cycle with ad libitum food offered each day to an individual rats as well as fresh water (at normal temperature were provided every day from 9-10 h (morning Rats were decapitated on day 7th (n=5 and day 28th (n=5 of experimental period from all groups to collected the blood in a hepranized tubes for the estimation of lymphocytes and neutrophils. Appropriate statistical analysis was performed to estimate the difference between age, days, treatments and their possible interactions during each season. During winter and summer seasons, male and female rats did show a significant decrease in lymphocytes, however a significant increase in the neutrophils percent was also observed in the HR and HDS groups. During summer, a significant increase in neutrophils and a decrease in lymphocytes were observed in male and female rats of HR and HDS groups.

  1. Effects of Weightlessness on Human Fluid and Electrolyte Physiology

    Science.gov (United States)

    Leach, Carolyn S.; Johnson, Philip C., Jr.

    1991-01-01

    The changes that occur in human fluid and electrolyte physiology during the acute and adaptive phases of adaptation to spaceflight are summarized. A number of questions remain to be answered. At a time when plasma volume and extracellular fluid volume are contracted and salt and water intake is unrestricted. ADH does not correct the volume deficit and serum sodium decreases. Change in secretion or activity of a natriuretic factor during spaceflight is one possible explanation. Recent identification of a polypeptide hormone produced in cardiac muscle cells which is natiuretic, is hypotensive, and has an inhibitory effect on renin and aldosterone secretion has renewed interest in the role of a natriuretic factor. The role of this atrial natriuretic factor (ANF) in both long- and short-term variation in extracellular volumes and in the inability of the kidney to bring about an escape from the sodium-retaining state accompanying chronic cardiac dysfunction makes it reasonable to look for a role of ANF in the regulation of sodium during exposure to microgravity. Prostaglandin-E is another hormone that may antagonize the action of ADH. Assays of these hormones will be performed on samples from crew members in the future.

  2. Faraday instability in a near-critical fluid under weightlessness.

    Science.gov (United States)

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    Experiments on near-critical hydrogen have been conducted under magnetic compensation of gravity to investigate the Faraday instability that arises at the liquid-vapor interface under zero-gravity conditions. We investigated such instability in the absence of stabilizing gravity. Under such conditions, vibration orients the interface and can destabilize it. The experiments confirm the existence of Faraday waves and demonstrate a transition from a square to a line pattern close to the critical point. They also show a transition very close to the critical point from Faraday to periodic layering of the vapor-liquid interface perpendicular to vibration. It was seen that the Faraday wave instability is favored when the liquid-vapor density difference is large enough (fluid far from the critical point), whereas periodic layering predominates for small difference in the liquid and vapor densities (close to the critical point). It was observed for the Faraday wave instability that the wavelength of the instability decreases as one approaches the critical point. The experimental results demonstrate good agreement to the dispersion relation for zero gravity except for temperatures very close to the critical point where a transition from a square pattern to a line pattern is detected, similarly to what is observed under 1g conditions.

  3. Astronaut William Fisher preparing to train in the WETF

    Science.gov (United States)

    1985-01-01

    Astronaut William Fisher is shown in his extravehicular mobility unit (EMU) preparing to train in the Weightless Environment Training Facility (WETF). He is wearing the communications carrier assembly but not the full helmet (32102); Reflections of the WETF can be seen on the closed visor of the EMU helmet Fiser is wearing (32103).

  4. Astronaut Ronald Sega in crew cabin

    Science.gov (United States)

    1994-01-01

    Astronaut Ronald M. Sega suspends himself in the weightlessness aboard the Space Shuttle Discovery's crew cabin, as the Remote Manipulator System (RMS) arm holds the Wake Shield Facility (WSF) aloft. The mission specialist is co-principle investigator on the the WSF project. Note the University of Colorado, Colorado Springs banner above his head.

  5. Environmental stressors during space flight: potential effects on body temperature

    Science.gov (United States)

    Jauchem, J. R.

    1988-01-01

    1. Organisms may be affected by many environmental factors during space flight, e.g., acceleration, weightlessness, decreased pressure, changes in oxygen tension, radiofrequency radiation and vibration. 2. Previous studies of change in body temperature--one response to these environmental factors--are reviewed. 3. Conditions leading to heat stress and hypothermia are discussed.

  6. Astronaut training plans and training facilities in Japan; Uchu hikoshi tanjo eno michi (kunren to kunren setsubi)

    Energy Technology Data Exchange (ETDEWEB)

    Harada, C. [National Space Development Agency of Japan, Tokyo (Japan)

    1999-10-05

    Introduced are the training of astronauts for duties aboard a space shuttle, training provided by NASDA (National Space Development Agency of Japan), and training facilities. The astronaut candidate training course involves space science, space medicine, ocean science, and others, in addition to flight training aboard the T-38 jet trainer, emergency procedure training, shuttle system training, weightlessness training aboard the KC-135 jet plane on a ballistic flight, and SCUBA training. After candidates are named to serve aboard the space shuttle, they are to undergo training related to the shuttle system, emergency exit, adaptation to the surroundings, and the space laboratory system. As for ISS (international space station), astronauts will have to construct the station, and to stay there for a long time operating and maintaining the station and manipulating various experimental apparatuses. The astronaut training process in Japan covers approximately four years, including candidate training, advanced training, and mission dependent training. The training facilities include a weightless environment test system, low-pressure environment adaptation training system, etc., available at NASDA's Tsukuba Space Center. (NEDO)

  7. Hydration and blood volume effects on human thermoregulation in the heat: Space applications

    Science.gov (United States)

    Sawka, Michael N.; Gonzalez, Richard R.; Pandolf, Kent B.

    1994-01-01

    Astronauts exposed to prolonged weightlessness will experience deconditioning, dehydration, and hypovolemia which all adversely affect thermoregulation. These thermoregulatory problems can be minimized by several countermeasures that manipulate body water and vascular volumes. USARIEM scientists have extensively studied dehydration effects and several possible countermeasures including hyperhydration, plasma and erythrocyte volume expansion. This paper reviews USARIEM research into these areas.

  8. Space psychology

    Science.gov (United States)

    Parin, V. V.; Gorbov, F. D.; Kosmolinskiy, F. P.

    1974-01-01

    Psychological selection of astronauts considers mental responses and adaptation to the following space flight stress factors: (1) confinement in a small space; (2) changes in three dimensional orientation; (3) effects of altered gravity and weightlessness; (4) decrease in afferent nerve pulses; (5) a sensation of novelty and danger; and (6) a sense of separation from earth.

  9. Researchers make the best argument yet that neutrinos are capable of changing form

    CERN Multimedia

    Johnson, G

    2002-01-01

    Measurements by the Kamioka underground laboratory in Japan have made the most persuasive case yet that particles called are capable of changing identity in midflight. The experiment also confirms that neutrinos, long thought to be weightless, have a tiny bit of mass. Otherwise, theory holds, they would not be capable of changing form, called oscillation (1 page).

  10. Astronaut Stephen Oswald during emergency bailout training

    Science.gov (United States)

    1994-01-01

    Suited in a training version of the Shuttle partial-pressure launch and entry garment, astronaut Stephen S. Oswald, STS-67 commander, gets help with a piece of gear from Boeing's David Brandt. The scene was photographed prior to a session of emergency bailout training in the 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF).

  11. USSR Space Life Sciences Digest

    Science.gov (United States)

    Lewis, C. S. (Editor); Donnelly, K. L. (Editor)

    1980-01-01

    Research in exobiology, life sciences technology, space biology, and space medicine and physiology, primarily using data gathered on the Salyut 6 orbital space station, is reported. Methods for predicting, diagnosing, and preventing the effects of weightlessness are discussed. Psychological factors are discussed. The effects of space flight on plants and animals are reported. Bioinstrumentation advances are noted.

  12. The effect of space microgravity on the physiological activity of mammalian resident cardiac stem cells

    Science.gov (United States)

    Belostotskaya, Galina; Zakharov, Eugeny

    Prolonged exposure to weightlessness during space flights is known to cause depression of heart function in mammals. The decrease in heart weight and its remodeling under the influence of prolonged weightlessness (or space microgravity) is assumed to be due to both morphological changes of working cardiomyocytes and their progressive loss, as well as to possible depletion of resident cardiac stem cells (CSCs) population, or their inability to self-renewal and regeneration of muscle tissue under conditions of weightlessness. We have previously shown that the presence of different maturity clones formed by resident CSCs not only in culture but also in the mammalian myocardium can be used as an indicator of the regenerative activity of myocardial cells [Belostotskaya, et al., 2013: 2014]. In this study, we were interested to investigate whether the 30-day near-Earth space flight on the spacecraft BION-M1 affects the regenerative potential of resident CSCs. Immediately after landing of the spacecraft, we had examined the presence of resident c-kit+, Sca-1+ and Isl1+ CSCs and their development in suspension of freshly isolated myocardial cells of C57BL mice in comparison to controls. Cardiac cell suspension was obtained by enzymatic digestion of the heart [Belostotskaya and Golovanova, 2014]. Immunocytochemically stained preparations of fixed cells were analyzed with confocal microscope Leica TCS SP5 (Germany) in the Resource Center of St-Petersburg State University. CSCs were labeled with appropriate antibodies. CSCs differentiation into mature cardiomyocytes was verified using antibodies to Sarcomeric α-Actinin and Cardiac Troponin T. Antibodies to Connexin43 were used to detect cell-cell contacts. All antibodies were conjugated with Alexa fluorochromes (488, 532, 546, 568, 594 and/or 647 nm), according to Zenon-technology (Invitrogen). It has been shown that, under identical conditions of cell isolation, more complete digestion of heart muscle was observed in

  13. Task and work performance on Skylab missions 2, 3, and 4: Time and motion study: Experiment M151

    Science.gov (United States)

    Kubis, J. F.; Mclaughlin, E. J.; Jackson, J. M.; Rusnak, R.; Mcbride, G. H.; Saxon, S. V.

    1977-01-01

    Human task performance was evaluated under weightlessness conditions during long duration space flight in order to study the characteristics of the adaptation function. Results show that despite pronounced variability in training schedules and in initial reaction to the Skylab environment, in-flight task performance was relatively equivalent among Skylab crews, and behavioral performance continued to improve from beginning to end of all missions.

  14. Parathyroid hormone, calcitonin, and vitamin D 1974: Present status of physiological studies and analysis of calcium homeostasis

    Science.gov (United States)

    Potts, J. T., Jr.; Swenson, K. G.

    1975-01-01

    The role of parathyroid hormone, calcitonin, and vitamin D in the control of calcium and bone metabolism was studied. Particular emphasis was placed on the physiological adaptation to weightlessness and, as a potential model for this purpose, on the immobilization characteristic of space flight or prolonged bed rest. The biosynthesis, control of secretion, and metabolism of these hormonal agents is considered.

  15. Space flight research relevant to health, physical education, and recreation: With particular reference to Skylab's life science experiments

    Science.gov (United States)

    Vanhuss, W. D.; Heusner, W. W.

    1979-01-01

    Data collected in the Skylab program relating to physiological stresses is presented. Included are routine blood measures used in clinical medicine as research type endocrine analyses to investigate the metabolic/endocrine responses to weightlessness. The daily routine of physical exercise, coupled with appropriate dietary intake, sleep, work, and recreation periods were considered essential in maintaining the crew's health and well being.

  16. Astronaut Tamara Jernigan deploys life raft during WETF training

    Science.gov (United States)

    1994-01-01

    Astronaut Tamara E. Jernigan, STS-67 payload commander, deploys a life raft during a session of emergency bailout training. The training took place in the 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF). Jernigan was joined by her crew mates for the training session. Several SCUBA-equipped divers who assisted in the training can be seen in this photograph.

  17. Vitamin D in Real and Simulated Weightlessness: Implications for Earth

    Science.gov (United States)

    Rice, Barbara L.; Zwart, Sara R.; Smith, Scott M.

    2006-01-01

    Vitamin D deficiency has reemerged as a public health concern in the United States. It is also a concern for astronauts because spacecraft are shielded from ultraviolet light, leaving diet as the sole source of vitamin D. We report here the findings from four studies: one evaluation of astronauts before and after 4- to 6-month missions to the International Space Station, and the other three from a ground-based analog for space flight, long-term bed rest. For the space flight study, blood samples were collected before the flight and within hours of landing after it. Crewmembers (n = 11) were provided vitamin D supplements (as cholecalciferol (10 g/d) throughout the mission. The average number of vitamin D supplements reported to be consumed per week was 5.7 plus or minus 4.0. The vitamin D status indicator serum 25-hydroxycholecalciferol was 25% less after landing (48 plus or minus 20) than before flight (63 plus or minus 16) (P less than 0.01). A series of three studies was undertaken to evaluate nutritional changes during and after 60 or 90 days of -6 deg. head-down-tilt bed rest. A total of 11 subjects (8 M, 3 F; age 26-55 y) participated in the studies. Blood and urine were collected twice before bed rest and once per month during bed rest. During bed rest the average dietary intake of vitamin D for the three studies was 4.84 plus or minus 0.16 (study 1), 6.24 plus or minus 0.81 (study 2), and 7.16 plus or minus 1.40 (study 3) micrograms/day. In study 1 only, subjects were given a daily supplement of 10 g vitamin D (as ergocalciferol). Data were analyzed using repeated-measures ANOVA. In the first study, 7 days after the end of the bed rest, serum 25-hydroxycholecalciferol was 30% less than it was before bed rest (p less than 0.05). In the second and third studies, during or after bed rest the serum 25-hydroxycholecalciferol concentration was not significantly different from its concentration before bed rest. These data demonstrate that vitamin D intake is critical for individuals not exposed to the sun. Although we studied astronauts and healthy subjects in bed rest, the implications of our results also apply to people living in northern latitudes and others who receive little exposure to sunlight, such as elderly people who seldom go outdoors. The inability of supplements to maintain vitamin D status is also an important finding, and highlights the need for careful food selection to ensure adequate vitamin D intake.

  18. Spacelab 1 hematology experiment (INS103): Influence of space flight on erythrokinetics in man

    Science.gov (United States)

    Leach, C. S.; Chen, J. P.; Crosby, W.; Dunn, C. D. R.; Johnson, P. C.; Lange, R. D.; Larkin, E.; Tavassoli, M.

    1985-01-01

    An experiment conducted on the 10-day Spacelab 1 mission aboard the ninth Space Shuttle flight in November to December 1983 was designed to measure factors involved in the control of erythrocyte turnover that might be altered during weightlessness. Blood samples were collected before, during, and after the flight. Immediately after landing, red cell mass showed a mean decrease of 9.3 percent in the four astronauts. Neither hyperoxia nor an increase in blood phosphate was a cause of the decrease. Red cell survival time and iron incorporation postflight were not significantly different from their preflight levels. Serum haptoglobin did not decrease, indicating that intravascular hemolysis was not a major cause of red cell mass change. An increase in serum ferritin after the second day of flight may have been caused by red cell breakdown early in flight. Erythropoietin levels decreased during and after flight, but preflight levels were high and the decrease was not significant. The space flight-induced decrease in red cell mass may result from a failure of erythropoiesis to replace cells destroyed by the spleen soon after weightlessness is attained.

  19. The effect of blood volume loss on cardiovascular response to lower body negative pressure using a mathematical model

    Science.gov (United States)

    Karam, E. H.; Srinivasan, R. S.; Charles, J. B.; Fortney, S. M.

    1994-01-01

    Different mathematical models of varying complexity have been proposed in recent years to study the cardiovascular (CV) system. However, only a few of them specifically address the response to lower body negative pressure (LBNP), a stress that can be applied in weightlessness to predict changes in orthostatic tolerance. Also, the simulated results produced by these models agree only partially with experimental observations. In contrast, the model proposed by Melchior et al., and modified by Karam et al. is a simple representation of the CV system capable of accurately reproducing observed LBNP responses up to presyncopal levels. There are significant changes in LBNP response due to a loss of blood volume and other alterations that occur in weightlessness and related one-g conditions such as bedrest. A few days of bedrest can cause up to 15% blood volume loss (BVL), with consequent decreases in both stroke volume and cardiac output, and increases in heart rate, mean arterial pressure, and total peripheral resistance. These changes are more pronounced at higher levels of LBNP. This paper presents the results of a simulation study using our CV model to examine the effect of BVL on LBNP response.

  20. Pharao: study of an atomic clock using laser-cooled atoms and realization of a prototype

    International Nuclear Information System (INIS)

    Lemonde, P.

    1997-01-01

    Thermal jets and atomic fountains are two different principles on which atomic clocks are based. In atomic fountains the velocity of atoms can be reduced to a few cm/s so the classical limitations of thermal jets such as phase shift between two Ramsey impulses, second order Doppler effect become negligible. The new limitations set by atomic fountain clocks are now collisions between cold atoms and the radiation emitted by the black body. Weightlessness leads to a different running of the atomic clock and can imply an enhancement of its performances. In micro-gravity an interatomic interaction time of several seconds can be reached. The application of such atomic clocks can go beyond time or frequency metrology. This work is dedicated to the development of a spatial atomic clock to fully use the extremely low velocity of laser-cooled atoms and to quantify what can be expected of weightlessness. This study has involved the realization of a prototype and its testing in a zero-g plane. The experimental results are presented and it is highlighted that an accuracy and a one-day stability of 10 -16 are within reach with an optimized version of this atomic clock. (A.C.)

  1. Searching for the Origin through Central Nervous System: A Review and Thought which Related to Microgravity, Evolution, Big Bang Theory and Universes, Soul and Brainwaves, Greater Limbic System and Seat of the Soul.

    Science.gov (United States)

    Idris, Zamzuri

    2014-07-01

    Cerebrospinal fluid (CSF) serves buoyancy. The buoyancy thought to play crucial role in many aspects of the central nervous system (CNS). Weightlessness is produced mainly by the CSF. This manuscript is purposely made to discuss its significance which thought contributing towards an ideal environment for the CNS to develop and function normally. The idea of microgravity environment for the CNS is supported not only by the weightlessness concept of the brain, but also the noted anatomical position of the CNS. The CNS is positioned in bowing position (at main cephalic flexure) which is nearly similar to an astronaut in a microgravity chamber, fetus in the amniotic fluid at early gestation, and animals and plants in the ocean or on the land. Therefore, this microgravity position can bring us closer to the concept of origin. The hypothesis on 'the origin' based on the microgravity were explored and their similarities were identified including the brainwaves and soul. Subsequently a review on soul was made. Interestingly, an idea from Leonardo da Vinci seems in agreement with the notion of seat of the soul at the greater limbic system which has a distinctive feature of "from God back to God".

  2. Spacelab Life Sciences 1: Reprints of Background Life Sciences Publications

    Science.gov (United States)

    White, Ronald (Editor); Leonard, Joel I. (Editor)

    1991-01-01

    The research being conducted on SLS-1 is primarily concerned with the short-term adaptation of physiological systems to weightlessness. A comprehensive overview of the various disciplines being studied on SLS-1 is presented. Citations and abstracts of all the papers submitted by the SLS-1 investigator teams are contained. The physiological systems studied include: cardiovascular and cardiopulmonary, musculoskeletal, neurovestibular, renal and endocrine, hematological, and immunological.

  3. Space Biology and Aerospace Medicine. Number 2

    Science.gov (United States)

    1977-05-01

    dicrotic notch on the rheovasogram of the leg, under hyperbarxc conditions, shifted toward the periphery of the dicrotic region and isoline 2-3 min...weightlessness, etc.) and telemetry. 17. Key Words and Document Analysis. 17a. Descriptors USSR Exobiology Life Support Human Factors ...the overall set of factors , upon which cosmonauts’ health and efficiency depended. How- ever, even at that stage of development of cosmonautics

  4. Internal thermotopography and shifts in general thermal balance in man under special heat transfer conditions

    Science.gov (United States)

    Gorodinskiy, S. M.; Gramenitskiy, P. M.; Kuznets, Y. I.; Ozerov, O. Y.; Yakovleva, E. V.; Groza, P.; Kozlovskiy, S.; Naremski, Y.

    1974-01-01

    Thermal regulation for astronauts working in pressure suits in open space provides for protection by a system of artificial heat removal and compensation to counteract possible changes in the heat regulating function of the human body that occur under the complex effects of space flight conditions. Most important of these factors are prolonged weightlessness, prolonged limitation of motor activity, and possible deviations of microclimatic environmental parameters.

  5. Astronaut John Grunsfeld during EVA training in the WETF

    Science.gov (United States)

    1995-01-01

    Astronaut John M. Grunsfeld, STS-67 mission specialist, gives a salute as he is about to be submerged in a 25-feet deep pool in JSC's Weightless Environment Training Facility (WETF). Wearing a special training version of the Extravehicular Mobility Unit (EMU) space suit and assisted by several JSC SCUBA-equipped divers, Grunsfeld was later using the pool to rehearse contingency space walk chores.

  6. Some psychological and engineering aspects of the extravehicular activity of astronauts.

    Science.gov (United States)

    Khrunov, E V

    1973-01-01

    One of the main in-flight problems being fulfilled by astronauts is the preparation for and realization of egress into open space for the purpose of different kinds of extravehicular activity, such as, the performance of scientific experiments, repairing and dismantling operations etc. The astronaut's activity outside the space vehicle is the most difficult item of the space flight programme, which is complicated by a number of space factors affecting a man, viz. dynamic weightlessness, work in a space suit under conditions of excessive pressure, difficulties of space orientation etc. The peculiarities mentioned require special training of the cosmonaut. The physical training involves a series of exercises forming the body-control habits necessary for work in a state of weightlessness. In a new kind of training use is made of equipment simulating the state of weightlessness. From analysis of the available data and the results of my own investigations during ground training and the Soyuz 4 and 5 flights one can establish the following peculiarities of the astronaut's extravehicular activity: (1) Operator response lag in the planned algorithm; (ii) systematic appearance of some stereotype errors in the mounting and dismantling of the outer equipment and in scientific-technical experiments; (iii) a high degree of emotional strain and 30-35% decrease in in-flight working capacity of the astronaut compared with the ground training data; (iv) a positive influence of space adaptation on the cosmonaut and the efficiency of his work in open space; (v) the necessity for further engineering and psychological analysis of the astronaut's activity under conditions of the long space flight of the multi-purpose orbital station. One of the main reasons for the above peculiarities is the violation of the control-coordination functions of the astronaut in the course of the dynamical operations. The paper analyses the extravehicular activity of the astronaut and presents some

  7. Fire extinguishment in hypobaric and hyperbaric environments

    Science.gov (United States)

    Kimzey, J. H.

    1971-01-01

    Work that has been performed to provide information on the effects of various fire extinguishing agents in special atmospheres is discussed. Data used in the development of both equipment and techniques for manned spacecraft and related equipment are discussed. The equipment includes a hypobaric chamber suitable for low pressure use and a hyperbaric chamber for high pressure operation. The effectiveness of agents in weightless environment is also discussed.

  8. Cosmonaut Sergei Krikalev receives assistance from suit technician

    Science.gov (United States)

    1994-01-01

    Sergei Krikalev, alternative mission specialist for STS-63, gets help from Dawn Mays, a Boeing suit technician. The cosmonaut was about to participate in a training session at JSC's Weightless Environment Training Facility (WETF). Wearing the training version of the extravehicular mobility unit (EMU) space suit, weighted to allow neutral buoyancy in the 25 feet deep WETF pool, Krikalev minutes later was underwater simulating a contingency spacewalk, or extravehicular activity (EVA).

  9. Astronauts Parise and Jernigan check helmets prior to training session

    Science.gov (United States)

    1994-01-01

    Attired in training versions of the Shuttle partial-pressure launch and entry suits, payload specialist Dr. Ronald A Parise (left) and astronaut Tamara E. Jernigan, payload commander, check over their helmets prior to a training session. Holding the helmets is suit expert Alan M. Rochford, of NASA. The two were about to join their crew mates in a session of emergency bailout training at JSC's Weightless Environment Training Facility (WETF).

  10. The Effects of Space Flight on Some Liver Enzymes Concerned with Carbohydrate and Lipid Metabolism in Rats

    Science.gov (United States)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

    1978-01-01

    The activities of about 30 enzymes concerned with carbohydrate and lipid metabolism and the levels of glycogen and of individual fatty acids were measured in livers of rats ex- posed to prolonged space flight (18.5 days) aboard COSMOS 986 Biosatellite. When flight stationary, (FS) and flight centrifuged (FC) rats were compared at recovery (R(sub 0)), decrceases in the activities of glycogen phosphorylase, alpha glycerphosphate, acyl transferase, diglyceride acyl transferase, acconitase and Epsilon-phosphogluconate dehydrogenase were noted in the weightless group (FS). The significance of these findings was strengthened since all activities, showing alterations at R(sub 0), returned to normal 25 days post-flight. Differences were also seen in levels of two liver constituents. When glycogen and total fatty acids of the two groups of flight animals were determined, differences that could be attributed to reduced gravity were observed, the FS group at R(sub 0) contained, on the average, more than twice the amount of glycogen than did controls ad a remarkable shift in the ratio of palmitate to palmitoleate were noted. These metabolic alterations appear to be unique to the weightless condition. Our data justify the conclusion that centrifugation during space flight is equivalent to terrestrial gravity.

  11. An overview of Space Shuttle anthropometry and biomechanics research with emphasis on STS/Mir recumbent seat system design

    Science.gov (United States)

    Klute, Glenn K.; Stoycos, Lara E.

    1994-01-01

    The Anthropometry and Biomechanics Laboratory (ABL) at JSC conducts multi-disciplinary research focusing on maximizing astronaut intravehicular (IVA) and extravehicular (EVA) capabilities to provide the most effective work conditions for manned space flight and exploration missions. Biomechanics involves the measurement and modeling of the strength characteristics of the human body. Current research for the Space Shuttle Program includes the measurement of torque wrench capability during weightlessness, optimization of foot restraint, and hand hold placement, measurements of the strength and dexterity of the pressure gloved hand to improve glove design, quantification of the ability to move and manipulate heavy masses (6672 N or 1500 lb) in weightlessness, and verification of the capability of EVA crewmembers to perform Hubble Space Telescope repair tasks. Anthropometry is the measurement and modeling of the dimensions of the human body. Current research for the Space Shuttle Program includes the measurement of 14 anthropometric parameters of every astronaut candidate, identification of EVA finger entrapment hazards by measuring the dimensions of the gloved hand, definition of flight deck reach envelopes during launch and landing accelerations, and measurement of anthropometric design parameters for the recumbent seat system required for the Shuttle/Mir mission (STS-71, Spacelab M) scheduled for Jun. 1995.

  12. [Effect of tail-suspension on the reproduction of adult male rats].

    Science.gov (United States)

    Zhou, Dang-xia; Qiu, Shu-dong; Wang, Zhi-yong; Zhang, Jie

    2006-04-01

    To study the effects on the male reproduction in adult male rats and its mechanisms through simulated weightlessness using tail-suspension, in order to do a basic works of exploring the effects on human being's reproduction in outer space. Forty Spraque-Dawley adult male rats were randomly divided into four groups, two experimental groups and two control groups. Rats in the two experimental groups were tail-suspended for 14 d and 28 d respectively, then we examined the weight and morphology of testis, the quality and amount of sperm, also tested the serum hormone by radioimmunoassay and analyzed apoptosis rate of testicular cells by TUNEL in the experimental rats and control rats. After tail-suspension, the weight of testis, the sperm count and sperm motility significantly decreased (P 0.05). These changes were not significant between two experimental groups (P > 0.05). In addition, the seminiferous tubules became atrophy with the reduction of the layers of seminiferous epithelium, and sperm amount in lumens of seminiferous tubules decreased in experimental groups. The above were more remarkable in the 28 d experimental group. Simulating weightlessness has a harmful effect on reproduction of adult male rats. These may be caused by inducing apoptosis. The blocking apoptosis of testicular cells may be useful in improving the harmful effect.

  13. Hematology/immunology (M110 series). [human hemodynamic response to weightlessness simulation

    Science.gov (United States)

    1973-01-01

    The hematology/immunology experiments in the Skylab mission study various aspects of the red blood cell, including its metabolism and life span, and blood volume changes under zero gravity conditions to determine the precise mechanism of the transient changes which have been seen on the relatively brief missions of the past.

  14. Heat transfer in an evaporation-condensation system in simulated weightlessness conditions

    Science.gov (United States)

    Bologa, M. K.; Grosu, F. P.; Kozhevnikov, I. V.; Motorin, O. V.; Polikarpov, A. A.

    2017-10-01

    The process of heat transfer in an evaporation-condensation system (ECS) at circulation of dielectric liquid in a closed thermoelectrohydrodynamic (TEHD) loop consisting of an evaporator, a condenser and electrohydrodynamic (EHD) pump for pumping of heat carrier, is considered. Previously, the authors studied the dependence of heat transfer on the angle of rotation of TEHD loop in a vertical plane. The report contains the results of studies of heat transfer at electrohydrodynamic pumping of the heat carrier (8% solution of acetone in Freon 113) in the condenser area by means of EHD pump of “cone-cone” type. All elements of the ECS are arranged in a horizontal plane and the heat transfer from the heater to the condenser without EHD pumping is impossible. A pulsating heat carrier flow mode, depending on the heat input and the voltage applied to the pump, takes place at EHD pumping. As the input power is decreasing the frequency of the coolant pulsations as well as the departure diameter and number of vapour bubbles are also decreasing. At some critical heat input the pulsations disappear and the transition from turbulent mode to the laminar one takes place causing the decrease of the heat transfer coefficient. The increase of the pumping flow rate by raising the voltage applied to the EHD pump, results in a partial suppression of boiling. The maximum intensification of heat transfer is reached at pulsation frequency of 1.25 Hz. The maximum heat flow from the heater was 4.2·104 W/m2. Graphical representation and the physical interpretation of the results, which reflect the essence of the process, are given.

  15. Microgravity Science Glovebox Aboard the International Space Station

    Science.gov (United States)

    2003-01-01

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  16. Electrically Stimulated Antagonist Muscle Contraction Increased Muscle Mass and Bone Mineral Density of One Astronaut - Initial Verification on the International Space Station

    OpenAIRE

    Shiba, Naoto; Matsuse, Hiroo; Takano, Yoshio; Yoshimitsu, Kazuhiro; Omoto, Masayuki; Hashida, Ryuki; Tagawa, Yoshihiko; Inada, Tomohisa; Yamada, Shin; Ohshima, Hiroshi

    2015-01-01

    Background Musculoskeletal atrophy is one of the major problems of extended periods of exposure to weightlessness such as on the International Space Station (ISS). We developed the Hybrid Training System (HTS) to maintain an astronaut?s musculoskeletal system using an electrically stimulated antagonist to resist the volitional contraction of the agonist instead of gravity. The present study assessed the system?s orbital operation capability and utility, as well as its preventative effect on a...

  17. Effects of orbital spaceflight on human osteoblastic cell physiology and gene expression

    Science.gov (United States)

    Harris, S. A.; Zhang, M.; Kidder, L. S.; Evans, G. L.; Spelsberg, T. C.; Turner, R. T.

    2000-01-01

    During long-term spaceflight, astronauts lose bone, in part due to a reduction in bone formation. It is not clear, however, whether the force imparted by gravity has direct effects on bone cells. To examine the response of bone forming cells to weightlessness, human fetal osteoblastic (hFOB) cells were cultured during the 17 day STS-80 space shuttle mission. Fractions of conditioned media were collected during flight and shortly after landing for analyses of glucose utilization and accumulation of type I collagen and prostaglandin E(2) (PGE(2)). Total cellular RNA was isolated from flight and ground control cultures after landing. Measurement of glucose levels in conditioned media indicated that glucose utilization occurred at a similar rate in flight and ground control cultures. Furthermore, the levels of type I collagen and PGE(2) accumulation in the flight and control conditioned media were indistinguishable. The steady-state levels of osteonectin, alkaline phosphatase, and osteocalcin messenger RNA (mRNA) were not significantly changed following spaceflight. Gene-specific reductions in mRNA levels for cytokines and skeletal growth factors were detected in the flight cultures using RNase protection assays. Steady-state mRNA levels for interleukin (IL)-1alpha and IL-6 were decreased 8 h following the flight and returned to control levels at 24 h postflight. Also, transforming growth factor (TGF)-beta(2) and TGF-beta(1) message levels were modestly reduced at 8 h and 24 h postflight, although the change was not statistically significant at 8 h. These data suggest that spaceflight did not significantly affect hFOB cell proliferation, expression of type I collagen, or PGE(2) production, further suggesting that the removal of osteoblastic cells from the context of the bone tissue results in a reduced ability to respond to weightlessness. However, spaceflight followed by return to earth significantly impacted the expression of cytokines and skeletal growth factors

  18. Sensorimotor Reorganizations of Arm Kinematics and Postural Strategy for Functional Whole-Body Reaching Movements in Microgravity

    Directory of Open Access Journals (Sweden)

    Thomas Macaluso

    2017-10-01

    Full Text Available Understanding the impact of weightlessness on human behavior during the forthcoming long-term space missions is of critical importance, especially when considering the efficiency of goal-directed movements in these unusual environments. Several studies provided a large set of evidence that gravity is taken into account during the planning stage of arm reaching movements to optimally anticipate its consequence upon the moving limbs. However, less is known about sensorimotor changes required to face weightless environments when individuals have to perform fast and accurate goal-directed actions with whole-body displacement. We thus aimed at characterizing kinematic features of whole-body reaching movements in microgravity, involving high spatiotemporal constraints of execution, to question whether and how humans are able to maintain the performance of a functional behavior in the standards of normogravity execution. Seven participants were asked to reach as fast and as accurately as possible visual targets while standing during microgravity episodes in parabolic flight. Small and large targets were presented either close or far from the participants (requiring, in the latter case, additional whole-body displacement. Results reported that participants successfully performed the reaching task with general temporal features of movement (e.g., movement speed close to land observations. However, our analyses also demonstrated substantial kinematic changes related to the temporal structure of focal movement and the postural strategy to successfully perform -constrained- whole-body reaching movements in microgravity. These immediate reorganizations are likely achieved by rapidly taking into account the absence of gravity in motor preparation and execution (presumably from cues about body limbs unweighting. Specifically, when compared to normogravity, the arm deceleration phase substantially increased. Furthermore, greater whole-body forward displacements

  19. The exercise and environmental physiology of extravehicular activity

    Science.gov (United States)

    Cowell, Stephenie A.; Stocks, Jodie M.; Evans, David G.; Simonson, Shawn R.; Greenleaf, John E.

    2002-01-01

    Extravehicular activity (EVA), i.e., exercise performed under unique environmental conditions, is indispensable for supporting daily living in weightlessness and for further space exploration. From 1965-1996 an average of 20 h x yr(-1) were spent performing EVA. International Space Station (ISS) assembly will require 135 h x yr(-1) of EVA, and 138 h x yr(-1) is planned for post-construction maintenance. The extravehicular mobility unit (EMU), used to protect astronauts during EVA, has a decreased pressure of 4.3 psi that could increase astronauts' risk of decompression sickness (DCS). Exercise in and repeated exposure to this hypobaria may increase the incidence of DCS, although weightlessness may attenuate this risk. Exercise thermoregulation within the EMU is poorly understood; the liquid cooling garment (LCG), worn next to the skin and designed to handle thermal stress, is manually controlled. Astronauts may become dehydrated (by up to 2.6% of body weight) during a 5-h EVA, further exacerbating the thermoregulatory challenge. The EVA is performed mainly with upper body muscles; but astronauts usually exercise at only 26-32% of their upper body maximal oxygen uptake (VO2max). For a given ground-based work task in air (as opposed to water), the submaximal VO2 is greater while VO2max and metabolic efficiency are lower during ground-based arm exercise as compared with leg exercise, and cardiovascular responses to exercise and training are also different for arms and legs. Preflight testing and training, whether conducted in air or water, must account for these differences if ground-based data are extrapolated for flight requirements. Astronauts experience deconditioning during microgravity resulting in a 10-20% loss in arm strength, a 20-30% loss in thigh strength, and decreased lower-body aerobic exercise capacity. Data from ground-based simulations of weightlessness such as bed rest induce a 6-8% decrease in upper-body strength, a 10-16% loss in thigh extensor

  20. Life science experiments during parabolic flight: The McGill experience

    Science.gov (United States)

    Watt, D. G. D.

    1988-01-01

    Over the past twelve years, members of the Aerospace Medical Research Unit of McGill University have carried out a wide variety of tests and experiments in the weightless condition created by parabolic flight. This paper discusses the pros and cons of that environment for the life scientist, and uses examples from the McGill program of the types of activities which can be carried out in a transport aircraft such as the NASA KC-135.

  1. A long term model of circulation. [human body

    Science.gov (United States)

    White, R. J.

    1974-01-01

    A quantitative approach to modeling human physiological function, with a view toward ultimate application to long duration space flight experiments, was undertaken. Data was obtained on the effect of weightlessness on certain aspects of human physiological function during 1-3 month periods. Modifications in the Guyton model are reviewed. Design considerations for bilateral interface models are discussed. Construction of a functioning whole body model was studied, as well as the testing of the model versus available data.

  2. Use of TV in space science activities - Some considerations. [onboard primary experimental data recording

    Science.gov (United States)

    Bannister, T. C.

    1977-01-01

    Advantages in the use of TV on board satellites as the primary data-recording system in a manned space laboratory when certain types of experiments are flown are indicated. Real-time or near-real-time validation, elimination of film weight, improved depth of field and low-light sensitivity, and better adaptability to computer and electronic processing of data are spelled out as advantages of TV over photographic techniques, say, in fluid dynamics experiments, and weightlessness studies.

  3. Surface tension confined liquid cryogen cooler

    Science.gov (United States)

    Castles, Stephen H. (Inventor); Schein, Michael E. (Inventor)

    1989-01-01

    A cryogenic cooler is provided for use in craft such as launch, orbital, and space vehicles subject to substantial vibration, changes in orientation, and weightlessness. The cooler contains a small pore, large free volume, low density material to restrain a cryogen through surface tension effects during launch and zero-g operations and maintains instrumentation within the temperature range of 10 to 140 K. The cooler operation is completely passive, with no inherent vibration or power requirements.

  4. Urinary albumin in space missions

    DEFF Research Database (Denmark)

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina

    2002-01-01

    Proteinuria was hypothesized for space mission but research data are missing. Urinary albumin, as index of proteinuria, was analyzed in frozen urine samples collected by astronauts during space missions onboard MIR station and on ground (control). Urinary albumin was measured by a double antibody...... radioimmunoassay. On average, 24h urinary albumin was 27.4% lower in space than on ground; the difference was statistically significant. Low urinary albumin excretion could be another effect of exposure to weightlessness (microgravity)....

  5. Astronaut Joseph Tanner is assisted into his EMU during training

    Science.gov (United States)

    1994-01-01

    Astronaut Joseph R. Tanner, STS-66 mission specialist, is assisted by Boeing suit expert Steve Voyles in donning the gloves for his extravehicular mobility unit (EMU) as he prepares to be submerged in a 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF). Though no extravehicular activity (EVA) is planned for the mission, at least two astronauts are trained to perform tasks that would require a space walk in the event of failure of remote systems.

  6. Research and Diplomacy 350 Kilometers above the Earth

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The International Space Station is a tour de force, not simply in engineering and R&D, but in the unprecedented collaboration, synergy, and entente the partners have displayed through its planning, construction, and, now, utilisation phase. Orbiting 350 km above the surface of the Earth, the ISS is the only weightless research laboratory currently in operation and has been inhabited by multi-national crew since November 2001. Ms. Payette takes us on a space journey where science merges with diplomacy.

  7. Motor control of landing from a countermovement jump in simulated microgravity.

    OpenAIRE

    Gambelli, C N; Theisen, D; Willems, Patrick; Schepens, Bénédicte

    2016-01-01

    Landing from a jump implies proper positioning of the lower limb segments and the generation of an adequate muscular force to cope with the imminent collision with the ground. This study assesses how a hypogravitational environment affects the control of landing after a countermovement jump (CMJ). Eight participants performed submaximal CMJs on Earth (1-g condition) and in a weightlessness environment with simulated gravity conditions generated by a pull-down force (1-, 0.6-, 0.4-, and 0.2-g0...

  8. STS-47 Astronaut Crew Training Clip

    Science.gov (United States)

    1992-01-01

    The crew of STS-47, Commander Robert L. Gibson, Pilot Curtis L. Brown, Payload Commander Mark C. Lee, Mission Specialists N. Jan Davis, Jay Apt, and Mae C. Jemison, and Payload Specialist Mamoru Mohri, is seen during various parts of their training, including SAREX training in the Full Fuselage Trainer (FFT), firefighting training. A familiarization flight in the KC-135, a food tasting, photo training in the Crew Compartment Trainer, and bailout training in the Weightless Environment Training Facility (WETF) are also shown.

  9. Visuo-Vestibular Interactions

    Science.gov (United States)

    1997-01-01

    Session TA3 includes short reports covering: (1) Vestibulo-Oculomotor Interaction in Long-Term Microgravity; (2) Effects of Weightlessness on the Spatial Orientation of Visually Induced Eye Movements; (3) Adaptive Modification of the Three-Dimensional Vestibulo-Ocular Reflex during Prolonged Microgravity; (4) The Dynamic Change of Brain Potential Related to Selective Attention to Visual Signals from Left and Right Visual Fields; (5) Locomotor Errors Caused by Vestibular Suppression; and (6) A Novel, Image-Based Technique for Three-Dimensional Eye Measurement.

  10. Effects of weightlessness on the muscle system. new results of simulation's studies

    Science.gov (United States)

    Kozlovskaya, I. B.; Shenkman, B. S.; Grigoriev, A. I.

    Results of studies of phenomenology and nature of the hypogravitational motor syndrome, provided at the Institute of Biomedical Problems of RAS, have shown that a decline of gravitational load is followed consistently by deep disturbances in all parts and structures of the motor system. An important role in their development plays the withdrawal of the support and, accordingly the decrease of the intensity of the support afferentation activities that provokes a decline of tonic motor units' activities and correspondingly a decline of the muscle tone in the first phase and the development of atrophic processes in slow fibers of antigravitational muscles in the second one (Kozlovskaya et.al., 1987). This hypothesis was tested in experiments with 7-hours and 7-days "dry immersion" (DI), in which effects of pure supportless environment and pure supportless environment coupled with mechanical stimulation of the support zones of the soles were compared. Stimulation with the pressure of 0,2 kg/sm^2 value to forefoot and heel support zones for 20 minutes every hour during 6 hours was applied daily in the regimen of slow and fast locomotion (pacing with the rate of 60 and 120 steps/min). The subjects exposed to the pure DI environment revealed after exposition a significant decline of the transverse stiffness and of the maximal isokinetic force of the leg postural muscles, a decrease of the postural muscles participation in the locomotions along with the increase of the phasic muscles' part, a significant decrease of the absolute force of m.soleus single skinned fibers evoked by Ca++, and an obvious decline of their transverse cross sectional areas as well as prominent disturbances of the activities of spinal and supraspinal motor control systems. Mechanical stimulation of the soles support zones eliminated all the above effects, minimizing the changes of the muscle stiffness and the maximal isokinetic force, taking away the signs of the isolated muscle fibers force decline and of the atrophic changes, preserving close to control relations of the activities of postural (m.soleus) and phasic (m.gastrocnemius) muscles in locomotor movements and normal characteristics of activities of motor control mechanisms.

  11. Review of the biological effects of weightlessness on the human endocrine system

    Science.gov (United States)

    Hughes-Fulford, M.

    1993-01-01

    Studies from space flights over the past two decades have demonstrated that there are basic physiological changes in humans during space flight. These changes include cephalad fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known but the general approach has been to investigate systemic and hormonal changes. However, data from the 1973-1974 Skylabs, Spacelab 3 (SL-3), Spacelab D-I (SL-DI), and now the new SLS-1 missions support a more basic biological response to microgravity that may occur at the tissue, cellular, and molecular level. This report summarizes ground-based and SLS-1 experiments that examined the mechanism of loss of red blood cell mass in humans, the loss of bone mass and lowered osteoblast growth under space flight conditions, and loss of immune function in microgravity.

  12. Effects of simulated weightlessness on meiosis. Fertilization, and early development in mice

    Science.gov (United States)

    Wolgemuth, D. J.

    1986-01-01

    The initial goal was to construct a clinostat which could support mammalian cell culture. The clinostat was selected as a means by which to simulate microgravity conditions within the laboratory, by constant re-orientation of cells with respect to the gravity vector. The effects of this simulated microgravity on in-vitro meiotic maturation of oocytes, using mouse as the model system, was investigated. The effects of clinostat rotation on fertilization in-vitro was then examined. Specific endpoints included examining the timely appearance of male and female pronuclei (indicating fertilization) and the efficiency of extrusion of the second polar body. Particular attention was paid to detecting anomalies of fertilization, including parthenogenetic activation and multiple pronuclei. Finally, for the preliminary studies on mouse embryogenesis, a key feature of the clinostat was modified, that of the position of the cells during rotation. A means was found to immobilize the cells during the clinostat reotation, permitting the cells to remain at the axis of rotation yet not interfering with cellular development.

  13. Analysis of cell-tissue grafts under weightless conditions using confocal fluorescence microscopy

    Science.gov (United States)

    Volova, L. T.; Milyakova, M. N.; Rossinskaya, V. V.; Boltovskaya, V. V.; Kulagina, L. N.; Kurganskaya, L. V.; Timchenko, P. E.; Timchenko, E. V.; Zherdeva Taskina, Larisa A.

    2015-03-01

    The research results of monitoring of viable cells in a cellular-tissue graft using confocal laser fluorescence microscopy at 488 nm and 561 nm with the use of fluorophore propidium iodide (propidium iodide, PI Sigma Aldrich USA) are presented. The processing of the received images was carried out using the software ANDOR. It is experimentally shown that the method of confocal fluorescence microscopy is one of the informational methods for detecting cells populated in a 3-D bio-carrier with a resolution of at least 400 nm. Analysis of the received micrographs suggests that the cells that were in a bio-carrier for 30 days in a synchronous ground-based experiment retained their viability compared to a similar space-based experiment in which the cells were hardly detected in a bio-carrier.

  14. Changes of contractile responses due to simulated weightlessness in rat soleus muscle

    Science.gov (United States)

    Elkhammari, A.; Noireaud, J.; Léoty, C.

    1994-08-01

    Some contractile and electrophysiological properties of muscle fibers isolated from the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of rats were compared with those measured in SOL muscles from suspended rats. In suspendede SOL (21 days of tail-suspension) membrane potential (Em), intracellular sodium activity (aiNa) and the slope of the relationship between Em and log [K]o were typical of fast-twitch muscles. The relation between the maximal amplitude of K-contractures vs Em was steeper for control SOL than for EDL and suspended SOL muscles. After suspension, in SOL muscles the contractile threshold and the inactivation curves for K-contractures were shifted to more positive Em. Repriming of K-contractures was unaffected by suspencion. The exposure of isolated fibers to perchlorate (ClO4-)-containing (6-40 mM) solutions resulted ina similar concentration-dependent shift to more negative Em of activation curves for EDL and suspended SOL muscles. On exposure to a Na-free TEA solution, SOL from control and suspended rats, in contrast to EDL muscles, generated slow contractile responses. Suspended SOL showed a reduced sensitivity to the contracture-producing effect of caffeine compared to control muscles. These results suggested that the modification observed due to suspension could be encounted by changes in the characteristics of muscle fibers from slow to fast-twitch type.

  15. Alcubierre's warp drive: Problems and prospects

    International Nuclear Information System (INIS)

    Broeck, Chris van den

    2000-01-01

    Alcubierre's warp drive geometry seemingly represents the ultimate dream for interstellar travel: there is no speed limit, the passengers are weightless whatever the acceleration, and there is no time dilation. However, in its original form, the proposal suffers from several fatal flaws, such as unreasonably high energies, energy moving in a locally spacelike direction, and a violation of the energy conditions of classical Einstein gravity. I present a possible solution for one of these problems, and I suggest ways to at least soften the others

  16. STS-47 MS Jemison trains in SLJ module at MSFC Payload Crew Training Complex

    Science.gov (United States)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Mae C. Jemison, wearing Autogenic Feedback Training System 2 suit, works with the Frog Embryology Experiment in a General Purpose Workstation (GPWS) in the Spacelab Japan (SLJ) module mockup at the Payload Crew Training Complex. The experiment will study the effects of weightlessness on the development of frog eggs fertilized in space. The Payload Crew Training Complex is located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. View provided with alternate number 92P-139.

  17. Conditions and constraints of food processing in space

    Science.gov (United States)

    Fu, B.; Nelson, P. E.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    Requirements and constraints of food processing in space include a balanced diet, food variety, stability for storage, hardware weight and volume, plant performance, build-up of microorganisms, and waste processing. Lunar, Martian, and space station environmental conditions include variations in atmosphere, day length, temperature, gravity, magnetic field, and radiation environment. Weightlessness affects fluid behavior, heat transfer, and mass transfer. Concerns about microbial behavior include survival on Martian and lunar surfaces and in enclosed environments. Many present technologies can be adapted to meet space conditions.

  18. The rhesus monkey (Macaca mulatta) as a flight candidate

    Science.gov (United States)

    Debourne, M. N. G.; Bourne, G. H.; Mcclure, H. M.

    1977-01-01

    The intelligence and ruggedness of rhesus monkeys, as well as the abundance of normative data on their anatomy, physiology, and biochemistry, and the availability of captive bred animals qualify them for selection as candidates for orbital flight and weightlessness studies. Baseline data discussed include: physical characteristics, auditory thresholds, visual accuity, blood, serological taxomony, immunogenetics, cytogenics, circadian rhythms, respiration, cardiovascular values, corticosteroid response to charr restraint, microscopy of tissues, pathology, nutrition, and learning skills. Results from various tests used to establish the baseline data are presented in tables.

  19. Hydroelectrolytic and hormonal modifications related to prolonged bedrest in antiorthostatic position

    Science.gov (United States)

    Güell, A.; Dupui, Ph.; Fanjaud, G.; Bes, A.; Moatti, J. P.; Gharrib, Cl.

    The effects of prolonged bedrest in antiorthostatic position (-4° head down) on electrolyte balance were studied in 4 young volunteers. An increase was noted in sodium excretion during the first 4 days. Plasma renin activity and plasma aldosterone varied in parallel manner during the same period. Potassium balance and creatinine clearance were not significantly modified. In light of these data we feel that prolonged bedrest in antiorthostatic position constitutes an effective way to simulate on earth metabolic and hormonal modifications occurring in man under weightlessness conditions.

  20. The role of vestibular and support-tactile-proprioceptive inputs in visual-manual tracking

    Science.gov (United States)

    Kornilova, Ludmila; Naumov, Ivan; Glukhikh, Dmitriy; Khabarova, Ekaterina; Pavlova, Aleksandra; Ekimovskiy, Georgiy; Sagalovitch, Viktor; Smirnov, Yuriy; Kozlovskaya, Inesa

    Sensorimotor disorders in weightlessness are caused by changes of functioning of gravity-dependent systems, first of all - vestibular and support. The question arises, what’s the role and the specific contribution of the support afferentation in the development of observed disorders. To determine the role and effects of vestibular, support, tactile and proprioceptive afferentation on characteristics of visual-manual tracking (VMT) we conducted a comparative analysis of the data obtained after prolonged spaceflight and in a model of weightlessness - horizontal “dry” immersion. Altogether we examined 16 Russian cosmonauts before and after prolonged spaceflights (129-215 days) and 30 subjects who stayed in immersion bath for 5-7 days to evaluate the state of the vestibular function (VF) using videooculography and characteristics of the visual-manual tracking (VMT) using electrooculography & joystick with biological visual feedback. Evaluation of the VF has shown that both after immersion and after prolonged spaceflight there were significant decrease of the static torsional otolith-cervical-ocular reflex (OCOR) and simultaneous significant increase of the dynamic vestibular-cervical-ocular reactions (VCOR) with a revealed negative correlation between parameters of the otoliths and canals reactions, as well as significant changes in accuracy of perception of the subjective visual vertical which correlated with changes in OCOR. Analyze of the VMT has shown that significant disorders of the visual tracking (VT) occurred from the beginning of the immersion up to 3-4 day after while in cosmonauts similar but much more pronounced oculomotor disorders and significant changes from the baseline were observed up to R+9 day postflight. Significant changes of the manual tracking (MT) were revealed only for gain and occurred on 1 and 3 days in immersion while after spaceflight such changes were observed up to R+5 day postflight. We found correlation between characteristics

  1. The new Drop Tower catapult system

    Science.gov (United States)

    von Kampen, Peter; Kaczmarczik, Ulrich; Rath, Hans J.

    2006-07-01

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of the "Drop Tower" began. Since then, the eye-catching tower with a height of 146 m and its characteristic glass roof has become the emblem of the technology centre in Bremen. The Drop Tower Bremen provides a facility for experiments under conditions of weightlessness. Items are considered weightless, when they are in "free fall", i.e. moving without propulsion within the gravity field of the earth. The height of the tower limits the simple "free fall" experiment period to max. 4.74 s. With the inauguration of the catapult system in December 2004, the ZARM is entering a new dimension. This world novelty will meet scientists' demands of extending the experiment period up to 9.5 s. Since turning the first sod on May 3rd, 1988, the later installation of the catapult system has been taken into account by building the necessary chamber under the tower. The catapult system is located in a chamber 10 m below the base of the tower. This chamber is almost completely occupied by 12 huge pressure tanks. These tanks are placed around the elongation of the vacuum chamber of the drop tube. In its centre there is the pneumatic piston that accelerates the drop capsule by the pressure difference between the vacuum inside the drop tube and the pressure inside the tanks. The acceleration level is adjusted by means of a servo hydraulic breaking system controlling the piston velocity. After only a quarter of a second the drop capsule achieves its lift-off speed of 175 km/h. With this exact speed, the capsule will rise up to the top of the tower and afterwards fall down again into the deceleration unit which has been moved under the drop tube in the meantime. The scientific advantages of the doubled experiment time are obvious: during almost 10 s of high

  2. Teaching weight to explicitly address language ambiguities and conceptual difficulties

    Science.gov (United States)

    Taibu, Rex; Schuster, David; Rudge, David

    2017-06-01

    Language ambiguities in concept meanings can exacerbate student learning difficulties and conceptual understanding of physics concepts. This is especially true for the concept of "weight," which has multiple meanings in both scientific and everyday usage. The term weight has been defined in several different ways, with nuances, but in textbooks and teaching the term is almost always defined in one of two ways: operationally either as the contact force between an object and a measuring scale or as the gravitational force on an object due to some other body such as Earth. The use of the same name for different concepts leads to much confusion, especially in accelerating situations, and to conflicting notions of "weightlessness" in free fall situations. In the present paper, we share an innovative approach that initially avoids the term weight entirely while teaching the physics of each situation, and then teaches the language ambiguities explicitly. We developed an instructional module with this approach and implemented it over two terms in three sections of an introductory physics course for preservice elementary teachers. Learning gains for content understanding were assessed using pretests and post-tests. Participants achieved remarkably high gains for both static and accelerating situations. Surveys pre- and postinstruction showed substantially improved appreciation of language issues and ambiguities associated with weight, weightlessness, and free fall. Interviews with instructors teaching the module provided additional insight into the advantages and teaching demands of the new approach.

  3. The Role of Plants in Space Exploration: Some History and Background

    Science.gov (United States)

    Wheeler, Raymond M.

    2016-01-01

    For over 3 decades, NASA has sponsored research on crops for human life support in space. Specialized watering techniques have even been tested for weightless settings, but most studies used conventional watering, such as hydroponics, which should work well on surface settings of the Moon or Mars. NASAs testing has spanned a wide range of crops and studied innovative techniques to increase yields, reduce power, minimize growing volume, and recycle water and nutrients. These issues closely parallel challenges faced in terrestrial controlled environment agriculture, which is expanding around the world.

  4. The space shuttle payload planning working groups: Volume 9: Materials processing and space manufacturing

    Science.gov (United States)

    1973-01-01

    The findings and recommendations of the Materials Processing and Space Manufacturing group of the space shuttle payload planning activity are presented. The effects of weightlessness on the levitation processes, mixture stability, and control over heat and mass transport in fluids are considered for investigation. The research and development projects include: (1) metallurgical processes, (2) electronic materials, (3) biological applications, and (4)nonmetallic materials and processes. Additional recommendations are provided concerning the allocation of payload space, acceptance of experiments for flight, flight qualification, and private use of the space shuttle.

  5. Astronauts Exercising in Space Video

    Science.gov (United States)

    2001-01-01

    To minimize the effects of weightlessness and partial gravity, astronauts use several counter measures to maintain health and fitness. One counter measure is exercise to help reduce or eliminate muscle atrophy and bone loss, and to improve altered cardiovascular function. This video shows astronauts on the International Space Station (ISS) using the stationary Cycle/ Ergometer Vibration Isolation System (CVIS), the Treadmill Vibration Isolation System (TVIS), and the resistance exercise device. These technologies and activities will be crucial to keeping astronauts healthy and productive during the long missions to the Moon. Mars, and beyond.

  6. Effects of hypodynamic simulations on the skeletal system of monkeys

    Science.gov (United States)

    Young, D. R.; Tremor, J. W.

    1977-01-01

    A research and development program was undertaken to evaluate the skeletal losses of subhuman primates in hypodynamic environments. The goals of the program are: (1) to uncover the mechanisms by which weightlessness affects the skeletal system; (2) to determine the consequences and reversibility of bone mineral losses; and (3) to acquire a body of data needed to formulate an appropriate countermeasure program for the prevention of skeletal deconditioning. Space flight experiment simulation facilities are under development and will be tested for their capability in supporting certain of the requirements for these investigations.

  7. Diagram of Calcium Movement in the Human Body

    Science.gov (United States)

    2002-01-01

    This diagram shows the normal pathways of calcium movement in the body and indicates changes (green arrows) seen during preliminary space flight experiments. Calcium plays a central role because 1) it gives strength and structure to bone and 2) all types of cells require it to function normally. To better understand how and why weightlessness induces bone loss, astronauts have participated in a study of calcium kinetics -- that is, the movement of calcium through the body, including absorption from food, and its role in the formation and breakdown of bone.

  8. Thermal convection in a closed cavity in zero-gravity space conditions with stationary magnetic forces

    International Nuclear Information System (INIS)

    Lyubimova, T; Mailfert, A

    2013-01-01

    The paper deals with the investigation of thermo-magnetic convection in a paramagnetic liquid subjected to a non-uniform magnetic field in weightlessness conditions. Indeed, in zero-g space conditions such as realized in International Space Station (ISS), or in artificial satellite, or in free-flight space vessels, the classical thermo-gravitational convection in fluid disappears. In any cases, it may be useful to restore the convective thermal exchange inside fluids such as liquid oxygen. In this paper, the restoration of heat exchange by the way of creation of magnetic convection is numerically studied.

  9. Role of Academician N.M. Sissakian in space biomedicine formation

    International Nuclear Information System (INIS)

    Gazenko, O.G.; Gyurdzhian, A.A.

    1997-01-01

    Role of Academician N.M. Sissakian in space biomedicine formation is discussed dedicated to the 90th anniversary from his birthday. It is shown that Sissakian layers the foundation of new branch of science - space biomedicine. He participated in the programs of preparing man to space flight, paid attention to the problems of exobiology, gravitation, ontogenesis in mammals under weightlessness conditions, radiation safety in space flight, life support under space flight conditions, social-psychological activities of astronauts. Academician introduced the achievements of cosmic investigations into earth science practice, paid great attention to the international cooperation

  10. The flights before the flight - An overview of shuttle astronaut training

    Science.gov (United States)

    Sims, John T.; Sterling, Michael R.

    1989-01-01

    Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.

  11. Biotechnologische Nutzung der Schwerelosigkeit für medizinische Forschung - Analyse humaner Zellen nach Schwerelosigkeit

    DEFF Research Database (Denmark)

    Grimm, Daniela Gabriele; Bauer, Johann; Hemmersbach, Ruth

    2013-01-01

    For periods of time ranging from 22 seconds in parabolic flights and up to two weeks on sattilites, human cells were exposed to real or simulated weightlessness on a Random Positioning Machine and a 2D clinostat and analysed afterwards. By this approach we can increase our knowledge regarding...... health problems of space travellers and in parallel we get new information concerning several diseases of humans on Earth. Surprisingly, we also observed that single cells exposed to simulated microgravity assemble to three-dimensional aggregates resembling the tissues from which these cells...

  12. Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario

    Science.gov (United States)

    1995-01-01

    STS-77 TRAINING VIEW --- Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario Runco, mission specialist, prepares to participate in an underwater rehearsal of a contingency Extravehicular Activity (EVA). This type of training routinely takes place in the 25-feet deep pool of the Johnson Space Centers (JSC) Weightless Environment Training Center (WET-F). The training prepares at least two crew members on each flight for procedures to follow outside the spacecraft in event of failure of remote methods to perform various chores.

  13. Isometric force exaggeration in simulated weightlessness by water immersion: role of visual feedback.

    Science.gov (United States)

    Dalecki, Marc; Bock, Otmar

    2014-06-01

    Previous studies reported that humans produce exaggerated isometric forces (20-50%) in microgravity, hypergravity, and under water. Subjects were not provided with visual feedback and exaggerations were attributed to proprioceptive deficits. The few studies that provided visual feedback in micro- and hypergravity found no deficits. The present work was undertaken to find out whether visual feedback can reduce or eliminate isometric force exaggerations during shallow water immersion, a working environment for astronauts and divers. There were 48 subjects who had to produce isometric forces of 15 N with a joystick; targets were presented via screen. Procedures were similar to earlier studies, but provided visual feedback. Subjects were tested 16.4 ft (5 m) under water (WET) and on dry land (DRY). Response accuracy was calculated with landmarks such as initial and peak force magnitude, and response timing. Initial force and response timing were equal in WET compared to DRY. A small but significant force exaggeration (+5%) remained for peak force in WET that was limited to directions toward the trunk. Force exaggeration under water is largely compensated, but not completely eliminated by visual feedback. As in earlier studies without visual feedback, force exaggeration manifested during later but not early response parts, speaking for impaired proprioceptive feedback rather than for erroneous central motor planning. Since in contrast to micro/hypergravity, visual feedback did not sufficiently abolish force deficits under water, proprioceptive information seems to be weighted differently in micro/hypergravity and shallow water immersion, probably because only the latter environment produces increased ambient pressure, which is known to induce neuronal changes.

  14. Results from the Joint US/Russian Sensory-Motor Investigations

    Science.gov (United States)

    1997-01-01

    In this session, Session FA3, the discussion focuses on the following topics: The Effect of Long Duration Space Flight on the Acquisition of Predictable Targets in Three Dimensional Space; Effects of Microgravity on Spinal Reflex Mechanisms; Three Dimensional Head Movement Control During Locomotion After Long-Duration Space Flight; Human Body Shock Wave Transmission Properties After Long Duration Space Flight; Adaptation of Neuromuscular Activation Patterns During Locomotion After Long Duration Space Flight; Balance Control Deficits Following Long-Duration Space Flight; Influence of Weightlessness on Postural Muscular Activity Coordination; and The Use of Inflight Foot Pressure as a Countermeasure to Neuromuscular Degradation.

  15. Evaluation of prototype Advanced Life Support (ALS) pack for use by the Health Maintenance Facility (HMF) on Space Station Freedom (SSF)

    Science.gov (United States)

    Krupa, Debra T.; Gosbee, John; Murphy, Linda; Kizzee, Victor D.

    1991-01-01

    The purpose is to evaluate the prototype Advanced Life Support (ALS) Pack which was developed for the Health Maintenance Facility (HMF). This pack will enable the Crew Medical Officer (CMO) to have ready access to advanced life support supplies and equipment for time critical responses to any situation within the Space Station Freedom. The objectives are: (1) to evaluate the design of the pack; and (2) to collect comments for revision to the design of the pack. The in-flight test procedures and other aspects of the KC-135 parabolic test flight to simulate weightlessness are presented.

  16. Toys in Space, 2

    Science.gov (United States)

    Herbert, Dexter (Editor)

    1993-01-01

    In this educational video from the 'Liftoff to Learning' series, astronauts from the STS-54 Mission (Mario Runco, John Casper, Don McMonagle, Susan Helms, and Greg Harbaugh) explain how microgravity and weightlessness in space affects motion by using both mechanical and nonmechanical toys (gravitrons, slinkys, dart boards, magnetic marbles, and others). The gravitational effects on rotation, force, acceleration, magnetism, magnetic fields, center of axis, and velocity are actively demonstrated using these toys through experiments onboard the STS-54 Mission flight as a part of their spaceborne experiment payload. [Resource Guide referenced in the video is not available.

  17. Methods for study of cardiovascular adaptation of small laboratory animals during exposure to altered gravity. [hypothermia for cardiovascular control and cancer therapy

    Science.gov (United States)

    Popovic, V.

    1973-01-01

    Several new techniques are reported for studying cardiovascular circulation in small laboratory animals kept in metabolic chambers. Chronical cannulation, miniaturized membrane type heart-lung machines, a prototype walking chamber, and a fluorocarbon immersion method to simulate weightlessness are outlined. Differential hypothermia work on rat cancers provides localized embedding of radionuclides and other chemotherapeutical agents in tumors and increases at the same time blood circulation through the warmed tumor as compared to the rest of the cold body. Some successful clinical applications of combined chemotherapy and differential hypothermia in skin cancer, mammary tumors, and brain gliomas are described.

  18. Vestibular function in the space environment

    Science.gov (United States)

    Von Baumgarten, R. J.; Harth, O.; Thuemler, R.; Baldrighi, G.; Shillinger, G. L., Jr.

    1975-01-01

    The present work presents new results about the interdependence of optical illusory sensations and eye movements in man. To establish to what degree certain illusions previously obtained during centrifugation and parabolic flight can be explained by eye movements and by neuronal integration in the brain, real eye movements were measured as they occurred in the dark without optical fixation, during rectilinear accelerations on the ground, and during weightlessness in parabolic flight. Results provide valuable insight into normal vestibular function as well as resolution of within-the-eye and behind-the-eye contributions to the above illusions.

  19. Journal of Gravitational Physiology, Volume 12, Number 1

    Science.gov (United States)

    Fuller, Charles A. (Editor); Cogoli, Augusto (Editor); Hargens, Alan R. (Editor); Smith, Arthur H. (Editor)

    2005-01-01

    The following topics were covered: System Specificity in Responsiveness to Intermittent -Gx Gravitation during Simulated Microgravity in Rats; A Brief Overview of Animal Hypergravity Studies; Neurovestibular Adaptation to Short Radius Centrifugation; Effect of Artificial Gravity with Exercise Load by Using Short-Arm Centrifuge with Bicycle Ergometer as a Countermeasure Against Disused Osteoporosis; Perception of Body Vertical in Microgravity during Parabolic Flight; Virtual Environment a Behavioral and Countermeasure Tool for Assisted Gesture in Weightlessness: Experiments during Parabolic Flight; Artificial Gravity: Physiological Perspectives for Long-Term Space Exploration; Comparison of the Effects of DL-threo-Beta-Benzyloxyaspartate on the Glutamate Release from Synaptosomes before and after Exposure of Rats to Artificial Gravity; Do Perception and Postrotatory Vestibulo-Ocular Reflex Share the Same Gravity Reference?; Vestibular Adaptation to Changing Gravity Levels and the Orientation of Listing's Plane; Compound Mechanism Hypothesis on +Gz - Induced Brain Injury and Dysfunction of Learning and Memory; Environmental Challenge Impairs Prefrontal Brain Functions; Effect of 6-Days of Support Withdrawal on Characteristics of Balance Function; Hypergravity-Induced Changes of Neuronal Activities in CA1 Region of Rat Hippocampus; Audiological Findings in Antiorthostatic Position Modelling Microgravitation; Investigating Human Cognitive Performance during Spaceflight; The Relevance of the Minimization of Torque Exchange with the Environment in Weightlessness is Confirmed by Asimulation Study; Characteristics of the Eyes Pursuit Function during Readaptation to Terrestrial Gravity after Prolonged Flights Aboard the International Space Station; Comparison of Cognitive Performance Tests for Promethazine Pharmacodynamics in Human Subjects; Structural Reappraisal of Dendritic Tree of Cerebellar Purkinje Cell for Novel Functional Modeling of Elementary Sensorimotor Adaptive

  20. [Psychomotor reaction in primates placed in ballistic flight in rockets].

    Science.gov (United States)

    Grandpierre, R; Chatelier, G

    1968-01-01

    Psychomotor reactions have been studied in Nemestrina Macaques during flights in rockets in which there were periods of weightlessness lasting about 10 minutes. The animals had undergone motor conditioning and responded to a light signal by pressing on a button placed on a panel where there were four other undifferentiated buttons. The lighting of the panel and pressing on the different buttons in reply was recorded with respect to time. Movement was observed by film recording, and electrical activity of the brain was kept under observation by six different recordings of the cortex. Activity of stretching and bending muscles of the legs was recorded, as well as breathing, and heart activity was recorded on an electrocardiogram. These psychological parameters were transmitted to the earth by long-distance measurement during the entire flight. The recordings made it possible to confirm that the absence of the sensation of weight seems to reduce the alertness of the animals. This fact had already been observed in Wistar's rat and cat. The sensor-psychomotor responses undergo important individual variations and depend on the motivation of the subjects. A very well motivated one reacted after a short period of adaption, as it did in the laboratory: one that was much less motivated would not work until after weightlessness has ended, and showed signs of drowsiness. These observations made during the flights in rockets confirm those of Chambers et al., Harris et al., Lilly et al. made in immersion studies; they show the important role of weight in maintaining alertness, but that changes of psychomotor activity are particularly related to motivation.

  1. Benefits of a Single-Person Spacecraft for Weightless Operations. [(Stop Walking and Start Flying)

    Science.gov (United States)

    Griffin, Brand N.

    2012-01-01

    Historically, less than 20 percent of crew time related to extravehicular activity (EVA) is spent on productive external work.1 A single-person spacecraft with 90 percent efficiency provides productive new capabilities for maintaining the International Space Station (ISS), exploring asteroids, and servicing telescopes or satellites. With suits, going outside to inspect, service or repair a spacecraft is time-consuming, requiring pre-breathe time, donning a fitted space suit, and pumping down an airlock. For ISS, this is between 12.5 and 16 hours for each EVA, not including translation and work-site set up. The work is physically demanding requiring a day of rest between EVAs and often results in suit-induced trauma with frequent injury to astronauts fingers2. For maximum mobility, suits use a low pressure, pure oxygen atmosphere. This represents a fire hazard and requires pre-breathing to reduce the risk of decompression sickness (bends). With virtually no gravity, humans exploring asteroids cannot use legs for walking. The Manned Maneuvering Unit offers a propulsive alternative however it is no longer in NASA s flight inventory. FlexCraft is a single person spacecraft operating at the same cabin atmosphere as its host so there is no risk of the bends and no pre-breathing. This allows rapid, any-time access to space for repeated short or long EVAs by different astronauts. Integrated propulsion eliminates hand-over-hand translation or having another crew member operate the robotic arm. The one-size-fits-all FlexCraft interior eliminates the suit part inventory and crew time required to fit all astronauts. With a shirtsleeve cockpit, conventional displays and controls are used and because the work is not strenuous no rest days are required. Furthermore, there is no need for hand tools because manipulators are equipped with force multiplying end-effectors that can deliver the precise torque for the job.

  2. The foundations of space biology and medicine. Volume 2: Ecological and physiological bases of space biology and medicine. Part 3: Effect on the organism of dynamic flight factors. Chapter 1: Principles of gravitational biology

    Science.gov (United States)

    Smith, A. H.

    1972-01-01

    The physical principles of gravitation are discussed, such as gravitational and intertial forces, weight and mass, weightlessness, size and scale effects, scale limits of gravitational effects, and gravity as a biogenic factor. The behavior of the accelerative force gravitation, is described. This law proposes and quantifies the mutual gravitational attraction existing between all bodies of matter, the force being proportional to the product of masses, and inversely related to the square of the distance separating them. Gravity orientation, chronic acceleration, and hematology are examined. Systematic responses, such as circulation and renal functions, are also considered, along with animal response to a decreased acceleration field and physiology of hyper- and hypodynamic fields.

  3. X-ray microscopy study of track membranes and biological objects

    International Nuclear Information System (INIS)

    Artioukov, I.A.; Levashov, V.E.; Struk, I.I.; Vinogradov, A.V.; Asadchikov, V.E.; Mchedlishvili, B.V.; Postnov, A.A.; Vilensky, A.I.; Zagorsky, D.L.; Gulimova, V.I.; Saveliev, S.V.; Kurohtin, A.N.; Popov, A.V.

    2000-01-01

    The development of two types of X-ray microscopy applying to the organic objects investigation (biological samples and polymer matrix) is reported. Polymer track membranes were investigated using Schwarzchild X-ray microscope with 20 nm wavelength. Pore diameters down to 0.2 μm were clearly imaged. Contact X-ray microscopy at 0.229 nm wavelength was used to obtain clear images of inner structure of native biological samples. High contrast together with the high resolution (about 2-3 μm) allowed us to use this method for quantitative analysis of demineralization process taking place in the skeleton of amphibious after several weeks of weightlessness on biosputnik board

  4. The state of knowledge of astronaut radiation protection principles

    International Nuclear Information System (INIS)

    Boszkiewicz, T.

    1986-01-01

    Different noxious agents such as accelerations, vibration, weightlessness, emotional tention, microclimate of hermetic space-ship or orbital station and cosmic radiation act on organism during space flight. No health hazardous radioactive radiation intensity or harmful influence on astronaut organism are observed during the not-long-lasted flights on low ceilings. But scientific researches show the danger exists in case of longlasted flights on high ceilings particularly during interplanetary flights, so it is necessary to undertake suitable countermeasures. The problem is even more important because the parallel activity of radioactive radiation and some more noxious agents can be very harmfull even with the small radiation dose. 8 refs. (author)

  5. STS-37 crewmembers test CETA hand cart during training session in JSC's WETF

    Science.gov (United States)

    1989-01-01

    STS-37 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) Jerry L. Ross and MS Jerome Apt test crew and equipment translation aid (CETA) manual hand over hand cart during underwater session in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Wearing an extravehicular mobility unit (EMU), Ross pulls the CETA manual cart along the rail while Apt holds onto the back of the cart. The test will determine how difficult it is to maneuver cargo in such a manner when it is done in space on STS-37. The goal is to find the best method for astronauts to move around the exterior of Space Station Freedom (SSF).

  6. Analysis of physical exercises and exercise protocols for space transportation system operation

    Science.gov (United States)

    Coleman, A. E.

    1982-01-01

    A quantitative evaluation of the Thornton-Whitmore treadmill was made so that informed management decisions regarding the role of this treadmill in operational flight crew exercise programs could be made. Specific tasks to be completed were: The Thornton-Whitmore passive treadmill as an exercise device at one-g was evaluated. Hardware, harness and restraint systems for use with the Thornton-Whitmore treadmill in the laboratory and in Shuttle flights were established. The quantitative and qualitative performance of human subjects on the Thorton-Whitmore treadmill with forces in excess of one-g, was evaluated. The performance of human subjects on the Thornton-Whitmore treadmill in weightlessness (onboard Shuttle flights) was also determined.

  7. Artificial gravity - The evolution of variable gravity research

    Science.gov (United States)

    Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard

    1987-01-01

    The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.

  8. Effects of spaceflight on hypothalamic peptide systems controlling pituitary growth hormone dynamics

    Science.gov (United States)

    Sawchenko, P. E.; Arias, C.; Krasnov, I.; Grindeland, R. E.; Vale, W.

    1992-01-01

    Possible effects of reduced gravity on central hypophysiotropic systems controlling growth hormone (GH) secretion were investigated in rats flown on Cosmos 1887 and 2044 biosatellites. Immunohistochemical (IHC)staining for the growth hormone-releasing factor (GRF), somatostatin (SS), and other hypothalamic hormones was performed on hypothalami obtained from rats. IHC analysis was complemented by quantitative in situ assessments of mRNAs encoding the precursors for these hormones. Data obtained suggest that exposure to microgravity causes a preferential reduction in GRF peptide and mRNA levels in hypophysiotropic neurons, which may contribute to impared GH secretion in animals subjected to spaceflight. Effects of weightlessness are not mimicked by hindlimb suspension in this system.

  9. STS-42 Payload Specialist Merbold with drink on OV-103's aft flight deck

    Science.gov (United States)

    1992-01-01

    STS-42 Payload Specialist Ulf D. Merbold, wearing a lightweight headset (HDST), experiments with a grapefruit drink and straw on the aft flight deck of Discovery, Orbiter Vehicle (OV) 103. Merbold watches the liquid ball of grapefruit drink he created float in the weightlessness of space. The Los Angeles Dodger cap Merbold is wearing is part of a tribute to Manley L. (Sonny) Carter, originally assigned as a mission specialist on this flight. During the eight-day flight, the crewmembers each wore the cap on a designated day. Carter, a versatile athlete and avid Dodger fan, died in the crash of a commuter airline in 1991.

  10. Simulating certain aspects of hypogravity: Effects on the mandibular incisors of suspended rats (PULEH model)

    Science.gov (United States)

    Simmons, D. J.; Winter, F.; Morey-Holton, E. R.

    1984-01-01

    The effect of a hypogravity simulating model on the rate of mandibular incisor formation, dentinogenesis and, amelogenesis in laboratory rats was studied. The model is the partial unloading by elevating the hindquarters. In this system, rat hindquarters are elevated 30 to 40 deg from the cage floors to completely unload the hindlimbs, but the animals are free to move about using their forelimbs. This model replicates the fluid sift changes which occur during the weightlessness of spaceflight and produces an osteopenia in the weight bearing skeletons. The histogenesis and/or mineralization rates of the mandibular incisor during the first 19d of PULEH in young growing rats are recorded.

  11. The Biostack experiment as an approach to high LET radiation research

    International Nuclear Information System (INIS)

    Hildebrand, D.; Buecker, H.; Facius, R.; Schaefer, M.; Toth, B.; Ruether, W.; Pfohl, R.; Kaiser, R.

    1976-01-01

    The investigation of biological effects of the penetrating cosmic radiation enforced new experimental techniques, not only to be used in space experiments, but according to theoretical considerations in accelerator experiments as well. Localization and individual evaluation are the main tools for the reduction of the sample space, which allows together with the multiple factorial analysis investigations in a ''dose'' region that is off limits for classical radiobiology. The results of the Biostack experiments proved that there is a serious radiation hazard during longer space flights, which we should be aware of under the aspects of radiation protection and consideration in biological experiments (investigating weightlessness as example)

  12. The Use of Drama in Science Education: The Case of ``Blegdamsvej Faust''

    Science.gov (United States)

    Pantidos, Panagiotis; Spathi, Kalliopi; Vitoratos, Evagelos

    This is a study of the structure of The Blegdamsvej Faust and its relation to Goethe's classical play Faust. The Blegdamsvej Faust, a play written and performed by Bohr's students in 1932, is inspired by the very rapid development of Physics in those turbulent years. A struggle is made to promote the odd idea of a weightless particle. Moreover, this study lays emphasis on the fact that new ideas of Physical Sciences become more accessible, comprehensible and familiar through dramatization. For scenario-vehicles one may use as a basis plays from the classical repertoire or write something new. Several hints are given in this article.

  13. Tetanic contraction induces enhancement of fatigability and sarcomeric damage in atrophic skeletal muscle and its underlying molecular mechanisms.

    Science.gov (United States)

    Yu, Zhi-Bin

    2013-11-01

    Muscle unloading due to long-term exposure of weightlessness or simulated weightlessness causes atrophy, loss of functional capacity, impaired locomotor coordination, and decreased resistance to fatigue in the antigravity muscles of the lower limbs. Besides reducing astronauts' mobility in space and on returning to a gravity environment, the molecular mechanisms for the adaptation of skeletal muscle to unloading also play an important medical role in conditions such as disuse and paralysis. The tail-suspended rat model was used to simulate the effects of weightlessness on skeletal muscles and to induce muscle unloading in the rat hindlimb. Our series studies have shown that the maximum of twitch tension and the twitch duration decreased significantly in the atrophic soleus muscles, the maximal tension of high-frequency tetanic contraction was significantly reduced in 2-week unloaded soleus muscles, however, the fatigability of high-frequency tetanic contraction increased after one week of unloading. The maximal isometric tension of intermittent tetanic contraction at optimal stimulating frequency did not alter in 1- and 2-week unloaded soleus, but significantly decreased in 4-week unloaded soleus. The 1-week unloaded soleus, but not extensor digitorum longus (EDL), was more susceptible to fatigue during intermittent tetanic contraction than the synchronous controls. The changes in K+ channel characteristics may increase the fatigability during high-frequency tetanic contraction in atrophic soleus muscles. High fatigability of intermittent tetanic contraction may be involved in enhanced activity of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) and switching from slow to fast isoform of myosin heavy chain, tropomyosin, troponin I and T subunit in atrophic soleus muscles. Unloaded soleus muscle also showed a decreased protein level of neuronal nitric oxide synthase (nNOS), and the reduction in nNOS-derived NO increased frequency of calcium sparks and elevated

  14. Interplanetary Transit Simulations Using the International Space Station

    Science.gov (United States)

    Charles, J. B.; Arya, Maneesh

    2010-01-01

    It has been suggested that the International Space Station (ISS) be utilized to simulate the transit portion of long-duration missions to Mars and near-Earth asteroids (NEA). The ISS offers a unique environment for such simulations, providing researchers with a high-fidelity platform to study, enhance, and validate technologies and countermeasures for these long-duration missions. From a space life sciences perspective, two major categories of human research activities have been identified that will harness the various capabilities of the ISS during the proposed simulations. The first category includes studies that require the use of the ISS, typically because of the need for prolonged weightlessness. The ISS is currently the only available platform capable of providing researchers with access to a weightless environment over an extended duration. In addition, the ISS offers high fidelity for other fundamental space environmental factors, such as isolation, distance, and accessibility. The second category includes studies that do not require use of the ISS in the strictest sense, but can exploit its use to maximize their scientific return more efficiently and productively than in ground-based simulations. In addition to conducting Mars and NEA simulations on the ISS, increasing the current increment duration on the ISS from 6 months to a longer duration will provide opportunities for enhanced and focused research relevant to long-duration Mars and NEA missions. Although it is currently believed that increasing the ISS crew increment duration to 9 or even 12 months will pose little additional risk to crewmembers, additional medical monitoring capabilities may be required beyond those currently used for the ISS operations. The use of the ISS to simulate aspects of Mars and NEA missions seems practical, and it is recommended that planning begin soon, in close consultation with all international partners.

  15. BION-M 1: First continuous blood pressure monitoring in mice during a 30-day spaceflight

    Science.gov (United States)

    Andreev-Andrievskiy, Alexander; Popova, Anfisa; Lloret, Jean-Christophe; Aubry, Patrick; Borovik, Anatoliy; Tsvirkun, Daria; Vinogradova, Olga; Ilyin, Eugeniy; Gauquelin-Koch, Guillemette; Gharib, Claude; Custaud, Marc-Antoine

    2017-05-01

    Animals are an essential component of space exploration and have been used to demonstrate that weightlessness does not disrupt essential physiological functions. They can also contribute to space research as models of weightlessness-induced changes in humans. Animal research was an integral component of the 30-day automated Russian biosatellite Bion-M 1 space mission. The aim of the hemodynamic experiment was to estimate cardiovascular function in mice, a species roughly 3000 times smaller than humans, during prolonged spaceflight and post-flight recovery, particularly, to investigate if mice display signs of cardiovascular deconditioning. For the first time, heart rate (HR) and blood pressure (BP) were continuously monitored using implantable telemetry during spaceflight and recovery. Decreased HR and unchanged BP were observed during launch, whereas both HR and BP dropped dramatically during descent. During spaceflight, BP did not change from pre-flight values. However, HR increased, particularly during periods of activity. HR remained elevated after spaceflight and was accompanied by increased levels of exercise-induced tachycardia. Loss of three of the five mice during the flight as a result of the hardware malfunction (unrelated to the telemetry system) and thus the limited sample number constitute the major limitation of the study. For the first time BP and HR were continuously monitored in mice during the 30-day spaceflight and 7-days of post-flight recovery. Cardiovascular deconditioning in these tiny quadruped mammals was reminiscent of that in humans. Therefore, the loss of hydrostatic pressure in space, which is thought to be the initiating event for human cardiovascular adaptation in microgravity, might be of less importance than other physiological mechanisms. Further experiments with larger number of mice are needed to confirm these findings.

  16. [Lateralization of behavioral reactions and otolith asymmetry].

    Science.gov (United States)

    Lychakov, D V

    2013-01-01

    Lateralized behavior is widely spread among vertebrate animals and is determined first of ally by structural-functional brain asymmetry as well as by the presence of somatic and visceral asymmetry. Some kinds of asymmetric reactions are suggested to be due to the presence of asymmetry at the level of sense organs, in particular, of otolith organs. This review presents data on value and character of otolith asymmetry (OA) in animals of various species and classes, on action upon it of weightlessness and hypergravity; the problem of effect of OA on vestibular and auditory functions is considered. In symmetric vertebrates, OA has been shown to be of fluctuation character and its chi coefficient varies in diapason from -0.2 to 0.2; in the overwhelmed majority of individuals, /chi/ otolith organs to work coordinately; this it why OA is at the equally low level regardless of the individual's taxonomic and ecologic position, its size, age, and otolith growth rate. Individuals with abnormally high OA level can experience difficulties in analysis of auditory and vestibular stimuli, therefore in nature the majority of such individuals are eliminated in the process of natural selection. Unlike symmetrical vertebrates, labyrinths of many Pleuronectiformes have pronounced OA--otoliths of the lower labyrinth, on a average, are significantly heavier than those of the upper labyrinth. Their organs are the only example when OA with directed character seem to play an essential role in lateralized behavior and are suggested to be used in the spatial localization of the sound source. The short-time action of weightlessness and relatively weak hypergravity ( or = 3g, as well as some diseases and shifts connected with processes of aging can enhance OA and cause several functional disturbances.

  17. Physiological Health Challenges for Human Missions to Mars

    Science.gov (United States)

    Norsk, Peter

    2015-01-01

    During the next decades, manned space missions are expected to be aiming at the Lagrange points, near Earth asteroids, and Mars flyby and/or landing. The question is therefore: Are we ready to go? To answer this with a yes, we are currently using the International Space Station to develop an integrated human physiological countermeasure suite. The integrated countermeasure suite will most likely encounter: 1) Exercise devices for aerobic, dynamic and resistive exercise training; 2) sensory-motor computer training programs and anti-motion sickness medication for preparing EVAs and G-transitions; 3) lower limb bracelets for preventing and/or treating the VIIP (vision impairment and intracranial pressure) syndrome; 4) nutritional components for maintenance of bone, muscle, the cardiovascular system and preventing oxidative stress and damage and immune deficiencies (e. g. omega-3 fatty acids, PRO/K, anti-oxidants and less salt and iron); 5) bisphosphonates for preventing bone degradation.; 6) lower body compression garment and oral salt and fluid loading for landing on a planetary surface to combat orthostatic intolerance; 7) laboratory analysis equipment for individualized monitoring of biomarkers in blood, urine and saliva for estimation of health status in; 8) advanced ultrasound techniques for monitoring bone and cardiovascular health; and 9) computer modeling programs for individual health status assessments of efficiency and subsequent adjustments of countermeasures. In particular for future missions into deep space, we are concerned with the synergistic effects of weightlessness, radiation, operational constraints and other spaceflight environmental factors. Therefore, increased collaboration between physiological, behavioral, radiation and space vehicle design disciplines are strongly warranted. Another venue we are exploring in NASA's Human Research Program is the usefulness of artificial gravity for mitigating the health risks of long duration weightlessness.

  18. The medical story. [Skylab program

    Science.gov (United States)

    Johnston, R. S.; Dietlein, L. F.; Michel, E. L.

    1974-01-01

    An overview of the Skylab medical program is given. All medical subsystems provided in the orbital workshop functioned satisfactorily. Major systems included the food system, the waste management system, and provisions per personal hygiene. A series of lockers in the wardroom was used to stow the inflight medical support system. Cardiovascular counter pressure garments were launched in the orbital workshop for all three crews. Life services experiments were carried out. Two experiments were conducted in the Skylab missions to study the performance of the cardiovascular system during weightless flight and return to earth and the one g environment. A series of experiments was conducted to study mineral balance and the bioassay of body fluids.

  19. Mission to Mars: Plans and concepts for the first manned landing

    Science.gov (United States)

    Oberg, J. E.

    The manned exploration and settlement of Mars is discussed. The topics considered include: the rationale for a manned landing; spaceships and propulsion for getting to Mars; human factors such as psychological stress, the effects of prolonged weightlessness, and radiation dangers; the return from Mars; site selection and relevant criteria; scientific problems that can be studied by landing men on Mars. Also addressed are economic resources of air and water on Mars and their relevance for transportation and mission planning; the exploration and utilization of Phobos and Deimos; cost factors; the possibilities of the Russians' going to Mars; political and social issues; colonies on Mars; and manipulation of the Martian environment to make it more habitable.

  20. Proposed application of lower body negative pressure to cardiology

    Science.gov (United States)

    Schmidt, E. V.; Debusk, R. F.; Popp, R. L.

    1975-01-01

    Potential medical applications are presented of lower body negative pressure to the evaluation and treatment of cardiac patients. The essential features of an LBNP unit and the basic cardiovascular physiology of lower body negative pressure (LBNP) testing are described. Some of the results of previous spaceflight experiences and bedrest studies are summarized. The deconditioning effects of weightlessness experienced by orbiting astronauts are compared with the effects of bedrest restrictions prescribed for convalescing cardiac patients. The potential of LBNP for evaluating both pharmacological and physical activity regimens was examined, particularly in relation to post-myocardial infarction and coronary artery bypass patients. Applications of LBNP to the cardiac catheterization laboratory and the out-patient follow-up of cardiac patients are proposed.

  1. Hemodynamic responses to seated and supine lower body negative pressure - Comparison with +Gz acceleration

    Science.gov (United States)

    Polese, Alvese; Sandler, Harold; Montgomery, Leslie D.

    1992-01-01

    The hemodynamic responses to LBNP in seated subjects and in subjects in supine body positions were compared and were correlated with hemodynamic changes which occurred during a simulated (by centrifugation) Shuttle reentry acceleration with a slow onset rate of 0.002 G/s and during gradual onset exposures to +3 Gz and +4 Gz. Results demonstrate that seated LBNP at a level of -40 mm Hg can serve as a static simulator for changes in the heart rate and in mean blood pressure induced by gradual onset acceleration stress occurring during Shuttle reentry. The findings also provide a rationale for using LBNP during weightlessness as a means of imposing G-loading on the circulation prior to reentry.

  2. Alpha spectrometry without chemistry

    International Nuclear Information System (INIS)

    Murray, A.S.; Heaton, B.

    1983-01-01

    A gridded cylindrical pulse ionization chamber is considered for the simultaneous analysis of natural alpha emitters. Solid sources of up to 0.3 g are deposited after wet grinding as a thin layer on 1.1 m 2 of aluminized plastic film, which acts as the cathode. No chemistry is involved, and thus there is little chance of nuclide fractionation. With a ''weightless'' source the resolution is about 55 keV; 110 keV has been easily achieved at 4.2 MeV with real sources. We conclude that significant information about isotope activities in the natural series is available with only a fraction of the work involved in conventional techniques. (author)

  3. Man in space - A time for perspective. [crew performance on Space Shuttle-Spacelab program

    Science.gov (United States)

    Winter, D. L.

    1975-01-01

    Factors affecting crew performances in long-term space flights are examined with emphasis on the Space Shuttle-Spacelab program. Biomedical investigations carried out during four Skylab missions indicate that initially rapid changes in certain physiological parameters, notably in cardiovascular response and red-blood-cell levels, lead to an adapted condition. Calcium loss remains a potential problem. Space Shuttle environmental control and life-support systems are described together with technology facilitating performance of mission objectives in a weightless environment. It is concluded that crew requirements are within the physical and psychological capability of astronauts, but the extent to which nonastronaut personnel will be able to participate without extensive training and pre-conditioning remains to be determined.

  4. Micro-precipitation of Americium by Cerium Hydroxide for alpha spectrometry

    International Nuclear Information System (INIS)

    Wankhede, Sonal M.; Kumar, Suja A.; Sawant, Pramilla D.

    2018-01-01

    Estimation of trace amount of actinides in any biological and/or environmental sample is done by radiochemical separation followed by alpha spectrometry. Alpha-spectrometric determination of actinides requires thin, homogeneous and nearly weightless sample sources. The most widely used method for preparation of actinides for alpha spectrometry involves electro deposition of the alpha emitters using stainless steel planchetts (cathode) and platinum rod (anode). This procedure is time consuming, requires relatively elaborate equipment, and is expensive. Micro-precipitation technique using hydrofluoric acid (HF) is also reliable and already standardized at Bioassay Laboratory (Wankhede, 2016). However, it uses hazardous chemical such as HF, hence, in the present study, cerium hydroxide micro-precipitation technique was standardized

  5. Surface tension confined liquid cryogen cooler

    International Nuclear Information System (INIS)

    Castles, S.H.; Schein, M.E.

    1989-01-01

    A cryogenic cooler is described for use in craft such as launch, orbital and space vehicles subject to changes in orientation and conditions of vibration and weightlessness comprising: an insulated tank; a porous open celled sponge-like material disposed substantially throughout the contained volume of the insulated tank; a cryogenic fluid disposed within the sponge-like material; a cooling finger immersed in the cryogenic fluid, the finger extending from inside the insulated tank externally to an outside source such as an instrument detector for the purpose of transmitting heat from the outside source into the cryogenic fluid; means for filling the insulated tank with cryogenic fluid; and means for venting vaporized cryogenic fluid from the insulated tank

  6. Apollo food technology

    Science.gov (United States)

    Smith, M. C., Jr.; Heidelbaugh, N. D.; Rambaut, P. C.; Rapp, R. M.; Wheeler, H. O.; Huber, C. S.; Bourland, C. T.

    1975-01-01

    Large improvements and advances in space food systems achieved during the Apollo food program are discussed. Modifications of the Apollo food system were directed primarily toward improving delivery of adequate nutrition to the astronaut. Individual food items and flight menus were modified as nutritional countermeasures to the effects of weightlessness. Unique food items were developed, including some that provided nutritional completeness, high acceptability, and ready-to-eat, shelf-stable convenience. Specialized food packages were also developed. The Apollo program experience clearly showed that future space food systems will require well-directed efforts to achieve the optimum potential of food systems in support of the physiological and psychological well-being of astronauts and crews.

  7. Plant and Animal Gravitational Biology. Part 1

    Science.gov (United States)

    1997-01-01

    Session TA2 includes short reports covering: (1) The Interaction of Microgravity and Ethylene on Soybean Growth and Metabolism; (2) Structure and G-Sensitivity of Root Statocytes under Different Mass Acceleration; (3) Extracellular Production of Taxanes on Cell Surfaces in Simulated Microgravity and Hypergravity; (4) Current Problems of Space Cell Phytobiology; (5) Biological Consequences of Microgravity-Induced Alterations in Water Metabolism of Plant Cells; (6) Localization of Calcium Ions in Chlorella Cells Under Clinorotation; (7) Changes of Fatty Acids Content of Plant Cell Plasma Membranes under Altered Gravity; (8) Simulation of Gravity by Non-Symmetrical Vibrations and Ultrasound; and (9) Response to Simulated weightlessness of In Vitro Cultures of Differentiated Epithelial Follicular Cells from Thyroid.

  8. Physiologic Pressure and Flow Changes During Parabolic Flight (Pilot Study)

    Science.gov (United States)

    Pantalos, George; Sharp, M. Keith; Mathias, John R.; Hargens, Alan R.; Watenpaugh, Donald E.; Buckey, Jay C.

    1999-01-01

    The objective of this study was to obtain measurement of cutaneous tissue perfusion central and peripheral venous pressure, and esophageal and abdominal pressure in human test subjects during parabolic flight. Hemodynamic data recorded during SLS-I and SLS-2 missions have resulted in the paradoxical finding of increased cardiac stroke volume in the presence of a decreased central venous pressure (CVP) following entry in weightlessness. The investigators have proposed that in the absence of gravity, acceleration-induced peripheral vascular compression is relieved, increasing peripheral vascular capacity and flow while reducing central and peripheral venous pressure, This pilot study seeks to measure blood pressure and flow in human test subjects during parabolic flight for different postures.

  9. Combined effect of space flight and radiation on skeletal muscles of rats

    International Nuclear Information System (INIS)

    Ilyina-Kakueva, E.I.; Portugalov, V.V.

    1977-01-01

    Skeletal muscles of rats flown for 20.5 d aboard the biosatellite Cosmos-690 and irradiated with a dose of 800 rads on the 10th flight day were studied. The radiation exposure aggravated the severity of atrophic and dystrophic processes in m. soleus and atrophic process in m. gastrocnemius that developed under the conditions of weightlessness and hypokinesia. At the same time, an exposure to penetrating radiation did not affect the muscles where no flight-induced pathologies occurred. The radiation affected the pattern of reparation in those regions of the soleus muscle that developed pathology inflight, slowed down resorption of the connective tissue formed during the pathological process, and inhibited the course of the reparative process

  10. Changes in markers of bone formation and resorption in a bed rest model of weightlessness

    Science.gov (United States)

    Lueken, S. A.; Arnaud, S. B.; Taylor, A. K.; Baylink, D. J.

    1993-01-01

    To study the mechanism of bone loss in physical unloading, we examined indices of bone formation and bone resorption in the serum and urine of eight healthy men during a 7 day -6 degrees head-down tilt bed rest. Prompt increases in markers of resorption--pyridinoline (PD), deoxypyridinoline (DPD), and hydroxyproline (Hyp)/g creatinine--during the first few days of inactivity were paralleled by tartrate-resistant acid phosphatase (TRAP) with significant increases in all these markers by day 4 of bed rest. An index of formation, skeletal alkaline phosphatase (SALP), did not change during bed rest and showed a moderate 15% increase 1 week after reambulation. In contrast to SALP, serum osteocalcin (OC) began increasing the day preceding the increase in Hyp, remained elevated for the duration of the bed rest, and returned to pre-bed rest values within 5 days of reambulation. Similarly, DPD increased significantly at the onset of bed rest, remained elevated for the duration of bed rest, and returned to pre-bed rest levels upon reambulation. On the other hand, the other three indices of resorption, Hyp, PD, and TRAP, remained elevated for 2 weeks after reambulation. The most sensitive indices of the levels of physical activity proved to be the noncollagenous protein, OC, and the collagen crosslinker, DPD. The bed rest values of both these markers were significantly elevated compared to both the pre-bed rest values and the post-bed rest values. The sequence of changes in the circulating markers of bone metabolism indicated that increases in serum OC are the earliest responses of bone to head-down tilt bed rest.

  11. French research program on the physiological problems caused by weightlessness. Use of the primate model

    Science.gov (United States)

    Pesquies, P. C.; Milhaud, C.; Nogues, C.; Klein, M.; Cailler, B.; Bost, R.

    The need to acquire a better knowledge of the main biological problems induced by microgravity implies—in addition to human experimentation—the use of animal models, and primates seem to be particularly well adapted to this type of research. The major areas of investigation to be considered are the phospho-calcium metabolism and the metabolism of supporting tissues, the hydroelectrolytic metabolism, the cardiovascular function, awakeness, sleep-awakeness cycles, the physiology of equilibrium and the pathophysiology of space sickness. Considering this program, the Centre d'Etudes et de Recherches de Medecine Aerospatiale, under the sponsorship of the Centre National d'Etudes Spatiales, developed both a program of research on restrained primates for the French-U.S. space cooperation (Spacelab program) and for the French-Soviet space cooperation (Bio-cosmos program), and simulation of the effects of microgravity by head-down bedrest. Its major characteristics are discussed in the study.

  12. Engineering aspects of the Stanford relativity gyro experiment

    Science.gov (United States)

    Everitt, C. W. F.; Debra, D. B.

    1981-01-01

    According to certain theoretical predictions, the Newtonian laws of motion must be corrected for the effect of a gravitational field. Schiff (1960) proposed an experiment which would demonstrate the effect predicted by Einstein's Theory of General Relativity on a gyroscope. The experiment has been under development at Stanford University since 1961. The requirements involved make it necessary that the test be performed in a satellite to take advantage of weightlessness in space. In a discussion of engineering developments related to the experiment, attention is given to the development of proportional helium thrusters, the simulation of the attitude control system, aspects of inner loop control, the mechanization of the two-loop attitude control system, the effects of helium slosh on spacecraft pointing, and the data instrumentation system.

  13. STS-47 Payload Specialist Mohri tosses an apple during SLJ demonstration

    Science.gov (United States)

    1992-01-01

    STS-47 Payload Specialist Mamoru Mohri tosses an apple in the weightless environment of the Spacelab Japan (SLJ) science module aboard the Earth-orbitng Endeavour, Orbiter Vehicle (OV) 105. Mohri was handling the space end of a space-to-Earth youth Conference with students in his home country (Japan) in which he gave a brief demonstration on the specifics of his mission as well as general information on space travel and space physics. Mohri conducts his demonstration in front of the NASDA Material Sciences Rack 10. In the background is the SLJ end cone with Detailed Test Objective (DTO), Foot restraint evaluation, base plate, a banner from Auburn University, and portraits of the backup payload specialists. Mohri represents Japan's National Space Development Agency (NASDA).

  14. Effects of long-duration bed rest on structural compartments of m. soleus in man

    Science.gov (United States)

    Belozerova, I.; Shenkman, B.; Mazin, M.; Leblanc, A.; LeBlanc, A. D. (Principal Investigator)

    2001-01-01

    Magnetic resonance imaging (MRI), histomorphometry and electron microscopy of muscle demonstrate that long-term exposure to actual or simulated weightlessness (including head down bed rest) leads to decreased volume of antigravity muscles in mammals. In muscles interbundle space is occupied by the connective tissue. Rat studies show that hindlimb unloading induces muscle fiber atrophy along with increase in muscle non-fiber connective tissue compartment. Beside that, usually 20% of the muscle fiber volume is comprised by non-contractile (non-myofibrillar) compartment. The aim of the present study was to compare changes in muscle volume, and in muscle fiber size with alterations in myofibrillar apparatus, and in connective tissue compartment in human m. soleus under conditions of 120 day long head down bed rest (HDBR).

  15. Determining the effect of turbulent shear on containment aerosol dynamics using microgravity experiments

    International Nuclear Information System (INIS)

    Scott, C.K.; Abdelbaky, M.

    1997-01-01

    Determining the characteristics of large aerosol aggregates 'clusters' under turbulent conditions is fundamental for predicting the behaviour of radioactive aerosols inside the reactor containment following a severe accident. Studying such rapidly settling clusters is extremely difficult in ground-based experiments due to the effect of the earth's gravity. In this study, the microgravity environment is exploited to investigate the effect of turbulent shear on the aggregation and breakage of clusters by examining their structure and measuring their strength parameters while suspended under weightlessness conditions. A parametric model is introduced to correlate the experimental results over into nuclear aerosol models. It was demonstrated that the cluster parameters depend mainly on the turbulent field intensity as well as initial powder conditions. (author)

  16. Stability of metallic foams studied under microgravity

    CERN Document Server

    Wuebben, T; Banhart, J; Odenbach, S

    2003-01-01

    Metal foams are prepared by mixing a metal powder and a gas-releasing blowing agent, by densifying the mix to a dense precursor and finally foaming by melting the powder compact. The foaming process of aluminium foams is monitored in situ by x-ray radioscopy. One observes that foam evolution is accompanied by film rupture processes which lead to foam coalescence. In order to elucidate the importance of oxides for foam stability, lead foams were manufactured from lead powders having two different oxide contents. The two foam types were generated on Earth and under weightlessness during parabolic flights. The measurements show that the main function of oxide particles is to prevent coalescence, while their influence on bulk viscosity of the melt is of secondary importance.

  17. Locomotor problems of supersonic aviation and astronautics.

    Science.gov (United States)

    Remes, P

    1989-04-01

    Modern high-speed aviation and space flight are fraught with many problems and require a high standard of health and fitness. Those responsible for the health of pilots must appreciate the importance of early diagnosis even before symptoms appear. This is particularly true in terms of preventing spinal injuries where even a single Schmorl's node may make a pilot unfit for high-speed flying. Spinal fractures are frequent during emergency ejection and landing. Helicopter crews are particularly prone to spinal disc degeneration due to vibration. By effective lowering of vibration by changes in the seats, a reduction in such lesions is possible. The osteoporosis and muscle atrophy occurring among astronauts subjected to prolonged weightlessness can be prevented by regular physical exercises.

  18. Microgravity: A New Tool for Basic and Applied Research in Space

    Science.gov (United States)

    1985-01-01

    This brochure highlights selected aspects of the NASA Microgravity Science and Applications program. So that we can expand our understanding and control of physical processes, this program supports basic and applied research in electronic materials, metals, glasses and ceramics, biological materials, combustion and fluids and chemicals. NASA facilities that provide weightless environments on the ground, in the air, and in space are available to U.S. and foreign investigators representing the academic and industrial communities. After a brief history of microgravity research, the text explains the advantages and methods of performing microgravity research. Illustrations follow of equipment used and experiments preformed aboard the Shuttle and of prospects for future research. The brochure concludes be describing the program goals and the opportunities for participation.

  19. Nutrition and human physiological adaptations to space flight

    Science.gov (United States)

    Lane, H. W.; LeBlanc, A. D.; Putcha, L.; Whitson, P. A.

    1993-01-01

    Space flight provides a model for the study of healthy individuals undergoing unique stresses. This review focuses on how physiological adaptations to weightlessness may affect nutrient and food requirements in space. These adaptations include reductions in body water and plasma volume, which affect the renal and cardiovascular systems and thereby fluid and electrolyte requirements. Changes in muscle mass and function may affect requirements for energy, protein and amino acids. Changes in bone mass lead to increased urinary calcium concentrations, which may increase the risk of forming renal stones. Space motion sickness may influence putative changes in gastro-intestinal-hepatic function; neurosensory alterations may affect smell and taste. Some or all of these effects may be ameliorated through the use of specially designed dietary countermeasures.

  20. Role of HZE particles in space flight - Results from spaceflight and ground-based experiments

    Energy Technology Data Exchange (ETDEWEB)

    Buecker, H.; Facius, R.

    1981-09-01

    Selected results from experiments investigating the potentially specific radiobiological importance of the cosmic HZE (equals high Z, energetic) particles are discussed. Results from the Biostack space flight experiments, which were designed to meet the experimental requirements imposed by the microdosimetric nature of this radiation field, clearly indicate the existence of radiation mechanisms which become effective only at higher values of LET (linear energy transfer). Accelerator irradiation studies are reviewed which conform with this conjecture. The recently discovered production of 'micro-lesions' in mammalian tissues by single HZE particles is possibly the most direct evidence. Open questions concerning the establishment of radiation standards for manned spaceflight, such as late effects, interaction with flight dynamic parameters, and weightlessness, are indicated.

  1. Human Health and Performance Aspects of the Mars Design Reference Mission

    Science.gov (United States)

    Charles, John B.

    2000-01-01

    This paper will describe the current planning for exploration-class missions, emphasizing the medical, and human factors aspects of such expeditions. The details of mission architecture are still under study, but a typical Mars design reference mission comprises a six-month transit from Earth to Mar, eighteen months in residence on Mars, and a six-month transit back to Earth. Physiological stressors will include environmental factors such as prolonged exposure to radiation, weightlessness in transit, and hypogravity and a toxic atmosphere while on Mars. Psychological stressors will include remoteness from Earth, confinement, and potential interpersonal conflicts, all complicated by circadian alterations. Medical risks including trauma must also be considered. Results of planning for assuring human health and performance will be presented.

  2. Prediction of femoral neck and spine bone mineral content from the BMC of the radius or ulna and the relationship between bone strength and BMC

    Science.gov (United States)

    Wilson, C. R.

    1974-01-01

    The bone mineral content (BMC) is extensively used to provide information about the status of an entire skeleton. Changes in BMC are employed to evaluate the effect of various drugs, disease states, weightlessness, exercise, renal dialysis and others on the skeleton. Clinical and functional information is discussed that may be derived from the BMC of a limited region of the skeleton. In particular there is a fairly high degree of correlation between the BMC of the radius or ulna and that of the femoral neck, r about 0.85 and a somewhat lower relationship between the BMC of the radius or ulna and the thoracic vertebrae, r about 0.65. Also the BMC is highly related to the strength of bone at that scan site.

  3. Do the design concepts used for the space flight hardware directly affect cell structure and/or cell function ground based simulations

    Science.gov (United States)

    Chapman, David K.

    1989-01-01

    The use of clinostats and centrifuges to explore the hypogravity range between zero and 1 g is described. Different types of clinostat configurations and clinostat-centrifuge combinations are compared. Some examples selected from the literature and current research in gravitational physiology are presented to show plant responses in the simulated hypogravity region of the g-parameter (0 is greater than g is greater than 1). The validation of clinostat simulation is discussed. Examples in which flight data can be compared to clinostat data are presented. The data from 3 different laboratories using 3 different plant species indicate that clinostat simulation in some cases were qualitatively similar to flight data, but that in all cases were quantitatively different. The need to conduct additional tests in weightlessness is emphasized.

  4. Trimester in Acquabox

    Directory of Open Access Journals (Sweden)

    Helena Eflerová

    2012-01-01

    Full Text Available Trimester in Acquabox (2010 is a live performance by Czech-British artist Helena Eflerová, which was originally exhibited at the Para Haus exhibition in São Paulo, Brazil. The audience is invited to view a narrative journey representing a metaphor of the foetus' development in the womb, and to share the experience with the performer, exploring an underwater weightless habitat. This collective experience of viewing such an intimate performance proposes questions around the personal experience of early childhood and motherhood. It questions the development of the foetus, its capacity of memory, its happy and traumatic experiences in the womb, and the after-effect on postnatal life. http://podcast.ulcc.ac.uk/accounts/BirkbeckCollege/mamsie/trimester_in_acquabox.mov

  5. Neurophysiological study on visuo-vestibular control of posture and movement in fish during adaptation to weightlessness

    Science.gov (United States)

    Mori, Shigeo

    1993-01-01

    We can stand upright and walk smoothly without paying any particular attention to it. This is because we have established in ourselves an integration center that controls our body subconsciously in response to input from eyes, muscles, joints, foot soles, and also from the gravity sensor in the inner ear (the otolith organ). It has been shown that the cerebellum plays an important role for the establishment of the integration center and that the control pattern is comparable to that of a highly sophisticated computer system. The programming for the control, however, may well be acquired for the 1-g ground condition and does not cover the 0-g in space. Although each of the above organs function as it does on the ground, the signal pattern sent to the center must be different under 0-g and, in addition, complementary signals from the otolith organ are missing, leading to confusion in the integration center and causing a variety of symptoms similar to those of car-sickness or sea-sickness. After exposure to microgravity an immediate process of re-programming will begin and be completed in 2-4 days. There is strong supporting evidence for this sensory conflict theory as an explanation for space motion sickness (SMS) episodes. Fish were selected as test organisms for this investigation because they swim around freely in three dimensions and have well-developed organs for vision and gravity detection. They also have an innate nature to orient their back toward a light source. Actually, on the ground, the fish tilts its vertical axis toward the light when illuminated laterally, and the tilt angle is a function of the intensity of light and the magnitude of gravity, while its posture is completely light-dependent in the low-gravity environment produced by aircraft parabolic flight or when the otolith organs are removed. This implies that fish posture is entirely under visual and otolithic control. In this case, the cerebellum will also contribute to the control. In the space shuttle experiment, two fish (one with otolith-removed and the other with intact otoliths) are onboard for 7 days. The arrangement of the experiment is shown. Lamps illuminate each fish alternately from different directions at a duration of 20 seconds for 10 minutes totally, twice a day. The video images and the brain waves from the cerebellum are analyzed later. If the sensory conflict theory is acceptable, then the confusion at the onset and the following recovery process will be manifested both in the light-dependent behavior and also in the cerebellar activity. In addition, there should be some variation in response between the two fish. Even if the results are positive in the present fish experiment, they would not be extensive enough to allow us to understand the complete mechanisms of SMS. However, what is currently needed is a collection of evidence based on animal experiments on which to base future investigations. Countermeasures for SMS are mandatory since SMS-induced vomiting occurring within a space suit could be fatal for a crew member during extravehicular activities. We expect that countermeasures will be developed before the space station era starts, and that the results of these studies will be applied to improving human welfare.

  6. Studies of acid-base homeostasis during simulated weightlessness: Application of the water immersion model to man

    Science.gov (United States)

    Epstein, M.

    1975-01-01

    The effects of water immersion on acid-base homeostasis were investigated under carefully controlled conditions. Studies of renal acidification were carried out on seven healthy male subjects, each consuming a diet containing 150 meq sodium and 100 meq potassium. Control and immersion studies were carried out on each subject on the fourth and sixth days, respectively, of dietary equilibration, by which time all subjects had achieved sodium balance. The experimental protocols on study days were similar (except for the amount of water administered).

  7. Analysis of Adult Female Mouse (Mus musculus) Group Behavior on the International Space Station (ISS)

    Science.gov (United States)

    Solomides, P.; Moyer, E. L.; Talyansky, Y.; Choi, S.; Gong, C.; Globus, R. K.; Ronca, A. E.

    2016-01-01

    As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. A handful of papers have previously reported behavior of mice and rats in the weightless environment of space. The Rodent Research Hardware and Operations Validation (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS (International Space Station). Ten adult (16-week-old) female C57BL/6 mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in microgravity. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the Rodent Habitat (RH) during this long-duration flight. Video was recorded for 33 days on the ISS, permitting daily assessments of overall health and well-being of the mice, and providing a valuable repository for detailed behavioral analysis. We previously reported that, as compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized 'circling' or 'race-tracking' behavior that emerged within the first few days of flight following a common developmental sequence, and comprised the primary dark cycle activity persisting throughout the remainder of the experiment. Participation by individual mice increased dramatically over the course of the flight. Here we present a detailed analysis of 'race-tracking' behavior in which we quantified: (1) Complete lap rotations by individual mice; (2) Numbers of collisions between circling mice; (3) Lap directionality; and (4) Recruitment of mice into a group

  8. Mitigating vestibular disturbances during space flight using virtual reality training and reentry vehicle design guidelines

    Science.gov (United States)

    Stroud, Kenneth Joshua

    Seventy to eighty percent of astronauts reportedly exhibit undesirable vestibular disturbances during the first few days of weightlessness, including space motion sickness (SMS) and spatial disorientation (SD). SMS presents a potentially dangerous situation, both because critical piloted tasks such as docking maneuvers and emergency reentry may be compromised, and because of the potential for asphyxiation should an astronaut vomit while wearing a space suit. SD can be provocative for SMS as well as become dangerous during an emergency in which it is critical for an astronaut to move quickly through the vehicle. In the U.S. space program, medication is currently used both for prevention and treatment of SMS. However, this approach has had only moderate success, and the side effects of drowsiness and lack of concentration are undesirable. Research suggests that preflight training in virtual reality devices can simulate certain aspects of microgravity and may prove to be an effective countermeasure for SMS and SD. It was hypothesized that exposing subjects preflight to variable virtual orientations, similar to those encountered during space flight, will reduce the incidence and/or severity of SMS and SD. Results from a study conducted at the NASA Johnson Space Center as part of this research demonstrated that this type of training is effective for reducing motion sickness and improving task performance in potentially disorienting visual surroundings, thus suggesting the possibility that such training may prove an effective countermeasure for SMS, SD and related performance decrements that occur in space flight. In addition to the effects associated with weightlessness, almost all astronauts experience vestibular disturbances associated with gravity-transitions incurred during the return to Earth, which could be exacerbated if traveling in a spacecraft that is designed differently than a conventional aircraft. Therefore, for piloted descent and landing operations

  9. Next Steps Toward Understanding Human Habitation of Space: Environmental Impacts and Mechanisms

    Science.gov (United States)

    Globus, Ruth

    2016-01-01

    Entry into low earth orbit and beyond causes profound shifts in environmental conditions that have the potential to influence human productivity, long term health, and even survival. We now have evidence that microgravity, radiation and/or confinement in space can lead to demonstrably detrimental changes in the cardiovascular (e.g. vessel function, orthostatic intolerance), musculoskeletal (muscle atrophy, bone loss) and nervous (eye, neurovestibular) systems of astronauts. Because of both the limited number of astronauts who have flown (especially females) and the high degree of individual variability in the human population, important unanswered questions about responses to the space environment remain: What are the sex differences with respect to specific physiological systems? Are the responses age-dependent and/or reversible after return to Earth? Do observed detrimental changes that resemble accelerated aging progress continuously over time or plateau? What are the mechanisms of the biological responses? Answering these important questions certainly demands a multi-pronged approach, and the study of multicellular model organisms (such as rodents and flies) already has provided opportunities for exploring those questions in some detail. Recent long duration spaceflight experiments with rodents show that mice in space provide a mammalian model that uniquely combines the influence of reduced gravitational loading with increased physical activity. In addition, multiple investigators have shown that ground-based models that simulate aspects of spaceflight (including rodent hind limb unloading to mimic weightlessness and exposure to ionizing radiation), cause various transient and persistent detrimental consequences in multiple physiological systems. In general, we have found that adverse skeletal effects of simulated weightlessness and space radiation when combined, can be quantitatively, if not qualitatively, different from the influence of each environmental

  10. Nutritional Biochemistry of Space Flight

    Science.gov (United States)

    Smith, Scott M.

    2000-01-01

    Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng

  11. Medical results of the Skylab program

    Science.gov (United States)

    Johnston, R. S.; Dietlein, L. F.

    1974-01-01

    The Skylab food system, waste management system, operational bioinstrumentation, personal hygiene provisions, in-flight medical support system, and the cardiovascular counterpressure garment worn during reentry are described. The medical experiments program provided scientific data and also served as the basis for real-time decisions on flight duration. Premission support, in-flight operational support, and postflight medical activities are surveyed. Measures devised to deal with possible food spoilage, medical instrument damage, and toxic atmosphere caused by the initial failures on the Orbital Workshop (OWS) are discussed. The major medical experiments performed in flight allowed the study of physiological changes as a function of exposure to weightless flight. The experiments included studies of the cardiovascular system, musculoskeletal and fluid/electrolyte balance, sleep, blood, vestibular system, and time and motion studies.

  12. Changes in symbiotic and associative interrelations in a higher plant-bacterial system during space flight

    Science.gov (United States)

    Kordyum, V. A.; Man'ko, V. G.; Popova, A. F.; Shcherbak, O. H.; Mashinsky, A. L.; Nguen-Hgue-Thyok

    The miniature cenosis consisting of the water fern Azolla with its associated symbiotic nitrogen-fixing cyanobacterium Anabaena and the concomitant bacteria was investigated. Ecological closure was shown to produce sharp quantitative and qualitative changes in the number and type of concomitant bacteria. Changes in the distribution of bacterial types grown on beef-extract broth after space flight were recorded. Anabaena azollae underwent the most significant changes under spaceflight conditions. Its cell number per Azolla biomass unit increased substantially. Thus closure of cenosis resulted in a weakening of control over microbial development by Azolla. This tendency was augmented by spaceflight factors. Reduction in control exerted by macro-organisms over development of associated micro-organisms must be taken into account in constructing closed ecological systems in the state of weightlessness.

  13. Microbiological testing of Skylab foods.

    Science.gov (United States)

    Heidelbaugh, N. D.; Mcqueen, J. L.; Rowley, D. B.; Powers , E. M.; Bourland, C. T.

    1973-01-01

    Review of some of the unique food microbiology problems and problem-generating circumstances the Skylab manned space flight program involves. The situations these problems arise from include: extended storage times, variations in storage temperatures, no opportunity to resupply or change foods after launch of the Skylab Workshop, first use of frozen foods in space, first use of a food-warming device in weightlessness, relatively small size of production lots requiring statistically valid sampling plans, and use of food as an accurately controlled part in a set of sophisticated life science experiments. Consideration of all of these situations produced the need for definite microbiological tests and test limits. These tests are described along with the rationale for their selection. Reported test results show good compliance with the test limits.

  14. Spaceflight of HUVEC: An Integrated eXperiment- SPHINX Onboard the ISS

    Science.gov (United States)

    Versari, S.; Maier, J. A. M.; Norfini, A.; Zolesi, V.; Bradamante, S.

    2013-02-01

    The spaceflight orthostatic challenge can promote in astronauts inadequate cardiovascular responses defined as cardiovascular deconditioning. In particular, disturbance of endothelial functions are known to lead to altered vascular performances, being the endothelial cells crucial in the maintenance of the functional integrity of the vascular wall. In order to evaluate whether weightlessness affects endothelial functions, we designed, developed, and performed the experiment SPHINX - SPaceflight of HUVEC: an INtegrated eXperiment - where HUVEC (Human Umbilical Vein Endothelial Cells) were selected as a macrovascular cell model system. SPHINX arrived at the International Space Station (ISS) onboard Progress 40P, and was processed inside Kubik 6 incubator for 7 days. At the end, all of the samples were suitably fixed and preserved at 6°C until return on Earth on Soyuz 23S.

  15. Fluid and electrolyte homeostasis during spaceflight: Elucidation of mechanisms in a primate

    Science.gov (United States)

    Churchill, Susanne

    1990-01-01

    Although it is now well accepted that exposure to the hypogravic environment of space induces a shift of fluid from the lower extremities toward the upper body, the actual physiological responses to this central volume expansion have not been well characterized. Because it is likely that the fluid and electrolyte response to hypogravity plays a critical role in the development of Cardiovascular Deconditioning, elucidation of these mechanisms is of critical importance. The goal of flight experiment 223, scheduled to fly on SLS-2, is the definition of the basic renal, fluid and electrolyte response to spaceflight in four instrumented squirrel monkeys. The studies were those required to support the development of flight hardware and optimal inflight procedures, and to evaluate a ground-based model for weightlessness, lower body positive pressure (LBPP).

  16. New type of chromosomal aberrations in microspores of Tradescancia Paludosa in flight experiments on board of space satelites

    Energy Technology Data Exchange (ETDEWEB)

    Delone, N L; Antipov, V V; Parfenov, G P

    1986-01-01

    A new type of chromosomal aberrations - complex nonreciprocal translocations accompanied by spherical fragments, is opened. The results of 30 variants of tests are investigated to establish what factor particularly causes new type of chromosomal aberrations. The experiments have been carried out on boards the space satelites: ''Vostok 3, 4, 5, 6'', ''Voskhod'', ''Kosmos 110'', ''Zond 6, 7'', ''Kosmos 368''. All type of aberrations have been recorded. It is supposed that a new type of aberrations depends on the effect of the sum of dynamic factors. At the same time these aberrations are not the background and escape it by separate bright bursts being independent on the effect of take-off, landing and time of an object staying in weightlessness. There is a type of irradiation causing a special type of aberrations.

  17. Altered carbohydrate, lipid, and xenobiotic metabolism by liver from rats flown on Cosmos 1887

    Science.gov (United States)

    Merrill, A. H. Jr; Hoel, M.; Wang, E.; Mullins, R. E.; Hargrove, J. L.; Jones, D. P.; Popova, I. A.; Merrill AH, J. r. (Principal Investigator)

    1990-01-01

    To determine the possible biochemical effects of prolonged weightlessness on liver function, samples of liver from rats that had flown aboard Cosmos 1887 were analyzed for protein, glycogen, and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. Among the parameters measured, the major differences were elevations in the glycogen content and hydroxymethylglutaryl-CoA (HMG-CoA) reductase activities for the rats flown on Cosmos 1887 and decreases in the amount of microsomal cytochrome P-450 and the activities of aniline hydroxylase and ethylmorphine N-demethylase, cytochrome P-450-dependent enzymes. These results support the earlier finding of differences in these parameters and suggest that altered hepatic function could be important during spaceflight and/or the postflight recovery period.

  18. USSR Space Life Sciences Digest, issue 21

    Science.gov (United States)

    Hooke, Lydia Razran; Donaldson, P. Lynn; Garshnek, Victoria; Rowe, Joseph

    1989-01-01

    This is the twenty-first issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 37 papers published in Russian language periodicals or books or presented at conferences and of a Soviet monograph on animal ontogeny in weightlessness. Selected abstracts are illustrated with figures and tables from the original. A book review of a work on adaptation to stress is also included. The abstracts in this issue have been identified as relevant to 25 areas of space biology and medicine. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, hematology, human performance, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, operational medicine, perception, psychology, and reproductive system.

  19. Measurement of Acute Changes in Choroid Thickness in Healthy Eyes During Posture Change Using Optical Coherence Tomography

    Science.gov (United States)

    Ferguson, Connor R.; Lee, Stuart M. C.; Stenger, Michael B.; Laurie, Steven S.

    2015-01-01

    The Visual Impairment and Intracranial Pressure (VIIP) syndrome affects 60% of astronauts returning from long-duration missions and is characterized by structural and functional changes of the eye (3). Upon entry into weightlessness, approximately two liters of fluid translocates from the lower body to the thorax and cephalad regions, potentially contributing to elevated intracranial and intraocular pressures. The choroid is the vasculature that supplies blood flow to the posterior part of the retina and has limited autoregulation. As a consequence these vessels may engorge during a cephalad fluid shift, contributing to structural changes in the retina. The purpose of this experiment was to quantify changes in choroid thickness during a fluid shift. In order to fulfill this objective, it was also necessary to improve the measurement technique for assessing choroid thickness.

  20. New type of chromosomal aberrations in microspores of Tradescancia Paludosa in flight experiments on board of space satelites

    International Nuclear Information System (INIS)

    Delone, N.L.; Antipov, V.V.; Parfenov, G.P.

    1986-01-01

    A new type of chromosomal aberrations - complex nonreciprocal translocations accompanied by spherical fragments, is opened. The results of 30 variants of tests are investigated to establish what factor particularly causes new type of chromosomal aberrations. The experiments have been carried out on boards the space satelites: ''Vostok 3, 4, 5, 6'', ''Voskhod'', ''Kosmos 110'', ''Zond 6, 7'', ''Kosmos 368''. All type of aberrations have been recorded. It is supposed that a new type of aberrations depends on the effect of the sum of dynamic factors. At the same time these aberrations are not the background and escape it by separate bright bursts being independent on the effect of take-off, landing and time of an object staying in weightlessness. There is a type of irradiation causing a special type of aberrations

  1. Role of digitalis-like substance in the hypertension of streptozotocin-induced diabetes and simulated weightlessness in rats

    Science.gov (United States)

    Pamnani, M. B.; Chen, S.; Haddy, F. J.; Yuan, C.; Mo, Z.

    1998-01-01

    We have examined the role of plasma Na+-K+ pump inhibitor (SPI) in the hypertension of streptozotocin induced insulin dependent diabetes (IDDM) in reduced renal mass rats. The increase in blood pressure (BP) was associated with an increase in extracellular fluid volume (ECFV), and SPI and a decrease in myocardial Na+,K+ATPase (NKA) activity, suggesting that increased SPI, which inhibits cardiovascular muscle (CVM) cell NKA activity, may be involved in the mechanism of IDDM-hypertension. In a second study, using prolonged suspension resulted in a decrease in cardiac NKA activity, suggesting that cardiovascular deconditioning following space flight might in part result from insufficient SPI.

  2. Spontaneous orbiting of two spheres levitated in a vibrated liquid.

    Science.gov (United States)

    Pacheco-Martinez, H A; Liao, L; Hill, R J A; Swift, Michael R; Bowley, R M

    2013-04-12

    In the absence of gravity, particles can form a suspension in a liquid irrespective of the difference in density between the solid and the liquid. If such a suspension is subjected to vibration, there is relative motion between the particles and the fluid which can lead to self-organization and pattern formation. Here, we describe experiments carried out to investigate the behavior of two identical spheres suspended magnetically in a fluid, mimicking weightless conditions. Under vibration, the spheres mutually attract and, for sufficiently large vibration amplitudes, the spheres are observed to spontaneously orbit each other. The collapse of the experimental data onto a single curve indicates that the instability occurs at a critical value of the streaming Reynolds number. Simulations reproduce the observed behavior qualitatively and quantitatively, and are used to identify the features of the flow that are responsible for this instability.

  3. Report on computation of repetitive hyperbaric-hypobaric decompression tables

    Science.gov (United States)

    Edel, P. O.

    1975-01-01

    The tables were constructed specifically for NASA's simulated weightlessness training program; they provide for 8 depth ranges covering depths from 7 to 47 FSW, with exposure times of 15 to 360 minutes. These tables were based up on an 8 compartment model using tissue half-time values of 5 to 360 minutes and Workmanline M-values for control of the decompression obligation resulting from hyperbaric exposures. Supersaturation ratios of 1.55:1 to 2:1 were used for control of ascents to altitude following such repetitive dives. Adequacy of the method and the resultant tables were determined in light of past experience with decompression involving hyperbaric-hypobaric interfaces in human exposures. Using these criteria, the method showed conformity with empirically determined values. In areas where a discrepancy existed, the tables would err in the direction of safety.

  4. Loading effects on rat craniomandibular morphology: a system for gravity studies

    Science.gov (United States)

    Singh, Ranbir; Carvalho, Thais; Gerstner, Geoffrey E.

    2005-02-01

    Gravity effects on muscle and bone are a major impediment to long-term space travel. We introduce a model for studying these effects, the craniomandibular system. Some advantages of this system include: (1) craniomandibular morphology is determined by epigenetic factors including gravity, (2) relatively light forces can significantly alter its morphology, and (3) soft diet and tooth loss produce effects that are similar to those produced in lower limbs by weightlessness. In the study, implants made either of gold (experimental group) or lightweight acrylic (controls) were attached to adult rats' mandibles. After 13 weeks, the animals' skulls and mandibles were dissected. Pair-wise comparisons indicated that the experimental animals showed significantly shortened and narrowed cranial bases, and significant changes in the posterior zygomatic arch region. These results indicate that simulated macrogravity influences bone remodeling in the adult craniomandibular system.

  5. Effect of antigravity suit inflation on cardiovascular, PRA, and PVP responses in humans. [Plasma Renin Activity and Plasma VasoPressin

    Science.gov (United States)

    Kravik, S. E.; Keil, L. C.; Geelen, G.; Wade, C. E.; Barnes, P. R.

    1986-01-01

    The effects of lower body and abdominal pressure, produced by antigravity suit inflation, on blood pressure, pulse rate, fluid and electrolyte shift, plasma vasopressin and plasma renin activity in humans in upright postures were studied. Five men and two women stood upright for 3 hr with the suit being either inflated or uninflated. In the control tests, the suit was inflated only during the latter part of the trials. Monitoring was carried out with a sphygnomanometer, with sensors for pulse rates, and using a photometer and osmometer to measure blood serum characteristics. The tests confirmed earlier findings that the anti-g suit eliminates increases in plasma renin activity. Also, the headward redistribution of blood obtained in the tests commends the anti-g suit as an alternative to water immersion or bed rest for initial weightlessness studies.

  6. Effects of Spaceflight on Cells of Bone Marrow Origin

    Directory of Open Access Journals (Sweden)

    Engin Özçivici

    2013-03-01

    Full Text Available Once only a subject for science fiction novels, plans for establishing habitation on space stations, the Moon, and distant planets now appear among the short-term goals of space agencies. This article reviews studies that present biomedical issues that appear to challenge humankind for long-term spaceflights. With particularly focus on cells of bone marrow origin, studies involving changes in bone, immune, and red blood cell populations and their functions due to extended weightlessness were reviewed. Furthermore, effects of mechanical disuse on primitive stem cells that reside in the bone marrow were also included in this review. Novel biomedical solutions using space biotechnology will be required in order to achieve the goal of space exploration without compromising the functions of bone marrow, as spaceflight appears to disrupt homeostasis for all given cell types.

  7. Hindlimb suspension and SPE-like radiation impairs clearance of bacterial infections.

    Directory of Open Access Journals (Sweden)

    Minghong Li

    Full Text Available A major risk of extended space travel is the combined effects of weightlessness and radiation exposure on the immune system. In this study, we used the hindlimb suspension model of microgravity that includes the other space stressors, situational and confinement stress and alterations in food intake, and solar particle event (SPE-like radiation to measure the combined effects on the ability to control bacterial infections. A massive increase in morbidity and decrease in the ability to control bacterial growth was observed using 2 different types of bacteria delivered by systemic and pulmonary routes in 3 different strains of mice. These data suggest that an astronaut exposed to a strong SPE during extended space travel is at increased risk for the development of infections that could potentially be severe and interfere with mission success and astronaut health.

  8. The influence of different space-related physiological variations on exercise capacity determined by oxygen uptake kinetics

    Science.gov (United States)

    Stegemann, J.

    Oxygen uptake kinetics, following defined variations of work load changes allow to estimate the contribution of aerob and anaerob energy supply which is the base for determining work capacity. Under the aspect of long duration missions with application of adequate dosed countermeasures, a reliable estimate of the astronaut's work capacity is important to adjust the necessary inflight training. Since the kinetics of oxygen uptake originate in the working muscle group itself, while measurements are performed at the mouth, various influences within the oxygen transport system might disturb the determinations. There are not only detraining effects but also well-known other influences, such as blood- and fluid shifts induced by weightlessness. They might have an impact on the circulatory system. Some of these factors have been simulated by immersion, blood donation, and changing of the body position.

  9. Clinostatic rotation decreases crossover frequencies in the fungus Sordaria macrospora Auersw.

    Science.gov (United States)

    Henkel, J; Hock, B

    1991-12-01

    Two-factor crosses between the non-allelic spore colour mutants r2 and lu of the fungus Sordaria macrospora were used to investigate the effect of clinostatic rotation (= simulated weightlessness) on crossover frequencies. The experiment was carried out with different rotary directions at a rotary rate of 4 rpm. Second-division segregations of the gene lu, which result from crossover between the gene locus and centromere, are significantly smaller in the clinostat experiments than in the static controls. No differences were found between the two rotary directions. A similar influence of clinostatic rotation was not observed for the gene r2 which in contrast to the lu locus is located very close to the centromere. The suitability of this approach for the investigation of the effect of space flight conditions on cytogenetic processes is pointed out.

  10. Some new conceptions in the approach to harnessing tidal energy

    Science.gov (United States)

    Gorlov, A. M.

    A method of converting ocean tide energy into compressed air energy for subsequent conversion to electrical and other forms of industrial energy is presented. The tidal energy is converted to compressed air energy by means of specialized chambers which are put on the ocean bed. Ocean water from the dammed region passes through the chamber where it works as a natural piston compressing air in the upper part of the closure. The compressed air can be expanded through high speed compact gas turbines or any type of reciprocating engine. The flexible reinforced plastic barrier should be substantially cheaper than a conventional rigid dam and can be designed so that by means of special floats it becomes a self-supported and self-regulated weightless structural system which can dam a large shallow space of ocean without having to be connected to special bays.

  11. Investigations of the Cardiovascular and Respiratory Systems on Board the International Space Station: Experiments Puls and Pneumocard

    Science.gov (United States)

    Baranov, V. M.; Baevsky, R. M.; Drescher, J.; Tank, J.

    parameters describing the results of the function of these systems like heart rate, arterial pressure, cardiac output, or breathing frequency, concentration of O2 and CO2 , etc. Missing significant changes of these parameters during weightlessness supports the hypothesis that adaptational and compensatory mechanisms are sufficient and guarantee cardiovascular homeostasis under changing environmental conditions. characteristic changes of the vegetative balance and of the activity of different regulatory elements at the brainstem and subcortical level. This changes guaranteed the adaptation to long term weightlessness. However, it remains unclear to what extent the different levels are involved. Moreover, the criteria describing the efficacy of cardiorespiratory interaction for the different functional states are not defined yet. The investigation of this problems is highly relevant in order to improve the medical control, especially if considering that the disruption of regulatory systems mostly precedes dangerous destruction of homeostasis. cardiovascular and respiratory function on Board the International Space Station (ISS) aiming to obtain new insights into the interaction between different regulatory elements. "Puls" is measures ECG, photoplethysmogram (PPG), and the pneumotachogram (PTG). The ECG is used to measure time series of R-R intervals and to analyse HRV. PPG is used to define the pulse wave velocity, phases of the cardiac cycle, and an estimate of the filling of finger vessels. The variability of these parameters is also calculated and compared to HRV. The analysis of the PTG allows to describe the interaction of the regulatory parameters of the cardiovascular and respiratory systems. Hence, an important feature of the experiment "Puls" is the investigation of regulatory mechanisms rather than of cardiovascular homeostasis. cardiography) and left ventricular contractility (seismocardiography) will be obtained. This expansion is of major importance

  12. Medical Devices Assess, Treat Balance Disorders

    Science.gov (United States)

    2009-01-01

    You may have heard the phrase as difficult as walking and chewing gum as a joking way of referring to something that is not difficult at all. Just walking, however, is not all that simple physiologically speaking. Even standing upright is an undertaking requiring the complex cooperation of multiple motor and sensory systems including vision, the inner ear, somatosensation (sensation from the skin), and proprioception (the sense of the body s parts in relation to each other). The compromised performance of any of these elements can lead to a balance disorder, which in some form affects nearly half of Americans at least once in their lifetimes, from the elderly, to those with neurological or vestibular (inner ear) dysfunction, to athletes with musculoskeletal injuries, to astronauts returning from space. Readjusting to Earth s gravity has a significant impact on an astronaut s ability to balance, a result of the brain switching to a different "model" for interpreting sensory input in normal gravity versus weightlessness. While acclimating, astronauts can experience headaches, motion sickness, and problems with perception. To help ease the transition and study the effects of weightlessness on the body, NASA has conducted many investigations into post-flight balance control, realizing this research can help treat patients with balance disorders on Earth as well. In the 1960s, the NASA-sponsored Man Vehicle Laboratory at the Massachusetts Institute of Technology (MIT) studied the effects of prolonged space flight on astronauts. The lab s work intrigued MIT doctoral candidate Lewis Nashner, who began conducting NASA-funded research on human movement and balance under the supervision of Dr. Larry Young in the MIT Department of Aeronautics and Astronautics. In 1982, Nashner s work resulted in a noninvasive clinical technique for assessing the cooperative systems that allow the body to balance, commonly referred to as computerized dynamic posturography (CDP). CDP employs a

  13. Experiment K-6-21. Effect of microgravity on 1) metabolic enzymes of type 1 and type 2 muscle fibers and on 2) metabolic enzymes, neutransmitter amino acids, and neurotransmitter associated enzymes in motor and somatosensory cerebral cortex. Part 1: Metabolic enzymes of individual muscle fibers; part 2: metabolic enzymes of hippocampus and spinal cord

    Science.gov (United States)

    Lowry, O.; Mcdougal, D., Jr.; Nemeth, Patti M.; Maggie, M.-Y. Chi; Pusateri, M.; Carter, J.; Manchester, J.; Norris, Beverly; Krasnov, I.

    1990-01-01

    The individual fibers of any individual muscle vary greatly in enzyme composition, a fact which is obscured when enzyme levels of a whole muscle are measured. The purpose of this study was therefore to assess the changes due to weightless on the enzyme patterns composed by the individual fibers within the flight muscles. In spite of the limitation in numbers of muscles examined, it is apparent that: (1) that the size of individual fibers (i.e., their dry weight) was reduced about a third, (2) that this loss in dry mass was accompanied by changes in the eight enzymes studied, and (3) that these changes were different for the two muscles, and different for the two enzyme groups. In the soleus muscle the absolute amounts of the three enzymes of oxidative metabolism decreased about in proportion to the dry weight loss, so that their concentration in the atrophic fibers was almost unchanged. In contrast, there was little loss among the four enzymes of glycogenolysis - glycolysis so that their concentrations were substantially increased in the atrophic fibers. In the TA muscle, these seven enzymes were affected in just the opposite direction. There appeared to be no absolute loss among the oxidative enzymes, whereas the glycogenolytic enzymes were reduced by nearly half, so that the concentrations of the first metabolic group were increased within the atrophic fibers and the concentrations of the second group were only marginally decreased. The behavior of hexokinase was exceptional in that it did not decrease in absolute terms in either type of muscle and probably increased as much as 50 percent in soleus. Thus, their was a large increase in concentration of this enzyme in the atrophied fibers of both muscles. Another clear-cut finding was the large increase in the range of activities of the glycolytic enzymes among individual fibers of TA muscles. This was due to the emergence of TA fibers with activities for enzymes of this group extending down to levels as low as

  14. On-Demand Urine Analyzer

    Science.gov (United States)

    Farquharson, Stuart; Inscore, Frank; Shende, Chetan

    2010-01-01

    A lab-on-a-chip was developed that is capable of extracting biochemical indicators from urine samples and generating their surface-enhanced Raman spectra (SERS) so that the indicators can be quantified and identified. The development was motivated by the need to monitor and assess the effects of extended weightlessness, which include space motion sickness and loss of bone and muscle mass. The results may lead to developments of effective exercise programs and drug regimes that would maintain astronaut health. The analyzer containing the lab-on-a- chip includes materials to extract 3- methylhistidine (a muscle-loss indicator) and Risedronate (a bone-loss indicator) from the urine sample and detect them at the required concentrations using a Raman analyzer. The lab-on- a-chip has both an extractive material and a SERS-active material. The analyzer could be used to monitor the onset of diseases, such as osteoporosis.

  15. Effect of simulated microgravity on Aspergillus niger

    Science.gov (United States)

    Pratap, Jeffrey J.

    2005-08-01

    A rotating bioreactor was developed to simulate microgravity and its influence was studied on fungal growth. The reactor was designed to simulate microgravity using 'free fall' principle, which creates an apparent weightlessness for a brief period of time. In this experiment, a sealed vertically rotating tube is the reactor in which the cells are grown. For the first time vertically rotating tubes were used to obtain 'free fall' thereby simulating microgravity. Simulated microgravity served significant in the alteration of growth and productivity of Aspergillus niger, a common soil fungi. Two other sets of similar cultures were maintained as still and shake control cultures to compare with the growth and productivity of cells in rotating culture. It was found increased growth and productivity occurred in simulated microgravity. Since this experiment involves growth of cells in a liquid medium, the fluidic effects must also be studied which is a limitation.

  16. The calcium endocrine system of adolescent rhesus monkeys and controls before and after spaceflight

    Science.gov (United States)

    Arnaud, Sara B.; Navidi, Meena; Deftos, Leonard; Thierry-Palmer, Myrtle; Dotsenko, Rita; Bigbee, Allison; Grindeland, Richard E.

    2002-01-01

    The calcium endocrine system of nonhuman primates can be influenced by chairing for safety and the weightless environment of spaceflight. The serum of two rhesus monkeys flown on the Bion 11 mission was assayed pre- and postflight for vitamin D metabolites, parathyroid hormone, calcitonin, parameters of calcium homeostasis, cortisol, and indexes of renal function. Results were compared with the same measures from five monkeys before and after chairing for a flight simulation study. Concentrations of 1,25-dihydroxyvitamin D were 72% lower after the flight than before, and more than after chairing on the ground (57%, P endocrine system were similar to the effects of chairing on the ground, but were more pronounced. Reduced intestinal calcium absorption, losses in body weight, increases in cortisol, and higher postflight blood urea nitrogen were the changes in flight monkeys that distinguished them from the flight simulation study animals.

  17. A Review of Psycho-Physiological Responses to Parabolic Flight

    Science.gov (United States)

    Brummer, Vera; Schneider, Stefan; Guardiera, Simon; Struder, Heiko K.

    2008-06-01

    This review combines and correlates data of several studies conducted in the recent years where we were able to show an increase in stress hormone concentrations, EEG activity and a decrease in mood during parabolic flights. The aim of these studies was to consider whether previous results showing a decrease in mental and perceptual motor performance during weightlessness were solely due to the changes in gravity itself or were also, at least partly, explainable by an increase of stress and/or arousal during parabolic flights. A correlation between stress hormones and mood but not between EEG activity and mood nor between stress hormones and EEG activity could be found. We propose two different stressors: First an activation of the adrenomedullary system, secondly a general increase of cortical arousal. Whereas the first one is perceived by subjects, this is not the case for the second one.

  18. Study of the influence of gravity on the thermodynamic equilibrium of a liquid alloy, and on its solidification: application to eutectic Al-Ge and monotectic Al-In alloys

    International Nuclear Information System (INIS)

    Vinet, Bernard

    1981-01-01

    After having recalled the meaning of gravity, this research thesis addresses the study of movements within the Earth gravity field to assess accelerations for a centrifuged system, and to describe conditions which create weightlessness. The various actions of gravity on fluid phases are analysed by highlighting phenomena of convection and segregation. In a second part, the author addresses the issue of local order. The third part addresses the influence of gravity conditions on the distribution of components of a binary liquid alloy in thermodynamic equilibrium. The fourth part addresses experimental means. The next parts address the eutectic Al-Ge alloy and the monotectic Al-In alloy. Results obtained for liquid alloy are presented, and the author analyse segregations which appeared during solidification in gravity conditions between 40 and 100 g. The influence of these conditions of the structure of both alloys is then studied

  19. Microgravity research in plant biological systems: Realizing the potential of molecular biology

    Science.gov (United States)

    Lewis, Norman G.; Ryan, Clarence A.

    1993-01-01

    The sole all-pervasive feature of the environment that has helped shape, through evolution, all life on Earth is gravity. The near weightlessness of the Space Station Freedom space environment allows gravitational effects to be essentially uncoupled, thus providing an unprecedented opportunity to manipulate, systematically dissect, study, and exploit the role of gravity in the growth and development of all life forms. New and exciting opportunities are now available to utilize molecular biological and biochemical approaches to study the effects of microgravity on living organisms. By careful experimentation, we can determine how gravity perception occurs, how the resulting signals are produced and transduced, and how or if tissue-specific differences in gene expression occur. Microgravity research can provide unique new approaches to further our basic understanding of development and metabolic processes of cells and organisms, and to further the application of this new knowledge for the betterment of humankind.

  20. Adaptive Changes in the Vestibular System of Land Snail to a 30-Day Spaceflight and Readaptation on Return to Earth

    Directory of Open Access Journals (Sweden)

    Nikolay Aseyev

    2017-11-01

    Full Text Available The vestibular system receives a permanent influence from gravity and reflexively controls equilibrium. If we assume gravity has remained constant during the species' evolution, will its sensory system adapt to abrupt loss of that force? We address this question in the land snail Helix lucorum exposed to 30 days of near weightlessness aboard the Bion-M1 satellite, and studied geotactic behavior of postflight snails, differential gene expressions in statocyst transcriptome, and electrophysiological responses of mechanoreceptors to applied tilts. Each approach revealed plastic changes in the snail's vestibular system assumed in response to spaceflight. Absence of light during the mission also affected statocyst physiology, as revealed by comparison to dark-conditioned control groups. Readaptation to normal tilt responses occurred at ~20 h following return to Earth. Despite the permanence of gravity, the snail responded in a compensatory manner to its loss and readapted once gravity was restored.

  1. Human otolith function, experiment M009

    Science.gov (United States)

    Graybiel, A.; Miller, E. F., II

    1971-01-01

    The experiments that were performed during the Gemini 5 and 7 missions resulted in quantitative information concerning otolithic function and orientation of four subjects exposed to an orbiting spacecraft environment for prolonged periods of time. Preflight counterrolling measurements revealed significant differences between crewmembers with regard to the basic magnitude of otolith response. However, after the flight, each crewmember maintained his respective preflight level of response. This was indicative that no significant change in otolithic sensitivity occurred as a result of the flight, or at least no change persisted long enough to be recorded several hours after recovery. The EVLH data recorded for each subject confirmed the observation that a coordinate space sense exists even in a weightless environment if contact cues are adequate. However, it was noted that the apparent location of the horizontal within the spacecraft may not agree necessarily with its physical correlate in the spacecraft.

  2. Heat transfers and related effects in supercritical fluids

    CERN Document Server

    Zappoli, Bernard; Garrabos, Yves

    2015-01-01

    This book investigates the unique hydrodynamics and heat transfer problems that are encountered in the vicinity of the critical point of fluids. Emphasis is given on weightlessness conditions, gravity effects and thermovibrational phenomena. Near their critical point, fluids indeed obey universal behavior and become very compressible and expandable. Their comportment, when gravity effects are suppressed, becomes quite unusual. The problems that are treated in this book are of interest to students and researchers interested in the original behavior of near-critical fluids as well as to engineers that have to manage supercritical fluids. A special chapter is dedicated to the present knowledge of critical point phenomena. Specific data for many fluids are provided, ranging from cryogenics (hydrogen) to high temperature (water). Basic information in statistical mechanics, mathematics and measurement techniques is also included. The basic concepts of fluid mechanics are given for the non-specialists to be able to ...

  3. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight

    DEFF Research Database (Denmark)

    Norsk, Peter; Asmar, Ali; Damgaard, Morten

    2015-01-01

    KEY POINTS: Weightlessness in space induces initially an increase in stroke volume and cardiac output, accompanied by unchanged or slightly reduced blood pressure.It is unclear whether these changes persist throughout months of flight.Here, we show that cardiac output and stroke volume increase...... by 35–41% between 3 and 6 months on the International Space Station, which is more than during shorter flights.Twenty-four hour ambulatory brachial blood pressure is reduced by 8–10 mmHg by a decrease in systemic vascular resistance of 39%, which is not a result of the suppression of sympathetic nervous...... brachial arterial pressures were automatically recorded at 1–2 h intervals with portable equipment in eight male astronauts: once before launch, once between 85 and 192 days in space on the International Space Station and, finally, once at least 2 months after flight. During the same 24 h, cardiac output...

  4. Glucocorticoid: A potential role in microgravity-induced bone loss

    Science.gov (United States)

    Yang, Jiancheng; Yang, Zhouqi; Li, Wenbin; Xue, Yanru; Xu, Huiyun; Li, Jingbao; Shang, Peng

    2017-11-01

    Exposure of animals and humans to conditions of microgravity, including actual spaceflight and simulated microgravity, results in numerous negative alterations to bone structure and mechanical properties. Although there are abundant researches on bone loss in microgravity, the explicit mechanism is not completely understood. At present, it is widely accepted that the absence of mechanical stimulus plays a predominant role in bone homeostasis disorders in conditions of weightlessness. However, aside from mechanical unloading, nonmechanical factors such as various hormones, cytokines, dietary nutrition, etc. are important as well in microgravity induced bone loss. The stress-induced increase in endogenous glucocorticoid (GC) levels is inevitable in microgravity environments. Moreover, it is well known that GCs have a detrimental effect to bone health at excess concentrations. Therefore, GC plays a potential role in microgravity-induced bone loss. This review summarizeds several studies and their prospective solutions to this hypothesis.

  5. Compliant lightweight non-invasive standalone “Marine Skin” tagging system

    KAUST Repository

    Nassar, Joanna M.

    2018-04-16

    Current marine research primarily depends on weighty and invasive sensory equipment and telemetric network to understand the marine environment, including the diverse fauna it contains, as a function of animal behavior and size, as well as equipment longevity. To match animal morphology and activity within the surrounding marine environment, here we show a physically flexible and stretchable skin-like and waterproof autonomous multifunctional system, integrating Bluetooth, memory chip, and high performance physical sensors. The sensory tag is mounted on a swimming crab (Portunus pelagicus) and is capable of continuous logging of depth, temperature, and salinity within the harsh ocean environment. The fully packaged, ultra-lightweight (<2.4 g in water), and compliant “Marine Skin” system does not have any wired connection enabling safe and weightless cutting-edge approach to monitor and assess marine life and the ecosystem’s health to support conservation and management of marine ecosystems.

  6. Near-critical density filling of the SF6 fluid cell for the ALI-R-DECLIC experiment in weightlessness

    Science.gov (United States)

    Lecoutre, C.; Marre, S.; Garrabos, Y.; Beysens, D.; Hahn, I.

    2018-05-01

    Analyses of ground-based experiments on near-critical fluids to precisely determine their density can be hampered by several effects, especially the density stratification of the sample, the liquid wetting behavior at the cell walls, and a possible singular curvature of the "rectilinear" diameter of the density coexisting curve. For the latter effect, theoretical efforts have been made to understand the amplitude and shape of the critical hook of the density diameter, which depart from predictions from the so-called ideal lattice-gas model of the uniaxial 3D-Ising universality class. In order to optimize the observation of these subtle effects on the position and shape of the liquid-vapor meniscus in the particular case of SF6, we have designed and filled a cell that is highly symmetrized with respect to any median plane of the total fluid volume. In such a viewed quasi-perfect symmetrical fluid volume, the precise detection of the meniscus position and shape for different orientations of the cell with respect to the Earth's gravity acceleration field becomes a sensitive probe to estimate the cell mean density filling and to test the singular diameter effects. After integration of this cell in the ALI-R insert, we take benefit of the high optical and thermal performances of the DECLIC Engineering Model. Here we present the sensitive imaging method providing the precise ground-based SF6 benchmark data. From these data analysis it is found that the temperature dependence of the meniscus position does not reflect the expected critical hook in the rectilinear density diameter. Therefore the off-density criticality of the cell is accurately estimated, before near future experiments using the same ALI-R insert in the DECLIC facility already on-board the International Space Station.

  7. Effect of a 91 day long stay in weightlessness on the International Space Station on mouse skin physiology

    Data.gov (United States)

    National Aeronautics and Space Administration — Comparitive gene expression in skin between mice maintained in microgravity (0g) and normogravity (1g) environment. Six male C57Bl/J10 mice were housed for 91 days...

  8. Space and Ground-Based Infrastructures

    Science.gov (United States)

    Weems, Jon; Zell, Martin

    This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

  9. SEI nuclear technology findings by the Stafford Synthesis Group

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Nuclear propulsion is key to reducing travel time to Mars, greatly reducing the mass in low Earth orbit, and enhancing schedule flexibility by increasing the Earth orbit departure launch window. Nuclear thermal rockets have twice to three times the performance of the best chemical rockets. This directly translates into reduced trip times and lower mass in low Earth orbit. Trip times of < 400 days in space are possible, a limitation if restricted to chemical propulsion. Psychological, physiological and radiological problems are significant issues for long mission times. The psychology of being cooped up so long in a minimum-sized capsule is cause for concern - much longer than considered healthy for nuclear submarine crews. The effects of long-term weightlessness are being debated. Short trip times eliminate the need for artificial gravity. The largest uncertainty is the effect of galactic radiation that will expose the crew to high levels of radiation for as much as 60 rem/yr

  10. Description and Flight Performance Results of the WASP Sounding Rocket

    Science.gov (United States)

    De Pauw, J. F.; Steffens, L. E.; Yuska, J. A.

    1968-01-01

    A general description of the design and construction of the WASP sounding rocket and of the performance of its first flight are presented. The purpose of the flight test was to place the 862-pound (391-kg) spacecraft above 250 000 feet (76.25 km) on free-fall trajectory for at least 6 minutes in order to study the effect of "weightlessness" on a slosh dynamics experiment. The WASP sounding rocket fulfilled its intended mission requirements. The sounding rocket approximately followed a nominal trajectory. The payload was in free fall above 250 000 feet (76.25 km) for 6.5 minutes and reached an apogee altitude of 134 nautical miles (248 km). Flight data including velocity, altitude, acceleration, roll rate, and angle of attack are discussed and compared to nominal performance calculations. The effect of residual burning of the second stage motor is analyzed. The flight vibration environment is presented and analyzed, including root mean square (RMS) and power spectral density analysis.

  11. The endocrine system in space flight

    Science.gov (United States)

    Leach, C. S.; Johnson, P. C.; Cintron, N. M.

    1988-01-01

    A trial natriuretic factor (ANF), a hormone recently shown to regulate sodium and water excretion, has been measured in blood specimens obtained during flight. After 30 or 42 h of weightlessness, mean ANF was elevated. After 175 or 180 h, ANF has increased by 59 percent, and it changed little between that time and soon after landing. There is probably an increase in ANF early inflight associated with the fluid shift, followed by a compensatory decrease in blood volume. Increased renal blood flow may cause the later ANF decrease. Erythropoietin (Ep), a hormone involved in the control of red blood cell proudction, was measured in blood samples taken during the first Spacelab mission and was significantly decreased on the second day of flight, suggesting also an increase in renal blood flow. Spacelab-2 investigators report that the active vitamin D metabolite 1 alpha, 25-dihydroxyvitamin D-3 increased early in the flight, indicating that a stimulus for increased bone resorption occurs by 30 h after launch.

  12. Space engineering

    Science.gov (United States)

    Alexander, Harold L.

    1991-01-01

    Human productivity was studied for extravehicular tasks performed in microgravity, particularly including in-space assembly of truss structures and other large objects. Human factors research probed the anthropometric constraints imposed on microgravity task performance and the associated workstation design requirements. Anthropometric experiments included reach envelope tests conducted using the 3-D Acoustic Positioning System (3DAPS), which permitted measuring the range of reach possible for persons using foot restraints in neutral buoyancy, both with and without space suits. Much neutral buoyancy research was conducted using the support of water to simulate the weightlessness environment of space. It became clear over time that the anticipated EVA requirement associated with the Space Station and with in-space construction of interplanetary probes would heavily burden astronauts, and remotely operated robots (teleoperators) were increasingly considered to absorb the workload. Experience in human EVA productivity led naturally to teleoperation research into the remote performance of tasks through human controlled robots.

  13. Seismic bearing capacity of strip footings on rock masses using the Hoek–Brown failure criterion

    Directory of Open Access Journals (Sweden)

    Amin Keshavarz

    2016-04-01

    Full Text Available In this paper, the bearing capacity of strip footings on rock masses has been studied in the seismic case. The stress characteristics or slip line method was used for analysis. The problem was analyzed in the plane strain condition using the Hoek–Brown failure criterion. First, the equilibrium equations along the stress characteristics were obtained and the rock failure criterion was applied. Then, the equations were solved using the finite difference method. A computer code has been provided for analysis. Given the footing and rock parameters, the code can calculate the stress characteristics network and obtain the stress distribution under the footing. The seismic effects have been applied as the horizontal and vertical pseudo-static coefficients. The results of this paper are very close to those of the other studies. The seismic bearing capacity of weightless rock masses can be obtained using the proposed equations and graphs without calculating the whole stress characteristics network.

  14. Investigation of Spatial Data with Open Source Social Network Analysis and Geographic Information Systems Applications

    Science.gov (United States)

    Sabah, L.; Şimşek, M.

    2017-11-01

    Social networks are the real social experience of individuals in the online environment. In this environment, people use symbolic gestures and mimics, sharing thoughts and content. Social network analysis is the visualization of complex and large quantities of data to ensure that the overall picture appears. It is the understanding, development, quantitative and qualitative analysis of the relations in the social networks of Graph theory. Social networks are expressed in the form of nodes and edges. Nodes are people/organizations, and edges are relationships between nodes. Relations are directional, non-directional, weighted, and weightless. The purpose of this study is to examine the effects of social networks on the evaluation of person data with spatial coordinates. For this, the cluster size and the effect on the geographical area of the circle where the placements of the individual are influenced by the frequently used placeholder feature in the social networks have been studied.

  15. Eliciting physics students mental models via science fiction stories

    International Nuclear Information System (INIS)

    Acar, H.

    2005-01-01

    This paper presents the results of an experiment which investigated the effects of the using science fiction stories in physics lessons. A questionnaire form containing 2 open-ended questions related to Jules Vernes story From the Earth to the Moon was used with 353, 9th and 10th grade students to determine their pre-conceptions about gravity and weightlessness. Mental models explaining students scientific and alternative views were constructed, according to students replies. After these studies, 6 students were interviewed. In this interview, researches were done about whether science fiction stories had an effect on bringing students pre-conceptions related to physics subjects out, on students inquiring their own concepts and on increasing students interest and motivation towards physics subjects. Studies in this research show that science fiction stories have an effect on arousing students interest and curiosity, have a role encouraging students to inquire their own concepts and are effective in making students alternative views come out

  16. Non-Contact Temperature Requirements (NCTM) for drop and bubble physics

    Science.gov (United States)

    Hmelo, Anthony B.; Wang, Taylor G.

    1989-01-01

    Many of the materials research experiments to be conducted in the Space Processing program require a non-contaminating method of manipulating and controlling weightless molten materials. In these experiments, the melt is positioned and formed within a container without physically contacting the container's wall. An acoustic method, which was developed by Professor Taylor G. Wang before coming to Vanderbilt University from the Jet Propulsion Laboratory, has demonstrated the capability of positioning and manipulating room temperature samples. This was accomplished in an earth-based laboratory with a zero-gravity environment of short duration. However, many important facets of high temperature containerless processing technology have not been established yet, nor can they be established from the room temperature studies, because the details of the interaction between an acoustic field an a molten sample are largely unknown. Drop dynamics, bubble dynamics, coalescence behavior of drops and bubbles, electromagnetic and acoustic levitation methods applied to molten metals, and thermal streaming are among the topics discussed.

  17. Subjective Vertical Conflict Theory and Space Motion Sickness.

    Science.gov (United States)

    Chen, Wei; Chao, Jian-Gang; Wang, Jin-Kun; Chen, Xue-Wen; Tan, Cheng

    2016-02-01

    Space motion sickness (SMS) remains a troublesome problem during spaceflight. The subjective vertical (SV) conflict theory postulates that all motion sickness provoking situations are characterized by a condition in which the SV sensed from gravity and visual and idiotropic cues differs from the expected vertical. This theory has been successfully used to predict motion sickness in different vehicles on Earth. We have summarized the most outstanding and recent studies on the illusions and characteristics associated with spatial disorientation and SMS during weightlessness, such as cognitive map and mental rotation, the visual reorientation and inversion illusions, and orientation preferences between visual scenes and the internal z-axis of the body. The relationships between the SV and the incidence of and susceptibility to SMS as well as spatial disorientation were addressed. A consistent framework was presented to understand and explain SMS characteristics in more detail on the basis of the SV conflict theory, which is expected to be more advantageous in SMS prediction, prevention, and training.

  18. Behaviour of Human Hemodynamics under Microcavity –a Proposal for the 7th German Parabolic Flight Campaign

    Directory of Open Access Journals (Sweden)

    Vladimir Blazek

    2005-01-01

    Full Text Available All astronauts often feel uncomfortable during first encounter microgravity because of fluid shifts from the lower extremities to the head caused by weightlessness. Parabolic flights offer a great possibility for research of this phenomenon under “zero gravity”. With a combination of the optoelectronic sensor concepts PPG and PPGI and an ultrasound device it should be possible to measure all relevant parameters for description and further explanation of rapid fluid shifts along the body axis in humans during parabolic flights. A research team of the RWTH Aachen University and the Charité University Berlin will participate in the 7th German Parabolic Flight Campaign in September 2005 and perform the experiments under micro gravitation. A combination of used non-invasive strategies will reveal new insights into the human hemodynamics under microgravity conditions. The optoelectronic part of this interdisciplinary research experiment, details from the measuring setup, data collecting and post processing will be discussed.

  19. At Home in Space The Late Seventies into the Eighties

    CERN Document Server

    Evans, Ben

    2012-01-01

    April 12, 2011, is the 50th anniversary of Yuri Gagarin's pioneering journey into space. To commemorate this momentous achievement, Springer-Praxis is producing a mini series of books that reveals how humanity's knowledge of flying, working, and living in space has grown in the last half century. At Home in Space, the third book in the series, continues the story throughout the later Seventies and into the Eighties. It was a period of time characterised by great promise. Regular Soviet missions demonstrated that humanity could not only survive, but thrive, in a weightless environment, and the arrival of the Space Shuttle seemed to offer a more economical and routine means of accessing the heavens. Living in space became truly international as astronauts from many nations lived and worked together on Soviet space stations and aboard the Shuttle. At the same time, however, relations between two key players in this drive to conquer the high ground of space - the United States and the Soviet Union - steadily decl...

  20. Gravity Plant Physiology Facility (GPPF) Team in the Spacelab Payload Operations Control Center (SL

    Science.gov (United States)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Gravity Plant Physiology Facility (GPPF) team in the SL POCC during the IML-1 mission.

  1. Human Research Program Human Health Countermeasures Element: Evidence Report - Artificial Gravity

    Science.gov (United States)

    Clement, Gilles

    2015-01-01

    The most serious risks of long-duration flight involve radiation, behavioral stresses, and physiological deconditioning. Artificial gravity (AG), by substituting for the missing gravitational cues and loading in space, has the potential to mitigate the last of these risks by preventing the adaptive responses from occurring. The rotation of a Mars-bound spacecraft or an embarked human centrifuge offers significant promise as an effective, efficient multi-system countermeasure against the physiological deconditioning associated with prolonged weightlessness. Virtually all of the identified risks associated with bone loss, muscle weakening, cardiovascular deconditioning, and sensorimotor disturbances might be alleviated by the appropriate application of AG. However, experience with AG in space has been limited and a human-rated centrifuge is currently not available on board the ISS. A complete R&D program aimed at determining the requirements for gravity level, gravity gradient, rotation rate, frequency, and duration of AG exposure is warranted before making a decision for implementing AG in a human spacecraft.

  2. Mental Workload and Performance Experiment (MWPE) Team in the Spacelab Payload Operations Control

    Science.gov (United States)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Mental Workload and Performance Experiment (MWPE) team in the SL POCC) during STS-42, IML-1 mission.

  3. Expression of IGF-I and Protein Degradation Markers During Hindlimb Unloading and Growth Hormone Administration in Rats

    Science.gov (United States)

    Leinsoo, T. A.; Turtikova, O. V.; Shenkman, B. S.

    2013-02-01

    It is known that hindlimb unloading or spaceflight produce atrophy and a number of phenotypic alterations in skeletal muscles. Many of these processes are triggered by the axis growth hormone/insulin-like growth factor I. However growth hormone (GH) and insulin-like growth factor I (IGF-I) expression relationship in rodent models of gravitational unloading is weakly investigated. We supposed the IGF-I is involved in regulation of protein turnover. In this study we examined the IGF-I expression by RT-PCR assay in the rat soleus, tibialis anterior and liver after 3 day of hindlimb suspension with growth hormone administration. Simultaneously were studied expression levels of MuRF-1 and MAFbx/atrogin as a key markers of intracellular proteolysis. We demonstrated that GH administration did not prevent IGF-I expression decreasing under the conditions of simulated weightlessness. It was concluded there are separate mechanisms of action of GH and IGF-I on protein metabolism in skeletal muscles. Gravitational unloading activate proteolysis independently of growth hormone activity.

  4. First Middle East Aircraft Parabolic Flights for ISU Participant Experiments

    Science.gov (United States)

    Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene

    2017-06-01

    Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.

  5. Exercise during long term exposure to space: Value of exercise during space exploration

    Science.gov (United States)

    1990-01-01

    There appear to be two general physiological reasons why exercise will be beneficial to space travelers who will experience a weightless and isolated environment for many months or a few years: (1) to alleviate or prevent tissue atrophy (principally bone and muscle), to maintain cardiovascular function, and to prevent deleterious changes in extracellular and cellular fluid volumes and plasma constituents, especially electrolytes; and (2) to maintain whole organism functional physical and physiological status with special reference to neuromuscular coordination (physical skill) and physical fitness (muscle strength and power, flexibility, and aerobic endurance). The latter reason also relates well to the ability of the crew members to resist both general and local fatigue and thus ensure consistent physical performance. Various forms of exercise, performed regularly, could help alleviate boredom and assist the travelers in coping with stress, anxiety, and depression. The type, frequency, duration and intensity of exercise and ways of ensuring that crew members engage in it are discussed.

  6. Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) Groups in

    Science.gov (United States)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured are activities of the Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) groups in the SL POCC during the IML-1 mission.

  7. Critical Point Facility (CPE) Group in the Spacelab Payload Operations Control Center (SL POCC)

    Science.gov (United States)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Critical Point Facility (CPE) group in the SL POCC during STS-42, IML-1 mission.

  8. Effect of spaceflight on the isotonic contractile properties of single skeletal muscle fibers in the rhesus monkey

    Science.gov (United States)

    Fitts, R. H.; Romatowski, J. G.; Blaser, C.; De La Cruz, L.; Gettelman, G. J.; Widrick, J. J.

    2000-01-01

    Experiments from both Cosmos and Space Shuttle missions have shown weightlessness to result in a rapid decline in the mass and force of rat hindlimb extensor muscles. Additionally, despite an increased maximal shortening velocity, peak power was reduced in rat soleus muscle post-flight. In humans, declines in voluntary peak isometric ankle extensor torque ranging from 15-40% have been reported following long- and short-term spaceflight and prolonged bed rest. Complete understanding of the cellular events responsible for the fiber atrophy and the decline in force, as well as the development of effective countermeasures, will require detailed knowledge of how the physiological and biochemical processes of muscle function are altered by spaceflight. The specific purpose of this investigation was to determine the extent to which the isotonic contractile properties of the slow- and fast-twitch fiber types of the soleus and gastrocnemius muscles of rhesus monkeys (Macaca mulatta) were altered by a 14-day spaceflight.

  9. Body acceleration distribution and O2 uptake in humans during running and jumping

    Science.gov (United States)

    Bhattacharya, A.; Mccutcheon, E. P.; Shvartz, E.; Greenleaf, J. E.

    1980-01-01

    The distribution of body acceleration and associated oxygen uptake and heart rate responses are investigated in treadmill running and trampoline jumping. Accelerations in the +Gz direction were measured at the lateral ankle, lumbosacral region and forehead of eight young men during level treadmill walking and running at four speeds and trampoline jumping at four heights, together with corresponding oxygen uptake and heart rate. With increasing treadmill speed, peak acceleration at the ankle is found always to exceed that at the back and forehead, and acceleration profiles with higher frequency components than those observed during jumping are observed. Acceleration levels are found to be more uniformly distributed with increasing height in jumping, although comparable oxygen uptake and heat rates are obtained. Results indicate that the magnitude of the biomechanical stimuli is greater in trampoline jumping than in running, which finding could be of use in the design of procedures to avert deconditioning in persons exposed to weightlessness.

  10. Effect of cultural conditions on the seed-to-seed growth of Arabidopsis and Cardamine - A study of growth rates and reproductive development as affected by test tube seals

    Science.gov (United States)

    Hoshizaki, T.

    1982-01-01

    The effects of test tube seals on the growth, flowering, and seed pod formation of Arabidopsis thaliana (L.) Heynh., mouse ear cress, and Cardamine oligosperma Nutt, bitter cress, are studied in order to assess the conditions used in weightlessness experiments. Among other results, it is found that the growth (height) and flowering (date of bud appearance) were suppressed in mouse ear cress in tubes sealed with Saran. Seed pod formation which occurred by day 45 in open-to-air controls, was still lacking in the sealed plants even up to day 124. The growth and flowering of bitter cress were also suppressed by the Saran seal, although up to day 55 the Saran-sealed plants were taller. It is suggested that atmospheric composition was the cause of the suppression of growth, flowering, and seed pod development in these plants, since the mouse ear cress renewed their growth and then set seed pods after the Saran seal was ruptured.

  11. Involvement of Cholinergic Dysfunction and Oxidative Damage in the Effects of Simulated Weightlessness on Learning and Memory in Rats

    Science.gov (United States)

    Wang, Qiong; Lv, Ke; Wang, Tingmei; Wang, Yanli; Ji, Guohua; Cao, Hongqing; Kan, Guanghan

    2018-01-01

    The present study aimed to determine how the learning and memory gradually change with the prolonged hindlimb unloading (HU) treatment in rats. Different HU durations (7 d, 14 d, 21 d, and 28 d) in Sprague-Dawley (SD) rats were implemented. Cognitive function was assessed using the Morris water maze (MWM) and the shuttle box test. Additionally, parameters about cholinergic activity and oxidative stress were tested. Results showed that longer-than-14 d HU led to the inferior performances in the behavioral tasks. Besides, acetylcholine esterase (AChE) activity, malondialdehyde (MDA) level in brain, reactive oxygen species (ROS), and 8-hydroxy-2-deoxyguanosine (8-OHdG) concentrations of HU rats were significantly increased. Furthermore, choline acetyltransferase (ChAT), superoxide dismutase (SOD), and catalase (CAT) activity in brain were notably attenuated. Most of these effects were more pronounced after longer exposure (21 d and 28 d) to HU, although some indicators had their own characteristics of change. These results indicate that cholinergic dysfunction and oxidative damage were involved in the learning and memory impairments induced by longer-than-14 d HU. Moreover, the negative effects of HU tend to be augmented as the HU duration becomes longer. The results may be helpful to present possible biochemical targets for countermeasures development regarding the memory deficits under extreme environmental conditions. PMID:29581965

  12. Involvement of Cholinergic Dysfunction and Oxidative Damage in the Effects of Simulated Weightlessness on Learning and Memory in Rats

    Directory of Open Access Journals (Sweden)

    Yongliang Zhang

    2018-01-01

    Full Text Available The present study aimed to determine how the learning and memory gradually change with the prolonged hindlimb unloading (HU treatment in rats. Different HU durations (7 d, 14 d, 21 d, and 28 d in Sprague-Dawley (SD rats were implemented. Cognitive function was assessed using the Morris water maze (MWM and the shuttle box test. Additionally, parameters about cholinergic activity and oxidative stress were tested. Results showed that longer-than-14 d HU led to the inferior performances in the behavioral tasks. Besides, acetylcholine esterase (AChE activity, malondialdehyde (MDA level in brain, reactive oxygen species (ROS, and 8-hydroxy-2-deoxyguanosine (8-OHdG concentrations of HU rats were significantly increased. Furthermore, choline acetyltransferase (ChAT, superoxide dismutase (SOD, and catalase (CAT activity in brain were notably attenuated. Most of these effects were more pronounced after longer exposure (21 d and 28 d to HU, although some indicators had their own characteristics of change. These results indicate that cholinergic dysfunction and oxidative damage were involved in the learning and memory impairments induced by longer-than-14 d HU. Moreover, the negative effects of HU tend to be augmented as the HU duration becomes longer. The results may be helpful to present possible biochemical targets for countermeasures development regarding the memory deficits under extreme environmental conditions.

  13. Design and testing of a unique randomized gravity, continuous flow bioreactor

    Science.gov (United States)

    Lassiter, Carroll B.

    1993-01-01

    A rotating, null gravity simulator, or Couette bioreactor was successfully used for the culture of mammalian cells in a simulated microgravity environment. Two limited studies using Lipomyces starkeyi and Streptomyces clavuligerus were also conducted under conditions of simulated weightlessness. Although these studies with microorganisms showed promising preliminary results, oxygen limitations presented significant limitations in studying the biochemical and cultural characteristics of these cell types. Microbial cell systems such as bacteria and yeast promise significant potential as investigative models to study the effects of microgravity on membrane transport, as well as substrate induction of inactive enzyme systems. Additionally, the smaller size of the microorganisms should further reduce the gravity induced oscillatory particle motion and thereby improve the microgravity simulation on earth. Focus is on the unique conceptual design, and subsequent development of a rotating bioreactor that is compatible with the culture and investigation of microgravity effects on microbial systems. The new reactor design will allow testing of highly aerobic cell types under simulated microgravity conditions. The described reactor affords a mechanism for investigating the long term effects of reduced gravity on cellular respiration, membrane transfer, ion exchange, and substrate conversions. It offers the capability of dynamically altering nutrients, oxygenation, pH, carbon dioxide, and substrate concentration without disturbing the microgravity simulation, or Couette flow, of the reactor. All progeny of the original cell inoculum may be acclimated to the simulated microgravity in the absence of a substrate or nutrient. The reactor has the promise of allowing scientists to probe the long term effects of weightlessness on cell interactions in plants, bacteria, yeast, and fungi. The reactor is designed to have a flow field growth chamber with uniform shear stress, yet transfer

  14. Aquatic modules for bioregenerative life support systems based on the C.E.B.A.S. biotechnology

    Science.gov (United States)

    Bluem, Volker; Paris, Frank

    2001-03-01

    Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the "Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adpated at all to "near weightlessness conditions" (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICASL COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90 spaceshuttle missions and the

  15. A hydroponic system for microgravity plant experiments

    Science.gov (United States)

    Wright, B. D.; Bausch, W. C.; Knott, W. M.

    1988-01-01

    The construction of a permanently manned space station will provide the opportunity to grow plants for weeks or months in orbit for experiments or food production. With this opportunity comes the need for a method to provide plants with a continuous supply of water and nutrients in microgravity. The Capillary Effect Root Environment System (CERES) uses capillary forces to maintain control of circulating plant nutrient solution in the weightless environment of an orbiting spacecraft. The nutrient solution is maintained at a pressure slightly less than the ambient air pressure while it flows on one side of a porous membrane. The root, on the other side of the membrane, is surrounded by a thin film of nutrient solution where it contacts the moist surface of the membrane. The root is provided with water, nutrients and air simultaneously. Air bubbles in the nutrient solution are removed using a hydrophobic/hydrophilic membrane system. A model scaled to the size necessary for flight hardware to test CERES in the space shuttle was constructed.

  16. Numerical analysis of the influence of liquid on propagation of a rolling contact fatigue crack

    Directory of Open Access Journals (Sweden)

    M. Olzak

    2017-10-01

    Full Text Available Numerical investigations of the propagation of rolling contact fatigue crack filled by the liquid have been conducted. Two models of fluid crack interaction have been considered. In the first model called 䖓hydrostatic� the assumption of incompressible, inviscid and weightless liquid was accepted. It was also assumed that due to the wheel load the trapped liquid could not get outside the crack and its volume remained constant until the rising pressure would open up the crack mouth again. On this assumption the analysis has a steady-state character. In the second model it has been assumed that the crack is filled by the viscous, incompressible fluid and the fluid motion as well as the resulting pressure distribution can be represented by one-dimensional form of the Reynolds equation. The method for solving the problem of the coupled motion of liquid and crack faces has been developed and series of calculation were made. The method has been employed for the predicting of crack deformation in the course of wheel rolling

  17. Anesthesia during and Immediately after Spaceflight

    Science.gov (United States)

    Seubert, Christoph N.; Price, Catherine; Janelle, Gregory M.

    2006-01-01

    The increasing presence of humans in space and long-duration manned missions to the Moon or Mars pose novel challenges to the delivery of medical care. Even now, cumulative person-days in space exceed 80 years and preparations for a return to the Moon are actively underway. Medical care after an emergent de-orbit or an accident during a non-nominal landing must not only address the specific disease or injuries but also the challenges posed by physiologic adaptations to microgravity. In the highly autonomous situation of a long-term space mission the situation is even more complex, because personnel, equipment, specific training, and clinical experience are by definition limited. To summarize our current knowledge specifically for anesthetic care during and immediately after spaceflight, we will review physiologic adaptations to microgravity with particular emphasis on the resulting anesthetic risks, discuss veterinary experiences with anesthesia in weightlessness or in animals adapted to microgravity, describe current research that pertains to anesthesia and spaceflight and point out unresolved questions for future investigation.

  18. Space Active Optics: toward optimized correcting mirrors for future large spaceborne observatories

    Science.gov (United States)

    Laslandes, Marie; Hugot, Emmanuel; Ferrari, Marc; Lemaitre, Gérard; Liotard, Arnaud

    2011-10-01

    Wave-front correction in optical instruments is often needed, either to compensate Optical Path Differences, off-axis aberrations or mirrors deformations. Active optics techniques are developed to allow efficient corrections with deformable mirrors. In this paper, we will present the conception of particular deformation systems which could be used in space telescopes and instruments in order to improve their performances while allowing relaxing specifications on the global system stability. A first section will be dedicated to the design and performance analysis of an active mirror specifically designed to compensate for aberrations that might appear in future 3m-class space telescopes, due to lightweight primary mirrors, thermal variations or weightless conditions. A second section will be dedicated to a brand new design of active mirror, able to compensate for given combinations of aberrations with a single actuator. If the aberrations to be corrected in an instrument and their evolutions are known in advance, an optimal system geometry can be determined thanks to the elasticity theory and Finite Element Analysis.

  19. A Person Stands on a Balance in an Elevator: What Happens When the Elevator Starts to Fall?

    Science.gov (United States)

    Baluković, Jasmina; Slisko, Josip; Cruz, Adrián Corona

    2018-03-01

    Physics textbook authors commonly introduce the concept of weightlessness (apparent or real) through a "thought experiment" in which a person weighs herself or himself in an elevator. When the elevator falls freely, the spring balance should show zero weight. There is an unresolved controversy about how this "zero reading" comes about. Drawings in some books, the first of which appeared in a book of Perelman 80 years ago, show that the person continues to be in contact with the balance. It means that "zero weight" arises as a consequence of "the fact" that the falling person and balance, although in contact, don't press on each other. Drawings in other books, among them those elaborated by NASA, represent the person and the balance launched upward and floating separately in midair. Using a homemade "falling box" with attached video camera, we did initial experiments for a very simplified but basically similar situation. The results that we obtained suggest that, in a free-falling elevator, a real balance would hardly launch a person upward.

  20. Physics Research on the International Space Station

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The International Space Station (ISS) is orbiting Earth at an altitude of around 400 km. It has been manned since November 2000 and currently has a permanent crew of six. On-board ISS science is done in a wide field of sciences, from fundamental physics to biology and human physiology. Many of the experiments utilize the unique conditions of weightlessness, but also the views of space and the Earth are exploited. ESA’s (European Space Agency) ELIPS (European Programme Life and Physical sciences in Space) manages some 150 on-going and planned experiments for ISS, which is expected to be utilized at least to 2020. This presentation will give a short introduction to ISS, followed by an overview of the science field within ELIPS and some resent results. The emphasis, however, will be on ISS experiments which are close to the research performed at CERN. Silicon strip detectors like ALTEA are measuring the flux of ions inside the station. ACES (Atomic Clock Ensemble in Space) will provide unprecedented global ti...

  1. Piracetam and fish orientation during parabolic aircraft flight

    Science.gov (United States)

    Hoffman, R. B.; Salinas, G. A.; Homick, J. L.

    1980-01-01

    Goldfish were flown in parabolic Keplerian trajectories in a KC-135 aircraft to assay both the effectiveness of piracetam as an antimotion sickness drug and the effectiveness of state-dependent training during periods of oscillating gravity levels. Single-frame analyses of infrared films were performed for two classes of responses - role rates in hypogravity or hypogravity orienting responses (LGR) and climbing responses in hypergravity or hypergravity orienting responses (HGR). In Experiment I, preflight training with the vestibular stressor facilitated suppression of LGR by the 10th parabola. An inverse correlation was found between the magnitudes of LGR and HGR. Piracetam was not effective in a state-dependent design, but the drug did significantly increase HGR when injected into trained fish shortly before flight. In Experiment II, injections of saline, piracetam, and modifiers of gamma-aminobutyric acid - aminooxyacetic acid (AOAA) and isonicotinic acid did not modify LGR. AOAA did significantly increase HGR. Thus, the preflight training has a beneficial effect in reducing disorientation in the fish in weightlessness, but the drugs employed were ineffective.

  2. Radiation and microgravity effects observed in the insect system Carausius morosus

    International Nuclear Information System (INIS)

    Reitz, G.; Buecker, H.; Lindberg, C.

    1992-01-01

    Among the biological problems that arise in long duration spaceflights, weightlessness and ionizing radiation appear to be the main risk factors. A precise differentiation between the effects of either energy deposition by heavy ions or microgravity alone and their combined action has succeeded for the first time with the experiment on Carausius morosus embryos flown in BIORACK during the Dl mission. It was clearly demonstrated that microgravity reduces the hatching rate and amplifies the effect of heavy ions with respect to the frequency of body anomalies. In the meantime, Carausius morosus eggs were exposed during two further spaceflights, Cosmos 1887 and 2044. The studies in these experiments were done with emphasis on the morphological differentiation during embryogenesis. The first results of the Cosmos 2044 flight of effects on hatching rate, growth kinetics, vitality and frequency of anomalies are presented and compared with those of the previous flights. These data indicate that in radiation protection an additional problem will be posed by a potential modification of radiobiological effects by microgravity. (author)

  3. Response of SAOS-2 cells to simulated microgravity and effect of biocompatible sol-gel hybrid coatings

    Science.gov (United States)

    Catauro, M.; Bollino, F.; Papale, F.

    2016-05-01

    The health of astronauts, during space flight, is threatened by bone loss induced by microgravity, mainly attributed to an imbalance in the bone remodeling process. In the present work, the response to the microgravity of bone cells has been studied using the SAOS-2 cell line grown under the condition of weightlessness, simulated by means of a Random Positioning Machine (RPM). Cell viability after 72 h of rotation has been evaluated by means of WST-8 assay and compared to that of control cells. Although no significant difference between the two cell groups has been observed in terms of viability, F-actin staining showed that microgravity environment induces cell apoptosis and altered F-actin organization. To investigate the possibility of hindering the trend of the cells towards the death, after 72 h of rotation the cells have been seeded onto biocompatible ZrO2/PCL hybrid coatings, previously obtained using a sol-gel dip coating procedure. WST-8 assay, carried out after 24 h, showed that the materials are able to inhibit the pro-apoptotic effect of microgravity on cells.

  4. Effect of prolonged space flight on cardiac function and dimensions

    Science.gov (United States)

    Henry, W. L.; Epstein, S. E.; Griffith, J. M.; Goldstein, R. E.; Redwood, D. R.

    1974-01-01

    Echocardiographic studies were performed preflight 5 days before launch and on recovery day and 1, 2, 4, 11, 31 and 68 days postflight. From these echocardiograms measurements were made. From these primary measurements, left ventricular end-diastolic volume, end-systolic volume, stroke volume, and mass were derived using the accepted assumptions. Findings in the Scientist Pilot and Pilot resemble those seen in trained distance runners. Wall thickness measurements were normal in all three crewmembers preflight. Postflight basal studies were unchanged in the Commander on recovery day through 68 days postflight in both the Scientist Pilot and Pilot, however, the left ventricular end-diastolic volume, stroke volume, and mass were decreased slightly. Left ventricular function curves were constructed for the Commander and Pilot by plotting stroke volume versus end-diastolic volume. In both astronauts, preflight and postflight data fell on the same straight line demonstrating that no deterioration in cardiac function had occurred. These data indicate that the cardiovascular system adapts well to prolonged weightlessness and suggest that alterations in cardiac dimensions and function are unlikely to limit man's future in space.

  5. Force, acceleration and velocity during trampoline jumps—a challenging assignment

    Science.gov (United States)

    Pendrill, Ann-Marie; Ouattara, Lassana

    2017-11-01

    Bouncing on a trampoline lets the jumper experience the interplay between weightlessness and large forces on the body, as the motion changes between free fall and large acceleration in contact with the trampoline bed. In this work, several groups of students were asked to draw graphs of elevation, velocity and acceleration as a function of time, for two full jumps of the 2012 Olympic gold medal trampoline routine by Rosannagh MacLennan. We hoped that earlier kinaesthetic experiences of trampoline bouncing would help students make connections between the mathematical descriptions of elevation, velocity and acceleration, which is known to be challenging. However, very few of the student responses made reference to personal experiences of forces during bouncing. Most of the responses could be grouped into a few categories, which are presented and discussed in the paper. Although the time dependence of elevation was drawn relatively correctly in most cases, many of the graphs of velocity and acceleration display a lack of understanding of the relation between these different aspects of motion.

  6. Vestibular factors influencing the biomedical support of humans in space.

    Science.gov (United States)

    Lichtenberg, B K

    1988-01-01

    This paper will describe the biomedical support aspects of humans in space with respect to the vestibular system. The vestibular system is thought to be the primary sensory system involved in the short-term effects of space motion sickness although there is increasing evidence that many factors play a role in this complex set of symptoms. There is the possibility that an individual's inner sense of orientation may be strongly coupled with the susceptibility to space motion sickness. A variety of suggested countermeasures for space motion sickness will be described. Although there are no known ground-based tests that can predict space motion sickness, the search should go on. The long term effects of the vestibular system in weightlessness are still relatively unknown. Some preliminary data has shown that the otoconia are irregular in size and distribution following extended periods of weightlessness. The ramifications of this data are not yet known and because the data was obtained on lower order animals, definitive studies and results must wait until the space station era when higher primates can be studied for long durations. This leads us to artificial gravity, the last topic of this paper. The vestibular system is intimately tied to this question since it has been shown on Earth that exposure to a slow rotating room causes motion sickness for some period of time before adaptation occurs. If the artificial gravity is intermittent, will this mean that people will get sick every time they experience it? The data from many astronauts returning to Earth indicates that a variety of sensory illusions are present, especially immediately upon return to a 1-g environment. Oscillopsia or apparent motion of the visual surround upon head motion along with inappropriate eye motions for a given head motion, all indicate that there is much to be studied yet about the vestibular and CNS systems reaction to a sudden application of a steady state acceleration field like 1-g. From

  7. Effect of Hypodynamy on Structure and Alkaline Phosphatase Activity of Kidney in Japanese Quails

    Directory of Open Access Journals (Sweden)

    V. Almášiová

    2008-01-01

    Full Text Available The objective of the study was to observe the effect of experimental hypodynamy simulating weightlessness in space on the structure, ultrastructure and alkaline phosphatase activity of kidney in Japanese quail (Coturnix coturnix japonica. Two days after hatching, the quails were suspended in special shirts below the cage ceiling so their feet did not touch the floor. They could consume food and water ad libitum. Experimental animals were sacrificed after 14, 21, 28, 35, 42, 49 and 56 days of hypodynamy. Birds of the same age, hatched at the same time, and fed the same diet were used as a control. Samples of kidney were processed for light (LM and transmission electron microscopy (TEM, and alkaline phosphatase (AP analysis. Short-term (14–28 days hypodynamy caused no marked damage to the structure and ultrastructure of kidneys. However, after long-term (35–59 days hypodynamy, morphological changes were observed in some cells of the proximal and distal tubules. The dying cells in proximal tubules, observed in semi-thin sections by LM, were dark and contained a nucleus of irregular shape. Observation by TEM showed that their nucleus was dark and shrivelled and the electron-dense cytoplasm contained long, dense, rod-shaped mitochondria with thin mitochondrial cristae. Microvilli were present on the apical surface of cells and formed a brush border. Sporadic dying cells were also observed in distal tubules. Large, light vacuoles were found in the cytoplasm of cells of collecting tubules, however, the structure of renal corpuscles and medullary loops remained undisturbed. Microscopical analysis by means of a direct TUNEL reaction on days 35 to 59 of hypodynamy showed a moderate occurrence of cellular apoptosis in the proximal and distal tubules of experimental Japanese quail. The activity of AP in the brush border of the proximal tubules on days 14–29 of hypodynamy was normal in experimental animals and showed no significant differences in

  8. Effects of Simulated Microgravity on Otolith Growth of Larval Zebrafish using a Rotating-Wall Vessel: Appropriate Rotation Speed and Fish Developmental Stage

    Science.gov (United States)

    Li, Xiaoyan; Anken, Ralf; Liu, Liyue; Wang, Gaohong; Liu, Yongding

    2017-02-01

    Stimulus dependence is a general feature of developing animal sensory systems. In this respect, it has extensively been shown earlier that fish inner ear otoliths can act as test masses as their growth is strongly affected by altered gravity such as hypergravity obtained using centrifuges, by (real) microgravity achieved during spaceflight or by simulated microgravity using a ground-based facility. Since flight opportunities are scarce, ground-based simulators of microgravity, using a wide variety of physical principles, have been developed to overcome this shortcoming. Not all of them, however, are equally well suited to provide functional weightlessness from the perspective of the biosystem under evaluation. Therefore, the range of applicability of a particular simulator has to be extensively tested. Earlier, we have shown that a Rotating-Wall Vessel (RWV) can be used to provide simulated microgravity for developing Zebrafish regarding the effect of rotation on otolith development. In the present study, we wanted to find the most effective speed of rotation and identify the appropriate developmental stage of Zebrafish, where effects are the largest, in order to provide a methodological basis for future in-depth analyses dedicated to the physiological processes underlying otolith growth at altered gravity. Last not least, we compared data on the effect of simulated microgravity on the size versus the weight of otoliths, since the size usually is measured in related studies due to convenience, but the weight more accurately approximates the physical capacity of an otolith. Maintaining embryos at 10 hours post fertilization for three days in the RWV, we found that 15 revolutions per minute (rpm) yielded the strongest effects on otolith growth. Maintenance of Zebrafish staged at 10 hpf, 1 day post fertilization (dpf), 4 dpf, 7 dpf and 14 dpf for three days at 15 rpm resulted in the most prominent effects in 7 dpf larvae. Weighing versus measuring the size of otoliths

  9. Variation in stem morphology and movement of amyloplasts in white spruce grown in the weightless environment of the International Space Station.

    Science.gov (United States)

    Rioux, Danny; Lagacé, Marie; Cohen, Luchino Y; Beaulieu, Jean

    2015-01-01

    One-year-old white spruce (Picea glauca) seedlings were studied in microgravity conditions in the International Space Station (ISS) and compared with seedlings grown on Earth. Leaf growth was clearly stimulated in space whereas data suggest a similar trend for the shoots. Needles on the current shoots of ground-based seedlings were more inclined towards the stem base than those of seedlings grown in the ISS. Amyloplasts sedimented in specialized cells of shoots and roots in seedlings grown on Earth while they were distributed at random in similar cells of seedlings tested in the ISS. In shoots, such amyloplasts were found in starch sheath cells located between leaf traces and cortical cells whereas in roots they were constituents of columella cells of the cap. Nuclei were regularly observed just above the sedimented amyloplasts in both organs. It was also frequent to detect vacuoles with phenolic compounds and endoplasmic reticulum (ER) close to the sedimented amyloplasts. The ER was mainly observed just under these amyloplasts. Thus, when amyloplasts sediment, the pressure exerted on the ER, the organelle that can for instance secrete proteins destined for the plasma membrane, might influence their functioning and play a role in signaling pathways involved in gravity-sensing white spruce cells. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  10. Validation of Material Algorithms for Femur Remodelling Using Medical Image Data

    Directory of Open Access Journals (Sweden)

    Shitong Luo

    2017-01-01

    Full Text Available The aim of this study is the utilization of human medical CT images to quantitatively evaluate two sorts of “error-driven” material algorithms, that is, the isotropic and orthotropic algorithms, for bone remodelling. The bone remodelling simulations were implemented by a combination of the finite element (FE method and the material algorithms, in which the bone material properties and element axes are determined by both loading amplitudes and daily cycles with different weight factor. The simulation results showed that both algorithms produced realistic distribution in bone amount, when compared with the standard from CT data. Moreover, the simulated L-T ratios (the ratio of longitude modulus to transverse modulus by the orthotropic algorithm were close to the reported results. This study suggests a role for “error-driven” algorithm in bone material prediction in abnormal mechanical environment and holds promise for optimizing implant design as well as developing countermeasures against bone loss due to weightlessness. Furthermore, the quantified methods used in this study can enhance bone remodelling model by optimizing model parameters to gap the discrepancy between the simulation and real data.

  11. Mouse Drawer System (MDS): An autonomous hardware for supporting mice space research

    Science.gov (United States)

    Liu, Y.; Biticchi, R.; Alberici, G.; Tenconi, C.; Cilli, M.; Fontana, V.; Cancedda, R.; Falcetti, G.

    2005-08-01

    For the scientific community the ability of flying mice under weightless conditions in space, compared to other rodents, offers many valuable advantages. These include the option of testing a wide range of wild-type and mutant animals, an increased animal number for flight, and a reduced demand on shuttle resources and crew time. In this study, we describe a spaceflight hardware for mice, the Mouse Drawer System (MDS). MDS can interface with Space Shuttle middeck and International Space Station Express Rack. It consists of Mice Chamber, Liquid Handling Subsystem, Food Delivery Subsystem, Air Conditioning Subsystem, Illumination Subsystem, Observation Subsystem and Payload Control Unit. It offers single or paired containment for 6-8 mice with a mean weight of 40 grams/mouse for a period of up to 3 months. Animal tests were conducted in a MDS breadboard to validate the biocompatibility of various subsystems. Mice survived in all tests of short and long duration. Results of blood parameters, histology and air/waste composition analysis showed that MDS subsystems meet the NIH guidelines for temperature, humidity, food and water access, air quality, odour and waste management.

  12. Antiosteoporosis Effect of Radix Scutellariae Extract on Density and Microstructure of Long Bones in Tail-Suspended Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Chen-Rui Li

    2013-01-01

    Full Text Available Radix Scutellariae (RS, a medicinal herb, is extensively employed in traditional Chinese medicines and modern herbal prescriptions. Two major flavonoids in RS were known to induce osteoblastic differentiation and inhibit osteoclast differentiation, respectively. This study aimed to investigate the effect of Radix Scutellariae extract (RSE against bone loss induced by mechanical inactivity or weightlessness. A hindlimb unloading tail-suspended rat model (TS was established to determine the effect of RSE on bone mineral density and bone microarchitecture. Treatment of RSE at 50 mg/kg/day and alendronate (ALE at 2 mg/kg/day as positive control for 42 days significantly increased the bone mineral density and mechanical strength compared with TS group. Enhanced bone turnover markers by TS treatment were attenuated by RSE and ALE administration. Deterioration of bone trabecula induced by TS was prevented. Moreover, both treatments counteracted the reduction of bone volume fraction, trabecular thickness and number, and connectivity density. In conclusion, RSE was demonstrated for the first time to prevent osteoporosis induced by TS treatment, which suggests the potential application of RSE in the treatment of disuse-induced osteoporosis.

  13. Backscattered electron imaging: The role in calcified tissue and implant analysis

    International Nuclear Information System (INIS)

    Bloebaum, R.D.; Bachus, K.N.; Boyce, T.M.

    1990-01-01

    The working distance and tilt studies helped to clarify the influences of specimen variability when the BSE mode is used in calcified tissue research. This work has shown that the BSEPs of cortical bone may be accurately maintained within 2 percent error over a 10 degree range of tilt, or 300 microns working distance variation. If future bone and implant investigators wish to conduct accurate, quantitative mineral microanalysis in bone, then standard grinding and polishing techniques should be adequate if calibration procedures are developed. The BSEP characteristics of the pure metals make them suitable to be used for calibrating the BSE signal. BSE analysis, with correlated biomechanical studies, will lead us to a better understanding of the relationships between structure, function, and mineral content in bone. On-line BSEP analysis techniques will expand our understanding of the mineralization events in bone which are associated with aging, weightlessness, pharmaceutical therapies, and the presence of biomaterials. The future of the BSE imaging technology and the contributions to be made in understanding the histometry, biomechanics and mineral content of bone as well as bone's response to implant materials has just begun to unfold. 74 references

  14. STS-50 USML-1, Onboard Photograph

    Science.gov (United States)

    1992-01-01

    The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs that provided scientists an opportunity to research various scientific investigations in a weightless environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology (crystal growth), and combustion science. This is a close-up view of the Astroculture experiment rack in the middeck of the orbiter. The Astroculture experiment was to evaluate and find effective ways to supply nutrient solutions for optimizing plant growth and avoid releasing solutions into the crew quarters in microgravity. Since fluids behave differently in microgravity, plant watering systems that operate well on Earth do not function effectively in space. Plants can reduce the costs of providing food, oxygen, and pure water, as well as lower the costs of removing carbon dioxide in human space habitats. The USML-1 flew aboard the STS-50 mission on June 1992 and was managed by the Marshall Space Flight Center.

  15. Microgravity and Osteoporosis - Review

    Directory of Open Access Journals (Sweden)

    Yeşim Kirazlı

    2006-09-01

    Full Text Available As human beings venture into space to travel to distant planets and to colonize, they will be confronted with osteoporosis that could put them at risk for fracture when they return to Earth. This paper reviews the possible mechanisms by which unloading of the skeleton -such as during space flight and scuba diving- results in rapid mobilization of calcium stores from the skeleton and also the interventions to stabilize bone loss in astronauts. Weightlessness increases urinary calcium excretion, decreases intestinal calcium absorption, and increases serum calcium level, with decreased levels of serum parathyroid hormone and calcitriol. Bone resorption is increased, whereas bone formation is decreased. The loss of bone mineral density (BMD in some regions of the skeleton is 1.0-2.0 % per month.. Countermeasure programs have depended solely upon exercise. However, osteogenic stimulus from exercise has been shown to be inadequate to maintain bone mass. There are also no data to show the efficacy of pharmaceutical agents for prevention of osteoporosis in astronauts. Trails using pharmaceutical agents in space are being planned. (Osteoporoz Dünyasından 2006;12:64-9

  16. CHANGES IN MENTAL HEALTH AND SATISFACTION WITH LIFE DURING PHYSICAL INACTIVITY INDUCED BY BED REST EXPERIMENT

    Directory of Open Access Journals (Sweden)

    Tjaša Dimec Časar

    2016-01-01

    Full Text Available Simulated weightlessness by bed rest model represents an important method to study the consequences of physical inactivity and sedentarism on the human body. The purpose of the study was to examine the effects of prolonged physical inactivity on psychological distress, depressive symptoms and satisfaction with life of healthy male adults. Participants were ten volunteers, aged between 21 and 28 years who were subjected to a 35-day head-down bed rest. Psychological state of the participants was measured with the General Health Questionnaire (GHQ-12, the Center for Epidemiological Studies Depression Scale (CES-D, and the Satisfaction with Life Scale (SWLS. Participants completed psychological inventories before, during and after the experiment. The results revealed no significant differences in mental health and satisfaction with life of participants following the head-down bed rest, however there was a tendency towards an increase in neurotic and depressive symptoms at the end of the experiment. The obtained results are interpreted in the light of stimulative living conditions in which the experiment was carried out, as well as the amount and quality of social interactions during the period of extended physical inactivity.

  17. a week in space

    Science.gov (United States)

    collette, christian

    2016-04-01

    COLLETTE Christian Institut Saint Laurent Liège Belgium. I am a science teacher at a technical high school. Generally, my students don't come from a privileged social background and are not particularly motivated for studies. For 10 years, I organize, for one of my sections, a spatial (and special) school year that ends in a spatial week. Throughout this year, with the help of my colleagues, I will introduce into all themes a lot of concepts relating to space. French, history, geography, English, mathematics, technical courses, sciences, and even gymnastics will be training actors in space culture. In spring, I will accompany my class in the Euro Space Center (Redu- Belgium) where we will live one week 24 hours on "like astronauts" One third of the time is dedicated to astronaut training (moonwalk, remote manipulator system, mission simulation, weightless wall, building rockets, satellites, etc.), One third to more intellectual activities on space (lectures, research, discovery of the outside run) the last one third of time in outside visits (museums, site of ESA-Redu) or in movies about space (October sky, Apollo 13, etc.) During this year, the profits, so educational as human, are considerable!

  18. A Zero-Gravity Cup for Drinking Beverages in Microgravity

    Science.gov (United States)

    Pettit, Donald R.; Weislogel, Mark; Concus, Paul; Finn, Robert

    2011-01-01

    To date, the method for astronauts to drink liquids in microgravity or weightless environments is to suck the liquid from a bag or pouch through a straw. A new beverage cup works in microgravity and allows astronauts to drink liquids from a cup in a manner consistent with that on Earth. The cup is capable of holding beverages with an angled channel running along the wall from the bottom to the lip. In microgravity, a beverage is placed into the cup using the galley dispenser. The angled channel acts as an open passage that contains only two sides where capillary forces move the liquid along the channel until it reaches the top lip where the forces reach an equilibrium and the flow stops. When one sips the liquid at the lip of the channel, the capillary force equilibrium is upset and more liquid flows to the lip from the reservoir at the bottom to re-establish the equilibrium. This sipping process can continue until the total liquid contents of the cup is consumed, leaving only a few residual drops about the same quantity as in a ceramic cup when it is drunk dry on Earth.

  19. Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic signals

    International Nuclear Information System (INIS)

    Morbidelli, Lucia; Monici, Monica; Marziliano, Nicola; Cogoli, Augusto; Fusi, Franco; Waltenberger, Johannes; Ziche, Marina

    2005-01-01

    Health hazards in astronauts are represented by cardiovascular problems and impaired bone healing. These disturbances are characterized by a common event, the loss of function by vascular endothelium, leading to impaired angiogenesis. We investigated whether the exposure of cultured endothelial cells to hypogravity condition could affect their behaviour in terms of functional activity, biochemical responses, morphology, and gene expression. Simulated hypogravity conditions for 72 h produced a reduction of cell number. Genomic analysis of endothelial cells exposed to hypogravity revealed that proapoptotic signals increased, while antiapoptotic and proliferation/survival genes were down-regulated by modelled low gravity. Activation of apoptosis was accompanied by morphological changes with mitochondrial disassembly and organelles/cytoplasmic NAD(P)H redistribution, as evidenced by autofluorescence analysis. In this condition cells were not able to respond to angiogenic stimuli in terms of migration and proliferation. Our study documents functional, morphological, and transcription alterations in vascular endothelium exposed to simulated low gravity conditions, thus providing insights on the occurrence of vascular tissue dysregulation in crewmen during prolonged space flights. Moreover, the alteration of vascular endothelium can intervene as a concause in other systemic effects, like bone remodelling, observed in weightlessness

  20. Body ownership and embodiment: vestibular and multisensory mechanisms.

    Science.gov (United States)

    Lopez, C; Halje, P; Blanke, O

    2008-06-01

    Body ownership and embodiment are two fundamental mechanisms of self-consciousness. The present article reviews neurological data about paroxysmal illusions during which body ownership and embodiment are affected differentially: autoscopic phenomena (out-of-body experience, heautoscopy, autoscopic hallucination, feeling-of-a-presence) and the room tilt illusion. We suggest that autoscopic phenomena and room tilt illusion are related to different types of failures to integrate body-related information (vestibular, proprioceptive and tactile cues) in addition to a mismatch between vestibular and visual references. In these patients, altered body ownership and embodiment has been shown to occur due to pathological activity at the temporoparietal junction and other vestibular-related areas arguing for a key importance of vestibular processing. We also review the possibilities of manipulating body ownership and embodiment in healthy subjects through exposition to weightlessness as well as caloric and galvanic stimulation of the peripheral vestibular apparatus. In healthy subjects, disturbed self-processing might be related to interference of vestibular stimulation with vestibular cortex leading to disintegration of bodily information and altered body ownership and embodiment. We finally propose a differential contribution of the vestibular cortical areas to the different forms of altered body ownership and embodiment.

  1. Biomedical Aspects of Lunar and Mars Exploration Missions

    Science.gov (United States)

    Charles, John B.

    2006-01-01

    Recent long-range planning for exploration-class missions has emphasized the need for anticipating the medical and human factors aspects of such expeditions. Missions returning Americans to the moon for stays of up to 6 months at a time will provide the opportunity to demonstrate the means to function safely and efficiently on another planet. Details of mission architectures are still under study, but a typical Mars design reference mission comprises a six-month transit from Earth to Mars, eighteen months in residence on Mars, and a six-month transit back to Earth. Physiological stresses will come from environmental factors such as prolonged exposure to radiation, weightlessness en route to Mars and then back to Earth, and low gravity and a toxic atmosphere while on Mars. Psychological stressors will include remoteness from Earth, confinement, and potential interpersonal conflicts, all complicated by circadian alterations. Medical risks including trauma must be considered. The role of such risk-modifying influences as artificial gravity and improved propulsion technologies to shorten round-trip time will also be discussed. Results of planning for assuring human health and performance will be presented.

  2. Effect of STS space suit on astronaut dominant upper limb EVA work performance

    Science.gov (United States)

    Greenisen, Michael C.

    1987-01-01

    The STS Space Suited and unsuited dominant upper limb performance was evaluated in order to quantify future EVA astronaut skeletal muscle upper limb performance expectations. Testing was performed with subjects standing in EVA STS foot restraints. Data was collected with a CYBEX Dynamometer enclosed in a waterproof container. Control data was taken in one g. During one g testing, weight of the Space Suit was relieved from the subject via an overhead crane with a special connection to the PLSS of the suit. Experimental data was acquired during simulated zero g, accomplished by neutral buoyancy in the Weightless Environment Training Facility. Unsuited subjects became neutrally buoyant via SCUBA BC vests. Actual zero g experimental data was collected during parabolic arc flights on board NASA's modified KC-135 aircraft. During all test conditions, subjects performed five EVA work tasks requiring dominant upper limb performance and ten individual joint articulation movements. Dynamometer velocities for each tested movement were 0 deg/sec, 30 or 60 deg/sec and 120 or 180 deg/sec, depending on the test, with three repetitions per test. Performance was measured in foot pounds of torque.

  3. When up is down in 0g: how gravity sensing affects the timing of interceptive actions.

    Science.gov (United States)

    Senot, Patrice; Zago, Myrka; Le Séac'h, Anne; Zaoui, Mohammed; Berthoz, Alain; Lacquaniti, Francesco; McIntyre, Joseph

    2012-02-08

    Humans are known to regulate the timing of interceptive actions by modeling, in a simplified way, Newtonian mechanics. Specifically, when intercepting an approaching ball, humans trigger their movements a bit earlier when the target arrives from above than from below. This bias occurs regardless of the ball's true kinetics, and thus appears to reflect an a priori expectation that a downward moving object will accelerate. We postulate that gravito-inertial information is used to tune visuomotor responses to match the target's most likely acceleration. Here we used the peculiar conditions of parabolic flight--where gravity's effects change every 20 s--to test this hypothesis. We found a striking reversal in the timing of interceptive responses performed in weightlessness compared with trials performed on ground, indicating a role of gravity sensing in the tuning of this response. Parallels between these observations and the properties of otolith receptors suggest that vestibular signals themselves might plausibly provide the critical input. Thus, in addition to its acknowledged importance for postural control, gaze stabilization, and spatial navigation, we propose that detecting the direction of gravity's pull plays a role in coordinating quick reactions intended to intercept a fast-moving visual target.

  4. Gravitaxis of Bursaria truncatella: electrophysiological and behavioural analyses of a large ciliate cell.

    Science.gov (United States)

    Krause, Martin; Bräucker, Richard

    2009-05-01

    Bursaria truncatella is a giant ciliate. Its volume of 3 x 10(7)microm(3) and a sedimentation rate of 923microm s(-1) would induce the cell to rapidly sink to the bottom of a pond unless compensating mechanisms exist. The upward swimming behaviour of a cell population (negative gravitaxis) may be either a result of reorientations of the cells (graviorientation) and/or direction-dependent changes in propulsion rate (gravikinesis). The special statocyst hypothesis assumes a stimulation of mechanosensitive ion channels by forces of the cytoplasmic mass acting on the lower membrane. Here, we present basic electrophysiological data on B. truncatella. Investigation of the mechanosensitivity reveals a polar distribution of depolarising and hyperpolarising mechanosensitive channels at least on the dorsal membrane of the cell. Analysis of swimming behaviour demonstrates that Bursaria orients against the gravity vector (r(Oc)=0.34) and performs a negative gravikinesis (-633microm s(-1)) compensating the sedimentation rate by 70%. Under hypergravity conditions gravitaxis in Bursaria is enhanced. Microgravity experiments indicate an incomplete relaxation of graviresponses during 4s of weightlessness. Experimental data are in accordance with the special statocyst hypothesis of graviperception, as was demonstrated in other ciliates.

  5. Multiphoton tomography of astronauts

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Pietruszka, Anna; Bückle, Rainer; Gerlach, Nicole; Heinrich, Ulrike

    2015-03-01

    Weightlessness may impair the astronaut's health conditions. Skin impairments belong to the most frequent health problems during space missions. Within the Skin B project, skin physiological changes during long duration space flights are currently investigated on three European astronauts that work for nearly half a year at the ISS. Measurements on the hydration, the transepidermal water loss, the surface structure, elasticity and the tissue density by ultrasound are conducted. Furthermore, high-resolution in vivo histology is performed by multiphoton tomography with 300 nm spatial and 200 ps temporal resolution. The mobile certified medical tomograph with a flexible 360° scan head attached to a mechano-optical arm is employed to measure two-photon autofluorescence and SHG in the volar forearm of the astronauts. Modification of the tissue architecture and of the fluorescent biomolecules NAD(P)H, keratin, melanin and elastin are detected as well as of SHG-active collagen. Thinning of the vital epidermis, a decrease of the autofluoresence intensity, an increase in the long fluorescence lifetime, and a reduced skin ageing index SAAID based on an increased collagen level in the upper dermis have been found. Current studies focus on recovery effects.

  6. Experiment K-6-18. Study of muscarinic and gaba (benzodiazepine) receptors in the sensory-motor cortex, hippcampus and spinal code

    Science.gov (United States)

    Daunton, N.; Damelio, F.; Krasnov, I.

    1990-01-01

    Frontal lobe samples of rat brains flown aboard Cosmos 1887 were processed for the study of muscarinic (cholinergic) and GABA (benzodiazepine) receptors and for immunocytochemical localization of the neurotransmitter gamma-aminobutyric acid (GABA) and glial fibrillary acidic protein (GFAP). Although radioactive labeling of both muscarinic cholinergic and GABA (benzodiazepine) receptors proved to be successful with the techniques employed, distinct receptor localization of individual laminae of the frontal neocortex was not possible since the sampling of the area was different in the various groups of animals. In spite of efforts made for proper orientation and regional identification of laminae, it was found that a densitometric (quantitation of autoradiograms) analysis of the tissue did not contribute to the final interpretation of the effects of weightlessness on these receptors. As to the immunocytochemical studies the use of both markers, GFAP and GABA antiserum, confirmed the suitability of the techniques for use in frozen material. However, similar problems to those encountered in the receptor studies prevented an adequate interpretation of the effects of micro-G exposure on the localization and distribution of GABA and GFAP. This study did, however, confirm the feasibility of investigating neurotransmitters and their receptors in future space flight experiments.

  7. Monitoring and Controlling an Underwater Robotic Arm

    Science.gov (United States)

    Haas, John; Todd, Brian Keith; Woodcock, Larry; Robinson, Fred M.

    2009-01-01

    The SSRMS Module 1 software is part of a system for monitoring an adaptive, closed-loop control of the motions of a robotic arm in NASA s Neutral Buoyancy Laboratory, where buoyancy in a pool of water is used to simulate the weightlessness of outer space. This software is so named because the robot arm is a replica of the Space Shuttle Remote Manipulator System (SSRMS). This software is distributed, running on remote joint processors (RJPs), each of which is mounted in a hydraulic actuator comprising the joint of the robotic arm and communicating with a poolside processor denoted the Direct Control Rack (DCR). Each RJP executes the feedback joint-motion control algorithm for its joint and communicates with the DCR. The DCR receives joint-angular-velocity commands either locally from an operator or remotely from computers that simulate the flight like SSRMS and perform coordinated motion calculations based on hand-controller inputs. The received commands are checked for validity before they are transmitted to the RJPs. The DCR software generates a display of the statuses of the RJPs for the DCR operator and can shut down the hydraulic pump when excessive joint-angle error or failure of a RJP is detected.

  8. Effects of Angular Frequency During Clinorotation on Mesenchymal Stem Cell Morphology and Migration

    Science.gov (United States)

    Luna, Carlos; Yew, Alvin G.; Hsieh, Adam H.

    2015-01-01

    Background/Objectives: Ground-based microgravity simulation can reproduce the apparent effects of weightlessness in spaceflight using clinostats that continuously reorient the gravity vector on a specimen, creating a time-averaged nullification of gravity. In this work, we investigated the effects of clinorotation speed on the morphology, cytoarchitecture, and migration behavior of human mesenchymal stem cells (hMSCs). Methods: We compared cell responses at clinorotation speeds of 0, 30, 60, and 75 rpm over 8 hours in a recently developed lab-on-chip-based clinostat system. Time lapse light microscopy was used to visualize changes in cell morphology during and after cessation of clinorotation. Cytoarchitecture was assessed by actin and vinculin staining, and chemotaxis was examined using time lapse light microscopy of cells in NGF (100 ng/ml) gradients. Results: Among clinorotated groups, cell area distributions indicated a greater inhibition of cell spreading with higher angular frequency (p is less than 0.005), though average cell area at 30 rpm after 8 hours became statistically similar to control (p = 0.794). Cells at 75rpm clinorotation remained viable and were able to re-spread after clinorotation. In chemotaxis chambers clinorotation did not alter migration patterns in elongated cells, but most clinorotated cells exhibited cell retraction, which strongly compromised motility.

  9. Sidelobe reduction and capacity improvement of open-loop collaborative beamforming in wireless sensor networks.

    Directory of Open Access Journals (Sweden)

    Suhanya Jayaprakasam

    Full Text Available Collaborative beamforming (CBF with a finite number of collaborating nodes (CNs produces sidelobes that are highly dependent on the collaborating nodes' locations. The sidelobes cause interference and affect the communication rate of unintended receivers located within the transmission range. Nulling is not possible in an open-loop CBF since the collaborating nodes are unable to receive feedback from the receivers. Hence, the overall sidelobe reduction is required to avoid interference in the directions of the unintended receivers. However, the impact of sidelobe reduction on the capacity improvement at the unintended receiver has never been reported in previous works. In this paper, the effect of peak sidelobe (PSL reduction in CBF on the capacity of an unintended receiver is analyzed. Three meta-heuristic optimization methods are applied to perform PSL minimization, namely genetic algorithm (GA, particle swarm algorithm (PSO and a simplified version of the PSO called the weightless swarm algorithm (WSA. An average reduction of 20 dB in PSL alongside 162% capacity improvement is achieved in the worst case scenario with the WSA optimization. It is discovered that the PSL minimization in the CBF provides capacity improvement at an unintended receiver only if the CBF cluster is small and dense.

  10. Evidence Report: Risk Factor of Inadequate Nutrition

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.; Heer, Martina

    2015-01-01

    The importance of nutrition in exploration has been documented repeatedly throughout history, where, for example, in the period between Columbus' voyage in 1492 and the invention of the steam engine, scurvy resulted in more sailor deaths than all other causes of death combined. Because nutrients are required for the structure and function of every cell and every system in the body, defining the nutrient requirements for spaceflight and ensuring provision and intake of those nutrients are primary issues for crew health and mission success. Unique aspects of nutrition during space travel include the overarching physiological adaptation to weightlessness, psychological adaptation to extreme and remote environments, and the ability of nutrition and nutrients to serve as countermeasures to ameliorate the negative effects of spaceflight on the human body. Key areas of clinical concern for long-duration spaceflight include loss of body mass (general inadequate food intake), bone and muscle loss, cardiovascular and immune system decrements, increased radiation exposure and oxidative stress, vision and ophthalmic changes, behavior and performance, nutrient supply during extravehicular activity, and general depletion of body nutrient stores because of inadequate food supply, inadequate food intake, increased metabolism, and/or irreversible loss of nutrients. These topics are reviewed herein, based on the current gap structure.

  11. Skylab task and work performance /Experiment M-151 - Time and motion study/

    Science.gov (United States)

    Kubis, J. F.; Mclaughlin, E. J.

    1975-01-01

    The primary objective of Experiment M151 was to study the inflight adaptation of Skylab crewmen to a variety of task situations involving different types of activity. A parallel objective was to examine astronaut inflight performance for any behavioral stress effects associated with the working and living conditions of the Skylab environment. Training data provided the basis for comparison of preflight and inflight performance. Efficiency was evaluated through the adaptation function, namely, the relation of performance time over task trials. The results indicate that the initial changeover from preflight to inflight was accompanied by a substantial increase in performance time for most work and task activities. Equally important was the finding that crewmen adjusted rapidly to the weightless environment and became proficient in developing techniques with which to optimize task performance. By the end of the second inflight trial, most of the activities were performed almost as efficiently as on the last preflight trial. The analysis demonstrated the sensitivity of the adaptation function to differences in task and hardware configurations. The function was found to be more regular and less variable inflight than preflight. Translation and control of masses were accomplished easily and efficiently through the rapid development of the arms and legs as subtle guidance and restraint systems.

  12. Human Pathophysiological Adaptations to the Space Environment

    Directory of Open Access Journals (Sweden)

    Gian C. Demontis

    2017-08-01

    Full Text Available Space is an extreme environment for the human body, where during long-term missions microgravity and high radiation levels represent major threats to crew health. Intriguingly, space flight (SF imposes on the body of highly selected, well-trained, and healthy individuals (astronauts and cosmonauts pathophysiological adaptive changes akin to an accelerated aging process and to some diseases. Such effects, becoming manifest over a time span of weeks (i.e., cardiovascular deconditioning to months (i.e., loss of bone density and muscle atrophy of exposure to weightlessness, can be reduced through proper countermeasures during SF and in due time are mostly reversible after landing. Based on these considerations, it is increasingly accepted that SF might provide a mechanistic insight into certain pathophysiological processes, a concept of interest to pre-nosological medicine. In this article, we will review the main stress factors encountered in space and their impact on the human body and will also discuss the possible lessons learned with space exploration in reference to human health on Earth. In fact, this is a productive, cross-fertilized, endeavor in which studies performed on Earth yield countermeasures for protection of space crew health, and space research is translated into health measures for Earth-bound population.

  13. Effects on ontogenesis of Carausius morosus hit by cosmic heavy ions

    International Nuclear Information System (INIS)

    Reitz, G.; Buecker, H.; Ruether, W.

    1990-01-01

    Among the biological problems that arise in long duration spaceflights, the effects of weightlessness and ionizing radiation appear to be the two main risk factors. Eggs of the stick insect Carausius morosus were exposed to spaceflight conditions during the 12.56 day Biosatellite mission Cosmos 1887. Five different ages were used, representing different sensitivities to radiation and different capacities for regeneration. During spaceflight the eggs continued their development. Already, in the Spacelab D1 mission in 1985, it has been shown that microgravity leads to a reduced hatching rate of eggs exposed during the early steps of development. When the eggs were hit by a heavy ion, a further but not significant reduction of the hatching rate was observed. Hatching was normal for eggs which were exposed on a 1 g reference centrifuge in space. Heavy ion hits caused body anomalies. The combined action of heavy ions and microgravity resulted in an unexpectedly high rate of anomalies. In the experiment on Cosmos 1887 these results were confirmed. Studies on the embryonic development before hatching showed no major difference between flight and ground control specimen, neither in speed of development nor in morphological anomalies. Hatching therefore seems to be the critical point in insect ontogenesis. (author)

  14. Psychological effects of acute physical inactivty during microgravitiy simulated by bed rest

    Directory of Open Access Journals (Sweden)

    Petra Dolenc

    2009-05-01

    Full Text Available Long-duration weightlessness simulated by bed rest represents an important model to study the consequences of physical inactivity and sedentarism on the human body. This study evaluated changes of mood status, psychological well-being, coping strategies and physical self in ten healthy young male subjects during a 35-day horizontal bed rest. Participants were asked to complete psychometrical inventories before and after the bed rest experiment. The preceived satisfaction with life and the physical self-concept did not change during bed rest period and mood states were relatively stable during the experiment according to the Emotional States Questionnaire. The neurotic level was enhanced during the bed rest period according to the Slovenian version of the General Health Questionnaire. However, even after the period of physical immobilization, the expression of these symptoms remains relatively low and does not represent a risk to the mental health of the subjects. The results from Coping Resources Inventory indicated a tendency toward an increase of emotion focused coping and a decrease of problem focused coping strategies. The importance of this research was to provide evidence that the provision of favourable habitability countermeasures can prevent deterioration in the psychological state under conditions of physical immobilisation. Our findings have applied value in the field of health prevention and rehabilitaion.

  15. Tailoring Laser Propulsion for Future Applications in Space

    International Nuclear Information System (INIS)

    Eckel, Hans-Albert; Scharring, Stefan

    2010-01-01

    Pulsed laser propulsion may turn out as a low cost alternative for the transportation of small payloads in future. In recent years DLR investigated this technology with the goal of cheaply launching small satellites into low earth orbit (LEO) with payload masses on the order of 5 to 10 kg. Since the required high power pulsed laser sources are yet not at the horizon, DLR focused on new applications based on available laser technology. Space-borne, i.e. in weightlessness, there exist a wide range of missions requiring small thrusters that can be propelled by laser power. This covers space logistic and sample return missions as well as position keeping and attitude control of satellites.First, a report on the proof of concept of a remote controlled laser rocket with a thrust vector steering device integrated in a parabolic nozzle will be given. Second, the road from the previous ground-based flight experiments in earth's gravity using a 100-J class laser to flight experiments with a parabolic thruster in an artificial 2D-zero gravity on an air cushion table employing a 1-J class laser and, with even less energy, new investigations in the field of laser micro propulsion will be reviewed.

  16. One-month spaceflight compromises the bone microstructure, tissue-level mechanical properties, osteocyte survival and lacunae volume in mature mice skeletons.

    Science.gov (United States)

    Gerbaix, Maude; Gnyubkin, Vasily; Farlay, Delphine; Olivier, Cécile; Ammann, Patrick; Courbon, Guillaume; Laroche, Norbert; Genthial, Rachel; Follet, Hélène; Peyrin, Françoise; Shenkman, Boris; Gauquelin-Koch, Guillemette; Vico, Laurence

    2017-06-01

    The weightless environment during spaceflight induces site-specific bone loss. The 30-day Bion-M1 mission offered a unique opportunity to characterize the skeletal changes after spaceflight and an 8-day recovery period in mature male C57/BL6 mice. In the femur metaphysis, spaceflight decreased the trabecular bone volume (-64% vs. Habitat Control), dramatically increased the bone resorption (+140% vs. Habitat Control) and induced marrow adiposity invasion. At the diaphysis, cortical thinning associated with periosteal resorption was observed. In the Flight animal group, the osteocyte lacunae displayed a reduced volume and a more spherical shape (synchrotron radiation analyses), and empty lacunae were highly increased (+344% vs. Habitat Control). Tissue-level mechanical cortical properties (i.e., hardness and modulus) were locally decreased by spaceflight, whereas the mineral characteristics and collagen maturity were unaffected. In the vertebrae, spaceflight decreased the overall bone volume and altered the modulus in the periphery of the trabecular struts. Despite normalized osteoclastic activity and an increased osteoblast number, bone recovery was not observed 8 days after landing. In conclusion, spaceflight induces osteocyte death, which may trigger bone resorption and result in bone mass and microstructural deterioration. Moreover, osteocyte cell death, lacunae mineralization and fatty marrow, which are hallmarks of ageing, may impede tissue maintenance and repair.

  17. M.E.366-J embodiment design project: Portable foot restraint

    Science.gov (United States)

    Heaton, Randall; Meyer, Eikar; Schmidt, Davey; Enders, Kevin

    1994-01-01

    During space shuttle operations, astronauts require support to carry out tasks in the weightless environment. In the past, portable foot restraints (PFR) with orientations adjustable in pitch, roll, and yaw provided this support for payload bay operations. These foot restraints, however, were designed for specific tasks with a load limit of 111.2 Newtons. Since the original design, new applications for foot restraints have been identified. New designs for the foot restraints have been created to boost the operational work load to 444.8 Newtons and decrease setup times. What remains to be designed is an interface between the restraint system and the extravehicular mobility unit (EMU) boots. NASA provided a proposed locking device involving a spring-loaded mechanism. This locking mechanism must withstand loads of 1334.4 Newtons in any direction and weigh less than 222.4 Newtons. This paper develops an embodiment design for the interface between the PFR and the EMU boots. This involves design of the locking mechanism and a removable cleat that allows the boot to interface with this mechanism. The design team used the Paul Beitz engineering methodology to present the systematic development, structural analysis, and production considerations of the embodiment design. This methodology provides a basis for understanding the justification behind the decisions made in the design.

  18. SPACE MEDICINE and Medical Operations Overview

    Science.gov (United States)

    Dervay, Joe

    2009-01-01

    This presentation is an overview of the function of the work of the Space Medicine & Health Care Systems Office. The objective of the medical operations is to ensure the health, safety and well being of the astronaut corps and ground support team during all phases of space flight. There are many issues that impact the health of the astronauts. Some of them are physiological, and others relate to behavior, psychological issues and issues of the environment of space itself. Reviews of the medical events that have affected both Russian, and Americans while in space are included. Some views of shuttle liftoff, and ascent, the medical training aboard NASA's KC-135 and training in weightlessness, the Shuttle Orbiter Medical system (SOMS), and some of the medical equipment are included. Also included are a graphs showing Fluid loading countermeasures, and vertical pursuit tracking with head and eye. The final views are representations of the future crew exploration vehicle (CEV) approaching the International Space Station, and the moon, and a series of perspective representations of the earth in comparison to the other planets and the Sun, the Sun in relation to other stars, and a view of where in the galaxy the Sun is.

  19. [Changes of dentin, dental pulp and periodontium tissue in tail-suspended rats].

    Science.gov (United States)

    Yuan, Lin-tian; Wen, Ling-ying; Luo, Ya-ning; Hu, Pei-zhen; Jiang, Wei-zhong; Wu, Xing-yu

    2003-08-01

    To investigate the metabolic changes of calcium and phosphorus in dentin, dental pulp and periodontium in tail-suspended rats, and the functions of TGF-beta 1, c-fos, collagen-I and collagen IV in dentin, dental pulp and periodontium. Relative percentage contents of Ca, P in dentin, dental pulp and periodontium were measured with scanning electron microscope and energy spectrum analytical system in 3 groups of rats. The expression of TGF-beta 1, c-fos, collagen-I and collagen IV were also observed. In the suspension group, the relative percentage content of Ca declined significantly, while P increased slightly. There were no significant differences of Ca, P in alveolar bone. The expressions of TGF-beta 1, c-fos and collagen-I declined, but the expression of collagen-IV in pulp vessel increased. There were no significant changes of expressions of TGF-beta 1, c-fos, collagen-I and collagen-IV in the vicinity of PDL. After adopting artificial countermeasures, the above expressions restored partly. Weightlessness might cause abnormal mineralization in dentin, and 1.5 G artificial countermeasures could eliminate the above changes of mineral metabolism. The poor mineralization of dentin might be associated with the reduced secretion of TGF-beta 1, c-fos and collagen-I in tail-suspended rats.

  20. Anthropometric changes and fluid shifts

    Science.gov (United States)

    Thornton, W. E.; Hoffler, G. W.; Rummel, J. A.

    1974-01-01

    Several observations of body size, shape, posture, and configuration were made to document changes resulting from direct effects of weightlessness during the Skylab 4 mission. After the crewmen were placed in orbit, a number of anatomical and anthropometric changes occurred including a straightening of the thoracolumbar spine, a general decrease in truncal girth, and an increase in height. By the time of the earliest in-flight measurement on mission day 3, all crewmen had lost more than two liters of extravascular fluid from the calf and thigh. The puffy facies, the bird legs effect, the engorgement of upper body veins, and the reduced volume of lower body veins were all documented with photographs. Center-of-mass measurements confirmed a fluid shift cephalad. This shift remained throughout the mission until recovery, when a sharp reversal occurred; a major portion of the reversal was completed in a few hours. The anatomical changes are of considerable scientific interest and of import to the human factors design engineer, but the shifts of blood and extravascular fluid are of more consequence. It is hypothesized that the driving force for the fluid shift is the intrinsic and unopposed lower limb elasticity that forces venous blood and then other fluid cephalad.

  1. Contribution to the study of the behaviour of solid particles in a confined turbulent flow using direct numerical simulation; Contribution a l'etude du comportement de particules solides en ecoulement turbulent confine par simulation numerique directe

    Energy Technology Data Exchange (ETDEWEB)

    Rambaud, P.

    2001-11-01

    The theme of this numerical thesis is on the behavior of solid particles embedded in a non-homogeneous and non-isotropic turbulent gas flow as the one tacking place in a plane channel. The turbulence is generated through the direct numerical simulation of Navier-Stokes equations discretized by formally second order in time and space finite difference operators. This Eulerian vision of the incompressible gas flow is completed by a Lagrangian formulation allowing to follow solid particles. In this formulation, the considered forces are the non-linear drag and the Saffman lift both corrected for wall effects. Furthermore, depending on the test cases studied, particle bouncing forces on the wall, gravity or electrostatic forces are taken into account. A three-dimensional Hermitian interpolation highlight the special care spend on the determination of the fluid velocity at the solid particle location. The first code application is dedicated to solid particles dispersion inside an horizontal channel, or in a channel operated in a weightlessness state. The huge amount of data from the Lagrangian tracking is reduced to the integral times of the turbulence seen by the solid particles on their trajectories. Those times are crucial in Lagrangian methods associated with a low numerical cost compared with the ones used in the present study. Among those methods, the one based on Langevin type equations have the best potential to handle industrial type problems. Nevertheless, this method needs to rebuild the fluid velocity fluctuations seen by the solid particles on their trajectories. This technic is able to reproduce the crossing trajectory effect, the inertial effect and the continuity effect, only if the integral times of the turbulence seen are known. Till now, those times were known thanks to a semi-empirical correlation from direct numerical simulation in homogeneous and isotropic turbulence (Wang and Stock 1993). However, although these conditions, this correlation was

  2. Gravity effects on endogenous movements

    Science.gov (United States)

    Johnsson, Anders; Antonsen, Frank

    Gravity effects on endogenous movements A. Johnsson * and F. Antonsen *+ * Department of Physics, Norwegian University of Science and Technology,NO-7491, Trond-heim, Norway, E-mail: anders.johnsson@ntnu.no + Present address: Statoil Research Center Trondheim, NO-7005, Trondheim, Norway Circumnutations in stems/shoots exist in many plants and often consists of more or less regular helical movements around the plumb line under Earth conditions. Recent results on circumnu-tations of Arabidopsis in space (Johnsson et al. 2009) showed that minute amplitude oscilla-tions exist in weightlessness, but that centripetal acceleration (mimicking the gravity) amplified and/or created large amplitude oscillations. Fundamental mechanisms underlying these results will be discussed by modeling the plant tissue as a cylinder of cells coupled together. As a starting point we have modeled (Antonsen 1998) standing waves on a ring of biological cells, as first discussed in a classical paper (Turing 1952). If the coupled cells can change their water content, an `extension' wave could move around the ring. We have studied several, stacked rings of cells coupled into a cylinder that together represent a cylindrical plant tissue. Waves of extensions travelling around the cylinder could then represent the observable circumnutations. The coupling between cells can be due to cell-to-cell diffusion, or to transport via channels, and the coupling can be modeled to vary in both longitudinal and transversal direction of the cylinder. The results from ISS experiments indicate that this cylindrical model of coupled cells should be able to 1) show self-sustained oscillations without the impact of gravity (being en-dogenous) and 2) show how an environmental factor like gravity can amplify or generate the oscillatory movements. Gravity has been introduced in the model by a negative, time-delayed feed-back transport across the cylinder. This represents the physiological reactions to acceler

  3. Neuronal Activity in the Subthalamic Cerebrovasodilator Area under Partial-Gravity Conditions in Rats

    Directory of Open Access Journals (Sweden)

    Zeredo L Zeredo

    2014-03-01

    Full Text Available The reduced-gravity environment in space is known to cause an upward shift in body fluids and thus require cardiovascular adaptations in astronauts. In this study, we recorded in rats the neuronal activity in the subthalamic cerebrovasodilator area (SVA, a key area that controls cerebral blood flow (CBF, in response to partial gravity. “Partial gravity” is the term that defines the reduced-gravity levels between 1 g (the unit gravity acceleration on Earth and 0 g (complete weightlessness in space. Neuronal activity was recorded telemetrically through chronically implanted microelectrodes in freely moving rats. Graded levels of partial gravity from 0.4 g to 0.01 g were generated by customized parabolic-flight maneuvers. Electrophysiological signals in each partial-gravity phase were compared to those of the preceding 1 g level-flight. As a result, SVA neuronal activity was significantly inhibited by the partial-gravity levels of 0.15 g and lower, but not by 0.2 g and higher. Gravity levels between 0.2–0.15 g could represent a critical threshold for the inhibition of neurons in the rat SVA. The lunar gravity (0.16 g might thus trigger neurogenic mechanisms of CBF control. This is the first study to examine brain electrophysiology with partial gravity as an experimental parameter.

  4. Influence of Body Weight on Bone Mass, Architecture, and Turnover

    Science.gov (United States)

    Iwaniec, Urszula T.; Turner, Russell T.

    2016-01-01

    Weight-dependent loading of the skeleton plays an important role in establishing and maintaining bone mass and strength. This review focuses on mechanical signaling induced by body weight as an essential mechanism for maintaining bone health. In addition, the skeletal effects of deviation from normal weight are discussed. The magnitude of mechanical strain experienced by bone during normal activities is remarkably similar among vertebrates, regardless of size, supporting the existence of a conserved regulatory mechanism, or mechanostat, that senses mechanical strain. The mechanostat functions as an adaptive mechanism to optimize bone mass and architecture based on prevailing mechanical strain. Changes in weight, due to altered mass, weightlessness (spaceflight), and hypergravity (modeled by centrifugation), induce an adaptive skeletal response. However, the precise mechanisms governing the skeletal response are incompletely understood. Furthermore, establishing whether the adaptive response maintains the mechanical competence of the skeleton has proven difficult, necessitating development of surrogate measures of bone quality. The mechanostat is influenced by regulatory inputs to facilitate non-mechanical functions of the skeleton, such as mineral homeostasis, as well as hormones and energy/nutrient availability that support bone metabolism. While the skeleton is very capable of adapting to changes in weight, the mechanostat has limits. At the limits, extreme deviations from normal weight and body composition are associated with impaired optimization of bone strength to prevailing body size. PMID:27352896

  5. Psychomotor performance during a 28 day head-down tilt with and without lower body negative pressure

    Science.gov (United States)

    Traon, A. Pavy-le; de Feneyrols, A. Rous; Cornac, A.; Abdeseelam, R.; N'uygen, D.; Lazerges, M.; Güell, A.; Bes, A.

    Several factors may affect psychomotor performance in space: sensory-motor changes, sleep disturbances, psychological modifications induced by the social isolation and confinement. However, psychomotor performance is difficult to assess. A battery of standardized and computerized tests, so-called "Automated Portable Test System" (APTS) was devised to ascertain the cognitive, perceptive and motor abilities and their possible fluctuations according to environmental effects. Antiorthostatic bedrest, often used to simulate weightlessness, (particularly cardiovascular modifications) also constitutes a situation of social confinement and isolation. During two bedrest experiments (with head-down tilt of -6°) of 28 days each, we intended to assess psychomotor performance of 6 males so as to determine whether: —on the one hand, it could be altered by remaining in decubitus; —on the other, the Lower Body Negative Pressure sessions, designed to prevent orthostatic intolerance back on Earth, could improve the performance. To accomplish this, part of the APTS tests as well as an automated perceptive attention test were performed. No downgrading of psychomotor performance was observed. On the contrary, the tasks were more accurately performed over time. In order to assess the experimental conditions on the acquisition phase, the learning curves were modelled. A beneficial effect of the LBNP sessions on simple tests involving the visual-motor coordination and attention faculties can only be regarded as a mere trend. Methods used in this experiment are also discussed.

  6. Bone culture research

    Science.gov (United States)

    Partridge, Nicola C.

    1993-01-01

    The experiments described are aimed at exploring PTH regulation of production of collagenase and protein inhibitors of collagenase (tissue inhibitors of metalloproteases, TIMP-1 and -2) by osteoblast-like osteosarcoma cells under conditions of weightlessness. The results of this work will contribute to information as to whether a microgravity environment alters the functions and responsiveness of the osteoblast. The objectives of the Bone Culture Research (BCR) experiment are: to observe the effects of microgravity on the morphology, rate of proliferation, and behavior of the osteoblastic cells, UMR 106-01; to determine whether microgravy affects the hormonal sensitivity of osteroblastic cells; and to measure the secretion of collagenase and its inhibitors into the medium under conditions of microgravity. The methods employed will consist of the following: the osteoblast-like cells, UMR-106-01, will be cultured in four NASDA cell culture chambers; two chambers will be subjected to microgravity on SL-J; two chambers will remain on the ground at KSC as ground controls but subjected to an identical set of culture conditions as on the shuttle; media will be changed four times; twice the cells will receive the hormone parathyroid hormone-related protein (PTHrP) and media collected; cells will be photographed under conditions of microgravity; and media and photographs will be analyzed upon return to determine whether functions of the cells changed.

  7. Calcium and Bone Homeostasis During 4-6 Months Space Flight

    Science.gov (United States)

    Smith, Scott M.; OBrien, K.; Wastney, M.; Morukov, B.; Larina, I.; Abrams, S.; Lane, H.; Nillen, J.; Davis-Street, J.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    Bone and calcium homeostasis are altered by weightlessness. We previously reported calcium studies on three subjects from the first joint US/Russian mission to Mir. We report here data on an additional three male subjects, whose stays on Mir were 4 (n= 1) and 6 (n=2) mos. Data were collected before, during, and after the missions. Inflight studies were conducted at 2-3 mos. Endocrine and biochemical indices were measured, along with 3-wk calcium tracer studies. Percent differences are reported compared to preflight. Ionized calcium was unchanged (2.8 +/-2.1 %) during flight. Calcium absorption was variable inflight, but was decreased after landing. Vitamin D stores were decreased 35 +/-24% inflight, similar to previous reports. Serum PTH was decreased 59 +/-9% during flight (greater than we previously reported), while 1,25(OH)(sub 2)-Vitamin D was decreased in 2 of 3 subjects. Markers of bone resorption (e.g., crosslinks) were increased in all subjects. Bone-specific alkaline phosphatase was decreased (n=1) or unchanged (n=2), while osteocalcin was decreased 34 +/-23%. Previously presented data showed that inflight bone loss is associated with increased resorption and unchanged/decreased formation. The data reported here support these earlier findings. These studies will help to extend our understanding of space flight-induced bone loss, and of bone loss associated with diseases such as osteoporosis or paralysis.

  8. A New Classification Technique in Mobile Robot Navigation

    Directory of Open Access Journals (Sweden)

    Bambang Tutuko

    2011-12-01

    Full Text Available This paper presents a novel pattern recognition algorithm that use weightless neural network (WNNs technique.This technique plays a role of situation classifier to judge the situation around the mobile robot environment and makes control decision in mobile robot navigation. The WNNs technique is choosen due to significant advantages over conventional neural network, such as they can be easily implemented in hardware using standard RAM, faster in training phase and work with small resources. Using a simple classification algorithm, the similar data will be grouped with each other and it will be possible to attach similar data classes to specific local areas in the mobile robot environment. This strategy is demonstrated in simple mobile robot powered by low cost microcontrollers with 512 bytes of RAM and low cost sensors. Experimental result shows, when number of neuron increases the average environmental recognition ratehas risen from 87.6% to 98.5%.The WNNs technique allows the mobile robot to recognize many and different environmental patterns and avoid obstacles in real time. Moreover, by using proposed WNNstechnique mobile robot has successfully reached the goal in dynamic environment compare to fuzzy logic technique and logic function, capable of dealing with uncertainty in sensor reading, achieving good performance in performing control actions with 0.56% error rate in mobile robot speed.

  9. Sol-gel hybrid materials for aerospace applications: Chemical characterization and comparative investigation of the magnetic properties

    Science.gov (United States)

    Catauro, Michelina; Mozzati, Maria Cristina; Bollino, Flavia

    2015-12-01

    In the material science field, weightless conditions can be successfully used to understand the relationship between manufacturing process, structure and properties of the obtained materials. Aerogels with controlled microstructure could be obtained by sol-gel methods in microgravity environment, simulated using magnetic levitation if they are diamagnetic. In the present work, a sol-gel route was used to synthesize class I, organic-inorganic nanocomposite materials. Two different formulations were prepared: the former consisted in a SiO2 matrix in which different percentages of polyethylene glycol (PEG) were incorporated, the latter was a ZrO2 matrix entrapping different amounts of poly (ε-caprolactone) (PCL). Fourier Transform Infrared Spectroscopy (FT-IR) detected that the organic and the inorganic components in both the formulation interact by means of hydrogen bonds. X-ray diffraction (XRD) analysis highlighted the amorphous nature of the synthesized materials and Scanning Electron Microscope (SEM) showed that they have homogeneous morphology and are nanocomposites. Superconducting Quantum Interference Device (SQUID) magnetometry confirmed the expected diamagnetic character of those hybrid systems. The obtained results were compared to those achieved in previous studies regarding the influence of the polymer amount on the magnetic properties of SiO2/PCL and ZiO2/PEG hybrids, in order to understand how the diamagnetic susceptibility is influenced by variation of both the inorganic matrix and organic component.

  10. The SCD - Stem Cell Differentiation ESA Project: Preparatory Work for the Spaceflight Mission

    Science.gov (United States)

    Versari, Silvia; Barenghi, Livia; van Loon, Jack; Bradamante, Silvia

    2016-04-01

    Due to spaceflight, astronauts experience serious, weightlessness-induced bone loss because of an unbalanced process of bone remodeling that involves bone marrow mesenchymal stem cells (BMSCs), as well as osteoblasts, osteocytes, and osteoclasts. The effects of microgravity on osteo-cells have been extensively studied, but it is only recently that consideration has been given to the role of BMSCs. Previous researches indicated that human BMSCs cultured in simulated microgravity (sim-μg) alter their proliferation and differentiation. The spaceflight opportunities for biomedical experiments are rare and suffer from a number of operative constraints that could bias the validity of the experiment itself, but remain a unique opportunity to confirm and explain the effects due to microgravity, that are only partially activated/detectable in simulated conditions. For this reason, we carefully prepared the SCD - STEM CELLS DIFFERENTIATION experiment, selected by the European Space Agency (ESA) and now on the International Space Station (ISS). Here we present the preparatory studies performed on ground to adapt the project to the spaceflight constraints in terms of culture conditions, fixation and storage of human BMSCs in space aiming at satisfying the biological requirements mandatory to retrieve suitable samples for post-flight analyses. We expect to understand better the molecular mechanisms governing human BMSC growth and differentiation hoping to outline new countermeasures against astronaut bone loss.

  11. The effects of space flight on some rat liver enzymes regulating carbohydrate and lipid metabolism

    Science.gov (United States)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

    1981-01-01

    The effects of space flight conditions on the activities of certain enzymes regulating carbohydrate and lipid metabolism in rat liver are investigated in an attempt to account for the losses in body weight observed during space flight despite preflight caloric consumption. Liver samples were analyzed for the activities of 32 cytosolic and microsomal enzymes as well as hepatic glycogen and individual fatty acid levels for ground control rats and rats flown on board the Cosmos 936 biosatellite under normal space flight conditions and in centrifuges which were sacrificed upon recovery or 25 days after recovery. Significant decreases in the activities of glycogen phosphorylase, alpha-glycerol phosphate acyl transferase, diglyceride acyl transferase, aconitase and 6-phosphogluconate dehydrogenase and an increase in palmitoyl CoA desaturase are found in the flight stationary relative to the flight contrifuged rats upon recovery, with all enzymes showing alterations returning to normal values 25 days postflight. The flight stationary group is also observed to be characterized by more than twice the amount of liver glycogen of the flight centrifuged group as well as a significant increase in the ratio of palmitic to palmitoleic acid. Results thus indicate metabolic changes which may be involved in the mechanism of weight loss during weightlessness, and demonstrate the equivalence of centrifugation during space flight to terrestrial gravity.

  12. The endocrine system in space flight

    Science.gov (United States)

    Leach, C. S.; Johnson, P. C.; Cintron, N. M.

    Hormones are important effectors of the body's response to microgravity in the areas of fluid and electrolyte metabolism, erythropoiesis, and calcium metabolism. For many years antidiuretic hormone, cortisol and aldosterone have been considered the hormones most important for regulation of body fluid volume and blood levels of electrolytes, but they cannot account totally for losses of fluid and electrolytes during space flight. We have now measured atrial natriuretic factor (ANF), a hormone recently shown to regulate sodium and water excretion, in blood specimens obtained during flight. After 30 or 42 h of weightlessness, mean ANF was elevated. After 175 or 180 h, ANF had decreased by 59%, and it changed little between that time and soon after landing. There is probably an increase in ANF early inflight associated with the fluid shift, followed by a compensatory decrease in blood volume. Increased renal blood flow may cause the later ANF decrease. Erythropoietin (Ep), a hormone involved in the control of red blood cell production, was measured in blood samples taken during the first Spacelab mission and was significantly decreased on the second day of flight, suggesting also an increase in renal blood flow. Spacelab-2 investigators report that the active vitamin D metabolite 1α, 25-dihydroxyvitamin D 3 increased early in the flight, indicating that a stimulus for increased bone resorption occurs by 30 h after launch.

  13. See-saw motion of thermal boundary layer under vibrations: An implication of forced piston effect

    Science.gov (United States)

    Sharma, D.; Erriguible, A.; Amiroudine, S.

    2017-12-01

    The phenomenon of piston effect is well known in supercritical fluids wherein the thermal homogenization of the bulk occurs on a very short time scale due to pressure change caused by expansion or contraction of the fluid in the thermal boundary layer. In this article, we highlight an interesting phenomenon wherein by the application of external forces (vibration) normal to the temperature gradient, see-saw motion of the thermal boundary layer is observed in weightlessness conditions. This is attributed to the thermomechanical coupling caused by the temperature change due to external forces. We term this change in the temperature field due to external forces as forced piston effect (FPE). A detailed investigation of this intriguing behavior shows that the see-saw motion is attributed to the variation of the relative thickness of the thermal boundary layer, defined on the basis of relative local bulk temperature, along the direction of vibration. This change in the temperature field, which is observed to be caused by FPE in vibration, is shown to depend on the compressibility (and thus proximity to the critical point), the imposed acceleration and the cell size. It is also found that see-saw motion persists in the presence of gravity and thus is described ubiquitous in nature for all conditions. A plot illustrating the maximum change in the temperature as a function of these parameters is further proposed.

  14. Challenges of Estimating Fracture Risk with DXA: Changing Concepts About Bone Strength and Bone Density.

    Science.gov (United States)

    Licata, Angelo A

    2015-07-01

    Bone loss due to weightlessness is a significant concern for astronauts' mission safety and health upon return to Earth. This problem is monitored with bone densitometry (DXA), the clinical tool used to assess skeletal strength. DXA has served clinicians well in assessing fracture risk and has been particularly useful in diagnosing osteoporosis in the elderly postmenopausal population for which it was originally developed. Over the past 1-2 decades, however, paradoxical and contradictory findings have emerged when this technology was widely employed in caring for diverse populations unlike those for which it was developed. Although DXA was originally considered the surrogate marker for bone strength, it is now considered one part of a constellation of factors-described collectively as bone quality-that makes bone strong and resists fracturing, independent of bone density. These characteristics are beyond the capability of routine DXA to identify, and as a result, DXA can be a poor prognosticator of bone health in many clinical scenarios. New clinical tools are emerging to make measurement of bone strength more accurate. This article reviews the historical timeline of bone density measurement (dual X-ray absorptiometry), expands upon the clinical observations that modified the relationship of DXA and bone strength, discusses some of the new clinical tools to predict fracture risk, and highlights the challenges DXA poses in the assessment of fracture risk in astronauts.

  15. Influence of long-term hypodynamy on spongy bone tissue in Japanese quails

    Directory of Open Access Journals (Sweden)

    Lucia Tarabová

    2013-01-01

    Full Text Available Weightlessness can cause various damages especially on the musculoskeletal system both in animals and humans. The aim of our study was to observe the influence of simulated, long-term microgravity on the spongy bone tissue of the femur in Japanese quails. A total of 80 cockerels at the age of 2 days were exposed to simulated microgravity – hypodynamy. After days 56, 63, 90 and 180, six birds from the experimental group and six birds from the control group were euthanised. Samples for histological examination were collected from femur epiphysis. The whole femur of the other limb was used for the analysis of the calcium content. Microscopic examination showed differences between experimental and control animals in the spongy bone tissue after every day of the experiment. In the experimental animals, there were numerous, big, multinucleated cells osteoclasts, lying on the bone trabeculae surface, which were damaged. The highest difference in the calcium content in femurs between the control and experimental animals was found after 90 days of hypodynamy. This study builds on short-term hypodynamy experiments; such long periods had never been studied before in birds. Because our findings are similar to those found in osteoporotic bone tissue, it could by useful in the development of countermeasures against the negative influence of microgravity and immobilization.

  16. Visually induced reorientation illusions

    Science.gov (United States)

    Howard, I. P.; Hu, G.; Oman, C. M. (Principal Investigator)

    2001-01-01

    It is known that rotation of a furnished room around the roll axis of erect subjects produces an illusion of 360 degrees self-rotation in many subjects. Exposure of erect subjects to stationary tilted visual frames or rooms produces only up to 20 degrees of illusory tilt. But, in studies using static tilted rooms, subjects remained erect and the body axis was not aligned with the room. We have revealed a new class of disorientation illusions that occur in many subjects when placed in a 90 degrees or 180 degrees tilted room containing polarised objects (familiar objects with tops and bottoms). For example, supine subjects looking up at a wall of the room feel upright in an upright room and their arms feel weightless when held out from the body. We call this the levitation illusion. We measured the incidence of 90 degrees or 180 degrees reorientation illusions in erect, supine, recumbent, and inverted subjects in a room tilted 90 degrees or 180 degrees. We report that reorientation illusions depend on the displacement of the visual scene rather than of the body. However, illusions are most likely to occur when the visual and body axes are congruent. When the axes are congruent, illusions are least likely to occur when subjects are prone rather than supine, recumbent, or inverted.

  17. The effect of microgravity on tissue structure and function of rat testis

    Directory of Open Access Journals (Sweden)

    Ye Ding

    2011-12-01

    Full Text Available To explore whether an environment of weightlessness will cause damage to the reproductive system of animals, we used the tail-suspension model to simulate microgravity, and investigated the effect of microgravity on the tissue structure and function of the testis in sexually mature male rats. Forty-eight male Wistar rats weighing 200-250 g were randomly assigned to three groups (N = 16 each: control, tail traction, and tail suspension. After the rats were suspended for 7 or 14 days, morphological changes of testis were evaluated by histological and electron microscopic methods. The expression of HSP70, bax/bcl-2 and AR (androgen receptor in testis was measured by immunohistochemistry. Obvious pathological lesions were present in the testis after the rats were suspended for 7 or 14 days. We detected overexpression of HSP70 and an increase of apoptotic cells, which may have contributed to the injury to the testis. The expression of AR, as an effector molecule in the testis, was significantly decreased in the suspended groups compared to control (P < 0.01. We also observed that, with a longer time of suspension, the aforementioned pathological damage became more serious and some pathological injury to the testis was irreversible. The results demonstrated that a short- or medium-term microgravity environment could lead to severe irreversible damage to the structure of rat testis.

  18. Effect of microgravity environment on cell wall regeneration, cell divisions, growth, and differentiation of plants from protoplasts (7-IML-1)

    Science.gov (United States)

    Rasmussen, Ole

    1992-01-01

    The primary goal of this project is to investigate if microgravity has any influence on growth and differentiation of protoplasts. Formation of new cell walls on rapeseed protoplasts takes place within the first 24 hours after isolation. Cell division can be observed after 2-4 days and formation of cell aggregates after 5-7 days. Therefore, it is possible during the 7 day IML-1 Mission to investigate if cell wall formation, cell division, and cell differentiation are influenced by microgravity. Protoplasts of rapeseeds and carrot will be prepared shortly before launch and injected into 0.6 ml polyethylene bags. Eight bags are placed in an aluminum block inside the ESA Type 1 container. The containers are placed at 4 C in PTCU's and transferred to orbiter mid-deck. At 4 C all cell processes are slowed down, including cell wall formation. Latest access to the shuttle will be 12 hours before launch. In orbit the containers will be transferred from the PTC box to the 22 C Biorack incubator. The installation of a 1 g centrifuge in Biorack will make it possible to distinguish between effects of near weightlessness and effects caused by cosmic radiation and other space flight factors including vibrations. Parallel control experiments will be carried out on the ground. Other aspects of the experiment are discussed.

  19. Evaluation of an Anthropometric Human Body Model for Simulated EVA Task Assessment

    Science.gov (United States)

    Etter, Brad

    1996-01-01

    One of the more mission-critical tasks performed in space is extravehicular activity (EVA) which requires the astronaut to be external to the station or spacecraft, and subsequently at risk from the many threats posed by space. These threats include, but are not limited to: no significant atmosphere, harmful electromagnetic radiation, micrometeoroids, and space debris. To protect the astronaut from this environment, a special EVA suit is worn which is designed to maintain a sustainable atmosphere (at 1/3 atmosphere) and provide protection against the hazards of space. While the EVA suit serves these functions well, it does impose limitations on the astronaut as a consequence of the safety it provides. Since the astronaut is in a virtual vacuum, any atmospheric pressure inside the suit serves to pressurize the suit and restricts mobility of flexible joints (such as fabric). Although some of the EVA suit joints are fixed, rotary-style joints, most of the mobility is achieved by the simple flexibility of the fabric. There are multiple layers of fabric, each of which serves a special purpose in the safety of the astronaut. These multiple layers add to the restriction of motion the astronaut experiences in the space environment. Ground-based testing is implemented to evaluate the capability of EVA-suited astronauts to perform the various tasks in space. In addition to the restriction of motion imposed by the EVA suit, most EVA activity is performed in a micro-gravity (weight less) environment. To simulate weightlessness EVA-suited testing is performed in a neutral buoyancy simulator (NBS). The NBS is composed of a large container of water (pool) in which a weightless environment can be simulated. A subject is normally buoyant in the pressurized suit; however he/she can be made neutrally buoyant with the addition of weights. In addition, most objects the astronaut must interface with in the NBS sink in water and flotation must be added to render them "weightless". The

  20. Eye movements and manual interception of ballistic trajectories: effects of law of motion perturbations and occlusions.

    Science.gov (United States)

    Delle Monache, Sergio; Lacquaniti, Francesco; Bosco, Gianfranco

    2015-02-01

    Manual interceptions are known to depend critically on integration of visual feedback information and experience-based predictions of the interceptive event. Within this framework, coupling between gaze and limb movements might also contribute to the interceptive outcome, since eye movements afford acquisition of high-resolution visual information. We investigated this issue by analyzing subjects' head-fixed oculomotor behavior during manual interceptions. Subjects moved a mouse cursor to intercept computer-generated ballistic trajectories either congruent with Earth's gravity or perturbed with weightlessness (0 g) or hypergravity (2 g) effects. In separate sessions, trajectories were either fully visible or occluded before interception to enforce visual prediction. Subjects' oculomotor behavior was classified in terms of amounts of time they gazed at different visual targets and of overall number of saccades. Then, by way of multivariate analyses, we assessed the following: (1) whether eye movement patterns depended on targets' laws of motion and occlusions; and (2) whether interceptive performance was related to the oculomotor behavior. First, we found that eye movement patterns depended significantly on targets' laws of motion and occlusion, suggesting predictive mechanisms. Second, subjects coupled differently oculomotor and interceptive behavior depending on whether targets were visible or occluded. With visible targets, subjects made smaller interceptive errors if they gazed longer at the mouse cursor. Instead, with occluded targets, they achieved better performance by increasing the target's tracking accuracy and by avoiding gaze shifts near interception, suggesting that precise ocular tracking provided better trajectory predictions for the interceptive response.

  1. The G-factor as a tool to learn more about bone structure and function.

    Science.gov (United States)

    Zerath, E

    1999-07-01

    In normal life on earth, the locomotor system is exposed to two types of stimulation: gravity (passive stimulation) and motion (active stimulation). Both permanently combine, and the interactions between locomotion and gravity induce an overall recruitment which is repeated daily and maintains the bone tissue structure within the range of constraints to which it is adapted. This range is one of the basic hypotheses underlying the mechanical concepts of bone structure control, and it has been considered as logical to assume that weightlessness of spaceflight should produce bone loss since astronauts are outside of the terrestrial gravitational field of forces, no longer relying on muscular work to change positions or move. But, thirty years after the first changes in phospho-calcium metabolism were observed in astronauts after spaceflight, current knowledge does not provide a full understanding of this pathogeny, and prove the G-factor is now considered as an essential component of the experimental tools available to study bone physiology. The study of the physiology of bone tissue usually consists in the investigation of its two fundamental roles, i.e. reservoir of inorganic elements (calcium, phosphorus, magnesium) and mechanical support for soft tissues. Together with the combined action of muscles, tendons, and ligaments, this support permits motion and locomotion. These two functions rely on a sophisticated bone tissue architecture, and on the adaptability of this structure, with modeling and remodeling processes, themselves associated with the coupled activity of specialized bone cell populations.

  2. THE EFFECTS OF PROLONGED PHYSICAL INACTIVITY INDUCED BY BED REST ON COGNITIVE FUNCTIONING IN HEALTHY MALE PARTICIPANTS

    Directory of Open Access Journals (Sweden)

    Petra Dolenc

    2013-06-01

    Full Text Available A growing body of scientific evidence indicates that physical activity beneficially influences cognitive functioning. Less thoroughly investigated are the cognitive outcomes of reduced physical activity levels. The purpose of the study was to determine the effects of prolonged physical inactivity induced by bed rest on the participant’s cognitive functioning. Bed rest is a well-accepted method by which an acute stage of human adaptation to weightlessness in space flights is simulated, as well as an important model to study the consequences of extreme physical inactivity in humans. The subjects participating in the study consisted of fifteen healthy males aged between 19 and 65 years who were exposed to 14-day horizontal bed rest in a strict hospital environment. To assess the cognitive functions of the participants, a neuropsychological test battery was administered before and after the bed rest experiment. There was no significant impairment in cognitive performance after the 14-day bed rest on all tests, except in the measurements of delayed recall in the group of older adults. The results suggest that cognitive functions remained relatively stable during the period of physical immobilization. The obtained results have been discussed taking the possible contributing factors into account such as the practice effect, the relatively short duration of bed rest, and the choice of the cognitive measures administered. The study also provides evidence that favourable living and psychosocial conditions can protect one against cognitive decline in the case of extreme physical inactivity.

  3. Enhancing Team Performance for Long-Duration Space Missions

    Science.gov (United States)

    Orasanu, Judith M.

    2009-01-01

    Success of exploration missions will depend on skilled performance by a distributed team that includes both the astronauts in space and Mission Control personnel. Coordinated and collaborative teamwork will be required to cope with challenging complex problems in a hostile environment. While thorough preflight training and procedures will equip creW'S to address technical problems that can be anticipated, preparing them to solve novel problems is much more challenging. This presentation will review components of effective team performance, challenges to effective teamwork, and strategies for ensuring effective team performance. Teamwork skills essential for successful team performance include the behaviors involved in developing shared mental models, team situation awareness, collaborative decision making, adaptive coordination behaviors, effective team communication, and team cohesion. Challenges to teamwork include both chronic and acute stressors. Chronic stressors are associated with the isolated and confined environment and include monotony, noise, temperatures, weightlessness, poor sleep and circadian disruptions. Acute stressors include high workload, time pressure, imminent danger, and specific task-related stressors. Of particular concern are social and organizational stressors that can disrupt individual resilience and effective mission performance. Effective team performance can be developed by training teamwork skills, techniques for coping with team conflict, intracrew and intercrew communication, and working in a multicultural team; leadership and teamwork skills can be fostered through outdoor survival training exercises. The presentation will conclude with an evaluation of the special requirements associated with preparing crews to function autonomously in long-duration missions.

  4. Incorporation of omics analyses into artificial gravity research for space exploration countermeasure development.

    Science.gov (United States)

    Schmidt, Michael A; Goodwin, Thomas J; Pelligra, Ralph

    The next major steps in human spaceflight include flyby, orbital, and landing missions to the Moon, Mars, and near earth asteroids. The first crewed deep space mission is expected to launch in 2022, which affords less than 7 years to address the complex question of whether and how to apply artificial gravity to counter the effects of prolonged weightlessness. Various phenotypic changes are demonstrated during artificial gravity experiments. However, the molecular dynamics (genotype and molecular phenotypes) that underlie these morphological, physiological, and behavioral phenotypes are far more complex than previously understood. Thus, targeted molecular assessment of subjects under various G conditions can be expected to miss important patterns of molecular variance that inform the more general phenotypes typically being measured. Use of omics methods can help detect changes across broad molecular networks, as various G-loading paradigms are applied. This will be useful in detecting off-target, or unanticipated effects of the different gravity paradigms applied to humans or animals. Insights gained from these approaches may eventually be used to inform countermeasure development or refine the deployment of existing countermeasures. This convergence of the omics and artificial gravity research communities may be critical if we are to develop the proper artificial gravity solutions under the severely compressed timelines currently established. Thus, the omics community may offer a unique ability to accelerate discovery, provide new insights, and benefit deep space missions in ways that have not been previously considered.

  5. Thopaz Portable Suction Systems in Thoracic Surgery: An end user assessment and feedback in a tertiary unit

    Directory of Open Access Journals (Sweden)

    Cantlin Teresa

    2011-04-01

    Full Text Available Abstract Background Thoracic surgical patients have chest drains inserted to enable re-expansion of lungs, to clear contents from the pleural cavity which sometimes require negative suction. Suction impedes mobility, may have variable suction delivery and increases risk of infection. Assessment of air-leak in conventional drains is not scientific and is subjective. Thopaz chest drain system is a portable suction unit which allows mobilization of the patient, with scientific digital flow recordings and an in built alarm system. Methods We evaluated the utility, staff and patient feedback of this device in a pilot evaluation in a regional thoracic unit in a structured format over a period of two months. Staff responses were graded on a scale of 1 to 6 [1 Excellent to 6 Poor]. Results 120 patients who underwent elective bullectomy/pleurectomy, VATS lung biopsies, VATS metastectomy and lung resections were evaluated. The staff feedback forms were positive. The staff liked the system as it was more scientific and accurately recordable. It made nursing and physiotherapy easier as they could mobilise patients early. The patients liked the compact design, weightlessness and the silence. It enabled mobilisation of the patients and scientific removal of chest drain. Conclusions Thopaz digital suction units were found to be user friendly and were liked by the staff and patients. The staff feedback stated the devices to be objective and scientific in making decisions about removal and enabled mobilisation.

  6. History of space medicine: the formative years at NASA.

    Science.gov (United States)

    Berry, Charles A; Hoffler, G Wyckliffe; Jernigan, Clarence A; Kerwin, Joseph P; Mohler, Stanley R

    2009-04-01

    Almost nothing was known about the effects of spaceflight on human physiology when, in May of 1961, President John F. Kennedy committed the United States to land a man on the Moon and return him safely to Earth within the decade. There were more questions than answers regarding the effects of acceleration, vibration, cabin pressure, CO2 concentration, and microgravity. There were known external threats to life, such as solar and ultraviolet radiation, meteorites, and extreme temperatures as well as issues for which the physicians and scientists could not even formulate the questions. And there was no time for controlled experiments with the required numbers of animal or human subjects. Of necessity, risks were evaluated and mitigated or accepted based on minimal data. This article summarizes presentations originally given as a panel at the 79th Annual Scientific Meeting of the Aerospace Medical Association in Boston in 2008. In it, five pioneers in space medicine at NASA looked back on the development of their field. The authors related personal anecdotes, discussed the roles of various people and presented examples of contributions to emerging U.S. initiatives for human spaceflight. Topics included the development of quarantine facilities for returning Apollo astronauts, the struggles between operational medicine and research personnel, and observations from the first U.S. medical officer to experience weightlessness on orbit. Brief biographies of the authors are appended to document their participation in these historic events.

  7. Participation in water-exercising long-term after breast cancer surgery: Experiences of significant factors for continuing exercising as a part of cancer rehabilitation.

    Science.gov (United States)

    Enblom, A; Lindquist, H; Bergmark, K

    2018-01-01

    Although physical exercising has great benefits, little is known regarding factors of significance for cancer survivors to continue exercising within their rehabilitation. The objective was to describe factors experienced to be of significance for cancer survivors to continue with water-exercising long-term after breast cancer surgery. Women (n = 29) who had undergone breast cancer surgery (mastectomy 79%, axillary surgery 86%, and radiotherapy 86%) for median (md) 13 (25th-75th percentile 3-21.5) was followed up regarding their rehabilitation, arm function Disabilities of Arm Shoulder and Hand (md 14, IQR 7-32), EQ-5D score (md 0.8, IQR 0.73-1.0) and quality of life EQ health barometer (md 80, IQR 64-95). We performed qualitative focus-group interviews regarding the women's views (n = 24). The women had participated in water-exercising 1-46 semesters, md 8 (25th-75th percentile 3-21.5) semesters. Nearly all, 97%, participated in the water-exercising group every week, and 21 (72%) had participated in the water-exercising group at least half of the time since their breast cancer surgery, without complications. The women experienced that factors of significance to continue with water-exercising were the convenience of easily modified weightless exercising in the water, social interaction, and access to a private dressing room. These factors would be important to consider to encourage continuing in exercising. © 2017 John Wiley & Sons Ltd.

  8. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    Science.gov (United States)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  9. Neurobehavioural Effects of Hypergravity Exposure in CD-1 Mice

    Science.gov (United States)

    Santucci, Daniela; Francia, Nadia; Aloe, Luigi; Enrico, Alleva

    The effects of spaceflight on the nervous system physiology could have important implications for the prolonged stay outside Earth's gravitational field. In this view, both ground-based and space research using animal models represent useful tools to investigate the impact of gravity (hypergravity, microgravity and weightlessness) on the nervous system and behaviour. Data coming from these studies, besides acquisition of knowledge relevant for spaceflights and pro-longed permanence of both humans and animals in space, could provide insight into basic bio-logical phenomena underlying the plasticity of the nervous system and its adaptive responses to a changing environment. Most ground experiments employing animal models use the paradigm of hypergravity exposure with the expectation that behavioural and physiological reactions to this environment might help to explain reactions to the microgravity challenge faced by or-biting animals. An overview of ground-based experiments set up to investigate the effects of changes of gravitational environment on the neurobehavioural responses of CD-1 mouse will be reported, and will illustrate the short-, medium-and long-term behavioural and neurobiological consequences of hypergravity exposure both at adulthood and during early and late postnatal development. Moreover, since mother-pup interaction is critical for the survival and the devel-opment of neonatal rodents, especially in an extreme environment such as that of space, we characterized, exploiting ethological methods, changes in maternal behaviour of CD-1 outbred mouse dams exposed to mild hypergravity. The results of these experiments will be discussed.

  10. In Vitro Disease Model of Microgravity Conditioning on Human Energy Metabolism

    Science.gov (United States)

    Snyder, Jessica; Culbertson, C.; Zhang, Ye; Emami, K.; Wu, H.; Sun, Wei

    2010-01-01

    NASA and its partners are committed to introducing appropriate new technology to enable learning and living safely beyond the Earth for extended periods of time in a sustainable and possibly indefinite manner. In the responsible acquisition of that goal, life sciences is tasked to tune and advance current medical technology to prepare for human health and wellness in the space environment. The space environment affects the condition and function of biological systems from organ level function to shape of individual organelles. The objective of this paper is to study the effect of microgravity on kinetics of drug metabolism. This fundamental characterization is meaningful to (1) scientific understanding of the response of biology to microgravity and (2) clinical dosing requirements and pharmacological thresholds during long term manned space exploration. Metabolism kinetics of the anti-nausea drug promethazine (PMZ) were determined by an in vitro ground model of 3-dimensional aggregates of human hepatocytes conditioned to weightlessness using a rotating wall bioreactor. The authors observed up-regulated PMZ conversion in model microgravity conditions and attribute this to effect to model microgravity conditioning acting on metabolic mechanisms of the cells. Further work is necessary to determine which particular cellular mechanisms are governing the experimental observations, but the authors conclude kinetics of drug metabolism are responsive to gravitational fields and further study of this sensitivity would improve dosing of pharmaceuticals to persons exposed to a microgravity environment.

  11. On inappropriately used neuronal circuits as a possible basis of the ``loop-swimming'' behaviour of fish under reduced gravity: a theoretical study

    Science.gov (United States)

    Anken, R. H.; Rahmann, H.

    One hypothesis for the explanation of the so-called ``loop-swimming'' behaviour in fish when being subjected to reduced gravity assumes that the activities of the differently weighted otoliths of the two labyrinths are well compensated on ground but that a functional asymmetry is induced in weightlessness, resulting in a tonus asymmetry of the body and by this generating the ``loop-swimming'' behaviour. The basis of this abnormal behaviour has to be searched for in the central nervous system (cns), where the signal-transduction from the inner ear- related signal internalisation to the signal response takes place. Circuits within the CNS of fish, that could possibly generate the ``loop-swimming'', might be as follows: An asymmetric activation of vestibulospinal circuits would directly result in a tonus asymmetry of the body. An asymmetric activation of the oculomotor nucleus would generate an asymmetrical rotation of the eyes. This would cause in its turn asymmetric images on the two retinas, which were forwarded to the diencephalic accessory optic system (AOS). It is the task of the AOS to stabilize retinal images, thereby involving the cerebellum, which is the main integration center for sensory and motor modalities. With this, the cerebellar output would generate a tonus asymmetry of the body in order to make the body of the fish follow its eyes. Such movements (especially when assuming an open loop control) would end up in the aforementioned ``loop-swimming'' behaviour.

  12. Long-Duration Spaceflight Increases Depth Ambiguity of Reversible Perspective Figures

    Science.gov (United States)

    Clément, Gilles; Allaway, Heather C. M.; Demel, Michael; Golemis, Adrianos; Kindrat, Alexandra N.; Melinyshyn, Alexander N.; Merali, Tahir; Thirsk, Robert

    2015-01-01

    The objective of this study was to investigate depth perception in astronauts during and after spaceflight by studying their sensitivity to reversible perspective figures in which two-dimensional images could elicit two possible depth representations. Other ambiguous figures that did not give rise to a perception of illusory depth were used as controls. Six astronauts and 14 subjects were tested in the laboratory during three sessions for evaluating the variability of their responses in normal gravity. The six astronauts were then tested during four sessions while on board the International Space Station for 5–6 months. They were finally tested immediately after return to Earth and up to one week later. The reaction time decreased throughout the sessions, thus indicating a learning effect. However, the time to first percept reversal and the number of reversals were not different in orbit and after the flight compared to before the flight. On Earth, when watching depth-ambiguous perspective figures, all subjects reported seeing one three-dimensional interpretation more often than the other, i.e. a ratio of about 70–30%. In weightlessness this asymmetry gradually disappeared and after 3 months in orbit both interpretations were seen for the same duration. These results indicate that the perception of “illusory” depth is altered in astronauts during spaceflight. This increased depth ambiguity is attributed to the lack of the gravitational reference and the eye-ground elevation for interpreting perspective depth cues. PMID:26146839

  13. Long-Duration Spaceflight Increases Depth Ambiguity of Reversible Perspective Figures.

    Directory of Open Access Journals (Sweden)

    Gilles Clément

    Full Text Available The objective of this study was to investigate depth perception in astronauts during and after spaceflight by studying their sensitivity to reversible perspective figures in which two-dimensional images could elicit two possible depth representations. Other ambiguous figures that did not give rise to a perception of illusory depth were used as controls. Six astronauts and 14 subjects were tested in the laboratory during three sessions for evaluating the variability of their responses in normal gravity. The six astronauts were then tested during four sessions while on board the International Space Station for 5-6 months. They were finally tested immediately after return to Earth and up to one week later. The reaction time decreased throughout the sessions, thus indicating a learning effect. However, the time to first percept reversal and the number of reversals were not different in orbit and after the flight compared to before the flight. On Earth, when watching depth-ambiguous perspective figures, all subjects reported seeing one three-dimensional interpretation more often than the other, i.e. a ratio of about 70-30%. In weightlessness this asymmetry gradually disappeared and after 3 months in orbit both interpretations were seen for the same duration. These results indicate that the perception of "illusory" depth is altered in astronauts during spaceflight. This increased depth ambiguity is attributed to the lack of the gravitational reference and the eye-ground elevation for interpreting perspective depth cues.

  14. Proteome Analysis of Thyroid Cancer Cells After Long-Term Exposure to a Random Positioning Machine

    Science.gov (United States)

    Pietsch, Jessica; Bauer, Johann; Weber, Gerhard; Nissum, Mikkel; Westphal, Kriss; Egli, Marcel; Grosse, Jirka; Schönberger, Johann; Eilles, Christoph; Infanger, Manfred; Grimm, Daniela

    2011-11-01

    Annulling gravity during cell culturing triggers various types of cells to change their protein expression in a time dependent manner. We therefore decided to determine gravity sensitive proteins and their period of sensitivity to the effects of gravity. In this study, thyroid cancer cells of the ML-1 cell line were cultured under normal gravity (1 g) or in a random positioning machine (RPM), which simulated near weightlessness for 7 and 11 days. Cells were then sonicated and proteins released into the supernatant were separated from those that remained attached to the cell fragments. Subsequently, both types of proteins were fractionated by free-flow isoelectric focussing (FF-IEF). The fractions obtained were further separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) to which comparable FF-IEF fractions derived from cells cultured either under 1 g or on the RPM had been applied side by side. The separation resulted in pairs of lanes, on which a number of identical bands were observed. Selected gel pieces were excised and their proteins determined by mass spectrometry. Equal proteins from cells cultured under normal gravity and the RPM, respectively, were detected in comparable gel pieces. However, many of these proteins had received different Mascot scores. Quantifying heat shock cognate 71 kDa protein, glutathione S-transferase P, nucleoside diphosphate kinase A and annexin-2 by Western blotting using whole cell lysates indicated usefulness of Mascot scores for selecting the most efficient antibodies.

  15. Microgravity and bone cell mechanosensitivity: FLOW experiment during the DELTA mission

    Science.gov (United States)

    Bacabac, Rommel G.; Van Loon, Jack J. W. A.; de Blieck-Hogervorst, Jolanda M. A.; Semeins, Cor M.; Zandieh-Doulabi, Behrouz; Helder, Marco N.; Smit, Theo H.; Klein-Nulend, Jenneke

    2007-09-01

    The catabolic effects of microgravity on mineral metabolism in bone organ cultures might be explained as resulting from an exceptional form of disuse. It is possible that the mechanosensitivity of bone cells is altered under near weightlessness conditions, which likely contributes to disturbed bone metabolism observed in astronauts. In the experiment "FLOW", we tested whether the production of early signaling molecules that are involved in the mechanical load-induced osteogenic response by bone cells is changed under microgravity conditions. FLOW was one of the Biological experiment entries to the Dutch Soyuz Mission "DELTA" (Dutch Expedition for Life Science, Technology and Atmospheric Research). FLOW was flown by the Soyuz craft, launched on April 19, 2004, on its way to the International Space Station. Primary osteocytes, osteoblasts, and periosteal fibroblasts were incubated in plunger boxes, developed by Centre for Concepts in Mechatronics, using plunger activation events for single pulse fluid shear stress stimulations. Due to unforeseen hardware complications, results from in-flight cultures are considered lost. Ground control experiments showed an accumulative increase of NO in medium for osteocytes (as well as for osteoblasts and periosteal fibroblasts). Data from the online-NO sensor showed that the NO produced in medium by osteocytes increased sharply after pulse shear stress stimulations. COX-2 mRNA expression revealed high levels in osteoblasts compared to the other cell types tested. In conclusion, preparations for the FLOW experiment and preliminary ground results indicate that the FLOW setup is viable for a future flight opportunity.

  16. Use of Human Modeling Simulation Software in the Task Analysis of the Environmental Control and Life Support System Component Installation Procedures

    Science.gov (United States)

    Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Virtual reality and simulation applications are becoming widespread in human task analysis. These programs have many benefits for the Human Factors Engineering field. Not only do creating and using virtual environments for human engineering analyses save money and time, this approach also promotes user experimentation and provides increased quality of analyses. This paper explains the human engineering task analysis performed on the Environmental Control and Life Support System (ECLSS) space station rack and its Distillation Assembly (DA) subsystem using EAI's human modeling simulation software, Jack. When installed on the International Space Station (ISS), ECLSS will provide the life and environment support needed to adequately sustain crew life. The DA is an Orbital Replaceable Unit (ORU) that provides means of wastewater (primarily urine from flight crew and experimental animals) reclamation. Jack was used to create a model of the weightless environment of the ISS Node 3, where the ECLSS is housed. Computer aided drawings of the ECLSS rack and DA system were also brought into the environment. Anthropometric models of a 95th percentile male and 5th percentile female were used to examine the human interfaces encountered during various ECLSS and DA tasks. The results of the task analyses were used in suggesting modifications to hardware and crew task procedures to improve accessibility, conserve crew time, and add convenience for the crew. This paper will address some of those suggested modifications and the method of presenting final analyses for requirements verification.

  17. The assessment and analysis of astronaut mental fatigue in long-duration spaceflight

    Science.gov (United States)

    Li, Yun; Zhou, Qianxiang; Zu, Xiaoqi

    2012-07-01

    In the field of aerospace, mental work has become the main form of most operations, and the other operations are mixed works which are mental work dominated. Confined spaces, silent space environment, specified mode of communication, limited contract with the ground and discomfort of weightlessness also can lead to the aggravation and acceleration of mental fatigue. In aerospace activities, due to the instantaneous distraction of operator, slow response or lack of coordination could lead to serious accident, the study of mental fatigue is particularly important. In order to study the impact of continuous mental task and rest, we conducted an experiment which combined subjective evaluation with physiology index evaluation. Five subjects were selected in the experiment, and they were asked to perform continuous operation task in a simulator to imitate astronaut schedule. In the course of the experiment, subjective fatigue score (used Samn-Perelli and SWAT) and EEG power spectra were measured at the following hours: 8:00(starting time), 11:30, 15:00, 19:00, 23:00(before sleep), 6:00(after sleep), and 8:00(end time). The experiment showed that a short rest is not enough to make the subjects restored to the original state. The reduction of high frequency components and increase of low frequency in EEG also became more obvious with the increased mental fatigue. Gravity frequency of EEG had a shift to low frequency and is strongly correlated with mental fatigue level. These phenomena were similar with the results of subjective test. The SWAT also could tell us the main causes of metal fatigue during this process.

  18. Thyrotropin Receptor and Membrane Interactions in FRTL-5 Thyroid Cell Strain in Microgravity

    Science.gov (United States)

    Albi, E.; Ambesi-Impiombato, F. S.; Peverini, M.; Damaskopoulou, E.; Fontanini, E.; Lazzarini, R.; Curcio, F.; Perrella, G.

    2011-01-01

    The aim of this work was to analyze the possible alteration of thyrotropin (TSH) receptors in microgravity, which could explain the absence of thyroid cell proliferation in the space environment. Several forms of the TSH receptor are localized on the plasma membrane associated with caveolae and lipid rafts. The TSH regulates the fluidity of the cell membrane and the presence of its receptors in microdomains that are rich in sphingomyelin and cholesterol. TSH also stimulates cyclic adenosine monophosphate (cAMP) accumulation and cell proliferation. Reported here are the results of an experiment in which the FRTL-5 thyroid cell line was exposed to microgravity during the Texus-44 mission (launched February 7, 2008, from Kiruna, Sweden). When the parabolic flight brought the sounding rocket to an altitude of 264km, the culture media were injected with or without TSH in the different samples, and weightlessness prevailed on board for 6 minutes and 19 seconds. Control experiments were performed, in parallel, in an onboard 1g centrifuge and on the ground in Kiruna laboratory. Cell morphology and function were analyzed. Results show that in microgravity conditions the cells do not respond to TSH treatment and present an irregular shape with condensed chromatin, a modification of the cell membrane with shedding of the TSH receptor in the culture medium, and an increase of sphingomyelin-synthase and Bax proteins. It is possible that real microgravity induces a rearrangement of specific sections of the cell membrane, which act as platforms for molecular receptors, thus influencing thyroid cell function in astronauts during space missions.

  19. Skeletal stiffening in an amphibious fish out of water is a response to increased body weight.

    Science.gov (United States)

    Turko, Andy J; Kültz, Dietmar; Fudge, Douglas; Croll, Roger P; Smith, Frank M; Stoyek, Matthew R; Wright, Patricia A

    2017-10-15

    Terrestrial animals must support their bodies against gravity, while aquatic animals are effectively weightless because of buoyant support from water. Given this evolutionary history of minimal gravitational loading of fishes in water, it has been hypothesized that weight-responsive musculoskeletal systems evolved during the tetrapod invasion of land and are thus absent in fishes. Amphibious fishes, however, experience increased effective weight when out of water - are these fishes responsive to gravitational loading? Contrary to the tetrapod-origin hypothesis, we found that terrestrial acclimation reversibly increased gill arch stiffness (∼60% increase) in the amphibious fish Kryptolebias marmoratus when loaded normally by gravity, but not under simulated microgravity. Quantitative proteomics analysis revealed that this change in mechanical properties occurred via increased abundance of proteins responsible for bone mineralization in other fishes as well as in tetrapods. Type X collagen, associated with endochondral bone growth, increased in abundance almost ninefold after terrestrial acclimation. Collagen isoforms known to promote extracellular matrix cross-linking and cause tissue stiffening, such as types IX and XII collagen, also increased in abundance. Finally, more densely packed collagen fibrils in both gill arches and filaments were observed microscopically in terrestrially acclimated fish. Our results demonstrate that the mechanical properties of the fish musculoskeletal system can be fine-tuned in response to changes in effective body weight using biochemical pathways similar to those in mammals, suggesting that weight sensing is an ancestral vertebrate trait rather than a tetrapod innovation. © 2017. Published by The Company of Biologists Ltd.

  20. Commercial Spacewalking: Designing an EVA Qualification Program for Space Tourism

    Science.gov (United States)

    Gast, Matthew A.

    2010-01-01

    In the near future, accessibility to space will be opened to anyone with the means and the desire to experience the weightlessness of microgravity, and to look out upon both the curvature of the Earth and the blackness of space, from the protected, shirt-sleeved environment of a commercial spacecraft. Initial forays will be short-duration, suborbital flights, but the experience and expertise of half a century of spaceflight will soon produce commercial vehicles capable of achieving low Earth orbit. Even with the commercial space industry still in its infancy, and manned orbital flight a number of years away, there is little doubt that there will one day be a feasible and viable market for those courageous enough to venture outside the vehicle and into the void, wearing nothing but a spacesuit, armed with nothing but preflight training. What that Extravehicular Activity (EVA) preflight training entails, however, is something that has yet to be defined. A number of significant factors will influence the composition of a commercial EVA training program, but a fundamental question remains: 'what minimum training guidelines must be met to ensure a safe and successful commercial spacewalk?' Utilizing the experience gained through the development of NASA's Skills program - designed to qualify NASA and International Partner astronauts for EVA aboard the International Space Station - this paper identifies the attributes and training objectives essential to the safe conduct of an EVA, and attempts to conceptually design a comprehensive training methodology meant to represent an acceptable qualification standard.

  1. GH/IGF-I Transgene Expression on Muscle Homeostasis

    Science.gov (United States)

    Schwartz, Robert J.

    1999-01-01

    We propose to test the hypothesis that the growth hormone/ insulin like growth factor-I axis through autocrine/paracrine mechanisms may provide long term muscle homeostasis under conditions of prolonged weightlessness. As a key alternative to hormone replacement therapy, ectopic production of hGH, growth hormone releasing hormone (GHRH), and IGF-I will be studied for its potential on muscle mass impact in transgenic mice under simulated microgravity. Expression of either hGH or IGF-I would provide a chronic source of a growth-promoting protein whose biosynthesis or secretion is shut down in space. Muscle expression of the IGF-I transgene has demonstrated about a 20% increase in hind limb muscle mass over control nontransgenic litter mates. These recent experiments, also establish the utility of hind-limb suspension in mice as a workable model to study atrophy in weight bearing muscles. Thus, transgenic mice will be used in hind-limb suspension models to determine the role of GH/IGF-I on maintenance of muscle mass and whether concentric exercises might act in synergy with hormone treatment. As a means to engineer and ensure long-term protein production that would be workable in humans, gene therapy technology will be used by to monitor muscle mass preservation during hind-limb suspension, after direct intramuscular injection of a genetically engineered muscle-specific vector expressing GHRH. Effects of this gene-based therapy will be assessed in both fast twitch (medial gastrocnemius) and slow twitch muscle (soleus). End-points include muscle size, ultrastructure, fiber type, and contractile function, in normal animals, hind limb suspension, and reambutation.

  2. Frozen-wave instability in near-critical hydrogen subjected to horizontal vibration under various gravity fields.

    Science.gov (United States)

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    The frozen-wave instability which appears at a liquid-vapor interface when a harmonic vibration is applied in a direction tangential to it has been less studied until now. The present paper reports experiments on hydrogen (H2) in order to study this instability when the temperature is varied near its critical point for various gravity levels. Close to the critical point, a liquid-vapor density difference and surface tension can be continuously varied with temperature in a scaled, universal way. The effect of gravity on the height of the frozen waves at the interface is studied by performing the experiments in a magnetic facility where effective gravity that results from the coupling of the Earth's gravity and magnetic forces can be varied. The stability diagram of the instability is obtained. The experiments show a good agreement with an inviscid model [Fluid Dyn. 21 849 (1987)], irrespective of the gravity level. It is observed in the experiments that the height of the frozen waves varies weakly with temperature and increases with a decrease in the gravity level, according to a power law with an exponent of 0.7. It is concluded that the wave height becomes of the order of the cell size as the gravity level is asymptotically decreased to zero. The interface pattern thus appears as a bandlike pattern of alternate liquid and vapor phases, a puzzling phenomenon that was observed with CO2 and H2 near their critical point in weightlessness [Acta Astron. 61 1002 (2007); Europhys. Lett. 86 16003 (2009)].

  3. Rocking or rolling--perception of ambiguous motion after returning from space.

    Directory of Open Access Journals (Sweden)

    Gilles Clément

    Full Text Available The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Adaptive changes during spaceflight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions after return to Earth. The purpose of this study was to compare tilt and translation motion perception in astronauts before and after returning from spaceflight. We hypothesized that these stimuli would be the most ambiguous in the low-frequency range (i.e., at about 0.3 Hz where the linear acceleration can be interpreted either as a translation or as a tilt relative to gravity. Verbal reports were obtained in eleven astronauts tested using a motion-based tilt-translation device and a variable radius centrifuge before and after flying for two weeks on board the Space Shuttle. Consistent with previous studies, roll tilt perception was overestimated shortly after spaceflight and then recovered with 1-2 days. During dynamic linear acceleration (0.15-0.6 Hz, ±1.7 m/s2 perception of translation was also overestimated immediately after flight. Recovery to baseline was observed after 2 days for lateral translation and 8 days for fore-aft translation. These results suggest that there was a shift in the frequency dynamic of tilt-translation motion perception after adaptation to weightlessness. These results have implications for manual control during landing of a space vehicle after exposure to microgravity, as it will be the case for human asteroid and Mars missions.

  4. Physiological monitoring of team and task stressors

    Science.gov (United States)

    Orasanu, Judith; Tada, Yuri; Kraft, Norbert; Fischer, Ute

    2005-05-01

    Sending astronauts into space, especially on long-durations missions (e.g. three-year missions to Mars), entails enormous risk. Threats include both physical dangers of radiation, bone loss and other consequences of weightlessness, and also those arising from interpersonal problems associated with extended life in a high-risk isolated and confined environment. Before undertaking long-duration missions, NASA seeks to develop technologies to monitor indicators of potentially debilitating stress at both the individual and team level so that countermeasures can be introduced to prevent further deterioration. Doing so requires a better understanding of indicators of team health and performance. To that end, a study of team problem solving in a simulation environment was undertaken to explore effects of team and task stress. Groups of four males (25-45 yrs) engaged in six dynamic computer-based Antarctic search and rescue missions over four days. Both task and team stressors were manipulated. Physiological responses (ECG, respiration rate and amplitude, SCL, EMG, and PPG); communication (voice and email); individual personality and subjective team dynamics responses were collected and related to task performance. Initial analyses found that physiological measures can be used to identify transient stress, predict performance, and reflect subjective workload. Muscle tension and respiration were the most robust predictors. Not only the level of arousal but its variability during engagement in the task is important to consider. In general, less variability was found to be associated with higher levels of performance. Individuals scoring high on specific personality characteristics responded differently to task stress.

  5. Short-arm human centrifugation with 0.4g at eye and 0.75g at heart level provides similar cerebrovascular and cardiovascular responses to standing.

    Science.gov (United States)

    Goswami, Nandu; Bruner, Michelle; Xu, Da; Bareille, Marie-Pierre; Beck, Arnaud; Hinghofer-Szalkay, Helmut; Blaber, Andrew P

    2015-07-01

    Orthostatic intolerance continues to be a problem with astronauts upon return to Earth as a result of cerebral and cardiovascular adaptations to weightlessness. We tested the hypothesis that artificial gravity from a short-arm human centrifuge (SAHC) could provide cerebral and cardiovascular stimuli similar to upright posture and thereby serve as a suitable countermeasure. We compared cardiovascular and cerebrovascular responses before, during, and after exposure to hyper-G with that of standing in healthy young participants. The head was positioned such that the middle cerebral artery (MCA) was 0.46 m from the center of rotation. Two levels of hyper-G that provided 1g and 2g at foot level were investigated. Continuous blood pressure, heart rate, calf blood volume, MCA mean blood flow velocity (MFV) and end-tidal CO2 were measured. Blood pressure at the level of the MCA (BP-MCA) and MFV was reduced during stand and at 2g. The relationship between MFV and BP-MCA at 2g was different from supine and similar to standing, while 1g centrifugation was not different from supine. The cardiovascular system was also not different from supine at 1g but was similarly challenged in 2g compared to stand. Our data suggest that short-arm centrifugation 2g at the feet, with the head offset 0.5 m from the center, provides similar cardiovascular and cerebral responses to standing. This supports the hypothesis that passive 2g SAHC exposure at the feet could be used as a countermeasure for in-flight cardiovascular and cerebrovascular deconditioning.

  6. Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Herranz Raul

    2012-02-01

    Full Text Available Abstract Background Many biological systems respond to the presence or absence of gravity. Since experiments performed in space are expensive and can only be undertaken infrequently, Earth-based simulation techniques are used to investigate the biological response to weightlessness. A high gradient magnetic field can be used to levitate a biological organism so that its net weight is zero. Results We have used a superconducting magnet to assess the effect of diamagnetic levitation on the fruit fly D. melanogaster in levitation experiments that proceeded for up to 22 consecutive days. We have compared the results with those of similar experiments performed in another paradigm for microgravity simulation, the Random Positioning Machine (RPM. We observed a delay in the development of the fruit flies from embryo to adult. Microarray analysis indicated changes in overall gene expression of imagoes that developed from larvae under diamagnetic levitation, and also under simulated hypergravity conditions. Significant changes were observed in the expression of immune-, stress-, and temperature-response genes. For example, several heat shock proteins were affected. We also found that a strong magnetic field, of 16.5 Tesla, had a significant effect on the expression of these genes, independent of the effects associated with magnetically-induced levitation and hypergravity. Conclusions Diamagnetic levitation can be used to simulate an altered effective gravity environment in which gene expression is tuned differentially in diverse Drosophila melanogaster populations including those of different age and gender. Exposure to the magnetic field per se induced similar, but weaker, changes in gene expression.

  7. Effects of running with backpack loads during simulated gravitational transitions: Improvements in postural control

    Science.gov (United States)

    Brewer, Jeffrey David

    The National Aeronautics and Space Administration is planning for long-duration manned missions to the Moon and Mars. For feasible long-duration space travel, improvements in exercise countermeasures are necessary to maintain cardiovascular fitness, bone mass throughout the body and the ability to perform coordinated movements in a constant gravitational environment that is six orders of magnitude higher than the "near weightlessness" condition experienced during transit to and/or orbit of the Moon, Mars, and Earth. In such gravitational transitions feedback and feedforward postural control strategies must be recalibrated to ensure optimal locomotion performance. In order to investigate methods of improving postural control adaptation during these gravitational transitions, a treadmill based precision stepping task was developed to reveal changes in neuromuscular control of locomotion following both simulated partial gravity exposure and post-simulation exercise countermeasures designed to speed lower extremity impedance adjustment mechanisms. The exercise countermeasures included a short period of running with or without backpack loads immediately after partial gravity running. A novel suspension type partial gravity simulator incorporating spring balancers and a motor-driven treadmill was developed to facilitate body weight off loading and various gait patterns in both simulated partial and full gravitational environments. Studies have provided evidence that suggests: the environmental simulator constructed for this thesis effort does induce locomotor adaptations following partial gravity running; the precision stepping task may be a helpful test for illuminating these adaptations; and musculoskeletal loading in the form of running with or without backpack loads may improve the locomotor adaptation process.

  8. Observations of Confinement of a Paramagnetic Liquid in Model Propellant Tanks in Microgravity by the Kelvin Force

    Science.gov (United States)

    Kuhlman, John; Gray, Donald D.; Barnard, Austin; Hazelton, Jennifer; Lechliter, Matthew; Starn, Andrew; Battleson, Charles; Glaspell, Shannon; Kreitzer, Paul; Leichliter, Michelle

    2002-11-01

    The magnetic Kelvin force has been proposed as an artificial gravity to control the orientation of paramagnetic liquid propellants such as liquid oxygen in a microgravity environment. This paper reports experiments performed in the NASA "Weightless Wonder" KC-135 aircraft, through the Reduced Gravity Student Flight Opportunities Program. The aircraft flies through a series of parabolic arcs providing about 25 s of microgravity in each arc. The experiment was conceived, designed, constructed, and performed by the undergraduate student team and their two faculty advisors. Two types of tanks were tested: square-base prismatic tanks 5 cm x 5 cm x 8.6 cm and circular cylinders 5 cm in diameter and 8.6 cm tall. The paramagnetic liquid was a 3.3 molar solution of MnCl2 in water. Tests were performed with each type of tank filled to depths of 1 cm and 4 cm. Each test compared a pair of tanks that were identical except that the base of one was a pole face of a 0.6 Tesla permanent magnet. The Kelvin force attracts paramagnetic materials toward regions of higher magnetic field. It was hypothesized that the Kelvin force would hold the liquid in the bottom of the tanks during the periods of microgravity. The tanks were installed in a housing that could slide on rails transverse to the flight direction. By manually shoving the housing, an identical impulse could be provided to each tank at the beginning of each period of microgravity. The resulting fluid motions were videotaped for later analysis.

  9. Deep Space Habitat Configurations Based on International Space Station Systems

    Science.gov (United States)

    Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples, Dauphne; Miernik, Janie

    2012-01-01

    A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

  10. Altered regional homogeneity with short-term simulated microgravity and its relationship with changed performance in mental transformation.

    Directory of Open Access Journals (Sweden)

    Yang Liao

    Full Text Available In order to further the insight into the explanation of changed performance in mental transformation under microgravity, we discuss the change of performance in mental transformation and its relationship with altered regional homogeneity (ReHo in resting-state brain by using simulated weightlessness model. Twelve male subjects with age between 24 and 31 received resting-state fMRI scan and mental transformation test both in normal condition and immediately after 72 hours -6° head down tilt (HDT. A paired sample t-test was used to test the difference of behavior performance and brain activity between these two conditions. Compare with normal condition, subjects showed a changed performance in mental transformation with short term simulated microgravity and appeared to be falling. Meanwhile, decreased ReHo were found in right inferior frontal gyrus (IFG and left inferior parietal lobule (IPL after 72 hours -6° HDT, while increased ReHo were found in bilateral medial frontal gyrus (MFG and left superior frontal gyrus (SFG (P<0.05, corrected. Particularly, there was a significant correlation between ReHo values in left IPL and velocity index of mental transformation. Our findings indicate that gravity change may disrupt the function of right IFG and left IPL in the resting-state, among of which functional change in left IPL may contribute to changed abilities of mental transformation. In addition, the enhanced activity of the bilateral MFG and decreased activity of right IFG found in the current study maybe reflect a complementation effect on inhibitory control process.

  11. Dynamic change of ERPs related to selective attention to signals from left and right visual field during head-down tilt

    Science.gov (United States)

    Wei, Jinhe; Zhao, Lun; Van, Gongdong; Chen, Wenjuan; Ren, Wei; Duan, Ran

    To study further the effect of head-down tilt(HDT) on slow positive potential in the event-related potentials(ERPs), the temporal and spatial features of visual ERPs changes during 2 hour HDT(-10 °) were compared with that during HUT(+20°) in 15 normal subjects. The stimuli were consisted of two color LED flashes appeared randomly in left or right visual field(LVF or RVF) with same probability. The subjects were asked to make switch response to target signals(T) differentially: switching to left for T in LVF and to right for T in RVF, ignoring non-target signals(N). Five sets of tests were made during HUT and HDT. ERPs were obtained from 9 locations on scalp. The mean value of the ERPs in the period from 0.32-0.55 s was taken as the amplitude of slow positive potential(P400). The main results were as follows. 1)The mean amplitude of P400 decreased during HDT which was more significant at the 2nd, 3rd and 5th set of tests; 2)spatially, the reduction of mean P400 amplitude during HDT was more significant for signals from RVF and was more significant at posterior and central brain regions than that on frontal locations. As that the positive potential probably reflects the active inhibition activity in the brain during attention process, these data provide further evidence showing that the higher brain function was affected by the simulated weightlessness and that this effect was not only transient but also with interesting spatial characteristics.

  12. Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation.

    Directory of Open Access Journals (Sweden)

    Mei Liu

    Full Text Available BACKGROUND: Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites. METHODOLOGY/PRINCIPAL FINDINGS: S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD(245 nm. The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g, showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity. CONCLUSION/SIGNIFICANCE: We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.

  13. Assessment of zero gravity effects on space worker health and safety

    Science.gov (United States)

    1980-01-01

    One objective of the study is to assess the effects of all currently known deviations from normal of medical, physiological, and biochemical parameters which appear to be due to zero gravity (zero-g) environment and to acceleration and deceleration to be experienced, as outlined in the references Solar Power Satellites (SPS) design, by space worker. Study results include identification of possible health or safety effects on space workers either immediate or delayed due to the zero gravity environment and acceleration and deceleration; estimation of the probability that an individual will be adversely affected; description of the possible consequence to work efficiency in persons adversely affected; and description of the possible/probable consequences to immediate and future health of individuals exposed to this environment. A research plan, which addresses the uncertainties in current knowledge regarding the health and safety hazards to exposed SPS space workers, is presented. Although most adverse affects experienced during space flight soon disappeared upon return to the Earth's environment, there remains a definite concern for the long-term effects to SPS space workers who might spend as much as half their time in space during a possible five year career period. The proposed 90 day up/90 day down cycle, coupled with the fact that most of the effects of weightlessness may persist throughout the flight along with the realization that recovery may occupy much of the terrestrial stay, may keep the SPS workers in a deviant physical condition or state of flux for 60 to 100% of their five year career.

  14. The beginning of Space Life Science in China exploration rockets for biological experiment during 1960's

    Science.gov (United States)

    Jiang, Peidong; Zhang, Jingxue

    The first step of space biological experiment in China was a set of five exploration rockets launched during 1964 to 1966, by Shanghai Institute of Machine and Electricity, and Institute of Biophysics of The Chinese Academy of Sciences. Three T-7AS1rockets for rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1964 and June of 1965. Two T-7AS2rockets for dog, rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1966. Institute of Biophysics in charged of the general design of biological experiments, telemetry of physiological parameters, and selection and training of experiment animals. The samples on-board were: rats, mice, dogs, and test tubes with fruit fly, enzyme, bacteria, E. Coli., lysozyme, bacteriaphage, RNAase, DNAase, crystals of enzyme, etc. Physiological, biochemical, bacte-riological, immunological, genetic, histochemical studies had been conducted, in cellular and sub cellular level. The postures of rat and dog were monitored during flight and under weight-lessness. Physiological parameters of ECG, blood pressure, respiration rate, body temperature were recorded. A dog named"Xiao Bao"was flight in 1966 with video monitor, life support system and conditioned reflex equipment. It flighted for more than 20 minutes and about 70km high. After 40 years, the experimental data recorded of its four physiological parameters during the flight process was reviewed. The change of 4 parameters during various phase of total flight process were compared, analyzed and discussed.

  15. Characterizing the Effects of Chronic 2G Centrifugation on the Rat Skeletal System

    Science.gov (United States)

    Johnson, Aimee; Scott, Ryan; Ronca, April E.; Hoban-Higgins, Tana M.; Fuller, Charles A.; Alwood, Joshua S.

    2017-01-01

    During weightlessness, the skeletal system of astronauts is negatively affected by decreased calcium absorption and bone mass loss. Therefore, it is necessary to counteract these changes for long-term skeletal health during space flights. Our long-term plan is to assess artificial gravity (AG) as a possible solution to mitigate these changes. In this study, we aim to determine the skeletal acclimation to chronic centrifugation. We hypothesize that a 2G hypergravity environment causes an anabolic response in growing male rats. Specifically, we predict chronic 2G to increase tissue mineral density, bone volume fraction of the cancellous tissue and to increase overall bone strength. Systemically, we predict that bone formation markers (i.e., osteocalcin) are elevated and resorption markers (i.e., tartrate resistant acid phosphatase) are decreased or unchanged from controls. The experiment has three groups, each with an n8: chronic 2g, cage control (housed on the centrifuge, but not spun), and a vivarium control (normal rat caging). Pre-pubescent, male Long-Evans rats were used to assess our hypothesis. This group was subject to 90 days of 2G via centrifugation performed at the Chronic Acceleration Research Unit (CARU) at University of California Davis. After 90 days, animals were euthanized and tissues collected. Blood was drawn via cardiac puncture and the right leg collected for structural (via microcomputed tomography) and strength quantification. Understanding how counteract these skeletal changes will have major impacts for both the space-faring astronauts and the people living on Earth.

  16. Assessment of zero gravity effects on space worker health and safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    One objective of the study is to assess the effects of all currently known deviations from normal of medical, physiological, and biochemical parameters which appear to be due to zero gravity (zero-g) environment and to acceleration and deceleration to be experienced, as outlined in the reference Solar Power Satellite (SPS) design, by space worker. Study results include identification of possible health or safety effects on space workers - either immediate or delayed - due to the zero gravity environment and acceleration and deceleration; estimation of the probability that an individual will be adversely affected; description of the possible consequence to work efficiently in persons adversely affected; and description of the possible/probable consequences to immediate and future health of individuals exposed to this environment. A research plan, which addresses the uncertainties in current knowledge regarding the health and safety hazards to exposed SPS space workers, is presented. Although most adverse affects experienced during space flight soon disappeared upon return to the Earth's environment, there remains a definite concern for the long-term effects to SPS space workers who might spend as much as half their time in space during a possible five-year career period. The proposed 90-day up/90 day down cycle, coupled with the fact that most of the effects of weightlessness may persist throughout the flight along with the realization that recovery may occupy much of the terrestrial stay, may keep the SPS workers in a deviant physical condition or state of flux for 60 to 100% of their five-year career. (JGB)

  17. The Virtual Glovebox (VGX): An Immersive Simulation System for Training Astronauts to Perform Glovebox Experiments in Space

    Science.gov (United States)

    Smith, Jeffrey D.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    The era of the International Space Station (ISS) has finally arrived, providing researchers on Earth a unique opportunity to study long-term effects of weightlessness and the space environment on structures, materials and living systems. Many of the physical, biological and material science experiments planned for ISS will require significant input and expertise from astronauts who must conduct the research, follow complicated assay procedures and collect data and samples in space. Containment is essential for Much of this work, both to protect astronauts from potentially harmful biological, chemical or material elements in the experiments as well as to protect the experiments from contamination by air-born particles In the Space Station environment. When astronauts must open the hardware containing such experiments, glovebox facilities provide the necessary barrier between astronaut and experiment. On Earth, astronauts are laced with the demanding task of preparing for the many glovebox experiments they will perform in space. Only a short time can be devoted to training for each experimental task and gl ovebox research only accounts for a small portion of overall training and mission objectives on any particular ISS mission. The quality of the research also must remain very high, requiring very detailed experience and knowledge of instrumentation, anatomy and specific scientific objectives for those who will conduct the research. This unique set of needs faced by NASA has stemmed the development of a new computer simulation tool, the Virtual Glovebox (VGB), which is designed to provide astronaut crews and support personnel with a means to quickly and accurately prepare and train for glovebox experiments in space.

  18. Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity

    Directory of Open Access Journals (Sweden)

    Thiel Cora S

    2012-01-01

    Full Text Available Abstract In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space.

  19. Space life sciences perspectives for Space Station Freedom

    Science.gov (United States)

    Young, Laurence R.

    1992-01-01

    It is now generally acknowledged that the life science discipline will be the primary beneficiary of Space Station Freedom. The unique facility will permit advances in understanding the consequences of long duration exposure to weightlessness and evaluation of the effectiveness of countermeasures. It will also provide an unprecedented opportunity for basic gravitational biology, on plants and animals as well as human subjects. The major advantages of SSF are the long duration exposure and the availability of sufficient crew to serve as subjects and operators. In order to fully benefit from the SSF, life sciences will need both sufficient crew time and communication abilities. Unlike many physical science experiments, the life science investigations are largely exploratory, and frequently bring unexpected results and opportunities for study of newly discovered phenomena. They are typically crew-time intensive, and require a high degree of specialized training to be able to react in real time to various unexpected problems or potentially exciting findings. Because of the long duration tours and the large number of experiments, it will be more difficult than with Spacelab to maintain astronaut proficiency on all experiments. This places more of a burden on adequate communication and data links to the ground, and suggests the use of AI expert system technology to assist in astronaut management of the experiment. Typical life science experiments, including those flown on Spacelab Life Sciences 1, will be described from the point of view of the demands on the astronaut. A new expert system, 'PI in a Box,' will be introduced for SLS-2, and its applicability to other SSF experiments discussed. (This paper consists on an abstract and ten viewgraphs.)

  20. Effect of Long-Term Hypodynamy on Alkaline Phosphatase Activity of Small Intestine in Japanese Quail Chicks

    Directory of Open Access Journals (Sweden)

    Ľ. Lenhardt

    2007-01-01

    Full Text Available The functional development of the small intestine was investigated in Japanese quail chicks subjected to simulated microgravity (hypodynamy on the second day after hatching and reared under these conditions to 63 days of age. On days 5, 7, 14, 21, 28, 35, 42, 56 and 63 the activity of brush-border-bound alkaline phosphatase (AP in the duodenum and jejunum were determined in experimental animals as well as in control quail chicks housed in a floor box during these periods. As compared with control quails the experimental animals displayed a significantly increased enzyme activity until day 42 in the duodenum and day 35 in the jejunum (P < 0.001 whereas in older quails no significant enzymatic differences between these groups was found. However, a decrease in food consumption due to a partial physical constraint cannot be excluded. Moreover, the results suggested that the activity of AP in the control birds did not change substantially during all the periods examined. In contrast, in older hypodynamy quail the AP activity significantly decreased in the duodenum on days 56 and 63 and in the jejunum on days 42, 56 and 63, respectively. These results indicate that a the enhanced intestinal function in early periods of life may reflect the higher sensitivity of small intestine to simulated weightlessness, b the decrease of the AP activity in older animals to the level of controls might be considered as a part of intestinal mechanisms involved in adaptation of quail chicks to long-term hypodynamy, c different activity of AP in the small intestine of Japanese quail may not have resulted only from hypodynamy but also due to decreased food intake.

  1. Influence of different natural physical fields on biological processes

    Science.gov (United States)

    Mashinsky, A. L.

    2001-01-01

    In space flight conditions gravity, magnetic, and electrical fields as well as ionizing radiation change both in size, and in direction. This causes disruptions in the conduct of some physical processes, chemical reactions, and metabolism in living organisms. In these conditions organisms of different phylogenetic level change their metabolic reactions undergo changes such as disturbances in ionic exchange both in lower and in higher plants, changes in cell morphology for example, gyrosity in Proteus ( Proteus vulgaris), spatial disorientation in coleoptiles of Wheat ( Triticum aestivum) and Pea ( Pisum sativum) seedlings, mutational changes in Crepis ( Crepis capillaris) and Arabidopsis ( Arabidopsis thaliana) seedling. It has been found that even in the absence of gravity, gravireceptors determining spatial orientation in higher plants under terrestrial conditions are formed in the course of ontogenesis. Under weightlessness this system does not function and spatial orientation is determined by the light flux gradient or by the action of some other factors. Peculiarities of the formation of the gravireceptor apparatus in higher plants, amphibians, fish, and birds under space flight conditions have been observed. It has been found that the system in which responses were accompanied by phase transition have proven to be gravity-sensitive under microgravity conditions. Such reactions include also the process of photosynthesis which is the main energy production process in plants. In view of the established effects of microgravity and different natural physical fields on biological processes, it has been shown that these processes change due to the absence of initially rigid determination. The established biological effect of physical fields influence on biological processes in organisms is the starting point for elucidating the role of gravity and evolutionary development of various organisms on Earth.

  2. Dynamic Simulation of Human Thermoregulation and Heat Transfer for Spaceflight Applications

    Science.gov (United States)

    Miller, Thomas R.; Nelson, David A.; Bue, Grant; Kuznetz, Lawrence

    2011-01-01

    Models of human thermoregulation and heat transfer date from the early 1970s and have been developed for applications ranging from evaluating thermal comfort in spacecraft and aircraft cabin environments to predicting heat stress during EVAs. Most lumped or compartment models represent the body as an assemblage cylindrical and spherical elements which may be subdivided into layers to describe tissue heterogeneity. Many existing models are of limited usefulness in asymmetric thermal environments, such as may be encountered during an EVA. Conventional whole-body clothing models also limit the ability to describe local surface thermal and evaporation effects in sufficient detail. A further limitation is that models based on a standard man model are not readily scalable to represent large or small subjects. This work describes development of a new human thermal model derived from the 41-node man model. Each segment is divided into four concentric, constant thickness cylinders made up of a central core surrounded by muscle, fat, and skin, respectively. These cylinders are connected by the flow of blood from a central blood pool to each part. The central blood pool is updated at each time step, based on a whole-body energy balance. Results show the model simulates core and surface temperature histories, sweat evaporation and metabolic rates which generally are consistent with controlled exposures of human subjects. Scaling rules are developed to enable simulation of small and large subjects (5th percentile and 95th percentile). Future refinements will include a clothing model that addresses local surface insulation and permeation effects and developing control equations to describe thermoregulatory effects such as may occur with prolonged weightlessness or with aging.

  3. High-Intensity Jump Training Is Tolerated during 60 Days of Bed Rest and Is Very Effective in Preserving Leg Power and Lean Body Mass: An Overview of the Cologne RSL Study.

    Science.gov (United States)

    Kramer, Andreas; Kümmel, Jakob; Mulder, Edwin; Gollhofer, Albert; Frings-Meuthen, Petra; Gruber, Markus

    2017-01-01

    Space agencies are looking for effective and efficient countermeasures for the degrading effects of weightlessness on the human body. The aim of this study was to assess the effects of a novel jump exercise countermeasure during bed rest on vitals, body mass, body composition, and jump performance. 23 male participants (29±6 years, 181±6 cm, 77±7 kg) were confined to a bed rest facility for 90 days: a 15-day ambulatory measurement phase, a 60-day six-degree head-down-tilt bed rest phase (HDT), and a 15-day ambulatory recovery phase. Participants were randomly allocated to the jump training group (JUMP, n = 12) or the control group (CTRL, n = 11). A typical training session consisted of 4x10 countermovement jumps and 2x10 hops in a sledge jump system. The training group had to complete 5-6 sessions per week. Peak force for the reactive hops (3.6±0.4 kN) as well as jump height (35±4 cm) and peak power (3.1±0.2 kW) for the countermovement jumps could be maintained over the 60 days of HDT. Lean body mass decreased in CTRL but not in JUMP (-1.6±1.9 kg and 0±1.0 kg, respectively, interaction effect p = 0.03). Resting heart rate during recovery was significantly increased for CTRL but not for JUMP (interaction effect pjump training and maintained high peak forces and high power output during 60 days of bed rest. The countermeasure was effective in preserving lean body mass and partly preventing cardiac deconditioning with only several minutes of training per day.

  4. Earthing the human body influences physiologic processes.

    Science.gov (United States)

    Sokal, Karol; Sokal, Pawel

    2011-04-01

    This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments: Five (5) experiments are presented: experiment 1-effect of earthing on calcium-phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2-effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3-effect of earthing on thyroid function (N = 12); experiment 4-effect of earthing on glucose concentration (N = 12); experiment 5-effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium-phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems.

  5. Orientation Preferences and Motion Sickness Induced in a Virtual Reality Environment.

    Science.gov (United States)

    Chen, Wei; Chao, Jian-Gang; Zhang, Yan; Wang, Jin-Kun; Chen, Xue-Wen; Tan, Cheng

    2017-10-01

    Astronauts' orientation preferences tend to correlate with their susceptibility to space motion sickness (SMS). Orientation preferences appear universally, since variable sensory cue priorities are used between individuals. However, SMS susceptibility changes after proper training, while orientation preferences seem to be intrinsic proclivities. The present study was conducted to investigate whether orientation preferences change if susceptibility is reduced after repeated exposure to a virtual reality (VR) stimulus environment that induces SMS. A horizontal supine posture was chosen to create a sensory context similar to weightlessness, and two VR devices were used to produce a highly immersive virtual scene. Subjects were randomly allocated to an experimental group (trained through exposure to a provocative rotating virtual scene) and a control group (untrained). All subjects' orientation preferences were measured twice with the same interval, but the experimental group was trained three times during the interval, while the control group was not. Trained subjects were less susceptible to SMS, with symptom scores reduced by 40%. Compared with untrained subjects, trained subjects' orientation preferences were significantly different between pre- and posttraining assessments. Trained subjects depended less on visual cues, whereas few subjects demonstrated the opposite tendency. Results suggest that visual information may be inefficient and unreliable for body orientation and stabilization in a rotating visual scene, while reprioritizing preferences for different sensory cues was dynamic and asymmetric between individuals. The present findings should facilitate customization of efficient and proper training for astronauts with different sensory prioritization preferences and dynamic characteristics.Chen W, Chao J-G, Zhang Y, Wang J-K, Chen X-W, Tan C. Orientation preferences and motion sickness induced in a virtual reality environment. Aerosp Med Hum Perform. 2017

  6. The neurovestibular challenges of astronauts and balance patients: some past countermeasures and two alternative approaches to elicitation, assessment and mitigation

    Directory of Open Access Journals (Sweden)

    Ben Lawson

    2016-11-01

    Full Text Available Astronauts and vestibular patients face analogous challenges to orientation function due to adaptive exogenous (weightlessness-induced or endogenous (pathology-induced alterations in the processing of acceleration stimuli. Given some neurovestibular similarities between these challenges, both affected groups may benefit from shared research approaches and adaptation measurement/improvement strategies. This paper reviews various past strategies and introduces two plausible ground-based approaches, the first of which is a method for eliciting and assessing vestibular adaptation-induced imbalance. Second, we review a strategy for mitigating imbalance associated with vestibular pathology and fostering readaptation. In discussing the first strategy (for imbalance assessment, we review a pilot study wherein imbalance was elicited (among healthy subjects via an adaptive challenge that caused a temporary/reversible disruption. The surrogate vestibular deficit was caused by a brief period of movement-induced adaptation to an altered (rotating gravitoinertial frame of reference. This elicited adaptation and caused imbalance when head movements were made after reentry into the normal (non-rotating frame of reference. We also review a strategy for fall mitigation, viz., a prototype tactile sway feedback device for aiding balance/recovery after disruptions caused by vestibular pathology. We introduce the device and review a preliminary exploration of its effectiveness in aiding clinical balance rehabilitation (discussing the implications for healthy astronauts. Both strategies reviewed in this paper represent cross-disciplinary research spin-offs: the ground-based vestibular challenge and tactile cueing display were derived from aeromedical research to benefit military aviators suffering from flight simulator-relevant aftereffects or inflight spatial disorientation, respectively. These strategies merit further evaluation using clinical and astronaut

  7. Technology Development to Support Human Health and Performance in Exploration Beyond Low Earth Orbit

    Science.gov (United States)

    Kundrot, C.E.; Steinberg, S. L.; Charles, J. B.

    2011-01-01

    In the course of defining the level of risks and mitigating the risks for exploration missions beyond low Earth orbit, NASA s Human Research Program (HRP) has identified the need for technology development in several areas. Long duration missions increase the risk of serious medical conditions due to limited options for return to Earth; no resupply; highly limited mass, power, volume; and communication delays. New space flight compatible medical capabilities required include: diagnostic imaging, oxygen concentrator, ventilator, laboratory analysis (saliva, blood, urine), kidney stone diagnosis & treatment, IV solution preparation and delivery. Maintenance of behavioral health in such an isolated, confined and extreme environment requires new sensory stimulation (e.g., virtual reality) technology. Unobtrusive monitoring of behavioral health and treatment methods are also required. Prolonged exposure to weightlessness deconditions bone, muscle, and the cardiovascular system. Novel exercise equipment or artificial gravity are necessary to prevent deconditioning. Monitoring of the degree of deconditioning is required to ensure that countermeasures are effective. New technologies are required in all the habitable volumes (e.g., suit, capsule, habitat, exploration vehicle, lander) to provide an adequate food system, and to meet human environmental standards for air, water, and surface contamination. Communication delays require the crew to be more autonomous. Onboard decision support tools that assist crew with real-time detection and diagnosis of vehicle and habitat operational anomalies will enable greater autonomy. Multi-use shield systems are required to provide shielding from solar particle events. The HRP is pursuing the development of these technologies in laboratories, flight analog environments and the ISS so that the human health and performance risks will be acceptable with the available resources.

  8. Motor control of landing from a countermovement jump in simulated microgravity.

    Science.gov (United States)

    Gambelli, C N; Theisen, D; Willems, P A; Schepens, B

    2016-05-15

    Landing from a jump implies proper positioning of the lower limb segments and the generation of an adequate muscular force to cope with the imminent collision with the ground. This study assesses how a hypogravitational environment affects the control of landing after a countermovement jump (CMJ). Eight participants performed submaximal CMJs on Earth (1-g condition) and in a weightlessness environment with simulated gravity conditions generated by a pull-down force (1-, 0.6-, 0.4-, and 0.2-g0 conditions). External forces applied to the body, movements of the lower limb segments, and muscular activity of six lower limb muscles were recorded. 1) All subjects were able to jump and stabilize their landing in all experimental conditions, except one subject in 0.2-g0 condition. 2) The mechanical behavior of lower limb muscles switches during landing from a stiff spring to a compliant spring associated with a damper. This is true whatever the environment, on Earth as well as in environments where sensory inputs are altered. 3) The motor control of landing in simulated 1 g0 reveals an increased "safety margin" strategy, illustrated by increased stiffness and damping coefficient compared with landing on Earth. 4) The motor command is adjusted to the task constraints: muscular activity of lower limb extensors and flexors, stiffness and damping coefficient decrease according to the decreased gravity level. Our results show that even if in daily living gravity can be perceived as a constant factor, subjects can cope with altered sensory signals, taking advantage of the remaining information (visual and/or decreased proprioceptive inputs). Copyright © 2016 the American Physiological Society.

  9. Influence of copper composition on mechanical properties of biodegradable material Mg-Zn-Cu for orthopedic application

    Science.gov (United States)

    Purniawan, A.; Maulidiah, H. M.; Purwaningsih, H.

    2018-04-01

    Implant is usually used as a treatment of bone fracture. At the moment, non-biodegradable implants is still widely employed in this application. Non-biodegradable implant requires re-surgery to retrieve implants that are installed in the body. It increase the cost and it is painful for the patient itself. In order to solve the problem, Mg-based biodegradable metals is developing so that the material will be compatible with body and gradually degrade in patient's body. However, magnesium has several disadvantages such as high degradation rates and low mechanical properties when compared to the mechanical properties of natural bone. Therefore, it is necessary to add elements into the magnesium alloy. In this research, copper (Cu) was alloyed in Mg alloy based biodegradable material. In addition, Cu is not only strengthening the structure but also for supporting element for the immune system, antibacterial and antifungal. The purpose of this research is to improve mechanical properties of Mg-based biodegradable material using Cu alloying. Powder metallurgy method was used to fabricate the device. The variation used in this research is the composition of Cu (0.5, 1, and 1.5% Cu). The porosity test was performed using apparent porosity test, compressive test and hardness test to know the mechanical properties of the alloy, and the weightless test to find out the material degradation rate. Based on the results can be conclude that Mg-Zn-Cu alloy material with 1% Cu composition is the most suitable specimen to be applied as a candidate for orthopedic devices material with hardness value is 393.6 MPa. Also obtained the value of the compressive test is 153 MPa.

  10. Would Interstitial Fluid Flow be Responsible for Skeletal Maintenance in Tail-Suspended Rats?

    Science.gov (United States)

    Li, Wen-Ting; Huang, Yun-Fei; Sun, Lian-Wen; Luan, Hui-Qin; Zhu, Bao-Zhang; Fan, Yu-Bo

    2017-02-01

    Despite the fast development of manned space flight, the mechanism and countermeasures of weightlessness osteoporosis in astronauts are still within research. It is accepted that unloading has been considered as primary factor, but the precise mechanism is still unclear. Since bone's interstitial fluid flow (IFF) is believed to be significant to nutrient supply and waste metabolism of bone tissue, it may influence bone quality as well. We investigated IFF's variation in different parts of body (included parietal bone, ulna, lumbar, tibia and tailbone) of rats using a tail-suspended (TS) system. Ten female Sprague-Dawley (SD) rats were divided into two groups: control (CON) and tail-suspension (TS) group. And after 21 days' experiment, the rats were injected reactive red to observe lacuna's condition under a confocal laser scanning microscope. The variations of IFF were analyzed by the number and area of lacuna. Volumetric bone mineral density (vBMD) and microarchitecture of bones were evaluated by micro-CT. The correlation coefficients between lacuna's number/area and vBMD were also analyzed. According to our experimental results, a 21 days' tail-suspension could cause a decrease of IFF in lumbar, tibia and tailbone and an increase of IFF in ulna. But in parietal bone, it showed no significant change. The vBMD and microarchitecture parameters also decreased in lumbar and tibia and increased in ulna. But in parietal bone and tailbone, it showed no significant change. And correlation analysis showed significant correlation between vBMD and lacuna's number in lumbar, tibia and ulna. Therefore, IFF decrease may be partly contribute to bone loss in tail-suspended rats, and it should be further investigated.

  11. Family of columns isospectral to gravity-loaded columns with tip force: A discrete approach

    Science.gov (United States)

    Ramachandran, Nirmal; Ganguli, Ranjan

    2018-06-01

    A discrete model is introduced to analyze transverse vibration of straight, clamped-free (CF) columns of variable cross-sectional geometry under the influence of gravity and a constant axial force at the tip. The discrete model is used to determine critical combinations of loading parameters - a gravity parameter and a tip force parameter - that cause onset of dynamic instability in the CF column. A methodology, based on matrix-factorization, is described to transform the discrete model into a family of models corresponding to weightless and unloaded clamped-free (WUCF) columns, each with a transverse vibration spectrum isospectral to the original model. Characteristics of models in this isospectral family are dependent on three transformation parameters. A procedure is discussed to convert the isospectral discrete model description into geometric description of realistic columns i.e. from the discrete model, we construct isospectral WUCF columns with rectangular cross-sections varying in width and depth. As part of numerical studies to demonstrate efficacy of techniques presented, frequency parameters of a uniform column and three types of tapered CF columns under different combinations of loading parameters are obtained from the discrete model. Critical combinations of these parameters for a typical tapered column are derived. These results match with published results. Example CF columns, under arbitrarily-chosen combinations of loading parameters are considered and for each combination, isospectral WUCF columns are constructed. Role of transformation parameters in determining characteristics of isospectral columns is discussed and optimum values are deduced. Natural frequencies of these WUCF columns computed using Finite Element Method (FEM) match well with those of the given gravity-loaded CF column with tip force, hence confirming isospectrality.

  12. ANALYSIS OF DISTURBANCE TORQUE INFLUENCE ON CRITICAL STATE IN ROTATIONAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Bogumił CHILIŃSKI

    2013-12-01

    Full Text Available Currently most of existing means of transport contains different types of rotational systems. In many cases the dynamics of such rotors substantially can influence exploitation of the whole vehicle. Moreover, in order to minimize mass of the whole object modern construction materials are applied. This causes that the dynamic phenomena may be fundamental of exploitation. The paper presents preliminary analysis of disturbance torque influence on critical state in rotational system. The consideration assumed simple physical object in the form of heavy disk embedded on weightless, elastic shaft. The shaft was supported on two bearings. In particular chapters of paper, path leading from proposition of physical model, by solution of it, to qualitative conclusions about considered object and torque disturbances influence of motion of this system, was presented. In introduction, outline of considered problem and potential opportunities of it, were demonstrated. In the next chapter, physical and mathematical model of the analysed object, was described. Next and also the last but one chapter gives a detailed discussion of mathematical model in the form of nonlinear ordinary differential equations proposed earlier. The first part of the chapter presents the possibility to solve such a problem, then it shows the simplifications which are used. Furthermore, the influence of used simplifications on the shape of analysed problem was demonstrated. Additionally, the possibility of equations solution presented in the paper was discussed. Moreover, the series of interesting properties of analysed system of equations has been shown based on founded approximate solutions. The whole paper was summarized with plans for future work and synthetic conclusions concerning the innovative control method of critical states.

  13. Extraterrestrial Hemorrhage Control: Terrestrial Developments in Technique, Technology, and Philosophy with Applicability to Traumatic Hemorrhage in Space

    Science.gov (United States)

    Kirkpatrick, Andrew; Dawson, David; Campbell, Mark; Jones, Jeff; Ball, Chad G.; Hamilton, Douglas R.; Dulchavsky, Scott; McBeth, Paul; Holcomb, John

    2004-01-01

    Managing injury and illness during long duration space flight limits efforts to explore beyond low earths orbit. Traumatic injury may be expected to occur in space and is a frequent cause of preventable deaths, often related to uncontrolled or ongoing hemorrhage (H). Such bleeding causes 40% of terrestrial injury mortality. Current guidelines emphasize early control of H compared to intravenous infusions. Recent advances in surgical and critical care may be applicable to trauma care in space, with appropriate considerations of the extreme logistical and personnel limitations. Methods: Recent developments in technique, resuscitation fluids, hemoglobin (Hb) substitutes, hemostatic agents, interventional angiography, damage control principles, and concepts related to suspended animation were reviewed. Results: H associated with instability frequently requires definitive intervention. Direct pressure should be applied to all compressible bleeding, but novel approaches are required for intracavitary noncompressible bleeding. Intravenous hemostatic agents such as recombinant Factor VII may facilitate hemostasis especially when combined with a controlled hypotension approach. Both open and laparoscopic techniques could be used in weightlessness, but require technical expertise not likely to be available. Specific rehearsed invasive techniques such as laparotomy with packing, or arterial catherterization with with robotic intravascular embolization might be considered . Hemodynamic support, thermal manipulation, or pharmacologic induction of a state of metabolic down regulation for whole body preservation may be appropriate. Hypertonic saline, with or without dextran, may temporize vascular support and decrease reperfusion injury, with less mass than other solutions. Hb substitutes have other theoretical advantages. Conclusions: Terrestrial developments suggest potential novel strategies to control H in space, but will required a coordinated program of evaluation and

  14. The dynamics of blood biochemical parameters in cosmonauts during long-term space flights

    Science.gov (United States)

    Markin, Andrei; Strogonova, Lubov; Balashov, Oleg; Polyakov, Valery; Tigner, Timoty

    Most of the previously obtained data on cosmonauts' metabolic state concerned certain stages of the postflight period. In this connection, all conclusions, as to metabolism peculiarities during the space flight, were to a large extent probabilistic. The purpose of this work was study of metabolism characteristics in cosmonauts directly during long-term space flights. In the capillary blood samples taken from a finger, by "Reflotron IV" biochemical analyzer, "Boehringer Mannheim" GmbH, Germany, adapted to weightlessness environments, the activity of GOT, GPT, CK, gamma-GT, total and pancreatic amylase, as well as concentration of hemoglobin, glucose, total bilirubin, uric acid, urea, creatinine, total, HDL- and LDL cholesterol, triglycerides had been determined. HDL/LDL-cholesterol ratio also was computed. The crewmembers of 6 main missions to the "Mir" orbital station, a total of 17 cosmonauts, were examined. Biochemical tests were carryed out 30-60 days before lounch, and in the flights different stages between the 25-th and the 423-rd days of flights. In cosmonauts during space flight had been found tendency to increase, in compare with basal level, GOT, GPT, total amylase activity, glucose and total cholesterol concentration, and tendency to decrease of CK activity, hemoglobin, HDL-cholesterol concentration, and HDL/LDL — cholesterol ratio. Some definite trends in variations of other determined biochemical parameters had not been found. The same trends of mentioned biochemical parameters alterations observed in majority of tested cosmonauts, allows to suppose existence of connection between noted metabolic alterations with influence of space flight conditions upon cosmonaut's body. Variations of other studied blood biochemical parameters depends on, probably, pure individual causes.

  15. Psychological differences between influence of temperament with the hemishere asymmetry of a brain on size of sensorymotor reactions of male and female cosmonauts

    Science.gov (United States)

    Prisniakova, Lyudmila; Prisniakov, Volodymyr; Volkov, D. S.

    The purpose of research was definition and comparison of relative parameters of sensorimotor reactions with a choice depending on a level of lateral asymmetry of hemispheres of a brain at representatives of various types of temperament OF male and female cosmonauts . These parameters were by the bases for verification of theoretical dependence for the latent period of reaction in conditions of weightlessness and overloads. The hypothesis about influence of functional asymmetry on parameters of psychomotor in sensory-motor reactions was laid in a basis of experiment. Techniques of definition of individual characters of the sensori-motor asymmetries were used, and G. Ajzenk's questionnaire EPQ adapted by Prisniakova L. Time of sensorimotor reaction has significant distinctions between representatives of different types of temperament with a various level interchemishere asymmetry OF male and female cosmonauts. With increase in expressiveness of the right hemisphere time of reaction tends to reduction at representatives of all types of temperament, the number of erroneous reactions as a whole increases also a level of achievement tends to reduction. Results of time of sensorimotor reaction correspond with parameter L. Prisniakova which characterizes individual - psychological features. .Earlier the received experimental data of constant time of processing of the information in memory at a period of a sensorimotor reactions of the man and new results for women were used for calculation of these time constants for overloads distinct from terrestrial. These data enable to predict dynamics of behavior of cosmonauts with differing sex in conditions of flight in view of their individual characteristics connected with the hemisphere asymmetry of a brain and with by a various degree of lateralization.

  16. Gravitationally neutral dark matter-dark antimatter universe crystal with epochs of decelerated and accelerated expansion

    Science.gov (United States)

    Gribov, I. A.; Trigger, S. A.

    2016-11-01

    A large-scale self-similar crystallized phase of finite gravitationally neutral universe (GNU)—huge GNU-ball—with spherical 2D-boundary immersed into an endless empty 3D- space is considered. The main principal assumptions of this universe model are: (1) existence of stable elementary particles-antiparticles with the opposite gravitational “charges” (M+gr and M -gr), which have the same positive inertial mass M in = |M ±gr | ≥ 0 and are equally presented in the universe during all universe evolution epochs; (2) the gravitational interaction between the masses of the opposite charges” is repulsive; (3) the unbroken baryon-antibaryon symmetry; (4) M+gr-M-gr “charges” symmetry, valid for two equally presented matter-antimatter GNU-components: (a) ordinary matter (OM)-ordinary antimatter (OAM), (b) dark matter (DM)-dark antimatter (DAM). The GNU-ball is weightless crystallized dust of equally presented, mutually repulsive (OM+DM) clusters and (OAM+DAM) anticlusters. Newtonian GNU-hydrodynamics gives the observable spatial flatness and ideal Hubble flow. The GNU in the obtained large-scale self-similar crystallized phase preserves absence of the cluster-anticluster collisions and simultaneously explains the observable large-scale universe phenomena: (1) the absence of the matter-antimatter clusters annihilation, (2) the self-similar Hubble flow stability and homogeneity, (3) flatness, (4) bubble and cosmic-net structures as 3D-2D-1D decrystallization phases with decelerative (a ≤ 0) and accelerative (a ≥ 0) expansion epochs, (5) the dark energy (DE) phenomena with Λ VACUUM = 0, (6) the DE and DM fine-tuning nature and predicts (7) evaporation into isolated huge M±gr superclusters without Big Rip.

  17. Vector form Intrinsic Finite Element Method for the Two-Dimensional Analysis of Marine Risers with Large Deformations

    Science.gov (United States)

    Li, Xiaomin; Guo, Xueli; Guo, Haiyan

    2018-06-01

    Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element (VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method (FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.

  18. Gravitationally neutral dark matter–dark antimatter universe crystal with epochs of decelerated and accelerated expansion

    International Nuclear Information System (INIS)

    Gribov, I A; Trigger, S A

    2016-01-01

    A large-scale self-similar crystallized phase of finite gravitationally neutral universe (GNU)—huge GNU-ball—with spherical 2D-boundary immersed into an endless empty 3D- space is considered. The main principal assumptions of this universe model are: (1) existence of stable elementary particles-antiparticles with the opposite gravitational “charges” ( M + gr and M -gr ), which have the same positive inertial mass M in = | M ±gr | ≥ 0 and are equally presented in the universe during all universe evolution epochs; (2) the gravitational interaction between the masses of the opposite charges” is repulsive; (3) the unbroken baryon-antibaryon symmetry; (4) M +gr -M -gr “charges” symmetry, valid for two equally presented matter-antimatter GNU-components: (a) ordinary matter (OM)-ordinary antimatter (OAM), (b) dark matter (DM)-dark antimatter (DAM). The GNU-ball is weightless crystallized dust of equally presented, mutually repulsive (OM+DM) clusters and (OAM+DAM) anticlusters. Newtonian GNU-hydrodynamics gives the observable spatial flatness and ideal Hubble flow. The GNU in the obtained large-scale self-similar crystallized phase preserves absence of the cluster-anticluster collisions and simultaneously explains the observable large-scale universe phenomena: (1) the absence of the matter-antimatter clusters annihilation, (2) the self-similar Hubble flow stability and homogeneity, (3) flatness, (4) bubble and cosmic-net structures as 3D-2D-1D decrystallization phases with decelerative (a ≤ 0) and accelerative (a ≥ 0) expansion epochs, (5) the dark energy (DE) phenomena with Λ VACUUM = 0, (6) the DE and DM fine-tuning nature and predicts (7) evaporation into isolated huge M ±gr superclusters without Big Rip. (paper)

  19. Post-capture vibration suppression of spacecraft via a bio-inspired isolation system

    Science.gov (United States)

    Dai, Honghua; Jing, Xingjian; Wang, Yu; Yue, Xiaokui; Yuan, Jianping

    2018-05-01

    Inspired by the smooth motions of a running kangaroo, a bio-inspired quadrilateral shape (BIQS) structure is proposed to suppress the vibrations of a free-floating spacecraft subject to periodic or impulsive forces, which may be encountered during on-orbit servicing missions. In particular, the BIQS structure is installed between the satellite platform and the capture mechanism. The dynamical model of the BIQS isolation system, i.e. a BIQS structure connecting the platform and the capture mechanism at each side, is established by Lagrange's equations to simulate the post-capture dynamical responses. The BIQS system suffering an impulsive force is dealt with by means of a modified version of Lagrange's equations. Furthermore, the classical harmonic balance method is used to solve the nonlinear dynamical system subject to periodic forces, while for the case under impulsive forces the numerical integration method is adopted. Due to the weightless environment in space, the present BIQS system is essentially an under-constrained dynamical system with one of its natural frequencies being identical to zero. The effects of system parameters, such as the number of layers in BIQS, stiffness, assembly angle, rod length, damping coefficient, masses of satellite platform and capture mechanism, on the isolation performance of the present system are thoroughly investigated. In addition, comparisons between the isolation performances of the presently proposed BIQS isolator and the conventional spring-mass-damper (SMD) isolator are conducted to demonstrate the advantages of the present isolator. Numerical simulations show that the BIQS system has a much better performance than the SMD system under either periodic or impulsive forces. Overall, the present BIQS isolator offers a highly efficient passive way for vibration suppressions of free-floating spacecraft.

  20. Reflex control of the spine and posture: a review of the literature from a chiropractic perspective

    Directory of Open Access Journals (Sweden)

    Schlappi Mark

    2005-08-01

    Full Text Available Abstract Objective This review details the anatomy and interactions of the postural and somatosensory reflexes. We attempt to identify the important role the nervous system plays in maintaining reflex control of the spine and posture. We also review, illustrate, and discuss how the human vertebral column develops, functions, and adapts to Earth's gravity in an upright position. We identify functional characteristics of the postural reflexes by reporting previous observations of subjects during periods of microgravity or weightlessness. Background Historically, chiropractic has centered around the concept that the nervous system controls and regulates all other bodily systems; and that disruption to normal nervous system function can contribute to a wide variety of common ailments. Surprisingly, the chiropractic literature has paid relatively little attention to the importance of neurological regulation of static upright human posture. With so much information available on how posture may affect health and function, we felt it important to review the neuroanatomical structures and pathways responsible for maintaining the spine and posture. Maintenance of static upright posture is regulated by the nervous system through the various postural reflexes. Hence, from a chiropractic standpoint, it is clinically beneficial to understand how the individual postural reflexes work, as it may explain some of the clinical presentations seen in chiropractic practice. Method We performed a manual search for available relevant textbooks, and a computer search of the MEDLINE, MANTIS, and Index to Chiropractic Literature databases from 1970 to present, using the following key words and phrases: "posture," "ocular," "vestibular," "cervical facet joint," "afferent," "vestibulocollic," "cervicocollic," "postural reflexes," "spaceflight," "microgravity," "weightlessness," "gravity," "posture," and "postural." Studies were selected if they specifically tested any or

  1. The Mice Drawer System Tissue Sharing Program (MDS-TSP)

    Science.gov (United States)

    Biticchi, Roberta; Cancedda, Ranieri; Cilli, Michele; Cotronei, Vittorio; Costa, Delfina; Liu, Yi; Piccardi, Federica; Pignataro, Salvatore; Ruggiu, Alessandra; Tasso, Roberta; Tavella, Sara

    Several organs and apparatus are affected by weightless conditions and in particular by the weightless experienced during space flights. Therefore space missions are good opportunities to investigate in a whole organism the controlling cellular and molecular mechanisms. For this type of studies mice represent an excellent animal model for several reasons: reduced body size, relatively short time needed to reach adulthood, availability of strains with different genetic background and of different transgenic lines, etc. In line with the International Space Station (ISS) development, the Italian Space Agency (ASI) contracted Thales Alenia Space Italia, the largest Italian aerospace industry, to design and build a spaceflight payload for rodent research on ISS, the Mouse Drawer System (MDS -see abstract P. Cipparelli et al.). This payload meets NIH guideline for several physical parameters to maintain 6 animals in good health conditions in a space environment. Given the interest of our laboratory in the microgravity induced skeleton alterations, we focused our attention on transgenic mice over-expressing pleiotrophin (PTN) under the control of the human bone specific osteocalcin promoter. This protein is a heparin-binding cytokine with different functions. PTN is expressed by the cells in an early differentiation stage and is upregulated in tissue injury and wound repair. PTN is specifically involved in bone formation, neurite outgrowth and angiogenesis. As PTN-transgenic mice show an increased bone mass and mineralization, we decided to use this mouse model in the flight experiment and to study its potential role in counteracting bone loss in microgravity. Not all mouse strains are equally suitable for flight. After preliminary tests in the MDS breadboard at our animal facility on the behavior of different mouse strains, PTN-transgenic mice originally obtained in the BDF strain were backcrossed in the C57Bl/J10 strain before being used in this study. In order to

  2. Human Health and Performance Considerations for Exploration of Near-Earth Asteroids

    Science.gov (United States)

    Kundrot, Craig; Steinberg, Susan; Charles, John

    2010-01-01

    This presentation will describe the human health and performance issues that are anticipated for the human exploration of near-Earth asteroids (NEA). Humans are considered a system in the design of any such deep-space exploration mission, and exploration of NEA presents unique challenges for the human system. Key factors that define the mission are those that are strongly affected by distance and duration. The most critical of these is deep-space radiation exposure without even the temporary shielding of a nearby large planetary body. The current space radiation permissible exposure limits (PEL) restrict mission duration to 3-10 months depending on age and gender of crewmembers and stage of the solar cycle. Factors that affect mission architecture include medical capability; countermeasures for bone, muscle, and cardiovascular atrophy during continuous weightlessness; restricted food supplies; and limited habitable volume. The design of a habitat that can maintain the physical and psychological health of the crew and support mission operations with limited intervention from Earth will require an integrated research and development effort by NASA s Human Research Program, engineering, and human factors groups. Limited abort and return options for an NEA mission are anticipated to have important effects on crew psychology as well as influence medical supplies and training requirements of the crew. Other important factors are those related to isolation, confinement, communication delays, autonomous operations, task design, small crew size, and even the unchanging view outside the windows for most of the mission. Geological properties of the NEA will influence design of sample handling and containment, and extravehicular activity capabilities including suit ports and tools. A robotic precursor mission that collects basic information on NEA surface properties would reduce uncertainty about these aspects of the mission as well as aid in design of mission architecture and

  3. Physiologic Responses to Motorized and Non-Motorized Locomotion Utilizing the International Space Station Treadmill

    Science.gov (United States)

    Smith, Cassie; Lee, Stuart MC; Laughlin, Mitzi; Loehr, James; Norcross, Jason; DeWitt, John; Hagan, R. D.

    2006-01-01

    Treadmill locomotion is used onboard the International Space Station (ISS) as a countermeasure to the effects of prolonged weightlessness. The treadmill operates in two modes: motorized (T-M) and non-motorized (T-NM). Little is known about the potential physiologic differences between modes which may affect countermeasure exercise prescription. PURPOSE: To quantify heart rate (HR), oxygen consumption (VO2), perceived exertion (RPE), and blood lactate (BLa) during T-M and T-NM locomotion at 2 and 4 mph in normal ambulatory subjects. METHODS: Twenty subjects (10 men, 10 women; 31+/-5 yr, 172+/-10 cm, 68+/-13 kg, mean SD) with a treadmill peakVO2 of 45.5+/-5.4 ml/kg/min (mean+/-SD) exercised on the ground-based ISS treadmill. Following a familiarization session in each mode, subjects completed two data collection sessions, T-M and T-NM in random order, at 2 and 4 mph. Subjects attempted to complete 5 min of exercise at each speed; if they could not maintain the speed, the trial was discontinued. At least 5 minutes of rest separated each speed trial, and at least 48 hrs separated each session. VO2 was measured continuously (metabolic gas analysis), while HR (HR monitor) and RPE (Borg Chart, 6-20 scale) were recorded each min. Not all subjects completed 5 min during each condition, therefore the mean of the min 3 and 4 was taken as representative of steady-state. BLa was measured (finger stick) within 2 min post-exercise. Paired t-tests were used to test for differences (p<0.05) between treadmill modes within the same speed. RESULTS: All twenty subjects completed at least 4 min of exercise during all conditions, except T-NM 4 mph when only 11 subjects completed the minimum exercise duration. VO2, HR, RPE and BLa were significantly higher during T-NM locomotion at both speeds.

  4. The oxidative burst reaction in mammalian cells depends on gravity.

    Science.gov (United States)

    Adrian, Astrid; Schoppmann, Kathrin; Sromicki, Juri; Brungs, Sonja; von der Wiesche, Melanie; Hock, Bertold; Kolanus, Waldemar; Hemmersbach, Ruth; Ullrich, Oliver

    2013-12-20

    Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in "functional weightlessness" were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function

  5. Pulmonary function in space

    Science.gov (United States)

    West, J. B.; Elliott, A. R.; Guy, H. J.; Prisk, G. K.

    1997-01-01

    The lung is exquisitely sensitive to gravity, and so it is of interest to know how its function is altered in the weightlessness of space. Studies on National Aeronautics and Space Administration (NASA) Spacelabs during the last 4 years have provided the first comprehensive data on the extensive changes in pulmonary function that occur in sustained microgravity. Measurements of pulmonary function were made on astronauts during space shuttle flights lasting 9 and 14 days and were compared with extensive ground-based measurements before and after the flights. Compared with preflight measurements, cardiac output increased by 18% during space flight, and stroke volume increased by 46%. Paradoxically, the increase in stroke volume occurred in the face of reductions in central venous pressure and circulating blood volume. Diffusing capacity increased by 28%, and the increase in the diffusing capacity of the alveolar membrane was unexpectedly large based on findings in normal gravity. The change in the alveolar membrane may reflect the effects of uniform filling of the pulmonary capillary bed. Distributions of blood flow and ventilation throughout the lung were more uniform in space, but some unevenness remained, indicating the importance of nongravitational factors. A surprising finding was that airway closing volume was approximately the same in microgravity and in normal gravity, emphasizing the importance of mechanical properties of the airways in determining whether they close. Residual volume was unexpectedly reduced by 18% in microgravity, possibly because of uniform alveolar expansion. The findings indicate that pulmonary function is greatly altered in microgravity, but none of the changes observed so far will apparently limit long-term space flight. In addition, the data help to clarify how gravity affects pulmonary function in the normal gravity environment on Earth.

  6. Potential sites for the perception of gravity in the acellular slime mold Physarum polycephalum.

    Science.gov (United States)

    Block, I; Briegleb, W

    1989-01-01

    Recently a gravisensitivity of the acellular slime mold Physarum polycephalum, which possesses no specialized gravireceptor, could be established by conducting experiments under simulated and under real near weightlessness. In these experiments macroplasmodia showed a modulation of their contraction rhythm followed by regulation phenomena. Until now the perception mechanism for the gravistimulus is unknown, but several findings indicate the involvement of mitochondria: A) During the impediment of respiration the 0g-reaction is inhibited and the regulation is reduced. B) The response to a light stimulus and the following regulation phenomena strongly resemble the behavior during exposure to 0g, the only difference is that the two reactions are directed into opposite directions. In the blue-light reaction a flavin of the mitochondrial matrix seems to be involved in the light perception. C) The contraction rhythm as well as its modulations are coupled to rhythmic changes in the levels of ATP and calcium ions, involving the mitochondria as sites of energy production and of Ca(++)-storage. So the mitochondria could be the site of the regulation and they possibly are the receptor sites for the light and gravity stimuli. Also the observation of a morphologic polarity of the slime mold's plasmodial strands has to be considered: Cross-sections reveal that the ectoplasmic wall surrounding the streaming endoplasm is much thinner on the physically lower side than on the upper side of the strand--this applies to strands lying on or hanging on a horizontal surface. So, in addition to the mitochondria, also the morphologic polarity may be involved in the perception mechanism of the observed gravisensitivity and of the recently established geotaxis. The potential role of the nuclei and of the contractile elements in the perception of gravity is also discussed.

  7. Human Locomotion in Hypogravity: From Basic Research to Clinical Applications

    Directory of Open Access Journals (Sweden)

    Francesco Lacquaniti

    2017-11-01

    Full Text Available We have considerable knowledge about the mechanisms underlying compensation of Earth gravity during locomotion, a knowledge obtained from physiological, biomechanical, modeling, developmental, comparative, and paleoanthropological studies. By contrast, we know much less about locomotion and movement in general under sustained hypogravity. This lack of information poses a serious problem for human space exploration. In a near future humans will walk again on the Moon and for the first time on Mars. It would be important to predict how they will move around, since we know that locomotion and mobility in general may be jeopardized in hypogravity, especially when landing after a prolonged weightlessness of the space flight. The combination of muscle weakness, of wearing a cumbersome spacesuit, and of maladaptive patterns of locomotion in hypogravity significantly increase the risk of falls and injuries. Much of what we currently know about locomotion in hypogravity derives from the video archives of the Apollo missions on the Moon, the experiments performed with parabolic flight or with body weight support on Earth, and the theoretical models. These are the topics of our review, along with the issue of the application of simulated hypogravity in rehabilitation to help patients with deambulation problems. We consider several issues that are common to the field of space science and clinical rehabilitation: the general principles governing locomotion in hypogravity, the methods used to reduce gravity effects on locomotion, the extent to which the resulting behavior is comparable across different methods, the important non-linearities of several locomotor parameters as a function of the gravity reduction, the need to use multiple methods to obtain reliable results, and the need to tailor the methods individually based on the physiology and medical history of each person.

  8. Theoretical response of a ZnS(Ag) scintillation detector to alpha-emitting sources and suggested applications

    International Nuclear Information System (INIS)

    Skrable, K.W.; Phoenix, K.A.; Chabot, G.E.; French, C.S.; Jo, M.; Falo, G.A.

    1991-01-01

    The classic problem of alpha absorption is discussed in terms of the quantitative determination of the activity of weightless alpha sources and the specific alpha activity of extended sources accounting for absorption in the source medium and the window of a large area ZnS(Ag) scintillation detector. The relationship for the expected counting rate gamma of a monoenergetic source of active area A, specific alpha activity C, and thickness H that exceeds the effective mass density range Rs of the alpha particle in the source medium can be expressed by a quadratic equation in the window thickness x when this source is placed in direct contact with the window of the ZnS(Ag) detector. This expression also gives the expected counting rate of a finite detector of sensitive area A exposed to an infinite homogeneous source medium. Counting rates y obtained for a source separated from a ZnS(Ag) detector by different thicknesses x of window material can be used to estimate parameter values in the quadratic equation, y = a + bx + cx2. The experimental value determined for the coefficient b provides a direct estimation of the specific activity C. This coefficient, which depends on the ratio of the ranges in the source medium and detector window and not the ranges themselves, is essentially independent of the energy of the alpha particle. Although certain experimental precautions must be taken, this method for estimating the specific activity C is essentially an absolute method that does not require the use of standards, special calibrations, or complicated radiochemical procedures. Applications include the quantitative determination of Rn and progeny in air, water, and charcoal, and the measurement of the alpha activity in soil and on air filter samples

  9. Neocytolysis: none, one or many? A reappraisal and future perspectives

    Directory of Open Access Journals (Sweden)

    Angela eRisso

    2014-02-01

    Full Text Available Neocytolysis is the hypothesis formulated to explain experimental evidence of selective lysis of young red blood cells (RBCs (neocytes associated with decreased plasma levels of erythropoietin (EPO. In humans, it appears to take place whenever a fast RBC mass reduction is required, i.e. in astronauts during the first days of spaceflight under weightlessness, where a fast reduction in plasma volume and increase in haematocrit occur. EPO plasma levels then decline and a decrease in RBC mass takes place, apparently because of the selective lysis of the youngest, recently generated RBCs (neocytes. The same process seems to occur in people descending to sea level after acclimatization at high altitude. After descent, the polycythaemia developed at high altitude must be abrogated, and a rapid reduction in the number of circulating RBCs is obtained by a decrease in EPO synthesis and the lysis of what seem to be young RBCs. In vivo, neocytolysis seems to be abolished by EPO administration. More recent research has ascribed to neocytolysis the RBC destruction that occurs under such disparate pathophysiologic conditions as nephropathy, severe obstructive pulmonary disease, blood doping, and even malaria anaemia. According to the theory, EPO’s central role would be not only to stimulate the production of new RBCs in conditions of anaemia, as maintained by the orthodox view, but also that of a cytoprotective factor for circulating young RBCs. Why neocytes are specifically destroyed and how is this related to decreased EPO levels has not yet been elucidated. Changes in membrane molecules of young RBCs isolated from astronauts or mountain climbers upon return to normal conditions seem to indicate a higher susceptibility of neocytes to ingestion by macrophages. By limiting the context to space missions and high altitude expeditions, this review will address unresolved and critical issues that in our opinion have not been sufficiently highlighted in previous

  10. Mars Surface Environmental Issues

    Science.gov (United States)

    Charles, John

    2002-01-01

    Planetary exploration by astronauts will require extended periods of habitation on a planet's surface, under the influence of environmental factors that are different from those of Earth and the spacecraft that delivered the crew to the planet. Human exploration of Mars, a possible near-term planetary objective, can be considered a challenging scenario. Mission scenarios currently under consideration call for surface habitation periods of from 1 to 18 months on even the earliest expeditions. Methods: Environmental issues associated with Mars exploration have been investigated by NASA and the National Space Biomedical Research Institute (NSBRI) as part of the Bioastronautics Critical Path Roadmap Project (see http ://criticalpath.jsc.nasa.gov). Results: Arrival on Mars will immediately expose the crew to gravity only 38% of that at Earth's surface in possibly the first prolonged exposure to gravity other than the 1G of Earth's surface and the zero G of weightless space flight, with yet unknown effects on crew physiology. The radiation at Mars' surface is not well documented, although the planet's bulk and even its thin atmosphere may moderate the influx of galactic cosmic radiation and energetic protons from solar flares. Secondary radiation from activated components of the soil must also be considered. Ultrafine and larger respirable and nonrespirable particles in Martian dust introduced into the habitat after surface excursions may induce pulmonary inflammation exacerbated by the additive reactive and oxidizing nature of the dust. Stringent decontamination cannot eliminate mechanical and corrosive effects of the dust on pressure suits and exposed machinery. The biohazard potential of putative indigenous Martian microorganisms may be assessed by comparison with analog environments on Earth. Even in their absence, human microorganisms, if not properly controlled, can be a threat to the crew's health. Conclusions: Mars' surface offers a substantial challenge to the

  11. Considerations for Conducting Plant Research in Open Atmosphere Chambers on ISS

    Science.gov (United States)

    Wheeler, Raymond; Hummerick, Mary; Graham, Thomas; Dixit, Anirudha; Massa, Gioia

    The access to spaceflight and now the International Space Station has provided plant researchers a laboratory that is in continuous freefall (near weightlessness). As veteran spaceflight investigators know too well, research in space is difficult to conduct and the experiments are often confounded by secondary events. An example of this is the distribution of water and gases in rooting systems in µ-gravity. Since the water does not settle to the ”bottom” of the rooting media in space, there can be poor distribution and movement of water and oxygen, which in turn can stress the plants. This also creates challenges for conducting ground controls where the logical approach is to use the same volume of water as in space. But under 1-g, the water does settle to the bottom of the root zone, which leaves less in the upper profile of the rooting medium. In addition, some chambers such as the Russian Svet (on Mir), Lada (ISS), and NASA’s Veggie chamber were or are open to the cabin air. This simplifies the hardware development and allows the use of cabin air for cooling and supplying CO2 to the plants. Yet it also exposes the plants to the cabin air, which could have very high CO2 levels (e.g., 3000 to 6000 ppm), low humidity, and trace contaminants that might be below the limits for human concerns but could still affect plants. A known effect of these “super-elevated” CO2 levels on many dicot species is increased transpiration due to elevated stomatal conductance, both during the light and the dark cycles. Examples of these secondary effects will be discussed, along with potential approaches for conducting adequate ground controls.

  12. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.

    Science.gov (United States)

    Wu, Wen; Fong, Justin; Crocher, Vincent; Lee, Peter V S; Oetomo, Denny; Tan, Ying; Ackland, David C

    2018-04-27

    Robotic-assistive exoskeletons can enable frequent repetitive movements without the presence of a full-time therapist; however, human-machine interaction and the capacity of powered exoskeletons to attenuate shoulder muscle and joint loading is poorly understood. This study aimed to quantify shoulder muscle and joint force during assisted activities of daily living using a powered robotic upper limb exoskeleton (ArmeoPower, Hocoma). Six healthy male subjects performed abduction, flexion, horizontal flexion, reaching and nose touching activities. These tasks were repeated under two conditions: (i) the exoskeleton compensating only for its own weight, and (ii) the exoskeleton providing full upper limb gravity compensation (i.e., weightlessness). Muscle EMG, joint kinematics and joint torques were simultaneously recorded, and shoulder muscle and joint forces calculated using personalized musculoskeletal models of each subject's upper limb. The exoskeleton reduced peak joint torques, muscle forces and joint loading by up to 74.8% (0.113 Nm/kg), 88.8% (5.8%BW) and 68.4% (75.6%BW), respectively, with the degree of load attenuation strongly task dependent. The peak compressive, anterior and superior glenohumeral joint force during assisted nose touching was 36.4% (24.6%BW), 72.4% (13.1%BW) and 85.0% (17.2%BW) lower than that during unassisted nose touching, respectively. The present study showed that upper limb weight compensation using an assistive exoskeleton may increase glenohumeral joint stability, since deltoid muscle force, which is the primary contributor to superior glenohumeral joint shear, is attenuated; however, prominent exoskeleton interaction moments are required to position and control the upper limb in space, even under full gravity compensation conditions. The modeling framework and results may be useful in planning targeted upper limb robotic rehabilitation tasks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Nutrition Coupled with High-Load Traditional or Low-Load Blood Flow Restricted Exercise During Human Limb Suspension

    Science.gov (United States)

    Hackney, K. J.; Everett, M.; Ploutz-Snyder, L. L.

    2011-01-01

    High-load resistance exercise (HRE) and low-load blood flow restricted (BFR) exercise have demonstrated efficacy for attenuating unloading related muscle atrophy and dysfunction. In recreational exercisers, protein consumption immediately before and/or after exercise has been shown to increase the skeletal muscle anabolic response to resistance training. PURPOSE: To compare the skeletal muscle adaptations when chocolate milk intake was coupled with HRE or low-load BFR exercise [3 d/wk] during simulated lower limb weightlessness. METHODS: Eleven subjects were counterbalanced [based on age and gender] to HRE (31 +/- 14 yr, 170 +/- 13 cm, 71 +/- 18 kg, 2M/3W) or low-load BFR exercise (31 +/- 12 yr, 169 +/- 13 cm, 66 +/- 14 kg, 2M/4W) during 30 days of unilateral lower limb suspension (ULLS). Both HRE and BFR completed 3 sets of single leg press and calf raise exercise during ULLS. BFR exercise intensity was 20% of repetition maximum (1RM) with a cuff inflation pressure of 1.3 systolic blood pressure (143 4 mmHg). Cuff pressure was maintained during all 3 sets including rest intervals (90s). HRE intensity was 75% 1RM and was performed without cuff inflation. Immediately (HRE vs. BFR, respectively. Leg press training loads were 44 +/- 7 kg in HRE compared to 11 +/- 1 kg in BFR. Similarly, calf raise training loads were 81 +/- 11 kg in HRE and 16 +/- 1 kg in BFR. Pre to post-ULLS training adaptations in the unloaded leg are shown in the table. CONCLUSION: The preliminary results of this investigation suggest when HRE is optimized for muscle anabolism during unloading muscle size and strength are preserved (or enhanced) at the expense of muscle endurance. In contrast, when BFR exercise is optimized for muscle anabolism during unloading muscle endurance is preserved (or enhanced) at the expense of muscle size and strength

  14. Spaceflight-induced changes in white matter hyperintensity burden in astronauts.

    Science.gov (United States)

    Alperin, Noam; Bagci, Ahmet M; Lee, Sang H

    2017-11-21

    To assess the effect of weightlessness and the respective roles of CSF and vascular fluid on changes in white matter hyperintensity (WMH) burden in astronauts. We analyzed prespaceflight and postspaceflight brain MRI scans from 17 astronauts, 10 who flew a long-duration mission on the International Space Station (ISS) and 7 who flew a short-duration mission on the Space Shuttle. Automated analysis methods were used to determine preflight to postflight changes in periventricular and deep WMH, CSF, and brain tissue volumes in fluid-attenuated inversion recovery and high-resolution 3-dimensional T1-weighted imaging. Differences between cohorts and associations between individual measures were assessed. The short-term reversibility of the identified preflight to postflight changes was tested in a subcohort of 5 long-duration astronauts who had a second postflight MRI scan 1 month after the first postflight scan. Significant preflight to postflight changes were measured only in the long-duration cohort and included only the periventricular WMH and ventricular CSF volumes. Changes in deep WMH and brain tissue volumes were not significant in either cohort. The increase in periventricular WMH volume was significantly associated with an increase in ventricular CSF volume (ρ = 0.63, p = 0.008). A partial reversal of these increases was observed in the long-duration subcohort with a 1-month follow-up scan. Long-duration exposure to microgravity is associated with an increase in periventricular WMH in astronauts. This increase was linked to an increase in ventricular CSF volume documented in ISS astronauts. There was no associated change in or abnormal levels of WMH volumes in deep white matter as reported in U-2 high-altitude pilots. © 2017 American Academy of Neurology.

  15. Changes of the eye during long-term spaceflight. Review

    Directory of Open Access Journals (Sweden)

    I. A. Makarov

    2016-01-01

    Full Text Available The review includes the publications of the scientific literature on the eye change during long-term spaceflight. The any eye changes such as visual impairment, hyperopic shift in refraction, changes in the intraocular pressure, increased the intracranial pressure, globe flattening, choroidal folding, optic disc edema, and optic nerve kinking and other changes were reported. The main cause of eye disorders, in all probability, is the increase of the intracranial pressure during long-term spaceflight. The reasons of the increased intracranial pressure are a collection of various factors of adaptation mechanisms in the body to weightless conditions. The leading role in the development of intracranial hypertension takes a redistribution of the body fluids (blood and lymph in the direction of the head, but the opportunities and the effect of other factors are present. Also the displacement and increase of the internal organs volume of the chest can cause external compression of the jugular veins, increasing the pressure of the blood in them, and as the result to lead to the increase of the intracranial pressure. The role of trigger such mechanisms in the development of the intracranial hypertension in the microgravity environment as anatomical predisposition of the body, race, metabolic changes under the influence of high carbon dioxide content in the different compartments of the station, high sodium intake, the enzyme dysfunction, weight exercises of the astronauts was discussed. However, the pathogenic mechanisms is currently still under investigation. An important role in the study of the adaptation mechanisms is given to research not only before and after the flight, but also during the space flight. The accumulated knowledge and experience about the changes in organs and systems in the conditions of human adaptation to microgravity will help answer many questions related to the implementation of the long spaceflights.

  16. Social Media and Student Engagement in a Microgravity Planetary Science Experiment

    Science.gov (United States)

    Lane, S. S.; Lai, K.; Hoover, B.; Whitaker, A.; Tiller, C.; Benjamin, S.; Dove, A.; Colwell, J. E.

    2014-12-01

    The Collisional Accretion Experiment (CATE) is a planetary science experiment funded by NASA's Undergraduate Instrumentation Program (USIP). CATE is a microgravity experiment to study low-velocity collisions between cm-sized particles and 0.1-1.0 mm-sized particles in vacuum to better understand the conditions for accretion in the protoplanetary disk as well as collisions in planetary ring systems. CATE flew on three parabolic airplane flights in July, 2014, using NASA's "Weightless Wonder VI" aircraft. A significant part of the project was documenting the experience of designing, building, testing, and flying spaceflight hardware from the perspective of the undergraduates working on the experiment. The outreach effort was aimed at providing high schools students interested in STEM careers with a first-person view of hands-on student research at the university level. We also targeted undergraduates at the University of Central Florida to make them aware of space research on campus. The CATE team pursued multiple outlets, from social media to presentations at local schools, to connect with the public and with younger students. We created a website which hosted a blog, links to media publications that ran our story, videos, and galleries of images from work in the lab throughout the year. In addition the project had Facebook, Twitter, and Instagram accounts. These social media outlets had much more traffic than the website except during the flight week when photos posted on the blog generated significant traffic. The most effective means of communicating the project to the target audience, however, was through face-to-face presentations in classrooms. We saw a large increase in followers on Twitter and Instagram as the flight campaign got closer and while we were there. The main source of followers came after we presented to local high school students. These presentations were made by the undergraduate student team and the faculty mentors (Colwell and Dove).

  17. Mammalian development in space

    Science.gov (United States)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  18. Catching what we can't see: manual interception of occluded fly-ball trajectories.

    Science.gov (United States)

    Bosco, Gianfranco; Delle Monache, Sergio; Lacquaniti, Francesco

    2012-01-01

    Control of interceptive actions may involve fine interplay between feedback-based and predictive mechanisms. These processes rely heavily on target motion information available when the target is visible. However, short-term visual memory signals as well as implicit knowledge about the environment may also contribute to elaborate a predictive representation of the target trajectory, especially when visual feedback is partially unavailable because other objects occlude the visual target. To determine how different processes and information sources are integrated in the control of the interceptive action, we manipulated a computer-generated visual environment representing a baseball game. Twenty-four subjects intercepted fly-ball trajectories by moving a mouse cursor and by indicating the interception with a button press. In two separate sessions, fly-ball trajectories were either fully visible or occluded for 750, 1000 or 1250 ms before ball landing. Natural ball motion was perturbed during the descending trajectory with effects of either weightlessness (0 g) or increased gravity (2 g) at times such that, for occluded trajectories, 500 ms of perturbed motion were visible before ball disappearance. To examine the contribution of previous visual experience with the perturbed trajectories to the interception of invisible targets, the order of visible and occluded sessions was permuted among subjects. Under these experimental conditions, we showed that, with fully visible targets, subjects combined servo-control and predictive strategies. Instead, when intercepting occluded targets, subjects relied mostly on predictive mechanisms based, however, on different type of information depending on previous visual experience. In fact, subjects without prior experience of the perturbed trajectories showed interceptive errors consistent with predictive estimates of the ball trajectory based on a-priori knowledge of gravity. Conversely, the interceptive responses of subjects

  19. Local vibration enhanced the efficacy of passive exercise on mitigating bone loss in hindlimb unloading rats

    Science.gov (United States)

    Huang, Yunfei; Luan, Huiqin; Sun, Lianwen; Bi, Jingfang; Wang, Ying; Fan, Yubo

    2017-08-01

    Spaceflight induced bone loss is seriously affecting astronauts. Mechanical stimulation from exercise has been shown to restrain bone resorption as well as improve bone formation. Current exercise countermeasures in space cannot prevent it completely. Active exercise may convert to passive exercise in some ways because of the loss of gravity stimulus and inertia of exercise equipment. The aim of this study was to compare the efficacy of passive exercise or/and local vibration on counteracting the deterioration of the musculoskeletal system, including bone, muscle and tendons in tail-suspended rats. We hypothesized that local vibration could enhance the efficacy of passive exercise on countering bone loss. 40 Sprague Dawley rats were randomly distributed into five groups (n = 8, each): tail-suspension (TS), TS+35 Hz vibration (TSV), TS + passive exercise (TSP), TS + passive exercise coupled with 35 Hz vibration (TSPV) and control (CON). Passive exercise or/and local vibration was performed for 21 days. On day 0 and 21, bone mineral density (BMD) was observed by dual energy X-ray absorptiometry (DXA), and trabecular microstructure was evaluated by microcomputer tomography (μCT) analysis in vivo. Mechanical properties of tibia and tendon were determined by a mechanical testing system. Soleus and bone ash weight was tested by an electronic balance. Results showed that the passive exercise could not prevent the decrease of trabecular BMD, microstructure and bone ash weight induced by TS, whereas vibration and passive exercise coupled with local vibration (PV) could. Biomechanical properties of the tibia and tendon in TSPV group significantly increased compared with TS group. In summary, PV in this study was the best method in preventing weightlessness-induced bone loss. Consistent with our hypothesis, local vibration partly enhanced the effect of passive exercise. Furthermore, this study will be useful in improving countermeasure for astronauts, but also for the

  20. Earthing the Human Body Influences Physiologic Processes

    Science.gov (United States)

    Sokal, Karol

    2011-01-01

    Abstract Objectives This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments Five (5) experiments are presented: experiment 1—effect of earthing on calcium–phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2—effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3—effect of earthing on thyroid function (N = 12); experiment 4—effect of earthing on glucose concentration (N = 12); experiment 5—effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Results Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Conclusions Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium–phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems. PMID:21469913

  1. Human Locomotion in Hypogravity: From Basic Research to Clinical Applications.

    Science.gov (United States)

    Lacquaniti, Francesco; Ivanenko, Yury P; Sylos-Labini, Francesca; La Scaleia, Valentina; La Scaleia, Barbara; Willems, Patrick A; Zago, Myrka

    2017-01-01

    We have considerable knowledge about the mechanisms underlying compensation of Earth gravity during locomotion, a knowledge obtained from physiological, biomechanical, modeling, developmental, comparative, and paleoanthropological studies. By contrast, we know much less about locomotion and movement in general under sustained hypogravity. This lack of information poses a serious problem for human space exploration. In a near future humans will walk again on the Moon and for the first time on Mars. It would be important to predict how they will move around, since we know that locomotion and mobility in general may be jeopardized in hypogravity, especially when landing after a prolonged weightlessness of the space flight. The combination of muscle weakness, of wearing a cumbersome spacesuit, and of maladaptive patterns of locomotion in hypogravity significantly increase the risk of falls and injuries. Much of what we currently know about locomotion in hypogravity derives from the video archives of the Apollo missions on the Moon, the experiments performed with parabolic flight or with body weight support on Earth, and the theoretical models. These are the topics of our review, along with the issue of the application of simulated hypogravity in rehabilitation to help patients with deambulation problems. We consider several issues that are common to the field of space science and clinical rehabilitation: the general principles governing locomotion in hypogravity, the methods used to reduce gravity effects on locomotion, the extent to which the resulting behavior is comparable across different methods, the important non-linearities of several locomotor parameters as a function of the gravity reduction, the need to use multiple methods to obtain reliable results, and the need to tailor the methods individually based on the physiology and medical history of each person.

  2. Dimple coalescence and liquid droplets distributions during phase separation in a pure fluid under microgravity.

    Science.gov (United States)

    Oprisan, Ana; Oprisan, Sorinel A; Hegseth, John J; Garrabos, Yves; Lecoutre-Chabot, Carole; Beysens, Daniel

    2014-09-01

    Phase separation has important implications for the mechanical, thermal, and electrical properties of materials. Weightless conditions prevent buoyancy and sedimentation from affecting the dynamics of phase separation and the morphology of the domains. In our experiments, sulfur hexafluoride (SF6) was initially heated about 1K above its critical temperature under microgravity conditions and then repeatedly quenched using temperature steps, the last one being of 3.6 mK, until it crossed its critical temperature and phase-separated into gas and liquid domains. Both full view (macroscopic) and microscopic view images of the sample cell unit were analyzed to determine the changes in the distribution of liquid droplet diameters during phase separation. Previously, dimple coalescences were only observed in density-matched binary liquid mixture near its critical point of miscibility. Here we present experimental evidences in support of dimple coalescence between phase-separated liquid droplets in pure, supercritical, fluids under microgravity conditions. Although both liquid mixtures and pure fluids belong to the same universality class, both the mass transport mechanisms and their thermophysical properties are significantly different. In supercritical pure fluids the transport of heat and mass are strongly coupled by the enthalpy of condensation, whereas in liquid mixtures mass transport processes are purely diffusive. The viscosity is also much smaller in pure fluids than in liquid mixtures. For these reasons, there are large differences in the fluctuation relaxation time and hydrodynamics flows that prompted this experimental investigation. We found that the number of droplets increases rapidly during the intermediate stage of phase separation. We also found that above a cutoff diameter of about 100 microns the size distribution of droplets follows a power law with an exponent close to -2, as predicted from phenomenological considerations.

  3. Stress and Recovery during Simulated Microgravity

    Science.gov (United States)

    Nicolas, Michel

    The aim of this study was to determine the effects of a 60-day head-down tilt long-term bed rest (HDT) on stress and recovery in sixteen healthy female volunteers during the WISE-2005 study (Women International Space Simulation for Exploration). Participants were randomly assigned to either an exercise group (Exe) that followed a training program combining resistive and aerobic exercises, or to a no-exercise control group (Ctl). Psychological states were assessed using the Rest-Q, a validated questionnaire based on stress-recovery responses. A longitudinal analysis revealed significant changes in the general and specific stress scales for all participants throughout the experiment with a critical stage from supine to standing posture leading to a significant decrease in physical recovery. During HDT, Exe reported higher scores in stress subscales, as well as lower recovery scores compared to the Ctl. During the post HDT ambulatory recovery period, the exercisers still reported higher scores than the non-exercisers on the Lack of energy stress related scale, along with lower scores in general well-being and personal accomplishment. The present findings show that simulated weightlessness such as HDT may induce psychological stress and lead to subsequent alterations in perceived recovery. Exercise did not reduce HDT impaired effects on stress and recovery states. In the perspective of spaceflights of long-duration such as the future missions to Mars, there is a need for additional experiments to further investigate spaceflight-induced changes of stress and recovery parameters and the effects of exercise on these parameters. Further studies might determine and analyze the psychological factors involved, but also how to intervene concerning these factors with efficient psychological preparation which, although not yet fully investigated, may reduce stress, promote recovery and support adaptive responses to such extreme environments.

  4. The Ergonomics of Human Space Flight: NASA Vehicles and Spacesuits

    Science.gov (United States)

    Reid, Christopher R.; Rajulu, Sudhakar

    2014-01-01

    Space...the final frontier...these are the voyages of the starship...wait, wait, wait...that's not right...let's try that again. NASA is currently focusing on developing multiple strategies to prepare humans for a future trip to Mars. This includes (1) learning and characterizing the human system while in the weightlessness of low earth orbit on the International Space Station and (2) seeding the creation of commercial inspired vehicles by providing guidance and funding to US companies. At the same time, NASA is slowly leading the efforts of reestablishing human deep space travel through the development of the Multi-Purpose Crew Vehicle (MPCV) known as Orion and the Space Launch System (SLS) with the interim aim of visiting and exploring an asteroid. Without Earth's gravity, current and future human space travel exposes humans to micro- and partial gravity conditions, which are known to force the body to adapt both physically and physiologically. Without the protection of Earth's atmosphere, space is hazardous to most living organisms. To protect themselves from these difficult conditions, Astronauts utilize pressurized spacesuits for both intravehicular travel and extravehicular activities (EVAs). Ensuring a safe living and working environment for space missions requires the creativity of scientists and engineers to assess and mitigate potential risks through engineering designs. The discipline of human factors and ergonomics at NASA is critical in making sure these designs are not just functionally designed for people to use, but are optimally designed to work within the capacities specific to the Astronaut Corps. This lecture will review both current and future NASA vehicles and spacesuits while providing an ergonomic perspective using case studies that were and are being carried out by the Anthropometry and Biomechanics Facility (ABF) at NASA's Johnson Space Center.

  5. Development of a model to assess orthostatic responses

    Science.gov (United States)

    Rubin, Marilyn

    1993-01-01

    A major change for crewmembers during weightlessness in microgravity is the redistribution of body fluids from the legs into the abdomen, thorax, and head. The fluids continue to be sequestered in these areas throughout the flight. Upon reentry into gravity on landing, these same body fluids are displaced again to their normal locations, however, not without hazardous incidence to the crewmembers. The problem remains that upon landing, crewmembers are subject to orthostasis, that is, the blood flowing into the legs reduces the blood supply to the brain and may result in the crewmember fainting. The purpose of this study was to develop a model of testing orthostatic responses of blood pressure regulating mechanisms of the cardiovascular system, when challenged, to maintain blood pressure to the brain. To accomplish this, subjects' responses were assessed as they proceeded from the supine position of progressive head-up tilt positions of 30 deg, 60 deg, and 90 deg angles. A convenience sample consisted of 21 subjects, females (N=11) and males (N=10), selected from a list of potential subjects available through the NASA subject screening office. The methodology included all non-invasive measurements of blood pressure, heart rate, echocardiograms, cardiac output, cardiac stroke volume, fluid shifts in the thorax, ventricular ejection and velocity times, and skin blood perfusion. The Fischer statistical analysis was done of all data with the significance level at .05. Significant differences were demonstrated in many instances of changes of posture for all variables. Based on the significance of the findings of this study, this model for assessing orthostatic responses does provide an adequate challenge to the blood pressure regulatory systems. While individuals may use different adaptations to incremental changes in gravity, the subjects, in aggregate, demonstrated significant adaptive cardiovascular changes to orthostatic challenges which were presented to them.

  6. High-Intensity Jump Training Is Tolerated during 60 Days of Bed Rest and Is Very Effective in Preserving Leg Power and Lean Body Mass: An Overview of the Cologne RSL Study.

    Directory of Open Access Journals (Sweden)

    Andreas Kramer

    Full Text Available Space agencies are looking for effective and efficient countermeasures for the degrading effects of weightlessness on the human body. The aim of this study was to assess the effects of a novel jump exercise countermeasure during bed rest on vitals, body mass, body composition, and jump performance.23 male participants (29±6 years, 181±6 cm, 77±7 kg were confined to a bed rest facility for 90 days: a 15-day ambulatory measurement phase, a 60-day six-degree head-down-tilt bed rest phase (HDT, and a 15-day ambulatory recovery phase. Participants were randomly allocated to the jump training group (JUMP, n = 12 or the control group (CTRL, n = 11. A typical training session consisted of 4x10 countermovement jumps and 2x10 hops in a sledge jump system. The training group had to complete 5-6 sessions per week.Peak force for the reactive hops (3.6±0.4 kN as well as jump height (35±4 cm and peak power (3.1±0.2 kW for the countermovement jumps could be maintained over the 60 days of HDT. Lean body mass decreased in CTRL but not in JUMP (-1.6±1.9 kg and 0±1.0 kg, respectively, interaction effect p = 0.03. Resting heart rate during recovery was significantly increased for CTRL but not for JUMP (interaction effect p<0.001.Participants tolerated the near-daily high-intensity jump training and maintained high peak forces and high power output during 60 days of bed rest. The countermeasure was effective in preserving lean body mass and partly preventing cardiac deconditioning with only several minutes of training per day.

  7. LPWAN – Low-power Wide-area Network. Communication for the Internet of Things.

    Directory of Open Access Journals (Sweden)

    Vladislav Viktorovich Sheshalevich

    2017-07-01

    Full Text Available Recent advances in the field of cheaper sensors and various devices to control the parameters of industrial and household equipment has led to the emergence of new communication technologies, the so-called Internet of things, "machine-to-machine" or M2M technologies. The main feature of these technologies is a network communication of the physical objects without direct human intervention. The specifics of using the Low-power Wide-area Network (LPWAN network for these new communication technologies are considered. The LPWAN technologies have significant prospects for development adding to already traditional technologies such as Wi-Fi and cellular. This very term describes an approach, the communication technologies, characterized by the principles of reducing the connection speed in order to achieve wider range and lower power consumption of end nodes. Based on this concept different companies have built the specific competing systems of communication, such as Sigfox (first LPWAN technology, LoRa (derived from Long Range Ingenu RPMA, Weightless-P, “Strizh” telematics (the Russian analog of Sigfox and others. Each of the systems applies different methods to increase the range of coverage, to lower energy consumption and to use different possibilities for scalability. The principles of functioning of these communication systems are analyzed below. The major attention is paid to describing the very popular LPWAN-technology LoRa as one of the most open technology for practical applications. It is based on the same name radio modulation using its own unique method to broaden a spectrum. The topology and the main components of this network, including the sensor (end device with a radio module, the LoRa gateway and its network architecture are described in detail. Examples are given of the LoRa systems emerging on the domestic market of the Internet of things.

  8. Do lower vertebrates suffer from motion sickness?

    Science.gov (United States)

    Lychakov, Dmitri

    The poster presents literature data and results of the author’s studies with the goal to find out whether the lower animals are susceptible to motion sickness (Lychakov, 2012). In our studies, fish and amphibians were tested for 2 h and more by using a rotating device (f = 0.24 Hz, a _{centrifugal} = 0.144 g) and a parallel swing (f = 0.2 Hz, a _{horizontal} = 0.059 g). The performed studies did not revealed in 4 fish species and in toads any characteristic reactions of the motion sickness (sopite syndrome, prodromal preparatory behavior, vomiting). At the same time, in toads there appeared characteristic stress reactions (escape response, an increase of the number of urinations, inhibition of appetite), as well as some other reactions not associated with motion sickness (regular head movements, eye retractions). In trout fry the used stimulation promoted division of the individuals into the groups differing by locomotor reaction to stress, as well as the individuals with the well-expressed compensatory reaction that we called the otolithotropic reaction. Analysis of results obtained by other authors confirms our conclusions. Thus, the lower vertebrates, unlike mammals, are immune to motion sickness either under the land conditions or under conditions of weightlessness. On the basis of available experimental data and theoretical concepts of mechanisms of development the motion sickness, formulated in several hypotheses (mismatch hypothesis, Traisman‘ s hypothesis, resonance hypothesis), there presented the synthetic hypothesis of motion sickness that has the conceptual significance. According to the hypothesis, the unusual stimulation producing sensor-motor or sensor-sensor conflict or an action of vestibular and visual stimuli of frequency of about 0.2 Hz is perceived by CNS as poisoning and causes the corresponding reactions. The motion sickness actually is a byproduct of technical evolution. It is suggested that in the lower vertebrates, unlike mammals

  9. Thrust Control During Towing of Space Debris using an Elastic Tether

    Directory of Open Access Journals (Sweden)

    A. D. Ledkov

    2014-01-01

    Full Text Available The paper considers a maneuver for deorbiting the large space debris using an active spacecraft connected with the debris by an elastic tether. Tether slacking during the maneuver can lead to the tether rupture, kinking, and winding on the descending object. Therefore it is important to prevent slacking. The objective of this work is to find the law of thrust force control of the active spacecraft to ensure a continuously strained tether during the maneuver.Using Lagrange formalism a mathematical model to describe the system plane motion is developed. This model considers the active spacecraft as a mass point, the space debris as a rigid body, and the tether as a weightless elastic rod. A thrust force is directed along the local horizon of the spacecraft. Linearization of nonlinear differential equation describing longitudinal oscillations of the tether length is performed. Its phase portrait is analyzed. An approximate expression describing the position of the center on the phase portrait is obtained. A time-optimal control with full feedback to ensure that the tether is in the strained state is found by solving the Bellman equation. To use the obtained optimal law it is necessary to set the measuring equipment on the spacecraft, which is capable of accurate measuring a distance to the space debris and its relative velocity. An alternative control law, which is simpler in terms of the practical implementation, is proposed. As an example, the descent from an orbit of nonfunctioning Soviet satellite Meteor-2 is considered. It is shown that both proposed laws provide continuous strain of the tether during deorbiting of the satellite. Moreover, slack does not occur even at the first period of oscillation of the tether length. It is shown that the use of the proposed control laws leads to slight increase of deorbiting time as compared to the case of using the constant thrust.The results can be used to develop the control systems of small spacecrafts

  10. Induction of DNA-strand breaks after X- irradiation in murine bone cells of various differentiation capacities

    Science.gov (United States)

    Lau, P.; Hellweg, C. E.; Kirchner, S.; Arenz, A.; Baumstark-Khan, C.; Horneck, G.

    Bone loss resulting from long-duration space flight is a well known medical risk for space travellers, as a weakened skeleton is more susceptible to bone fractures. In addition to weightlessness the astronaut is also exposed to cosmic ionizing radiation. In order to elucidate changes in bone cell metabolism by ionizing radiation, a ground-based bone cell model has been developed. This model consists of a bunch of immortalized murine osteocyte, osteoblast and pre-osteoblast cell lines representing discrete stages of differentiation: The osteocyte cell line MLO-Y4 (obtained from L. Bonewald, Kansas City, USA), the osteoblast cell line OCT-1 (obtained from D. Chen, San Antonio, USA), and the subclones 4 and 24 of the osteoblast cell line MC3T3-E1 (obtained from ATCC, Manassas, Virginia, USA). Regarding their growth properties, MLO-Y4 cells show the highest growth velocity with a doubling time of 15.8 h. The osteoblast cell line OCT-1 has a doubling time of 27.3 h. The respective values for MC3T3-E1 subclone 24 and S4 are 90.5 h and 51.6 h. To investigate the stage of differentiation, the expression of alkaline phosphatase, of osteocalcin and of E11 was examined. Survival after X-ray exposure was determined using the colony forming ability test. The resulting dose-effect relationships revealed significant differences. The parameter D0 of the survival curves ranges between 1.8 Gy for OCT-1, 1.9 Gy for MLO-Y4, 2.0 Gy for subclone 24 and 2,3 Gy for subclone 4. The quantitative acquisition of DNA-strand breaks was performed by Fluorescent Analysis of DNA-Unwinding (FADU). The results can be correlated with the corresponding survival curve. In conclusion, the cell lines with higher differentiation levels are less sensitive to radiation when compared to the lower differentiated osteoblast cell lines.

  11. A platform for real-time online health analytics during spaceflight

    Science.gov (United States)

    McGregor, Carolyn

    Monitoring the health and wellbeing of astronauts during spaceflight is an important aspect of any manned mission. To date the monitoring has been based on a sequential set of discontinuous samplings of physiological data to support initial studies on aspects such as weightlessness, and its impact on the cardiovascular system and to perform proactive monitoring for health status. The research performed and the real-time monitoring has been hampered by the lack of a platform to enable a more continuous approach to real-time monitoring. While any spaceflight is monitored heavily by Mission Control, an important requirement within the context of any spaceflight setting and in particular where there are extended periods with a lack of communication with Mission Control, is the ability for the mission to operate in an autonomous manner. This paper presents a platform to enable real-time astronaut monitoring for prognostics and health management within space medicine using online health analytics. The platform is based on extending previous online health analytics research known as the Artemis and Artemis Cloud platforms which have demonstrated their relevance for multi-patient, multi-diagnosis and multi-stream temporal analysis in real-time for clinical management and research within Neonatal Intensive Care. Artemis and Artemis Cloud source data from a range of medical devices capable of transmission of the signal via wired or wireless connectivity and hence are well suited to process real-time data acquired from astronauts. A key benefit of this platform is its ability to monitor their health and wellbeing onboard the mission as well as enabling the astronaut's physiological data, and other clinical data, to be sent to the platform components at Mission Control at each stage when that communication is available. As a result, researchers at Mission Control would be able to simulate, deploy and tailor predictive analytics and diagnostics during the same spaceflight for

  12. Vitamin D endocrine system after short-term space flight

    Science.gov (United States)

    Rhoten, William B. (Principal Investigator); Sergeev, Igor N. (Principal Investigator)

    1996-01-01

    -term exposure to microgravity and modelled weightlessness, may affect cellular Ca(2+) homeostasis and contribute to Ca(2+) and bone metabolism disorders induced by space flight.

  13. Effect of Short-Term Hypergravity Treatment on Mouse 2-Cell Embryo Development

    Science.gov (United States)

    Ning, Li-Na; Lei, Xiao-Hua; Cao, Yu-Jing; Zhang, Yun-Fang; Cao, Zhong-Hong; Chen, Qi; Duan, En-Kui

    2015-11-01

    Though there are numerous biological experiments, which have been performed in a space environment, to study the physiological effect of space travel on living organisms, while the potential effect of weightlessness or short-term hypergravity on the reproductive system in most species, particularly in mammalian is still controversial and unclear. In our previous study, we investigated the effect of space microgravity on the development of mouse 4-cell embryos by using Chinese SJ-8. .Unexpectedly, we did not get any developed embryo during the space-flight. Considering that the process of space experiment is quite different from most experiments done on earth in several aspects such as, the vibration and short-term hypergravity during the rock launching and landing. Thus we want to know whether the short-term hypergravity produced by the launch process affect the early embryo development in mice, and howthe early embryos respond to the hypergravity. In present study, we are mimicking the short-term hypergravity during launch by using a centrifuge to investigate its influence on the development of early embryo (2-cell) in mice. We also examined the actin filament distribution in 2-cell embryos by immunostaining to test their potential capacity of development under short-term hypergravity exposure. Our results showed that most 2-cell embryos in the hypergravity exposure groups developed into blastocysts with normal morphology after 72h cultured in vitro, and there is no obvious difference in the development rate of blastocyst formation compared to the control. Moreover, there were no statistically significant differences in birth rates after oviduct transfer of 2-cell mouse embryos exposed on short-term hypergravity compared with 1 g condition. In addition, the well-organized actin distribution appeared in 2-cell embryos after exposed on hypergravity and also in the subsequent developmental blastocysts. Taken together, our data shows that short-term exposure in

  14. In-flight Assessment of Lower Body Negative Pressure as a Countermeasure for Post-flight Orthostatic Intolerance

    Science.gov (United States)

    Charles, J. B.; Stenger, M. B.; Phillips, T. R.; Arzeno, N. M.; Lee, S. M. C.

    2009-01-01

    Introduction. We investigated the efficacy of combining fluid loading with sustained lower body negative pressure (LBNP) to reverse orthostatic intolerance associated with weightlessness during and immediately after Space Shuttle missions. Methods. Shuttle astronauts (n=13) underwent 4 hours of LBNP at -30 mm(Hg) and ingested water and salt ( soak treatment) during flight in two complementary studies. In the first study (n=8), pre-flight heart rate (HR) and blood pressure (BP) responses to an LBNP ramp (5-min stages of -10 mm(Hg) steps to -50 mm(Hg) were compared to responses in-flight one and two days after LBNP soak treatment. In the second study (n=5), the soak was performed 24 hr before landing, and post-flight stand test results of soak subjects were compared with those of an untreated cohort (n=7). In both studies, the soak was scheduled late in the mission and was preceded by LBNP ramp tests at approximately 3-day intervals to document the in-flight loss of orthostatic tolerance. Results. Increased HR and decreased BP responses to LBNP were evident early in-flight. In-flight, one day after LBNP soak, HR and BP responses to LBNP were not different from pre-flight, but the effect was absent the second day after treatment. Post-flight there were no between-group differences in HR and BP responses to standing, but all 5 treatment subjects completed the 5-minute stand test whereas 2 of 7 untreated cohort subjects did not. Discussion. Exaggerated HR and BP responses to LBNP were evident within the first few days of space flight, extending results from Skylab. The combined LBNP and fluid ingestion countermeasure restored in-flight LBNP HR and BP responses to pre-flight levels and provided protection of post-landing orthostatic function. Unfortunately, any benefits of the combined countermeasure were offset by the complexity of its implementation, making it inappropriate for routine application during Shuttle flights.

  15. Multi-System Deconditioning in 3-Day Dry Immersion without Daily Raise

    Directory of Open Access Journals (Sweden)

    Steven De Abreu

    2017-10-01

    Full Text Available Dry immersion (DI is a Russian-developed, ground-based model to study the physiological effects of microgravity. It accurately reproduces environmental conditions of weightlessness, such as enhanced physical inactivity, suppression of hydrostatic pressure and supportlessness. We aimed to study the integrative physiological responses to a 3-day strict DI protocol in 12 healthy men, and to assess the extent of multi-system deconditioning. We recorded general clinical data, biological data and evaluated body fluid changes. Cardiovascular deconditioning was evaluated using orthostatic tolerance tests (Lower Body Negative Pressure + tilt and progressive tilt. Metabolic state was tested with oral glucose tolerance test. Muscular deconditioning was assessed via muscle tone measurement.Results: Orthostatic tolerance time dropped from 27 ± 1 to 9 ± 2 min after DI. Significant impairment in glucose tolerance was observed. Net insulin response increased by 72 ± 23% on the third day of DI compared to baseline. Global leg muscle tone was approximately 10% reduced under immersion. Day-night changes in temperature, heart rate and blood pressure were preserved on the third day of DI. Day-night variations of urinary K+ diminished, beginning at the second day of immersion, while 24-h K+ excretion remained stable throughout. Urinary cortisol and melatonin metabolite increased with DI, although within normal limits. A positive correlation was observed between lumbar pain intensity, estimated on the second day of DI, and mean 24-h urinary cortisol under DI. In conclusion, DI represents an accurate and rapid model of gravitational deconditioning. The extent of glucose tolerance impairment may be linked to constant enhanced muscle inactivity. Muscle tone reduction may reflect the reaction of postural muscles to withdrawal of support. Relatively modest increases in cortisol suggest that DI induces a moderate stress effect. In prospect, this advanced ground

  16. Microgravity Active Vibration Isolation System on Parabolic Flights

    Science.gov (United States)

    Dong, Wenbo; Pletser, Vladimir; Yang, Yang

    2016-07-01

    The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the

  17. SLS-Derived Lab: Precursor to Deep Space Human Exploration

    Science.gov (United States)

    Griffin, Brand; Lewis, Ruthan; Eppler, Dean; Smitherman, David

    2014-01-01

    Plans to send humans to Mars are in work and the launch system is being built. Are we ready? Robotic missions have successfully demonstrated transportation, entry, landing and surface operations but for human missions there are significant, potentially show-stopping issues. These issues, called Strategic Knowledge Gaps (SKGs) are the unanswered questions concerning long-duration exploration beyond low-earth-orbit. The gaps represent a risk of loss of life or mission and because they require extended exposure to the weightless environment outside earth's protective geo-magnetic field they cannot be resolved on the earth or on the International Space Station (ISS). Placing a laboratory at the relatively close and stable lunar Distant Retrograde Orbit (DRO) provides an accessible location with the requisite environmental conditions for conducting SKG research and testing mitigation solutions. Configurations comprised of multiple 3 meter and 4.3 meter diameter modules have been studied but the most attractive solution uses elements of the human Mars launch vehicle or Space Launch System (SLS) for a Mars proving ground laboratory. A shortened version of an SLS hydrogen propellant tank creates a Skylab-like pressure vessel that flies fully outfitted on a single launch. This not only offers significant savings by incorporating SLS pressure vessel development costs but avoids the expensive ISS approach using many launches with substantial on-orbit assembly before becoming operational. One of the most challenging SKGs is crew radiation protection; this is why SKG laboratory research is combined with Mars transit Habitat systems development. Fundamentally, the two cannot be divorced because using the habitat systems for protection requires actual hardware geometry and material properties intended to contribute to shielding effectiveness. The SKGs are difficult problems, solutions are not obvious, and require integrated, iterative, and multi-disciplinary development. A lunar

  18. SLS-Derived Lab- Precursor to Deep Space Human Exploration

    Science.gov (United States)

    Griffin, Brand M.; Lewis, Ruthan; Eppler, Dean; Smitherman, David

    2015-01-01

    Plans to send humans to Mars are in the works and the launch system is being built. Are we ready? Transportation, entry, landing, and surface operations have been successfully demonstrated for robotic missions. However, for human missions, there are significant, potentially show-stopping issues. These issues, called Strategic Knowledge Gaps (SKGs), are the unanswered questions concerning long duration exploration Beyond low Earth Orbit (BEO). The gaps represent a risk of loss of life or mission and because they require extended exposure to the weightless environment outside of earth's protective geo-magnetic field, they cannot be resolved on Earth or on the International Space Station (ISS). Placing a laboratory at a relatively close and stable lunar Distant Retrograde Orbit (DRO) provides an accessible location with the requisite environmental conditions for conducting SKG research and testing mitigation solutions. Configurations comprised of multiple 3 m and 4.3 m diameter modules have been studied but the most attractive solution uses elements of the human Mars launch vehicle or Space Launch System (SLS) for a Mars proving ground laboratory. A shortened version of an SLS hydrogen propellant tank creates a Skylab-like pressure vessel that flies fully outfitted on a single launch. This not only offers significant savings by incorporating SLS pressure vessel development costs but avoids the expensive ISS approach using many launches with substantial on-orbit assembly before becoming operational. One of the most challenging SKGs is crew radiation protection; this is why SKG laboratory research is combined with Mars transit habitat systems development. Fundamentally, the two cannot be divorced because using the habitat systems for protection requires actual hardware geometry and material properties intended to contribute to shielding effectiveness. The SKGs are difficult problems. The solutions to these problems are not obvious; they require integrated, iterative

  19. Analysis of miRNA and mRNA Expression Profiles Highlights Alterations in Ionizing Radiation Response of Human Lymphocytes under Modeled Microgravity

    Science.gov (United States)

    Casara, Silvia; Sales, Gabriele; Lanfranchi, Gerolamo; Celotti, Lucia; Mognato, Maddalena

    2012-01-01

    Background Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs) small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure. Methodology/Principal Findings We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL) incubated for 4 and 24 h in normal gravity (1 g) and in modeled microgravity (MMG) during the repair time after irradiation with 0.2 and 2Gy of γ-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of “Response to DNA damage” is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses. Conclusions/Significance On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL. PMID:22347458

  20. Human health and performance considerations for near earth asteroids (NEA)

    Science.gov (United States)

    Steinberg, Susan; Kundrot, Craig; Charles, John

    2013-11-01

    Humans are considered as a system in the design of any deep space exploration mission. The addition of many potential near asteroid (NEA) destinations to the existing multiple mission architecture for Lunar and Mars missions increases the complexity of human health and performance issues that are anticipated for exploration of space. We suggest that risks to human health and performance be analyzed in terms of the 4 major parameters related to multiple mission architecture: destination, duration, distance and vehicle design. Geological properties of the NEA will influence design of exploration tasks related to sample handling and containment, and extravehicular activity (EVA) capabilities including suit ports and tools. A robotic precursor mission that collects basic information on NEA surface properties would reduce uncertainty about these aspects of the mission as well as aid in mission architecture and exploration task design. Key mission parameters are strongly impacted by duration and distance. The most critical of these is deep-space radiation exposure without even the temporary shielding of a nearby large planetary body. The current space radiation permissible exposure limits (PEL) limits mission duration to 3-10 months depending on age, gender and stage of the solar cycle. Duration also impacts mission architectures including countermeasures for bone, muscle, and cardiovascular atrophy during continuous weightlessness; and behavioral and psychological issues resulting from isolation and confinement. Distance affects communications and limits abort and return options for a NEA mission. These factors are anticipated to have important effects on crew function and autonomous operations, as well as influence medical capability, supplies and training requirements of the crew. The design of a habitat volume that can maintain the physical and psychological health of the crew and support mission operations with limited intervention from earth will require an